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Abstract

Regularity properties lie at the core of variational analysis because of their importance

for stability analysis of optimization and variational problems, constraint qualifications, qual-

ification conditions in coderivative and subdifferential calculus and convergence analysis of

numerical algorithms. The thesis is devoted to investigation of several research questions

related to regularity properties in variational analysis and their applications in convergence

analysis and optimization.

Following the works by Kruger, we examine several useful regularity properties of collec-

tions of sets in both linear and Hölder-type settings and establish their characterizations and

relationships to regularity properties of set-valued mappings.

Following the recent publications by Lewis, Luke, Malick (2009), Drusvyatskiy, Ioffe,

Lewis (2014) and some others, we study application of the uniform regularity and related

properties of collections of sets to alternating projections for solving nonconvex feasibility

problems and compare existing results on this topic.

Motivated by Ioffe (2000) and his subsequent publications, we use the classical iteration

scheme going back to Banach, Schauder, Lyusternik and Graves to establish criteria for

regularity properties of set-valued mappings and compare this approach with the one based

on the Ekeland variational principle.

Finally, following the recent works by Khanh et al. on stability analysis for optimiza-

tion related problems, we investigate calmness of set-valued solution mappings of variational

problems.
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Preface

Investigations of regularity properties of collections of sets have led to many fundamental

ideas and important applications in variational analysis, optimization, optimal control and

related topics. The notion of extremal behavior of collections of sets can be traced back to

the pioneering work by Dubovitskii and Milyutin [31]. The concept of (local) extremality of

collections of finitely many sets was first introduced and intensively examined in the 1980s

by Kruger and Mordukhovich [53, 61, 62]. Its necessary condition in terms of Fréchet and

limiting normals currently known as the extremal principle has been recognized as one of

the cornerstones of variational analysis [77]. The extremal principle can be viewed as an

extension of the classical convex separation theorem to the nonconvex setting and hence plays

a fundamental role in many applications of nonconvex calculus, optimization and related

topics. As shown by Kruger [54, 55], the conclusion of the extremal principle holds true

under weaker than local extremality assumptions which can be interpreted as stationarity or

approximate stationarity of the collection of sets. In Asplund spaces, the last property and

the conclusion of the extremal principle are equivalent. This equivalence is now known as the

extended extremal principle.

Along with extremality and stationarity, regularity properties of collections of sets have

also attracted considerable attention of researchers in recent decades; cf. e.g., [13, 16, 17, 54,

55, 56, 57, 58, 88]. Regularity and uniform regularity properties of collections of sets first

introduced and systematically investigated by Kruger [56] are the negations of stationarity

and approximate stationarity properties, respectively. A dual version of the second property

is also known as alliedness [82] or transversality [9, 18, 30, 36]. Several relaxations of the

uniform regularity property of collections of sets have come to life recently, motivated by the

needs of convergence analysis of algorithms: relative transversality, inherent transversality
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and intrinsic transversality [18, 30].

Earlier another important regularity property of collections of sets was introduced by

Bauschke and Borwein [14, 15]. It is usually referred to as linear regularity although it is

also in use under several other names. This concept is closely related to the (strong) conical

hull intersection property (CHIP), the Jameson’s property and the metric inequality. It has

attracted a remarkable attention of researchers due to its importance in convergence analysis

and approximation theory and its close connections to many important ideas in variational

analysis and optimization theory; cf. e.g., [11, 13, 16, 17, 23, 39, 40, 52, 71, 72, 74, 80, 82,

90, 93].

Although the linear and uniform regularity properties of collections of sets were originally

introduced to serve different purposes in very different contexts, they turn out to be very

closely related. The uniform regularity of a collection of sets at a point in their intersection

is in a sense equivalent to the linear regularity condition being satisfied uniformly at all

nearby points. These two properties along with their interesting interpretations in terms of

set-valued mappings are the main objects of this study.

Regularity properties of collections of sets play an important role in variational analysis,

optimization and approximation theory, particularly as constraint qualifications in establish-

ing optimality conditions, qualification conditions in coderivative and subdifferential calculus,

and in analyzing convergence of numerical algorithms. From the applications point of view,

this study mainly focuses on numerical issues such as linear convergence of projection methods

for finding a common point of a collection of sets.

Introduced in the 1990s for computational purposes, the linear regularity property was

used as a sufficient condition when establishing linear convergence of sequences generated by

the cyclic projection algorithm for finding the projection of a point on the intersection of a

collection of closed and convex sets. The application of the uniform regularity property to

convergence analysis is a relatively new phenomenon starting in 2009 with the work by Lewis

et al. [70] which extended the result by Bauschke and Borwein to collections of nonconvex

sets. This nonconvex convergence criterion paved the way to using projection methods for

solving nonconvex feasibility problems frequently appearing in conjunction with constrained

optimization problems.
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There are important relationships between regularity properties of collections of sets and

those of set-valued mappings. The uniform regularity can be interpreted as the direct ana-

logue of the metric regularity of set-valued mappings. The last property has been at the cen-

ter of many important aspects of variational analysis and optimization theory, particularly

convergence analysis of numerical algorithms for solving generalized equations, optimization

and approximation problems; cf. e.g., [8, 9, 26, 28, 29, 40, 51, 59, 60, 70, 75, 76, 78, 86].

Correspondingly, the local version of linear regularity can be interpreted as the metric sub-

regularity of set-valued mappings, a prominent relaxed version of metric regularity [28]. Its

outstanding role in optimization and variational analysis in relation to the calmness prop-

erty, error bounds, weak sharp minima, slopes, and subdifferential calculus has been verified

through a vast number of publications; cf. e.g., [6, 7, 22, 27, 29, 33, 43, 44, 64, 65, 67, 77, 87].

For completeness, another regularity property of collections of sets known as semiregularity

[64, 65] corresponds, in the same manner, to the metric semiregularity of set-valued mappings

[58, 64, 65].

Wide range of applications of regularity properties of collections of sets suggests fur-

ther investigation of different aspects related to variational analysis and optimization theory.

Qualitative and quantitative characterizations of the properties in terms of both primal space

and dual space elements are important. In many situations, particularly in numerical analy-

sis, quantitative estimates characterizing the properties provide the “radius of effectiveness”

within which the algorithm will perform effectively. A big variety of existing regularity prop-

erties and their characterizations require a kind of classification scheme. Formulating connec-

tions between them and other important concepts in variational analysis and optimization

including slopes, error bounds and weak sharp minima is also of interest. In another perspec-

tive, in situations when conventional linear estimates are not satisfied, regularity properties

of collections of sets can be extended and examined in the Hölder-type setting, or even more

general nonlinear settings.

The breakthrough result by Lewis et al. [70] reveals a number of issues for investigation.

Some effort has been contributed towards weakening the assumptions and improving conver-

gence rates to increase the effectiveness of the method [18, 30]. The approach initiated in [70]

not only works effectively for the averaged and alternating projection methods, but also seems
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to be applicable to the Douglas-Rachford iteration scheme [83]. Convergence analysis for the

last method is, in general, difficult due to its complexity and leaves much room for further

investigation. Considering projection methods in infinite dimensional (e.g., Hilbert) spaces

may also have a potential because the mentioned approach still works well for appropriate

inexact projection methods. Using approximate algorithms allows one to consider situations

when exact projections do not exist. This can be considered as one of the main difficulties

when dealing with projection methods in infinite dimensional spaces.

Regularity properties of set-valued mappings can be investigated in conjunction with

their counterparts for collections of sets. Lying at the core of variational analysis, they were

initially studied in the framework of the stability theory of solutions to generalized equa-

tions (initiated by Robinson [84, 85] in the 1970s). They have found numerous applications

when studying stability of optimization and variational problems, constraint qualifications,

qualification conditions in coderivative and subdifferential calculus and convergence rates of

numerical algorithms; cf. books and surveys [1, 10, 12, 21, 29, 40, 42, 44, 51, 77, 82, 86] and

the references therein.

This study is devoted to investigation of several specific research questions regarding

regularity properties in variational analysis and their application in optimization, particularly

convergence analysis and stability analysis. Firstly, continuing the initial works by Kruger

[56, 57, 58], we examine the three mentioned earlier regularity properties of collections of sets

in both the linear and Hölder-type settings and find out the relationships to their counterparts

in terms of set-valued mappings. Secondly, following the approaches initiated by Lewis et

al. [70] and Drusvyatskiy et al. [30], we apply the uniform regularity property and its

relaxations to the method of alternating projections and compare existing results on this topic.

Thirdly, we use the classical iteration scheme going back to Banach, Schauder, Lyusternik

and Graves to establish criteria for the metric regularity property of set-valued mappings

and its extensions and compare the results with those obtained with the help of the Ekeland

variational principle. Finally, an application of regularity properties of set-valued mappings

in analyzing stability of solutions to variational problems is studied.

In Chapter 1 [65], we systematically investigate the three properties of semiregularity

(weak regularity), subregularity (local linear regularity) and uniform regularity (strong reg-
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ularity) of collections of sets in the linear setting. Following the lines of [56, 57, 58], we

provide quantitative and qualitative characterizations of these properties in terms of both

primal space and dual space elements. Complementing a group of results formulated in the

mentioned articles, we establish several new characterizations and criteria for the properties.

To the best of our knowledge, most of the primal and dual space characterizations of the

subregularity property and a few primal space characterizations of the two other properties

are established in this chapter for the first time. We also discuss their relationships with

the corresponding regularity properties of set-valued mappings. Equivalences regarding the

subregularity property are established here for the first time as direct analogues of those

regarding the two other properties originally formulated by Kruger [58, Theorem 7]. Some

quantitative estimates in that article are also improved. In comparison with the proofs of the

mentioned results in [58] where some auxiliary set-valued mappings were used, we provide

direct proofs of the results.

In Chapter 2 [64] which continues Chapter 1, we extend the investigation of the three

regularity properties of collections of sets to the Hölder-type setting. This is motivated by

the link between the collections of sets and set-valued mappings and the importance of Hölder-

type extensions of regularity properties of set-valued mappings in variational analysis both

in theory and in relatively new application in establishing convergence rates of numerical

algorithms; cf. [6, 22, 32, 33, 34, 38, 67, 73, 87]. We introduce the Hölder-type extensions

of the properties of collections of sets and provide appropriate examples of collections of sets

where conventional regularity conditions are not satisfied, but one can still identify their

Hölder-type analogues. Quantitative and qualitative characterizations of these new extended

properties in terms of both primal space and dual space elements are provided along the lines

of [65]. We formulated their close connections with the corresponding Hölder-type regularity

properties of set-valued mappings.

In Chapter 3 [63], we examine the uniform regularity property of collections of sets in

Hilbert spaces and apply the obtained results to analyzing linear convergence of the cyclic

projection method for solving nonconvex feasibility problems. This is motivated by the

recent developments in the employment of this property in convergence analysis of projection

algorithms in Lewis et al. [70], Attouch et al. [9], Luke [75, 76], and Hesse and Luke [36].
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The quantitative characterizations of the uniform regularity property in terms of Fréchet

normal vectors in normed linear spaces developed in [56, 57, 58, 59] in Hilbert spaces admit

simpler equivalent representations. For the most important for applications case of two sets,

we provide two more dual space constants characterizing the property. One of them is a slight

modification of the constant introduced by Lewis et al. [70] when formulating convergence

rates of averaged and alternating projection methods in Euclidean spaces. We establish the

exact relationships amongst these constants including the one introduced in [70]. Thanks

to these relationships, each constant can be used for characterizing convergence rates of

projection algorithms in Euclidean spaces. Following the approach initiated by Lewis et

al. [70], we make an attempt to use these dual constants to establish a linear convergence

result for the cyclic projection algorithm for solving nonconvex feasibility problems of finite

collections of sets in Hilbert spaces. In the case of two sets, our convergence criterion goes

back to the one formulated in [70].

In Chapter 4 [66], we continue examining the uniform regularity property of collections

of sets and its relaxed versions and applying them to numerical algorithms. Unlike Chapter

3 where only the approach initiated by Lewis et al. [70] is studied, here the technique of

analyzing linear convergence of the alternating projections initiated by Drusvyatskiy et al.

[30] is also discussed. Comparisons of the regularity assumptions employed and the con-

vergence rates obtained in the two approaches are provided when appropriate. We discuss

relationships between the two relaxations of the uniform regularity property due to Bauschke

et al. [19] and Drusvyatskiy et al. [30]: intrinsic transversality and inherent transversality

(the terminology is taken from [30]). Examples demonstrating the independence of the two

properties are provided. As a consequence, this shows the independence of the two groups of

convergence results established by the mentioned two groups of researchers. We demonstrate

that the approaches initiated in [30, 70] for establishing linear convergence of alternating

projections are also applicable for certain “inexact” versions of the algorithm. These ex-

tended methods, which are motivated by [70] and first considered in this study, allow some

appropriate inexactness when finding a projection of a point on a set. They cover the clas-

sical method of alternating projections as a special case. Following the lines of [30, 70], we

formulate convergence criteria for the extended algorithms which go back to the original ones
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established in the mentioned articles as a special case when the method is exact.

In Chapter 5 [49], we investigate the metric regularity property - the most recognized

and widely used property of set-valued mappings; cf. [12, 20, 21, 29, 40, 51, 77, 81, 82, 86]

and the direct counterpart of the uniform regularity property of collections of sets [57, 58]

discussed in the previous chapters. We propose and investigate a general regularity model

for a set-valued mapping F : X × R+ ⇒ Y , where X and Y are metric spaces. This model

not only covers the case of a family of set-valued mappings when formulating regularity

criteria, but also can be of interest by itself. In this chapter, we focus on analogues of the

properties of metric regularity and openness of set-valued mappings. Through formulating

regularity criteria for extended set-valued mappings, which reduce to those for the metric

regularity in the conventional setting, we demonstrate that the approach based on iteration

procedures going back to Banach, Schauder, Lyusternik and Graves still possesses potential.

In particular, we modify the induction theorem formulated by Khanh [46], which was used

as the main tool when proving the other results in [46, 47, 48], and show that it can serve as

a substitution of the Ekeland variational principle when establishing regularity and openness

criteria. Criteria for both global and local versions of the metric regularity and openness

properties for the conventional setting are derived as consequences of those for the extended

setting. Motivated by Ioffe [44], we investigate regularity properties in a general nonlinear

model involving certain gauge functions. Results for linear and Hölder-type regularity models

can be easily obtained by considering gauge functions of the corresponding types.

In Chapter 6 [50] which continues Chapter 5, we investigate regularity properties of set-

valued mappings between metric spaces. We demonstrate that the general regularity theory

for a set-valued mapping F : X × R+ ⇒ Y developed in Chapter 5 (article [49]) can be

translated into the conventional setting to obtain criteria for the metric subregularity property

of set-valued mappings. The need for investigating this important relaxation of the metric

regularity property apparently comes from its outstanding role in optimization and variational

analysis in connection with the calmness property, error bounds, weak sharp minima, slopes

and subdifferential calculus which has been verified in a vast number of publications; cf. e.g.,

[6, 7, 22, 27, 29, 33, 43, 44, 64, 65, 67, 77, 87]. We also extend the regularity theory for

a set-valued mapping F : X × R+ ⇒ Y suggested in [49] by considering its subregularity
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variant. This property is a direct counterpart of the metric subregularity property of set-

valued mappings in the conventional setting. Following the lines of [22, 40, 41, 44, 46, 47,

48, 49, 81], we first formulate the results for the most general model which involves a certain

gauge function. The criteria for the linear and Hölder-type regularity models, which are of

special interest for applications including convergence analysis of computational methods (cf.,

e.g., [34, 37, 68, 73, 89, 92]) follow by considering the gauge function of the corresponding

types. It is also emphasized that in certain settings, for example, the one of Hölder-type of

order k (k > 1) captured in [79], metric subregularity properties can no longer be captured

via the understanding of regularity ones.

In Chapter 7 [6], we examine regularity properties of set-valued mappings in relation

to stability analysis issues. Following the recent works by Anh and Khanh [2, 3, 4, 5] on

stability analysis for optimization related problems, we investigate calmness of set-valued

solution mappings of variational problems. In particular, we investigate the so-called (l.α)-

Hölder calmness of solutions to parametric equilibrium problems. When α = 1, this is a

kind of calmness property which is in general stronger than the property of the same name

usually used in variational analysis, e.g., [24, 25, 35, 45, 69, 91]. As applications we investigate

conditions for Hölder calmness of solutions to optimization problems and well-posedness in

the Hölder sense. The last subject is intimately related to the stability analysis and plays a

very important role in studying optimization and variational problems.

Overall, this PhD thesis contributes to several important aspects of variational analysis

and optimization in both theory and applied perspectives. Its main contribution to the lit-

erature of variational analysis is the extensions and developments of the regularity theory of

collections of sets (Chapters 1 and 2). Several regularity properties including the uniform

regularity, subregularity and semiregularity of collections of sets are systematically discussed

and represented in a coherent manner. Several new qualitative and quantitative characteri-

zations in terms of primal space and dual space elements of these properties are formulated.

Interesting and important mutual relationships between regularity properties of set-valued

mappings and those of collections of sets are strengthened and refined. These regularity prop-

erties of collections of sets are also extended and considered in the more general Hölder-type

setting. Their characterizations and relationships to the Hölder-type regularity properties
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of set-valued mappings are formulated. Besides, this study contributes to the topic of con-

vergence analysis of numerical algorithms (Chapters 3 and 4). The role of the regularity

properties, especially, the uniform regularity and its restricted versions in establishing linear

convergence of projection methods is investigated and discussed. This provides an under-

standing of the nature of projection algorithms, especially, the developments on methods of

approximate alternating projections. Some new understanding of the regularity theory of

set-valued mappings is also achieved throughout the project (Chapters 5,6 and 7). Several

criteria or metric regularity are formulated by using classical iteration schemes instead of the

Ekeland variational principle. Applications of regularity properties in stability analysis of

solutions to equilibrium problems are investigated.

All the results presented in this thesis, unless otherwise specified, are the results of the

author’s independent research carried out under the supervision of Assoc. Prof. Alexander

Kruger, Prof. Phan Quoc Khanh and Assoc. Prof. Adil Bagirov at Federation University

Australia. Chapter 7 is based on the joint article involving Assoc. Prof. Lam Quoc Anh as

a contributing author.
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2. L. Q. Anh, A. Y. Kruger, and N. H. Thao. On Hölder calmness of solution mappings
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parametric equilibrium problems. TOP 22 (1) (2014) 331–342.

[7] M. Apetrii, M. Durea, R. Strugariu, On subregularity properties of set-valued mappings.

Set-Valued Var. Anal. 21 (1) (2013) 93–126.

[8] H. Attouch, J. Bolte, On the convergence of the proximal algorithm for nonsmooth func-

tions involving analytic features. Math. Program., Ser. B 116 (1-2) (2009) 5–16.

[9] H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Proximal alternating minimization

11



and projection methods for nonconvex problems: an approach based on the Kurdyka–

 Lojasiewicz inequality. Math. Oper. Res. 35 (2) (2010) 438–457.

[10] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser Boston Inc., Boston,
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Chapter 1

Quantitative characterizations of

regularity properties of collections

of sets

Several primal and dual quantitative characterizations of regularity properties of collec-

tions of sets in normed linear spaces are discussed. Relationships between regularity proper-

ties of collections of sets and those of set-valued mappings are provided.

1.1 Introduction

Regularity properties of collections of sets play an important role in variational analysis

and optimization, particularly as constraint qualifications in establishing optimality condi-

tions and coderivative/subdifferential calculus and in analyzing convergence of numerical

algorithms.

The concept of linear regularity was introduced in [6, 7] as a key condition in establishing

linear convergence rates of sequences generated by the cyclic projection algorithm for finding

the projection of a point on the intersection of a collection of closed convex sets. This property

has proved to be an important qualification condition in the convergence analysis, optimality

conditions, and subdifferential calculus; cf., e.g., [5, 8, 9, 10, 19, 36, 42, 48, 51].

Recently, when investigating the extremality, stationarity and regularity properties of
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collections of sets systematically, several other kinds of regularity properties have been con-

sidered in [27, 28, 29, 30, 31, 32]. They have proved to be useful in convergence analysis

[3, 17, 32, 34, 39, 40] and are closely related to certain stationarity properties involved in

extensions of the extremal principle [25, 26, 29, 30, 41].

In this study, we aim at providing primal and dual quantitative characterizations of

several regularity properties of collections of sets. We also discuss their relationships with

the corresponding regularity properties of set-valued mappings.

After introducing in the next section some basic notation, we discuss in Section 1.3 three

primal space local regularity properties of collections of sets, namely, semiregularity, sub-

regularity, and uniform regularity as well as their quantitative characterizations. The main

result of this section – Theorem 1 – gives equivalent metric characterizations of the three

mentioned regularity properties. Section 1.4 is dedicated to dual characterizations of the reg-

ularity properties. In Theorem 2 (i), we give a sufficient condition of subregularity in terms

of Fréchet normals. In Section 1.5, we present relationships between regularity properties of

collections of sets and the corresponding regularity properties of set-valued mappings.

1.2 Notation

Our basic notation is standard; cf. [41, 45]. For a normed linear space X, its topological

dual is denoted X∗, while 〈·, ·〉 denotes the bilinear form defining the pairing between the two

spaces. The closed unit ball in a normed space is denoted B, Bδ(x) stands for the closed ball

with radius δ and centre x. Products of normed spaces will be considered with the maximum

type norms, if not specified otherwise.

The Fréchet normal cone to a set Ω ⊂ X at x ∈ Ω and the Fréchet subdifferential of a

function f : X → R∞ := R∪ {+∞} at a point x with f(x) <∞ are defined, respectively, by

NΩ(x) :=

{
x∗ ∈ X∗ : lim sup

u→x, u∈Ω\{x}

〈x∗, u− x〉
‖u− x‖ ≤ 0

}
,

∂f(x) :=

{
x∗ ∈ X∗ : lim inf

u→x, u 6=x

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖ ≥ 0

}
.
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For a given set Ω ⊂ X, the distance function associated with Ω is defined by

d(x,Ω) := inf
ω∈Ω
‖x− ω‖ , ∀x ∈ X.

In the sequel, Ω stands for a collection of m (m ≥ 2) sets Ω1, . . . ,Ωm in a normed linear

space X, and we assume the existence of a point x̄ ∈ ⋂m
i=1 Ωi.

1.3 Regularity properties of collections of sets

In this section, we discuss local primal space regularity properties of finite collections of

sets and their primal space characterizations.

1.3.1 Definitions

The next definition introduces several regularity properties of Ω at x̄.

Definition 1. (i) Ω is semiregular at x̄ iff there exist positive numbers α and δ such that

m⋂
i=1

(Ωi − xi)
⋂

Bρ(x̄) 6= ∅ (1.1)

for all ρ ∈ (0, δ) and all xi ∈ X (i = 1, . . . ,m) such that max
1≤i≤m

‖xi‖ ≤ αρ.

(ii) Ω is subregular at x̄ iff there exist positive numbers α and δ such that

m⋂
i=1

(Ωi + (αρ)B)
⋂
Bδ(x̄) ⊆

(
m⋂
i=1

Ωi

)
+ ρB (1.2)

for all ρ ∈ (0, δ).

(iii) Ω is uniformly regular at x̄ iff there exist positive numbers α and δ such that

m⋂
i=1

(Ωi − ωi − xi)
⋂

(ρB) 6= ∅ (1.3)

for all ρ ∈ (0, δ), ωi ∈ Ωi ∩Bδ(x̄), and all xi ∈ X (i = 1, . . . ,m) such that max
1≤i≤m

‖xi‖ ≤

αρ.
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Remark 1. Among the three regularity properties in Definition 1, the third one is the

strongest. Indeed, condition (1.1) corresponds to taking ωi = x̄ in (1.3). To compare prop-

erties (ii) and (iii), it is sufficient to notice that condition (1.2) is equivalent to the following

one: for any x ∈ Bδ(x̄), ωi ∈ Ωi, xi ∈ X (i = 1, . . . ,m) such that max
1≤i≤m

‖xi‖ ≤ αρ, and

ωi + xi = x (i = 1, . . . ,m), it holds

m⋂
i=1

(Ωi − x)
⋂

(ρB) 6= ∅.

This corresponds to taking ωi + xi = x (i = 1, . . . ,m) in (1.3) (with x ∈ X) and possibly

choosing a smaller δ > 0. Hence, (iii) =⇒ (i) and (iii) =⇒ (ii).

Remark 2. When x̄ ∈ int
⋂m
i=1 Ωi, all the properties in Definition 1 hold true automatically.

Remark 3. 1 When Ω1 = Ω2 = . . . = Ωm, property (ii) in Definition 1 is trivially satisfied

(with α = 1).

The regularity properties in Definition 1 can be equivalently defined using the following

nonnegative constants which provide quantitative characterizations of these properties:

θ[Ω](x̄) := lim inf
ρ↓0

θρ[Ω](x̄)

ρ
, (1.4)

ζ[Ω](x̄) := lim
δ↓0

inf
0<ρ<δ

ζρ,δ[Ω](x̄)

ρ
, (1.5)

θ̂[Ω](x̄) := lim inf
ωi

Ωi→x̄,ρ↓0

θρ[Ω1 − ω1, . . . ,Ωm − ωm](0)

ρ
, (1.6)

where, for ρ > 0 and δ > 0,

θρ[Ω](x̄) := sup

{
r ≥ 0 :

m⋂
i=1

(Ωi − xi)
⋂
Bρ(x̄) 6= ∅, ∀xi ∈ rB

}
, (1.7)

ζρ,δ[Ω](x̄) := sup

{
r ≥ 0 :

m⋂
i=1

(Ωi + rB)
⋂
Bδ(x̄) ⊆

m⋂
i=1

Ωi + ρB

}
. (1.8)

The next proposition follows immediately from the definitions.

Proposition 1. (i) Ω is semiregular at x̄ if and only if θ[Ω](x̄) > 0. Moreover, θ[Ω](x̄)

is the exact upper bound of all numbers α such that (1.1) is satisfied.

1Observed by a reviewer.
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(ii) Ω is subregular at x̄ if and only if ζ[Ω](x̄) > 0. Moreover, ζ[Ω](x̄) is the exact upper

bound of all numbers α such that (1.2) is satisfied.

(iii) Ω is uniformly regular at x̄ if and only if θ̂[Ω](x̄) > 0. Moreover, θ̂[Ω](x̄) is the exact

upper bound of all numbers α such that (1.3) is satisfied.

Remark 4. Properties (i) and (iii) in Definition 1 were discussed in [28] (where they were

called regularity and strong regularity, respectively) and [29] (properties (R)S and (UR)S)

and [30] (regularity and uniform regularity). The current terminology used in parts (i) and

(ii) of Definition 1 comes from the standard terminology used for the corresponding regularity

properties of set-valued mappings; cf. Section 1.5.

Constants (1.4), (1.6), and (1.7) can be traced back to [21, 22, 23, 24, 25, 26, 27]. Property

(ii) in Definition 1 and constants (1.5) and (1.8) are new.

Remark 5. If finite, constants ζ[Ω](x̄) and θ̂[Ω](x̄) always take values in [0, 1], while constant

θ[Ω](x̄) can be strictly greater than one (cf. Example 4 below). In view of Remark 1, it is

not difficult to check that θ̂[Ω](x̄) ≤ min{θ[Ω](x̄), ζ[Ω](x̄)}.

The equivalent representation of constant (1.7) given in the next proposition can be useful.

Proposition 2. For any ρ > 0,

θρ[Ω](x̄) = sup

r ≥ 0 : rBm ⊆
⋃

x∈Bρ(x̄)

m∏
i=1

(Ωi − x)

 , (1.9)

where
∏m
i=1(Ωi − x) = (Ω1 − x)× . . .× (Ωm − x) and Bm =

∏m
i=1 B.

Proof. It is sufficient to observe that condition

m⋂
i=1

(Ωi − xi)
⋂
Bρ(x̄) 6= ∅

in (1.7) is equivalent to the existence of x ∈ Bρ(x̄) such that xi ∈ Ωi − x for all i = 1, . . . ,m.

This holds true for all xi ∈ rB if and only if

rBm ⊆
⋃

x∈Bρ(x̄)

m∏
i=1

(Ωi − x).
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From Propositions 1 and 2, we immediately obtain equivalent representations of semireg-

ularity and uniform regularity.

Corollary 1. (i) Ω is semiregular at x̄ if and only if there exist positive numbers α and δ

such that

(αρ)Bm ⊆
⋃

x∈Bρ(x̄)

m∏
i=1

(Ωi − x) (1.10)

for all ρ ∈ (0, δ). Moreover, θ[Ω](x̄) is the exact upper bound of all numbers α such

that (1.10) is satisfied.

(ii) Ω is uniformly regular at x̄ if and only if there exist positive numbers α and δ such that

(αρ)Bm ⊆
⋂

ωi∈Ωi∩Bδ(x̄)
(i=1,...,m)

⋃
x∈ρB

m∏
i=1

(Ωi − ωi − x) (1.11)

for all ρ ∈ (0, δ). Moreover, θ̂[Ω](x̄) is the exact upper bound of all numbers α such

that (1.11) is satisfied.

Remark 6. The definition of subregularity in Definition 1 (ii) is already of inclusion type in

the setting of the original space X. There is no need to consider the product space Xm.

1.3.2 Examples

We next present examples illustrating that properties (i) and (ii) in Definition 1 are in

general independent and none of these two properties implies property (iii) in Definition 1.

Example 1. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 = Ω2 := R× {0}

and the point x̄ = (0, 0) ∈ Ω1 ∩Ω2. The collection {Ω1,Ω2} is subregular at x̄, while it is not

semiregular at this point.

Proof. In view of Remark 3, {Ω1,Ω2} is subregular at x̄. Observe also that (Ω1 − (0,−ε)) ∩
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(Ω2 − (0, ε)) = ∅ for any ε > 0. Hence, by (1.7) and (1.4), {Ω1,Ω2} is not semiregular at

x̄.

Example 2. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 :=
{

(u, v) ∈ R2 : u ≤ 0 or v ≥ u2
}
, Ω2 :=

{
(u, v) ∈ R2 : u ≤ 0 or v ≤ 0

}
and the point x̄ = (0, 0) ∈ Ω1 ∩ Ω2. The collection {Ω1,Ω2} is semiregular at x̄, while it is

not subregular at this point.

Proof. We first show that {Ω1,Ω2} is semiregular at x̄. For any number ρ > 0, we set

xρ := (−ρ, 0). Then Bρ(xρ) ⊆ Ωi, i.e., xρ + xi ∈ Ωi for any xi ∈ ρB (i = 1, 2), and

consequently

xρ ∈ (Ω1 − x1) ∩ (Ω2 − x2) ∩Bρ(x̄), ∀xi ∈ ρB (i = 1, 2).

Hence, θρ[{Ω1,Ω2}](x̄) ≥ ρ and θ[{Ω1,Ω2}](x̄) ≥ 1. (One can show that these are actually

equalities.) Thus, {Ω1,Ω2} is semiregular at x̄.

Suppose that inclusion (1.2) holds for some positive numbers α and δ and all ρ ∈

(0, δ). Set ρn := 1
n and xn :=

(√
αρn, αρn

)
. Then xn ∈ (Ω1 + (αρn)B)

⋂
(Ω2 + (αρn)B),

d(xn,Ω1
⋂

Ω2) =
√
αρn and, for sufficiently large n, ρn < δ and xn ∈ Bδ(x̄). It follows from

(1.2) that
√
αρn ≤ ρn, and consequently α ≤ ρn. This yields α ≤ 0 which contradicts the

assumptions. Hence, {Ω1,Ω2} is not subregular at x̄.

Example 3. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 = Ω2 :=
{

(u, v) ∈ R2 : u ≤ 0 or v = 0
}

and the point x̄ = (0, 0) ∈ Ω1∩Ω2. The collection {Ω1,Ω2} is both semiregular and subregular

at x̄, while it is not uniformly regular at this point.

Proof. In view of Remark 3, {Ω1,Ω2} is subregular at x̄. Using the arguments from the first

part of Example 2, it is easy to check that the collection is semiregular at x̄. We next show

that {Ω1,Ω2} is not uniformly regular at this point. Indeed, for any given numbers δ, α > 0,
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we find positive numbers ρ < r < δ and take

ωi = (r, 0)∈ Ωi ∩Bδ(x̄) (i = 1, 2), a1 = (0, αρ), a2 = (0,−αρ) ∈ αρB.

We have

(Ω1 − ω1 − a1)
⋂

(Ω2 − ω2 − a2)
⋂

(ρB) = {(u, v) ∈ R2 : u ≤ −r}
⋂

(ρB) = ∅.

The following example demonstrates that the constant θ[Ω](x̄) can take values greater

than one.

Example 4. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 := R2,Ω2 :=
{

(u, v) ∈ R2 : u−
√

3v ≥ 0 or u+
√

3v ≥ 0
}

and the point x̄ = (0, 0) ∈ Ω1 ∩ Ω2. Then, θ[Ω](x̄) = 2 > 1.

Proof. By the structure of the sets, we have

θρ[Ω](x̄) = sup{r ≥ 0 : (Ω2 − x)
⋂

(ρB) 6= ∅, ∀x ∈ rB}

= sup{r ≥ 0 : d(0,Ω2 − x) ≤ ρ, ∀x ∈ rB}

= sup{r ≥ 0 : d(x,Ω2) ≤ ρ, ∀x ∈ rB}

= sup{r ≥ 0 : max{d(x,Ω2) : x ∈ rB} ≤ ρ}

= sup{r ≥ 0 :
r

2
≤ ρ} = 2ρ.

The second last equality holds true since for any r > 0,

max{d(x,Ω2) : x ∈ rB} = d(xr,Ω2) =
r

2
,

where xr := (−r, 0).

Hence, by definition,

θ[Ω](x̄) = lim inf
ρ↓0

θρ[Ω](x̄)

ρ
= 2.
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1.3.3 Metric characterizations

The regularity properties of collections of sets in Definition 1 can also be characterized in

metric terms. The next proposition provides equivalent metric representations of constants

(1.4) – (1.6).

Proposition 3.

θ[Ω](x̄) = lim inf
xi→0 (1≤i≤m)
x̄/∈

⋂m
i=1(Ωi−xi)

max1≤i≤m ‖xi‖
d
(
x̄,
⋂m
i=1(Ωi − xi)

) , (1.12)

ζ[Ω](x̄) = lim inf
x→x̄

x/∈
⋂m
i=1 Ωi

max1≤i≤m d(x,Ωi)

d
(
x,
⋂m
i=1 Ωi

) (1.13)

= lim inf
x→x̄

ωi
Ωi→x̄ (1≤i≤m)
x/∈

⋂m
i=1 Ωi

max1≤i≤m ‖ωi − x‖
d
(
x,
⋂m
i=1 Ωi

) ,

θ̂[Ω](x̄) = lim inf
x→x̄

xi→0 (1≤i≤m)
x/∈

⋂m
i=1(Ωi−xi)

max1≤i≤m d(x+ xi,Ωi)

d
(
x,
⋂m
i=1(Ωi − xi)

) (1.14)

= lim inf
x→x̄

xi→0, ωi
Ωi→x̄ (1≤i≤m)

x/∈
⋂m
i=1(Ωi−xi)

max1≤i≤m ‖x+ xi − ωi‖
d
(
x,
⋂m
i=1(Ωi − xi)

) .

Proof. Equality (1.12). Let ξ stand for the right-hand side of (1.12). Suppose that ξ > 0 and

fix an arbitrary number γ ∈ (0, ξ). Then there is a number δ > 0 such that

γd

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
‖xi‖ , ∀xi ∈ δB (i = 1, . . . ,m). (1.15)

Choose a number α ∈ (0, γ) and set δ′ = δ
α . Then, for any ρ ∈ (0, δ′) and xi ∈ (αρ)B

(i = 1, . . . ,m), it holds max1≤i≤m ‖xi‖ ≤ αρ ≤ αδ′ = δ. Hence, (1.15) yields

d

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ 1

γ
max

1≤i≤m
‖xi‖ ≤

α

γ
ρ < ρ.

This implies (1.1) and consequently θ[Ω](x̄) ≥ α. Taking into account that α can be arbi-

trarily close to ξ, we obtain θ[Ω](x̄) ≥ ξ.
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Conversely, suppose that θ[Ω](x̄) > 0 and fix an arbitrary number α ∈ (0, θ[Ω](x̄)).

Then there is a number δ > 0 such that (1.1) is satisfied for all ρ ∈ (0, δ) and xi ∈ (αρ)B

(i = 1, . . . ,m). Choose a positive δ′ < αδ. For any xi ∈ δ′B (i = 1, . . . ,m), it holds

max1≤i≤m ‖xi‖ < αδ. Pick up a ρ ∈ (0, δ) such that max1≤i≤m ‖xi‖ = αρ. Then (1.1) yields

αd

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ αρ = max

1≤i≤m
‖xi‖ .

This implies ξ ≥ α. Since α can be arbitrarily close to θ[Ω](x̄), we deduce ξ ≥ θ[Ω](x̄).

Equality (1.13). Let ξ stand for the right-hand side of (1.13). Suppose that ξ > 0 and fix

an arbitrary number α ∈ (0, ξ). Then there is a number δ > 0 such that

αd

(
x,

m⋂
i=1

Ωi

)
≤ max

1≤i≤m
d(x,Ωi), ∀x ∈ Bδ(x̄).

If x ∈ ⋂m
i=1 (Ωi + (αρ)B)

⋂
Bδ(x̄) for some ρ ∈ (0, δ), then max1≤i≤m d(x,Ωi) ≤ αρ, and

consequently d (x,
⋂m
i=1 Ωi) ≤ ρ, i.e., ζρ,δ[Ω](x̄) ≥ αρ. Hence, ζ[Ω](x̄) ≥ α. Since α can be

arbitrarily close to ξ, we obtain ζ[Ω](x̄) ≥ ξ.

Conversely, suppose that ζ[Ω](x̄) > 0 and fix any α ∈ (0, ζ[Ω](x̄)). Then there is a number

δ > 0 such that (1.2) is satisfied for all ρ ∈ (0, δ). Choose a positive number δ′ < min{αδ, δ}.

For any x ∈ Bδ′(x̄), it holds

max
1≤i≤m

d(x,Ωi) ≤ ‖x− x̄‖ ≤ δ′ < αδ.

Choose a ρ ∈ (0, δ) such that max1≤i≤m d(x,Ωi) = αρ. Then, by (1.2),

αd

(
x,

m⋂
i=1

Ωi

)
≤ αρ = max

1≤i≤m
d(x,Ωi).

Hence, α ≤ ξ. By letting α→ ζ[Ω](x̄), we obtain ζ[Ω](x̄) ≤ ξ.

Equality (1.14) has been proved in [27, Theorem 1].

Propositions 1 and 3 imply equivalent metric characterizations of the regularity properties

of collections of sets.
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Theorem 1. (i) Ω is semiregular at x̄ if and only if there exist positive numbers γ and δ

such that

γd

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
‖xi‖ , ∀xi ∈ δB (i = 1, . . . ,m). (1.16)

Moreover, θ[Ω](x̄) is the exact upper bound of all numbers γ such that (1.16) is satisfied.

(ii) Ω is subregular at x̄ if and only if there exist positive numbers γ and δ such that

γd

(
x,

m⋂
i=1

Ωi

)
≤ max

1≤i≤m
d(x,Ωi), ∀x ∈ Bδ(x̄). (1.17)

Moreover, ζ[Ω](x̄) is the exact upper bound of all numbers γ such that (1.17) is satisfied.

(iii) Ω is uniformly regular at x̄ if and only if there exist positive numbers γ and δ such that

γd

(
x,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
d(x+ xi,Ωi) (1.18)

for any x ∈ Bδ(x̄), xi ∈ δB (i = 1, . . . ,m). Moreover, θ̂[Ω](x̄) is the exact upper bound

of all numbers γ such that (1.18) is satisfied.

Remark 7. Property (1.17) in the above theorem (also known as local linear regularity,

linear coherence, or metric inequality) has been around for more than 20 years; cf. [4, 5, 6,

7, 8, 9, 10, 18, 19, 20, 35, 36, 37, 42, 44, 48, 51]. It has been used as a key condition when

establishing linear convergence rates of sequences generated by cyclic projection algorithms

and a qualification condition for subdifferential and normal cone calculus formulae. The

stronger property (1.18) is sometimes referred to as uniform metric inequality [27, 28, 29].

Property (1.16) seems to be new.

1.4 Dual characterizations

This section discusses dual characterizations of regularity properties of a collection

of sets Ω := {Ω1, . . . ,Ωm} at x̄ ∈ ⋂m
i=1 Ωi. We are going to use the notation

Ω̂ := Ω1 × . . .× Ωm ⊂ Xm.
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Recall that the (normalized) duality mapping [38, Definition 3.2.6] J between a normed

space Y and its dual Y ∗ is defined as

J(y) := {y∗ ∈ SY ∗ : 〈y∗, y〉 = ‖y‖} , ∀y ∈ Y.

Note that J(−y) = −J(y).

The following simple fact of convex analysis is well known (cf., e.g., [46, Corollary 2.4.16]).

Lemma 1. Let (Y, ‖ · ‖) be a normed space.

(i) ∂‖ · ‖(y) = J(y) for any y 6= 0.

(ii) ∂‖ · ‖(0) = B∗.

Making use of the convention that the topology in Xm is defined by the maximum type

norm, it is not difficult to establish a representation of the duality mapping on Xm.

Proposition 4. For each (x1, . . . , xm) ∈ Xm,

J(x1, . . . , xm) =

{
(x∗1, . . . , x

∗
m) ∈ (X∗)m :

m∑
i=1

‖x∗i ‖ = 1; either x∗i = 0

or

(
‖xi‖ = max

1≤j≤m
‖xj‖, x∗i ∈ ‖x∗i ‖J(xi)

)
(i = 1, . . . ,m)

}
.

Proof. Let x̂ := (x1, . . . , xm) ∈ Xm, x̂∗ := (x∗1, . . . , x
∗
m) ∈ (X∗)m. Then

‖x̂‖ = max
1≤i≤m

‖xi‖, ‖x̂∗‖ =
m∑
i=1

‖x∗i ‖, 〈x̂∗, x̂〉 =
m∑
i=1

〈x∗i , xi〉.

Suppose ‖x̂∗‖ = 1, i.e.,
∑m

i=1 ‖x∗i ‖ = 1. Then x̂∗ ∈ J(x̂) if and only if
∑m

i=1〈x∗i , xi〉 = ‖x̂‖. In

its turn, the last equality holds true if and only if 〈x∗i , xi〉 = ‖x∗i ‖ · ‖x̂‖ for all i = 1, . . . ,m.

Indeed, if 〈x∗i , xi〉 = ‖x∗i ‖ · ‖x̂‖ for all i = 1, . . . ,m, then adding these m equalities, we

obtain
∑m

i=1〈x∗i , xi〉 = ‖x̂‖. Conversely, if 〈x∗i , xi〉 6= ‖x∗i ‖ · ‖x̂‖, i.e., 〈x∗i , xi〉 < ‖x∗i ‖ · ‖x̂‖ for

some i ∈ {1, . . . ,m}, then

m∑
j=1

〈x∗j , xj〉 = 〈x∗i , xi〉+
∑
j 6=i
〈x∗j , xj〉 < ‖x∗i ‖ · ‖x̂‖+ ‖x̂‖

∑
j 6=i
‖x∗j‖ = ‖x̂‖.
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Finally, 〈x∗i , xi〉 = ‖x∗i ‖ · ‖x̂‖ for some i ∈ {1, . . . ,m} if and only if either ‖xi‖ = ‖x̂‖ and

x∗i ∈ ‖x∗i ‖J(xi) or x∗i = 0.

In this section, along with the maximum type norm on Xm+1 = X ×Xm, we are going

to use another one depending on a parameter ρ > 0 and defined as follows:

‖(x, x̂)‖ρ := max {‖x‖ , ρ ‖x̂‖} , x ∈ X, x̂ ∈ Xm. (1.19)

It is easy to check that the corresponding dual norm has the following representation:

‖(x∗, x̂∗)‖ρ = ‖x∗‖+ ρ−1‖x̂∗‖, x∗ ∈ X∗, x̂∗ ∈ (Xm)∗. (1.20)

Note that if, in (1.19) and (1.20), x̂ = (x1, . . . , xm) and x̂∗ = (x∗1, . . . , x
∗
m) with xi ∈ X and

x∗i ∈ X∗ (i = 1, 2, . . . ,m), then ‖x̂‖ = max1≤i≤m ‖xi‖ and ‖x̂∗‖ =
∑m

i=1 ‖x∗i ‖.

The next few facts of subdifferential calculus are used in the proof of the main theorem

below.

Lemma 2. Let X be a normed space and ϕ(u, û) = ‖(u − u1, . . . , u − um)‖, u ∈

X, û := (u1, . . . , um) ∈ Xm. Suppose x ∈ X, x̂ := (x1, . . . , xm) ∈ Xm, and

v̂ := (x− x1, . . . , x− xm) 6= 0. Then

∂ϕ(x, x̂) ⊆
{

(x∗, x̂∗ = (x∗1, . . . , x
∗
m)) ∈X∗ × (X∗)m :

− x̂∗ ∈ J(v̂), x∗ = −(x∗1 + . . .+ x∗m)
}
.

Proof. Let (x∗, x̂∗ = (x∗1, . . . , x
∗
m)) ∈ ∂ϕ(x, x̂), i.e.,

‖(u− u1, . . . , u− um)‖ − ‖(x− x1, . . . , x− xm)‖ ≥ 〈x∗, u− x〉+
m∑
i=1

〈x∗i , ui − xi〉

for any u ∈ X and û := (u1, . . . , um) ∈ Xm. In particular, with u = x and ui = xi − x′i
(i = 1, . . . ,m) for an arbitrary x̂′ := (x′1, . . . , x

′
m) ∈ Xm, we have

‖v̂ + x̂′‖ − ‖v̂‖ ≥ −〈x̂∗, x̂′〉,
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i.e., −x̂∗ ∈ J(v̂). Similarly, with u = x + x′ and ui = xi + x′ (i = 1, . . . ,m) for an arbitrary

x′ ∈ X, we have 〈
x∗ +

m∑
i=1

x∗i , x
′

〉
≤ 0,

and consequently x∗ + x∗1 + . . .+ x∗m = 0.

Lemma 3. Let X be a normed space and ω̂ := (ω1, . . . , ωm) ∈ Ω̂. Then

N
Ω̂

(ω̂) = NΩ1(ω1)× . . .×NΩm(ωm).

Proof. follows directly from the definition of the Fréchet normal cone.

The proof of the main theorem of this section relies heavily on two fundamental results

of variational analysis: the Ekeland variational principle (Ekeland [14]; cf., e.g., [25, Theo-

rem 2.1], [41, Theorem 2.26]) and the fuzzy (approximate) sum rule (Fabian [15]; cf., e.g.,

[25, Rule 2.2], [41, Theorem 2.33]). Below we provide these results for completeness.

Lemma 4 (Ekeland variational principle). Suppose X is a complete metric space, and f :

X → R∞ is lower semicontinuous and bounded from below, ε > 0, λ > 0. If

f(v) < inf
X
f + ε,

then there exists x ∈ X such that

(a) d(x, v) < λ,

(b) f(x) ≤ f(v),

(c) f(u) + (ε/λ)d(u, x) ≥ f(x) for all u ∈ X.

Lemma 5 (Fuzzy sum rule). Suppose X is Asplund, f1 : X → R is Lipschitz continuous and

f2 : X → R∞ is lower semicontinuous in a neighbourhood of x̄ with f2(x̄) < ∞. Then, for

any ε > 0, there exist x1, x2 ∈ X with ‖xi − x̄‖ < ε, |fi(xi)− fi(x̄)| < ε (i = 1, 2) such that

∂(f1 + f2)(x̄) ⊂ ∂f1(x1) + ∂f2(x2) + εB∗.

The next theorem gives dual sufficient conditions for regularity of collections of sets.

Theorem 2. Let X be an Asplund space and Ω1, . . . , Ωm be closed.
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(i) Ω is subregular at x̄ if there exist positive numbers α and δ such that, for any ρ ∈ (0, δ),

x ∈ Bρ(x̄), ωi ∈ Ωi ∩ Bρ(x) (i = 1, . . . ,m) with ωi 6= x for some i ∈ {1, . . . ,m}, there

is an ε > 0 such that, for any x′ ∈ Bε(x), ω′i ∈ Ωi ∩ Bε(ωi), x∗i ∈ NΩi(ω
′
i) + ρB∗

(i = 1, . . . ,m) satisfying

x∗i = 0 if
∥∥x′ − ω′i∥∥ < max

1≤j≤m

∥∥x′ − ω′j∥∥ ,
〈x∗i , x′ − ω′i〉 ≥ ‖x∗i ‖(‖x′ − ω′i‖ − ε),

m∑
i=1

‖x∗i ‖ = 1, (1.21)

it holds

∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ > α. (1.22)

(ii) Ω is uniformly regular at x̄ if and only if there are positive numbers α and δ such that

(1.22) holds true for all ωi ∈ Ωi ∩ Bδ(x̄) and x∗i ∈ NΩi(ωi) (i = 1, . . . ,m) satisfying

(1.21).

The proof of Theorem 2 (i) consists of a series of propositions providing lower estimates

for constant (1.13) and, thus, sufficient conditions for subregularity of Ω which can be of

independent interest. Observe that constant (1.13) can be rewritten as

ζ[Ω](x̄) = liminf
x→x̄, ωi→x̄ (1≤i≤m)

ω̂=(ω1,...,ωm)
x/∈

⋂m
i=1 Ωi

f(x, ω̂)

d (x,
⋂m
i=1 Ωi)

(1.23)

with function f : Xm+1 → R∞ := R ∪ {+∞} defined as

f(x, x̂) = max
1≤i≤m

‖x− xi‖+ δ
Ω̂

(x̂), x ∈ X, x̂ := (x1, . . . , xm) ∈ Xm, (1.24)

where δ
Ω̂

is the indicator function of Ω̂: δ
Ω̂

(x̂) = 0 if x̂ ∈ Ω̂ and δ
Ω̂

(x̂) = +∞ otherwise.

Proposition 5. Let X be a Banach space and Ω1, . . . , Ωm be closed.
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(i) ζ̂[Ω](x̄) ≤ ζ[Ω](x̄), where

ζ̂[Ω](x̄) := lim
ρ↓0

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

ζρ[Ω](x, ω̂) (1.25)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂,

ζρ[Ω](x, ω̂) := lim sup
(u,v̂)→(x,ω̂)
(u,v̂)6=(x,ω̂)

v̂=(v1,...,vm)∈Ω̂

(
max

1≤i≤m
‖x− ωi‖ − max

1≤i≤m
‖u− vi‖

)
+

‖(u, v̂)− (x, ω̂)‖ρ
. (1.26)

(ii) If ζ̂[Ω](x̄) > 0, then Ω is subregular at x̄.

Proof. (i) Let ζ[Ω](x̄) < α <∞. Choose a ρ ∈]0, 1[ and set

η := min
{ρ

2
,
ρ

α
, ρ

2
ρ

}
. (1.27)

By (1.23), there are x′ ∈ Bη(x̄) and ω̂′ = (ω′1, . . . , ω
′
m) ∈ Ω̂ such that

0 < f(x′, ω̂′) < αd

(
x′,

m⋂
i=1

Ωi

)
. (1.28)

Denote ε := f(x′, ω̂′) and µ := d (x′,
⋂m
i=1 Ωi). Then µ ≤ ‖x′ − x̄‖ ≤ η ≤ ρ

2 < 1. Observe

that f is lower semicontinuous. Applying to f Lemma 4 with ε as above and

λ := µ(1− µ
ρ

2−ρ ), (1.29)

we find points x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Xm such that

∥∥(x, ω̂)− (x′, ω̂′)
∥∥
ρ
< λ, f(x, ω̂) ≤ f(x′, ω̂′), (1.30)

and

f(u, v̂) +
ε

λ
‖(u, v̂)− (x, ω̂)‖ρ ≥ f(x, ω̂), (1.31)
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for all (u, v̂) ∈ X ×Xm. Thanks to (1.30), (1.29), (1.27), and (1.28), we have

∥∥x− x′∥∥ < λ < µ ≤
∥∥x′ − x̄∥∥ ,

d

(
x,

m⋂
i=1

Ωi

)
≥ d

(
x′,

m⋂
i=1

Ωi

)
−
∥∥x− x′∥∥ ≥ µ− λ = µ

2
2−ρ , (1.32)

‖x− x̄‖ ≤
∥∥x− x′∥∥+

∥∥x′ − x̄∥∥ < 2
∥∥x′ − x̄∥∥ ≤ 2η ≤ ρ, (1.33)

f(x, ω̂) ≤ f(x′, ω̂′) < αµ ≤ αη ≤ ρ. (1.34)

It follows from (1.32), (1.33), and (1.34) that

‖x− x̄‖ < ρ, ω̂ ∈ Ω̂, 0 < max
1≤i≤m

‖x− ωi‖ < ρ.

