

Accurate and efficient clustering algorithms
for very large data sets

Syed Abdul Quddus

This thesis is submitted in total fulfilment of the requirement
for the degree of Doctor of Philosophy

Faculty of Science and Technology
Federation University Australia

PO Box 663
University Drive, Mount Helen

Ballarat, Victoria, Australia 3353

Submitted in April 2017

Abstract

The ability to mine and extract useful information from large data sets is a common
concern for organizations. Data over the internet is rapidly increasing and the im-
portance of development of new approaches to collect, store and mine large amounts
of data is significantly increasing.

Clustering is one of the main tasks in data mining. Many clustering algorithms
have been proposed but there are still clustering problems that have not been ad-
dressed in depth especially the clustering problems in large data sets. Clustering
in large data sets is important in many applications and such applications