Observe that µ
ρ

2−ρ ≤ η
ρ

2−ρ < η
ρ
2 ≤ ρ, and consequently, by (1.28) and (1.29),

ε

λ
<
αµ

λ
=

α

1− µ
ρ

2−ρ
<

α

1− ρ.

Thanks to (1.31) and (1.24), we have

max
1≤i≤m

‖x− ωi‖ − max
1≤i≤m

‖u− vi‖ ≤
α

1− ρ ‖(u, v̂)− (x, ω̂)‖ρ

for all u ∈ X and v̂ = (v1, . . . , vm) ∈ Ω̂. It follows that ζρ[Ω](x, ω̂) ≤ α

1− ρ and consequently

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

ζρ[Ω](x, ω̂) ≤ α

1− ρ.

Taking limits in the last inequality as ρ ↓ 0 and α→ ζ[Ω](x̄) yields the claimed inequality.

(ii) follows from (i) and Proposition 1 (ii).

Proposition 6. Let X be an Asplund space and Ω1, . . . , Ωm be closed.
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(i) ζ̂∗1 [Ω](x̄) ≤ ζ̂[Ω](x̄), where ζ̂[Ω](x̄) is given by (1.25),

ζ̂∗1 [Ω](x̄) := lim
ρ↓0

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

ζ∗ρ,1[Ω](x, ω̂) (1.35)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂,

ζ∗ρ,1[Ω](x, ω̂) := inf
(x∗,ŷ∗)∈∂f(x,ω̂)
‖ŷ∗‖<ρ

‖x∗‖ (1.36)

(with the convention that the infimum over the empty set equals +∞).

(ii) If ζ̂∗1 [Ω](x̄) > 0, then Ω is subregular at x̄.

Proof. Let ζ̂[Ω](x̄) < α < ∞. Choose a β ∈ (ζ̂[Ω](x̄), α) and an arbitrary ρ > 0. Set

ρ′ = min{1, α−1}ρ. By (1.25) and (1.26), one can find points x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂

such that ‖x− x̄‖ < ρ′, 0 < max1≤i≤m ‖ωi − x‖ < ρ′, and

max
1≤i≤m

‖x− ωi‖ − max
1≤i≤m

‖u− vi‖ ≤ β ‖(u, v̂)− (x, ω̂)‖ρ′

for all (u, v̂) with v̂ = (v1, . . . , vm) ∈ Ω̂ near (x, ω̂). In other words, (x, ω̂) is a local minimizer

of the function

(u, v̂) 7→ max
1≤i≤m

‖u− vi‖+ β ‖(u, v̂)− (x, ω̂)‖ρ′

subject to v̂ = (v1, . . . , vm) ∈ Ω̂. By definition (1.24), this means that (x, ω̂) minimizes locally

the function

(u, v̂) 7→ f(u, v̂) + β ‖(u, v̂)− (x, ω̂)‖ρ′ ,

and consequently its Fréchet subdifferential at (x, ω̂) contains zero. Take an

ε ∈
(

0,min{ρ− ‖x− x̄‖ , ρ− max
1≤i≤m

‖x− ωi‖ , α− β}
)
.

Applying Lemma 5 and Lemma 1 (ii), we can find points x′ ∈ X, ω̂′ = (ω′1, . . . , ω
′
m) ∈ Ω̂, and
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(x∗, ŷ∗) ∈ ∂f(x′, ω̂′) such that

∥∥x′ − x∥∥ < ε, 0 < max
1≤i≤m

∥∥x′ − ω′i∥∥ ≤ max
1≤i≤m

‖x− ωi‖+ ε,

and ‖(x∗, ŷ∗)‖ρ′ = ‖x∗‖+ ‖ŷ∗‖/ρ′ < β + ε.

It follows that

∥∥x′ − x̄∥∥ < ρ, 0 < max
1≤i≤m

∥∥x′ − ω′i∥∥ < ρ, ‖x∗‖ < α, and ‖ŷ∗‖ < ρ′α ≤ ρ.

Hence, ζ∗ρ,1[Ω](x′, ω̂′) < α, and consequently ζ̂∗1 [Ω](x̄) < α. By letting α → ζ̂[Ω](x̄), we

obtain the claimed inequality.

(ii) follows from (i) and Proposition 5 (ii).

Proposition 7. Let X be an Asplund space and Ω1, . . . , Ωm be closed.

(i) ζ̂∗2 [Ω](x̄) ≤ ζ̂∗1 [Ω](x̄), where ζ̂∗1 [Ω](x̄) is given by (1.35),

ζ̂∗2 [Ω](x̄) := lim
ρ↓0

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

lim
ε↓0

inf
‖x′−x‖<ε
ω̂′∈Ω̂

‖ω̂′−ω̂‖<ε

ζ∗ρ,ε,2[Ω](x′, ω̂′) (1.37)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂ with (x− ω1, . . . , x− ωm) 6= 0,

ζ∗ρ,ε,2[Ω](x, ω̂) := inf

{∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ :x∗i ∈ NΩi(ωi) + ρB∗ (i = 1, . . . ,m),

x∗i = 0 if ‖x− ωi‖ < max
1≤j≤m

‖x− ωj‖ ,

〈x∗i , x− ωi〉 ≥ ‖x∗i ‖(‖x− ωi‖ − ε),
m∑
i=1

‖x∗i ‖ = 1

}
. (1.38)

(ii) If ζ̂∗2 [Ω](x̄) > 0, then Ω is subregular at x̄.

Proof. (i) Let ρ > 0, x ∈ X, ω̂ := (ω1, . . . , ωm) ∈ Ω̂ with ‖x − x̄‖ < ρ,

0 < max1≤i≤m ‖x− ωi‖ < ρ, (u∗, v̂∗) ∈ ∂f(x, ω̂), where f is given by (1.24), and ‖v̂∗‖ < ρ.
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Denote v̂ := (x− ω1, . . . , x− ωm). Then 0 < ‖v̂‖ < ρ. Observe that function f is the sum of

two functions on Xm+1:

(x, x̂) 7→ ϕ(x, x̂) := ‖(x− x1, . . . , x− xm)‖ and (x, x̂) 7→ δ
Ω̂

(x̂),

where x̂ := (x1, . . . , xm) and δ
Ω̂

is the indicator function of Ω̂. The first function is Lipschitz

continuous while the second one is lower semicontinuous. One can apply Lemma 5. For

any ε > 0, there exist points x′ ∈ X, x̂ := (x1, . . . , xm) ∈ Xm, ω̂′ := (ω′1, . . . , ω
′
m) ∈ Ω̂,

(x∗, ŷ∗) ∈ ∂ϕ(x′, x̂), and ω̂∗ ∈ N
Ω̂

(ω̂′) such that

‖x′ − x‖ < ε, ‖x̂− ω̂‖ < ε

4
, ‖ω̂′ − ω̂‖ < ε

4
,

‖(u∗, v̂∗)− (x∗, ŷ∗)− (0, ω̂∗)‖ < ε. (1.39)

Taking a smaller ε if necessary, one can ensure that v̂′ := (x′−ω′1, . . . , x′−ω′m) 6= 0, v̂′′ := (x′−

x1, . . . , x
′−xm) 6= 0, ‖v̂∗‖+ ε < ρ and, for any i = 1, . . . ,m, ‖x′ − xi‖ < max1≤j≤m ‖x′ − xj‖

if and only if ‖x′ − ω′i‖ < max1≤j≤m

∥∥∥x′ − ω′j∥∥∥. By Lemma 2,

x̂∗ := −ŷ∗ ∈ J(v̂′′) and x∗ = x∗1 + . . .+ x∗m,

where x̂∗ = (x∗1, . . . , x
∗
m). By Proposition 4,

m∑
i=1

‖x∗i ‖ = 1,

x∗i = 0 if
∥∥x′ − ω′i∥∥ < max

1≤j≤m

∥∥x′ − ω′j∥∥ ,

〈x∗i , x′ − ω′i〉 ≥ 〈x∗i , x′ − xi〉 − ‖x∗i ‖ ‖xi − ω′i‖ = ‖x∗i ‖(‖x′ − xi‖ − ‖xi − ω′i‖)

≥ ‖x∗i ‖(‖x′ − ω′i‖ − 2‖xi − ω′i‖) ≥ ‖x∗i ‖(‖x′ − ω′i‖ − ε) (i = 1, . . . ,m).

Inequality (1.39) yields the estimates: ‖u∗‖ > ‖x∗‖ − ε, ‖x̂∗ − ω̂∗‖ < ‖v̂∗‖ + ε < ρ, and

consequently

‖u∗‖ >
∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥− ε, x̂∗ ∈ N
Ω̂

(ω̂′) + ρB∗m.
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It follows from Lemma 3 and definitions (1.36) and (1.38) that

ζ∗ρ,1[Ω](x, ω̂) ≥ ζ∗ρ,ε,2[Ω](x′, ω̂′)− ε.

The claimed inequality is a consequence of the last one and definitions (1.35) and (1.37).

(ii) follows from (i) and Proposition 6 (ii).

Proof. of Theorem 2 (i) follows from Proposition 7 (ii) and definitions (1.37) and (1.38).

(ii) is a consequence of [29, Theorem 4].

Remark 8. One of the main tools in the proof of Theorem 2 is the fuzzy sum rule (Lemma 5)

for Fréchet subdifferentials in Asplund spaces. The statements can be extended to general

Banach spaces. For that, one has to replace Fréchet subdifferentials (and normal cones) with

some other kind of subdifferentials satisfying a certain set of natural properties including the

sum rule (not necessarily fuzzy) – cf. [30, p. 345].

If the sets Ω1, . . . Ωm are convex or the norm of X is Fréchet differentiable away from 0,

then the fuzzy sum rule can be replaced in the proof by either the convex sum rule (Moreau–

Rockafellar formula) or the simple (exact) differentiable rule (see, e.g., [25, Corollary 1.12.2]),

respectively, to produce dual sufficient conditions for regularity of collections of sets in general

Banach spaces in terms of either normals in the sense of convex analysis or Fréchet normals.

Remark 9. Since uniform regularity is a stronger property than subregularity (Remark 1),

the criterion in part (ii) of Theorem 2 is also sufficient for the subregularity of the collection

of sets in part (i).

The next example illustrates application of Theorem 2 (i) for detecting subregularity of

collections of sets.

Example 5. Consider the collection {Ω,Ω} of two copies of the set Ω := R× {0} in the real

plane R2 with the Euclidean norm (cf. Example 1) and the point x̄ = (0, 0) ∈ Ω.

Obviously NΩ(ω) = {0} × R for any ω ∈ Ω. If x∗1 := (a1, b1) ∈ NΩ(ω′1) + ρB∗ and

x∗2 := (a2, b2) ∈ NΩ(ω′2) + ρB∗ for some ω′1, ω
′
2 ∈ Ω, then |a1| ≤ ρ and |a2| ≤ ρ.

Take any positive numbers α and δ such that α2 + 2δ2 < 1 and any ρ ∈ (0, δ). Let

ω1, ω2 ∈ Ω, x ∈ R2, v̂ := (ω1 − x, ω2 − x) ∈ R4 \ {0}. Because of the definition of Ω, v̂ has
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the following representation: v̂ = (v1, v, v3, v).

If v = 0, then ξ := v2
1 + v2

3 > 0. Choose an ε > 0 such that

(max{|v1| − ε, 0})2 + (max{|v3| − ε, 0})2 > ξ/2 and 4ε2/ξ < α2.

There are no pairs x∗1, x∗2 satisfying the conditions of Theorem 2 (i). Indeed, if

v̂′ := (v′1, v
′
2, v
′
3, v
′
4) ∈ Bε(v̂), then |v′2| ≤ ε, |v′4| ≤ ε, and ‖v̂′‖2 ≥ |v′1|2 + |v′3|2 > ξ/2. If

(x∗1, x
∗
2) ∈ J(v̂′), then (x∗1, x

∗
2) = v̂′/‖v̂′‖. Hence, b21 + b22 ≤ 2ε2/‖v̂′‖2 < 4ε2/ξ < α2 and

consequently ‖(x∗1, x∗2)‖ < α2 + 2δ2 < 1; a contradiction.

If v 6= 0, then we choose an ε ∈ (0, |v|). If v̂′ ∈ Bε(v̂) and (x∗1, x
∗
2) ∈ J(v̂′), then b1 and b2

have the same sign as v and b21 + b22 ≥ 1− 2δ2. Hence,

‖x∗1 + x∗2‖2 = (a1 + a2)2 + (b1 + b2)2 ≥ (b1 + b2)2 ≥ b21 + b22 > α2.

By Theorem 2 (i), the collection {Ω,Ω} is subregular at x̄.

1.5 Regularity of set-valued mappings

In this section, we present relationships between regularity properties of collections of

sets and the corresponding properties of set-valued mappings, which have been intensively

investigated; cf., e.g., [11, 12, 13, 18, 29, 41, 43, 45].

Consider a set-valued mapping F : X ⇒ Y between metric spaces and a point (x̄, ȳ) ∈

gphF := {(x, y) ∈ X × Y : y ∈ F (x)}.

Definition 2. (i) F is metrically semiregular at (x̄, ȳ) iff there exist positive numbers γ

and δ such that

γd
(
x̄, F−1(y)

)
≤ d(y, ȳ), ∀y ∈ Bδ(ȳ). (1.40)

The exact upper bound of all numbers γ such that (1.40) is satisfied will be denoted by

θ[F ](x̄, ȳ).

(ii) F is metrically subregular at (x̄, ȳ) iff there exist positive numbers γ and δ such that

γd
(
x, F−1(ȳ)

)
≤ d(ȳ, F (x)), ∀x ∈ Bδ(x̄). (1.41)
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The exact upper bound of all numbers γ such that (1.41) is satisfied will be denoted by

ζ[F ](x̄, ȳ).

(iii) F is metrically regular at (x̄, ȳ) iff there exist positive numbers γ and δ such that

γd
(
x, F−1(y)

)
≤ d (y, F (x)) , ∀(x, y) ∈ Bδ(x̄, ȳ). (1.42)

The exact upper bound of all numbers γ such that (1.42) is satisfied will be denoted by

θ̂[F ](x̄, ȳ).

Remark 10. Property (ii) and especially property (iii) in Definition 2 are very well known

and widely used in variational analysis; see, e.g., [11, 12, 13, 18, 29, 41, 43, 45, 47, 49, 50].

Property (i) was introduced in [29]. In [1, 2], it is referred to as metric hemiregularity.

For a collection of sets Ω := {Ω1, . . . ,Ωm} in a normed linear space X, one can consider

set-valued mapping F : X ⇒ Xm defined by (cf. [18, Proposition 5], [27, Theorem 3], [28,

Proposition 8], [34, p. 491], [17, Proposition 33])

F (x) := (Ω1 − x)× . . .× (Ωm − x), ∀x ∈ X.

It is easy to check that, for x ∈ X and u = (u1, . . . , um) ∈ Xm, it holds

x ∈
m⋂
i=1

Ωi ⇐⇒ 0 ∈ F (x), F−1(u) =
m⋂
i=1

(Ωi − ui).

The next proposition is a consequence of Theorem 1.

Proposition 8. Consider Ω and F as above and a point x̄ ∈ ⋂m
i=1 Ωi.

(i) Ω is semiregular at x̄ if and only if F is metrically semiregular at (x̄, 0). Moreover,

θ[Ω](x̄) = θ[F ](x̄, 0).

(ii) Ω is subregular at x̄ if and only if F is metrically subregular at (x̄, 0). Moreover,

ζ[Ω](x̄) = ζ[F ](x̄, 0).

(iii) Ω is uniformly regular at x̄ if and only if F is metrically regular at (x̄, 0). Moreover,

θ̂[Ω](x̄) = θ̂[F ](x̄, 0).
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Remark 11. Assertion (iii) was proved in [28, Proposition 8] (see also [27, Theorem 3] and

[34, p. 491]). The equivalence of subregularity of Ω and metric subregularity of F has

been established by Hesse and Luke in Proposition 33 (ii) of their recent preprint [16]. This

proposition has not been included in the final version of their article which appeared in [17].

Conversely, regularity properties of set-valued mappings between normed linear spaces

can be treated as realizations of the corresponding regularity properties of certain collections

of two sets.

For a given set-valued mapping F : X ⇒ Y between normed linear spaces and a point

(x̄, ȳ) ∈ gphF , one can consider the collection Ω of two sets Ω1 = gphF and Ω2 = X × {ȳ}

in X × Y . It is obvious that (x̄, ȳ) ∈ Ω1 ∩ Ω2.

Theorem 3. Consider F and Ω as above.

(i) F is metrically semiregular at (x̄, ȳ) if and only if Ω is semiregular at (x̄, ȳ). Moreover,

θ[F ](x̄, ȳ)

θ[F ](x̄, ȳ) + 2
≤ θ[Ω](x̄, ȳ) ≤ θ[F ](x̄, ȳ)/2. (1.43)

(ii) F is metrically subregular at (x̄, ȳ) if and only if Ω is subregular at (x̄, ȳ). Moreover,

ζ[F ](x̄, ȳ)

ζ[F ](x̄, ȳ) + 2
≤ ζ[Ω](x̄, ȳ) ≤ min{ζ[F ](x̄, ȳ)/2, 1}. (1.44)

(iii) F is metrically regular at (x̄, ȳ) if and only if Ω is uniformly regular at (x̄, ȳ). Moreover,

θ̂[F ](x̄, ȳ)

θ̂[F ](x̄, ȳ) + 2
≤ θ̂[Ω](x̄, ȳ) ≤ min{θ̂[F ](x̄, ȳ)/2, 1}. (1.45)

Proof. (i) Suppose F is metrically semiregular at (x̄, ȳ), i.e., θ[F ](x̄, ȳ) > 0. Fix a γ ∈

(0, θ[F ](x̄, ȳ)). Then there exists a number δ′ > 0 such that (1.40) is satisfied for all y ∈ Bδ′(ȳ).

Take any α > 0 satisfying 2α/γ + α < 1, and a δ := δ′
2α . We are going to check that

(Ω1 − (u1, v1))
⋂

(Ω2 − (u2, v2))
⋂
Bρ(x̄, ȳ) 6= ∅ (1.46)

for all ρ ∈ (0, δ) and (u1, v1), (u2, v2) ∈ (αρ)B. Indeed, take any ρ ∈ (0, δ) and
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(u1, v1), (u2, v2) ∈ (αρ)B. We need to find a point (x, y) ∈ Bρ(x̄, ȳ) satisfying

 (x, y) + (u1, v1) ∈ gphF,

y = ȳ − v2.

We set y′ := ȳ− v2 + v1, so y′ ∈ Bδ′(ȳ) as ‖y′− ȳ‖ = ‖v1− v2‖ ≤ 2αρ < 2αδ = δ′. Then there

is, by (1.40), an x′ ∈ F−1(y′) such that

‖x̄− x′‖ ≤ 1

γ
‖ȳ − y′‖.

Put y := y′ − v1 = ȳ − v2 and x := x′ − u1. Then it holds

(x, y) + (u1, v1) = (x′, y′) ∈ gphF, ‖y − ȳ‖ = ‖v2‖ ≤ αρ < ρ,

and

‖x− x̄‖ ≤ ‖x− x′‖+ ‖x′ − x̄‖ ≤ ‖u1‖+
1

γ
‖ȳ − y′‖

= ‖u1‖+
1

γ
‖v1 − v2‖ ≤ (2α/γ + α)ρ < ρ.

Hence, (1.46) is proved.

The above reasoning also yields the first inequality in (1.43).

To prove the inverse implication, we suppose Ω is semiregular at (x̄, ȳ), i.e., θ[Ω](x̄, ȳ) > 0.

Fix an α ∈ (0, θ[Ω](x̄, ȳ)). Then there exists a δ′ > 0 such that (1.46) holds true for all

ρ ∈ (0, δ′) and (u1, v1), (u2, v2) ∈ (αρ)B. Set γ := 2α and δ < αδ′. We are going to check

that (1.40) is satisfied. Take any y ∈ Bδ(ȳ), i.e., ‖y − ȳ‖ ≤ δ < αδ′. Set r ∈ (0, δ′) such that

‖y − ȳ‖ = αr. Then, applying (1.46) for (u1, v1) :=
(
0, y−ȳ2

)
, (u2, v2) =:

(
0, ȳ−y2

)
∈
(
α r2
)
B,

we can find (x1, y1) ∈ gphF and (x2, ȳ) ∈ Ω2 satisfying

(x1, y1)− (u1, v1) = (x2, ȳ)− (u2, v2) ∈ B r
2
(x̄, ȳ).
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This implies that y1 = y, x1 ∈ F−1(y) and

‖x1 − x̄‖ ≤
r

2
=

1

2α
‖y − ȳ‖ =

1

γ
‖y − ȳ‖.

Hence, (1.40) holds true.

The last reasoning also yields the second inequality in (1.43).

(ii) Suppose F is metrically subregular at (x̄, ȳ), i.e., ζ[F ](x̄, ȳ) > 0. Fix a γ ∈

(0, ζ[F ](x̄, ȳ)). Then there exists δ′ > 0 such that (1.41) is satisfied for all x ∈ Bδ′(x̄).

Take an α > 0 satisfying 2α/γ + α < 1, and a δ := δ′
α+1 . We are going to check that

(Ω1 + (αρ)B)
⋂

(Ω2 + (αρ)B)
⋂
Bδ(x̄, ȳ) ⊆ Ω1 ∩ Ω2 + ρB (1.47)

for all ρ ∈ (0, δ). Indeed, take any

(x, y) ∈ (Ω1 + (αρ)B)
⋂

(Ω2 + (αρ)B)
⋂
Bδ(x̄, ȳ).

Then (x, y) = (x1, y1) + (u1, v1) = (x2, ȳ) + (u2, v2) for some (x1, y1) ∈ gphF , x2 ∈ X, and

(u1, v1), (u2, v2) ∈ (αρ)B. Since

‖x1 − x̄‖ ≤ ‖u1‖+ ‖x− x̄‖ ≤ αρ+ δ < (α+ 1)δ = δ′,

by (1.41), there exists an x′ ∈ F−1(ȳ) such that ‖x1−x′‖ ≤ 1
γd(ȳ, F (x1)) ≤ 1

γ ‖ȳ− y1‖. Then

∥∥x1 − x′ + u1

∥∥ ≤1

γ
‖ȳ − y1‖+ ‖u1‖ =

1

γ
‖v1 − v2‖+ ‖u1‖

≤2αρ

γ
+ αρ =

(2

γ
+ 1
)
αρ < ρ,

‖v2‖ ≤αρ < ρ.

Hence, (x, y) = (x′, ȳ) + (x1 − x′ + u1, v2) ∈ Ω1 ∩ Ω2 + ρB.

The above reasoning also yields the first inequality in (1.44).

To prove the inverse implication, we suppose that Ω is subregular at (x̄, ȳ), i.e.,

ζ[Ω](x̄, ȳ) > 0. Fix an α ∈ (0, ζ[Ω](x̄, ȳ)). Then there exists a δ′ > 0 such that (1.47)
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holds true for all ρ ∈ (0, δ′). Set γ := 2α > 0 and δ := min
{
δ′, γδ′, 2δ′

γ

}
. We are going to

check that (1.41) holds true. Take any x ∈ Bδ(x̄). Because d(x, F−1(ȳ)) ≤ ‖x − x̄‖ ≤ δ,

it is sufficient to consider the case 0 < d(ȳ, F (x)) < γδ. We choose a y ∈ F (x) such that

d(ȳ, F (x)) ≤ ‖y − ȳ‖ := r < γδ. Then

(
x,
y + ȳ

2

)
= (x, y) +

(
0,
ȳ − y

2

)
= (x, ȳ) +

(
0,
y − ȳ

2

)
,

∥∥∥∥ ȳ − y2

∥∥∥∥ =
r

2
< δ′,

and consequently

(
x,
y + ȳ

2

)
∈
(

Ω1 +
r

2
B
)⋂(

Ω2 +
r

2
B
)⋂

Bδ′(x̄, ȳ). (1.48)

Take ρ := r
2α < δ ≤ δ′. Then r

2 = αρ, and it follows from (1.47) and (1.48) that

(
x,
y + ȳ

2

)
∈ Ω1 ∩ Ω2 +

r

2α
B = F−1(ȳ)× {ȳ}+

‖y − ȳ‖
γ

B.

Hence, there is an x′ ∈ F−1(ȳ) such that

‖x− x′‖ ≤ 1

γ
‖y − ȳ‖.

Taking infimum in the last inequality over x′ ∈ F−1(ȳ) and y ∈ F (x), we arrive at (1.41).

The last reasoning together with ζ[Ω](x̄, ȳ) ≤ 1, in view of (1.13), yields the second

inequality in (1.44).

(iii) Suppose F is metrically regular at (x̄, ȳ), i.e., θ̂[F ](x̄, ȳ) > 0. Fix a γ ∈ (0, θ̂[F ](x̄, ȳ)).

Then there exists a δ′ > 0 such that (1.42) is satisfied for all (x, y) ∈ Bδ′(x̄, ȳ). Take an α > 0

satisfying 2α/γ + α < 1, and a δ := δ′
2α+1 . We are going to check that

(Ω1 − (x1, y1)− (u1, v1))
⋂

(Ω2 − (x2, ȳ)− (u2, v2))
⋂

(ρB) 6= ∅ (1.49)

for all ρ ∈ (0, δ), (x1, y1) ∈ Ω1∩Bδ(x̄, ȳ), x2 ∈ Bδ(x̄), and (u1, v1), (u2, v2) ∈ (αρ)B. Take any
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such ρ, (x1, y1), x2, (u1, v1), and (u2, v2). We need to find (a, b) ∈ ρB satisfying

 (x1, y1) + (u1, v1) + (a, b) ∈ gphF,

b = −v2.

We set y′ = y1 − v2 + v1, so y′ ∈ Bδ′(ȳ) as

‖y′ − ȳ‖ ≤ ‖y′ − y1‖+ ‖y1 − ȳ‖ ≤ ‖v1 − v2‖+ δ ≤ 2αρ+ δ < (2α+ 1)δ = δ′.

Then, applying (1.42) for (x1, y
′) ∈ Bδ′(x̄, ȳ), we find x′ ∈ F−1(y′) such that

‖x1 − x′‖ ≤
1

γ
d(y′, F (x1)) ≤ 1

γ
‖y′ − y1‖ =

1

γ
‖v1 − v2‖ ≤

2αρ

γ
.

Put a = x′ − x1 − u1 and b = −v2. Then ‖a‖ ≤ ‖x′ − x1‖ + ‖u1‖ ≤ (2α/γ + α)ρ < ρ,

‖b‖ ≤ αρ < ρ, and it holds (x1, y1) + (u1, v1) + (a, b) = (x′, y′) ∈ gphF .

Hence, (1.49) is proved.

The above reasoning also yields the first inequality in (1.45).

To prove the inverse implication, we suppose that Ω is uniformly regular at (x̄, ȳ), i.e.,

θ̂[Ω](x̄, ȳ) > 0. Fix an α ∈ (0, θ̂[Ω](x̄, ȳ)). Then there exists a δ′ > 0 such that (1.49) holds

true for all ρ ∈ (0, δ′), (x1, y1) ∈ Ω1 ∩ Bδ′(x̄, ȳ), x2 ∈ Bδ′(x̄), and (u1, v1), (u2, v2) ∈ (αρ)B.

Set γ := 2α > 0. Because θ[Ω](x̄, ȳ) ≥ θ̂[Ω](x̄, ȳ) (see Remark 5), assertion (i) implies that

there exists a δ∗ > 0 such that (1.40) is satisfied for all y ∈ Bδ∗(ȳ). Set

δ := min

{
δ∗,

δ′

2α+ 2
,
αδ′

2α+ 1

}
> 0. (1.50)

Now take any (x, y) ∈ Bδ(x̄, ȳ). We are going to check that (1.42) is satisfied. Because (1.40)

implies

γd(x, F−1(y)) ≤ γ‖x− x̄‖+ γd(x̄, F−1(y)) ≤ γδ + ‖y − ȳ‖ ≤ (γ + 1)δ,

it suffices to consider the case d(y, F (x)) < (γ + 1)δ ≤ αδ′. Choose a y′ ∈ F (x) such that

d(y, F (x)) ≤ ‖y − y′‖ < (γ + 1)δ,
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and set r ∈ (0, δ′) such that ‖y − y′‖ = αr < αδ′. Then

‖y′ − ȳ‖ ≤ ‖y′ − y‖+ ‖y − ȳ‖ < (2α+ 2)δ ≤ δ′

due to (1.50). Applying (1.49) with

(x1, y1) := (x, y′) ∈ gphF ∩Bδ′(x̄, ȳ), (x2, y2) := (x̄, ȳ),

(u1, v1) :=

(
0,
y − y′

2

)
, (u2, v2) =:

(
0,
y′ − y

2

)
∈
(
α
r

2

)
B,

we can find (x̃, ỹ) ∈ gphF and (z, ȳ) ∈ Ω2 satisfying

(x̃, ỹ)− (x1, y1)− (u1, v1) = (z, ȳ)− (x2, ȳ)− (u2, v2) ∈ r

2
B.

This implies x̃− x1 ∈ r
2B and ỹ = y1 + v1 − v2 = y, so x̃ ∈ F−1(y). Then we obtain

d(x, F−1(y)) ≤ ‖x− x̃‖ ≤ r

2
=

1

2α
‖y − y′‖ =

1

γ
‖y − y′‖.

Taking infimum in the last inequality over y′ ∈ F (x), we arrive at (1.42).

The last reasoning together with θ̂[Ω](x̄, ȳ) ≤ 1, in view of (1.14), yields the second

inequality in (1.45).

Remark 12. The equivalences stated in Theorem 3 (i) and (iii) has been proved in [29,

Theorem 7] by using some auxiliary set-valued mapping. The first inequalities in (1.43) and

(1.45) improve the corresponding estimates given in the aforementioned reference because it

is always true that

1

2
min{θ[F ](x̄, ȳ)/2, 1} ≤ θ[F ](x̄, ȳ)

θ[F ](x̄, ȳ) + 2
,

1

2
min{θ̂[F ](x̄, ȳ)/2, 1} ≤ θ̂[F ](x̄, ȳ)

θ̂[F ](x̄, ȳ) + 2
.

Statement (ii) in Theorem 3 seems to be new.
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1.6 Conclusions

In this chapter, we continue investigating regularity properties of collections of sets in

normed linear spaces.

We systematically examine three closely related primal space local regularity properties:

semiregularity, subregularity, and uniform regularity and their quantitative characterizations.

In Theorem 1, we establish equivalent metric characterizations of the three mentioned prop-

erties and demonstrate, in particular, the equivalence of subregularity and another important

property, usually referred to as local linear regularity.

In Theorem 2 (i), in the Asplund space setting, we give a new dual space sufficient

condition of subregularity in terms of Fréchet normals. The proof of this theorem consists

of a series of propositions providing other (primal and dual space) sufficient conditions of

subregularity which can be of independent interest.

We present also relationships between the mentioned regularity properties of collections of

sets and the corresponding regularity properties of set-valued mappings which, in particular,

explain the terminology adopted in this chapter.

The definitions and characterizations of the regularity properties of collections of sets

discussed in this chapter can be extended to the more general Hölder type setting – cf. [33].
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Chapter 2

About [q]-regularity properties of

collections of sets

We examine three primal space local Hölder type regularity properties of finite collections

of sets, namely, [q]-semiregularity, [q]-subregularity, and uniform [q]-regularity as well as their

quantitative characterizations. Equivalent metric characterizations of the three mentioned

regularity properties as well as a sufficient condition of [q]-subregularity in terms of Fréchet

normals are established. The relationships between [q]-regularity properties of collections of

sets and the corresponding regularity properties of set-valued mappings are discussed.

2.1 Introduction

Regularity properties of collections of sets play an important role in variational analysis

and optimization, particularly as constraint qualifications in establishing optimality condi-

tions and coderivative/subdifferential calculus and in analyzing convergence of numerical

algorithms.

The concept of linear regularity was first introduced in [7, 8] as a key condition in es-

tablishing linear convergence rates of sequences generated by the cyclic projection algorithm

for finding a point in the intersection of a collection of closed convex sets. This property

has proved to be an important qualification condition in the convergence analysis, optimality

conditions, and subdifferential calculus, cf., [5, 6, 9, 10, 12, 26, 42, 43, 45, 61].
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Recently, when investigating the extremality, stationarity and regularity properties of

collections of sets systematically, several other kinds of regularity were introduced in [33] and

have been further investigated in [34, 35, 36, 37, 38, 39, 52]. The uniform regularity is the

negation of the approximate stationarity property of collections of sets which is the main

ingredient in extensions of the extremal principle [31, 32, 49]. It has also proved to be useful

in the convergence analysis [4, 38, 41, 47, 48].

The regularity properties of collections of sets are closely related to the well known regular-

ity properties of set-valued mappings such as the linear openness, covering, metric regularity,

Aubin property, and calmness. The Hölder extensions of these properties also play an im-

portant role in variational analysis both in theory and in establishing convergence rates of

numerical algorithms, cf. [1, 11, 18, 19, 20, 22, 40, 44, 55].

In this chapter which continues the previous one, we attempt to extend regularity prop-

erties of collections of sets to the Hölder setting and establish their primal and dual space

characterizations. We also discuss their relationships with the corresponding regularity prop-

erties of set-valued mappings.

In Section 2.2, we discuss three primal space local Hölder type regularity properties of fi-

nite collections of sets, namely, [q]-semiregularity, [q]-subregularity, and uniform [q]-regularity

as well as their quantitative characterizations. The main result of this section – Theorem 4

– gives equivalent metric characterizations of the three mentioned regularity properties. We

also give several examples illustrating these regularity properties. Section 2.3 is dedicated

to dual characterizations of the regularity properties. In Theorem 5 (i), we give a sufficient

condition of [q]-subregularity in terms of Fréchet normals. In Section 2.4, we present relation-

ships between [q]-regularity properties of collections of sets and the corresponding regularity

properties of set-valued mappings.

Our basic notation is standard, cf. [49, 54]. For a normed linear space X, its topological

dual is denoted X∗ while 〈·, ·〉 denotes the bilinear form defining the pairing between the two

spaces. The closed unit ball in a normed space is denoted B. Bδ(x) stands for the closed

ball with radius δ and center x. If not specified otherwise, products of normed spaces will be

considered with the maximum type norms.

The Fréchet normal cone to a subset Ω ⊂ X at x ∈ Ω and the Fréchet subdifferential of a
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function f : X → R∞ = R ∪ {+∞} at a point x with f(x) <∞ are defined, respectively, by

NΩ(x) =

{
x∗ ∈ X∗ | lim sup

u→x, u∈Ω\{x}

〈x∗, u− x〉
‖u− x‖ ≤ 0

}
,

∂f(x) =

{
x∗ ∈ X∗ | lim inf

u→x, u 6=x

f(u)− f(x)− 〈x∗, u− x〉
‖u− x‖ ≥ 0

}
.

For a given set Ω in X, its interior and boundary are denoted, respectively, int Ω and

bd Ω. The indicator and distance functions associated with Ω are defined, respectively, by

δΩ(x) =

 0, if x ∈ Ω,

∞, if x ∈ X \ Ω,

d(x,Ω) = inf
ω∈Ω
‖x− ω‖ , ∀x ∈ X.

2.2 [q]-regularity properties of collections of sets

In this section, we discuss local [q]-regularity properties of finite collections of sets and

their primal space characterizations.

In the sequel, Ω stands for a collection {Ω1, . . . ,Ωm} of m (m ≥ 2) sets in a normed linear

space X, x̄ ∈ ⋂m
i=1 Ωi, and, if not specified otherwise, q ∈ (0, 1].

2.2.1 Definitions

The next definition introduces several mutually related regularity properties of Ω at x̄.

Definition 3. (i) Ω is [q]-semiregular at x̄ if there exist positive numbers α and δ such

that
m⋂
i=1

(Ωi − xi)
⋂

Bρ(x̄) 6= ∅ (2.1)

for all ρ ∈ (0, δ) and all xi ∈ X (i = 1, . . . ,m) such that max
1≤i≤m

‖xi‖ ≤ (αρ)
1
q .

(ii) Ω is [q]-subregular at x̄ if there exist positive numbers α and δ such that

m⋂
i=1

(
Ωi + (αρ)

1
qB
)⋂

Bδ(x̄) ⊆
(

m⋂
i=1

Ωi

)
+ ρB (2.2)
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for all ρ ∈ (0, δ).

(iii) Ω is uniformly [q]-regular at x̄ if there exist positive numbers α and δ such that

m⋂
i=1

(Ωi − ωi − xi)
⋂

(ρB) 6= ∅ (2.3)

for all ρ ∈ (0, δ), ωi ∈ Ωi ∩Bδ(x̄), and all xi ∈ X (i = 1, . . . ,m) such that max
1≤i≤m

‖xi‖ ≤

(αρ)
1
q .

When q = 1, we will skip “[1]” in the name of the corresponding property and write

simply “semiregular”, “subregular”, or “uniformly regular”, cf. [39, Definition 3.1].

Remark 13. Among the three regularity properties in Definition 3, the third one is the

strongest. Indeed, condition (2.1) corresponds to taking ωi = x̄ in (2.3). To compare prop-

erties (ii) and (iii), it is sufficient to notice that condition (2.2) is equivalent to the following

one: for any x ∈ Bδ(x̄), ωi ∈ Ωi, xi ∈ X (i = 1, . . . ,m) such that max
1≤i≤m

‖xi‖ ≤ (αρ)
1
q , and

ωi + xi = x (i = 1, . . . ,m), it holds

m⋂
i=1

(Ωi − x)
⋂

(ρB) 6= ∅.

This corresponds to taking ωi + xi = x (i = 1, . . . ,m) in (2.3) (with x ∈ X) and possibly

choosing a smaller δ > 0. Hence, (iii) =⇒ (i) and (iii) =⇒ (ii).

Properties (i) and (ii) in Definition 3 are in general independent – see examples in Sub-

section 2.2.3.

Remark 14. The larger the order q is, the stronger the properties in Definition 3 are.

Remark 15. When x̄ ∈ int
⋂m
i=1 Ωi, all the properties in Definition 3 hold true automatically

for any q ∈ (0,∞).

Remark 16. When Ω1 = Ω2 = . . . = Ωm and q ∈ (0, 1], property (ii) in Definition 3 is

trivially satisfied (with α = δ = 1).

Normally, it does not make sense to consider properties (ii) and (iii) in Definition 3 when

q > 1. In the next proposition, we assume temporarily that all properties in Definition 3 are

defined for all q > 1.
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Proposition 9. Let the sets Ωi (i = 1, . . . ,m) be closed and q > 1.

(i) Ω is [q]-subregular at x̄ ⇔ Ω is uniformly [q]-regular at x̄ ⇔ x̄ ∈ int
⋂m
i=1 Ωi.

(ii) If x̄ ∈ int
⋂m
i=1 Ωi, then Ω is [q]-semiregular at x̄.

(iii) If Ω is [q]-semiregular at x̄ and the sets of primal proximal normals [52, Definition 4.28]

NP
Ωi

(x̄) := {u ∈ X | ∃r > 0, d(x̄ + ru,Ωi) = r‖u‖} are nontrivial for all i = 1, . . . ,m

such that x̄ ∈ bd Ωi, then x̄ ∈ int
⋂m
i=1 Ωi.

Proof. (i) The implications x̄ ∈ int
⋂m
i=1 Ωi ⇒ Ω is uniformly [q]-regular at x̄ ⇒ Ω

is [q]-subregular at x̄ are obvious. Next we show that Ω is [q]-subregular at x̄ ⇒ x̄ ∈

int
⋂m
i=1 Ωi.

Suppose x̄ /∈ int
⋂m
i=1 Ωi while Ω is [q]-subregular at x̄, i.e., there exist numbers α > 0

and δ > 0 such that condition (2.2) holds true for all ρ ∈ (0, δ). Consider a sequence xk → x̄

such that rk := d(xk,
⋂m
i=1 Ωi) > 0 (k = 1, 2, . . .). Then

xk ∈
m⋂
i=1

Ωi + rk(1 + rk)B ⊆
m⋂
i=1

(Ωi + rk(1 + rk)B)

and xk ∈ Bδ(x̄) for all sufficiently large k. Denote ρk := α−1(rk(1+rk))
q. Then ρk < δ for all

sufficiently large k, and it follows from (2.2) that xk ∈
⋂m
i=1 Ωi + ρkB. Hence, rk ≤ ρk, and

consequently α ≤ rq−1
k (1 + rk)

q. Letting k →∞, we arrive at a contradiction: 0 < α ≤ 0.

(ii) is obvious.

(iii) Suppose x̄ /∈ int
⋂m
i=1 Ωi and there exist numbers α ≥ 0 and δ > 0 such that condition

(2.1) holds true for all ρ ∈ (0, δ) and all xi ∈ X (i = 1, . . . ,m) such that max1≤i≤m ‖xi‖ ≤

(αρ)
1
q . Then x̄ ∈ bd Ωj for some j. Choose a nonzero u ∈ NP

Ωj
(x̄). Then there exists a

number r > 0 such that d(x̄+ tu,Ωj) = t‖u‖ for all t ∈ [0, r] [52, p. 284]. Denote ρt := t‖u‖

and xt := (αρt)
1
q u
‖u‖ . Then ρt < δ and (αρt)

1
q /‖u‖ < r for all sufficiently small t. Hence,

d(x̄,Ωj − xt) = d(x̄ + xt,Ωj) = (αρt)
1
q , and it follows from (2.1) that (αρt)

1
q ≤ ρt, and

consequently 0 ≤ α ≤ ρq−1
t . Letting t ↓ 0, we conclude that α = 0, i.e., Ω is not [q]-semi-

regular at x̄.

Remark 17. Unlike [q]-subregularity and [q]-uniform regularity, when x̄ /∈ int
⋂m
i=1 Ωi, the

property of [q]-semiregularity can be fulfilled with q > 1 if the assumption of the existence of
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nontrivial primal proximal normals in Proposition 9 is not satisfied – see Example 9 below.

The regularity properties in Definition 3 can be equivalently defined using the following

nonnegative constants which provide quantitative characterizations of these properties:

θq[Ω](x̄) := lim inf
ρ↓0

(θρ[Ω](x̄))q

ρ
, (2.4)

ζq[Ω](x̄) := lim
δ↓0

inf
0<ρ<δ

(ζρ,δ[Ω](x̄))q

ρ
, (2.5)

θ̂q[Ω](x̄) := lim inf
ωi→x̄, ωi∈Ωi (i=1,...,m)

ρ↓0

(θρ[Ω1 − ω1, . . . ,Ωm − ωm](0))q

ρ
, (2.6)

where, for ρ > 0 and δ > 0,

θρ[Ω](x̄) := sup

{
r ≥ 0 |

m⋂
i=1

(Ωi − xi)
⋂
Bρ(x̄) 6= ∅, ∀xi ∈ rB

}
, (2.7)

ζρ,δ[Ω](x̄) := sup

{
r ≥ 0 |

m⋂
i=1

(Ωi + rB)
⋂
Bδ(x̄) ⊆

m⋂
i=1

Ωi + ρB

}
. (2.8)

When q = 1, we will not write superscript 1 in the denotations (2.4) – (2.6).

Using the equivalent representation of condition (2.2) in Remark 13, it is not difficult to

check that θ̂q[Ω](x̄) ≤ min{θq[Ω](x̄), ζq[Ω](x̄)}.

The next proposition follows immediately from the definitions.

Proposition 10. (i) Ω is [q]-semiregular at x̄ if and only if θq[Ω](x̄) > 0. Moreover,

θq[Ω](x̄) is the exact upper bound of all numbers α such that (2.1) is satisfied.

(ii) Ω is [q]-subregular at x̄ if and only if ζq[Ω](x̄) > 0. Moreover, ζq[Ω](x̄) is the exact

upper bound of all numbers α such that (2.2) is satisfied.

(iii) Ω is uniformly [q]-regular at x̄ if and only if θ̂q[Ω](x̄) > 0. Moreover, θ̂q[Ω](x̄) is the

exact upper bound of all numbers α such that (2.3) is satisfied.

Remark 18. With q = 1, properties (i) and (iii) in Definition 3 were discussed in [34] (see

also [35, Properties (R)S and (UR)S ]), while property (ii) was introduced in [39]. Constants

(2.4), (2.6), and (2.7) (with q = 1) can be traced back to [29, 30, 31, 32, 33, 27, 28].

The equivalent representation of constant (2.7) given in the next proposition can be useful.

59



Proposition 11. [39, Proposition 3.8] For any ρ > 0,

θρ[Ω](x̄) := sup

r ≥ 0 | rBm ⊆
⋃

x∈Bρ(x̄)

m∏
i=1

(Ωi − x)

 , (2.9)

where
∏m
i=1(Ωi − x) = (Ω1 − x)× . . .× (Ωm − x) and Bm =

∏m
i=1 B.

From Propositions 10 and 11, we immediately obtain equivalent representations of [q]-se-

miregularity and [q]-uniform regularity.

Corollary 2. (i) Ω is [q]-semiregular at x̄ if and only if there exist positive numbers α

and δ such that

(αρ)
1
qBm ⊆

⋃
x∈Bρ(x̄)

m∏
i=1

(Ωi − x) (2.10)

for all ρ ∈ (0, δ). Moreover, θq[Ω](x̄) is the exact upper bound of all numbers α such

that (2.10) is satisfied.

(ii) Ω is uniformly [q]-regular at x̄ if and only if there exist positive numbers α and δ such

that

(αρ)
1
qBm ⊆

⋂
ωi∈Ωi∩Bδ(x̄)

(i=1,...,m)

⋃
x∈ρB

m∏
i=1

(Ωi − ωi − x) (2.11)

for all ρ ∈ (0, δ). Moreover, θ̂q[Ω](x̄) is the exact upper bound of all numbers α such

that (2.11) is satisfied.

2.2.2 Metric characterizations

The [q]-regularity properties of collections of sets in Definition 3 can also be characterized

in metric terms. The next proposition generalizing [39, Proposition 3.15] provides equivalent

metric representations of constants (2.4) – (2.6).
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Proposition 12.

θq[Ω](x̄) = lim inf
xi→0 (i=1,...,m)
x̄/∈

⋂m
i=1(Ωi−xi)

max1≤i≤m ‖xi‖q

d
(
x̄,
⋂m
i=1(Ωi − xi)

) , (2.12)

ζq[Ω](x̄) = lim inf
x→x̄

x/∈
⋂m
i=1 Ωi

max1≤i≤m d
q(x,Ωi)

d
(
x,
⋂m
i=1 Ωi

) (2.13)

= lim inf
x→x̄

ωi→x̄, ωi∈Ωi (i=1,...,m)
x/∈

⋂m
i=1 Ωi

max1≤i≤m ‖ωi − x‖q

d
(
x,
⋂m
i=1 Ωi

) ,

θ̂q[Ω](x̄) = lim inf
x→x̄

xi→0 (i=1,...,m)
x/∈

⋂m
i=1(Ωi−xi)

max1≤i≤m d
q(x+ xi,Ωi)

d
(
x,
⋂m
i=1(Ωi − xi)

) (2.14)

= lim inf
x→x̄

xi→0, ωi→x̄, ωi∈Ωi (i=1,...,m)
x/∈

⋂m
i=1(Ωi−xi)

max1≤i≤m ‖x+ xi − ωi‖q

d
(
x,
⋂m
i=1(Ωi − xi)

) .

Proof. Equality (2.12). Let ξ stand for the right-hand side of (2.12). Suppose that ξ > 0 and

fix an arbitrary number γ ∈ (0, ξ). Then there is a number δ > 0 such that

γd

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
‖xi‖q , ∀xi ∈ δB (i = 1, . . . ,m). (2.15)

Choose a number α ∈ (0, γ) and set δ′ = δq

α . Then, for any ρ ∈ (0, δ′) and xi ∈ (αρ)
1
qB (i =

1, . . . ,m), it holds max1≤i≤m ‖xi‖ ≤ (αρ)
1
q ≤ (αδ′)

1
q = δ. Hence, (2.15) yields

d

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ 1

γ
max

1≤i≤m
‖xi‖q ≤

α

γ
ρ < ρ.

This implies (2.1) and consequently θq[Ω](x̄) ≥ α. Taking into account that α can be arbi-

trarily close to ξ, we obtain θq[Ω](x̄) ≥ ξ.

Conversely, suppose that θq[Ω](x̄) > 0 and fix an arbitrary number α ∈ (0, θq[Ω](x̄)).

Then there is a number δ > 0 such that (2.1) is satisfied for all ρ ∈ (0, δ) and xi ∈

(αρ)
1
qB (i = 1, . . . ,m). Choose a positive δ′ < (αδ)

1
q . For any xi ∈ δ′B (i = 1, . . . ,m),

it holds max1≤i≤m ‖xi‖ < (αδ)
1
q . Pick up a ρ ∈ (0, δ) such that max1≤i≤m ‖xi‖ = (αρ)

1
q .

Then (2.1) yields

αd

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ αρ = max

1≤i≤m
‖xi‖q .
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This implies ξ ≥ α. Since α can be arbitrarily close to θq[Ω](x̄), we deduce ξ ≥ θq[Ω](x̄).

Equality (2.13). Let ξ stand for the right-hand side of (2.13). Suppose that ξ > 0 and fix

an arbitrary number α ∈ (0, ξ). Then there is a number δ > 0 such that

αd

(
x,

m⋂
i=1

Ωi

)
≤ max

1≤i≤m
dq(x,Ωi), ∀x ∈ Bδ(x̄).

If x ∈ ⋂m
i=1

(
Ωi + (αρ)

1
qB
)⋂

Bδ(x̄) for some ρ ∈ (0, δ), then max1≤i≤m d
q(x,Ωi) ≤ αρ, and

consequently d (x,
⋂m
i=1 Ωi) ≤ ρ, i.e., ζρ,δ[Ω](x̄) ≥ (αρ)

1
q . Hence, ζq[Ω](x̄) ≥ α. Since α can

be arbitrarily close to ξ, we obtain ζq[Ω](x̄) ≥ ξ.

Conversely, suppose that ζq[Ω](x̄) > 0 and fix any α ∈ (0, ζq[Ω](x̄)). Then there is

a number δ > 0 such that (2.2) is satisfied for all ρ ∈ (0, δ). Choose a positive number

δ′ < min{(αδ)
1
q , δ}. For any x ∈ Bδ′(x̄), it holds

max
1≤i≤m

d(x,Ωi) ≤ ‖x− x̄‖ ≤ δ′ < (αδ)
1
q .

Choose a ρ ∈ (0, δ) such that max1≤i≤m d(x,Ωi) = (αρ)
1
q . Then, by (2.2),

αd

(
x,

m⋂
i=1

Ωi

)
≤ αρ = max

1≤i≤m
dq(x,Ωi).

Hence, α ≤ ξ. By letting α→ ζq[Ω](x̄), we obtain ζq[Ω](x̄) ≤ ξ.

Equality (2.14). Let ξ stand for the right-hand side of (2.14). Suppose that ξ > 0 and fix

an arbitrary number γ ∈ (0, ξ). Then there is a number δ > 0 such that

γd

(
x,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
dq(x+ xi,Ωi) (2.16)

for any x ∈ Bδ(x̄) and xi ∈ δB (i = 1, . . . ,m). Fix any positive number α < γ and pick up a

positive number δ′ satisfying δ′ + (αδ′)
1
q ≤ δ. Then, for any ρ ∈ (0, δ′], ωi ∈ Ωi ∩Bδ′(x̄) and

ai ∈ (αρ)
1
qB (i = 1, . . . ,m), it holds

‖ωi − x̄+ ai‖ ≤ δ′ + (αρ)
1
q ≤ δ′ + (αδ′)

1
q ≤ δ.
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Applying (2.16) with x = x̄ and xi = ωi − x̄+ ai, we get

d

(
0,

m⋂
i=1

(Ωi − ωi − ai)
)
≤ γ−1 max

1≤i≤m
dq(ωi + ai,Ωi)

≤ γ−1 max
1≤i≤m

‖ai‖q ≤
α

γ
ρ < ρ.

Hence, (2.3) holds true and consequently θ̂q[Ω](x̄) ≥ α. Taking into account that α can be

arbitrarily close to ξ, we obtain θ̂q[Ω](x̄) ≥ ξ.

Conversely, suppose that θ̂q[Ω](x̄) > 0 and fix an arbitrary number α ∈ (0, θ̂q[Ω](x̄)).

Then there is some number δ > 0 such that (2.3) is satisfied for all ρ ∈ (0, δ], ωi ∈ Ωi ∩Bδ(x̄)

and ai ∈ (αρ)
1
qB (i = 1, . . . ,m). We pick up some δ′ > 0 satisfying

(δ′α+ (δ′)q)
1
q +

(δ′)q

α
+ 2δ′ < δ. (2.17)

Now, for x ∈ Bδ′(x̄) and xi ∈ δ′B (i = 1, . . . ,m), we consider two cases.

Case 1. There exists some j ∈ {1, . . . ,m} such that

d(x+ xj ,Ωj) ≥ (δ′α+ (δ′)q)
1
q .

Take ρ = (δ′)q

α < δ, ωi = x̄, ai = xi (i = 1, . . . ,m). Then ‖ai‖ ≤ δ′ = (αρ)
1
q . Applying

(2.3), we find points

x′′ ∈
m⋂
i=1

(Ωi − x̄− xi)
⋂

(ρB)

and

x′ := x̄+ x′′ ∈
m⋂
i=1

(Ωi − xi)
⋂
Bρ(x̄).

Hence,

d

(
x,

m⋂
i=1

(Ωi − xi)
)
≤
∥∥x− x′∥∥ ≤ ‖x− x̄‖+

∥∥x′′∥∥
≤ δ′ + ρ =

1

α
(δ′α+ (δ′)q)

≤ 1

α
max

1≤i≤m
dq(x+ xi,Ωi),
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and consequently

αd

(
x,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
dq(x+ xi,Ωi). (2.18)

Case 2. max
1≤i≤m

d(x+ xi,Ωi) < (δ′α+ (δ′)q)
1
q .

Choose ωi ∈ Ωi (i = 1, . . . ,m) such that

‖x+ xi − ωi‖ < (δ′α+ (δ′)q)
1
q .

Then, thanks to (7.3),

‖ωi − x̄‖ ≤ ‖ωi − x− xi‖+ ‖xi‖+ ‖x− x̄‖ < (δ′α+ (δ′)q)
1
q + 2δ′ < δ.

Setting

ai := x+ xi − ωi (i = 1, . . . ,m), ρ :=
1

α
max

1≤i≤m
‖ai‖q ,

we have

ρ <
δ′α+ (δ′)q

α
< δ, ‖ai‖ ≤ (αρ)

1
q (i = 1, . . . ,m).

Applying (2.3) again, we find points

x′′ ∈
m⋂
i=1

(Ωi − x− xi)
⋂

(ρB)

and

x′ := x+ x′′ ∈
m⋂
i=1

(Ωi − xi)
⋂
Bρ(x).

Hence,

d

(
x,

m⋂
i=1

(Ωi − xi)
)
≤
∥∥x− x′∥∥ ≤ ρ =

1

α
max

1≤i≤m
‖x+ xi − ωi‖q .

Taking infimum in the right-hand side of the last inequality over ωi ∈ Ωi (i = 1, . . . ,m), we

again arrive at (2.18).

From (2.18) we conclude that α ≤ ξ. Since α can be arbitrarily close to θ̂q[Ω](x̄), we

deduce θ̂q[Ω](x̄) ≤ ξ.

The second equalities in the representations of ζq[Ω](x̄) and θ̂q[Ω](x̄) are straightforward.
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Propositions 10 and 12 imply equivalent metric characterizations of the [q]-regularity

properties of collections of sets.

Theorem 4. (i) Ω is [q]-semiregular at x̄ if and only if it is metrically [q]-semiregular at

x̄, i.e., there exist positive numbers γ and δ such that

γd

(
x̄,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
‖xi‖q , ∀xi ∈ δB (i = 1, . . . ,m). (2.19)

Moreover, θq[Ω](x̄) is the exact upper bound of all numbers γ such that (2.19) is satis-

fied.

(ii) Ω is [q]-subregular at x̄ if and only if it is metrically [q]-subregular at x̄, i.e., there exist

positive numbers γ and δ such that

γd

(
x,

m⋂
i=1

Ωi

)
≤ max

1≤i≤m
dq(x,Ωi), ∀x ∈ Bδ(x̄). (2.20)

Moreover, ζq[Ω](x̄) is the exact upper bound of all numbers γ such that 2.20 is satisfied.

(iii) Ω is uniformly [q]-regular at x̄ if and only if it is metrically uniformly [q]-regular at x̄,

i.e., there exist positive numbers γ and δ such that

γd

(
x,

m⋂
i=1

(Ωi − xi)
)
≤ max

1≤i≤m
dq(x+ xi,Ωi) (2.21)

for any x ∈ Bδ(x̄), xi ∈ δB (i = 1, . . . ,m). Moreover, θ̂q[Ω](x̄) is the exact upper bound

of all numbers γ such that (2.21) is satisfied.

Remark 19. With q = 1, property (2.20) in the above theorem is known as the local lin-

ear regularity, linear coherence, or metric inequality [5, 6, 7, 8, 9, 10, 12, 23, 24, 26, 42, 43,

45, 50, 52, 58, 61]. It was used as the key condition when establishing linear convergence

rates of sequences generated by cyclic projection algorithms and a qualification condition for

subdifferential and normal cone calculus formulae. The stronger property (2.21) is some-

times referred to as unform metric inequality [33, 34, 35]. Property (2.19) with q = 1 was

investigated in [39].

65



2.2.3 Examples

In this subsection, we give several examples illustrating the discussed above regularity

properties. We consider collections of two sets in R2 having a common point x̄ = (0, 0). In

the figures below (except Figure 2.4), the two sets are coloured cyan and yellow, respectively,

while their intersection is coloured green.

Below we give two examples of collections of sets that do not satisfy certain q-regularity

properties when q = 1, while the corresponding properties are fulfilled when q = 1
2 .

Example 6. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 :=
{

(u, v) ∈ R2 | v ≥ 0
}
, Ω2 :=

{
(u, v) ∈ R2 | v ≤ u2

}
,

and the point x̄ = (0, 0) ∈ Ω1 ∩ Ω2 (Figure 2.1). The collection {Ω1,Ω2} is not semiregular

at x̄, while the
[

1
2

]
-semiregularity is satisfied at this point.

x̄

Ω1

Ω2

x̄

Ω1 − x1r

Ω2 − x2r

zr
(
√

2r, r)

r

Figure 2.1: Semiregularity vs [1
2 ]-semiregularity

Proof. This example is taken from [35, Figure 8]. We first observe that, for any r ∈ (0, 1)

and all x1, x2 ∈ rB, it holds

(Ω1 − x1) ∩ (Ω2 − x2) ⊇ (Ω1 − x1r) ∩ (Ω2 − x2r),

where x1r = (0,−r) and x2r = (0, r). Besides,

zr := (
√

2r, r) ∈ (Ω1 − x1r) ∩ (Ω2 − x2r),

d (x̄, (Ω1 − x1r) ∩ (Ω2 − x2r)) = ‖zr‖ =
√

2r + r2.
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Hence, by (2.7), for ρ ∈ (0, 1), we have

θρ[{Ω1,Ω2}](x̄) = sup
{
r ≥ 0 |

√
2r + r2 ≤ ρ

}
=
√

1 + ρ2 − 1,

and consequently, by (2.4),

θ[{Ω1,Ω2}](x̄) = lim
ρ↓0

√
1 + ρ2 − 1

ρ
= 0,

θ
1
2 [{Ω1,Ω2}](x̄) = lim

ρ↓0

(
√

1 + ρ2 − 1)
1
2

ρ
=

1√
2
,

which means that {Ω1,Ω2} is not semiregular at x̄, while it is
[

1
2

]
-semiregular at this point.

One can easily show that θρ[{Ω1−ω1,Ω2−ω2}](0) ≥ θρ[{Ω1,Ω2}](x̄) for any ω1 ∈ Ω1 and

ω2 ∈ Ω2, and consequently, by (2.6), θ̂
1
2 [{Ω1,Ω2}](x̄) = θ

1
2 [{Ω1,Ω2}](x̄) and {Ω1,Ω2} is even[

1
2

]
-uniformly regular at x̄.

Observe also that, for any x ∈ R2, maxi=1,2 d(x,Ωi) = d(x,Ω1 ∩ Ω2), and consequently,

by (2.13), ζ[{Ω1,Ω2}](x̄) = 1 and {Ω1,Ω2} is subregular at x̄.

Example 7. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 :=
{

(x, x2) ∈ R2 | x ∈ R
}
, Ω2 :=

{
(x,−x2) ∈ R2 | x ∈ R

}
,

and the point x̄ = (0, 0) ∈ Ω1 ∩Ω2 (Figure 2.2). The collection {Ω1,Ω2} is not subregular at

x̄, while the
[

1
2

]
-subregularity is satisfied at this point.

Ω1

Ω2

x̄
xρ

zρ

lρ

hρ

x

x1

x2

Figure 2.2: Subregularity vs
[

1
2

]
-subregularity
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Proof. We first check that, for each number ρ ∈
(
0, 1

2

)
,

min

{
max
i=1,2

d(x,Ωi) | x ∈ R2, ‖x‖ = ρ

}
= d(xρ,Ω1) = d(xρ,Ω2),

where xρ := (ρ, 0). By the symmetry of the sets, it suffices to show that

min
{
d(x,Ω1) | x = (x1, x2) ∈ R2, ‖x‖ = ρ, x1 ≥ 0, x2 ≤ 0

}
= d(xρ,Ω1). (2.22)

Denote zρ = (a, a2) := PΩ1(xρ) (the metric projection of xρ onto Ω1). Then, with f(x) = x2,

we have f ′(zρ) ≤ 1 = f ′
(

1
2

)
for any ρ ∈

(
0, 1

2

)
. Thus, the lines hρ and lρ through xρ

and zρ, respectively, with the slope f ′(zρ) separate the constraint set in (2.22) and Ω1 and

consequently, for any x in the constraint set in (2.22), it holds

d(x,Ω1) ≥ d(x, lρ) ≥ d(hρ, lρ) = d(xρ,Ω1),

which proves (2.22). One can easily check that ρ = 2a3 +a and d(xρ, zρ) =
√

4a6 + a4. Hence,

by (2.13),

ζ[{Ω1,Ω2}](x̄) = lim
ρ↓0

d(xρ, zρ)

ρ
= lim

a↓0

√
4a6 + a4

2a3 + a
= 0,

ζ
1
2 [{Ω1,Ω2}](x̄) = lim

ρ↓0

d
1
2 (xρ, zρ)

ρ
= lim

a↓0

4
√

4a6 + a4

2a3 + a
= 1,

which means that {Ω1,Ω2} is not subregular at x̄, while it is
[

1
2

]
-subregular at this point.

Observe also that (Ω1 − (0,−ε)) ∩ (Ω2 − (0, ε)) = ∅ for any ε > 0. Hence, by (2.7) and

(2.4), {Ω1,Ω2} is not [q]-semiregular at x̄ for any q > 0.

The above two examples show, in particular, that a collection of sets can be [q]-subregular

at some point while not being [q]-semiregular at this point. In fact, these two regularity

properties are independent. Next we give an example of a collection of sets that is semiregular

at some point while it is not subregular at this point.

Example 8. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 :=
{

(u, v) ∈ R2 | u ≤ 0 or v ≥ u2
}
, Ω2 :=

{
(u, v) ∈ R2 | u ≤ 0 or v ≤ −u2

}
,
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and the point x̄ = (0, 0) ∈ Ω1 ∩Ω2 (Figure 2.3). The collection {Ω1,Ω2} is semiregular at x̄,

while it is not subregular at this point.

x̄

Ω1

Ω2

u

v

Figure 2.3: Subregularity vs Semiregularity

Proof. The proof of the absence of the subregularity in this example does not differ from

that in Example 7. Next we show that {Ω1,Ω2} is semiregular at x̄. For any number ρ > 0,

we set xρ := (−ρ, 0). Then Bρ(xρ) ⊆ Ωi, i.e., xρ + xi ∈ Ωi for any xi ∈ ρB (i = 1, 2), and

consequently

xρ ∈ (Ω1 − x1) ∩ (Ω2 − x2) ∩Bρ(x̄), ∀xi ∈ ρB (i = 1, 2).

Hence, θρ[{Ω1,Ω2}](x̄) ≥ ρ and θ[{Ω1,Ω2}](x̄) ≥ 1. (One can show that these are actually

equalities.) Thus, {Ω1,Ω2} is semiregular at x̄.

Example 9. In the real plane R2 with the Euclidean norm, consider two sets

Ω1 :=
{

(u, v) ∈ R2 | u ≤ 0 or |v| ≥ u2
}

(Figure 2.4) and Ω2 := R2, and the point x̄ = (0, 0) ∈ Ω1 ∩ Ω2. The collection {Ω1,Ω2} is

q-semiregular at x̄ for any q ∈ (0, 1].

x̄

Ω1

u

v

Figure 2.4: q-semiregularity
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Proof. Obviously Ω2 − x = Ω2 = R2 for any x ∈ R2. Given a ρ > 0 and an r ≥ 0, using

the computations in Example 7, one can show that (Ω1 − x)
⋂
Bρ(x̄) 6= ∅ for all x ∈ rB

if and only if r ≤ 2a3 + a where a positive number a satisfies 4a6 + a4 = ρ2. Hence,

θρ[{Ω1,Ω2}](x̄) = 2a3 + a where 4a6 + a4 = ρ2 and consequently

θq[{Ω1,Ω2}](x̄) = lim
a↓0

(2a3 + a)q

a2
√

4a2 + 1
= +∞,

i.e., the collection {Ω1,Ω2} is q-semiregular at x̄ for any q ∈ (0, 1].

Note that in fact the q-semiregularity condition is satisfied for any q ≤ 2.

2.3 Dual characterizations

This section discusses dual characterizations of [q]-regularity properties (q ∈ (0, 1]) of

a collection of sets Ω := {Ω1, . . . ,Ωm} at x̄ ∈ ⋂m
i=1 Ωi. We are going to use the notation

Ω̂ := Ω1 × . . .× Ωm ⊂ Xm.

Recall that the (normalized) duality mapping [46, Definition 3.2.6] J between a normed

space Y and its dual Y ∗ is defined as

J(y) := {y∗ ∈ SY ∗ | 〈y∗, y〉 = ‖y‖} , ∀y ∈ Y.

Note that J(−y) = −J(y).

The following simple fact of convex analysis is well known (cf., e.g., [56, Corollary 2.4.16]).

Lemma 6. Let (Y, ‖ · ‖) be a normed space.

(i) ∂‖ · ‖(y) = J(y) for any y 6= 0.

(ii) ∂‖ · ‖(0) = B∗.

Making use of the convention that the topology in Xm is defined by the maximum type

norm, it is not difficult to establish a representation of the duality mapping on Xm (cf. [39,

Proposition 4.2]).
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Proposition 13. For each (x1, . . . , xm) ∈ Xm,

J(x1, . . . , xm) =

{
(x∗1, . . . , x

∗
m) ∈ (X∗)m |

m∑
i=1

‖x∗i ‖ = 1; either x∗i = 0

or

(
‖xi‖ = max

1≤j≤m
‖xj‖, x∗i ∈ ‖x∗i ‖J(xi)

)
(i = 1, . . . ,m)

}
.

In this section, along with the maximum type norm on Xm+1 = X ×Xm, we are going

to use another one depending on a parameter ρ > 0 and defined as follows:

‖(x, x̂)‖ρ := max {‖x‖ , ρ ‖x̂‖} , x ∈ X, x̂ ∈ Xm. (2.23)

It is easy to check that the corresponding dual norm has the following representation:

‖(x∗, x̂∗)‖ρ = ‖x∗‖+ ρ−1‖x̂∗‖, x∗ ∈ X∗, x̂∗ ∈ (Xm)∗. (2.24)

Note that if, in (2.23) and (2.24), x̂ = (x1, . . . , xm) and x̂∗ = (x∗1, . . . , x
∗
m) with xi ∈ X and

x∗i ∈ X∗ (i = 1, 2, . . . ,m), then ‖x̂‖ = max1≤i≤m ‖xi‖ and ‖x̂∗‖ =
∑m

i=1 ‖x∗i ‖.

The next few facts of subdifferential calculus are used in the proof of the main theorem

below.

Lemma 7 ([39], Lemma 4.3). Let X be a normed space and ϕ(u, û) = ‖(u−u1, . . . , u−um)‖

(u ∈ X, û := (u1, . . . , um) ∈ Xm). Suppose x ∈ X, x̂ := (x1, . . . , xm) ∈ Xm, and v̂ :=

(x− x1, . . . , x− xm) 6= 0. Then

∂ϕ(x, x̂) ⊆
{

(x∗, x̂∗) ∈ X∗ × (X∗)m | − x̂∗ ∈ J(v̂),

x̂∗ = (x∗1, . . . , x
∗
m), x∗ = −(x∗1 + . . .+ x∗m)

}
.

Lemma 8. Let X be a normed space, ϕ : X → R∞, q > 0, and f(u) := (ϕ(u))q (u ∈ X). If

x ∈ X and ϕ(x) 6= 0, then ∂f(x) = q(ϕ(x))q−1∂ϕ(x).

Proof. follows from the standard chain rule for Fréchet subdifferentials, cf., e. g., [31, Corol-

lary 1.14.1].
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Lemma 9. Let X be a normed space and ω̂ := (ω1, . . . , ωm) ∈ Ω̂. Then N
Ω̂

(ω̂) = NΩ1(ω1)×

. . .×NΩm(ωm).

Proof. follows directly from the definition of the Fréchet normal cone.

The proof of the main theorem of this section relies heavily on two fundamental results

of variational analysis: the Ekeland variational principle (Ekeland [16]; cf., e.g., [31, Theo-

rem 2.1], [49, Theorem 2.26]) and the fuzzy (approximate) sum rule (Fabian [17]; cf., e.g.,

[31, Rule 2.2], [49, Theorem 2.33]). Below we provide these results for completeness.

Lemma 10 (Ekeland variational principle). Suppose X is a complete metric space, and

f : X → R∞ is lower semicontinuous and bounded from below, ε > 0, λ > 0. If

f(v) < inf
X
f + ε,

then there exists x ∈ X such that

(a) d(x, v) < λ,

(b) f(x) ≤ f(v),

(c) f(u) + (ε/λ)d(u, x) ≥ f(x) for all u ∈ X.

Lemma 11 (Fuzzy sum rule). Suppose X is Asplund, f1 : X → R is Lipschitz continuous

and f2 : X → R∞ is lower semicontinuous in a neighborhood of x̄ with f2(x̄) <∞. Then, for

any ε > 0, there exist x1, x2 ∈ X with ‖xi − x̄‖ < ε, |fi(xi)− fi(x̄)| < ε (i = 1, 2) such that

∂(f1 + f2)(x̄) ⊂ ∂f1(x1) + ∂f2(x2) + εB∗.

The next theorem gives dual sufficient conditions for [q]-regularity of collections of sets

in Asplund spaces. Recall that a Banach space is called Asplund if any continuous convex

function defined on a nonempty open convex set is Fréchet differentiable on a dense subset

of its domain. Asplund spaces form a broad subclass of Banach spaces including, e. g., all

spaces which admit Fréchet differentiable re-norms (in particular, Fréchet smooth spaces).

Reflexive spaces are examples of Fréchet smooth spaces. Asplund property of a Banach space

is necessary and sufficient for the fulfillment of some basic results involving Fréchet normals
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and subdifferentials (cf. [31, 49]). See [53] for various properties and characterizations of

Asplund spaces.

Theorem 5. Let X be an Asplund space and Ω1, . . . Ωm be closed.

(i) Ω is [q]-subregular at x̄ if there exist positive numbers α and δ such that, for any ρ ∈

(0, δ), x ∈ Bρ(x̄), ωi ∈ Ωi ∩Bρ(x) (i = 1, . . . ,m) with ωj 6= x for some j ∈ {1, . . . ,m},

there is an ε > 0 such that, for any x′ ∈ Bε(x), ω̂′i ∈ Ωi ∩ Bε(ωi), x∗i ∈ NΩi(ω
′
i) + ρB∗

(i = 1, . . . ,m) satisfying v̂ := (ω′1 − x′, . . . , ω′m − x′) 6= 0 and

x∗i = 0 if
∥∥x′ − ω′i∥∥ < max

1≤j≤m

∥∥x′ − ω′j∥∥ ,
〈x∗i , x′ − ω′i〉 ≥ ‖x∗i ‖(‖x′ − ω′i‖ − ε),

m∑
i=1

‖x∗i ‖ = q ‖v̂‖q−1 ,

it holds

∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ > α. (2.25)

(ii) Ω is uniformly [q]-regular at x̄ if there are positive numbers α and δ such that (2.25)

holds true for all ωi ∈ Ωi ∩ Bδ(x̄) and x∗i ∈ NΩi(ωi) (i = 1, . . . ,m) satisfying∑m
i=1 ‖x∗i ‖ = 1. The inverse implication holds true when q = 1.

The proof of Theorem 5 (i) consists of a series of propositions providing lower estimates

for constant (2.13) and, thus, sufficient conditions for [q]-subregularity of Ω which can be of

independent interest. Observe that constant (2.13) can be rewritten as

ζq[Ω](x̄) = lim inf
x→x̄, ωi→x̄ (i=1,...,m)

ω̂:=(ω1,...,ωm)
x/∈

⋂m
i=1 Ωi

fq(x, ω̂)

d (x,
⋂m
i=1 Ωi)

(2.26)

with function fq : Xm+1 → R∞ := R ∪ {+∞} defined as

fq(x, x̂) = max
1≤i≤m

‖x− xi‖q + δ
Ω̂

(x̂), x ∈ X, x̂ := (x1, . . . , xm) ∈ Xm, (2.27)
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where δ
Ω̂

is the indicator function of Ω̂: δ
Ω̂

(x̂) = 0 if x̂ ∈ Ω̂ and δ
Ω̂

(x̂) = +∞ otherwise.

Proposition 14. Let X be a Banach space and Ω1, . . . , Ωm be closed.

(i) ζ̂q[Ω](x̄) ≤ ζq[Ω](x̄), where

ζ̂q[Ω](x̄) := lim
ρ↓0

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

ζqρ [Ω](x, ω̂) (2.28)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂,

ζqρ [Ω](x, ω̂) := lim sup
(u,v̂)→(x,ω̂)
(u,v̂) 6=(x,ω̂)

v̂=(v1,...,vm)∈Ω̂

(
max

1≤i≤m
‖x− ωi‖q − max

1≤i≤m
‖u− vi‖q

)
+

‖(u, v̂)− (x, ω̂)‖ρ
. (2.29)

(ii) If ζ̂q[Ω](x̄) > 0, then Ω is [q]-subregular at x̄.

Proof. (i) Let ζq[Ω](x̄) < α <∞. Choose a ρ ∈ (0, 1) and set

η := min
{ρ

2
,
ρ

α
, ρ

2
ρ

}
. (2.30)

By (2.26), there are x′ ∈ Bη(x̄) and ω̂′ = (ω′1, . . . , ω
′
m) ∈ Ω̂ such that

0 < fq(x
′, ω̂′) < αd

(
x′,

m⋂
i=1

Ωi

)
. (2.31)

Denote ε := fq(x
′, ω̂′) and µ := d (x′,

⋂m
i=1 Ωi). Then µ ≤ ‖x′ − x̄‖ ≤ η ≤ ρ

2 < 1. Observe

that fq is lower semicontinuous. Applying to fq Lemma 10 with ε as above and

λ := µ(1− µ
ρ

2−ρ ), (2.32)

we find points x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Xm such that

∥∥(x, ω̂)− (x′, ω̂′)
∥∥
ρ
< λ, fq(x, ω̂) ≤ fq(x′, ω̂′), (2.33)
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and

fq(u, v̂) +
ε

λ
‖(u, v̂)− (x, ω̂)‖ρ ≥ fq(x, ω̂), (2.34)

for all (u, v̂) ∈ X ×Xm. Thanks to (2.33), (2.32), (2.30), and (2.31), we have

∥∥x− x′∥∥ < λ < µ ≤
∥∥x′ − x̄∥∥ ,

d

(
x,

m⋂
i=1

Ωi

)
≥ d

(
x′,

m⋂
i=1

Ωi

)
−
∥∥x− x′∥∥ ≥ µ− λ = µ

2
2−ρ , (2.35)

‖x− x̄‖ ≤
∥∥x− x′∥∥+

∥∥x′ − x̄∥∥ < 2
∥∥x′ − x̄∥∥ ≤ 2η ≤ ρ, (2.36)

fq(x, ω̂) ≤ fq(x′, ω̂′) < αµ ≤ αη ≤ ρ. (2.37)

It follows from (2.35), (2.36), and (2.37) that

‖x− x̄‖ < ρ, ω̂ ∈ Ω̂, 0 < max
1≤i≤m

‖x− ωi‖q < ρ.

Observe that µ
ρ

2−ρ ≤ η
ρ

2−ρ < η
ρ
2 ≤ ρ, and consequently, by (2.31) and (2.32),

ε

λ
<
αµ

λ
=

α

1− µ
ρ

2−ρ
<

α

1− ρ.

Thanks to (2.34) and (2.27), we have

max
1≤i≤m

‖x− ωi‖q − max
1≤i≤m

‖u− vi‖q ≤
α

1− ρ ‖(u, v̂)− (x, ω̂)‖ρ

for all u ∈ X and v̂ = (v1, . . . , vm) ∈ Ω̂. It follows that ζqρ [Ω](x, ω̂) ≤ α

1− ρ and consequently

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

ζqρ [Ω](x, ω̂) ≤ α

1− ρ.

Taking limits in the last inequality as ρ ↓ 0 and α→ ζq[Ω](x̄) yields the claimed inequality.

(ii) follows from (i) and Proposition 10 (ii).

Proposition 15. Let X be an Asplund space and Ω1, . . . , Ωm be closed.
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(i) ζ̂q∗1 [Ω](x̄) ≤ ζ̂q[Ω](x̄), where ζ̂q[Ω](x̄) is given by (2.28),

ζ̂q∗1 [Ω](x̄) := lim
ρ↓0

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

ζq∗ρ,1[Ω](x, ω̂) (2.38)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂,

ζq∗ρ,1[Ω](x, ω̂) := inf
(x∗,ŷ∗)∈∂fq(x,ω̂)

‖ŷ∗‖<ρ

‖x∗‖ (2.39)

(with the convention that the infimum over the empty set equals +∞).

(ii) If ζ̂q∗1 [Ω](x̄) > 0, then Ω is [q]-subregular at x̄.

Proof. (i) Let ζ̂q[Ω](x̄) < α < ∞. Choose a β ∈ (ζ̂q[Ω](x̄), α) and an arbitrary ρ > 0. Set

ρ′ = min{1, α−1}ρ. By (2.28) and (2.29), one can find points x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂

such that ‖x− x̄‖ < ρ′, 0 < max1≤i≤m ‖ωi − x‖ < ρ′, and

max
1≤i≤m

‖x− ωi‖q − max
1≤i≤m

‖u− vi‖q ≤ β ‖(u, v̂)− (x, ω̂)‖ρ′

for all (u, v̂) with v̂ = (v1, . . . , vm) ∈ Ω̂ near (x, ω̂). In other words, (x, ω̂) is a local minimizer

of the function

(u, v̂) 7→ max
1≤i≤m

‖u− vi‖q + β ‖(u, v̂)− (x, ω̂)‖ρ′

subject to v̂ = (v1, . . . , vm) ∈ Ω̂. By definition (2.27), this means that (x, ω̂) minimizes locally

the function

(u, v̂) 7→ fq(u, v̂) + β ‖(u, v̂)− (x, ω̂)‖ρ′ ,

and consequently its Fréchet subdifferential at (x, ω̂) contains zero. Take an

ε ∈
(

0,min
{
ρ− ‖x− x̄‖ , 1

2
max

1≤i≤m
‖x− ωi‖ ,

1

2

(
ρ− max

1≤i≤m
‖x− ωi‖

)
, α− β

})
.

Applying Lemma 11 and Lemma 6 (ii), we can find points x′ ∈ X, ω̂′ = (ω′1, . . . , ω
′
m) ∈ Ω̂,
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and (x∗, ŷ∗) ∈ ∂fq(x′, ω̂′) such that

∥∥x′ − x∥∥ < ε, max
1≤i≤m

∥∥ω′i − ωi∥∥ < ε, ‖(x∗, ŷ∗)‖ρ′ = ‖x∗‖+ ‖ŷ∗‖/ρ′ < β + ε.

It follows that

∥∥x′ − x̄∥∥ < ρ, 0 < max
1≤i≤m

∥∥x′ − ω′i∥∥ < ρ, ‖x∗‖ < α, and ‖ŷ∗‖ < ρ′α ≤ ρ.

Hence, ζq∗ρ,1[Ω](x′, ω̂′) < α, and consequently ζ̂q∗1 [Ω](x̄) < α. By letting α → ζ̂q[Ω](x̄), we

obtain the claimed inequality.

(ii) follows from (i) and Proposition 14 (ii).

Proposition 16. Let X be an Asplund space and Ω1, . . . , Ωm be closed.

(i) ζ̂q∗2 [Ω](x̄) ≤ ζ̂q∗1 [Ω](x̄), where ζ̂q∗1 [Ω](x̄) is given by (2.38),

ζ̂q∗2 [Ω](x̄) := lim
ρ↓0

inf
‖x−x̄‖<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
‖x−ωi‖<ρ

lim
ε↓0

inf
‖x′−x‖<ε
ω̂′∈Ω̂

‖ω̂′−ω̂‖<ε

ζq∗ρ,ε,2[Ω](x′, ω̂′) (2.40)

and, for x ∈ X, ω̂ = (ω1, . . . , ωm) ∈ Ω̂, and v̂ := (x− ω1, . . . , x− ωm) 6= 0,

ζq∗ρ,ε,2[Ω](x, ω̂) := inf

{∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ |x∗i ∈ NΩi(ωi) + ρB∗ (i = 1, . . . ,m),

x∗i = 0 if ‖x− ωi‖ < max
1≤j≤m

‖x− ωj‖ ,

〈x∗i , x− ωi〉 ≥ ‖x∗i ‖(‖x− ωi‖ − ε),
m∑
i=1

‖x∗i ‖ = q ‖v̂‖q−1

}
. (2.41)

(ii) If ζ̂q∗2 [Ω](x̄) > 0, then Ω is [q]-subregular at x̄.

Proof. (i) Let ρ > 0, ‖x − x̄‖ < ρ, ω̂ := (ω1, . . . , ωm) ∈ Ω̂ with 0 < max1≤i≤m ‖x− ωi‖ < ρ,

(u∗, v̂∗) ∈ ∂fq(x, ω̂), where fq is given by (2.27), and ‖v̂∗‖ < ρ. Denote v̂ := (x− ω1, . . . , x−
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ωm). Then 0 < ‖v̂‖ < ρ. Observe that function fq is the sum of two functions on Xm+1:

(x, x̂) 7→ ϕ(x, x̂) := ‖(x− x1, . . . , x− xm)‖q and (x, x̂) 7→ δ
Ω̂

(x̂),

where x̂ := (x1, . . . , xm) and δ
Ω̂

is the indicator function of Ω̂. The first function is Lipschitz

continuous near (x, ω̂) (since v̂ 6= 0), while the second one is lower semicontinuous. One

can apply Lemma 11. For any ε > 0, there exist points x′ ∈ X, x̂ := (x1, . . . , xm) ∈ Xm,

ω̂′ := (ω′1, . . . , ω
′
m) ∈ Ω̂, (x∗, ŷ∗) ∈ ∂ϕ(x′, x̂), and ω̂∗ ∈ N

Ω̂
(ω̂′) such that

‖x′ − x‖ < ε, ‖x̂− ω̂‖ < ε

4
, ‖ω̂′ − ω̂‖ < ε

4
,

‖(u∗, v̂∗)− (x∗, ŷ∗)− (0, ω̂∗)‖ < ε. (2.42)

Taking a smaller ε if necessary, one can ensure that v̂′ := (x′ − ω′1, . . . , x′ − ω′m) 6= 0, v̂′′ :=

(x′ − x1, . . . , x
′ − xm) 6= 0, and

‖v̂∗‖+ ε < ρ

( ‖v̂′‖
‖v̂′′‖

)1−q
(2.43)

and, for any i = 1, . . . ,m, ‖x′ − xi‖ < max1≤j≤m ‖x′ − xj‖ if and only if ‖x′ − ω′i‖ <

max1≤j≤m

∥∥∥x′ − ω′j∥∥∥. By Lemmas 8 and 7,

x̂∗ := −ŷ∗
(‖v̂′′‖
‖v̂′‖

)1−q
∈ q

∥∥v̂′∥∥q−1
J(v̂′′) and x∗ = x∗1 + . . .+ x∗m

where x̂∗ = (x∗1, . . . , x
∗
m). By Proposition 13,

m∑
i=1

‖x∗i ‖ = q
∥∥v̂′∥∥q−1

,

x∗i = 0 if
∥∥x′ − ω′i∥∥ < max

1≤j≤m

∥∥x′ − ω′j∥∥ ,

〈x∗i , x′ − ω′i〉 ≥ 〈x∗i , x′ − xi〉 − ‖x∗i ‖ ‖xi − ω′i‖ = ‖x∗i ‖(‖x′ − xi‖ − ‖xi − ω′i‖)

≥ ‖x∗i ‖(‖x′ − ω′i‖ − 2‖xi − ω′i‖) ≥ ‖x∗i ‖(‖x′ − ω′i‖ − ε) (i = 1, . . . ,m).
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Inequalities (2.42) and (2.43) yield the estimates:

‖u∗‖ > ‖x∗‖ − ε,
∥∥∥∥∥x̂∗ − ω̂∗

(‖v̂′′‖
‖v̂′‖

)1−q
∥∥∥∥∥ < (‖v̂∗‖+ ε)

(‖v̂′′‖
‖v̂′‖

)1−q
< ρ

and consequently

‖u∗‖ >
∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥− ε, x̂∗ ∈ N
Ω̂

(ω̂′) + ρB∗m.

It follows from Lemma 9 and definitions (2.39) and (2.41) that

ζq∗ρ,1[Ω](x, ω̂) ≥ ζq∗ρ,ε,2[Ω](x′, ω̂′)− ε.

The claimed inequality is a consequence of the last one and definitions (2.38) and (2.40).

(ii) follows from (i) and Proposition 15 (ii).

Proof of Theorem 5. (i) follows from Proposition 16 (ii) and definitions (2.40) and

(2.41).

(ii) follows from [35, Theorem 4] thanks to Remark 14.

Remark 20. One of the main tools in the proof of Theorem 5 is the fuzzy sum rule

(Lemma 11) for Fréchet subdifferentials in Asplund spaces. The statements can be extended

to general Banach spaces. For that, one has to replace Fréchet subdifferentials (and normal

cones) with some other kind of subdifferentials satisfying a certain set of natural properties

including the sum rule (not necessarily fuzzy) – cf. [36, p. 345].

If the sets Ω1, . . . Ωm are convex or the norm of X is Fréchet differentiable away from 0,

then the fuzzy sum rule can be replaced in the proof by either the convex sum rule (Moreau–

Rockafellar formula) or the simple (exact) differentiable rule (see, e.g., [31, Corollary 1.12.2]),

respectively, to produce dual sufficient conditions for [q]-regularity of collections of sets in

general Banach spaces in terms of either normals in the sense of convex analysis or Fréchet

normals.

Remark 21. Since uniform [q]-regularity is a stronger property than [q]-subregularity (Re-

mark 13), the criterion in part (ii) of Theorem 5 is also sufficient for the [q]-subregularity

(with any q ∈ (0, 1]) of the collection of sets in part (i).
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For an example illustrates application of Theorem 5 (i) for detecting subregularity of

collections of sets, see [39, Example 4.13].

2.4 [q]-regularity of set-valued mappings

In this section, we present relationships between [q]-regularity properties of collections of

sets and the corresponding properties of set-valued mappings. Nonlinear regularity properties

of set-valued mappings have been investigated, cf., e.g., [2, 11, 19, 20, 25, 40, 44, 55].

Consider a set-valued mapping F : X ⇒ Y between metric spaces and a point (x̄, ȳ) ∈

gphF := {(x, y) ∈ X × Y | y ∈ F (x)}.

Definition 4. (i) F is metrically [q]-semiregular at (x̄, ȳ) if there exist positive numbers

γ and δ such that

γd
(
x̄, F−1(y)

)
≤ dq(y, ȳ), ∀y ∈ Bδ(ȳ). (2.44)

The exact upper bound of all numbers γ such that (2.44) is satisfied will be denoted by

θq[F ](x̄, ȳ).

(ii) F is metrically [q]-subregular at (x̄, ȳ) if there exist positive numbers γ and δ such that

γd
(
x, F−1(ȳ)

)
≤ dq(ȳ, F (x)), ∀x ∈ Bδ(x̄). (2.45)

The exact upper bound of all numbers γ such that (2.45) is satisfied will be denoted by

ζq[F ](x̄, ȳ).

(iii) F is metrically [q]-regular at (x̄, ȳ) if there exist positive numbers γ and δ such that

γd
(
x, F−1(y)

)
≤ dq (y, F (x)) , ∀(x, y) ∈ Bδ(x̄, ȳ). (2.46)

The exact upper bound of all numbers γ such that (2.46) is satisfied will be denoted by

θ̂q[F ](x̄, ȳ).

Remark 22. Property (ii) and especially property (iii) in Definition 4 with q = 1 are very

well known and widely used in variational analysis; see, e.g., [13, 14, 15, 23, 35, 49, 51, 54,
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57, 59, 60]. Property (i) (with q = 1) was introduced in [35]. In [2, 3], it is referred to as

metric hemiregularity.

For a collection of sets Ω := {Ω1, . . . ,Ωm} in a normed linear space X, one can consider

the set-valued mapping F : X ⇒ Xm defined by (cf. [23, Proposition 5], [33, Theorem 3],

[34, Proposition 8], [41, p. 491], [21, Proposition 33])

F (x) := (Ω1 − x)× . . .× (Ωm − x), ∀x ∈ X.

It is easy to check that, for x ∈ X and u = (u1, . . . , um) ∈ Xm, it holds

x ∈
m⋂
i=1

Ωi ⇐⇒ 0 ∈ F (x), F−1(u) =
m⋂
i=1

(Ωi − ui).

The next proposition is a consequence of Theorem 4.

Proposition 17. Consider Ω and F as above and a point x̄ ∈ ⋂m
i=1 Ωi.

(i) Ω is [q]-semiregular at x̄ if and only if F is metrically [q]-semiregular at (x̄, 0). More-

over, θq[Ω](x̄) = θq[F ](x̄, 0).

(ii) Ω is [q]-subregular at x̄ if and only if F is metrically [q]-subregular at (x̄, 0). Moreover,

ζq[Ω](x̄) = ζq[F ](x̄, 0).

(iii) Ω is uniformly [q]-regular at x̄ if and only if F is metrically [q]-regular at (x̄, 0). More-

over, θ̂q[Ω](x̄) = θ̂q[F ](x̄, 0).

For a further discussion of the relationships between regularity properties of Ω and F see

[39, Remark 5.4].

Conversely, regularity properties of set-valued mappings between normed linear spaces

can be treated as realizations of the corresponding properties of certain collections of two

sets.

For a given set-valued mapping F : X ⇒ Y between normed linear spaces and a point

(x̄, ȳ) ∈ gphF , one can consider the collection Ω of two sets Ω1 = gphF and Ω2 = X × {ȳ}

in X × Y . It is clear that (x̄, ȳ) ∈ Ω1 ∩ Ω2.

Proposition 18. Consider F and Ω as above.
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(i) F is metrically [q]-semiregular at (x̄, ȳ) if and only if Ω is [q]-semiregular at (x̄, ȳ).

Moreover,

θq[F ](x̄, ȳ)

θq[F ](x̄, ȳ) + 2q
≤ θq[Ω](x̄, ȳ) ≤ θq[F ](x̄, ȳ)/2q. (2.47)

(ii) F is metrically [q]-subregular at (x̄, ȳ) if and only if Ω is [q]-subregular at (x̄, ȳ). More-

over,

ζq[F ](x̄, ȳ)

ζq[F ](x̄, ȳ) + 2q
≤ ζq[Ω](x̄, ȳ) ≤ ζq[F ](x̄, ȳ)/2q. (2.48)

(iii) F is metrically [q]-regular at (x̄, ȳ) if and only if Ω is uniformly [q]-regular at (x̄, ȳ).

Moreover,

θ̂q[F ](x̄, ȳ)

θ̂q[F ](x̄, ȳ) + 2q
≤ θ̂q[Ω](x̄, ȳ) ≤ θ̂q[F ](x̄, ȳ)/2q. (2.49)

Proof. (i) Suppose F is metrically [q]-semiregular at (x̄, ȳ), i.e., θq[F ](x̄, ȳ) > 0. Fix a γ ∈

(0, θq[F ](x̄, ȳ)). Then there exists a number δ′ > 0 such that (2.44) is satisfied for all y ∈

Bδ′(ȳ). Set an α := γ
γ+2q (so 2qα/γ + α

1
q < 1) and a δ := min

{
δ′q
2qα , 1

}
. We are going to

check that

(Ω1 − (u1, v1))
⋂

(Ω2 − (u2, v2))
⋂
Bρ(x̄, ȳ) 6= ∅ (2.50)

for all ρ ∈ (0, δ) and (u1, v1), (u2, v2) ∈ (αρ)
1
qB. Indeed, take any ρ ∈ (0, δ) and

(u1, v1), (u2, v2) ∈ (αρ)
1
qB. We need to find a point (x, y) ∈ Bρ(x̄, ȳ) satisfying

 (x, y) + (u1, v1) ∈ gphF,

y = ȳ − v2.

We set y′ := ȳ − v2 + v1, so y′ ∈ Bδ′(ȳ) as ‖y′ − ȳ‖ = ‖v1 − v2‖ ≤ 2(αρ)
1
q < 2(αδ)

1
q = δ′.

Then, by (2.44), there is an x′ ∈ F−1(y′) such that

‖x̄− x′‖ ≤ 1

γ
‖ȳ − y′‖q.

Put y := y′ − v1 = ȳ − v2 and x := x′ − u1. Then it holds (x, y) + (u1, v1) = (x′, y′) ∈ gphF ,
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‖y − ȳ‖ = ‖v2‖ ≤ (αρ)
1
q < ρ, and

‖x− x̄‖ ≤ ‖x− x′‖+ ‖x′ − x̄‖ ≤ ‖u1‖+
1

γ
‖ȳ − y′‖q

= ‖u1‖+
1

γ
‖v1 − v2‖q ≤ (2qα/γ + α

1
q )ρ < ρ.

Hence, (2.50) is proved.

The above reasoning also yields the first inequality in (2.47).

To prove the inverse implication, we suppose Ω is [q]-semiregular at (x̄, ȳ), i.e.,

θq[Ω](x̄, ȳ) > 0. Fix an α ∈ (0, θq[Ω](x̄, ȳ)). Then there exists δ′ > 0 such that (2.50)

holds true for all ρ ∈ (0, δ′) and (u1, v1), (u2, v2) ∈ (αρ)
1
qB. Set γ := 2qα and δ < (αδ′)

1
q . We

are going to check that (2.44) is satisfied. Take any y ∈ Bδ(ȳ), i.e., ‖y − ȳ‖ ≤ δ < (αδ′)
1
q .

Set r ∈ (0, δ′) such that ‖y − ȳ‖ = (αr)
1
q . Then, applying (2.50) for ρ := r

2q ∈ (0, δ′),

and (u1, v1) :=
(
0, y−ȳ2

)
, (u2, v2) :=

(
0, ȳ−y2

)
∈
(
α r

2q

) 1
q B, we can find (x1, y1) ∈ gphF and

(x2, ȳ) ∈ Ω2 satisfying

(x1, y1)− (u1, v1) = (x2, ȳ)− (u2, v2) ∈ B r
2q

(x̄, ȳ).

This implies that y1 = y, x1 ∈ F−1(y), and

‖x1 − x̄‖ ≤
r

2q
=

1

2qα
‖y − ȳ‖q =

1

γ
‖y − ȳ‖q.

Hence, (2.44) holds true.

The last reasoning also yields the second inequality in (2.47).

(ii) Suppose F is metrically [q]-subregular at (x̄, ȳ), i.e., ζq[F ](x̄, ȳ) > 0. Fix a γ ∈

(0, ζq[F ](x̄, ȳ)). Then there exists a δ′ > 0 (one can take δ′ ∈ (0, 1)) such that (2.45) is

satisfied for all x ∈ Bδ′(x̄). Set an α := γ
γ+2q (so 2qα/γ + α

1
q < 1) and a δ > 0 satisfying

(αδ)
1
q + δ < δ′. We are going to check that

(
Ω1 + (αρ)

1
qB
)⋂(

Ω2 + (αρ)
1
qB
)⋂

Bδ(x̄, ȳ) ⊆ Ω1 ∩ Ω2 + ρB (2.51)
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for all ρ ∈ (0, δ). Indeed, take any

(x, y) ∈
(

Ω1 + (αρ)
1
qB
)⋂(

Ω2 + (αρ)
1
qB
)⋂

Bδ(x̄, ȳ).

Then (x, y) = (x1, y1) + (u1, v1) = (x2, ȳ) + (u2, v2) for some (x1, y1) ∈ gphF , x2 ∈ X, and

(u1, v1), (u2, v2) ∈ (αρ)
1
qB. Since

‖x1 − x̄‖ ≤ ‖u1‖+ ‖x− x̄‖ ≤ (αρ)
1
q + δ < δ′,

by (2.45), there exists an x′ ∈ F−1(ȳ) such that ‖x1 − x′‖ ≤ 1
γ ‖ȳ − y1‖q. Then

∥∥x1 − x′ + u1

∥∥ ≤1

γ
‖ȳ − y1‖q + ‖u1‖ =

1

γ
‖v1 − v2‖q + ‖u1‖

≤2qαρ

γ
+ (αρ)

1
q ≤

(2qα

γ
+ α

1
q

)
ρ < ρ,

‖v2‖ ≤(αρ)
1
q ≤ α

1
q ρ < ρ.

Hence, (x, y) = (x′, ȳ) + (x1 − x′ + u1, v2) ∈ Ω1 ∩ Ω2 + ρB.

The above reasoning also yields the first inequality in (2.48).

To prove the inverse implication, we suppose that Ω is [q]-subregular at (x̄, ȳ), i.e.,

ζq[Ω](x̄, ȳ) > 0. Fix an α ∈ (0, ζq[Ω](x̄, ȳ)). Then there exists a δ′ > 0 such that (2.51)

holds true for all ρ ∈ (0, δ′). Set γ := 2qα > 0 and δ := min
{
δ′, γδ′, 2qδ′q

γ

}
. We are going

to check that (2.45) holds true. Take any x ∈ Bδ(x̄). Because d(x, F−1(ȳ)) ≤ ‖x − x̄‖ ≤ δ,

it is sufficient to consider the case 0 < d(ȳ, F (x)) < (γδ)
1
q . We take a y ∈ F (x) such that

d(ȳ, F (x)) ≤ ‖y − ȳ‖ := r < (γδ)
1
q . Then

(
x,
y + ȳ

2

)
= (x, y) +

(
0,
ȳ − y

2

)
= (x, ȳ) +

(
0,
y − ȳ

2

)
,

∥∥∥∥ ȳ − y2

∥∥∥∥ =
r

2
< δ′,

and consequently

(
x,
y + ȳ

2

)
∈
(

Ω1 +
r

2
B
)⋂(

Ω2 +
r

2
B
)⋂

Bδ′(x̄, ȳ). (2.52)
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Take ρ := rq

2qα < δ ≤ δ′. Then r
2 = (αρ)

1
q , and it follows from (2.51) and (2.52) that

(
x,
y + ȳ

2

)
∈ Ω1 ∩ Ω2 +

rq

2qα
B = F−1(ȳ)× {ȳ}+

‖y − ȳ‖q
γ

B.

Hence, there is an x′ ∈ F−1(ȳ) such that

‖x− x′‖ ≤ 1

γ
‖y − ȳ‖q.

Taking infimum in the last inequality over x′ ∈ F−1(ȳ) and y ∈ F (x), we arrive at (2.45).

(iii) Suppose F is metrically [q]-regular at (x̄, ȳ), i.e., θ̂q[F ](x̄, ȳ) > 0. Fix a γ ∈

(0, θ̂q[F ](x̄, ȳ)). Then there exists a δ′ > 0 (one can take δ′ ∈ (0, 1)) such that (2.46) is

satisfied for all (x, y) ∈ Bδ′(x̄, ȳ). Set an α := γ
γ+2q (so 2qα/γ + α

1
q < 1) and a δ := δ′

2α
1
q +1

.

We are going to check that

(Ω1 − (x1, y1)− (u1, v1))
⋂

(Ω2 − (x2, ȳ)− (u2, v2))
⋂

(ρB) 6= ∅ (2.53)

for all ρ ∈ (0, δ), (x1, y1) ∈ Ω1 ∩ Bδ(x̄, ȳ), x2 ∈ Bδ(x̄), and (u1, v1), (u2, v2) ∈ (αρ)
1
qB. Take

any such ρ, (x1, y1), x2, (u1, v1), and (u2, v2). We need to find (a, b) ∈ ρB satisfying

 (x1, y1) + (u1, v1) + (a, b) ∈ gphF,

b = −v2.

We set y′ = y1 − v2 + v1, so y′ ∈ Bδ′(ȳ) as

‖y′ − ȳ‖ ≤ ‖y′ − y1‖+ ‖y1 − ȳ‖ ≤ ‖v1 − v2‖+ δ ≤ 2(αρ)
1
q + δ < (2α

1
q + 1)δ = δ′.

Then, applying (2.46) for (x1, y
′) ∈ Bδ′(x̄, ȳ), we find x′ ∈ F−1(y′) such that

‖x1 − x′‖ ≤
1

γ
dq(y′, F (x1)) ≤ 1

γ
‖y′ − y1‖q =

1

γ
‖v1 − v2‖q ≤

2qαρ

γ
.

Put a = x′ − x1 − u1 and b = −v2. Then ‖a‖ ≤ ‖x′ − x1‖ + ‖u1‖ ≤ (2qα/γ + α
1
q )ρ < ρ,

‖b‖ ≤ (αρ)
1
q < ρ, and it holds (x1, y1) + (u1, v1) + (a, b) = (x′, y′) ∈ gphF .

Hence, (2.53) is proved.
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The above reasoning also yields the first inequality in (2.49).

To prove the inverse implication, we suppose that Ω is uniformly [q]-regular at (x̄, ȳ),

i.e., θ̂q[Ω](x̄, ȳ) > 0. Fix an α ∈ (0, θ̂q[Ω](x̄, ȳ)). Then there exists a δ′ > 0 (one can take

δ′ ∈ (0, 1)) such that (2.53) holds true for all ρ ∈ (0, δ′), (x1, y1) ∈ Ω1∩Bδ′(x̄, ȳ), x2 ∈ Bδ′(x̄),

and (u1, v1), (u2, v2) ∈ (αρ)
1
qB. Set γ := 2qα > 0. Because θq[Ω](x̄, ȳ) ≥ θ̂q[Ω](x̄, ȳ) (see

Remark 13), assertion (i) implies that there exists a δ∗ > 0 such that (2.44) is satisfied for

all y ∈ Bδ∗(ȳ). Choose a positive number δ satisfying the following conditions


δ ≤ δ∗,

2qδ + δq

α ≤ δ′,

(2qαδ + δq)
1
q + δ ≤ δ′.

(2.54)

Now, take any (x, y) ∈ Bδ(x̄, ȳ). We are going to check that (2.46) is satisfied. Because (2.44)

implies

γd(x, F−1(y)) ≤ γ‖x− x̄‖+ γd(x̄, F−1(y)) ≤ γδ + ‖y − ȳ‖q ≤ γδ + δq,

it suffices to consider the case d(y, F (x)) < (γδ + δq)
1
q (note that γδ + δq ≤ αδ′ by (2.54).)

Choose a y′ ∈ F (x) such that

d(y, F (x)) ≤ ‖y − y′‖ < (γδ + δq)
1
q

and set r ∈ (0, δ′) such that ‖y − y′‖ = (αr)
1
q . Then

‖y′ − ȳ‖ ≤ ‖y′ − y‖+ ‖y − ȳ‖ < (γδ + δq)
1
q + δ ≤ δ′

due to (2.54). Applying (2.53) with

(x1, y1) := (x, y′) ∈ gphF ∩Bδ′(x̄, ȳ), (x2, y2) := (x̄, ȳ),

(u1, v1) :=

(
0,
y − y′

2

)
, (u2, v2) :=

(
0,
y′ − y

2

)
∈
(
α
r

2q

) 1
q B,
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we can find (x̃, ỹ) ∈ gphF and (z, ȳ) ∈ Ω2 satisfying

(x̃, ỹ)− (x1, y1)− (u1, v1) = (z, ȳ)− (x2, ȳ)− (u2, v2) ∈ r

2q
B.

This implies x̃− x1 ∈ r
2qB and ỹ = y1 + v1 − v2 = y, so x̃ ∈ F−1(y). Then we obtain

d(x, F−1(y)) ≤ ‖x− x̃‖ ≤ r

2q
=

1

2qα
‖y − y′‖q =

1

γ
‖y − y′‖q.

Taking infimum in the last inequality over y′ ∈ F (x), we arrive at (2.46).

The last reasoning also yields the second inequality in (2.49).

87



Bibliography

[1] L. Q. Anh, A. Y. Kruger, N. H. Thao, On Hölder calmness of solution mappings in
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Chapter 3

About uniform regularity of

collections of sets

We further investigate the uniform regularity property of collections of sets via primal

and dual characterizing constants. These constants play an important role in determining

convergence rates of projection algorithms for solving feasibility problems.

3.1 Introduction

Regularity properties of collections of sets play an important role in several areas of vari-

ational analysis and optimization like coderivative-subdifferential calculus, constraint quali-

fications, stability of solutions, and convergence of numerical algorithms.

Various regularity properties of collections of sets have proved to be useful: (bounded)

linear regularity [2, 3, 4, 5, 6, 8, 30, 35, 40, 41], metric inequality [15, 16, 36], (strong) conical

hull intersection property [2, 5, 6, 9, 10, 13, 30], Jameson’s property (G) [5, 28]. We refer the

readers to [2, 5, 23] for the relationships between these properties and the overview of the

areas of their applications in analysis and optimization.

The uniform regularity property introduced recently in [22] and further developed in

[23, 24, 25] is stronger than local linear regularity even in the convex case. It corresponds

to the metric regularity property of set-valued mappings and is closely related to the (ex-

tended) extremal principle. The most recent development is the application of this property
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in convergence analysis of projection algorithms by Lewis et al. [29], Attouch et al. [1], Luke

[31, 32], and Hesse and Luke [14].

Uniform regularity of a collection of sets in a normed linear space is characterized quan-

titatively in [22, 23, 24, 25] by certain nonnegative constants defined in terms of elements

of the primal or dual spaces. In the setting of a finite dimensional Euclidean space, Lewis

et al. [29] introduced another nonnegative constant characterizing the uniform regularity

of a collection of two sets and used it when formulating convergence rates of averaged and

alternating projections.

In the current note, we consider a (not necessarily nonnegative) modification of the con-

stant from [29] in the setting of an arbitrary Hilbert space and establish its relationship

with the dual space constant from [22, 23, 24, 25]. The latter constant admits a simplified

equivalent representation in Hilbert spaces. As an application, we employ these constants to

establish convergence results of projection algorithms.

The structure of this chapter is as follows. In Section 3.2, we recall the uniform regularity

property of a finite collection of sets in a normed linear space, its main characterizations and

connections with some other properties. In Section 3.3, we consider the case of a collection

of two sets in a Hilbert space and establish the relationship between the dual space constants

from [22, 23, 24, 25] and [29]. The final Section 3.4 is dedicated to the convergence estimates

of projection algorithms.

Our basic notation is standard, cf. [33, 38]. For a normed linear space X, its topological

dual is denoted X∗ while 〈·, ·〉 denotes the bilinear form defining the pairing between the two

spaces. The closed unit ball and the unit sphere in a normed space are denoted B and S,

respectively. Bδ(x) stands for the closed ball with radius δ and center x.

3.2 Uniform regularity of a collection of sets

In this section, we recall the uniform regularity property of a finite collection Ω :=

{Ω1,Ω2, . . . ,Ωm} (m > 1) of sets in a normed linear space X near a given point x̄ ∈ ∩mi=1Ωi.

The property was introduced in [22] (under a different name) and further developed in

[23, 24, 25].
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Definition 5. Ω is uniformly regular at x̄ if there exist numbers δ, α > 0 such that

m⋂
i=1

(Ωi − ωi − ai)
⋂

(ρB) 6= ∅

for any ρ ∈ (0; δ], ωi ∈ Ωi ∩Bδ(x̄) and ai ∈ (αρ)B, i = 1, 2, . . . ,m.

Uniform regularity of a collection of sets can be equivalently characterized in terms of

certain nonnegative constants:

θρ[Ω](x̄) := sup

{
r ≥ 0

∣∣∣∣∣
m⋂
i=1

(Ωi − ai)
⋂
Bρ(x̄) 6= ∅, max

1≤i≤m
‖ai‖ ≤ r

}
, ρ ∈ (0;∞],

θ̂[Ω](x̄) := lim inf
ρ↓0, ωi

Ωi→x̄ (1≤i≤m)

θρ[Ω1 − ω1,Ω2 − ω2, . . . ,Ωm − ωm](0)

ρ
.

Here ωi
Ωi→ x̄ means that ωi → x̄ with ωi ∈ Ωi.

These constants characterize the mutual arrangement of sets Ωi (1 ≤ i ≤ m) in the primal

space and are convenient for defining their extremality, stationarity and regularity properties.

The next proposition follows directly from the definitions.

Proposition 19. Ω is uniformly regular at x̄ if and only if θ̂[Ω](x̄) > 0.

When constant θ̂[Ω](x̄) is positive, it provides a quantitative characterization of the uni-

form regularity property. It coincides with the supremum of all α in Definition 5.

The case θ̂[Ω](x̄) = 0, i.e., the absence of the uniform regularity, corresponds to approx-

imate stationarity [20, 21, 22, 23, 24] of Ω at x̄, the latter property being a relaxation of

the extremality property introduced and investigated in [27]. We refer the reader to [25,

Section 3] for a modern summary of extremality, stationarity, and regularity conditions for

finite collections of sets.

Another nonnegative primal space constant (being a slight modification of the correspond-

ing one introduced in [22]) can be used for characterizing the uniform regularity:

ϑ̂[Ω](x̄) := lim inf
x→x̄, xi→0 (1≤i≤m)

x/∈
m⋂
i=1

(Ωi−xi)

max
1≤i≤m

d(x+ xi,Ωi)

d

(
x,

m⋂
i=1

(Ωi − xi)
) .
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The next proposition corresponds to [22, Theorem 1].

Proposition 20. θ̂[Ω](x̄) = ϑ̂[Ω](x̄).

As a consequence, Ω is uniformly regular at x̄ if and only if ϑ̂[Ω](x̄) > 0.

It was shown in [22, 23, 24] that the uniform regularity of a collection of sets can be

interpreted as the direct analogue of the fundamental in variational analysis metric regularity

property of set-valued mappings.

Regularity properties can also be characterized in terms of elements of the dual space

using appropriate concepts of normal elements. Given a subset Ω of X, a point x̄ in Ω, and

a number δ ≥ 0, the sets (cf. [20, 33])

NΩ(x̄) :=

{
x∗ ∈ X∗ | lim sup

x
Ω→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ 0

}
,

N̂Ω(x̄, δ) :=
⋃

x∈Ω∩Bδ(x̄)

NΩ(x),

NΩ(x̄) := lim sup
x

Ω→x̄

NΩ(x) =
⋂
δ>0

cl∗N̂Ω(x̄, δ)

denote the Fréchet normal cone, the strict δ-normal cone, and the limiting normal cone to

Ω at x̄, respectively. The denotation u
Ω→ x in the above formulas means that u → x with

u ∈ Ω while cl∗ denotes the sequential weak∗ closure in X∗.

In the Asplund space setting, the uniform regularity of a collection of sets can be charac-

terized using the next dual space constant:

η̂[Ω](x̄) := lim
δ↓0

inf

{∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ | x∗i ∈ N̂Ωi(x̄, δ),
m∑
i=1

‖x∗i ‖ = 1

}
, (3.1)

where it is assumed that the infimum over the empty set equals 1; this corresponds to all

cones N̂Ωi(x̄, δ) (1 ≤ i ≤ m) being trivial for some δ > 0 (x̄ can be an interior point of

∩mi=1Ωi.)

The next theorem corresponds to [24, Theorem 4 (v)–(vi)].

Theorem 6. (i) θ̂[Ω](x̄) ≤ η̂[Ω](x̄).

(ii) Suppose X is Asplund and the sets Ωi (1 ≤ i ≤ m) are closed. Then θ̂[Ω](x̄) = η̂[Ω](x̄).
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As a consequence, Ω is uniformly regular at x̄ if and only if η̂[Ω](x̄) > 0, i.e., there

exist α > 0 and δ > 0 such that

∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ ≥ α
m∑
i=1

‖x∗i ‖ (3.2)

for all xi ∈ Ωi ∩Bδ(x̄) and x∗i ∈ NΩi(xi) (1 ≤ i ≤ m).

The dual characterization of the uniform regularity in Theorem 6 (ii) is sometimes referred

to as (Fréchet) normal uniform regularity, cf. [24, 25]. Constant η̂[Ω](x̄) coincides with the

supremum of all α in the definition of this property.

Part (i) of Theorem 6 was proved in [21], while part (ii) was established in [24]. A slightly

weaker estimate can be found in [21, 23].

Remark 23. In finite dimensions, constant (3.1) coincides with the corresponding one defined

in terms of limiting normals:

η̄[Ω](x̄) := min

{∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ | x∗i ∈ NΩi(x̄),

m∑
i=1

‖x∗i ‖ = 1

}

(with the similar natural convention about the minimum over the empty set.) The dual

uniform regularity criterion in Theorem 6 (ii) takes the following “exact” (“at the point”)

form:

there exists α > 0 such that (3.2) holds true for all x∗i ∈ NΩi(x̄) (1 ≤ i ≤ m),

or equivalently,

x∗i ∈ NΩi(x̄) (1 ≤ i ≤ m)

x∗1 + x∗2 + . . .+ x∗n = 0

 =⇒ x∗1 = x∗2 = . . . = x∗n = 0.

This is a well known qualification condition, cf. [33, Corollary 3.37].

Apart from the formulated in Theorem 6 (ii) necessary and sufficient characterization of

the uniform regularity, equality θ̂[Ω](x̄) = η̂[Ω](x̄) implies also an equivalent characterization

of approximate stationarity.
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Corollary 3 (Extended extremal principle [20, 21]). Suppose X is Asplund and the sets Ωi

(1 ≤ i ≤ m) are closed. Ω is approximately stationary at x̄ if and only if η̂[Ω](x̄) = 0, i.e.,

for any ε > 0 there exist xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ NΩi(xi) (1 ≤ i ≤ m) such that

∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ < ε
m∑
i=1

‖x∗i ‖.

This result extends the extremal principle [27, 34] and can be considered as a gener-

alization of the convex separation theorem to collections of nonconvex sets. Some earlier

formulations of Corollary 3 can be found in [18, 19, 17].

Remark 24. Corollary 3 provides also an equivalent characterization of Asplund spaces, cf.

[24, Theorem 5]. Theorem 6 (ii) can be extended from Asplund to arbitrary Banach spaces

if Fréchet normal cones are replaced by some other kind of normal cones satisfying certain

natural properties, e.g., Clarke normal cones, cf. [25].

Remark 25. Theorem 6 can be extended to infinite collections of sets. This allows us to

treat infinite and semi-infinite optimization problems, cf. [25, 26].

Verifying the uniform regularity (and several other properties) of a finite collection of sets

can always be reduced to that of two sets in the product space.

Proposition 21 ([22], Proposition 4). Ω is uniformly regular at x̄ if and only if the collection

of two sets

Ω := Ω1 × Ω2 × . . .× Ωm and L := {(x, x, . . . , x) | x ∈ X} (3.3)

in Xm (with any norm compatible with that in X) is uniformly regular at the point

(x̄, x̄, . . . , x̄).

Note the following simple representations of the Fréchet normal cones to the sets in (3.3).

Proposition 22. (i) Suppose xi ∈ Ωi (1 ≤ i ≤ m). Then

NΩ(z) =
m∏
i=1

NΩi(xi),

where z = (x1, x2, . . . , xm).

98



(ii) Suppose x ∈ X. Then

NL(z) = L⊥ =

{
z∗ = (x∗1, . . . , x

∗
m) ∈ (X∗)m |

m∑
i=1

x∗i = 0

}
,

where z = Ax := (x, x, . . . , x).

Proof. The first assertion follows directly from the definition while proving the second one is

a simple exercise on application of standard tools of convex analysis.

3.3 Uniform regularity in a Hilbert space

In this section, we limit ourselves to the case when X is a Hilbert space. For the collection

of sets Ω = {Ω1,Ω2, . . . ,Ωm} (m > 1), denote

ĉ[Ω](x̄) := 1− 2(η̂[Ω](x̄))2, (3.4)

where η̂[Ω](x̄) is the dual space regularity constant defined by (3.1). By Theorem 6 (ii), the

uniform regularity of Ω at x̄ is equivalent to the inequality ĉ[Ω](x̄) < 1. Note that constant

(3.4) can be negative: ĉ[Ω](x̄) ≥ −1.

Lemma 12. Suppose Ω is uniformly regular at x̄. Then, for any c′ > ĉ[Ω](x̄), there is δ > 0

such that, for any i, j ∈ {1, 2, . . . ,m}, i 6= j, and any u ∈ N̂Ωi(x̄, δ) ∩ S, v ∈ N̂Ωj (x̄, δ) ∩ S, it

holds:

− 〈u, v〉 < c′. (3.5)

Proof. By definition (3.1), for any c′ > ĉ[Ω](x̄)), there is δ > 0 such that

2

∥∥∥∥∥
m∑
k=1

x∗k

∥∥∥∥∥
2

> 1− c′ for all x∗k ∈ N̂Ωk(x̄, δ) with

m∑
k=1

‖x∗k‖ = 1.

Choose any i, j ∈ {1, 2, . . . ,m}, i 6= j, and any u ∈ N̂Ωi(x̄, δ) ∩ S, v ∈ N̂Ωj (x̄, δ) ∩ S. Set

x∗i = u/2, x∗j = v/2, and x∗k = 0 for k ∈ {1, 2, . . . ,m} \ {i, j}. Then x∗k ∈ N̂Ωk(x̄, δ)
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(k ∈ {1, 2, . . . ,m}) and
∑m

k=1 ‖x∗k‖ = 1. It follows that

‖u+ v‖2 = 4

∥∥∥∥∥
m∑
k=1

x∗k

∥∥∥∥∥
2

> 2(1− c′),

or equivalently

2 + 2〈u, v〉 > 2(1− c′).

In its turn, the last inequality is equivalent to (3.5).

In the rest of the section, we assume that m = 2, i.e., Ω = {Ω1,Ω2}. Definition (3.1) of

the constant characterizing the uniform regularity of a collection of sets can be simplified.

Proposition 23. The following representation holds true:

η̂[Ω](x̄) = lim
δ↓0

inf

{
‖x∗1 + x∗2‖ | x∗i ∈ N̂Ωi(x̄, δ), ‖x∗i ‖ =

1

2
(i = 1, 2)

}
, (3.6)

where it is assumed that the infimum over the empty set equals 1.

Proof. If, for some δ > 0, one of the cones N̂Ω1(x̄, δ) or N̂Ω2(x̄, δ) is trivial, then η̂[Ω](x̄) = 1

and the equality is satisfied automatically. Take arbitrary nonzero x∗1 ∈ N̂Ω1(x̄, δ) and x∗2 ∈

N̂Ω2(x̄, δ) such that ‖x∗1‖+ ‖x∗2‖ = 1. Then

(‖x∗1‖ − ‖x∗2‖)2 = ‖x∗1‖2 + ‖x∗2‖2 − 2‖x∗1‖‖x∗2‖,

1 = ‖x∗1‖2 + ‖x∗2‖2 + 2‖x∗1‖‖x∗2‖.

Hence,

‖x∗1‖2 + ‖x∗2‖2 =
1 + (‖x∗1‖ − ‖x∗2‖)2

2
,

‖x∗1‖‖x∗2‖ =
1− (‖x∗1‖ − ‖x∗2‖)2

4
.

Set

z∗1 :=
x∗1

2‖x∗1‖
and z∗2 :=

x∗2
2‖x∗2‖

.
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Then z∗1 ∈ N̂Ω1(x̄, δ), z∗2 ∈ N̂Ω2(x̄, δ), ‖z∗i ‖ = ‖z∗2‖ = 1
2 , and

‖z∗1 + z∗2‖2 =
1

2
+
〈x∗1, x∗2〉

2 ‖x∗1‖ ‖x∗2‖
.

Next we show that

‖x∗1 + x∗2‖ ≥ ‖z∗1 + z∗2‖ .

Indeed,

‖x∗1 + x∗2‖2 − ‖z∗1 + z∗2‖2 = ‖x∗1‖2 + ‖x∗2‖2 + 2〈x∗1, x∗2〉 −
1

2
− 〈x∗1, x∗2〉

2 ‖x∗1‖ ‖x∗2‖

=
1 + (‖x∗1‖ − ‖x∗2‖)2

2
− 1

2
+ 2〈x∗1, x∗2〉 −

〈x∗1, x∗2〉
2 ‖x∗1‖ ‖x∗2‖

=
(‖x∗1‖ − ‖x∗2‖)2

2
+

4 ‖x∗1‖ ‖x∗2‖ − 1

2 ‖x∗1‖ ‖x∗2‖
〈x∗1, x∗2〉

=
(‖x∗1‖ − ‖x∗2‖)2

2
− (‖x∗1‖ − ‖x∗2‖)2

2 ‖x∗1‖ ‖x∗2‖
〈x∗1, x∗2〉

=
(‖x∗1‖ − ‖x∗2‖)2

2

(
1− 〈x∗1, x∗2〉
‖x∗1‖ ‖x∗2‖

)
≥ 0.

This completes the proof.

The following example shows that the conclusion of Proposition 23 is not true in non-

Hilbert spaces.

Example 10. Consider R2 with the sum norm, ‖(x, y)‖ = |x|+ |y|, and take Ω1 = {(x1, x2) |

x2 ≤ 0}, Ω2 = {(x1, x2) | x2 ≥ 2x1} and x̄ = (0, 0) ∈ Ω1 ∩ Ω2. Then, for any δ > 0, we have

N̂Ω1(x̄, δ) = {t(0, 1) | t ∈ R+},

N̂Ω2(x̄, δ) = {t(2,−1) | t ∈ R+}.

Thus,

z∗1 ∈ N̂Ω1(x̄, δ) with ‖z∗1‖ =
1

2
=⇒ z∗1 = (0, 1/2),

z∗2 ∈ N̂Ω2(x̄, δ) with ‖z∗2‖ =
1

2
=⇒ z∗2 = (1/3,−1/6),

and the right-hand side of (3.6) equals ‖z∗1 + z∗2‖ = ‖(1/3, 1/3)‖ = 2/3. At the same time,
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with x∗1 = (0, 1/4) ∈ N̂Ω1(x̄, δ) and x∗2 = (1
2 ,−1/4) ∈ N̂Ω2(x̄, δ) it holds ‖x∗1‖+ ‖x∗2‖ = 1 and

‖x∗1 + x∗2‖ = 1
2 . Hence, η̂[Ω](x̄) ≤ ‖x∗1 + x∗2‖ < 2/3.

The next proposition provides an equivalent representation of constant (3.4).

Proposition 24. The following representation holds true:

ĉ[Ω](x̄) = lim
δ↓0

sup
{
−〈x∗1, x∗2〉 | x∗i ∈ N̂Ωi(x̄, δ), ‖x∗i ‖ = 1 (i = 1, 2)

}
. (3.7)

where it is assumed that the supremum over the empty set equals −1.

Proof. If, for some δ > 0, one of the cones N̂Ω1(x̄, δ) or N̂Ω2(x̄, δ) is trivial, then η̂[Ω](x̄) = 1,

the right-hand side of (3.7) equals −1 and coincides with ĉ[Ω](x̄) computed in accordance

with definition (3.4). Let both cones be nontrivial for any δ > 0. Then, by (3.4), (3.6), and

(3.7),

ĉ[Ω](x̄) = lim
δ↓0

sup

{
1− 2 ‖x∗1 + x∗2‖2 | x∗i ∈ N̂Ωi(x̄, δ), ‖x∗i ‖ =

1

2
(i = 1, 2)

}
= lim

δ↓0
sup

{
−〈2x∗1, 2x∗2〉 | x∗i ∈ N̂Ωi(x̄, δ), ‖x∗i ‖ =

1

2
(i = 1, 2)

}
= ĉ[Ω](x̄).

Another dual space constant can be used alongside (3.6) and (3.7) for characterizing the

uniform regularity of a collection of two sets in a Hilbert space:

ν̂[Ω](x̄) := lim
δ↓0

sup

{
‖x∗1 − x∗2‖ | x∗i ∈ N̂Ωi(x̄, δ), ‖x∗i ‖ =

1

2
(i = 1, 2)

}
, (3.8)

where it is assumed that the supremum over the empty set equals 0; this corresponds to one

of the cones N̂Ω1(x̄, δ) or N̂Ω2(x̄, δ) being trivial for some δ > 0 (x̄ can be an interior point of

either Ω1 or Ω2.)

Remark 26. Unlike constants η̂[Ω](x̄) and ĉ[Ω](x̄), the definition of constant ν̂[Ω](x̄) is

specific for the case of two sets.
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Remark 27. Condition ‖x∗i ‖ = 1
2 , i = 1, 2, in definition (3.8) cannot be replaced by ‖x∗1‖+

‖x∗2‖ = 1 (as in (3.1)): it would always be equal to 1.

Theorem 7. The following relations hold true:

(i) (η̂[Ω](x̄))2 + (ν̂[Ω](x̄))2 = 1;

(ii) 1 + ĉ[Ω](x̄) = 2(ν̂[Ω](x̄))2.

Proof. If, for some δ > 0, one of the cones N̂Ω1(x̄, δ) or N̂Ω2(x̄, δ) is trivial, then η̂[Ω](x̄) = 1,

ν̂[Ω](x̄) = 0, ĉ[Ω](x̄) = −1, and equalities (i) and (ii) are satisfied automatically. Let both

cones be nontrivial for any δ > 0. Fix an arbitrary ε > 0.

(i) By definition (3.8), there exists δ > 0 such that

‖x∗1 − x∗2‖ ≤ ν̂[Ω](x̄) + ε

for any x∗i ∈ N̂Ωi(x̄, δ) with ‖x∗i ‖ = 1
2 (i = 1, 2). At the same time, by (3.6), there are

elements x∗i ∈ N̂Ωi(x̄, δ) with ‖x∗i ‖ = 1
2 (i = 1, 2) such that

‖x∗1 + x∗2‖ ≤ η̂[Ω](x̄) + ε.

Hence,

(η̂[Ω](x̄) + ε)2 + (ν̂[Ω](x̄) + ε)2 ≥ ‖x∗1 − x∗2‖2 + ‖x∗1 + x∗2‖2 = 1.

Since ε is arbitrary, we have

η̂[Ω](x̄)2 + ν̂[Ω](x̄)2 ≥ 1.

Similarly, by (3.6) and (3.8), we find elements x∗i ∈ N̂Ωi(x̄, δ) with ‖x∗i ‖ = 1
2 (i = 1, 2)

such that

‖x∗1 − x∗2‖ ≥ ν̂[Ω](x̄)− ε,

‖x∗1 + x∗2‖ ≥ η̂[Ω](x̄)− ε.

This yields

(ν̂[Ω](x̄)− ε)2 + (η̂[Ω](x̄)− ε)2 ≤ 1,
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and consequently,

η̂[Ω](x̄)2 + ν̂[Ω](x̄)2 ≤ 1.

(ii) follows immediately from (i) and definition (3.4).

Corollary 4. {Ω1,Ω2} is uniformly regular at x̄ ∈ Ω1∩Ω2 if and only if one of the following

equivalent conditions holds true:

(i) η̂[Ω](x̄) > 0;

(ii) ν̂[Ω](x̄) < 1;

(iii) ĉ[Ω](x̄) < 1.

The next example shows that the equality in Theorem 7 (ii) remains true when ĉ[Ω](x̄) ≤

0.

Example 11. In R2 with the Euclidean norm, we fix Ω1 = {(x1, x2) | x2 ≤ 0} and x̄ = (0, 0).

Then, for any δ > 0, N̂Ω1(x̄, δ) = {t(0, 1) | t ≥ 0}. We consider the following two cases of Ω2:

Case 1. Ω2 = {(x1, x2) | x1 ≤ 0}. For any δ > 0, N̂Ω2(x̄, δ) = {t(1, 0) | t ≥ 0}. Then

ĉ[Ω](x̄) = 0 and ν̂[Ω](x̄) =
√

2
2 .

Case 2. Ω2 = {(x1, x2) | x1 + x2 ≤ 0}. For any δ > 0, N̂Ω2(x̄, δ) = {t(1, 1) | t ≥ 0}. Then

ĉ[Ω](x̄) = − 1√
2

and ν̂[Ω](x̄) =

√
2−
√

2
2 .

In both cases the equality in Theorem 7 (ii) holds true.

Remark 28. In finite dimensions, constants (3.6)–(3.7) coincide with the corresponding ones

defined in terms of limiting normals:

η̄[Ω](x̄) := min

{
‖x∗1 + x∗2‖ | x∗i ∈ NΩi(x̄), ‖x∗i ‖ =

1

2
(i = 1, 2)

}
,

ν̄[Ω](x̄) := max

{
‖x∗1 − x∗2‖ | x∗i ∈ NΩi(x̄), ‖x∗i ‖ =

1

2
(i = 1, 2)

}
, (3.9)

c̄[Ω](x̄) := max
{
−〈x∗1, x∗2〉 | x∗i ∈ NΩi(x̄), ‖x∗i ‖ = 1 (i = 1, 2)

}
(3.10)

(with the similar natural conventions about the minimum and maximum over the empty set.)

The relations amongst the above constants are consequences of those in Theorem 7:

(i) (η̄[Ω](x̄))2 + (ν̄[Ω](x̄))2 = 1;
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(ii) 1 + c̄[Ω](x̄) = 2(ν̄[Ω](x̄))2;

(iii) 1− c̄[Ω](x̄) = 2(η̄[Ω](x̄))2.

Remark 29. Constant (3.10) is closely related with the one introduced in [29]:

c̄ := max
{
−〈x∗1, x∗2〉 | x∗i ∈ NΩi(x̄) ∩ B (i = 1, 2)

}
.

Indeed, c̄ = (c̄[Ω](x̄))+, where (α)+ := max{α, 0}.

Given a collection of m sets Ω = {Ω1,Ω2, . . . ,Ωm} in a finite dimensional Hilbert space

X and a point x̄ ∈ ∩mi=1Ωi, one can consider the Hilbert space Xm with the norm

‖(x1, x2, . . . , xn)‖ =

(
m∑
i=1

‖xi‖2
) 1

2

and compute constants (3.6), (3.7), and (3.8) corresponding to the collection Ω′ := {Ω, L}

and the point z̄ := Ax̄ = (x̄, x̄, . . . , x̄) ∈ Ω ∩ L, where Ω and L are defined by (3.3).

Proposition 25. The following representations hold true:

η̂[Ω′](z̄) = lim
δ↓0

inf

{(
1

2
− 1

2

(
1− 1

m
‖x∗1 + . . .+ x∗m‖2

) 1
2

) 1
2

|

x∗i ∈ N̂Ωi(x̄, δ) (1 ≤ i ≤ m),

m∑
i=1

‖x∗i ‖2 = 1

}
, (3.11)

ν̂[Ω′](z̄) = lim
δ↓0

sup

{(
1

2
+

1

2

(
1− 1

m
‖x∗1 + . . .+ x∗m‖2

) 1
2

) 1
2

|

x∗i ∈ N̂Ωi(x̄, δ) (1 ≤ i ≤ m),
m∑
i=1

‖x∗i ‖2 = 1

}
, (3.12)

ĉ[Ω′](z̄) = lim
δ↓0

sup

{(
1− 1

m
‖x∗1 + . . .+ x∗m‖2

) 1
2

|

x∗i ∈ N̂Ωi(x̄, δ) (1 ≤ i ≤ m),

m∑
i=1

‖x∗i ‖2 = 1

}
. (3.13)
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Proof. If z1 = (x1, x2, . . . , xn), z2 = (u1, u2, . . . , un) ∈ Xm, then

‖z1 + z2‖2 =

m∑
i=1

‖xi‖2 +

m∑
i=1

‖ui‖2 + 2

m∑
i=1

〈xi, ui〉.

By the structure of Ω′ and (3.6), we have

η̂[Ω′](z̄) = lim
δ↓0

inf

{(
1

2
+ 2

m∑
i=1

〈x∗i , ui〉
) 1

2

|
m∑
i=1

‖x∗i ‖2 =
m∑
i=1

‖ui‖2 =
1

4
,

x∗i ∈ N̂Ωi(x̄, δ),
m∑
i=1

ui = 0 (1 ≤ i ≤ m)

}

= lim
δ↓0

inf

{(
1

2
+

1

2

m∑
i=1

〈x∗i , ui〉
) 1

2

|
m∑
i=1

‖x∗i ‖2 =
m∑
i=1

‖ui‖2 = 1,

x∗i ∈ N̂Ωi(x̄, δ),

m∑
i=1

ui = 0 (1 ≤ i ≤ m)

}
. (3.14)

Fix any x∗i ∈ N̂Ωi(x̄, δ) (1 ≤ i ≤ m) with
∑m

i=1 ‖x∗i ‖2 = 1 and denote

x∗0 :=
1

m

m∑
i=1

x∗i . (3.15)

Consider the following minimization problem in Xm which is an important component of

(3.14):

minimize f(u) :=
m∑
i=1

〈x∗i , ui〉

subject to
m∑
i=1

ui = 0 and
m∑
i=1

‖ui‖2 = 1.

Since f is continuous and the constraint set is compact, the above problem has a solution

u◦ = (u◦1, u
◦
2, . . . , u

◦
m). In accordance with the Lagrange multiplier rule, there exist multiplies

λ0, λ1 ∈ R and u∗ ∈ X, not all zero, such that

λ0x
∗
i + 2λ1u

◦
i + u∗ = 0 (1 ≤ i ≤ m). (3.16)
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Adding the equalities together and taking into account that
∑m

i=1 u
◦
i = 0, we obtain

λ0

m∑
i=1

x∗i +mu∗ = 0. (3.17)

If λ0 = 0, then u∗ = 0 and consequently λ1 6= 0 and, by (3.16), u◦i = 0 for all i ∈ {1, 2, . . . ,m},

which is impossible thanks to
∑m

i=1 ‖u◦i ‖2 = 1. Hence, λ0 6= 0 and we can take λ0 = 1. It

follows from (3.16), (3.17), and (3.15) that

x∗i + 2λ1u
◦
i = x∗0 (1 ≤ i ≤ m), (3.18)

and consequently

4λ2
1 =

m∑
i=1

‖x∗0 − x∗i ‖2 = m‖x∗0‖2 +

m∑
i=1

‖x∗i ‖2 − 2

〈
m∑
i=1

x∗i , x
∗
0

〉

=

m∑
i=1

‖x∗i ‖2 −m‖x∗0‖2. (3.19)

At the same time,

2λ1f(u◦) =

m∑
i=1

〈x∗i , 2λ1u
◦
i 〉 =

m∑
i=1

〈x∗i , x∗0 − x∗i 〉

=

(〈
m∑
i=1

x∗i , x
∗
0

〉
−

m∑
i=1

‖x∗i ‖2
)

=

(
m‖x∗0‖2 −

m∑
i=1

‖x∗i ‖2
)

= −4λ2
1.

This yields either f(u◦) = −2λ1 or λ1 = 0. In the last case, by (3.18), x∗i = x∗0 for all

i ∈ {1, 2, . . . ,m}, and consequently

f(u◦) =
m∑
i=1

〈x∗0, u◦i 〉 =

〈
x∗0,

m∑
i=1

u◦i

〉
= 0.

Hence, in both cases, f(u◦) = −2λ1. Since u◦ is a point of minimum, λ1 must be nonnegative,
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and consequently, by (3.19),

f(u◦) = −
(

m∑
i=1

‖x∗i ‖2 −m‖x∗0‖2
) 1

2

= −
(
1−m‖x∗0‖2

) 1
2 .

Combining this with (3.14), we get (3.11).

(3.12) and (3.13) follow from (3.11) thanks to Theorem 7.

Corollary 5. The following estimates hold true:

0 ≤ η̂[Ω′](z̄) ≤
(

1

2
− 1

2

√
1− 1

m

) 1
2

;

(
1

2
+

1

2

√
1− 1

m

) 1
2

≤ ν̂[Ω′](z̄) ≤ 1;√
1− 1

m
≤ ĉ[Ω′](z̄) ≤ 1.

Proof. The estimates follow from Proposition 25 due to the fact that

min{‖x1 + x2 + . . .+ xm‖ | ‖x1‖2 + ‖x2‖2 + . . .+ ‖xm‖2 = 1} ≤ 1.

Dual space constants (3.11), (3.12), and (3.13) can be used to characterize the uniform

regularity of collections of m sets.

The next corollary follows from Proposition 21 and Corollary 4.

Corollary 6. Ω is uniformly regular at x̄ ∈ ∩mi=1Ωi if and only if one of the following

equivalent conditions holds true:

(i) η̂[Ω′](z̄) > 0;

(ii) ν̂[Ω′](z̄) < 1;

(iii) ĉ[Ω′](z̄) < 1.

Observe that, when m = 2, constants (3.11), (3.12), and (3.13) do not coincide with the

corresponding constants (3.6), (3.8), and (3.7) .
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Corollary 7. When m = 2, the following relations hold true:

η̂[Ω′](z̄) = lim
δ↓0

inf

{(
1− ‖x∗1 − x∗2‖

2

) 1
2

| x∗i ∈ N̂Ωi(x̄, δ) (i = 1, 2),

‖x∗1‖2 + ‖x∗2‖2 =
1

2

}
,

ν̂[Ω′](z̄) = lim
δ↓0

sup

{(
1 + ‖x∗1 − x∗2‖

2

) 1
2

| x∗i ∈ N̂Ωi(x̄, δ) (i = 1, 2),

‖x∗1‖2 + ‖x∗2‖2 =
1

2

}
,

ĉ[Ω′](z̄) = lim
δ↓0

sup

{
‖x∗1 − x∗2‖ | x∗i ∈ N̂Ωi(x̄, δ) (i = 1, 2),

‖x∗1‖2 + ‖x∗2‖2 =
1

2

}
. (3.20)

Proof. From Proposition 25, we have

ĉ[Ω′](z̄) = lim
δ↓0

sup

{(
1− 1

2
‖x∗1 + x∗2‖2

)1/2

| x∗i ∈ N̂Ωi(x̄, δ) (i = 1, 2),

‖x∗1‖2 + ‖x∗2‖2 = 1

}
.

In the above formula,

1− 1

2
‖x∗1 + x∗2‖2 =

1

2
(2− ‖x∗1 + x∗2‖2)

=
1

2

(
2(‖x∗1‖2 + ‖x∗2‖2)− (‖x∗1‖2 + ‖x∗2‖2 + 2〈x∗1, x∗2〉)

)
=

1

2
(‖x∗1‖2 + ‖x∗2‖2 − 2〈x∗1, x∗2〉)

=
1

2
‖x∗1 − x∗2‖2 =

∥∥∥∥ x∗1√2
− x∗2√

2

∥∥∥∥2

and

∥∥∥∥ x∗1√2

∥∥∥∥2

+

∥∥∥∥ x∗2√2

∥∥∥∥2

=
1

2
.

This proves (3.20), which also implies the other relations.

The next relation between ĉ[Ω′](z̄) and ν̂[Ω](x̄) can be of interest.
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Proposition 26. When m = 2, it holds:

ĉ[Ω′](z̄) ≥ ν̂[Ω](x̄). (3.21)

Furthermore, (3.21) holds as an equality whenever ν̂[Ω](x̄) > 1/
√

2.

Proof. In view of (3.20) and (3.8), inequality (3.21) is always true.

We prove the second assertion. Suppose ν̂[Ω](x̄) > 1/
√

2. By (3.8), for any δ > 0, one

can find x∗i ∈ N̂Ωi(x̄, δ) with ‖x∗i ‖ = 1
2 (i = 1, 2) such that ‖x∗1 − x∗2‖ > 1/

√
2.

Observe that, for any x∗1 and x∗2 with ‖x∗1‖2 + ‖x∗2‖2 = 1
2 , it holds

‖x∗1 − x∗2‖2 =
1

2
− 2〈x∗1, x∗2〉.

Hence, maximizing ‖x∗1 − x∗2‖ is equivalent to minimizing 〈x∗1, x∗2〉, and condition ‖x∗1−x∗2‖ >

1/
√

2 is equivalent to 〈x∗1, x∗2〉 < 0. Under the assumptions made,

sup
{
‖x∗1 − x∗2‖ | x∗i ∈ N̂Ωi(x̄, δ) (i = 1, 2), ‖x∗1‖2 + ‖x∗2‖2 =

1

2

}
= sup

{
‖x∗1 − x∗2‖ | x∗i ∈ N̂Ωi(x̄, δ) (i = 1, 2), ‖x∗1‖2 + ‖x∗2‖2 =

1

2
, 〈x∗1, x∗2〉 < 0

}
= sup

{
‖x∗1 − x∗2‖ | x∗i ∈ N̂Ωi(x̄, δ), ‖x∗i ‖ =

1

2
(i = 1, 2), 〈x∗1, x∗2〉 < 0

}
,

and it follows from (3.20) that ĉ[Ω′](z̄) = ν̂[Ω](x̄).

3.4 Applications in projection algorithms

Inspired by [29], we are making an attempt to extend convergence results of the alternating

projections for solving feasibility problems to those of the cyclic projection algorithms in

Hilbert spaces. Recall that a feasibility problem consists in finding common points of a

collection of sets with nonempty intersection. This model incorporates many important

optimization problems.

We first recall some basic facts about projections. Given a nonempty set Ω in a normed

linear space X, the distance function and projection mapping are defined, for x ∈ X, respec-
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tively, as follows:

d(x,Ω) := inf
ω∈Ω
‖x− ω‖ ,

PΩ(x) := {ω ∈ Ω | ‖x− ω‖ = d(x,Ω)} .

Lemma 13 ([11]). ω ∈ PΩ(x) =⇒ x− ω ∈ NΩ(ω).

From now on, we are considering a finite collection of closed sets Ω = {Ω1,Ω2, . . . ,Ωm}

(m > 1) and assuming the existence of a point x̄ ∈ ∩mi=1Ωi.

Definition 6. A sequence (xk) is generated by

(i) the averaged projections for Ω if

xk+1 ∈
1

m

m∑
i=1

PΩi(xk), k = 0, 1, . . . ; (3.22)

(ii) the cyclic projections for Ω if

xk+1 ∈ PΩk+1
(xk), k = 0, 1, . . . , (3.23)

with the convention Ωi+nm = Ωi for all i = 1, . . . ,m and n ∈ N.

Note that the existence of the sequences in Definition 6 cannot be guaranteed in general,

unless the space is finite dimensional.

From now on, we are assuming that X is a Hilbert space. The next regularity property

is needed in our analysis.

Definition 7 ([29], Definition 4.3). A closed set Ω is super-regular at x̄ ∈ Ω if, for any γ > 0,

any two points x, z sufficiently close to x̄ with z ∈ Ω, and any point y ∈ PΩ(x), it holds

〈z − y, x− y〉 ≤ γ‖z − y‖ · ‖x− y‖.

Lemma 14 ([29], Proposition 4.4). A closed set Ω is super-regular at x̄ ∈ Ω if and only if

for any γ > 0, there is δ > 0 such that

〈u, z − x〉 ≤ γ‖u‖ · ‖z − x‖, ∀z, x ∈ Ω ∩Bδ(x̄), u ∈ NΩ(x).
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Remark 30. Similar to the well known prox-regularity property (the projection mapping

associated with the set being single-valued around the reference point; cf. [7, 12, 37, 39]),

the super-regularity one in Definition 7 is a way of describing sets being locally “almost”

convex. It is weaker than the prox-regularity while stronger than the Clarke regularity and

fits well the convergence analysis of projections algorithms. For a detailed discussion and

characterizations of this property we refer the reader to [29].

Theorem 8. Suppose Ω is uniformly regular at x̄ with

ĉ[Ω](x̄) <
1

m− 1
(3.24)

and Ω1 is super-regular at x̄. Then, for any c ∈ ((m−1)ĉ[Ω](x̄), 1), a sequence (xk) generated

by cyclic projections for Ω linearly converges to some point in ∩mi=1Ωi with rate m
√
c, provided

that

‖xk+2 − xk+1‖ ≤ ‖xk+1 − xk‖ (k = 1, 2, . . . , ) (3.25)

and x0 is sufficiently close to x̄.

Proof. Let c ∈ ((m−1)ĉ[Ω](x̄), 1). Choose c′ > ĉ[Ω](x̄) and γ > 0 such that (m−1)c′+mγ < c

and δ > 0 such that the conclusions of Lemmas 12 and 14 (with Ω = Ω1) are satisfied.

Let x0 ∈ X be such that

‖x0 − x̄‖ <
δ(1− c)
2(m+ 1)

.

Then

α := ‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ ≤ 2‖x0 − x̄‖ <
δ(1− c)
m+ 1

(3.26)

and, by (3.25),

‖xi − x̄‖ ≤ ‖xi − xi−1‖+ . . .+ ‖x1 − x̄‖

≤ (i− 1)‖x2 − x1‖+ ‖x1 − x̄‖ ≤ i‖x1 − x̄‖

= iα ≤ (m+ 1)α (i = 2, . . . ,m+ 1). (3.27)
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We are going to prove by induction that, for all k = 0, 1, . . .,

‖xkm+i − x̄‖ ≤ (m+ 1)α
1− ck+1

1− c (i = 2, . . . ,m+ 1). (3.28)

When k = 0, the required inequalities have been established in (3.27). Supposing that the

inequalities are true for all k = 0, . . . , l where l ≥ 0, we show that they hold true for k = l+1.

We first prove that

‖x(k+1)m+1 − x(k+1)m‖ ≤ c‖xkm+2 − xkm+1‖ (k = 0, . . . , l). (3.29)

Indeed, if x(k+1)m+1 = x(k+1)m, the inequality is trivially satisfied. If xkm+2 = xkm+1, then,

by condition (3.25), x(k+1)m+1 = x(k+1)m, and the inequality is satisfied too. Otherwise, by

(3.26) and (3.28), ‖xkm+i − x̄‖ < δ (i = 2, . . . ,m + 1) and we have by Lemmas 12 and 13,

condition (3.25) and definition of projections:

〈x(k+1)m − x(k+1)m+1, xkm+i+1 − xkm+i〉

< c′‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+i+1 − xkm+i‖

≤ c′‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖ (i = 1, . . . ,m− 1).

Adding the above inequalities, we obtain

〈x(k+1)m − x(k+1)m+1, x(k+1)m − xkm+1〉

< (m− 1)c′‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖. (3.30)

At the same time, by Lemma 14, the triangle inequality and condition (3.25),

〈x(k+1)m − x(k+1)m+1,xkm+1 − x(k+1)m+1〉

≤ γ‖x(k+1)m − x(k+1)m+1‖ · ‖x(k+1)m+1 − xkm+1‖,

‖x(k+1)m+1 − xkm+1‖ ≤
m∑
i=1

‖xkm+i+1 − xkm+i‖ ≤ m‖xkm+2 − xkm+1‖,
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and consequently,

〈x(k+1)m − x(k+1)m+1, xkm+1 − x(k+1)m+1〉

≤ mγ‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖. (3.31)

Adding (3.30) and (3.31), we get

‖x(k+1)m − x(k+1)m+1‖2 < c‖x(k+1)m − x(k+1)m+1‖ · ‖xkm+2 − xkm+1‖,

or equivalently

‖x(k+1)m+1 − x(k+1)m‖ < c‖xkm+2 − xkm+1‖.

This proves (3.29).

Now with k = l + 1 and taking into account (3.29), we have for i = 2, . . . ,m+ 1:

‖x(l+1)m+i − x̄‖ ≤ ‖x(l+1)m+i − x(l+1)m+i−1‖+ . . .+ ‖x(l+1)m − x̄‖

≤ i‖x(l+1)m+1 − x(l+1)m‖+ ‖x(l+1)m − x̄‖

≤ icl+1‖x2 − x1‖+ ‖xlm+m − x̄‖

≤ (m+ 1)αcl+1 + (m+ 1)α
1− cl+1

1− c = (m+ 1)α
1− cl+2

1− c .

Finally we prove that (xn) converges to some point x̃ in ∩mi=1Ωi with rate m
√
c. Take any

k, r ∈ N with k > r and choose n ∈ N and i ∈ {0, 1, . . . ,m − 1} such that r = nm + i. We

have

‖xk − xr‖ ≤
k−1∑
j=r

‖xj+1 − xj‖ ≤
∞∑

j=nm

‖xj+1 − xj‖

≤
∞∑
j=n

m−1∑
i=0

‖xmj+i+1 − xmj+i‖ ≤ m
∞∑
j=n

‖xmj+1 − xmj‖

≤ m‖x2 − x1‖
∞∑
j=n

cj ≤ mαcn

1− c . (3.32)

Hence, ‖xk−xr‖ → 0 as k, r →∞, and consequently (xn) is a Cauchy sequence and, therefore,

114



converges to some point x̃ ∈ X. It follows from (3.32) that

‖x̃− xr‖ ≤
mαcn

1− c =
mα

(1− c)c im
c
r
m ≤ mα

(1− c)c( m
√
c)r.

Finally, we check that x̃ ∈ ∩mi=1Ωi. Indeed, for any i ∈ {1, 2, . . . ,m}, xnm+i ∈ Ωi. At the

same time, xnm+i → x̃ as n→∞, and consequently, by the closedness of Ωi, x̃ ∈ Ωi.

Remark 31. When m = 2, conditions (3.25) and (3.24) are satisfied automatically.

The convergence result of the alternating projection method, i.e., the cyclic projection

method (3.23) when m = 2, established in [29, Theorem 5.16] is a consequence of Theorem 8.

Corollary 8. Suppose that Ω is uniformly regular at x̄ ∈ Ω1 ∩ Ω2 and Ω1 is super-regular

at this point. Then, any sequence generated by the alternating projections for Ω linearly

converges to some point in the intersection provided that x0 is sufficiently close to x̄.

Now, we derive from Corollary 8 another convergence result of the averaged projection

algorithm for a collection of m sets. Given a collection of sets Ω = {Ω1,Ω2, . . . ,Ωm} in X,

we consider the collection Ω′ := {Ω, L} of two sets in Xm given by (3.3). For x ∈ X, denote

Ax := (x, x, . . . , x) ∈ L.

Lemma 15. (i) For any x ∈ X,

PΩ(Ax) = (PΩ1(x), PΩ2(x), . . . , PΩm(x)) .

(ii) For any (x1, x2, . . . , xm) ∈ Xm,

PL(x1, x2, . . . , xm) = A

(
x1 + x2 + . . .+ xm

m

)
.

Proof. The first assertion is straightforward (cf. [11, Exercise 1.8]). To prove the second one,

we consider the real-valued function f : X → R defined by

f(x) :=

m∑
i=1

‖x− xi‖2 .
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It is obvious that Ax ∈ PL(x1, x2, . . . , xm) if and only if x is a minimizer of f . The conclusion

follows from the first order optimality condition.

Corollary 9 ([29], Theorem 7.3). Suppose that Ω is uniformly regular at x̄ ∈ ∩mi=1Ωi. Then

any sequence (yk) generated by algorithm (3.22) linearly converges to some point in ∩mi=1Ωi

provided that the initial point y0 is sufficiently close to x̄.

Proof. Let (zn) be the sequence generated by the alternating projections for the two sets Ω

and L with the initial point z1 := Ay1. By Lemma 15, z2k = Ayk, k = 1, 2, . . ., for some

sequence (yn) ⊂ X. At the same time, {Ω, L} is uniformly regular at Ax̄ by Proposition

21. Therefore, when y0 is sufficiently close to x̄, Corollary 8 implies that the sequence (zn)

linearly converges to some point Ax̃ ∈ Ω1 ∩ Ω2. It follows that the subsequence (z2k = Ayk)

also linearly converges to Ax̃. Hence, (yk) linearly converges to x̃ ∈ ∩mi=1Ωi.
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[25] A. Y. Kruger, M. A. López, Stationarity and regularity of infinite collections of sets. J.

Optim. Theory Appl. 154 (2) (2012) 339–369.
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Chapter 4

Regularity of collections of sets and

convergence of inexact alternating

projections

We study the usage of regularity properties of collections of sets in convergence analysis

of alternating projection methods for solving feasibility problems. Several equivalent charac-

terizations of these properties are provided. Two settings of inexact alternating projections

are considered and the corresponding convergence estimates are established and discussed.

4.1 Introduction

In this chapter we study the usage of regularity properties of collections of sets in conver-

gence analysis of alternating projection methods for solving feasibility problems, i.e., finding

a point in the intersection of several sets.

Given a set A and a point x in a metric space, the (metric) projection of x on A is defined

as follows:

PA(x) := {a ∈ A | d(x, a) = d(x,A)} ,

where d(x,A) := infa∈A d(x, a) is the distance from x to A. If A is a closed subset of a finite

dimensional space, then PA(x) 6= ∅. If A is a closed convex subset of a Euclidean space, then
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PA(x) is a singleton.

Given a collection {A,B} of two subsets of a metric space, we can talk about alternating

projections.

Definition 8 (Alternating projections). {xn} is a sequence of alternating projections for

{A,B} if

x2n+1 ∈ PB(x2n) and x2n+2 ∈ PA(x2n+1) (n = 0, 1, . . .).

Investigations of convergence of the alternating projections to a point in the intersection of

closed sets in the setting of a Hilbert space, or more often a finite dimensional Euclidean space,

have long history which can be traced back to von Neumann; see the historical comments in

[10, 19, 22]. In the convex case, the key convergence estimates were established by Bregman

[6] and Bauschke & Borwein [3]. In the nonconvex case, in the finite dimensional setting,

linear convergence of the method was shown by Lewis et al. [19, Theorem 5.16] under the

assumptions of the uniform regularity of the collection {A,B} and super-regularity of one of

the sets; see the definitions and characterizations of these properties in Section 4.2.

Throughout this chapter, we assume that A and B are closed.

Theorem 9 (Linear convergence of alternating projections). Let X be a finite dimensional

Euclidean space. Suppose that

(i) {A,B} is uniformly regular at x̄ ∈ A ∩B, i.e.,

c̄ := sup
{
−〈u, v〉 | u ∈ NA(x̄) ∩ B, v ∈ NB(x̄) ∩ B

}
< 1; (4.1)

(ii) A is super-regular at x̄.

Then, for any c ∈ (c̄, 1), a sequence of alternating projections for {A,B} with initial point

sufficiently close to x̄ converges to a point in A ∩B with R−linear rate
√
c.

NA(x̄) and NB(x̄) in (4.1) stand for the limiting normal cones to the corresponding sets

at x̄; see definition (4.12) below.

Observe that −〈u, v〉 in (4.1) can be interpreted as the cosine of the angle between the

cones NA(x̄) and −NB(x̄).
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The role of the regularity (transversality-like) property (i) of {A,B} and convexity-like

property (ii) of A in the convergence proof is analysed in Drusvyatskiy et al. [10] and Noll &

Rondepierre [22]. It has well been recognized that the uniform regularity assumption is far

from being necessary for the linear convergence of alternating projections. For example, as

observed in [10], it fails when the affine span of A ∪B is not equal to the whole space.

The drawback of the uniform regularity property as defined by (4.1) from the point of

view of the alternating projections is the fact that it takes into account all (limiting) normals

to each of the sets while in many situations (like the one in the above example) some normals

are irrelevant to the idea of projections.

Recently, there have been several successful attempts to relax the discussed above uniform

regularity property by restricting the set of involved (normal) directions to only those relevant

for characterizing alternating projections. All the newly introduced regularity properties still

possess some uniformity in the sense that they take into account directions originated from

points in a neighbourhood of the reference point and some estimate is required to hold

uniformly over all such directions.

Bauschke et al. [5, 4] suggested restricting the set of normals participating in (4.1)

by replacing NA(x̄) and NB(x̄) with restricted limiting normal cones N
B
A(x̄) and N

A
B(x̄)

depending on both sets and attuned to the method of alternating projections. For example,

the cone N
B
A(x̄) consists of limits of sequences of the type tk(bk−ak) where tk > 0, bk ∈ B, ak

is a projection of bk on A, and ak → x̄; cf. definitions (4.17) and (4.18). Bauschke et al. also

adjusted (weakened) the notion of super-regularity accordingly (by considering joint super-

restricted regularity taking into account the other set) and, under these weaker assumptions,

arrived at the same conclusion as in Theorem 9; cf. [5, Theorem 3.14] and Theorem 10 below.

The idea of Bauschke et al. has been further refined by Drusvyatskiy et al. [10, Defini-

tion 4.4] who observed that it is sufficient to consider only sequences tk(bk − ak) as above

with bk → x̄; cf. Definition 13 below. In this case, ak → x̄ automatically.

In [10], the authors suggested also another way of weakening the uniform regularity con-

dition (4.1). Instead of measuring the angles between (usual or restricted in some sense)

normals (and negative normals) to the sets, they measure the angles between vectors of the

type a − b with a ∈ A and b ∈ B and each of the cones Nprox
B (b) and −Nprox

A (a). At least
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one of the angles must be sufficiently large when a and b are sufficiently close to x̄; cf. [10,

Definition 2.2]. Assuming this property and using a different technique, Drusvyatskiy et al.

produced a significant advancement in convergence analysis of projection algorithms by estab-

lishing (see [10, Corollary 4.2]) R−linear convergence of alternating projections without the

assumption of super-regularity of one of the sets (and with a slightly different convergence

estimate). The idea is closely related to the more general approach, where the feasibility

problem is reformulated as a problem of minimizing a coupling function, and the property

introduced in [10] is sufficient for the coupling function to satisfy the Kurdyka- Lojasiewicz

inequality [1, Proposition 4.1].

The two relaxed regularity properties introduced in [10] are in general independent; cf.

Examples 12 and 13.

The next step has been made by Noll and Rondepierre [22, Definition 1]. They noticed

that, when dealing with alternating projections, the main building block of the method

consists of two successive projections:

a1 ∈ A, b ∈ PB(a1) and a2 ∈ PA(b) (4.2)

and it is sufficient to consider only the (proximal) normal directions determined by a1 − b

and b− a2 for all a1, b, a2 in a neighbourhood of the reference point satisfying (4.2). In fact,

in [22], a more general setting is studied which allows for nonlinear convergence estimates

under more subtle nonlinear regularity assumptions.

Another important advancement in this area is considering in [19] of inexact alternating

projections. Arguing that finding an exact projection of a point on a closed set is in general

a difficult problem by itself, Lewis et al. relaxed the requirements to the sequence {xn} in

Definition 8 by allowing the points belonging to one of the sets to be “almost” projections.

Assuming that the other set is super-regular at the reference point, they established in [19,

Theorem 6.1] an inexact version of Theorem 9.

In the next section, we discuss and compare the uniform regularity property of collections

of sets and its relaxations mentioned above. Several equivalent characterizations of these

properties are provided in a uniform way simplifying the comparison.

The terminology employed in [4, 5, 10, 19, 22] for various regularity properties is not
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always consistent. We have not found a better way of handling the situation, but to use

the terms BLPW-restricted regularity, DIL-restricted regularity, and NR-restricted regularity

for the properties introduced in Bauschke, Luke, Phan, and Wang [4, 5], Drusvyatskiy, Ioffe

and Lewis [10], and Noll and Rondepierre [22], respectively. The refined version of BLPW-

restricted regularity due to Drusvyatskiy et al. [10] is referred to in this chapter as BLPW-

DIL-restricted regularity.

In Section 4.3, we study two settings of inexact alternating projections under the as-

sumptions of DIL-restricted regularity and uniform regularity, respectively, and establish and

discuss the corresponding convergence estimates.

Our basic notation is standard; cf. [9, 21, 24]. For a normed linear space X, its topological

dual is denoted X∗ while 〈·, ·〉 denotes the bilinear form defining the pairing between the two

spaces. If X is a Hilbert space, X∗ is identified with X while 〈·, ·〉 denotes the scalar product.

If dimX <∞, then X is usually assumed equipped with the Euclidean norm. The open and

closed unit balls and the unit sphere in a normed space are denoted B, B and S, respectively.

Bδ(x) stands for the open ball with radius δ > 0 and center x. We use the convention

B0(x) = {x}.

4.2 Uniform regularity and related regularity properties

In this section, we discuss and compare the uniform regularity property of collections of

sets and its several relaxations which are used in convergence analysis of projection methods.

4.2.1 Uniform regularity

The uniform regularity property has been studied in [14, 15, 16, 17, 18]. Below we consider

the case of a collection {A,B} of two nonempty closed subsets of a normed linear space.

Definition 9. Suppose X is a normed linear space. The collection {A,B} is uniformly

regular at x̄ ∈ A ∩B if there exist positive numbers α and δ such that

(A− a− x)
⋂

(B − b− y)
⋂

(ρB) 6= ∅

for all ρ ∈ (0, δ), a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), and x, y ∈ (αρ)B.
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The supremum of all α in Definition 9 is denoted θ̂[A,B](x̄) and provides a quantitative

characterization of the uniformly regularity property, the latter one being equivalent to the

inequality θ̂[A,B](x̄) > 0. It is easy to check from the definition that

θ̂[A,B](x̄) = lim inf
a
A→x̄,bB→x̄,ρ↓0

θρ[A− a,B − b](0)

ρ
, (4.3)

where

θρ[A,B](x̄) := sup
{
r ≥ 0 | (A− x)

⋂
(B − y)

⋂
Bρ(x̄) 6= ∅, ∀x, y ∈ rB

}

and a
A→ x̄ means that a→ x̄ with a ∈ A.

The next proposition contains several characterizations of the uniform regularity property

from [14, 15, 16, 17, 18]. In its parts (ii) and (iii), NA(a) stands for the Fréchet normal cone

to A at a ∈ A:

NA(a) :=

{
u ∈ X∗ | lim sup

x
A→a

〈u, x− a〉
‖x− a‖ ≤ 0

}
. (4.4)

Proposition 27. Let A and B be closed subsets of X.

(i) Suppose X is a normed linear space.

Metric characterization:

θ̂[A,B](x̄) = lim inf
z→x̄;x,y→0

z /∈(A−x)∩(B−y)

max {d(z,A− x), d(z,B − y)}
d (z, (A− x)

⋂
(B − y))

. (4.5)

{A,B} is uniformly regular at x̄ if and only if there exist positive numbers α and δ such

that

αd
(
z, (A− x)

⋂
(B − y)

)
≤ max {d(z,A− x), d(z,B − y)} (4.6)

for all z ∈ Bδ(x̄) and x, y ∈ δB.

(ii) Suppose X is an Asplund space.
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Dual characterization.

θ̂[A,B](x̄) = lim
ρ↓0

inf
{
‖u+ v‖ | u ∈ NA(a), v ∈ NB(b),

a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄), ‖u‖+ ‖v‖ = 1
}
. (4.7)

{A,B} is uniformly regular at x̄ if and only if there exist positive numbers α and δ such

that

α (‖u‖+ ‖v‖) ≤ ‖u+ v‖ (4.8)

for all a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), u ∈ NA(a), and v ∈ NB(b).

(iii) Suppose X is a Hilbert space.

Angle characterization. If either x̄ ∈ bdA ∩ bdB or x̄ ∈ int(A ∩B), then

θ̂2[A,B](x̄) =
1

2
(1− ĉ[A,B](x̄)) , (4.9)

where

ĉ[A,B](x̄) := lim
ρ↓0

sup
{
− 〈u, v〉 | u ∈ NA(a) ∩ S, v ∈ NB(b) ∩ S,

a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄)
}
. (4.10)

Otherwise, θ̂[A,B](x̄) = 1 and ĉ[A,B](x̄) = −∞.

{A,B} is uniformly regular at x̄ if and only if ĉ[A,B](x̄) < 1, i.e., there exist numbers

α < 1 and δ > 0 such that

− 〈u, v〉 < α (4.11)

for all a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), u ∈ NA(a) ∩ S, and v ∈ NB(b) ∩ S.

Remark 32. 1. Regularity criteria (4.6) and (4.8) are formulated in terms of distances in the

primal space and in terms of Fréchet normals, respectively. This explains why we talk about,

respectively, the metric and the dual characterizations in parts (i) and (ii) of Proposition 27.

The term “angle characterization” in part (iii) comes from the observation that −〈u, v〉 in

criterion (4.11) can be interpreted as the cosine of the angle between the unit vectors u and
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−v.

2. Constant (4.3) is nonnegative while constant (4.10) can take negative values. It is

easy to see from (4.5) that θ̂[A,B](x̄) ≤ 1 if x̄ /∈ int(A ∩ B) and θ̂[A,B](x̄) = ∞ otherwise.

Similarly, |ĉ[A,B](x̄)| ≤ 1 if x̄ ∈ bdA ∩ bdB and ĉ[A,B](x̄) = −∞ otherwise.

3. Unlike [17], we assume in (4.5), (4.7), and (4.10) the standard conventions that the

infimum and supremum of the empty set in R equal +∞ and −∞, respectively. As a result,

an additional assumption that either x̄ ∈ bdA ∩ bdB or x̄ ∈ int(A ∩ B) is needed in part

(iii) to ensure equality (4.9).

4. Equality (4.5) was proved in [13, Theorem 1] while equality (4.7) was established in

[15, Theorem 4(vi)]; see also [13, Theorem 4] for a slightly weaker result containing inequality

estimates. Equality (4.9) is a direct consequence of [17, Theorem 2]. It can be also easily

checked directly.

If dimX <∞, then representations (4.7) and (4.10) as well as the corresponding criteria

in parts (ii) and (iii) of Proposition 27 can be simplified by using the limiting version of the

Fréchet normal cones (4.4). If, additionally, X is a Euclidean space, then one can also make

use of proximal normals.

Recall (cf., e.g., [21]) that, in a Euclidean space, the limiting (Fréchet) normal cone to A

at x̄ and the proximal normal cone to A at a ∈ A are defined as follows:

NA(x̄) := Lim sup
a
A→x̄
NA(a) =

{
x∗ = limx∗k | x∗k ∈ NA(ak), ak

A→ x̄
}
, (4.12)

Nprox
A (a) := cone

(
P−1
A (a)− a

)
= {λ(x− a) | λ ≥ 0, a ∈ PA(x)} . (4.13)

Their usage is justified by the following simple observations:

Nprox
A (a) ⊂ NA(a) and NA(x̄) = Lim sup

a
A→x̄
Nprox
A (a). (4.14)

Proposition 28. Let A and B be closed subsets of X.

(i) Suppose dimX <∞.

128



Dual characterizations.

θ̂[A,B](x̄) = inf
{
‖u+ v‖ | u ∈ NA(x̄), v ∈ NB(x̄), ‖u‖+ ‖v‖ = 1

}
= lim

ρ↓0
inf
{
‖u+ v‖ | u ∈ Nprox

A (a), v ∈ Nprox
B (b),

a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄), ‖u‖+ ‖v‖ = 1
}
.

{A,B} is uniformly regular at x̄ if and only if one of the following two equivalent

conditions is satisfied:

(a) NA(x̄) ∩
(
−NB(x̄)

)
= {0};

(b) there exist positive numbers α and δ such that inequality (4.8) holds true for all

a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), u ∈ Nprox
A (a), and v ∈ Nprox

B (b).

(ii) Suppose X is a Euclidean space.

Angle characterizations.

ĉ[A,B](x̄) = sup
{
−〈u, v〉 | u ∈ NA(x̄) ∩ S, v ∈ NB(x̄) ∩ S

}
(4.15)

= lim
ρ↓0

sup
{
− 〈u, v〉 | u ∈ Nprox

A (a) ∩ S, v ∈ Nprox
B (b) ∩ S,

a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄)
}
.

{A,B} is uniformly regular at x̄ if and only if one of the following two equivalent

conditions is satisfied:

(a)
{

(u, v) ∈
(
NA(x̄) ∩ S

)
×
(
NB(x̄) ∩ S

)
| 〈u, v〉 = −1

}
= ∅;

(b) there exist numbers α < 1 and δ > 0 such that inequality (4.11) holds true for all

a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), u ∈ Nprox
A (a) ∩ S, and v ∈ Nprox

B (b) ∩ S.

Remark 33. 1. Condition (a) in part (i) of the above proposition is a ubiquitous qualification

condition in optimization and variational analysis; cf. basic qualification condition [21] and

transversality condition [10, 20].

2. If one replaces S with B in representation (4.15), one will get nonnegative constant

(4.1). The relationship between the two constants is straightforward: c̄ = max{ĉ[A,B](x̄), 0}.
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4.2.2 Super-regularity

In the next several subsections, we follow [19] and [4, 5], respectively. Although some

definitions and assertions are valid in arbitrary Hilbert spaces, in accordance with the setting

of [19] and [4, 5], we assume in these two subsections that X is a finite dimensional Euclidean

space.

Unlike the uniform regularity, the super-regularity property is defined for a single set. The

next definition contains a list of equivalent characterizations of this property which come from

[19, Definition 4.3, Proposition 4.4, and Corollary 4.10], respectively.

Definition 10. A closed subset A ⊂ X is super-regular at a point x̄ ∈ A if one of the

following equivalent conditions is satisfied:

(i) for any γ > 0, there exists a δ > 0 such that

〈x− xA, a− xA〉 ≤ γ‖x− xA‖ ‖a− xA‖

for all x ∈ Bδ(x̄), xA ∈ PA(x), and a ∈ A ∩ Bδ(x̄);

(ii) for any γ > 0, there exists a δ > 0 such that

〈u, x− a〉 ≤ γ‖u‖ ‖x− a‖ (4.16)

for all x, a ∈ A ∩ Bδ(x̄) and u ∈ NA(a);

(iii) for any γ > 0, there exists a δ > 0 such that

〈v − u, y − x〉 ≥ −γ‖y − x‖

for all x, y ∈ A ∩ Bδ(x̄) and u ∈ NA(x) and v ∈ NA(y).

Remark 34. 1. Super-regularity is a kind of local “near convexity” property, refining or

complementing a number of properties of this kind: Clarke regularity [7, 24], amenability

[24], prox-regularity [23, 24], and subsmoothness [2] (cf. first order Shapiro property [25]).

For a detailed discussion and comparing of the properties we refer the reader to [19].
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2. Super-regularity of one of the sets is an important ingredient of the convergence analysis

of projection methods following the scheme initiated in Lewis et al. [19]; cf. Theorems 9 and

12. In fact, a weaker “quantified” version of this property corresponding to fixing γ > 0 in

Definition 10 (and Definition 11 below), i.e., a kind of γ-super-regularity is sufficient for this

type of analysis; cf. [4, Definition 8.1] and [22, Definition 2] (The latter definition introduces

a more advanced Hölder version of this property.) Of course for alternating projections to

converge, γ must be small and the convergence rate depends on γ.

4.2.3 Restricted normal cones and restricted super-regularity

There have been several successful attempts to relax the discussed above regularity prop-

erties by restricting the set of involved (normal) directions to only those relevant for charac-

terizing alternating projections.

The definitions of restricted normal cones to a set introduced in [4] take into account

another set and generalize proximal and limiting normal cones (4.13) and (4.12) in the setting

of a Euclidean space:

NB−prox
A (a) := cone

(
(P−1

A (a) ∩B)− a
)
, (4.17)

N
B
A(x̄) := Lim sup

a
A→x̄
NB−prox
A (a). (4.18)

Sets (4.17) and (4.18) are called, respectively, the B-proximal normal cone to A at a ∈ A and

B-limiting normal cone to A at x̄. When B is the whole space, they obviously coincide with

(4.13) and (4.12) (cf. the representation of the limiting normal cone given by the equality in

(4.14)). Note that cones (4.17) and (4.18) can be empty.

Similarly to (4.17), one can define also the B-Fréchet normal cone to A at a ∈ A:

NB
A (a) := NA(a) ∩ cone (B − a)

and the corresponding limiting one. The following inclusions are straightforward:

NB−prox
A (a) ⊂ NB

A (a) ⊂ NA(a).
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Definition 11. A closed subset A ⊂ X is B-super-regular at a point x̄ ∈ A if, for any

γ > 0, there exists a δ > 0 such that condition (4.16) holds true for all x, a ∈ A ∩ Bδ(x̄) and

u ∈ NB−prox
A (a).

Remark 35. As observed in [4], B-proximal normals in Definition 11 can be replaced with

B-limiting ones. Similarly, in Definition 10(ii) and (iii), one can replace Fréchet normals with

limiting ones.

4.2.4 BLPW-restricted regularity

The next definition introduces a modification of the property used in the angle charac-

terization of the uniform regularity in Proposition 27(iii). This new property and its subse-

quent characterizations and application in convergence estimate (Theorem 10) originate in

Bauschke, Luke, Phan, and Wang [4, 5]. We are going to use for the regularity property of a

collection of two sets discussed below the term BLPW-restricted regularity.

Definition 12. A collection of closed sets {A,B} is BLPW-restrictedly regular at x̄ ∈ A∩B

if

ĉ1[A,B](x̄) := lim
ρ↓0

sup
{
− 〈u, v〉 | u ∈ NB−prox

A (a) ∩ S, v ∈ NA−prox
B (b) ∩ S,

a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄)
}
< 1, (4.19)

i.e., there exist numbers α < 1 and δ > 0 such that condition (4.11) holds for all a ∈ A∩Bδ(x̄),

b ∈ B ∩ Bδ(x̄), u ∈ NB−prox
A (a) ∩ S, and v ∈ NA−prox

B (b) ∩ S.

Proposition 29. (i) The following representation holds true:

ĉ1[A,B](x̄) = sup
{
−〈u, v〉 | u ∈ NB

A(x̄) ∩ S, v ∈ NA
B(x̄) ∩ S

}
. (4.20)

(ii) If either N
B
A(x̄) ∩ S 6= ∅ and N

A
B(x̄) ∩ S 6= ∅, or N

B
A(x̄) ∩ S = N

A
B(x̄) ∩ S = ∅, then

ĉ1[A,B](x̄) = 1− 2θ̂2
1[A,B](x̄),
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where

θ̂1[A,B](x̄) = lim
ρ↓0

inf
{
‖u+ v‖ | u ∈ NB−prox

A (a), v ∈ NA−prox
B (b),

a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄), ‖u‖+ ‖v‖ = 1
}

= inf
{
‖u+ v‖ | u ∈ NB

A(a), v ∈ NA
B(b), ‖u‖+ ‖v‖ = 1

}
.

(iii) A collection of closed sets {A,B} is BLPW-restrictedly regular at x̄ ∈ A∩B if and only

if one of the following conditions holds true:

c̄1 := sup
{
−〈u, v〉 | u ∈ NB

A(x̄) ∩ B, v ∈ NA
B(x̄) ∩ B

}
< 1, (4.21)

θ̂1[A,B](x̄) > 0,

N
B
A(x̄) ∩

(
−NA

B(x̄)
)
⊆ {0}. (4.22)

Remark 36. 1. The difference between formula (4.20) and definition of c̄1 in (4.21) is that,

in the latter one, closed unit balls are used instead of spheres. As a result, c̄1 is either

nonnegative or equal −∞. (The latter case is possible because restricted normal cones can

be empty.) At the same time, conditions ĉ1[A,B](x̄) < 1 and c̄1 < 1 are equivalent and c̄1

can be used for characterizing BLPW-restricted regularity. The inequality c̄1 ≤ c̄, where c̄ is

given by (4.1), is obvious. It can be strict; cf. [4, Example 7.1].

2. In [4], a more general setting of four sets A,B, Ã, B̃ is considered with the A- and

B-proximal and limiting normals cones in Definition 12 and Proposition 29 replaced by their

Ã and B̃ versions. As described in [5, Subsection 3.6], this provides additional flexibility in

applications when determining regularity properties. To simplify the presentation, in this

chapter we set Ã = A and B̃ = B.

3. Condition (4.22) is referred to in [4] as (A,B)-qualification condition while constant

(4.19) is called the limiting CQ number.

Theorem 10. Let X be a finite dimensional Euclidean space. Suppose that

(i) {A,B} is BLPW-restrictedly regular at x̄ ∈ A ∩B;

(ii) A is B-super-regular at x̄.
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Then, for any c ∈ (c̄1, 1), a sequence of alternating projections for {A,B} with initial point

sufficiently close to x̄ converges to a point in A ∩B with R−linear rate
√
c.

4.2.5 BLPW-DIL-restricted regularity

The concept of BLPW-restricted regularity was further refined in Drusvyatskiy, Ioffe and

Lewis [10, Definition 4.4]. We are going to call the amended property BLPW-DIL-restricted

regularity.

Definition 13. A collection of closed sets {A,B} is BLPW-DIL-restrictedly regular at x̄ ∈

A ∩B if

ĉ2[A,B](x̄) := lim
ρ↓0

sup
{
− 〈a− ba, b− ab〉
‖a− ba‖ ‖b− ab‖

| ba ∈ PB(a), ab ∈ PA(b),

a ∈ (A \B) ∩ Bρ(x̄), b ∈ (B \A) ∩ Bρ(x̄)
}
< 1, (4.23)

i.e., there exist numbers α < 1 and δ > 0 such that

−〈a− ba, b− ab〉 < α‖a− ba‖ ‖b− ab‖

for all a ∈ (A \B) ∩ Bδ(x̄), b ∈ (B \A) ∩ Bδ(x̄), ba ∈ PB(a), and ab ∈ PA(b).

Remark 37. The property in Definition 13 is referred to in [10] as inherent transversality.

An analogue of Proposition 29 holds true with constant θ̂1[A,B](x̄) replaced by

θ̂2[A,B](x̄) =
1

2
lim
ρ↓0

inf

{∥∥∥∥ a− ba
‖a− ba‖

+
b− ab
‖b− ab‖

∥∥∥∥ | ba ∈ PB(a), ab ∈ PA(b),

a ∈ (A \B) ∩ Bρ(x̄), b ∈ (B \A) ∩ Bρ(x̄)

}

and appropriate limiting objects.

It is easy to see that a BLPW-restrictedly regular collection is also BLPW-DIL-restrictedly

regular, but the converse is not true in general.
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4.2.6 DIL-restricted regularity

The next definition and its subsequent characterizations originate in Drusvyatskiy, Ioffe

and Lewis [10]. We are going to use for the regularity property of a collection of two sets

discussed below the term DIL-restricted regularity.

Unlike [10], if not specified otherwise, we adopt in this subsection the setting of a general

Hilbert space.

Definition 14. A collection of closed sets {A,B} is DIL-restrictedly regular at x̄ ∈ A∩B if

θ̂4[A,B](x̄) := lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

max

{
d

(
b− a
‖a− b‖ , NA(a)

)
, d

(
a− b
‖a− b‖ , NB(b)

)}
> 0, (4.24)

i.e., there exist positive numbers γ and δ > 0 such that

max

{
d

(
b− a
‖a− b‖ , NA(a)

)
, d

(
a− b
‖a− b‖ , NB(b)

)}
> γ (4.25)

for all a ∈ (A \B) ∩ Bδ(x̄) and b ∈ (B \A) ∩ Bδ(x̄).

Proposition 30. A collection of closed sets {A,B} is DIL-restrictedly regular at x̄ ∈ A ∩B

if and only if

ĉ4[A,B](x̄) := lim
ρ↓0

sup
{min{〈b− a, u〉 , 〈a− b, v〉}

‖a− b‖ | u ∈ NA(a) ∩ S,

v ∈ NB(b) ∩ S, a ∈ (A \B) ∩ Bρ(x̄), b ∈ (B \A) ∩ Bρ(x̄)
}
< 1, (4.26)

i.e., there exist numbers α < 1 and δ > 0 such that

min{〈b− a, u〉 , 〈a− b, v〉} < α‖a− b‖

for all a ∈ (A \B) ∩ Bδ(x̄), b ∈ (B \A) ∩ Bδ(x̄), u ∈ NA(a) ∩ S, and v ∈ NB(b) ∩ S.

Moreover, (ĉ4[A,B](x̄))2 + (θ̂4[A,B](x̄))2 = 1.

Remark 38. 1. If dimX <∞, then, as usual, the Fréchet normals in (4.24) and (4.26) can
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be replaced by the proximal ones:

θ̂4[A,B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

max

{
d

(
b− a
‖a− b‖ , N

prox
A (a)

)
, d

(
a− b
‖a− b‖ , N

prox
B (b)

)}
,

ĉ4[A,B](x̄) = lim
ρ↓0

sup
{min{〈b− a, u〉 , 〈a− b, v〉}

‖a− b‖ | u ∈ Nprox
A (a) ∩ S,

v ∈ Nprox
B (b) ∩ S, a ∈ (A \B) ∩ Bρ(x̄), b ∈ (B \A) ∩ Bρ(x̄)

}
.

2. In [10], the property in Definition 14 is referred to as intrinsic transversality.

The next two examples show that DIL-restricted regularity is in general independent of

BLPW-DIL-restricted regularity.

Example 12 (BLPW-DIL-restricted regularity but not DIL-restricted regularity; Fig-

ure 4.1). Define a function f : [0, 1]→ R by

f(t) :=


0, if t = 0,

−t+ 1/2n+1, if t ∈ (1/2n+1, 3/2n+2],

t− 1/2n, if t ∈ (3/2n+2, 1/2n], n = 0, 1, . . .

and consider the sets: A = gph f and B = {(t, t) : t ∈ [0, 1]} and the point x̄ = (0, 0) = A∩B

in R2. Suppose R2 is equipped with the Euclidean norm.

ba

b̄

ab
a

A

B

b ∈ B ∩ P−1
A (ab)

x̄

Figure 4.1: BLPW-DIL-restricted regularity but not DIL-restricted regularity

It is easy to check that f is a continuous function and consequently A is closed; f(1/2n) =
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0, f(3/2n+2) = −1/2n+2, n = 0, 1, . . .

Take any a ∈ A \B, b ∈ B \ A, ba ∈ PB(a), and ab ∈ PA(b). Thanks to the properties of

the Euclidean distance, we have

ab = (1/2n, 0),

b ∈ B ∩ P−1
A (ab) = {(t, t) | t ∈ [3/2n+2, 3/2n+1]},

a− ba = k(1,−1)

for some n ∈ N and k > 0. Then,

ĉ2[A,B](x̄) = max
b∈B∩P−1

A (ab)

{〈(−1, 1), b− ab〉√
2‖b− ab‖

}
=

1√
2

〈
(−1, 1),

b̄− ab
‖b̄− ab‖

〉
,

where b̄ := (3/2n+2, 3/2n+2), and consequently,

ĉ2[A,B](x̄) =
〈(−1, 1), (−1, 3)〉√

2
√

10
=

2√
5
> 0.

Hence, {A,B} is BLPW-DIL-restrictedly regular at x̄.

Given an n ∈ N, we choose a := (1/2n, 0) ∈ A \ B and b := (1/2n+1, 1/2n+1) ∈ B \ A.

Then,

Nprox
A (a) =NA(a) = {(t1, t2) : t2 ≥ |t1|},

Nprox
B (b) =NB(b) = R(1,−1),

and consequently,

a− b = 1/2n+1(1,−1) ∈ NB(b) ∩ −NA(a).

It follows that ĉ4[A,B](x̄) = 1 and {A,B} is not DIL-restrictedly regular at x̄. 4

Example 13 (DIL-restricted regularity but not BLPW-DIL-restricted regularity; Fig-
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ure 4.2). Consider two sets:

A ={(t, 0) : t ≥ 0} ∪ {(t,−t) : t ≥ 0},

B ={(t, 0) : t ≥ 0} ∪ {(t, t) : t ≥ 0}

and the point x̄ = (0, 0) ∈ A ∩B in R2. Suppose R2 is equipped with the Euclidean norm.

a

ab
ba

b

A

B

A ∩Bx̄

Figure 4.2: DIL-restricted regularity but not BLPW-DIL-restricted regularity

For any a = (t1,−t1) ∈ A \B and b = (t2, t2) ∈ B \A, we have

Nprox
A (a) =NA(a) = R(1, 1),

Nprox
B (b) =NB(b) = R(1,−1).

and consequently,

ĉ4[A,B](x̄) = sup
t1>0, t2>0

min{t1, t2}√
t21 + t22

=
1√
2
< 1.

Hence, {A,B} is DIL-restrictedly regular at x̄.

For any a ∈ A \B, b ∈ B \A, ba ∈ PB(a), and ab ∈ PA(b), we have

b− ab
‖b− ab‖

=
ba − a
‖a− ba‖

.

It follows that ĉ2[A,B](x̄) = 1 and {A,B} is not BLPW-DIL-restrictedly regular at x̄. 4

The next fact was established in [10, Proposition 4.5].

Proposition 31. If dimX < ∞, {A,B} is BLPW-DIL-restrictedly regular at x̄, and both

sets A and B are super-regular at x̄, then {A,B} is DIL-restrictedly regular at x̄.
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Remark 39. The assumption of super-regularity of both sets in Proposition 31 is essential.

Indeed, in Example 12, {A,B} is BLPW-DIL-restrictedly regular and B is super-regular (in

fact, convex), while A is not and {A,B} is not DIL-restrictedly regular.

4.2.7 NR-restricted regularity

The next step in relaxing both BLPW- and DIL-restricted regularity properties while

preserving the linear convergence of alternating projections has been done in Noll and Ron-

depierre [22]. In what follows, the resulting property is called NR-restricted regularity.

Definition 15. A collection of closed sets {A,B} is NR-restrictedly regular at x̄ ∈ A ∩B if

ĉ3[A,B](x̄) := lim
ρ↓0

sup
{ 〈a1 − b, a2 − b〉
‖a1 − b‖ ‖a2 − b‖

| a1 ∈ A, b ∈ PB(a1), a2 ∈ PA(b)

a1, b, a2 ∈ Bρ(x̄),
}
< 1,

i.e., there exist numbers α < 1 and δ > 0 such that

〈a1 − b, a2 − b〉 ≤ α‖a1 − b‖ ‖a2 − b‖

for all a1 ∈ A ∩ Bδ(x̄), b ∈ PB(a1) ∩ Bδ(x̄), and a2 ∈ PA(b) ∩ Bδ(x̄).

Remark 40. 1. NR-restricted regularity property is not symmetric: NR-restricted regularity

of {A,B} does not imply that {B,A} is NR-restrictedly regular.

2. If {A,B} is BLPW- or DIL-restrictedly regular at x̄, then it is NR-restrictedly regular

at x̄ and the second implication can be strict [22, Propositions 1 and 2 and Example 7.6].

In fact, it is easy to check that NR-restricted regularity is implied by BLPW-DIL-restricted

regularity. Example 13 shows that NR-restricted regularity can be strictly weaker.

3. Theorem 10 remains valid if the assumption of BLPW-restricted regularity is replaced

by that of NR-restricted regularity and c̄1 is replaced by ĉ3[A,B](x̄).

4. The property in Definition 15 is referred to in [22] as separable intersection.

5. In [22], a more general Hölder-type property with exponent ω ∈ [0, 2) is considered.

Definition 15 corresponds to that property with ω = 0. For the convergence analysis, the

authors of [22] introduce also a Hölder version of the superregularity property.
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4.3 Convergence for inexact alternating projections

In this section, we study two settings of inexact alternating projections under the as-

sumptions of DIL-restricted regularity and uniform regularity, respectively, and establish the

corresponding convergence estimates.

4.3.1 Convergence for inexact alternating projections under DIL-

restricted regularity

Given a point x and a set A in a Hilbert space and numbers τ ∈ (0, 1] and σ ∈ [0, 1), the

(τ, σ)-projection of x on A is defined as follows:

P τ,σA (x) := {a ∈ A | τ‖x− a‖ ≤ d(x,A), d (x− a,NA(a)) ≤ σ‖x− a‖} . (4.27)

One obviously has P 1,σ
A (x) = PA(x) for any σ ∈ [0, 1). Observe also that the above definition

requires a to be an “almost projection” in terms of the distance ‖x−a‖ being close to d(x,A)

and also x− a being an “almost normal” to A.

Definition 16 (Inexact alternating projections). Given τ ∈ (0, 1] and σ ∈ [0, 1), {xn} is a

sequence of (τ, σ)-alternating projections for {A,B} if

x2n+1 ∈ P τ,σB (x2n) and x2n+2 ∈ P τ,σA (x2n+1) (n = 0, 1, . . .).

The next statement is taken from [10, Theorem 5.3] where it is formulated in the setting

of a finite dimensional Euclidean space. It is a version of the general metric space Basic

Lemma from [12]. Recall that the (strong) slope [8] of f at a point u ∈ X with f(u) < +∞

is defined as follows:

|∇f |(u) := lim sup
u′→u,u′ 6=u

f(u)− f(u′)

d(u′, u)
.

Lemma 16 (Error bound). Let X be a complete metric space, f : X → R ∪ {+∞} a lower

semicontinuous function, x ∈ X with f(x) < +∞, δ > 0, and α < f(x). Suppose that

µ := inf
u∈Bδ(x), α<f(u)≤f(x)

|∇f |(u) >
f(x)− α

δ
. (4.28)
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Then S(f, α) := {u ∈ X | f(u) ≤ α} 6= ∅ and

µd(x, S(f, α)) ≤ f(x)− α.

If X is an Asplund space, then a standard argument based on the subdifferential sum rule

(cf., e.g., [11, Proposition 5(ii)] or [10, Proposition 6.9]) shows that the primal space slopes

in the definition of µ in (4.28) can be replaced by the subdifferential slopes:

µ = inf
u∈Bδ(x), α<f(u)≤f(x)

|∂f |(u). (4.29)

Here

|∂f |(u) := inf
x∗∈∂f(u)

‖x∗‖∗,

where ∂f(u) is the Fréchet subdifferential of f at u and ‖ · ‖∗ is the norm on X∗ dual to the

norm on X participating in the definition of the primal space slope. Note that in general

|∇f |(u) ≤ |∂f |(u).

If X is a finite dimensional Euclidean space, then, instead of the Fréchet subdifferentials,

one can use the proximal subdifferentials ∂proxf(u):

µ = inf
u∈Bδ(x), α<f(u)≤f(x)

|∂proxf |(u), (4.30)

where

|∂proxf |(u) := inf
x∗∈∂proxf(u)

‖x∗‖.

The next statement is a consequence of Lemma 16. It extends slightly [10, Theorem 3.1].

Proposition 32 (Distance decrease). Let A be a closed subset of a Hilbert space X, a ∈ A,

b /∈ A, δ > 0, and α < ‖a− b‖. Suppose that

µ := inf
u∈A∩Bδ(a)
‖u−b‖≤‖a−b‖

d

(
b− u
‖u− b‖ , NA(u)

)
> 0. (4.31)

Then d(b, A) ≤ ‖a− b‖ − µδ.

If dimX < ∞, then the Fréchet normal cones NA(u) in (4.31) can be replaced by the
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proximal ones Nprox
A (u).

Proof. Consider the lower semicontinuous function f = d(·, b) + ιA, where ιA is the indicator

function of A: ιA(x) = 0 if x ∈ A and ιA(x) = +∞ if x /∈ A. Then f(a) = ‖a− b‖ and

∂f(u) =
u− b
‖u− b‖ +NA(u), |∂f |(u) = d

(
b− u
‖u− b‖ , NA(u)

)

for any u ∈ A. It follows from the first part of Lemma 16 and representation (4.29) that

d(b, A) ≤ α for any α ∈ (‖a− b‖ − µδ, ‖a− b‖) and consequently, d(b, A) ≤ ‖a− b‖ − µδ.

If dimX <∞, then instead of representation (4.29) one can use representation (4.30).

The next statement is essentially [10, Lemma 3.2].

Lemma 17. Any nonzero vectors x and y in a Hilbert space satisfy

∥∥∥∥ x

‖x‖ − z
∥∥∥∥ ≤ ‖x− y‖‖y‖ ,

where z :=
〈

x
‖x‖ ,

y
‖y‖

〉
y
‖y‖ is the projection of x

‖x‖ on Ry.

Proof.

(‖x− y‖
‖y‖

)2

−
∥∥∥∥ x

‖x‖ − z
∥∥∥∥2

=
‖x‖2 − 2〈x, y〉+ ‖y‖2

‖y‖2 − 1 +

〈
x

‖x‖ ,
y

‖y‖

〉2

=
1

‖y‖2
(
‖x‖2 − 2〈x, y〉+

〈x, y〉2
‖x‖2

)
=

1

‖y‖2
(
‖x‖ − 〈x, y〉‖x‖

)2

≥ 0.

Theorem 11 (Convergence of inexact alternating projections). Suppose that {A,B} is DIL-

restrictedly regular at x̄, 0 ≤ σ < θ̂4[A,B](x̄) and 0 < τ ≤ 1. Then, for any γ < θ̂4[A,B](x̄)

satisfying 0 < γ − σ ≤ τ and

c := τ−1(1− γ2 + γσ) < 1,

any sequence of (τ, σ)-alternating projections for {A,B} with initial point sufficiently close
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to x̄ converges to a point in A ∩B with R−linear rate c.

Proof. By Definition 14, there exists a ρ > 0 such that condition (4.25) holds true for all

a ∈ (A \B) ∩ Bρ(x̄) and b ∈ (B \A) ∩ Bρ(x̄).

Let a ∈ A ∩ Bρ′(x̄) and b ∈ P τ,σB (a) ∩ Bρ′(x̄) where ρ′ := ρ/(1 + 2(γ − σ)). We are going

to show that

d(b, A) ≤ (1− γ2 + γσ)‖b− a‖.

If b ∈ A, the inequality holds true trivially. Suppose b /∈ A and denote δ := (γ − σ)‖b − a‖.

Consider any point u ∈ A∩Bδ(a). Since ‖u−a‖ < (γ−σ)‖b−a‖ ≤ τ‖b−a‖ ≤ dB(a), we see

that u /∈ B; in particular, a /∈ B and u 6= b. Let z denote the projection of u−b
‖u−b‖ on R(a− b).

Then ‖z‖ ≤ 1 and, employing Lemma 17,

d

(
u− b
‖u− b‖ , NB(b)

)
≤
∥∥∥∥ u− b
‖u− b‖ − z

∥∥∥∥+ d(z,NB(b))

≤ ‖u− a‖‖b− a‖ + σ < (γ − σ) + σ = γ.

Since ‖u− x̄‖ ≤ ‖u− a‖+ ‖a− x̄‖ < 2(γ − σ)ρ′ + ρ′ = ρ and ‖b− x̄‖ < ρ′ < ρ, we get from

(4.25) that d
(

b−u
‖u−b‖ , NA(u)

)
> γ. It follows from Proposition 32 that d(b, A) ≤ ‖a−b‖−γδ =

(1− γ2 + γσ)‖a− b‖. Hence,

‖a′ − b‖ ≤ τ−1d(b, A) ≤ c‖a− b‖ for all a′ ∈ P τ,σA (b). (4.32)

Now we show that any sequence {xn} of (τ, σ)-alternating projections for {A,B} remains

in Bρ′(x̄) whenever x0 ∈ Bρ′′(x̄) where ρ′′ :=
(
τ−1

1−c + 1
)−1

ρ′ < ρ′. Indeed,

‖x1 − x0‖ ≤ τ−1d(x0, B) ≤ τ−1‖x0 − x̄‖.

Let n ∈ N and xk ∈ Bρ′(x̄), k = 0, 1, . . . n. It follows from (4.32) that

‖xk+1 − xk‖ ≤ ck‖x1 − x0‖ (k = 0, 1, . . . n), (4.33)
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and consequently,

‖xn+1 − x0‖ ≤
n∑
k=0

ck‖x1 − x0‖ ≤
1

1− c‖x1 − x0‖,

‖xn+1 − x̄‖ ≤
(
τ−1

1− c + 1

)
‖x0 − x̄‖ < ρ′.

Thanks to (4.33), {xk} is a Cauchy sequence containing two subsequences belonging to closed

subsets A and B, respectively. Hence, it converges to a point in A ∩ B with R−linear rate

c.

Remark 41. 1. When inexact alternating projections are close to being exact, i.e., τ and σ

are close to 1 and 0, respectively (cf. definition (4.27)), then the assumptions of Theorem 11

are easily satisfied (as long as θ̂4[A,B](x̄) > 0) while the convergence rate c = τ−1(1−γ2+γσ)

is mostly determined by the term 1−γ2. Recall that γ can be any number in (0, θ̂4[A,B](x̄)).

Thanks to Proposition 14, 1− γ2 = (γ′)2 where γ′ can be any number in (ĉ4[A,B](x̄), 1).

2. When dimX < ∞, the special case τ = 1 and σ = 0 of Theorem 11 recaptures [10,

Theorem 2.3]. The proof given above follows that of [10, Theorem 2.3].

3. It can be of interest to consider a more advanced version of inexact alternating pro-

jections than the one given in Definition 16:

x2n+1 ∈ P τ1,σ1

B (x2n) and x2n+2 ∈ P τ2,σ2

A (x2n+1) (n = 0, 1, . . .),

where τ1, τ2 ∈ (0, 1] and σ1, σ2 ∈ [0, 1). For instance, the projections on one of the sets, say,

A can be required to be exact, i.e., τ2 = 1 and σ2 = 0. Theorem 11 remains applicable to

this situation with τ := min{τ1, τ2} and σ := max{σ1, σ2}. It is possible to obtain a sharper

convergence estimate taking into account different “inexactness” parameters for each of the

sets. For that, one needs to amend the definition of alternating projections by considering

the selection of the pair {x2n+1, x2n+2} as a single two-part iteration.
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4.3.2 Convergence for inexact alternating projections under uniform reg-

ularity

The motivation for the discussed below version of inexact projections comes from [19,

Section 6].

Given a point x and a set A in a Hilbert space and a number σ ∈ [0, 1), the σ-projection

of x on A is defined as follows:

P σA(x) := {a ∈ A | d (x− a,NA(a)) ≤ σ‖x− a‖} . (4.34)

Observe that

P 0
A(x) = {a ∈ A | x− a ∈ NA(a)} ⊃ PA(x)

and the inclusion can be strict even in finite dimensions. Furthermore, for any σ ∈ [0, 1),

P σA(x) can contain points lying arbitrarily far from x.

Definition 17 (Inexact alternating projections). Given a number σ ∈ [0, 1), {xn} is a se-

quence of σ-alternating projections for {A,B} if

x2n+1 ∈ P σB(x2n) and x2n+2 ∈ P σA(x2n+1),

‖xn+2 − xn+1‖ ≤ ‖xn+1 − xn‖ (n = 0, 1, . . .). (4.35)

The role of the monotonicity condition (4.35) in Definition 17 is to compensate for the

lack of good projection properties of the σ-projection operator (4.34). In the case of standard

alternating projections (cf. Definition 8), this condition is satisfied automatically.

Theorem 12 (Convergence of inexact alternating projections under uniform regularity).

Suppose that {A,B} is uniformly regular at x̄, A is super-regular at x̄ and σ ∈ [0, 1) satisfies

c0 := ĉ[A,B](x̄)(1− σ2) + σ2 + 2σ
√

1− σ2 + σ < 1.

Then, for any c ∈ (c0, 1), any sequence {xk} of σ-alternating projections for {A,B} with

initial points x0 and x1 sufficiently close to x̄ converges to a point in A ∩ B with R−linear
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rate
√
c.

Proof. Let c ∈ (c0, 1) and choose a c1 > ĉ[A,B](x̄) and a γ > 0 such that

c1(1− σ2) + σ2 + (2σ + γ)
√

1− σ2 + σ < c. (4.36)

By Proposition 27(iii) and Definition 10(ii), there exists a δ > 0 such that

−〈u, v〉 ≤ c1‖u‖ ‖v‖, (4.37)

〈u, x− a〉 ≤ γ‖u‖ ‖x− a‖ (4.38)

for all x, a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), u ∈ NA(a) and v ∈ NB(b).

Let a1 ∈ A ∩ Bδ(x̄), b ∈ P σB(a1) ∩ Bδ(x̄) and a2 ∈ P σA(b) ∩ Bδ(x̄). We are going to show

that

‖a2 − b‖ ≤ c‖b− a1‖. (4.39)

By definition (4.34), for any ε ∈ (0, 1 − σ), there exist u ∈ NA(a2) and v ∈ NB(b) such

that

‖b− a2 − u‖ ≤ (σ + ε)‖b− a2‖ and ‖a1 − b− v‖ ≤ (σ + ε)‖a1 − b‖. (4.40)

Additionally, one can ensure that

‖u‖ ≤
√

1− (σ + ε)2‖b− a2‖ and ‖v‖ ≤
√

1− (σ + ε)2‖a1 − b‖. (4.41)

Indeed, take any u ∈ NA(a2) satisfying the first inequality in (4.40). If u = 0, the first

inequality in (4.41) is satisfied too. Suppose u 6= 0 and consider u1 := 〈b− a2, u〉 u
‖u‖2 – the

projection of b− a2 on Ru. Then

‖b− a2‖2 = ‖u1‖2 + ‖b− a2 − u1‖2, (4.42)

‖b− a2 − u1‖ ≤ ‖b− a2 − u‖ ≤ (σ + ε)‖b− a2‖ (4.43)
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and there exists a t ∈ (0, 1] such that u2 := tu1 satisfies

‖b− a2 − u2‖ = (σ + ε)‖b− a2‖ (4.44)

(thanks to the continuity of the function t 7→ ‖b − a2 − tu1‖). Hence, u2 ∈ NA(a2), vector

u1 − u2 is a projection of b− a2 − u2 on Ru, i.e.,

‖b− a2 − u2‖2 = ‖u1 − u2‖2 + ‖b− a2 − u1‖2, (4.45)

and, using (4.42), (4.45), (4.44), and (4.43),

‖u2‖ = ‖u1‖ − ‖u1 − u2‖

=
√
‖b− a2‖2 − ‖b− a2 − u1‖2 −

√
(σ + ε)2‖b− a2‖2 − ‖b− a2 − u1‖2

=
(1− (σ + ε)2)‖b− a2‖2√

‖b− a2‖2 − ‖b− a2 − u1‖2 +
√

(σ + ε)2‖b− a2‖2 − ‖b− a2 − u1‖2

≤ (1− (σ + ε)2)‖b− a2‖2√
1− (σ + ε)2‖b− a2‖

=
√

1− (σ + ε)2‖b− a2‖.

Similarly, given any v ∈ NB(b) satisfying the second inequality in (4.40), one can find a

v2 ∈ NB(b) satisfying this inequality and, additionally, the second inequality in (4.41).

Making use of (4.37), (4.40) and (4.41), we get

−〈b− a2, a1 − b〉 = −〈u, v〉 − 〈u, a1 − b− v〉

− 〈b− a2 − u, v〉 − 〈b− a2 − u, a1 − b− v〉

≤ c1‖u‖ ‖v‖+ ‖u‖ ‖a1 − b− v‖

+ ‖b− a2 − u‖ ‖v‖+ ‖b− a2 − u‖ ‖a1 − b− v‖

≤
(
c1(1− (σ + ε)2) + 2(σ + ε)(

√
1− (σ + ε)2)

+ (σ + ε)2
)
‖b− a2‖ ‖a1 − b‖.

147



At the same time, making use of (4.38) and the first inequalities in (4.40) and (4.41), we have

〈b− a2, a1 − a2〉 = 〈u, a1 − a2〉+ 〈b− a2 − u, a1 − a2〉

≤ γ‖u‖ ‖a1 − a2‖+ (σ + ε)‖b− a2‖ ‖a1 − a2‖

≤ (γ
√

1− (σ + ε)2 + (σ + ε))‖b− a2‖ ‖a1 − a2‖,

Adding the last two estimates and passing to limit as ε ↓ 0, we obtain

‖b− a2‖2 ≤
(
c1(1− σ2) + σ2 + (2σ + γ)

√
1− σ2 + σ

)
‖b− a2‖ ‖a1 − b‖.

Thanks to (4.36), this proves (4.39).

Now we show that a sequence {xn} of σ-alternating projections for {A,B} remains in

Bδ(x̄) if x0, x1 ∈ Bρ(x̄) where ρ := 1−c
5−cδ < δ. Let n ∈ N and xk ∈ Bδ(x̄), k = 0, 1, . . . , 2n. It

follows from (4.39) that

‖x2k − x2k−1‖ ≤ ck‖x1 − x0‖ (k = 1, 2, . . . , n), (4.46)

and consequently, employing also (4.35),

‖x2n+2 − x0‖ ≤ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x0‖ ≤ ‖x2n+2 − x2n+1‖

+

n∑
k=1

(‖x2k+1 − x2k‖+ ‖x2k − x2k−1‖) + ‖x1 − x0‖

≤ 2

n∑
k=1

‖x2k − x2k−1‖+ 2‖x1 − x0‖

≤ 2

n∑
k=0

ck‖x1 − x0‖ ≤
2

1− c‖x1 − x0‖.

Thus,

max{‖x2n+2 − x̄‖, ‖x2n+1 − x̄‖} ≤ max{‖x2n+2 − x0‖, ‖x2n+1 − x0‖}

+ ‖x0 − x̄‖ ≤
2

1− c‖x1 − x0‖+ ‖x0 − x̄‖

≤ 2

1− c‖x1 − x̄‖+
3− c
1− c‖x0 − x̄‖ <

5− c
1− cρ = δ,
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i.e., x2n+1, x2n+2 ∈ Bδ(x̄).

Thanks to (4.46), {xk} is a Cauchy sequence containing two subsequences belonging to

closed subsets A and B, respectively. Hence, it converges to a point in A ∩B with R−linear

rate
√
c.

Remark 42. 1. When the “inexactness” parameter σ is small (cf. definition (17)), then

the assumptions of Theorem 12 are easily satisfied (as long as ĉ[A,B](x̄) < 1 and condition

(4.35) holds) while the convergence rate is close to the one guaranteed by Theorem 9 and

[19, Theorem 6.1].

2. One can also consider a more advanced version of inexact alternating projections than

the one given in Definition 17:

x2n+1 ∈ P σ1
B (x2n) and x2n+2 ∈ P σ2

A (x2n+1), (n = 0, 1, . . .).

where σ1, σ2 ∈ [0, 1). Theorem 12 remains applicable to this situation with σ := max{σ1, σ2}

(cf. Remark 41.3).

3. Observe that, thanks to (4.39), for odd values of n, condition (4.35) is improved in the

proof of Theorem 12:

‖xn+2 − xn+1‖ ≤ c‖xn+1 − xn‖,

where c < 1. However, the assumption is still needed to ensure that xn+2 is not too far from

x̄ and uniform and super-regularity conditions are applicable.

4. Constant c1 in (4.37) is an upper estimate of the cosine of the angle ϕ between vectors

u and −v while σ + ε in (4.40) can be interpreted as an upper estimate of the sine of the

angles ψ1 and ψ2 between vectors b − a2 and u and a1 − b and v, respectively. One can

use standard trigonometric identities and inequalities (4.37) and (4.40) to obtain an upper

estimate of the cosine of the angle ϕ−ψ1−ψ2 between vectors b−a2 and b−a1 and possibly

improve the convergence estimate in the statement of Theorem 12.

5. If both subsets A and B are super-regular, then in the proof of Theorem 12, one can
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establish an analogue of (4.39) with subsets A and B interchanged:

‖b2 − a‖ ≤ c‖a− b1‖,

where b1 ∈ B ∩ Bδ(x̄), a ∈ P σA(b1) ∩ Bδ(x̄) and b2 ∈ P σB(a) ∩ Bδ(x̄). This guarantees an

improvement with rate c on each iteration. As a result, one obtains a better overall R−linear

rate c.

6. The conclusion of Theorem 12 remains true if one replaces the assumptions of uniform

regularity of {A,B} (and the regularity constant ĉ[A,B](x̄)) and super-regularity of A with

BLPW-restricted regularity (and the regularity constant ĉ1[A,B](x̄)) and B-super-regularity,

respectively, accompanied by appropriate adjustments in the definition of σ-projections.
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Chapter 5

An induction theorem and

nonlinear regularity models

A general nonlinear regularity model for a set-valued mapping F : X×R+ ⇒ Y , where X

and Y are metric spaces, is studied using special iteration procedures, going back to Banach,

Schauder, Lyusternik and Graves. Namely, we revise the induction theorem from Khanh,

J. Math. Anal. Appl., 118 (1986) and employ it to obtain basic estimates for exploring

regularity/openness properties. We also show that it can serve as a substitution of the

Ekeland variational principle when establishing other regularity criteria. Then, we apply the

induction theorem and the mentioned estimates to establish criteria for both global and local

versions of regularity/openness properties for our model and demonstrate how the definitions

and criteria translate into the conventional setting of a set-valued mapping F : X ⇒ Y .

An application to second-order necessary optimality conditions for a nonsmooth set-valued

optimization problem with mixed constraints is provided.

5.1 Introduction

Regularity properties of set-valued mappings lie at the core of variational analysis because

of their importance for establishing stability of solutions to generalized equations (initiated by

Robinson [57, 58] in the 1970s), optimization and variational problems, constraint qualifica-

tions, qualification conditions in coderivative/subdifferential calculus and convergence rates
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of numerical algorithms; cf. books and surveys [6, 7, 10, 19, 30, 31, 33, 43, 51, 55, 60] and

the references therein.

Among the variety of known regularity properties, the most recognized and widely used

one is that of metric regularity ; cf. [7, 9, 10, 19, 30, 43, 51, 53, 55, 60]. Recall that a set-valued

mapping F : X ⇒ Y between metric spaces is (locally) metrically regular at a point (x̄, ȳ) in

its graph gphF := {(x, y) ∈ X × Y | y ∈ F (x)} with modulus κ > 0 if

d(x, F−1(y)) ≤ κd(y, F (x)) for all x near x̄, y near ȳ. (5.1)

Here F−1 : Y ⇒ X is the inverse mapping defined by F−1(y) = {x ∈ X | y ∈ F (x)}.

The roots of this notion can be traced back to the classical Banach-Schauder open mapping

theorem and its subsequent generalization to nonlinear mappings known as Lyusternik-Graves

theorem, see the survey [30] by Ioffe.

Inequality (5.1) provides a linear error bound estimate of metric type for the distance from

x to the solution set of the generalized equation F (u) 3 y corresponding to the perturbed

right-hand side y in a neighbourhood of the solution x̄ (corresponding to the right-hand

side ȳ). Metric regularity is known to be equivalent to two other fundamental properties:

the openness (or covering) at a linear rate and the Aubin property (a kind of Lipschitz-like

behaviour) of the inverse mapping; cf. [5, 11, 15, 17, 19, 30, 43, 44, 51, 53, 55, 60]. Several

qualitative and quantitative characterizations of the metric regularity property have been

established in terms of various primal and dual space derivative-like objects: slopes, graphical

derivatives (Aubin criterion), subdifferentials and coderivatives; cf. [6, 7, 19, 30, 43, 44, 48,

51, 52, 55, 60].

There have been many important developments of the metric regularity theory in recent

years; among them clarifying the connection of the metric regularity modulus (the infimum of

all κ such that (5.1) holds) to the radius of metric regularity, cf. [12, 17, 19, 25, 50, 51, 61], and

the interpretation of the regularity of the subdifferential mapping via second-order growth

conditions, cf. [2, 20, 21, 49, 64].

At the same time, it has been well recognized that many important variational prob-

lems do not posses conventional metric regularity. This observation has led to a significant

grows of attention to more subtle regularity properties. This new development has mostly
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consisted in the relaxing or extension of the metric regularity property (5.1) (and the other

two equivalent properties) and its characterizations along the following three directions (and

their appropriate combinations).

1) Relaxing of property (5.1) by fixing one of the variables: either y = ȳ or x = x̄ in it. In

the first case, one arrives at the very important for applications property of F known as metric

subregularity (and respectively calmness of F−1); cf. [1, 13, 18, 19, 27, 28, 30, 34, 46, 47, 63],

while fixing the other variable (and usually also replacing d(y, F (x̄)) with d(y, ȳ)) leads to

another type of relaxed regularity known as metric semiregularity [45] (also referred to as

metric hemiregularity in [3]).

2) Considering nonlocal versions of (5.1), when x and y are restricted to certain subsets

U ⊂ X and V ⊂ Y , not necessarily neighbourhoods of x̄ and ȳ, respectively, or even a subset

W ⊂ X ×Y ; cf. [30, 31, 32, 33]. A nonlocal regularity (covering) setting was already studied

in [15].

3) Considering nonlinear versions of (5.1), when, instead of the constant modulus κ, a

certain functional modulus µ : R+ → R+ is used in (5.1), i.e., κd(y, F (x)) is replaced by

µ(d(y, F (x))); cf. [11, 30, 33, 53]. This allows treating more subtle regularity properties

arising in applications when the conventional estimates fail. The majority of researchers

focus on the particular case of “power nonlinearities” when µ is of the type µ(t) = λtk with

λ > 0 and 0 < k ≤ 1 [22, 23, 24, 33, 62].

Starting with Ioffe [29], most proofs of various sufficient regularity/openness criteria are

based on the application of the celebrated Ekeland variational principle (Theorem 18); see

[10, 19, 30, 51, 55, 60]. On the other hand, as observed by Ioffe in [30], the original methods

used by Banach, Schauder, Lyusternik and Graves had employed special iteration procedures.

This classical approach was very popular in the 1980s – early 1990s [14, 15, 16, 37, 38, 39,

56, 59]. In particular, in the series of three articles [37, 38, 39], using iteration techniques

several basic statements were established which generalized many known by that time open

mapping and closed graph theorems and theorems of the Lyusternik type and results on

approximation and semicontinuity or their refinements. We refer to [30] for a thorough

discussion and comparison of the two main techniques.

In this chapter, we demonstrate that the approach based on iteration procedures still
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possesses potential. In particular, we show that the Induction theorem [37, Theorem 1] (see

Lemma 18 below), which was used as the main tool when proving the other results in [37], im-

plies also all the main results in the subsequent articles [38, 39]. It can serve as a substitution

of the Ekeland variational principle when establishing other regularity criteria. Furthermore,

the latter classical result can also be established as a consequence of the Induction theorem.

The sequences in the statement of this theorem as well as several other statements in Sec-

tion 5.2 expose the details of iterative procedures which are usually hidden in the proofs of

regularity/openness properties. This is important for the understanding of the roles played

by different parameters and leaves some freedom of choice of the parameters defining itera-

tion procedures; this can be helpful when constructing specific schemes as demonstrated in

[37, 38, 39].

We consider a general nonlocal nonlinear regularity model for a set-valued mapping F :

X×R+ ⇒ Y , where X and Y are metric spaces. It obviously covers the case of a parametric

family of set-valued mappings; cf. [38, 39]. At the same time, the conventional setting of

a set-valued mapping F : X ⇒ Y between metric spaces can be imbedded into the model

by defining a set-valued mapping F : X × R+ ⇒ Y by the equality F(x, t) := B(F (x), t) =

∪y∈F (x)B(y, t) (with the convention B(y, 0) = {y}). As observed by Ioffe [30, p. 508], this

scheme is convenient for deducing regularity/openness estimates.

To define an analogue of metric regularity in this general setting, the distance d(y, F (x))

in the image space in the right-hand side of (5.1) is replaced by the “distance-like” quantity

δ(y, F, x) := inf{t > 0 | y ∈ F (x, t)}. (5.2)

This allows one to define also a natural analogue of the covering property (but not the Aubin

property!) and establish equivalence of both properties and some sufficient criteria. If F (x, t)

describes the set of positions of a dynamical system feasible at moment t starting at the

initial point x, then constant (5.2) solves the minimal time feasibility problem.

In our study of regularity properties of set-valued mappings, we follow a three-step proce-

dure which, in our opinion, is important for understanding the roles of particular assumptions

employed in the criteria and the origins of specific regularity estimates.

1) Deducing basic regularity estimates at a fixed point (x, t, y) ∈ gphF .
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2) “Setting free” variable t in the basic regularity estimates obtained in step 1 and formu-

lating the best (in terms of t) estimates. This way, the “distance-like” quantity (5.2) comes

into play. The estimates are formulated at a fixed point (x, y) ∈ X × Y .

3) “Setting free” variables x and y in the regularity estimates obtained in step 2, restricting

them to a subset W ⊂ X × Y and formulating estimates holding for all (x, y) ∈ W . For the

motivations behind such settings we refer the reader to [32, 33]. This way, we arrive at

analogues of the metric regularity criteria. Under the appropriate choice of the set W , one

can study various local and nonlocal settings of this property and even weaker sub- and

semi-regularity versions. This line goes beyond the scope of the current chapter.

The structure of the chapter is as follows. In the next section, we give a short proof of

a revised version of the Induction theorem [37, Theorem 1] and then apply it to establish

several basic regularity estimates for a set-valued mapping F : X × R+ ⇒ Y at a fixed

point (x, t, y) ∈ gphF . As a consequence, we obtain the two main theorems from [39] which

cover the other results in [37, 38]. Next we discuss the relationship between the Induction

theorem and the Ekeland variational principle. As another consequence of the aforementioned

regularity estimates, we deduce several ‘at a point’ sufficient criteria for the regularity of F

in terms of quantity (5.2). Section 5.3 is devoted to nonlinear regularity on a set (and

the corresponding openness property) being a direct analogue of metric regularity in the

conventional setting. We refrain from using the term “metric” because quantity (5.2) is not a

distance in the image space. In Section 5.4, we demonstrate how the definitions and criteria

from Section 5.3 translate into the conventional setting of a set-valued mapping F : X ⇒ Y

taking the natural metric form. In Section 5.5, our general nonlinear regularity model is

applied to establishing second-order necessary optimality conditions for a general nonsmooth

set-valued optimization problem with mixed constraints. In line with the original idea of

Lyusternik, the role of the regularity assumption is to allow handling of the constraints. This

remains one of the major motivations for the development of the regularity theory. The final

Section 5.6 contains some concluding remarks and a list of things to be done hopefully in

not-so-distant future.

Our basic notation is standard; cf. [10, 19, 51, 55, 60]. X and Y are metric spaces.

Metrics in all spaces are denoted by the same symbol d(·, ·). If x and C are a point and a
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subset of a metric space, then d(x,C) := infc∈C d(x, c) is the point-to-set distance from x to

C, while C and bdC denote the closure and the boundary of C. B(x, r) and B(x, r) stand for

the open and closed balls of radius r > 0 centered at x, respectively. We use the convention

that B(x, 0) = {x}. If C is a subset of a linear space, then coneC := {λx | λ > 0, x ∈ C} is

the cone generated by C.

5.2 Regularity at a point

This section prepares the tools for the study of regularity properties of set-valued map-

pings in the rest of the chapter.

5.2.1 Basic estimates

The next technical lemma is a revised version of the Induction theorem [37, Theorem 1]

and contains the core arguments used in the main results of [37, 38, 39]. For simplicity, it

is formulated for mappings between metric spaces. (Most of the results in [37, 38, 39] are

formulated in the more general setting of quasimetric spaces.)

Recall that a set-valued mapping F : X ⇒ Y between metric spaces is called outer

semicontinuous [60] at x̄ ∈ X if

Lim sup x→x̄ F (x) := {y ∈ Y | lim inf
x→x̄

d(y, F (x)) = 0} ⊂ F (x̄).

Lemma 18. Let X be a complete metric space, Φ : R+ ⇒ X, t > 0 and x ∈ Φ(t). Suppose

that Φ is outer semicontinuous at 0 and there are sequences of positive numbers (an) and (bn)

such that

∞∑
n=0

bn <∞, (5.3)

a0 = t and an ↓ 0 as n→∞, (5.4)

d(u,Φ(an+1)) < bn for all u ∈ Φ(an) ∩ Un (n = 0, 1, . . .), (5.5)

where U0 := {x}, Un := B(x,
∑n−1

i=0 bi) (n = 1, 2, . . .). Then, d(x,Φ(0)) <
∑∞

n=0 bn.
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Proof. Putting x0 := x ∈ Φ(a0) ∩ U0 and using (5.5) repeatedly, we obtain a sequence (xn)

satisfying xn ∈ Φ(an) and

d(xn, xn+1) < bn (n = 0, 1, . . .).

The above inequalities together with (5.3) imply that (xn) is a Cauchy sequence and, as X

is complete, converges to some point z ∈ X. Note that

d(z, x) ≤
∞∑
n=0

d(xn, xn+1) <
∞∑
n=0

bn.

Thanks to the outer semicontinuity of Φ at 0 and (5.4), we have z ∈ Φ(0). Hence, d(x,Φ(0)) <∑∞
n=0 bn.

Remark 43. 1. The above lemma does not talk about regularity properties of set-valued

mappings. At the same time, we want the reader to observe certain similarity between the

conclusion of Lemma 18 and inequality (5.1) (assuming that Φ(0) corresponds to the inverse

of some set-valued mapping; this is going to be our next step). The sequences in the statement

of the lemma expose iterative procedures employed in some traditional proofs of regularity

properties which can be traced back to Banach and Schauder.

2. As it has been observed by many authors with regards to other regularity statements,

with obvious changes, the proof of Lemma 18 remains valid if instead of the outer semi-

continuity of Φ and completeness of X one assumes that gph Φ is complete (in the product

topology). In fact, it is sufficient to assume that gph Φ ∩ (R+ ×B(x,
∑∞

n=0 bi)) is complete.

3. In some applications, a “restricted” version of Lemma 18 can be useful. Given a

subset U of X and a point x ∈ Φ(t) ∩ U , condition (5.5) can be replaced with the following

“restricted” one:

d(u,Φ(an+1) ∩ U) < bn for all u ∈ Φ(an) ∩ Un (n = 0, 1, . . .),

where U0 := {x}, Un := U ∩B(x,
∑n−1

i=0 bi) (n = 1, 2, . . .).
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4. The conclusion of Lemma 18 can be equivalently rewritten as

Φ(0) ∩B
(
x,

∞∑
n=0

bn

)
6= ∅.

From now on, we consider a set-valued mapping F : X × R+ ⇒ Y , where X and Y are

metric spaces, X is complete. Given a t ∈ R+, we denote Ft := F (·, t) : X ⇒ Y .

The purpose of this two-variable model is twofold. Firstly, if the second variable is in-

terpreted as a parameter, it allows us to cover the case of a parametric family of set-valued

mappings; cf. [38, 39]. Secondly, when studying regularity properties of a standard set-valued

mapping F : X ⇒ Y between metric spaces, it can sometimes be convenient to consider its

two-variable extension (x, t)→ B(F (x), t); cf. Ioffe [30]. This model will be explored in Sec-

tion 5.4. In this subsection we focus on the case of a parametric family of set-valued mappings

and demonstrate that the main ‘iterative’ results of [38, 39] follow easily from Lemma 18.

The next two theorems contain the core arguments of [39, Theorems 3 and 4], respectively.

Theorem 13. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping τ 7→ Φ(τ) := F−1
τ (y)

on R+ is outer semicontinuous at 0 and there are sequences of positive numbers (bn) and (cn)

and a function m : (0,∞)→ (0,∞) such that condition (5.3) holds true and

m(τ) ↓ 0 as τ ↓ 0 and cn ↓ 0 as n→∞, (5.6)

d(x, F−1
m(c1)(y)) < b0, (5.7)

d(u, F−1
m(cn+1)(y)) < bn for all u ∈ F−1

m(cn)(y) ∩B
(
x,

n−1∑
i=0

bi

)
(n = 1, 2, . . .). (5.8)

Then, d(x, F−1
0 (y)) <

∑∞
n=0 bn.

Proof. Set a0 := t, an := m(cn) (n = 1, 2, . . .). Conditions (5.6), (5.7) and (5.8) imply

(5.4) and (5.5). By Lemma 18, there exists a z ∈ B(x,
∑∞

n=0 bn) such that y ∈ F (z, 0), i.e.,

z ∈ F−1
0 (y).

Given a function b : R+ → R+, we define, for each t ∈ R+, b0(t) := t, bn(t) := b(bn−1(t))

(n = 1, 2, . . .).
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Theorem 14. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping τ 7→ Φ(τ) := F−1
τ (y)

on R+ is outer semicontinuous at 0 and there are functions b,m, µ : (0,∞) → (0,∞) such

that

m(τ) ↓ 0 ⇒ τ ↓ 0 (5.9)

and, for each τ > 0 with µ(τ) ≤ µ(t),

µ(τ) ≥ m(τ) + µ(b(τ)), (5.10)

d(u, F−1
b(τ)(y)) < m(τ) for all u ∈ F−1

τ (y) ∩B(x, µ(t)− µ(τ)). (5.11)

Then, d(x, F−1
0 (y)) < µ(t).

Proof. Set an := bn(t), bn := m(an) = m(bn(t)) (n = 0, 1, . . .). Adding inequalities (5.10)

corresponding to τ = t, b(t), b2(t), . . ., we obtain

µ(t) ≥
∞∑
n=0

m (bn(t)) =
∞∑
n=0

bn.

Hence, (5.3) is satisfied and bn ↓ 0 as n → ∞. Condition (5.4) is satisfied thanks to (5.9).

Condition (5.11) with τ = an takes the following form:

d(u,Φ(an+1)) < bn for all u ∈ Φ(an) ∩B(x, µ(t)− µ(an)). (5.12)

For any n > 0, adding inequalities (5.10) corresponding to τ = t, b(t), . . . , bn−1(t), we obtain

µ(t) ≥
n−1∑
i=0

bi + µ(an).

Hence, µ(an) ≤ µ(t) and condition (5.12) implies (5.5). By Lemma 18, there exists a z ∈

B(x, µ(t)) such that y ∈ F (z, 0).

Remark 44. 1. The statements of Theorems 13 and 14 expose the details of iteration

procedures which are usually hidden in the proofs of regularity/openness properties. For

instance, the scalar function b in Theorem 14 defines the sequence of iterations corresponding

to τ ↓ 0: given a value τ , the next value is b(τ) which produces a smaller than µ(τ) value
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µ(b(τ)) of the function µ with the difference µ(τ) − µ(b(τ)) controlling thanks to (5.10) the

value m(τ) of the function m which in its turn controls thanks to (5.11) the distance between

the iterations in X leading in the end to the claimed estimate. Inequalities of the type (5.10)

and (5.11) (or (5.8)) are the key ingredients when istablishing regularity estimates.

Theorems 13 and 14 leave some freedom of choice of the parameters defining iteration

procedures which can be helpful when constructing specific schemes as demonstrated in [37,

38, 39].

2. Instead of (5.6), it is sufficient to assume in Theorem 13 that m(cn) ↓ 0 as n→∞. In

Theorem 14, this is satisfied automatically thanks to (5.9).

3. The conclusions of Theorems 13 and 14 can be equivalently rewritten as y ∈

F (B (x, r) , 0) where either r =
∑∞

n=0 bn or r = µ(t).

Theorem 14 covers a seemingly more general setting of regularity/covering on a system

of balls; cf. [15, 30, 39].

Recall that a family Σ of balls in X is called a complete system [15, Definition 1.1] if, for

any B(x, r) ∈ Σ, one has B(x′, r′) ∈ Σ provided that x′ ∈ X, r′ > 0 and d(x, x′) + r′ ≤ r. For

a subset M of X, Σ(M) denotes a complete system of balls B(x, r) in X with B(x, r) ⊂M .

Obviously the family of all balls in X forms a complete system.

Corollary 10. Let M ⊂ X and Σ(M) be a complete system, t > 0 and (x, t, y) ∈ gphF .

Suppose that the mapping τ 7→ F−1
τ (y) on R+ is outer semicontinuous at 0 and there are

functions b,m, µ : (0,∞) → (0,∞) such that B(x, µ(t)) ∈ Σ(M), condition (5.9) is satisfied

and, for each τ > 0 with µ(τ) ≤ µ(t), condition (5.10) holds true and

d(u, F−1
b(τ)(y)) < m(τ) for all u ∈ F−1

τ (y) ∩ {x′ | B(x′, µ(τ)) ∈ Σ(M)}. (5.13)

Then, d(x, F−1
0 (y)) < µ(t).

Proof. Since B(x, µ(t)) ∈ Σ(M), it follows that B(x, µ(t) − µ(τ)) ⊂ {x′ | B(x′, µ(τ)) ∈

Σ(M)}. The conclusion follows from Theorem 14.

The key estimates (5.11) and (5.13) in Theorem 14 and Corollary 10 are for the original

space X. In some situations, one can use for that purpose also similar estimates in the image

space Y .
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Corollary 11. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping τ 7→ F−1
τ (y) on

R+ is outer semicontinuous at 0 and there are functions b,m, µ : (0,∞) → (0,∞) such that

condition (5.9) is satisfied and, for each τ > 0 with µ(τ) ≤ µ(t), condition (5.10) holds true

and

F−1
0 (B(y, τ)) ⊂ F−1

τ (y), (5.14)

d (y, F0(B(u,m(τ)))) < b(τ) for all u ∈ F−1
τ (y) ∩B(x, µ(t)− µ(τ)). (5.15)

Then, d(x, F−1
0 (y)) < µ(t).

Proof. Observe that conditions (5.14) and (5.15) imply (5.11). Indeed, if u ∈ F−1
τ (y) ∩

B(x, µ(t) − µ(τ)), then, by (5.15), there exists a z ∈ B(u,m(τ)) such that d(y, F0(z)) <

b(τ), or equivalently, z ∈ F−1
0 (B(y, b(τ))). It follows from (5.14) that z ∈ F−1

b(τ)(y). Hence,

d(u, F−1
b(τ)(y)) < m(τ). The conclusion follows from Theorem 14.

Remark 45. 1. Instead of (5.9), it is sufficient to assume in Theorem 14 and Corollaries 10

and 11 that bn(t) ↓ 0 as n → ∞. The last condition is satisfied, e.g., when b(t) = λt with

λ ∈ (0, 1).

2. If condition (5.10) holds true for all τ > 0 with µ(τ) ≤ µ(t), then µ(τ) ≥∑∞
n=0m (bn(τ)). On the other hand, if the last condition holds true as equality (for all

τ > 0 with µ(τ) ≤ µ(t)), then condition (5.10) is satisfied (as equality). Hence, condition

(5.10) in Theorem 14 and Corollaries 10 and 11 can be replaced by the following definition

of the smallest function µ satisfying (5.10):

µ(τ) :=
∞∑
n=0

m (bn(τ)) , (5.16)

thus producing the strongest conclusion.

3. It is sufficient to assume in Theorem 14 and Corollaries 10 and 11 that conditions (5.10),

(5.11), (5.13), (5.14) and (5.15) are satisfied only for τ = t, b(t), b2(t), . . . In particular, if this

sequence is monotone (as in the typical example mentioned in part 1 above or, thanks to

(5.10) when µ is nondecreasing), then the conclusions of all the statements remain true when

conditions (5.10), (5.11), (5.13), (5.14) and (5.15) are satisfied for all τ ∈ (0, t].
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4. Thanks to part 3, instead of conditions (5.11), (5.13) and (5.15), one can require that,

for each n = 0, 1, . . ., the following conditions hold true, respectively:

d(u, F−1
bn+1(t)

(y)) < m(bn(t)) for all u ∈ F−1
bn(t)(y) (5.17)

∩B(x, µ(t)− µ(bn(t))),

d(u, F−1
bn+1(t)

(y)) < m(bn(t)) for all u ∈ F−1
bn(t)(y)

∩ {x′ | B(x′, µ(bn(t))) ∈ Σ(M)},

d (y, F0(B(u,m(bn(t))))) < bn+1(t) for all u ∈ F−1
bn(t)(y) (5.18)

∩B(x, µ(t)− µ(bn(t))).

If µ is given by (5.16), then conditions (5.17) and (5.18) can be equivalently rewritten as

follows:

d(u, F−1
bn+1(t)

(y)) < m(bn(t)) for all u ∈ F−1
bn(t)(y) ∩B(x,

n−1∑
i=0

bi(t)),

d (y, F0(B(u,m(bn(t))))) < bn+1(t) for all u ∈ F−1
bn(t)(y) ∩B(x,

n−1∑
i=0

bi(t)).

5. The conclusions of Theorem 14 and Corollaries 10 and 11 can be equivalently rewritten

as y ∈ F (B(x, µ(t)), 0).

The next two theorems are the (slightly improved) original results of [39, Theorems 3 and

4] reformulated in the setting of metric spaces and adopting the terminology and notation of

the current chapter. These theorems, which follow immediately from Theorems 13 and 14,

respectively, imply all the other results of [37, 38, 39] as well as many open mapping and

closed graph theorems and theorems of the Lyusternik type and results on approximation

and semicontinuity or their refinements; cf. the references in [37, 38, 39].

Theorem 15. Let t > 0 and (x, t) ∈ dom F . Suppose that, for each y ∈ Y ,

F−1
0 (y) = Lim sup t↓0 F

−1
t (y) (5.19)
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and there are positive numbers ρ, s and bn (n = 1, 2, . . .), such that

∞∑
n=1

bn + s ≤ ρ. (5.20)

Suppose also that, for each y ∈ F (x, t), there are numbers cn > 0 (n = 1, 2, . . .) and a function

m : (0,∞)→ (0,∞) satisfying (5.6) and

d(u, F−1
m(c1)(y)) < s for all u ∈ F−1

t (y) ∩B(x, ρ− s), (5.21)

d(u, F−1
m(cn+1)(y)) < bn for all u ∈ F−1

m(cn)(y) ∩B(x, ρ− bn) (n = 1, 2, . . .) (5.22)

Then, F (x, t) ⊂ F (B(x, ρ), 0).

Proof. Set b0 := s and take any y ∈ F (x, t). It follows from (5.19) that the mapping

τ 7→ F−1
τ (y) on R+ is outer semicontinuous at 0. Condition (5.20) obviously implies (5.3).

Observe that
∑n−1

i=0 bi ≤ ρ −∑∞i=n bi < ρ − bn (n = 0, 1, . . .) Hence, conditions (5.21) and

(5.22) imply (5.7) and (5.8), respectively. By Theorem 13, y ∈ F (B(x, ρ), 0).

Theorem 16. Let M ⊂ X and Σ(M) be a complete system. Let a function b : (0,∞) →

(0,∞) be given. Suppose that, for each y ∈ Y , condition (5.19) holds true and there exists a

function m : (0,∞)→ (0,∞) satisfying condition (5.9) and, for all τ ∈ (0,∞) and x ∈ X with

(x, t, y) ∈ gphF and B(x, µ(τ)) ∈ Σ(M), conditions (5.13) and (5.16) are satisfied. Then,

for any (x, t, y) ∈ gphF with t > 0 and B(x, µ(t)) ∈ Σ(M), one has y ∈ F (B(x, µ(t)), 0).

Proof. Take any (x, t, y) ∈ gphF with t > 0 and B(x, µ(t)) ∈ Σ(M) and a function m satis-

fying the assumptions of the theorem. Condition (5.19) obviously implies that the mapping

τ 7→ F−1
τ (y) on R+ is outer semicontinuous at 0. Thanks to Remark 45.2, all the assumptions

of Corollary 10 are satisfied. Hence, y ∈ F (B(x, µ(t)), 0).

Remark 46. Comparing the statements of Theorem 16 and [39, Theorem 4], one can notice

that the latter one looks stronger: it is formulated without assumption (5.9) and with the

stronger conclusion F (x, t) ⊂ F (B(x, µ(t)), 0). However assumption (5.9) is implicitly used in

the proof of [39, Theorem 4] and the conclusion is established for a fixed y ∈ F (x, t) satisfying

B(x, µ(t)) ∈ Σ(M). (Observe that function m in Theorem 16 and consequently function µ

defined by (5.16) depend on the choice of y ∈ F (x, t).)

166



Unlike the setting of the current chapter, in [39] mapping F was assumed to be defined

not on X×R+, but on X× [0, t0] where t0 is a given positive number. This difference can be

easily eliminated by setting F (x, t) := ∅ when t > t0 and making appropriate minor changes

in the statements.

5.2.2 Lemma 18 and Ekeland variational principle

Lemma 18 which lies at the core of the proofs of the statements in the previous subsection

can serve as a substitution of the Ekeland variational principle which is a traditional tool

when establishing regularity criteria. This is demonstrated by the proof of such a criterion

in the following theorem.

Theorem 17. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping τ 7→ F−1
τ (y) is

outer semicontinuous on [0, t) and there is a continuous nondecreasing function µ : [0, t]→ R+

satisfying µ(τ) = 0 if and only if τ = 0 and, for each pair (u, τ) ∈ F−1(y) with τ ∈ (0, t] and

d(x, u) ≤ µ(t)− µ(τ), there exists a pair (u′, τ ′) ∈ F−1(y) such that u′ 6= u and

µ(τ ′) ≤ µ(τ)− d(u′, u). (5.23)

Then, d(x, F−1
0 (y)) ≤ µ(t).

Proof. Set a0 := t, x̄ := x and define a sequence {(xn, an)} by induction. For any n = 0, 1, . . .,

let a pair (xn, an) ∈ F−1(y) with an ∈ [0, t] and d(x, xn) ≤ µ(t)− µ(an) be given. If an = 0,

set an+1 := 0 and xn+1 := xn. Otherwise, define

cn := inf{µ(τ) | (u, τ) ∈ F−1(y), µ(τ) ≤ µ(an)− d(u, xn)}. (5.24)

By the assumptions of the theorem, 0 ≤ cn < µ(an), and one can choose a pair (xn+1, an+1) ∈

F−1(y) such that xn+1 6= xn and

µ(an+1) ≤ µ(an)− d(xn, xn+1), (5.25)

cn ≤ µ(an+1) <
µ(an) + cn

2
< µ(an). (5.26)
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It also follows from (5.25) that

d(x, xn+1) ≤ d(x, xn) + d(xn, xn+1) ≤ µ(t)− µ(an+1).

If an = 0 for some n > 0, then, by (5.25),

d(x, F−1
0 (y)) ≤ d(x, xn) ≤

n−1∑
j=0

d(xj , xj+1) ≤ µ(t).

Now assume that an > 0 for all n = 0, 1, . . .. Then, {an} is a decreasing sequence of

positive numbers which converges to some a ≥ 0. We are going to show that a = 0. Suppose

that a > 0 and denote ân := an − a. Obviously, ân > 0 and ân ↓ 0. By (5.25),

∞∑
n=0

d(xn, xn+1) ≤ µ(t)− µ(a).

Fix an ε > 0 and choose numbers bn > d(xn, xn+1) such that
∑∞

n=0 bn < µ(t)− µ(a) + ε. Set

Φ(ân) := {xn}, Φ(τ) := ∅ for any τ ∈ (0,∞)\{â0, â1, . . .}, and let Φ(0) be the set of all cluster

points of {xn}. Then, x ∈ Φ(â0), Φ is outer semicontinuous at 0 and d(Φ(ân),Φ(ân+1)) < bn.

It follows from Lemma 18 that there exists a z ∈ Φ(0) satisfying d(x, z) < µ(t) − µ(a) + ε.

By the outer semicontinuity of Φ, y ∈ F (z, a).

Since a > 0, by the assumptions of the theorem, there exists a pair (u, τ) ∈ F−1(y) such

that u 6= z and

µ(τ) ≤ µ(a)− d(u, z). (5.27)

Then, µ(τ) < µ(a). Observe from (5.26) that

2µ(an+1)− µ(an) < cn < µ(an).

Hence, {cn} converges to µ(a) and consequently µ(τ) < cn when n is large enough. By

definition (5.24), this yields

µ(τ) > µ(an)− d(u, xn). (5.28)
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At the same time,

d(xn, z) ≤
∞∑
j=n

d(xj , xj+1) ≤ µ(an)− µ(a).

This combined with (5.27) gives

µ(τ) ≤ µ(an)− d(u, xn)

which is in obvious contradiction with (5.28). Hence, a = 0, z ∈ F−1
0 (y), d(x, z) < µ(t) + ε,

and, as ε is arbitrary, d(x, F−1
0 (y)) ≤ µ(t).

The proof of Theorem 17 given above relies on Lemma 18 and uses standard arguments

typical for traditional proofs of the Ekeland variational principle; cf. e.g. [10]. We next show

that the latter classical result can also be established as a consequence of Lemma 18.

Theorem 18 (Ekeland variational principle). Let X be a complete metric space and f : X →

R∪{+∞} be lower semicontinuous and bounded from below. Suppose ε > 0, λ > 0 and x ∈ X

satisfies

f(x) < inf
X
f + ε.

Then, there exists a z ∈ X such that

(i) d(z, x) < λ,

(ii) f(z) ≤ f(x),

(iii) f(u) + (ε/λ)d(u, z) ≥ f(z) for all u ∈ X.

Proof. Denote x̄ := x. For n = 0, 1, . . ., set

an := sup
u∈X

{
f(xn)− f(u)− ε

λ
d(u, xn)

}
. (5.29)

Obviously, 0 ≤ an <∞. Choose an xn+1 such that

f(xn)− f(xn+1)− ε

λ
d(xn+1, xn) ≥ an

2
. (5.30)
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Then, for n = 0, 1, . . .,

f(xn+1) ≤ f(xn), d(xn+1, xn) ≤ λ

ε
(f(xn)− f(xn+1))

and the inequalities are strict if an > 0. It follows that

f(xn) ≤ f(x) and d(xn, x) ≤ λ

ε
(f(x)− f(xn)) < λ.

If, for some n, an = 0, then z := xn satisfies the conclusions of the theorem. Suppose that

an > 0 for all n = 0, 1, . . .. Then, bn := λ
ε (f(xn) − f(xn+1)) > 0. Set Φ(an) := {xn},

Φ(τ) := ∅ for any τ ∈ (0,∞) \ {a0, a1, . . .} and Φ(0) := Lim sup τ↓0 Φ(τ). Hence, Φ is outer

semicontinuous at 0, x ∈ Φ(a0),
∑∞

n=0 bn < λ and d(Φ(an),Φ(an+1)) < bn. Besides, it follows

from (5.29) that

f(xn)− f(u)− ε

λ
d(u, xn) ≤ an for all u ∈ X. (5.31)

Subtracting (5.30) from the last inequality and using the triangle inequality, we conclude that

f(xn+1)− f(u)− ε

λ
d(u, xn+1) ≤ an

2
for all u ∈ X,

i.e., an+1 ≤ an/2 and consequently an ↓ 0 as n → ∞. It follows from Lemma 18 that

there exists a z ∈ Φ(0) satisfying (i). By the definition of Φ(0) and (5.31), we conclude that

conditions (ii) and (iii) are satisfied too.

Remark 47. Lemma 18 was used in the proof of Theorem 18 where one would normally

use the convergence of a Cauchy sequence. Similarly, the Ekeland variational principle can

replace the Cauchy sequence argument in the proof of Lemma 18. In fact, both Lemma 18

and Theorem 18 are in a sense equivalent to the completeness of X.

5.2.3 Regularity

Lemma 18 and the other results in Subsection 5.2.1 provide a collection of basic estimates

which are going to be used when establishing regularity criteria. Theorems 13, 14 and 17 and

Corollaries 10 and 11 were formulated for a fixed point (x, t, y) ∈ gphF . The next step is to
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“set variable t free” and formulate criteria for a fixed point (x, y) such that (x, t, y) ∈ gphF

for some t > 0. Once variable t is free, it is natural to take infimum over t in the right-hand

sides of the inequalities in the conclusions of the statements in Subsection 5.2.1 to obtain

the best possible estimates. Under the natural assumption of monotonicity of the function

µ involved in most of the statements, this is equivalent to evaluating the infimum of t > 0

such that (x, t, y) ∈ gphF . This way the “distance-like” quantity δ(y, F, x) defined by (5.2)

comes into play.

The next several assertions are immediate consequences of Theorems 13, 14 and 17 and

Corollaries 10 and 11, respectively. As an illustration, we provide a short proof of the first

one.

Theorem 19. Let (x, y) ∈ X × Y and µ : R+ → R+ be an upper semicontinuous nonde-

creasing function. Suppose that the mapping τ 7→ F−1
τ (y) on R+ is outer semicontinuous at

0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with (x, t, y) ∈ gphF , there are sequences

of positive numbers (bn) and (cn) and a function m : (0,∞) → (0,∞) such that conditions

(5.6)–(5.8) hold true and
∞∑
n=0

bn ≤ µ(t). (5.32)

Then, d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Proof. It is sufficient to notice that, for any t ∈ (0, γ) with (x, t, y) ∈ gphF , condition (5.32)

implies (5.3) and, by Theorem 13, d(x, F−1
0 (y)) < µ(t). Taking the infimum in the right-

hand side of the above inequality over all t > 0 with (x, t, y) ∈ gphF and making use of the

monotonicity of µ, we arrive at the claimed conclusion.

Theorem 20. Let (x, y) ∈ X × Y and µ : R+ → R+ be an upper semicontinuous nonde-

creasing function. Suppose that the mapping τ 7→ F−1
τ (y) on R+ is outer semicontinuous

at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with (x, t, y) ∈ gphF , there are func-

tions b,m : (0,∞) → (0,∞) such that condition (5.9) is satisfied and, for each τ > 0 with

µ(τ) ≤ µ(t), conditions (5.10) and (5.11) hold true. Then, d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Corollary 12. Let M ⊂ X and Σ(M) be a complete system, (x, y) ∈ X×Y and µ : R+ → R+

be an upper semicontinuous nondecreasing function. Suppose that the mapping τ 7→ F−1
τ (y)
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on R+ is outer semicontinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with

(x, t, y) ∈ gphF , one has B(x, µ(t)) ∈ Σ(M), there are functions b,m : (0,∞)→ (0,∞) such

that condition (5.9) is satisfied and, for each τ > 0, conditions (5.10) and (5.13) hold true.

Then, d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Corollary 13. Let (x, y) ∈ X × Y and µ : R+ → R+ be an upper semicontinuous non-

decreasing function. Suppose that the mapping τ 7→ F−1
τ (y) on R+ is outer semicon-

tinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with (x, t, y) ∈ gphF ,

there are functions b,m : (0,∞) → (0,∞) such that condition (5.9) is satisfied and, for

each τ > 0 with µ(τ) ≤ µ(t), conditions (5.10), (5.14) and (5.15) hold true. Then,

d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Remark 48. Most of the comments in Remarks 44 and 45 are applicable to Theorems 19

and 20 and Corollaries 12 and 13.

In the next theorem, we at last get rid of the technical parameters inherited from the

statements in Subsection 5.2.1 and formulate a regularity statement in a more conventional

way (though still as an “at a point” condition).

Theorem 21. Let (x, y) ∈ X×Y , µ : R+ → R+ be a continuous nondecreasing function and

µ(τ) = 0 if and only if τ = 0. Suppose that the mapping τ 7→ F−1
τ (y) is outer semicontinuous

on [0, δ(y, F, x)] and, for each pair (u, τ) ∈ F−1(y) with τ ∈ (0, δ(y, F, x)] and d(x, u) ≤

µ(δ(y, F, x))−µ(δ(y, F, u)), there exists a pair (u′, τ ′) ∈ F−1(y) such that u′ 6= u and condition

(5.23) is satisfied. Then, d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Proof. If δ(y, F, x) = ∞, then the conclusion holds true trivially. Otherwise, the outer

semicontinuity of τ 7→ F−1
τ (y) ensures that y ∈ F (x, δ(y, F, x)), and the conclusion follows

from Theorem 17 for t = δ(y, F, x).

Remark 49. The conclusion of Theorems 19, 20 and 21 and Corollaries 12 and 13 reminds

the inequality in the definition of the metric regularity property for a set-valued mapping

F : X ⇒ Y between metric spaces; cf. [19]. The difference is in the right-hand side, where

δ(y, F, x) stands in place of d(y, F (x)). The relationship between the two settings will be

explored in Section 5.4.
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The conclusion of Theorems 19, 20 and 21 and Corollaries 12 and 13 can be reformulated

equivalently in a “covering-like” form.

Proposition 33. Consider the following conditions:

(i) d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)),

(ii) y ∈ F (B(x, t), 0) for any t > µ(δ(y, F, x)),

(iii) y ∈ F (B(x, µ(δ(y, F, x))), 0).

Then, (iii) ⇒ (ii) ⇔ (i).

Proof. (iii) ⇒ (ii) is obvious.

(i)⇒ (ii). By (i), for any t > µ(δ(y, F, x)), there exists a z ∈ F−1
0 (y) such that d(x, z) < t

and consequently y ∈ F (z, 0) ⊂ F (B(x, t), 0).

(ii)⇒ (i). y ∈ F (B(x, t), 0) and t > 0 if and only if d(x, F−1
0 (y)) < t. If the last inequality

holds for all t > µ(δ(y, F, x)), then d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Remark 50. Proposition 33 is true without the assumption of the completeness of X.

5.3 Regularity on a set

In this section, we continue exploring regularity properties for a set-valued mapping F :

X × R+ ⇒ Y , where X and Y are metric spaces. Given a subset W ⊂ X × Y and an upper

semicontinuous nondecreasing function µ : [0,+∞]→ [0,+∞], we use the statements derived

in Section 5.2 to characterize regularity of F on W with functional modulus µ. We “set free”

the remaining two variables x and y restricting them to the set W .

Definition 18. (i) F is regular on W with functional modulus µ if

d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)) for all (x, y) ∈W.

(ii) F is open on W with functional modulus µ if

y ∈ F (B(x, t), 0) for all (x, y) ∈W and t > µ(δ(y, F, x)).
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The above properties differ from the conventional metric regularity defined for set-valued

mappings between metric spaces (cf. [19]) and its nonlinear extensions (cf. [33]). The

relationship between the two settings will be discussed in Section 5.4.

The next proposition is a consequence of Proposition 33 thanks to Remark 50.

Proposition 34. The two properties in Definition 18 are equivalent.

Remark 51. It follows from Proposition 33 that the properties in Definition 18 are implied

by the following stronger version of openness:

y ∈ F (B(x, µ(δ(y, F, x))), 0) for all (x, y) ∈W.

The criteria of regularity in the next theorem are direct consequences of Theorems 19 and

20 and Corollary 13.

Theorem 22. Suppose that, for any (x, y) ∈ W , the mapping τ 7→ F−1
τ (y) on R+ is outer

semicontinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with (x, t, y) ∈ gphF ,

one of the following sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m : (0,∞)→ (0,∞)

such that conditions (5.6)–(5.8) and (5.32) hold true,

(ii) there are functions b,m : (0,∞)→ (0,∞) such that condition (5.9) is satisfied and, for

any τ > 0 with µ(τ) ≤ µ(t), conditions (5.10) and (5.11) hold true,

(iii) there are functions b,m : (0,∞)→ (0,∞) such that condition (5.9) is satisfied and, for

any τ > 0 with µ(τ) ≤ µ(t), conditions (5.10), (5.14) and (5.15) hold true.

Then, F is regular on W with functional modulus µ.

In the next statement, which is a consequence of the “parameter-free” Theorem 21, pY :

X × Y → Y denotes the canonical projection on Y : for any (x, y) ∈ X × Y , pY (x, y) = y.

Given a pair (x, y) ∈W , denote

Ux,y := {u ∈ X | δ(y, F, u) > 0, µ(δ(y, F, u)) + d(u, x) ≤ µ(δ(y, F, x))}.
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Theorem 23. Let µ be continuous, µ(τ) = 0 if and only if τ = 0. Suppose that F−1 is

closed-valued on pY (W ) and, for any (x, y) ∈ W and u ∈ Ux,y, there exists a point u′ 6= u

such that

µ(δ(y, F, u′)) ≤ µ(δ(y, F, u))− d(u, u′). (5.33)

Then, F is regular on W with functional modulus µ.

Proof. Fix an arbitrary (x, y) ∈ W . We need to show that d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)). If

there exists a point u such that δ(y, F, u) = 0 and d(x, u) ≤ µ(δ(y, F, x)) (in particular, if

δ(y, F, x) = 0), then, by the closedness of F−1(y), we have u ∈ F−1
0 (y), and the inequality

holds trivially.

Suppose that δ(y, F, u) > 0 for any u ∈ X such that d(x, u) ≤ µ(δ(y, F, x)). Take any

u ∈ X such that d(x, u) ≤ µ(δ(y, F, x)) − µ(δ(y, F, u)) and any τ ∈ (0, δ(y, F, x)] such that

(u, τ) ∈ F−1(y). Then, τ ≥ δ(y, F, u) > 0 and, by the assumption, there exists a point u′ 6= u

satisfying (5.33). Setting τ ′ = δ(y, F, u′), we get (u′, τ ′) ∈ F−1(y) and condition (5.23) is

satisfied:

µ(τ ′) = µ(δ(y, F, u′)) ≤ µ(δ(y, F, u))− d(u, u′) ≤ µ(τ)− d(u, u′).

The mapping τ 7→ F−1
τ (y) is outer semicontinuous on [0, δ(y, F, x)] thanks to the closedness

of F−1(y). The required inequality follows from Theorem 21.

One can define seemingly more general ν-versions of the properties in Definition 18,

determined by a function ν : W → (0,∞]; see [33] for the motivations behind such properties.

Definition 19. (i) F is ν-regular on W with functional modulus µ if

d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)) for all (x, y) ∈W with µ(δ(y, F, x)) < ν(x, y).

(ii) F is ν-open on W with functional modulus µ if

y ∈ F (B(x, t), 0) for all (x, y) ∈W and t ∈ (µ(δ(y, F, x)), ν(x, y)).

Remark 52. Each of the properties in Definition 18 is a particular case of the corresponding

one in Definition 19 with any function ν : W → (0,∞] satisfying µ(δ(y, F, x)) < ν(x, y) for
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all (x, y) ∈ W with µ(δ(y, F, x)) < +∞, e.g., one can take ν ≡ +∞. At the same time, each

of the properties in Definition 19 can be considered as a particular case of the corresponding

one in Definition 18 with the set W replaced by W ′ := {(x, y) ∈W | µ(δ(y, F, x)) < ν(x, y)}.

Proposition 35. The two properties in Definition 19 are equivalent.

We next formulate the corresponding criteria for ν-regularity. The next two theorems are

consequences of Theorem 22 and the “parameter-free” Theorem 23, respectively, thanks to

Remark 52 and the simple observation that, if µ(δ(y, F, x)) < ν(x, y), then, making use of the

upper semicontinuity of µ, it is possible to choose a γ > δ(y, F, x) such that µ(γ) < ν(x, y).

Theorem 24. Suppose that, for any (x, y) ∈ W , the mapping τ 7→ F−1
τ (y) on R+ is outer

semicontinuous at 0 and, for any t > 0 with (x, t, y) ∈ gphF and µ(t) < ν(x, y), one of the

three sets of conditions in Theorem 22 is satisfied. Then, F is ν-regular on W with functional

modulus µ.

Theorem 25. Let µ be continuous, µ(τ) = 0 if and only if τ = 0 and ν :
⋃

(x,y)∈W (Ux,y ×

{y}) → (0,∞) be Lipschitz continuous with modulus not greater than 1 in x for any y ∈

pY (W ). Suppose that F−1 takes closed values on pY (W ) and, for any (x, y) ∈ W and

u ∈ Ux,y with µ(δ(y, F, u)) < ν(u, y), there exists a point u′ 6= u such that condition (5.33)

holds true. Then, F is ν-regular on W with functional modulus µ.

Proof. Define W ′ := {(x, y) ∈ W | µ(δ(y, F, x)) < ν(x, y)} and take any (x, y) ∈ W ′ and

u ∈ Ux,y. Then, taking into account the Lipschitz continuity of ν, we have:

µ(δ(y, F, u)) ≤ µ(δ(y, F, x))− d(x, u) < ν(x, y)− d(x, u) ≤ ν(u, y).

Hence, there exists a point u′ 6= u such that (5.33) holds true. By Theorem 23, F is regular

on W ′ and, thanks to Remark 52, ν-regular on W with functional modulus µ.

Remark 53. The properties in Definitions 18 and 19 depend on the choice of the set W and

(in the case of Definitions 19) function ν. Changing these parameters may lead to the change

of the regularity modulus or even kill regularity at all; cf. [33, Example 1].

The next definition introduces the more conventional local versions of the properties in

Definition 18 related to a fixed point (x̄, ȳ) ∈ gphF0.
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Definition 20. (i) F is regular at (x̄, ȳ) with functional modulus µ if there exist neigh-

bourhoods U of x̄ and V of ȳ such that

d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)) for all x ∈ U, y ∈ V.

(ii) F is open at (x̄, ȳ) with functional modulus µ if there exist neighbourhoods U of x̄ and

V of ȳ such that

y ∈ F (B(x, t), 0) for all x ∈ U, y ∈ V and t > µ(δ(y, F, x)).

The properties in Definition 20 are obviously equivalent to the corresponding ones in

Definition 18 with W := U×V . The next three statements are consequences of Proposition 34

and Theorems 22 and 23, respectively.

Proposition 36. The two properties in Definition 20 are equivalent.

Theorem 26. Suppose that there exist neighbourhoods U of x̄ and V of ȳ such that, for

any x ∈ U and y ∈ V , the mapping τ 7→ F−1
τ (y) on R+ is outer semicontinuous at 0 and,

for some γ > δ(y, F, x) and any t ∈ (0, γ) with (x, t, y) ∈ gphF , one of the three sets of

conditions in Theorem 22 is satisfied. Then, F is regular at (x̄, ȳ) with functional modulus µ.

Theorem 27. Let µ be continuous, µ(τ) = 0 if and only if τ = 0. Suppose that there exist

neighbourhoods U of x̄ and V of ȳ such that F−1 takes closed values on V and, for any x ∈ U ,

y ∈ V , and u ∈ Ux,y, there exists a point u′ 6= u such that condition (5.33) is satisfied. Then,

F is regular at (x̄, ȳ) with functional modulus µ.

5.4 Conventional setting

In this section, we consider the standard in variational analysis setting of a set-valued

mapping F : X ⇒ Y between metric spaces. Such a mapping can be imbedded into the

more general setting explored in the previous sections by defining a set-valued mapping
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F : X × R+ ⇒ Y as follows (cf. [30, p. 508]: for any x ∈ X and t ≥ 0,

F(x, t) := B(F (x), t) =


{y ∈ Y | d(y, F (x)) < t} if t > 0,

F (x) if t = 0.

(5.34)

(Recall the convention: B(y, 0) = {y}.) We are going to consider also mappings F : X ⇒ Y

and F : X ×R+ ⇒ Y , whose values are the closures of the corresponding values of F and F ,

respectively: F (x) := F (x) and

F(x, t) := B(F (x), t) =


{y ∈ Y | d(y, F (x)) ≤ t} if t > 0,

F (x) if t = 0.

(5.35)

The next proposition summarizes several simple facts with regard to the relationship

between F , F and F .

Proposition 37. (i) F0(x) = F (x), F0(x) = F (x) for all x ∈ X.

(ii) δ(y,F , x) = δ(y,F , x) = d(y, F (x)) for all x ∈ X and y ∈ Y .

(iii) F−1
0 (B(y, t)) = F−1(B(y, t)) = F−1

t (y) for all y ∈ Y and t ≥ 0.

(iv) F−1
0 (B(y, t)) = F−1(B(y, t)) ⊂ F−1

t (y) for all y ∈ Y and t ≥ 0.

(v) If F−1 is closed at y, then the mappings τ 7→ F−1
τ (y) and τ 7→ F−1

τ (y) on R+ are outer

semicontinuous at 0.

(vi) For any y ∈ Y and τ > 0, F and F satisfy condition (5.14).

(vii) If F is upper semicontinuous on X, i.e., for any x ∈ X and ε > 0, there exists a

δ > 0 such that F (u) ⊂ B(F (x), ε) for all u ∈ B(x, δ), then F−1 is closed-valued. In

particular, for any y ∈ Y , the mapping τ 7→ F−1
τ (y) is outer semicontinuous on R+.

Proof. (i) The equalities make part of definitions (5.34) and (5.35).
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(ii) By (5.2), (5.34) and (5.35),

δ(y,F , x) = inf{t > 0 | d(y, F (x)) < t} = d(y, F (x)),

δ(y,F , x) = inf{t > 0 | d(y, F (x)) ≤ t} = d(y, F (x)).

(iii) If t = 0, then F−1
0 (y) = F−1(y) and both equalities hold true automatically for all

y ∈ Y . If t > 0, then

x ∈ F−1
t (y) ⇔ d(y, F (x)) < t ⇔ F (x) ∩B(y, t) 6= ∅ ⇔ x ∈ F−1(B(y, t)).

Hence, F−1
t (y) = F−1(B(y, t)). The other equality is satisfied because F−1

0 (v) = F−1(v) for

all v ∈ B(y, t).

(iv) If t = 0, then F−1
0 (y) = F−1

0 (B(y, 0)) = F−1(y) for all y ∈ Y . If t > 0, then

x ∈ F−1(B(y, t)) ⇔ F (x) ∩B(y, t) 6= ∅ ⇒ d(y, F (x)) ≤ t ⇔ x ∈ F−1
t (y).

Hence, F−1(B(y, t)) ⊂ F−1
t (y). The claimed equality is satisfied because F−1

0 (v) = F−1(v)

for all v ∈ B(y, t).

(v) If xn → z and tn ↓ 0 with d(y, F (xn)) < tn (n = 1, 2, . . .), then, for any n, there exists

a yn ∈ F (xn) such that d(y, yn) < tn. Hence, yn → y as n → ∞. Since F−1 is closed at y,

we have z ∈ F−1(y) and consequently y ∈ F (z) = F(z, 0).

Similarly, if xn → z and tn ↓ 0 with d(y, F (xn)) ≤ tn (n = 1, 2, . . .), then, for any n, there

exists a yn ∈ F (xn) such that d(y, yn) < 2tn. Hence, yn → y as n→∞. Since F−1 is closed

at y, we have z ∈ F−1(y) and consequently y ∈ F (z) ⊂ F(z, 0).

(vi) follows from (iii) and (iv).

(vii) If y ∈ Y , xn → z and tn → τ with d(y, F (xn)) ≤ tn (n = 1, 2, . . .), then, since F is

upper semicontinuous,

d(y, F (z)) ≤ lim inf
n→∞

d(y, F (xn)) ≤ lim
n→∞

tn = τ,

that is, y ∈ F(z, τ).
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Thanks to parts (i) and (ii) of Proposition 37, the definitions of regularity and openness

properties explored in the previous sections in the current setting can be expressed in metric

terms. In the next definition, which corresponds to a group of definitions from Section 5.3,

µ : [0,+∞]→ [0,+∞] is an upper semicontinuous nondecreasing function playing the role of

a modulus of the corresponding property.

Definition 21. (i) Given a set W ⊂ X × Y , mapping F is metrically regular on W with

functional modulus µ if

d(x, F−1(y)) ≤ µ(d(y, F (x))) for all (x, y) ∈W. (5.36)

(ii) Given a set W ⊂ X × Y , mapping F is open on W with functional modulus µ if

y ∈ F (B(x, t)) for all (x, y) ∈W and t > µ(d(y, F (x))).

(iii) Given a set W ⊂ X × Y and a function ν : W → (0,∞], mapping F is metrically

ν-regular on W with functional modulus µ if

d(x, F−1(y)) ≤ µ(d(y, F (x))) for all (x, y) ∈W (5.37)

with µ(d(y, F (x))) < ν(x, y).

(iv) Given a set W ⊂ X × Y and a function ν : W → (0,∞], mapping F is ν-open on W

with functional modulus µ if

y ∈ F (B(x, t)) for all (x, y) ∈W and t ∈ (µ(d(y, F (x))), ν(x, y)).

(v) F is metrically regular at a point (x̄, ȳ) ∈ gphF with functional modulus µ if there

exist neighbourhoods U of x̄ and V of ȳ such that

d(x, F−1(y)) ≤ µ(d(y, F (x))) for all x ∈ U, y ∈ V. (5.38)

(vi) F is open at (x̄, ȳ) ∈ gphF with functional modulus µ if there exist neighbourhoods U
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of x̄ and V of ȳ such that

y ∈ F (B(x, t)) for all x ∈ U, y ∈ V and t > µ(d(y, F (x))). (5.39)

Remark 54. If µ is strictly increasing, then condition (5.39) can be rewritten equivalently

in a more conventional “openness-like” form (cf. [33]):

B(F (x), µ−1(t)) ∩ V ⊂ F (B(x, t)) for all x ∈ U and t > 0.

In the case W = U × V , similar simplifications can be made also in parts (ii) and (iv) of the

above definition.

In the linear case (µ is a linear function), the metric regularity and openness/covering

properties in the above definition are well known in both local and global settings (cf., e.g.,

[19, 30, 51, 60]) including regularity on a set [30, 31]. The nonlinear setting in the above

definition follows Ioffe [33] where the properties in parts (iii) and (iv), were mostly investigated

in the particular case W = U ×V where U ⊂ X and V ⊂ Y and the function ν depends only

on x.

Observe that condition (5.36) in Definition 21 is equivalent to

d(x, F−1(y)) ≤ µ(d(y, y′)) for all (x, y) ∈W and y′ ∈ F (x).

In its turn, condition y′ ∈ F (x) is equivalent to x ∈ F−1(y′). This and similar observations

regarding conditions (5.37) and (5.38) allow us to rewrite these conditions, respectively, as

follows:

d(x, F−1(y2)) ≤ µ(d(y1, y2)) for all y1, y2 ∈ Y, x ∈ F−1(y1) with (x, y2) ∈W,

d(x, F−1(y2)) ≤ µ(d(y1, y2)) for all y1, y2 ∈ Y, x ∈ F−1(y1)

with (x, y2) ∈W, µ(d(y1, y2)) < ν(x, y2),

d(x, F−1(y2)) ≤ µ(d(y1, y2)) for all y1 ∈ Y, y2 ∈ V, x ∈ F−1(y1) ∩ U.

Thanks to these observations, one can complement the regularity and openness properties
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in Definition 21 with the corresponding Hölder-like (Aubin in the linear case) properties.

In the definition below, µ : [0,+∞] → [0,+∞] is again an upper semicontinuous nonde-

creasing function.

Definition 22. (i) Given a set W ⊂ X × Y , mapping F is Hölder on W with functional

modulus µ if

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1, x2 ∈ X, y ∈ F (x1) with (x2, y) ∈W.

(ii) Given a set W ⊂ X × Y and a function ν : W → (0,∞], mapping F is ν-Hölder on W

with functional modulus µ if

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1, x2 ∈ X, y ∈ F (x1)

with (x2, y) ∈W, µ(d(x1, x2)) < ν(x2, y).

(iii) F is Hölder at a point (x̄, ȳ) ∈ gphF with functional modulus µ if there exist neigh-

bourhoods U of x̄ and V of ȳ such that

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1, x2 ∈ U, y ∈ F (x1) ∩ V. (5.40)

Thanks to Propositions 34, 35, 36 and the discussion before Definition 22, we have the

following list of equivalences.

Theorem 28. Suppose µ : [0,+∞] → [0,+∞] is an upper semicontinuous increasing func-

tion.

(i) Given a set W ⊂ X × Y , properties (i) and (ii) in Definition 21 are equivalent to F−1

being Hölder on

W ′ := {(y, x) ∈ Y ×X | (x, y) ∈W} (5.41)

with functional modulus µ.

(ii) Given a set W ⊂ X×Y , properties (iii) and (iv) in Definition 21 are equivalent to F−1

being ν ′-Hölder on (5.41) with functional modulus µ, where ν ′ : W ′ → (0,∞] is defined

by the equality ν ′(y, x) = ν(x, y).

182



(iii) Given a point (x̄, ȳ) ∈ gphF , properties (v) and (vi) in Definition 21 are equivalent to

F−1 being Hölder at (ȳ, x̄) with functional modulus µ.

Remark 55. Most of the equivalences in Theorem 28 hold true with function µ nondecreas-

ing. The assumption that µ is strictly increasing is only needed in part (iii). In fact, it

follows from the discussion before Definition 22, that properties (v) and (vi) in Definition 21

are equivalent to a stronger version of the Hölder property of F−1 which corresponds to

replacing condition (5.40) in Definition 22 by the following one:

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1 ∈ X, x2 ∈ U, y ∈ F (x1) ∩ V.

If µ is strictly increasing, then the two versions are equivalent.

We next formulate several regularity criteria in the conventional setting of a mapping

F : X ⇒ Y between metric spaces. All of them are consequences of the corresponding

statements in Section 5.3 thanks to the relationships in Proposition 37. From now on, we

assume that X is complete.

Theorem 29. Given a set W ⊂ X × Y , suppose that, for any (x, y) ∈ W , the inverse

mapping F−1 is closed at y and, for some γ > d(y, F (x)) and any t ∈ (0, γ), one of the

following sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m : (0,∞)→ (0,∞)

such that conditions (5.6) and (5.32) hold true and

d
(
x, F−1(B(y,m(c1)))

)
<b0,

d
(
u, F−1(B(y,m(cn+1)))

)
<bn

for all u ∈ F−1(B(y,m(cn))) ∩B(x,

n−1∑
i=0

bi) (n = 1, 2, . . .),

(ii) there are functions b,m : (0,∞)→ (0,∞) such that condition (5.9) is satisfied and, for

any τ > 0 with µ(τ) ≤ µ(t), condition (5.10) holds true and

d
(
u, F−1(B(y, b(τ)))

)
< m(τ) for all u ∈ F−1(B(y, τ)) ∩B(x, µ(t)− µ(τ)),
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(iii) there are functions b,m : (0,∞)→ (0,∞) such that condition (5.9) is satisfied and, for

any τ > 0 with µ(τ) ≤ µ(t), condition (5.10) holds true and

d (y, F (B(u,m(τ)))) < b(τ) for all u ∈ F−1(B(y, τ)) ∩B(x, µ(t)− µ(τ)).

Then, F is metrically regular on W with functional modulus µ.

Theorem 30. Let µ be continuous, µ(τ) = 0 if and only if τ = 0. Given a set W ⊂ X × Y ,

suppose that F is upper semicontinuous and, for any (x, y) ∈ W and u ∈ X such that

d(y, F (u)) > 0 and µ(d(y, F (u))) + d(u, x) ≤ µ(d(y, F (x))), there exists a point u′ 6= u such

that

µ(d(y, F (u′))) ≤ µ(d(y, F (u)))− d(u, u′).

Then, F is metrically regular on W with functional modulus µ.

Proof. By Theorem 23 and Proposition 37(i), (ii) and (vii), set-valued mapping F is regular

on W with functional modulus µ. Since F is upper semicontinuous, it is closed-valued and

consequently making use of Proposition 37(i) again, we have for any y ∈ Y that F−1
0 (y) =

F−1(y) = F−1(y). Hence, the regularity of F is equivalent to the metric regularity of F .

5.5 Optimality conditions

In this section, we apply our general nonlinear regularity model to establish second-order

necessary optimality conditions for a nonsmooth set-valued optimization problem with mixed

constraints.

Let X,Y, Z and W be Banach spaces; S a nonempty subset of X; C a proper convex

ordering cone in Y expressing the objective preference in the set-valued optimization problem

below (“proper” means C 6= ∅ and C 6= Y ); D a convex cone with nonempty interior in Z;

F : X ⇒ Y , G : X ⇒ Z, and H : X ⇒W set-valued mappings. We consider the problem

MinimizeC F (x) subject to x ∈ Ω,
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where

Ω := {x ∈ X | x ∈ S, G(x) ∩ (−D) 6= ∅, 0 ∈ H(x)}.

A triple (x̄, ȳ, z̄) is said to be feasible if x̄ ∈ Ω, ȳ ∈ F (x) and z̄ ∈ G(x) ∩ (−D). Alongside

the ordering cone C we consider another proper open cone Q ⊂ Y . A point (x̄, ȳ) ∈ X × Y

is called a local Q-solution if

F (U ∩ Ω) ∩ (ȳ −Q) = ∅ (5.42)

for some neighbourhood U of x̄.

The above problem subsumes various vector- and set-valued optimization problems while

the concept of Q-solution, under a suitable choice of Q, subsumes various kinds of solutions;

cf. [42]. For instance, if Q = intC 6= ∅, then Q-solution coincides with the conventional

(local) weak solution. If Q is an open cone such that C \ {0} ⊂ Q, then Q-solution becomes

Henig proper solution. Similarly, setting Q = Y \ (−cone(F (U ∩ Ω) − ȳ + C)) where U is a

neighbourhood of x̄, we come to the concept of Benson proper solution.

It is worth noting the two specific features of the second-order necessary condition we

present below: the regularity condition plays an important role and the right-hand side of

the multiplier rule (5.47) is not the number 0 as in the classical result (and also in many its

developments until now) and it may be strictly negative in particular cases. This phenomenon,

known as the envelope-like effect revealed by Kawasaki [36], may happen because of the

presence of the closure sign in the definition of the set of critical directions (5.45). For typical

contributions to optimality conditions with these two features, we refer the reader to the

references [4, 8, 14, 26, 35, 36, 40, 41, 54]. Theorem 31 below is a further development of

many results in these references.

We first recall several useful definitions.

(i) The (positive) dual cone to a cone K in X:

K∗ := {x∗ ∈ X∗ | 〈x∗, x〉 ≥ 0, ∀x ∈ K}.

(ii) The contingent, interior tangent and normal cones to a nonempty subset M ⊂ X at
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x̄ ∈M :

T (M, x̄) :={u ∈ X | ∃γn ↓ 0, un → u such that x̄+ γnun ∈M, ∀n},

IT (M, x̄) :={u ∈ X | ∀γn ↓ 0, un → u, it holds x̄+ γnun ∈M, ∀ large n},

N(M, x̄) :=− [T (M, x̄)]∗.

(iii) The second-order contingent, adjacent and interior sets to a nonempty subset M ⊂ X

at x̄ ∈M in a direction u ∈ X:

T 2(M, x̄, u) :={x ∈ X | ∃γn ↓ 0, xn → x, s.t. x̄+ γnu+
1

2
γ2
nxn ∈M, ∀n},

A2(M, x̄, u) :={x ∈ X | ∀γn ↓ 0, ∃xn → x, s.t. x̄+ γnu+
1

2
γ2
nxn ∈M, ∀n},

IT 2(M, x̄, u) :={x ∈ X | ∀γn ↓ 0, xn → x, it holds x̄+ γnu+
1

2
γ2
nxn ∈M,

∀ large n}.

(iv) The outer limit and inner limit of a set-valued mapping E : X ⇒ Y at x̄ ∈ X:

Lim sup x→x̄E(x) :={y ∈ Y | lim inf
x→x̄

d(y,E(x)) = 0},

Lim inf x→x̄E(x) :={y ∈ Y | lim
x→x̄

d(y,E(x)) = 0}.

(v) The contingent and lower derivatives of a set-valued mapping E : X ⇒ Y at (x̄, ȳ) ∈

gphE:

DE(x̄, ȳ)(x) := Lim sup γ↓0, x′→x γ
−1[E(x̄+ γx′)− ȳ],

DlE(x̄, ȳ)(x) := Lim inf γ↓0, x′→x γ
−1[E(x̄+ γx′)− ȳ], x ∈ X.

(vi) The second-order contingent and lower derivatives of a set-valued mapping E : X ⇒ Y
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at (x̄, ȳ) ∈ gphE in a direction (u, v) ∈ X × Y :

D2E(x̄, ȳ, u, v)(x) := Lim sup γ↓0, x′→x 2γ−2[E(x̄+ γu+
1

2
γ2x′)− ȳ − γv],

D2
l E(x̄, ȳ, u, v)(x) := Lim inf γ↓0, x′→x 2γ−2[E(x̄+ γu+

1

2
γ2x′)− ȳ − γv], x ∈ X.

Note that, if M is a convex set with intM 6= ∅ and u ∈ T (M, x̄), u), then

T (M, x̄) = IT (M, x̄), A2(M, x̄, u) = IT 2(M, x̄, u), (5.43)

A2(M, x̄, u) + T (T (M, x̄), u) ⊂ A2(M, x̄, u). (5.44)

If K is a convex cone and x̄ ∈ K, then

N(K, x̄) = {x∗ ∈ −K∗ | 〈x∗, x̄〉 = 0}.

Now we return to our optimization problem. Assume that Q is an open convex cone and

denote F+(x) := F (x)+Q and G+(x) := G(x)+D. For a feasible triple (x̄, ȳ, z̄), we introduce

the set of critical directions:

C(x̄, ȳ, z̄) := {(u, v, k) ∈ X × Y × Z | v ∈ DlF+(x̄, ȳ)(u) ∩ (−bdQ),

k ∈ DlG+(x̄, z̄)(u) ∩ (−cone(D + z̄)), 0 ∈ DH(x̄, 0)(u)}. (5.45)

Given a triple (u, v, k) ∈ C(x̄, ȳ, z̄) and a point x ∈ X, we denote

∆(u,v,k)(x) :=
(
D2
l F+(x̄, ȳ, u, v), D2

lG+(x̄, z̄, u, k), D2H(x̄, 0, u, 0)
)

(x).

In what follows, we will consider an extension of the mapping H: a set-valued mapping

H : X × R+ ⇒W with the properties H0(·) := H(·, 0) = H(·) and (cf. definition (5.2))

δ(0,H, x) := inf{t > 0 | 0 ∈ H(x, t)} ≤ θd(0, H(x))

for some θ > 0 and all x in a neighbourhood of x̄. We will need to assume a kind of regular

behaviour of this extension.
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Definition 23. H is regular at (x̄, w̄) with functional modulus µ with respect to S if there

exist neighbourhoods U of x̄ and V of w̄ such that

d(x,H−1
0 (w) ∩ S) ≤ µ(δ(w,H, x)) for all x ∈ U ∩ S, w ∈ V. (5.46)

Observe that this is exactly the regularity in the sense of Definition 20(i) for the re-

striction of the mapping H on S × R+. Recall that µ : [0,+∞] → [0,+∞] is assumed

upper semicontinuous and nondecreasing. In what follows, we will assume additionally that

lim supt↓0 µ(t)/t <∞.

Theorem 31. Let (x̄, ȳ) be a local Q-solution, z̄ ∈ G(x̄)∩(−D), and H be regular at (x̄, 0) with

respect to S. Suppose that (u, v, k) ∈ C(x̄, ȳ, z̄) and ∆(u,v,k)(IT
2(S, x̄, u)) is a convex set with

nonempty interior. Then, there exist multipliers (v∗, k∗, w∗) ∈ Q∗×N(−D, z̄)×W ∗\{(0, 0, 0)}

such that 〈v∗, v〉 = 〈k∗, k〉 = 0 and

v∗ ◦D2
l F+(x̄, ȳ, u, v)(x) + k∗ ◦D2

lG+(x̄, z̄, u, k)(x) + w∗ ◦D2H(x̄, 0, u, 0)(x)

≥ sup
d∈A2(−D,z̄,k)

〈k∗, d〉 for all x ∈ IT 2(S, x̄, u). (5.47)

Moreover, v∗ 6= 0 if the following second-order constraint qualification holds:

cone
(
(D2

lG+(x̄, z̄, u, k)−A2(−D, z̄, k), D2H(x̄, 0, u, 0))(IT 2(S, x̄, u))
)

+ cone(D + z̄)× {0} = Z ×W. (5.48)

Proof. We split the proof into several claims.

Claim 1. (x̄, ȳ) satisfies the primal necessary condition:

D2
l F+(x̄, ȳ, u, v)(T 2(Ω, x̄, u)) ∩ (− cone(Q+ v)) = ∅.

Indeed, by the definition of Q-solution, (5.42) holds true for some neighbourhood U of x̄.

Let x ∈ T 2(Ω, x̄, u) and y ∈ D2
l F+(x̄, ȳ, u, v)(x). Then, there are γn ↓ 0, xn → x, and yn → y

such that x̄+γnu+
1

2
γ2
nxn ∈ U∩Ω for all n ∈ N and ȳ+γnv+

1

2
γ2
nyn ∈ F (x̄+γnu+

1

2
γ2
nxn)+Q

for all sufficiently large n. Thanks to (5.42), we have γnv +
1

2
γ2
nyn /∈ −Q, and consequently,

188



y /∈ − cone(Q+ v).

Claim 2. The following lower estimate for T 2(Ω, x̄, u) holds true:

{x ∈ IT 2(S, x̄, u) | D2
lG+(x̄, z̄, u, k)(x) ∩ IT 2(−D, z̄, k) 6= ∅,

0 ∈ D2H(x̄, 0, u, 0)(x)} ⊂ T 2(Ω, x̄, u).

Suppose x ∈ IT 2(S, x̄, u), z ∈ D2
lG+(x̄, z̄, u, k)(x) ∩ IT 2(−D, z̄, k) and 0 ∈

D2H(x̄, 0, u, 0)(x). As 0 ∈ D2H(x̄, 0, u, 0)(x), there are γn ↓ 0, xn → x, and wn → 0 such that

1

2
γ2
nwn ∈ H(x̄+γnu+

1

2
γ2
nxn) for all n ∈ N. As x ∈ IT 2(S, x̄, u), it holds x̄+γnu+

1

2
γ2
nxn ∈ S

for sufficiently large n. As H is regular at (x̄, 0) with respect to S, for large n, we have:

d(x̄+ γnu+
1

2
γ2
nxn,H−1

0 (0) ∩ S) ≤ µ(δ(0,H, x̄+ γnu+
1

2
γ2
nxn))

≤ µ(θd(0, H(x̄+ γnu+
1

2
γ2
nxn))) ≤ µ

(
θ

2
γ2
n‖wn‖

)
.

There exists a point x̂n ∈ Ĥ−1
0 (0) ∩ S such that

‖x̄+ γnu+
1

2
γ2
nxn − x̂n‖ ≤ µ

(
θ

2
γ2
n‖wn‖

)
+ γ3

n.

By setting x′n := (1
2γ

2
n)−1(x̂n − x̄− γnu), one has x̄+ γnu+

1

2
γ2
nx
′
n ∈ H−1

0 (0) ∩ S and

‖xn − x′n‖ ≤
µ

(
θ

2
γ2
n‖wn‖

)
1

2
γ2
n

+ 2γn → 0 as n→∞.

Hence, x′n → x as n → ∞. As z ∈ D2
lG+(x̄, z̄, u, k)(x), there exists zn → z such that

z̄ + γnk +
1

2
γ2
nzn ∈ G(x̄+ γnu+

1

2
γ2
nx
′
n) +D for large n. Moreover, as z ∈ IT 2(−D, z̄, k), it

holds z̄+γnk+
1

2
γ2
nzn ∈ −D for large n. Hence, (G(x̄+γnu+

1

2
γ2
nx
′
n)+D)∩(−D) 6= ∅ and, as

D is a convex cone, G(x̄+ γnu+
1

2
γ2
nx
′
n)∩ (−D) 6= ∅ for large n. Thus, x̄+ γnu+

1

2
γ2
nx
′
n ∈ Ω

for large n, i.e., x ∈ T 2(Ω, x̄, u).

Claim 3. ∆(u,v,k)(IT
2(S, x̄, u))

⋂(
(− cone(Q+ v))× IT 2(−D, z̄, k)× {0}

)
= ∅.

Suppose to the contrary the existence of x ∈ IT 2(S, x̄, u), y ∈ − cone(Q + v) and z ∈

IT 2(−D, z̄, k) such that (y, z, 0) ∈ ∆(u,v,k)(x). Then, by Claim 2, x ∈ T 2(Ω, x̄, u). We arrive
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at a contradiction with Claim 1.

Claim 4. There exist multipliers (v∗, k∗, w∗) ∈ Q∗×N(−D, z̄)×W ∗ \ {(0, 0, 0)} such that

〈v∗, v〉 = 〈k∗, k〉 = 0 and (5.47) holds true.

If IT 2(−D, z̄, k) = ∅, then A2(−D, z̄, k) = ∅ and (5.47) holds true trivially. Let

IT 2(−D, z̄, k) 6= ∅. The standard separation theorem applied to the two convex sets in

Claim 3 yields the existence of multipliers (v∗, k∗, w∗) ∈ Y ∗ ×Z∗ ×W ∗ \ {(0, 0, 0)} such that

〈v∗, y〉+ 〈k∗, z〉+ 〈w∗, w〉 ≥ 〈v∗, q〉+ 〈k∗, d〉 (5.49)

for all x ∈ IT 2(S, x̄, u), (y, z, w) ∈ ∆(u,v,k)(x), q ∈ − cone(Q+ v), and all d ∈ IT 2(−D, z̄, k).

For any fixed admissible x, y, z, w and d and any q ∈ cone(Q + v) and t > 0, one has

−tq ∈ − cone(Q+ v), and consequently,

〈v∗, q〉 ≥ lim
t→∞

〈v∗, y〉+ 〈k∗, z〉+ 〈w∗, w〉 − 〈k∗, d〉
t

= 0.

Hence,

〈v∗, q〉 ≥ 0 for all q ∈ cone(Q+ v), (5.50)

and consequently, taking into account the second property in (5.43), inequality (5.49) implies

(5.47).

Since Q is a cone, by the same argument, it follows from (5.50) that v∗ ∈ Q∗. As

v ∈ −bdQ, we also have 〈v∗, v〉 = 0. Using (5.50) and property (5.44) of the adjacent set,

we obtain from (5.49) that

〈v∗, y〉+ 〈k∗, z〉+ 〈w∗, w〉 ≥ 〈k∗, d〉+ 〈k∗, d′〉

for all x ∈ IT 2(S, x̄, u), (y, z, w) ∈ ∆(u,v,k)(x), d ∈ A2(−D, z̄, k), and all d′ ∈

T (T (−D, z̄), k). Using the fact that T (T (−D, z̄), k) is a cone, we conclude as before that

k∗ ∈ −(T (T (−D, z̄), k))∗, and consequently, k∗ ∈ N(−D, z̄). As k ∈ T (−D, z̄), we also have

〈k∗, k〉 = 0.
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Claim 5. Under the constraint qualification (5.48), v∗ in (5.47) is nonzero.

Suppose that v∗ = 0. Then, (k∗, w∗) 6= (0, 0) and (5.47) gives

〈k∗, z〉+ 〈w∗, w〉 ≥ 〈k∗, d〉 (5.51)

for all x ∈ IT 2(S, x̄, u), z ∈ D2
lG+(x̄, z̄, u, k)(x), w ∈ D2H(x̄, 0, u, 0)(x) and d ∈ A2(−D, z̄, k).

Take arbitrarily (z′, w′) ∈ Z × W . By virtue of (5.48), there are x ∈ IT 2(S, x̄, u), z ∈

D2
lG+(x̄, z̄, u, k)(x), w ∈ D2H(x̄, 0, u, 0)(x), d ∈ A2(−D, z̄, k), d′ ∈ D and γ1, γ2 > 0 such

that (z′, w′) = γ1(z − d,w) + (γ2(d′ + z̄), 0). Since k∗ ∈ N(−D, z̄), one has 〈k∗, d′〉 ≥ 0 and

〈k∗, z̄〉 = 0. Hence, using (5.51),

〈k∗, z′〉+ 〈w∗, w′〉 = γ1〈k∗, z − d〉+ γ2〈k∗, d′ + z̄〉+ γ1〈w∗, w〉

= γ1(〈k∗, z〉+ 〈w∗, w〉 − 〈k∗, d〉) + γ2〈k∗, d′ + z̄〉

≥ γ2〈k∗, d′ + z̄〉 ≥ 0.

As (z′, w′) ∈ Z ×W is arbitrary, we have (k∗, w∗) = (0, 0), a contradiction.

Remark 56. 1. The requirements on the extension mapping H formulated before Defini-

tion 23 are satisfied, e.g., if

e(H(x, t), H(x)) := sup
h∈H(x,t)

d(h,H(x)) ≤ αtk

for some α > 0, k ≥ 1 and all (x, t) in a neighbourhood of (x̄, 0).

2. The lower estimate for T 2(Ω, x̄, u) in Claim 2 and its proof presented above are valid

for any feasible triple (x̄, ȳ, z̄) and any u ∈ X with 0 ∈ DH(x̄, 0)(u) and k ∈ DlG+(x̄, z̄)(u).

This estimate can be of importance beyond Theorem 31.

3. In the proof of Theorem 31 (see Claim 2), one can employ weaker regularity properties

of the extension mapping H than the one given in Definition 23. Firstly, it is sufficient to

require the inequality in (5.46) to hold only at the fixed point w = 0. This important property

known as metric subregularity can be treated in the abstract setting of the current chapter

and is going to make the topic of subsequent research. Moreover, only points of the form

x̄ + γnu +
1

2
γ2
nxn are involved in the proof. Hence, a development of our regularity model
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corresponding to directional metric subregularity is on the agenda. Such an extension is going

to properly improve [42, Theorem 3.1].

4. Following [42], one can improve Theorem 31 by relaxing the restrictive assumption of

nonemptyness of the interior of the set ∆(u,v,k)(IT
2(S, x̄, u)).

5. It is possible to develop multiplier rules similar to the one in Theorem 31 in terms

of other types of generalized derivatives, for instance asymptotic derivatives, instead of the

contingent-type ones. Such rules may be useful when the contingent-type derivatives do not

exist in a particular problem under consideration.

5.6 Concluding remarks

This chapter considers a general regularity model for a set-valued mapping F : X×R+ ⇒

Y , where X and Y are metric spaces. We demonstrate that the classical approach going back

to Banach, Schauder, Lyusternik and Graves and based on iteration procedures still possesses

potential. In particular, we show that the Induction theorem [37, Theorem 1], which was used

as the main tool when proving the other results in [37], implies also all the main results in

the subsequent articles [38, 39] and can serve as a substitution of the Ekeland variational

principle when establishing other regularity criteria. Furthermore, the latter classical result

can also be established as a consequence of the Induction theorem.

This research prompts a list of questions and problems which should be taken care of.

1) “On a set” nonlinear regularity, considered in Section 5.3 and interpreted there as a

direct analogue of metric regularity in the conventional setting, is in fact a general model

which covers also relaxed versions of regularity like sub- and semi-regularity.

2) The particular case of “power nonlinearities”, i.e., the case when functional modulus

µ is of the type µ(t) = λtk with 0 < k ≤ 1, should be treated explicitly.

3) Theorem 17 illustrates the usage of the Induction theorem as a substitution for the

Ekeland variational principle when establishing regularity criteria like Theorem 30. In the

last theorem which is an (indirect) consequence of Theorem 17, the mapping is assumed upper

semicontinuous. This assumption can be relaxed with the help of a slightly more advanced

version of Theorem 17.

4) The regularity model studied in this chapter is illustrated in Section 5.5 by an applica-
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tion to second-order necessary optimality conditions for a nonsmooth set-valued optimization

problem with mixed constraints. Other classes of optimization problems can be handled along

the same lines using also other types of generalized derivatives. The relaxed versions of reg-

ularity mentioned in item 1 above are going to be useful in this context.
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Chapter 6

Metric subregularity - a view from

the induction theorem

Iteration procedures, which go back to Banach, Schauder, Lyusternik and Graves, are used

for studying metric subregularity properties of set-valued mappings in the general nonlinear

setting.

6.1 Introduction

As shown in [3, 9, 10, 12, 14, 15, 16, 17] the following induction theorem (and its other

versions, e.g., [14, Theorem 1]) containing a typical Cauchy sequence argument can serve as

a substitution of the Ekeland variational principle when establishing regularity criteria for

set-valued mappings. In fact, the two results are in a sense equivalent to the completeness of

X.

Lemma 19. [17, Lemma 2.1] Let X be a complete metric space, Φ : R+ ⇒ X, t > 0, and

x ∈ Φ(t). Suppose that Φ is outer semicontinuous [27] at 0:

lim sup
τ→0

Φ(τ) :=
{
z ∈ X | lim inf

τ→0
d(z,Φ(τ)) = 0

}
⊂ Φ(0)
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and there are sequences of positive numbers (an) and (bn) such that

∞∑
n=0

bn <∞,

a0 = t and an ↓ 0 as n→∞,

d(u,Φ(an+1)) < bn for all u ∈ Φ(an) ∩ Un (n = 0, 1, . . .),

where U0 := {x}, Un := B
(
x,
∑n−1

i=0 bi

)
(n = 1, 2, . . .). Then, d(x,Φ(0)) <

∑∞
n=0 bn.

In [17], the above lemma was used as a key tool for establishing global and local regularity

criteria for a set-valued mapping F : X ×R+ ⇒ Y , where X and Y are metric spaces. These

regularity criteria were naturally translated into those for metric regularity/openness in the

conventional setting of a set-valued mapping F : X ⇒ Y .

In this chapter, we will demonstrate that the general regularity theory for a set-valued

mapping F : X × R+ ⇒ Y developed in [17] can without changes be translated into the

conventional setting to obtain criteria for metric subregularity property of a set-valued map-

ping F : X ⇒ Y . This relaxed version of the metric regularity property is also an important

property. Its outstanding role in optimization and variational analysis in relation to calmness

properties, error bounds, weak sharp minima, slopes, and subdifferentials has been verified

through a vast number of publications, e.g., [1, 2, 3, 4, 5, 6, 11, 12, 19, 20, 21, 24, 28]. For

the interest of enriching the regularity theory for a set-valued mapping F : X×R+ ⇒ Y , the

sub-version of the regularity property in this setting will also be discussed, and as expected, it

is a direct counterpart of the corresponding relaxed version of the metric regularity property

in the conventional setting.

Following the lines of [3, 9, 10, 12, 14, 15, 16, 17, 25], most of the results in this chapter

will be formulated for the most general model which involves certain gauge functions. Then

one can straightforwardly derive those for the linear and Hölder-type models by considering

the gauge function of the corresponding type. Due to the very importance of the linear and

Hölder-type regularity models in applications, especially in convergence analysis of computa-

tional methods, e.g., [7, 8, 22, 23, 29, 30], we will also explicitly formulate criteria for metric

subregularity property of linear and Hölder-type models.

Our basic notation is standard; cf. [5, 24, 27]. X and Y are metric spaces. Metrics in
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all spaces are denoted by the same symbol d(·, ·). If x and C are a point and a subset of a

metric space, then d(x,C) := infc∈C d(x, c) is the point-to-set distance from x to C, while C

denotes the closure of C. B(x, r) and B(x, r) stand for the open and closed balls of radius

r > 0 centered at x, respectively. We use the convention that B(x, 0) = {x}.

6.2 Subregularity for F : X × R+ ⇒ Y

In this section, we will continue to develop the regularity theory proposed in [17] for a

set-valued mapping F : X × R+ ⇒ Y , where X and Y are metric spaces. A relaxed version

of the regularity property for a set-valued mapping F : X × R+ ⇒ Y will be discussed and

their criteria will be provided.

Since X × R+ is a metric space with the product metric, the set-valued mapping F :

X × R+ ⇒ Y is a special set-valued mapping between metric spaces. On the other hand,

every set-valued mapping F : X ⇒ Y between metric spaces can naturally be extended to,

for example, the mapping F : X × R+ ⇒ Y by

F(x, t) :=

 F (x) if t = 0

∅ if t > 0.

From now on in this section, we consider a set-valued mapping F : X × R+ ⇒ Y , where

X and Y are metric spaces, X is complete. Given a t ∈ R+, we denote Ft := F(·, t) : X ⇒ Y .

We define, for (x, y) ∈ X × Y ,

δ(y,F , x) := inf{t > 0 | y ∈ F(x, t)}

with the usual convention that inf ∅ = +∞.

Throughout the chapter, if not specifically stated, µ : R+ → R+ is an upper semicontin-

uous nondecreasing function.

6.2.1 Basic estimates

This subsection consists of preliminary results deduced from Lemma 19 which are the

basis for establishing the main results in this chapter.
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Theorem 32. [17, Theorems 2.15, 2.16, 2.18] Given a point (x, y) ∈ X × Y , suppose that

the mapping τ 7→ F−1
τ (y) on R+ is outer semicontinuous at 0 and, for some γ > δ(y,F , x)

and any t ∈ (0, γ) with (x, t, y) ∈ gphF , one of the following sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m : (0,∞)→ (0,∞)

such that the following conditions hold true:

m(τ) ↓ 0 as τ ↓ 0 and cn ↓ 0 as n→∞, (6.1)

d
(
x,F−1

m(c1)(y)
)
< b0, (6.2)

d
(
u,F−1

m(cn+1)(y)
)
< bn for all u ∈ F−1

m(cn)(y) ∩B
(
x,

n−1∑
i=0

bi

)
(n = 1, 2, . . .),

∞∑
n=0

bn ≤ µ(t). (6.3)

(ii) there are functions b,m : (0,∞)→ (0,∞) such that

m(τ) ↓ 0 ⇒ τ ↓ 0 (6.4)

and, for each τ > 0 with µ(τ) ≤ µ(t),

µ(τ) ≥ m(τ) + µ(b(τ)), (6.5)

d
(
u,F−1

b(τ)(y)
)
< m(τ) for all u ∈ F−1

τ (y) ∩B(x, µ(t)− µ(τ)).

(iii) there are functions b,m : (0,∞)→ (0,∞) such that condition (6.4) is satisfied and, for

each τ > 0 with µ(τ) ≤ µ(t), conditions (6.5),

F−1
0 (B(y, τ)) ⊂ F−1

τ (y),

d (y,F0(B(u,m(τ)))) < b(τ) for all u ∈ F−1
τ (y) ∩B(x, µ(t)− µ(τ))

hold true.

Then, d
(
x,F−1

0 (y)
)
≤ µ(δ(y,F , x)).
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Theorem 33. [17, Theorem 2.19] Given a point (x, y) ∈ X × Y and a continuous non-

decreasing function µ : R+ → R+ with µ(τ) = 0 if and only if τ = 0, suppose that

the mapping τ 7→ F−1
τ (y) is outer semicontinuous on [0, δ(y,F , x)] and, for each pair

(u, τ) ∈ F−1(y) with τ ∈ (0, δ(y,F , x)] and d(x, u) ≤ µ(δ(y,F , x)) − µ(δ(y,F , u)), there

exists a pair (u′, τ ′) ∈ F−1(y) such that u′ 6= u and condition

µ(τ ′) ≤ µ(τ)− d(u′, u) (6.6)

is satisfied. Then, d
(
x,F−1

0 (y)
)
≤ µ(δ(y,F , x)).

The conclusion of Theorems 32 and 33 can be reformulated equivalently in a “covering-

like” form thanks to the next Proposition.

Proposition 38. [17, Proposition 2.22] Consider the following conditions:

(i) d
(
x,F−1

0 (y)
)
≤ µ(δ(y,F , x));

(ii) y ∈ F(B(x, t), 0) for any t > µ(δ(y,F , x));

(iii) y ∈ F0(B(x, µ(δ(y,F , x)))).

Then, (iii) ⇒ (i) ⇔ (ii).

6.2.2 Definitions and equivalences

Definition 24. (i) F is subregular on a subset U ⊂ X at a point ȳ ∈ Y with functional

modulus µ if one of the following equivalent conditions holds true:

d(x,F−1
0 (ȳ)) ≤ µ(δ(ȳ,F , x)) for all x ∈ U,

ȳ ∈ F(B(x, t), 0) for all x ∈ U

and t > µ(δ(ȳ,F , x)).

(ii) Given a subset U ⊂ X and a function ν : U → (0,∞], F is ν-subregular on U at a

point ȳ ∈ Y with functional modulus µ if one of the following equivalent conditions
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holds true:

d(x,F−1
0 (ȳ)) ≤ µ(δ(ȳ,F , x)) for all x ∈ U

with µ(δ(ȳ,F , x)) < ν(x),

ȳ ∈ F(B(x, t), 0) for all x ∈ U

and t ∈ (µ(δ(ȳ,F , x)), ν(x)).

(iii) F is subregular at a point (x̄, ȳ) ∈ gphF0 with functional modulus µ if there exists a

neighborhood U of x̄ such that F is subregular on U at ȳ with functional modulus µ.

(iv) Given a point (x̄, ȳ) ∈ gphF0 and a function ν : X → R strictly positive around x̄, F

is ν-subregular at (x̄, ȳ) with functional modulus µ if there exists a neighborhood U of

x̄ such that F is ν-subregular on U at ȳ with functional modulus µ.

Remark 57. Local properties (iii) and (iv) in Definition 24 are not a realization of the

properties in [17, Definition 3.12] because the set {ȳ} is not a neighborhood of ȳ in a metric

space.

The next proposition summarizes the relationships amongst the properties in Defini-

tion 24.

Proposition 39. For the properties in Definition 24, the following statements are true:

(i) property (i) implies property (ii) for any subset U ′ ⊂ X and any function ν : U ′ →

(0,∞] satisfying ν(x) ≤ µ(δ(ȳ,F , x)) for all x ∈ U ′ \ U , in particular, property (i)

implies property (ii) for the same subset U ;

(ii) property (ii) implies property (i) for U ′ := {x ∈ U | µ(δ(ȳ,F , x)) < ν(x)}, in particular,

if µ(δ(ȳ,F , x)) < ν(x) for all x ∈ U , then the two properties are equivalent;

(iii) property (i) implies property (iii) provided that U is a neighborhood of x̄;

(iv) property (i) implies property (iv) provided that U ∪ {x ∈ X : ν(x) ≤ µ(δ(ȳ,F , x))} is a

neighborhood of x̄;
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(v) property (ii) implies property (iii) provided that U ′ := {x ∈ U | µ(δ(ȳ,F , x)) < ν(x)} is

a neighborhood of x̄;

(vi) property (ii) implies property (iv) provided that U ∪ {x ∈ X : ν(x) ≤ µ(δ(ȳ,F , x))} is a

neighborhood of x̄;

(vii) property (iii) implies property (iv) and if there is a neighborhood U of x̄ such that

µ(δ(ȳ,F , x)) < ν(x) for all x ∈ U , then the two properties are equivalent;

(viii) properties (i), (ii), (iii) and (iv) are implied by the following slightly stronger ones,

respectively:

ȳ ∈ F0 (B(x, µ(δ(ȳ,F , x)))) for all x ∈ U,

ȳ ∈ F0 (B(x, µ(δ(ȳ,F , x)))) for all x ∈ U

with µ(δ(ȳ,F , x)) < ν(x),

∃ε > 0 : ȳ ∈ F0 (B(x, µ(δ(ȳ,F , x)))) for all x ∈ B(x̄, ε),

∃ε > 0 : ȳ ∈ F0 (B(x, µ(δ(ȳ,F , x)))) for all x ∈ B(x̄, ε)

with µ(δ(ȳ,F , x)) < ν(x).

6.2.3 Criteria for subregularity of F : X × R+ ⇒ Y

The following criteria for the properties in Definition 24 are derived from the correspond-

ing statements in Subsection 6.2.1.

Theorem 34. Given a subset U ⊂ X and a point ȳ ∈ Y , suppose that the mapping τ 7→

F−1
τ (ȳ) on R+ is outer semicontinuous at 0 and, for any x ∈ U , some γ > δ(ȳ,F , x) and any

t ∈ (0, γ) with (x, t, ȳ) ∈ gphF , one of the following sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m : (0,∞)→ (0,∞)

such that conditions (6.1) and (6.3) hold true and

d
(
x,F−1

m(c1)(ȳ)
)
< b0,

d
(
u,F−1

m(cn+1)(ȳ)
)
< bn for all u ∈ F−1

m(cn)(ȳ) ∩B
(
x,

n−1∑
i=0

bi

)
(n = 1, 2, . . .);
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(ii) there are functions b,m : (0,∞)→ (0,∞) such that condition (6.4) is satisfied and, for

any τ > 0 with µ(τ) ≤ µ(t), condition (6.5) holds true and

d
(
u,F−1

b(τ)(ȳ)
)
< m(τ) for all u ∈ F−1

τ (ȳ) ∩B(x, µ(t)− µ(τ));

(iii) there are functions b,m : (0,∞)→ (0,∞) such that condition (6.4) is satisfied and, for

any τ > 0 with µ(τ) ≤ µ(t), condition (6.5) holds true and

F−1
0 (B(ȳ, τ)) ⊂ F−1

τ (ȳ),

d (ȳ,F0(B(u,m(τ)))) < b(τ) for all u ∈ F−1
τ (ȳ) ∩B(x, µ(t)− µ(τ)).

Then, F is subregular on U at ȳ with functional modulus µ.

Proof. Take an arbitrary point x ∈ U . Sets of conditions (i), (ii) and (iii) ensure the cor-

responding ones in Theorem 32 to be satisfied for the point (x, ȳ) ∈ X × Y and so that

d(x,F−1
0 (ȳ)) ≤ µ(δ(ȳ,F , x)). Hence, F is subregular on U at ȳ with functional modulus

µ.

Theorem 35. Given a subset U ⊂ X, a point ȳ ∈ Y and a function ν : U → (0,∞], suppose

that the mapping τ 7→ F−1
τ (ȳ) on R+ is outer semicontinuous at 0 and, for any x ∈ U and

t > 0 with (x, t, ȳ) ∈ gphF and µ(t) < ν(x), one of the sets of conditions in Theorem 34 is

satisfied. Then, F is ν-subregular on U at ȳ with functional modulus µ.

Proof. Take an arbitrary point x ∈ U with µ(δ(ȳ,F , x)) < ν(x). Choose a γ > δ(ȳ,F , x) such

that µ(γ) < ν(x), then for all t ∈ (0, γ), we have µ(t) < ν(x). Sets of conditions (i), (ii) and

(iii) ensure the corresponding ones in Theorems 32 to be satisfied for the point (x, ȳ) ∈ X×Y

and so that d(x,F−1
0 (ȳ)) ≤ µ(δ(ȳ,F , x)). Hence, F is ν-subregular on U at ȳ with functional

modulus µ.

The next two statements are consequences of Theorems 34 and 35, respectively, for U =

B(x̄, ε), a neighborhood of x̄.

Theorem 36. Given a point (x̄, ȳ) ∈ gphF0, suppose that the mapping τ 7→ F−1
τ (ȳ) on R+

is outer semicontinuous at 0 and there is an ε > 0 such that, for any x ∈ B(x̄, ε), some
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γ > δ(ȳ,F , x) and any t ∈ (0, γ) with (x, t, ȳ) ∈ gphF , one of the sets of conditions in

Theorem 34 is satisfied. Then, F is subregular at (x̄, ȳ) with functional modulus µ.

Theorem 37. Given a point (x̄, ȳ) ∈ gphF0 and a function ν : X → R strictly positive

around x̄, suppose that the mapping τ 7→ F−1
τ (ȳ) on R+ is outer semicontinuous at 0 and

there is an ε > 0 such that, for any x ∈ B(x̄, ε) and t > 0 with (x, t, ȳ) ∈ gphF and

µ(t) < ν(x), one of the sets of conditions in Theorem 34 is satisfied. Then, F is ν-subregular

at (x̄, ȳ) with functional modulus µ.

We next formulate criteria of error bound-types for the subregularity properties in Defi-

nitions 24. Given a point ȳ ∈ Y , let us denote, for any point x ∈ X, the set

Vx := {u ∈ X | δ(ȳ,F , u) > 0, µ(δ(ȳ,F , u)) + d(u, x) ≤ µ(δ(ȳ,F , x))}.

Note that Vx ⊂ B(x, µ(δ(ȳ,F , x))).

Theorem 38. Given a subset U ⊂ X, a point ȳ ∈ Y and a continuous nondecreasing function

µ : R+ → R+ satisfying µ(τ) = 0 if and only if τ = 0, suppose that F−1(ȳ) is closed and, for

any x ∈ U and u ∈ Vx, there exists a point u′ 6= u such that

µ(δ(ȳ,F , u′)) ≤ µ(δ(ȳ,F , u))− d(u, u′). (6.7)

Then, F is subregular on U at ȳ with functional modulus µ.

Proof. Take an arbitrary x ∈ U . We need to show that d(x,F−1
0 (ȳ)) ≤ µ(δ(ȳ,F , x)).

If there exists a point u such that δ(ȳ,F , u) = 0 and d(x, u) ≤ µ(δ(ȳ,F , x)) (in particular,

if δ(ȳ,F , x) = 0), then, by the closedness of F−1(ȳ), u ∈ F−1
0 (ȳ), and the inequality holds

trivially.

Suppose that δ(ȳ,F , u) > 0 for any u ∈ X such that d(x, u) ≤ µ(δ(ȳ,F , x)). Take any

u ∈ X such that d(x, u) ≤ µ(δ(ȳ,F , x)) − µ(δ(ȳ,F , u)) and any τ ∈ (0, δ(ȳ,F , x)] such that

(u, τ) ∈ F−1(ȳ). Then, τ ≥ δ(ȳ,F , u) > 0 and, by the assumption, there exists a point

u′ 6= u satisfying (6.7). Setting τ ′ = δ(ȳ,F , u′), we get (u′, τ ′) ∈ F−1(ȳ) and condition (6.6)
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is satisfied:

µ(τ ′) = µ(δ(ȳ,F , u′)) ≤ µ(δ(ȳ,F , u))− d(u, u′) ≤ µ(τ)− d(u, u′).

The mapping τ 7→ F−1
τ (ȳ) is outer semicontinuous on [0, δ(ȳ,F , x)] thanks to the closedness

of F−1(ȳ). The required inequality follows from Theorem 33.

Theorem 39. Given a subset U ⊂ X, a point ȳ ∈ Y , a continuous nondecreasing function

µ : R+ → R+ satisfying µ(τ) = 0 if and only if τ = 0 and a function ν :
⋃
x∈U Vx → (0,∞]

being Lipschitz continuous with modulus not greater than 1, suppose that F−1(ȳ) is closed

and, for any x ∈ U and u ∈ Vx with µ(δ(ȳ,F , u)) < ν(u), there exists a point u′ 6= u such

that condition (6.7) holds true. Then, F is ν-subregular on U at ȳ with functional modulus

µ.

Proof. Define U ′ := {x ∈ U | µ(δ(ȳ,F , x)) < ν(x)} and take any x ∈ U ′ and u ∈ Ux. Then,

taking into account the Lipschitz continuity of ν, we have:

µ(δ(ȳ,F , u)) ≤ µ(δ(ȳ,F , x))− d(x, u) < ν(x)− d(x, u) ≤ ν(u).

Hence, there exists a point u′ 6= u such that (6.7) holds true. By Theorem 38, F is subregular

on U ′ at ȳ with functional modulus µ and, thanks to Proposition 39 (i), ν-subregular on U

at ȳ with functional modulus µ.

Theorem 40. Given a point (x̄, ȳ) ∈ gphF0 and a continuous nondecreasing function µ :

R+ → R+ satisfying µ(τ) = 0 if and only if τ = 0, suppose that F−1(ȳ) is closed and that

there is an ε > 0 such that, for any u ∈ B(x̄, ε), there exists a point u′ 6= u such that condition

(6.7) is satisfied. Then, F is subregular at (x̄, ȳ) with functional modulus µ.

Proof. Take an arbitrary x ∈ B(x̄, ε/2). We need to show that d(x,F−1
0 (ȳ)) ≤ µ(δ(ȳ,F , x)).

If d(x, x̄) ≤ µ(δ(ȳ,F , x)), then the inequality holds trivially because d(x,F−1
0 (ȳ)) ≤

d(x, x̄) thanks to x̄ ∈ F−1
0 (ȳ). So we can suppose that µ(δ(ȳ,F , x)) < d(x, x̄) < ε/2. In this

case, for any u ∈ Vx, we have

d(u, x̄) ≤ d(u, x) + d(x, x̄) < µ(δ(ȳ,F , x)) + ε/2 < ε/2 + ε/2 = ε.
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That is u ∈ B(x̄, ε). The conclusion follows from Theorem 38 for the subset U = B(x̄, ε/2).

Theorem 41. Given a point (x̄, ȳ) ∈ gphF0, a function ν : X → R strictly positive around

x̄ and a continuous nondecreasing function µ : R+ → R+ satisfying µ(τ) = 0 if and only

if τ = 0, suppose that F−1(ȳ) is closed and that there are an ε > 0 and a function ν :

B(x̄, ε) → (0,∞) being Lipschitz continuous with modulus not greater than 1 such that, for

any u ∈ B(x̄, ε) with µ(δ(ȳ,F , u)) < ν(u), there exists a point u′ 6= u such that condition

(6.7) is satisfied. Then, F is ν-subregular at (x̄, ȳ) with functional modulus µ.

Proof. Take an arbitrary x ∈ B(x̄, ε/2) with µ(δ(ȳ,F , x)) < ν(x). We need to show that

d(x,F−1
0 (ȳ)) ≤ µ(δ(ȳ,F , x)).

If d(x, x̄) ≤ µ(δ(ȳ,F , x)), then the inequality holds trivially because

d(x,F−1
0 (ȳ)) ≤ d(x, x̄)

thanks to x̄ ∈ F−1
0 (ȳ). So we can suppose that µ(δ(ȳ,F , x)) < d(x, x̄) < ε/2. In this case,

for any u ∈ Vx, we have

d(u, x̄) ≤ d(u, x) + d(x, x̄) < µ(δ(ȳ,F , x)) + ε/2 < ε/2 + ε/2 = ε,

µ(δ(ȳ,F , u)) ≤ µ(δ(ȳ,F , x))− d(x, u) < ν(x)− d(x, u) ≤ ν(u).

That is u ∈ B(x̄, ε) and µ(δ(ȳ,F , u)) < ν(u). The conclusion follows from Theorem 39 for

the subset U = B(x̄, ε/2).

6.3 Metric subregularity for F : X ⇒ Y

In this section, we consider the conventional setting of a set-valued mapping F : X ⇒ Y

between metric spaces. Such a mapping can be imbedded into the more general setting

explored in the previous sections by defining a set-valued mapping F : X × R+ ⇒ Y as
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follows (cf. [9, p. 508]: for any x ∈ X and t ≥ 0,

F(x, t) := B(F (x), t) =


{y ∈ Y | d(y, F (x)) < t} if t > 0,

F (x) if t = 0.

(6.8)

(Recall the convention: B(y, 0) = {y}.) We are going to consider also mappings F : X ⇒ Y

and F : X ×R+ ⇒ Y , whose values are the closures of the corresponding values of F and F ,

respectively: F (x) := F (x) and

F(x, t) := B(F (x), t) =


{y ∈ Y | d(y, F (x)) ≤ t} if t > 0,

F (x) if t = 0.

(6.9)

The next proposition summarizes several simple facts with regard to the relationship

amongst F , F and F .

Proposition 40. [17, Proposition 4.1]

(i) F0(x) = F (x), F0(x) = F (x) for all x ∈ X.

(ii) δ(y,F , x) = δ(y,F , x) = d(y, F (x)) for all x ∈ X and y ∈ Y .

(iii) F−1
0 (B(y, t)) = F−1(B(y, t)) = F−1

t (y) for all y ∈ Y and t ≥ 0.

(iv) F−1(B(y, t)) = F−1(B(y, t)) ⊂ F−1
t (y) for all y ∈ Y and t ≥ 0.

(v) If F−1 is closed at y, then the mappings τ 7→ F−1
τ (y) and τ 7→ F−1

τ (y) on R+ are outer

semicontinuous at 0.

(vi) For any y ∈ Y and τ > 0, F and F satisfy condition

F−1
0 (B(y, τ)) ⊂ F−1

τ (y).

(vii) If F is upper semicontinuous, i.e., for any x ∈ X and ε > 0, there exists a δ > 0 such

that F (u) ⊂ B(F (x), ε) for all u ∈ B(x, δ), then F−1 is closed-valued. In particular,

for any y ∈ Y , the mapping τ 7→ F−1
τ (y) is outer semicontinuous on R+.
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6.3.1 Definitions and equivalences

Thanks to parts (i) and (ii) of Proposition 40, the subregularity properties of a set-valued

mapping F : X ⇒ Y can be stated, corresponding to Definition 24, as follows.

Definition 25. (i) F is metrically subregular on a subset U ⊂ X at a point ȳ ∈ Y with

functional modulus µ if one of the following equivalent conditions holds true:

d(x, F−1(ȳ)) ≤ µ(d(ȳ, F (x))) for all x ∈ U, (6.10)

ȳ ∈ F (B(x, t)) for all x ∈ U

and t > µ(d(ȳ, F (x))).

(ii) Given a subset U ⊂ X and a function ν : U → (0,∞], F is metrically ν-subregular on

a subset U ⊂ X at a point ȳ ∈ Y with functional modulus µ if one of the following

equivalent conditions holds true:

d(x, F−1(ȳ)) ≤ µ(d(ȳ, F (x))) for all x ∈ U

with µ(d(ȳ, F (x))) < ν(x), (6.11)

ȳ ∈ F (B(x, t)) for all x ∈ U

and t ∈ (µ(d(ȳ, F (x))), ν(x)).

(iii) F is metrically subregular at a point (x̄, ȳ) ∈ gphF with functional modulus µ if there

exists a neighborhood U of x̄ such that F is metrically subregular on U at ȳ with

functional modulus µ.

(iv) Given a point (x̄, ȳ) ∈ gphF and a function ν : X → R strictly positive around

x̄, F is metrically ν-subregular at (x̄, ȳ) with functional modulus µ if there exists a

neighborhood U of x̄ such that F is metrically ν-subregular on U at ȳ with functional

modulus µ.

Proposition 41. Let F : X ⇒ Y , F and F be as in (6.8) and (6.9). Then F (equivalently,

F) satisfies one of the properties in Definition 24 if and only if F satisfies the corresponding

properties in Definition 25.
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The next proposition followed from Propositions 39 and 41 summarizes the relationships

amongst the properties in Definition 25.

Proposition 42. For the properties in Definition 25, the following statements are true:

(i) property (i) implies property (ii) for any subset U ′ ⊂ X and any function ν : U ′ →

(0,∞] satisfying ν(x) ≤ µ(d(ȳ, F (x))) for all x ∈ U ′ \ U , in particular, property (i)

implies property (ii) for the same subset U ;

(ii) property (ii) implies property (i) for U ′ := {x ∈ U | µ(d(ȳ, F (x))) < ν(x)}, in particu-

lar, if µ(d(ȳ, F (x))) < ν(x) for all x ∈ U , then the two properties are equivalent;

(iii) property (i) implies property (iii) provided that U is a neighborhood of x̄;

(iv) property (i) implies property (iv) provided that U ∪ {x ∈ X : ν(x) ≤ µ(d(ȳ, F (x)))} is a

neighborhood of x̄;

(v) property (ii) implies property (iii) provided that U ′ := {x ∈ U | µ(d(ȳ, F (x))) < ν(x)}

is a neighborhood of x̄;

(vi) property (ii) implies property (iv) provided that U ∪ {x ∈ X : ν(x) ≤ µ(d(ȳ, F (x)))} is

a neighborhood of x̄;

(vii) property (iii) implies property (iv) and if there is a neighborhood U of x̄ such that

µ(d(ȳ, F (x))) < ν(x) for all x ∈ U , then the two properties are equivalent;

(viii) properties (i), (ii), (iii) and (iv) are implied by the following slightly stronger ones,

respectively:

ȳ ∈ F (B(x, µ(d(ȳ, F (x))))) for all x ∈ U,

ȳ ∈ F (B(x, µ(d(ȳ, F (x))))) for all x ∈ U

with µ(d(ȳ, F (x))) < ν(x),

∃ε > 0 : ȳ ∈ F (B(x, µ(d(ȳ, F (x))))) for all x ∈ B(x̄, ε),

∃ε > 0 : ȳ ∈ F (B(x, µ(d(ȳ, F (x))))) for all x ∈ B(x̄, ε)

with µ(d(ȳ, F (x))) < ν(x).
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The metric subregularity (subopenness, or pseudo-openness [2]) properties in Definition 25

have proved to be important in both theory and applications, mostly in the linear (sometimes

Hölder) case in the local setting (cf. [2, 5, 7, 9, 13, 18, 22, 23, 26, 29, 30]).

Observe that condition (6.10) in Definition 25 is equivalent to

d(x, F−1(ȳ)) ≤ µ(d(ȳ, y)) for all x ∈ U, y ∈ F (x).

In its turn, condition y ∈ F (x) is equivalent to x ∈ F−1(y). This and a similar observa-

tion with regard to condition (6.11) in Definition 25 allow us to rewrite these conditions,

respectively, as follows:

d(x, F−1(ȳ)) ≤ µ(d(ȳ, y)) for all y ∈ Y, x ∈ F−1(y) ∩ U,

d(x, F−1(ȳ)) ≤ µ(d(ȳ, y)) for all y ∈ Y, x ∈ F−1(y) ∩ U

with µ(d(ȳ, y)) < ν(x).

Thanks to these observations, one can complement the properties in Definition 25 with

the corresponding Hölder-like (Aubin-like in the linear case) properties.

Definition 26. (i) F is sub-Hölder on a subset V ⊂ Y at a point x̄ ∈ X with functional

modulus µ if

d(y, F (x̄)) ≤ µ(d(x̄, x)) for all x ∈ X, y ∈ F (x) ∩ V.

(ii) Given a subset V ⊂ Y and a function ν : V → (0,∞], F is ν-sub-Hölder on V at a

point x̄ ∈ X with functional modulus µ if

d(y, F (x̄)) ≤ µ(d(x̄, x)) for all x ∈ X, y ∈ F (x) ∩ V

with µ(d(x̄, x)) < ν(y).

(iii) F is sub-Hölder at a point (x̄, ȳ) ∈ gphF with functional modulus µ if there exists a

neighborhood V of ȳ such that F is sub-Hölder on a subset V at x̄ with functional

modulus µ.
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(iv) Given a point (x̄, ȳ) ∈ gphF and a function ν : Y → R strictly positive around ȳ, F is

ν-sub-Hölder at (x̄, ȳ) with functional modulus µ if there exists a neighborhood V of ȳ

such that F is ν-sub-Hölder on V at x̄ with functional modulus µ.

Thanks to Propositions 39 and 40 and the discussion before Definition 26, we have the

following list of equivalences.

Proposition 43. (i) F is metrically subregular on U ⊂ X at ȳ ∈ Y with functional mod-

ulus µ if and only if F−1 is sub-Hölder on U at ȳ with functional modulus µ.

(ii) F is metrically ν-subregular on U ⊂ X at ȳ ∈ Y with functional modulus µ if and only

if F−1 is ν-sub-Hölder on U at ȳ with functional modulus µ.

(iii) F is metrically subregular at (x̄, ȳ) ∈ gphF with functional modulus µ if and only if

F−1 is sub-Hölder at (ȳ, x̄) with functional modulus µ.

(iv) F is metrically ν-subregular at (x̄, ȳ) ∈ gphF with functional modulus µ if and only if

F−1 is ν-sub-Hölder at (ȳ, x̄) with functional modulus µ.

6.3.2 Criteria for metric subregularity of F : X ⇒ Y

We are going to formulate criteria for metric subregularity properties.

Theorem 42. Given a subset U ⊂ X and a point ȳ ∈ Y , suppose that F−1 is closed at ȳ

and, for any x ∈ U \ F−1(ȳ), for some γ > d(ȳ, F (x)) and any t ∈ [d(ȳ, F (x)), γ), one of the

following sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m : (0,∞)→ (0,∞)

such that conditions (6.1) and (6.3) hold true and

d
(
x, F−1(B(ȳ,m(c1)))

)
< b0, (6.12)

d
(
u, F−1(B(ȳ,m(cn+1)))

)
< bn

for all u ∈ F−1(B(ȳ,m(cn))) ∩B
(
x,

n−1∑
i=0

bi

)
(n = 1, 2, . . .); (6.13)
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(ii) there are functions b,m : (0,∞)→ (0,∞) such that condition (6.4) is satisfied and, for

any τ > 0 with µ(τ) ≤ µ(t), condition (6.5) holds true and

d
(
u, F−1(B(ȳ, b(τ)))

)
< m(τ)

for all u ∈ F−1(B(ȳ, τ)) ∩B(x, µ(t)− µ(τ)).

Then, F is metrically subregular on U at ȳ with functional modulus µ.

Proof. Consider F by (6.9). Then (x, t, ȳ) ∈ gphF if and only if d(ȳ, F (x)) ≤ t. The

conclusion follows from Theorem 34 thanks to Propositions 40 and 41.

Similarly, the following three statements are derived immediately from Theorems 35, 36

and 37.

Theorem 43. Given a subset U ⊂ X, a point ȳ ∈ Y and a function ν : U → (0,∞], suppose

that F−1 is closed at ȳ and, for any x ∈ U \F−1(ȳ) and t ≥ d(ȳ, F (x)) with µ(t) < ν(x), one

of the sets of conditions in Theorem 42 is satisfied. Then, F is metrically ν-subregular on U

at ȳ with functional modulus µ.

Theorem 44. Given a point (x̄, ȳ) ∈ gphF , suppose that F−1 is closed at ȳ and there is an

ε > 0 such that, for any x ∈ B(x̄, ε)\F−1(ȳ), some γ > d(ȳ, F (x)) and any t ∈ [d(ȳ, F (x)), γ),

one of the sets of conditions in Theorem 42 is satisfied. Then, F is metrically subregular at

(x̄, ȳ) with functional modulus µ.

Theorem 45. Given a point (x̄, ȳ) ∈ gphF and a function ν : X → R strictly positive around

x̄, suppose that F−1 is closed at ȳ and there is an ε > 0 such that, for any x ∈ B(x̄, ε)\F−1(ȳ)

and t ≥ d(ȳ, F (x)) with µ(t) < ν(x), one of the sets of conditions in Theorem 42 is satisfied.

Then, F is metrically ν-subregular at (x̄, ȳ) with functional modulus µ.

Criteria of error bound-types can also be obtained in the following four statements.

Theorem 46. Given a subset U ⊂ X, a point ȳ ∈ Y and a continuous nondecreasing function

µ : R+ → R+ satisfying µ(τ) = 0 if and only if τ = 0, suppose that F is upper semicontinuous

and, for any x ∈ U \ F−1(ȳ) and u ∈ X with d(ȳ, F (u)) > 0 and µ(d(ȳ, F (u))) + d(u, x) ≤
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µ(d(ȳ, F (x))), there exists a point u′ 6= u such that

µ(d(ȳ, F (u′))) ≤ µ(d(ȳ, F (u)))− d(u, u′). (6.14)

Then, F is metrically subregular on U at ȳ with functional modulus µ.

Proof. Consider F by (6.9). The conclusion follows from Theorem 38 thanks to Propositions

40 and 41.

Theorem 47. Given a subset U ⊂ X, a point ȳ ∈ Y and a continuous nondecreasing function

µ : R+ → R+ satisfying µ(τ) = 0 if and only if τ = 0, define

Uµ =
⋃
x∈U
{u ∈ X | d(u, x) ≤ µ(d(ȳ, F (x)))}.

Let ν : Uµ → (0,∞] be Lipschitz continuous with modulus not greater than 1. Suppose that F

is upper semicontinuous and, for any x ∈ U\F−1(ȳ) and u ∈ X with 0 < µ(d(ȳ, F (u))) < ν(u)

and µ(d(ȳ, F (u))) + d(u, x) ≤ µ(d(ȳ, F (x))), there exists a point u′ 6= u such that condition

(6.14) is satisfied. Then, F is metrically ν-subregular on U at ȳ with functional modulus µ.

Proof. Define U ′ := {x ∈ U | µ(d(ȳ, F (x))) < ν(x)} and take any x ∈ U ′ \F−1(ȳ) and u ∈ X

such that d(ȳ, F (u)) > 0 and µ(d(ȳ, F (u))) + d(u, x) ≤ µ(d(ȳ, F (x))). Then, taking into

account the Lipschitz continuity of ν, we have

µ(d(ȳ, F (u))) ≤ µ(d(ȳ, F (x)))− d(x, u) < ν(x)− d(x, u) ≤ ν(u).

Hence, there exists a point u′ 6= u such that (6.14) holds true. By Theorem 46, F is metrically

subregular on U ′ at ȳ with functional modulus µ and, thanks to Proposition 42 (vi), F is

metrically ν-subregular on U at ȳ with functional modulus µ.

Theorem 48. Given a point (x̄, ȳ) ∈ gphF and a continuous nondecreasing function µ :

R+ → R+ satisfying µ(τ) = 0 if and only if τ = 0, suppose that F is upper semicontinuous

and there is an ε > 0 such that, for any u ∈ B(x̄, ε)\F−1(ȳ), there exists a point u′ 6= u such

that condition (6.14) is satisfied. Then, F is metrically subregular at (x̄, ȳ) with functional

modulus µ.
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Proof. Consider F by (6.9). The conclusion follows from Theorem 40 thanks to Propositions

40 and 41.

Theorem 49. Given a point (x̄, ȳ) ∈ gphF , a continuous nondecreasing function µ : R+ →

R+ satisfying µ(τ) = 0 if and only if τ = 0 and a function ν : X → R strictly positive

and Lipschitz continuous with modulus not greater than 1 around x̄, suppose that F is up-

per semicontinuous and there is an ε > 0 such that, for any u ∈ B(x̄, ε) \ F−1(ȳ) with

µ(d(ȳ, F (u))) < ν(u), there exists a point u′ 6= u such that condition (6.14) is satisfied.

Then, F is metrically ν-subregular at (x̄, ȳ) with functional modulus µ.

Proof. Take an arbitrary x ∈ B(x̄, ε/2)\F−1(ȳ) with µ(d(ȳ, F (x))) < ν(x). If µ(d(ȳ, F (x))) ≥

ε/2, then

d(x, F−1(ȳ)) ≤ d(x, x̄) < ε/2 < µ(d(ȳ, F (x))).

Otherwise, for any u ∈ X such that d(ȳ, F (u)) > 0 and µ(d(ȳ, F (u))) + d(u, x) ≤

µ(d(ȳ, F (x))), we have

d(u, x̄) ≤ d(u, x) + d(x, x̄) < µ(d(ȳ, F (x))) + ε/2 < ε/2 + ε/2 = ε,

µ(d(ȳ, F (u))) ≤ µ(d(ȳ, F (x)))− d(x, u) < ν(x)− d(x, u) ≤ ν(u).

That is u ∈ B(x̄, ε) and µ(d(ȳ, F (u))) < ν(u). The conclusion follows from Theorem 47 for

the subset U = B(x̄, ε/2).

6.3.3 Definitions and equivalences for metric subregularity of order k

Metric subregularity properties of linear and Hölder-type (of order k) models obtained by

considering the gauge function µ of the corresponding forms are very important in applica-

tions. In this section, we establish criteria for these properties. All of them are obtained as

simplifications of the corresponding ones in Section 6.3 for the gauge function µ(·) = r(·)k.

In the special case when k = 1, we obtain criteria for the metric subregularity properties of

linear model.

Throughout this section, let r > 0 and k ∈ (0, 1] be constants.
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Definition 27. (i) F is metrically subregular on a subset U ⊂ X at a point ȳ ∈ Y of

order k with modulus r if one of the following equivalent conditions holds true:

d(x, F−1(ȳ)) ≤ rdk(ȳ, F (x)) for all x ∈ U,

ȳ ∈ F (B(x, t)) for all x ∈ U

and t > rdk(ȳ, F (x)).

(ii) F is sub-Hölder on a subset V ⊂ Y at a point x̄ ∈ X of order k with modulus r if

d(y, F (x̄)) ≤ rdk(x̄, x) for all x ∈ X, y ∈ F (x) ∩ V.

(iii) Given a subset U ⊂ X and a function ν : U → (0,∞], F is metrically ν-subregular

on U at a point ȳ ∈ Y of order k with modulus r if one of the following equivalent

conditions holds true:

d(x, F−1(ȳ)) ≤ rdk(ȳ, F (x)) for all x ∈ U

with rdk(ȳ, F (x)) < ν(x),

ȳ ∈ F (B(x, t)) for all x ∈ U

and t ∈ (rdk(ȳ, F (x)), ν(x)).

(iv) Given a subset V ⊂ Y and a function ν : V → (0,∞], F is ν-sub-Hölder on V at a

point x̄ ∈ X of order k with modulus r if

d(y, F (x̄)) ≤ rdk(x̄, x) for all x ∈ X, y ∈ F (x) ∩ V

with rdk(x̄, x) < ν(y).

(v) F is metrically subregular at a point (x̄, ȳ) ∈ gphF of order k with modulus r if there

exists a neighborhood U of x̄ such that F is metrically subregular on U at ȳ of order k

with modulus r.

(vi) F is sub-Hölder at (x̄, ȳ) of order k with modulus r if there exists a neighborhood V of
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ȳ such that F is sub-Hölder on V at x̄ of order k with modulus r.

(vii) Given a point (x̄, ȳ) ∈ gphF and a function ν : X → R strictly positive around x̄, F is

metrically ν-subregular at (x̄, ȳ) of order k with modulus r if there exists a neighborhood

U of x̄ such that F is metrically ν-subregular on U at ȳ of order k with modulus r.

(viii) Given a point (x̄, ȳ) ∈ gphF and a function ν : Y → R strictly positive around ȳ, F is

ν-sub-Hölder at (x̄, ȳ) of order k with modulus r if there exists a neighborhood V of ȳ

such that F is ν-sub-Hölder on V at x̄ of order k with modulus r.

The next proposition following from Proposition 42 and Theorem 43 summarizes the

relationships amongst the properties in Definition 27.

Proposition 44. For the properties in Definition 27, the following statements are true:

(i) property (i) is equivalent to F−1 being sub-Hölder on U at ȳ of order k with modulus r;

(ii) property (iii) is equivalent to F−1 being ν-sub-Hölder on U at ȳ of order k with modulus

r;

(iii) property (v) is equivalent to F−1 being sub-Hölder at (ȳ, x̄) of order k with modulus r;

(iv) property (vii) is equivalent to F−1 being ν-sub-Hölder at (ȳ, x̄) of order k with modulus

r;

(v) property (i) implies property (iii) for any subset U ′ and any function ν : U ′ → (0,∞]

satisfying ν(x) ≤ rdk(ȳ, F (x)) for all x ∈ U ′ \ U , in particular, property (i) implies

property (iii) for the same subset U ;

(vi) property (iii) implies property (i) for U ′ := {x ∈ U | rdk(ȳ, F (x)) < ν(x)}, in particular,

if rdk(ȳ, F (x)) < ν(x) for all x ∈ U , then the two properties are equivalent;

(vii) property (i) implies property (v) provided that U is a neighborhood of x̄;

(viii) property (i) implies property (vii) provided that U ∪ {x ∈ X : ν(x) ≤ rdk(ȳ, F (x))} is a

neighborhood of x̄;

(ix) property (iii) implies property (v) provided that U ′ := {x ∈ U | rdk(ȳ, F (x)) < ν(x)} is

a neighborhood of x̄;
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(x) property (iii) implies property (vii) provided that U ∪ {x ∈ X : ν(x) ≤ rdk(ȳ, F (x))} is

a neighborhood of x̄;

(xi) property (v) implies property (vii) and if there is a neighborhood U of x̄ such that

rdk(ȳ, F (x)) < ν(x) for all x ∈ U , then the two properties are equivalent;

(xii) properties (i), (iii), (v) and (vii) are implied by the following slightly stronger ones,

respectively:

ȳ ∈ F
(
B(x, rdk(ȳ, F (x)))

)
for all x ∈ U,

ȳ ∈ F
(
B(x, rdk(ȳ, F (x)))

)
for all x ∈ U

with rdk(ȳ, F (x)) < ν(x),

∃ε > 0 : ȳ ∈ F
(
B(x, rdk(ȳ, F (x)))

)
for all x ∈ B(x̄, ε),

∃ε > 0 : ȳ ∈ F
(
B(x, rdk(ȳ, F (x)))

)
for all x ∈ B(x̄, ε)

with rdk(ȳ, F (x)) < ν(x).

6.3.4 Criteria for metric subregularity of order k

We are going to formulate criteria for subregularity properties of order k defined in Defi-

nition 27.

All of them are consequences of the corresponding statements in Subsections 6.3.2 for the

gauge function µ(·) = r(·)k.

Theorem 50. Given a subset U ⊂ X and a point ȳ ∈ Y , suppose that F−1 is closed at ȳ

and, for any x ∈ U \ F−1(ȳ), for some γ > d(ȳ, F (x)) and any t ∈ [d(ȳ, F (x)), γ), one of the

following sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m : (0,∞)→ (0,∞)

such that conditions (6.1), (6.12) and (6.13) hold true and

∞∑
n=0

bn ≤ rtk;

(ii) there are functions b,m : (0,∞)→ (0,∞) such that condition (6.4) is satisfied and, for
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any τ ∈ (0, t], condition (6.5) holds true and

d
(
u, F−1(B(ȳ, b(τ)))

)
< m(τ)

for all u ∈ F−1(B(ȳ, τ)) ∩B(x, rtk − rτk);

Then, F is metrically subregular on U at ȳ of order k with modulus r.

Theorem 51. Given a subset U ⊂ X and a function ν : U → (0,∞], suppose that F−1 is

closed at ȳ and, for any x ∈ U \ F−1(ȳ) and t ∈ [d(ȳ, F (x)), r−1/kν(x)1/k), one of the sets of

conditions in Theorem 50 is satisfied. Then, F is metrically ν-subregular on U at ȳ of order

k with modulus r.

Theorem 52. Given a point (x̄, ȳ) ∈ gphF , suppose that F−1 is closed at ȳ and there is an

ε > 0 such that, for any x ∈ B(x̄, ε)\F−1(ȳ), some γ > d(ȳ, F (x)) and any t ∈ [d(ȳ, F (x)), γ),

one of the sets of conditions in Theorem 50 is satisfied. Then, F is metrically subregular at

(x̄, ȳ) of order k with modulus r.

Theorem 53. Given a point (x̄, ȳ) ∈ gphF and a function ν : X → R strictly positive around

x̄, suppose that F−1 is closed at ȳ and there is an ε > 0 such that, for any x ∈ B(x̄, ε)\F−1(ȳ)

and t ∈ [d(ȳ, F (x)), r−1/kν(x)1/k), one of the sets of conditions in Theorem 50 is satisfied.

Then, F is metrically ν-subregular at (x̄, ȳ) of order k with modulus r.

Corollary 14. Given a subset U ⊂ X and a point ȳ ∈ Y , suppose that F−1 is closed at ȳ

and, for any x ∈ U \ F−1(ȳ), for some γ > d(ȳ, F (x)) and any t ∈ [d(ȳ, F (x)), γ), there is a

constant λ ∈ (0, 1) such that, for any τ ∈ (0, t],

d
(
u, F−1(B(ȳ, λτ))

)
< r(1− λk)τk

for all u ∈ F−1(B(ȳ, τ)) ∩B(x, r(tk − τk)). (6.15)

Then, F is metrically subregular on U at ȳ of order k with modulus r.

Proof. The conclusion follows from Theorem 50 since conditions (6.4) and (6.5) automatically

hold true for the two functions b(·) = λ(·) and m(·) = r(1− λk)(·)k.
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Corollary 15. Given a subset U ⊂ X and a function ν : U → (0,∞], suppose that F−1 is

closed at ȳ and, for any x ∈ U \F−1(ȳ) and t ∈ [d(ȳ, F (x)), r−1/kν(x)1/k), there is a constant

λ ∈ (0, 1) such that, for any τ ∈ (0, t], condition (6.15) is satisfied. Then, F is metrically

ν-subregular on U at ȳ of order k with modulus r.

Corollary 16. Given a point (x̄, ȳ) ∈ gphF , suppose that F−1 is closed at ȳ and there is an

ε > 0 such that, for any x ∈ B(x̄, ε) \ F−1(ȳ), there is a constant λ ∈ (0, 1) such that, for

any t ∈ (0, ε),

d
(
u, F−1(B(ȳ, λt))

)
< r(1− λk)tk

for all u ∈ F−1(B(ȳ, t)) ∩B(x̄, ε). (6.16)

Then, F is metrically subregular at (x̄, ȳ) of order k with modulus r.

Proof. Choose a number δ > 0 such that 2δ + r−1/kδ1/k ≤ ε. Take any x ∈ B(x̄, δ) \ F−1(ȳ).

If δ ≤ rdk(ȳ, F (x)), then d(x, F−1(ȳ)) ≤ rdk(ȳ, F (x)) since d(x, F−1(ȳ)) ≤ d(x, x̄) ≤ δ.

Otherwise, we define γ := r−1/kδ1/k > d(ȳ, F (x)). The conclusion then follows from Corollary

14 thanks to the observation that for any t < γ and τ ≤ t, it holds B(x, r(tk − τk)) ⊂

B(x, rtk) ⊂ B(x, rγk) = B(x, δ) ⊂ B(x̄, ε).

Corollary 17. Given a point (x̄, ȳ) ∈ gphF and a function ν : X → R strictly positive around

x̄, suppose that F−1 is closed at ȳ and there is an ε > 0 such that, for any x ∈ B(x̄, ε)\F−1(ȳ)

with rdk(ȳ, F (x)) < ν(x), there is a constant λ ∈ (0, 1) such that, for any t ∈ (0, ε), condition

(6.16) is satisfied. Then, F is metrically ν-subregular at (x̄, ȳ) of order k with modulus r.

Theorem 54. Given a subset U ⊂ X, suppose that F is upper semicontinuous and, for any

x ∈ U \ F−1(ȳ) and u ∈ X with d(ȳ, F (u)) > 0 and rdk(ȳ, F (u)) + d(u, x) ≤ rdk(ȳ, F (x)),

there exists a point u′ 6= u such that

µ(d(ȳ, F (u′))) ≤ rdk(ȳ, F (u))− d(u, u′). (6.17)

Then, F is metrically subregular on U at ȳ of order k with modulus r.

Theorem 55. Given a subset U ⊂ X and a function ν : U → (0,∞], suppose that F is upper

semicontinuous and, for any x ∈ U \ F−1(ȳ) and u ∈ X with 0 < rdk(ȳ, F (u)) < ν(u) and
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rdk(ȳ, F (u)) + d(u, x) ≤ rdk(ȳ, F (x)), there exists a point u′ 6= u such that condition (6.17)

is satisfied. Then, F is metrically ν-subregular on U at ȳ of order k with modulus r.

Theorem 56. Given a point (x̄, ȳ) ∈ gphF , suppose that F is upper semicontinuous and

there is an ε > 0 such that, for any u ∈ B(x̄, ε) \ F−1(ȳ), there exists a point u′ 6= u such

that condition (6.17) is satisfied. Then, F is metrically subregular at (x̄, ȳ) of order k with

modulus r.

Theorem 57. Given a point (x̄, ȳ) ∈ gphF and a function ν : X → (0,∞] Lipschitz contin-

uous with modulus not greater than 1 around x̄, suppose that F is upper semicontinuous and

there is an ε > 0 such that, for any u ∈ B(x̄, ε)\F−1(ȳ) with rdk(ȳ, F (u)) < ν(u), there exists

a point u′ 6= u such that condition (6.17) is satisfied. Then, F is metrically ν-subregular at

(x̄, ȳ) of order k with modulus r.
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[23] G. Li, B. S. Mordukhovich, Hölder metric subregularity with applications to proximal

point method. SIAM J. Optim. 22 (4) (2012) 1655–1684.

226



[24] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic The-

ory. Springer, Berlin, 2006.

[25] J.-P. Penot, Metric regularity, openness and Lipschitz behavior of multifunctions. Non-

linear Anal. 13 (1989) 629–643.

[26] J.-P. Penot, Calculus Without Derivatives. Springer-Verlag, New York, 2013.

[27] R. T. Rockafellar, R. J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin, 1998.

[28] N. D. Yen, J.-C. Yao, B. T. Kien, Covering properties at positive-order rates of multi-

functions and some related topics. J. Math. Anal. Appl. 338 (1) (2008) 467–478.

[29] X. Y. Zheng, K. F. Ng, Metric subregularity and constraint qualifications for convex

generalized equations in Banach spaces. SIAM J. Optim. 18 (2007) 437–460.

[30] X. Y. Zheng, K. F. Ng, Metric subregularity and calmness for nonconvex generalized

equations in Banach spaces. SIAM J. Optim. 20 (5) (2010) 2119–2136.

227



Chapter 7

On Hölder calmness of solution

mappings of parametric equilibrium

problems

We consider parametric equilibrium problems in metric spaces. Sufficient conditions for

the Hölder calmness of solutions are established. We also study the Hölder well-posedness

for equilibrium problems in metric spaces.

7.1 Introduction

Optimization is one of the most fertile areas of mathematics. Its conclusions and recom-

mendations play a very important role in both theoretical and applied mathematics. Equi-

librium problems were first considered in [15] and since then have been studied by many

researchers all over the world. The equilibrium problem model incorporates many other im-

portant problems in optimization and other areas such as: variational inequalities, fixed point

problems, complementarity, etc. There have been many studies of existence of solutions to

equilibrium problems (see [11, 14, 18, 19, 20, 30]) and their stability, e.g., semi-continuity in

the sense of Berge and Hausdorff (see [3, 5, 6, 10, 22, 24]) or Hölder (Lipschitzian) continuity

(see [1, 4, 7, 9, 13, 27, 28, 29].)

This chapter extends [2] and studies (l.α)-Hölder calmness of solutions to parametric
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equilibrium problems. When α = 1, this is a kind of calmness property which is in general

stronger than the property of the same name usually used in variational analysis. Calmness

property of multi-valued mappings has been examined by many authors (see [16, 17, 21, 23,

26, 32]) in which subdifferentials and coderivatives play the main role. As applications we

investigate conditions for Hölder calmness of solutions to optimization problems and well-

posedness in the Hölder sense. The last subject is intimately related to the stability property

and plays a very important role in studying optimization and variational problems.

The structure of the chapter is as follows. Section 2 presents the equilibrium problem

model and materials used in the rest of this chapter. We establish in Section 3 a sufficient con-

dition for the Hölder calmness of the solution mapping to parametric equilibrium problems.

The Hölder well-posedness of equilibrium problems is studied in Section 4.

Throughout the chapter, if not explicitly stated otherwise, X,Λ,M are metric spaces and

R is the set of all real numbers while R+ is the set of all positive numbers. We use d(·, ·) for

all metrics.

7.2 Preliminaries

Given a subset K ⊆ X and a function f : X ×X → R, a standard equilibrium problem is

defined as follows:

(EP ) find x̄ ∈ K such that f(x̄, y) ≥ 0 for all y ∈ K.

The set of solutions to this problem is denoted by S.

In this chapter, we consider several extensions of (EP ).

The constraint set K and objective function f can be perturbed by parameters λ ∈ Λ and

µ ∈M , respectively. Given a multi-valued mapping K : Λ ⇒ X, a function f : X×X×M →

R, and a pair (λ, µ) ∈ Λ×M , one can consider a parameterized equilibrium problem:

(EP )λ,µ find x̄ ∈ K(λ) such that f(x̄, y, µ) ≥ 0 for all y ∈ K(λ).

The set of solutions to problem (EP )λ,µ is denoted by S(λ, µ).

The approximate version of this problem can be of interest: for each (λ, µ) ∈ Λ×M and

ε > 0,
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(ẼP )ε,λ,µ find x̄ ∈ K(λ) such that f(x̄, y, µ) + ε ≥ 0 for all y ∈ K(λ).

We denote by S̃(ε, λ, µ) the solution set of (ẼP )ε,λ,µ.

Definition 28. For a function f : X → R and positive numbers l, α,

(i) f is (l.α)-Hölder continuous on a subset U ⊂ X if

|f(x1)− f(x2)| ≤ ldα(x1, x2) for all x1, x2 ∈ U ;

(ii) f is (l.α)-Hölder calm at x̄ on a neighborhood U of x̄ if

|f(x)− f(x̄)| ≤ ldα(x, x̄) for all x ∈ U.

We say that f satisfies a certain property on a subset A ⊆ X if it is satisfied at every

point of A.

From this definition, it is obvious that Hölder continuity is stronger than Hölder calmness.

To define extensions of these properties for multi-valued mappings we recall the definitions

of point-to-set and set-to-set distances.

For subsets A,B of X and a point a ∈ X,

d(a,B) := inf
b∈B

d(a, b);

H∗(A,B) := sup
a∈A

d(a,B);

H(A,B) := max{H∗(A,B), H∗(B,A)};

ρ(A,B) := sup
a∈A,b∈B

d(a, b).

Note that H and ρ can take infinite values (if A or B is unbounded). It is also obvious that

H(A,B) ≤ ρ(A,B) for any subsets A and B, and the inequality can be strict.

Definition 29. For a multi-valued mapping K : Λ ⇒ X and positive numbers l, α,

(i) K is (l.α)-Hölder continuous on a subset U ⊂ X if

H(K(λ1),K(λ2)) ≤ ldα(λ1, λ2) for all λ1, λ2 ∈ U ;
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(ii) K is (l.α)-Hölder calm at λ̄ on a neighborhood U of λ̄ if

H(K(λ),K(λ̄)) ≤ ldα(λ, λ̄) for all λ ∈ U. (7.1)

We will also consider the versions of the properties in Definition 29 with H replaced by

ρ. In this case, we will talk about the corresponding properties with respect to ρ.

Remark 58. The calmness in the above definition (when α = 1) is a stronger property than

the one usually considered in variational analysis. The latter corresponds to replacing H

in (7.1) by H∗ (see, e.g., [31]). Respectively, (l, α)-calmness is stronger than the so-called

calmness [α] in [25].

We next define uniform Hölder calmness as the natural counterpart of the relative Hölder

continuity in [6].

Definition 30. For positive numbers m,β, θ, a function f : X×X×M → R is (m.β)-Hölder

calm at µ̄ on a neighborhood V of µ̄, θ-uniformly over a subset S ⊆ X if

|f(x, y, µ̄)− f(x, y, µ)| ≤ mdβ(µ̄, µ)dθ(x, y), ∀µ ∈ V,∀x, y ∈ S, x 6= y.

If θ = 0, we say that f is (m.β)-Hölder calm at µ̄ on V , uniformly over S.

We next discuss several monotonicity properties some of which are going to play a crucial

role in examining the Hölder calmness of the solution mapping of the equilibrium problems

(EP )λ,µ.

Given a function f : X ×X → R, positive numbers h, β, and a subset S ⊆ X, consider

the following properties.

(M1) For all x, y ∈ S, x 6= y,

f(x, y) + f(y, x) + hdβ(x, y) ≤ 0. (7.2)

(M2) For all x, y ∈ S,

hdβ(x, y) ≤ d(f(x, y),R+) + d(f(y, x),R+). (7.3)
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(M3) For all x, y ∈ S, x 6= y,

[f(x, y) ≥ 0 =⇒ f(y, x) + hdβ(x, y) ≤ 0].

(M4) For all x, y ∈ S, x 6= y,

[f(x, y) < 0 =⇒ f(y, x) ≥ 0].

If any of the above properties is fulfilled, we say that f satisfies the corresponding condition

on S with constants h and β (if applicable).

Remark 59. Properties (M1), (M3) and (M4) were considered in [4, 6, 8] where they

were called Hölder strong monotonicity, Hölder strong pseudo-monotonicity and quasi-

monotonicity, respectively. Property (M2) is a particular case of the corresponding mono-

tonicity property introduced in [6] for multi-valued mappings. This property has been

employed to investigate the Hölder continuity of solution mappings in many articles (see

[2, 8, 28].)

The next proposition gives the relationships between these monotonicity properties.

Proposition 45. (i) (M1) ⇒ (M2) ⇒ (M3);

(ii) [(M3) & (M4)]⇒ (M2).

Proof. The following simple observation is used in the proof:

d(a,R+) = max{−a, 0} ≥ −a.

(M1) ⇒ (M2). If (7.2) holds for some x 6= y, then

hdβ(x, y) ≤ −f(x, y)− f(y, x) ≤ d(f(x, y),R+) + d(f(y, x),R+),

i.e., (7.3) holds. When x = y, (7.3) holds automatically.

(M2) ⇒ (M3). If (7.3) holds for some x 6= y and f(x, y) ≥ 0, then d(f(x, y),R+) = 0 and

(7.3) takes the form

hdβ(x, y) ≤ d(f(y, x),R+).
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It follows from the last inequality that d(f(y, x),R+) > 0 and consequently d(f(y, x),R+) =

−f(y, x). Hence, (M3) holds true.

[(M3) & (M4)]⇒ (M2). Let (M3) and (M4) hold true. We only need to prove (7.3) when

x 6= y. If f(x, y) ≥ 0, then d(f(x, y),R+) = 0 and (M3) implies

0 < hdβ(x, y) ≤ −f(y, x) = d(f(y, x),R+).

Hence, (7.3) is true. If f(x, y) < 0, then (M4) implies f(y, x) ≥ 0, and we can apply (M3)

again to show that

0 < hdβ(x, y) ≤ −f(x, y) = d(f(x, y),R+).

Taking into account that d(f(y, x),R+) = 0, we conclude that (7.3) is true in this case

too.

We now give examples showing that implications in Proposition 45 can be strict.

Example 14. The function f : R × R → R defined by f(x, y) = x − y satisfies (M2) with

h = β = 1. Indeed,

d(f(x, y),R+) + d(f(y, x),R+) = d(x− y,R+) + d(y − x,R+) = |x− y| = d(x, y).

At the same time, f(x, y) + f(y, x) = 0 and (7.2) is violated for any x 6= y. f does not satisfy

(M1). It is also obvious that f satisfies both (M3) and (M4).

Example 15. The function f : R × R → R defined by f(x, y) = −1

4
(|x| 12 + |y| 12 ) satisfies

(M3) with h =
√

2 and β = 1
2 as f(x, y) ≥ 0 if and only if x = y = 0, it does not satisfy (M2).

Indeed, for any y = −x 6= 0, we have

d(f(x, y),R+) + d(f(y, x),R+) =
1

2
(|x| 12 + |y| 12 ) = |x| 12 < 2|x| 12 =

√
2d

1
2 (x, y).

We can see that the combination of (M3) and (M4) implies (M2), but they are not

equivalent by considering the function f(x, y) = −(|x| + |y|). This function satisfies (M2)

with h = β = 1, but breaks (M4).
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7.3 The Hölder calmness of the solution mapping

The next theorem gives a sufficient condition for the Hölder calmness of the solution

mapping of the problem (EP )λ,µ. It improves Theorem 2.1 in [2]. We always assume that

solution sets S(λ, µ) are nonempty for all (λ, µ) in a neighborhood of the considered point

(λ̄, µ̄).

Theorem 58. Consider equilibrium problem (EP )λ,µ and suppose the following conditions

hold.

(i) There exist neighborhoods U(λ̄) of λ̄ and V (µ̄) of µ̄ and positive numbers n1, δ1 and θ

such that f is (n1.δ1)-Hölder calm at µ̄ on V (µ̄), θ-uniformly over K(U(λ̄)).

(ii) There exist positive numbers n2 and δ2 such that, for all x ∈ K(U(λ̄)) and µ ∈ V (µ̄),

the function f(x, ·, µ) is (n2.δ2)-Hölder continuous on K(U(λ̄)).

(iii) f(·, ·, µ̄) satisfies condition (M2) on K(U(λ̄)) with constants h > 0 and β > θ.

(iv) K is (l.α)-Hölder calm at λ̄ on U(λ̄) with some positive l and α.

Then solutions to (EP )λ,µ satisfy the condition of Hölder calmness with respect to ρ: there

exist constants k1, k2 > 0 such that

ρ
(
S(λ̄, µ̄), S(λ, µ)

)
≤ k1d

αδ2/β(λ̄, λ) + k2d
δ1/(β−θ)(µ̄, µ),

for all (λ, µ) in a neighborhood of (λ̄, µ̄).

Proof. Take λ ∈ U(λ̄) and µ ∈ V (µ̄).

Step 1 We prove that for each x(λ, µ̄) ∈ S(λ, µ̄) and x(λ, µ) ∈ S(λ, µ),

d1 := d (x(λ, µ̄), x(λ, µ)) ≤
(n1

h

)1/(β−θ)
dδ1/(β−θ)(µ̄, µ). (7.4)

Suppose x(λ, µ̄) 6= x(λ, µ) (if the equality holds, then (7.4) holds trivially). Because both
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x(λ, µ̄) and x(λ, µ) belong to K(λ) and are solutions of (EP )λ,µ, one has

f (x(λ, µ̄), x(λ, µ), µ̄) ≥ 0; (7.5)

f (x(λ, µ), x(λ, µ̄), µ) ≥ 0. (7.6)

At the same time, (iii) implies

d (f (x(λ, µ̄), x(λ, µ), µ̄) ,R+) + d (f (x(λ, µ), x(λ, µ̄), µ̄) ,R+) ≥ hdβ1 .

Combining this inequality with (7.5) and (7.6), we get

d (f (x(λ, µ), x(λ, µ̄), µ̄) , f (x(λ, µ), x(λ, µ̄), µ)) ≥ hdβ1 .

Because f is (n1.δ1)-Hölder calm at µ̄, θ-uniformly over K(U(λ̄)) by (i), the above rela-

tionship implies

n1d
θ
1d
δ1(µ̄, µ) ≥ hdβ1 .

This is equivalent to dβ−θ1 ≤ n1

h
dδ1(µ̄, µ) from which we get (7.4) proved.

Step 2 We prove that for each x(λ̄, µ̄) ∈ S(λ̄, µ̄) and x(λ, µ̄) ∈ S(λ, µ̄),

d2 := d
(
x(λ̄, µ̄), x(λ, µ̄)

)
≤
(

2n2l
δ2

h

)1/β

dαδ2/β(λ̄, λ). (7.7)

Suppose x(λ̄, µ̄) 6= x(λ, µ̄). (iv) implies that there exist x̄ ∈ K(λ̄) and x ∈ K(λ) such that

d
(
x(λ̄, µ̄), x

)
≤ ldα(λ̄, λ); (7.8)

d (x(λ, µ̄), x̄) ≤ ldα(λ̄, λ). (7.9)

We get from the definition of (EP )λ,µ,

f
(
x(λ̄, µ̄), x̄, µ̄

)
≥ 0; (7.10)

f (x(λ, µ̄), x, µ̄) ≥ 0. (7.11)
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At the same time, (iii) implies

d
(
f
(
x(λ̄, µ̄), x(λ, µ̄), µ̄

)
,R+

)
+ d

(
f
(
x(λ, µ̄), x(λ̄, µ̄), µ̄

)
,R+

)
≥ hdβ2 .

Combining this inequality with (7.10) and (7.11), we get

d
(
f
(
x(λ̄, µ̄), x(λ, µ̄), µ̄

)
, f
(
x(λ̄, µ̄), x̄, µ̄

))
+ d

(
f
(
x(λ, µ̄), x(λ̄, µ̄), µ̄

)
, f (x(λ, µ̄), x, µ̄)

)
≥ hdβ2 .

Because f is (n2δ2)-Hölder continuous with respect to the second component in K(U(λ̄))

by (ii), the last inequality implies that

n2d
δ2 (x(λ, µ̄)), x̄) + n2d

δ2
(
x(λ̄, µ̄), x

)
≥ hdβ2 .

We combine this with (7.8) and (7.9) and get

n2l
δ2dαδ2(λ̄, λ) + n2l

δ2dαδ2(λ̄, λ) ≥ hdβ2 ,

or equivalently dβ2 ≤
2n2l

δ2

h
dαδ2(λ̄, λ). We have (7.7) proved.

Step 3 For all x(λ̄, µ̄) ∈ S(λ̄, µ̄) and x(λ, µ) ∈ S(λ, µ), we always have

d
(
x(λ̄, µ̄), x(λ, µ)

)
≤ d1 + d2.

From (7.4) and (7.7), by taking k1 =

(
2n2l

δ2

h

)1/β

and k2 =
(n1

h

)1/(β−θ)
, we get

ρ
(
S(λ̄, µ̄), S(λ, µ)

)
≤ k1d

αδ2/β(λ̄, λ) + k2d
δ1/(β−θ)(µ̄, µ).

Therefore, Theorem 58 has been proved.

By using the technique similar to the one in the proof of Theorem 2.1 in [6], we can show

that, under assumption (iii), the solution to (EP )λ̄,µ̄ is unique. However, when (λ, µ) 6= (λ̄, µ̄),

the solutions to (EP )λ,µ do not have to be unique as demonstrated by the following example.

Example 16. Let X = R, Λ ≡M = [0, 1], K(λ) = [0, 1], f(x, y, λ) = y−x+λ for all λ ∈ Λ,
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and λ̄ = 0.

Then |f(x, y, λ)− f(x, y, λ̄)| = |λ|.

Hence, f is (1.1)-Hölder calm at λ̄ uniformly over [0, 1]. We have |f(x, y, λ)−f(x, z, λ)| =

|y − z| for all y, z ∈ [0, 1].

So f(x, ·, λ) is (1.1)-Hölder continuous on [0, 1]. Therefore, assumptions (i) and (ii) hold.

It is clear that condition (iv) also holds. Assumption (iii) is fulfilled as shown in Example 14.

Hence, Theorem 58 derives the Holder calmness of S(·) at λ̄.

It is not difficult to check that S(0) = {0} and S(λ) = [0, λ] for all λ ∈ (0, 1].

Normally, to receive a property of solution mappings, the problem’s hypotheses are also

required at the level corresponding to that property. We can see from the preceding theorem

that all the hypotheses are related to Hölder continuity and Hölder calmness, except (iii),

which is about monotonicity.

The next example indicates the essential role of assumption (iii) in Theorem 58.

Example 17. Take X = R, M ≡ Λ = [0, 1], K(λ) = [−1, 1] for all λ ∈ [0, 1]. For each

λ ∈ [0, 1], consider the function f defined by f(x, y, λ) = λ(x+ y). Take λ̄ = 0.

We have |f(x, y, λ)−f(x, y, λ̄)| = |x+y|·|λ−λ̄| ≤ 2|λ−λ̄| for all x, y ∈ [−1, 1]. So f is (2.1)-

Hölder calm at λ̄ on [0, 1] uniformly over [−1, 1]. At the same time, |f(x, y, λ)− f(x, z, λ)| =

|λ| · |y− z| ≤ |y− z| for all y, z ∈ [−1, 1]. This means that f(x, ·, λ) is (1.1)-Hölder continuous

on [−1, 1]. Hence, conditions (i) and (ii) are fulfilled.

Condition (iv) is also true straightforwardly. However, we have

S(0) = [−1, 1], S(λ) = {1},∀λ ∈ (0, 1].

So ρ (S(λ), S(0)) = 2 for any λ ∈ (0, 1].

Therefore, the solution mapping S is not Hölder calm at µ̄ = 0. The reason here is that

f breaks condition (M2). Indeed,

d (f(1, 0, 0),R+) + d (f(0, 1, 0),R+) = 0 < h|1− 0|β = h,∀h, β > 0.

Condition (M2) in Theorem 58 is indispensable.
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Remark 60. It follows from Proposition 45 that the conclusion of Theorem 58 remains true

if condition (iii) is replaced by either condition (M1) or conditions (M3) and (M4).

The next proposition aims to illustrate application of Theorem 58. For each (λ, µ) ∈

Λ×M , we consider the minimization problem:

(MP ) minimize f(x, µ) subject to x ∈ K(λ),

where f : X ×M → R and K : Λ ⇒ X.

We denote S(λ, µ) =
{
x̄ ∈ K(λ) : f(x̄, µ) = minx∈K(λ) f(x, µ)

}
and assume that S(λ, µ) 6=

∅ for all (λ, µ) near the considered point (λ̄, µ̄).

Proposition 46. Consider (MP ) and suppose the following conditions hold.

(i) There exist neighborhoods V (µ̄) of µ̄ and U(λ̄) of λ̄ and numbers n1 > 0 and δ1 > 0

such that f is (n1.δ1)-Hölder calm at µ̄ on V (µ̄) uniformly over K(U(λ̄)), i.e.,

|f(x, µ)− f(x, µ̄)| ≤ n1d
δ1(µ, µ̄)

for all x ∈ K(U(λ̄)) and µ ∈ V (µ̄).

(ii) There exist numbers n2 > 0 and δ2 > 0 such that f is (n2.δ2)-Hölder continuous in x

on K(U(λ̄)) uniformly over µ ∈ V (µ̄), i.e.,

|f(x, µ)− f(y, µ)| ≤ n2d
δ2(x, y) (7.12)

for all µ ∈ V (µ̄) and x, y ∈ K(U(λ̄)), and (7.12) holds as an equality when µ = µ̄.

(iii) K is (l.α)-Hölder calm at λ̄ on U(λ̄) with some l > 0 and α > 0.

Then the mapping S is Hölder calm with respect to ρ, i.e., there exist constants k1, k2 > 0

such that

ρ
(
S(λ̄, µ̄), S(λ, µ)

)
≤ k1d

α(λ̄, λ) + k2d(µ̄, µ) (7.13)

for all (λ, µ) in a neighborhood of (λ̄, µ̄).
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Proof. We define the function g : X ×X ×M → R as follows

g(x, y, µ) = f(y, µ)− f(x, µ).

We observe that x̄ ∈ S(λ, µ) if and only if x̄ ∈ K(λ) and g(x̄, y, µ) ≥ 0, ∀y ∈ K(λ). So to

prove the proposition, it suffices to check that g satisfies the conditions of Theorem 58.

We first check condition (i). For every µ ∈ V (µ̄) and x, y ∈ K(U(λ̄)) we have

|g(x, y, µ)− g(x, y, µ̄)| = |f(y, µ)− f(x, µ)− f(y, µ̄) + f(x, µ̄)|

≤ |f(x, µ)− f(x, µ̄)|+ |f(y, µ)− f(y, µ̄)| ≤ 2n1d
δ1(µ, µ̄).

This means that g is (2n1.δ1)-Hölder calm at µ̄ on V (µ̄) uniformly over K(U(λ̄)).

We have at the same time

|g(x, y, µ)− g(x, z, µ)| = |f(y, µ)− f(z, µ)| ≤ n2d
δ2(y, z),

i.e., g is (n2.δ2)-Hölder continuous with respect to the second component. So conditions (i)

and (ii) in Theorem 58 are fulfilled.

We now check condition (iii) in Theorem 58. For all x, y ∈ K(U(λ̄)), we have

d (g(x, y, µ̄),R+) + d (g(y, x, µ̄),R+)

= d (f(y, µ̄)− f(x, µ̄),R+) + d (f(x, µ̄)− f(y, µ̄),R+)

= |f(x, µ̄)− f(y, µ̄)| = n2d
δ2(x, y).

So g satisfies condition (M2), and (iii) in Theorem 58 is fulfilled. Therefore, it follows

from Theorem 58 that (7.13) holds true with some k1, k2 > 0.

7.4 The Hölder well-posedness of equilibrium problems

We will denote by (EP) the family of problems {(EP )λ,µ : (λ, µ) ∈ Λ ×M} and extend

the concept of Lipschitzian well-posedness for optimization problems introduced in [12] to

equilibrium problems.
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Definition 31. (EP) is Hölder well-posed at (λ̄, µ̄) if S̃(0, λ̄, µ̄) is a singleton and S̃ is Hölder

calm at (0, λ̄, µ̄) on a neighborhood of (0, λ̄, µ̄).

The next theorem gives a sufficient condition for the Hölder well-posedness of (EP). It

improves and modifies Theorem 3.1 in [2].

Theorem 59. Assume S(λ̄, µ̄) 6= ∅ and the following conditions hold.

(i) There exist neighborhoods U(λ̄) of λ̄ and V (µ̄) of µ̄ and positive numbers n1, δ1 and θ

such that f is (n1.δ1)-Hölder calm at µ̄ on V (µ̄), θ-uniformly over K(U(λ̄)).

(ii) There exist positive numbers n2 and δ2 such that, for all x ∈ K(U(λ̄)) and µ ∈ V (µ̄),

the function f(x, ·, µ) is (n2.δ2)-Hölder continuous on K(U(λ̄)).

(iii) f(·, ·, µ̄) satisfies condition (M2) on K(U(λ̄)) with constants h > 0 and β > θ.

(iv) K is (l.α)-Hölder calm at λ̄ on U(λ̄) with some positive l and α.

Then (EP) is Hölder well-posed at (λ̄, µ̄).

Proof. Take N = [0,+∞) ×M . For η = (ε, µ), η′ = (ε′, µ′) ∈ N , consider a function dN

defined by

dN (η, η′) = max{|ε− ε′|, d(µ, µ′)}.

Then, (N, dN ) is a metric space. We define a function g : X ×X ×N → R as follows

g(x, y, η) = f(x, y, µ) + ε.

To prove the theorem, it suffices to check that g satisfies the conditions of Theorem 58.

Take any neighborhood W of 0 in [0, 1]. Then for all η = (ε, µ) ∈ W × V (µ̄), η̄ = (0, µ̄),

and x, y ∈ K(U(λ̄)), one has

|g(x, y, η)− g(x, y, η̄)| = |f(x, y, µ)− f(x, y, µ̄) + ε|

≤ ε+ |f(x, y, µ)− f(x, y, µ̄)| ≤ ε+ n1d
δ1d(µ, µ̄)

≤ εδ1 + n1d
δ1(µ, µ̄) ≤ 2 max{1, n1}dδ1N (η, η̄)
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since ε ∈ V ⊆ [0, 1] and the Hölder order δ1 ≤ 1. So g is (2 max{1, n1}.δ1)-Hölder calm at η̄

on W × V (µ̄) uniformly over K(U(λ̄)).

We have, at the same time,

|g(x, y, η)− g(x, z, η)| = |f(x, y, µ)− f(x, z, µ)| ≤ n2d
δ2(y, z),

or g is (n2.δ2)-Hölder continuous with respect to the second component on K(U(λ̄)). Condi-

tions (i) and (ii) of Theorem 58 are fulfilled.

We now check condition (iii) of Theorem 58. For all x, y ∈ K(U(λ̄)), we get

d (g(x, y, η̄),R+) + d (g(y, x, η̄),R+)

= d (f(x, y, µ̄),R+) + d (f(y, x, µ̄),R+) ≥ hdβ(x, y).

This means that g satisfies condition (iii) of Theorem 58 and we have all its hypotheses

satisfied. Therefore, the mapping of solutions to (EP) is both Hölder calm and single-valued

at (0, η̄) which combined with Definition 31 gives the conclusion of the theorem.

7.5 Conclusion

Assuming Hölder calmness and Hölder continuity in Hausdorff distance, we have estab-

lished the Hölder calm property of the solution mapping with respect to ρ. This obviously

implies the Hölder calm property in Hausdorff distance. We have established a sufficient

condition for the Hölder well-posedness of equilibrium problems. These may be extended to

many other classes of problems.
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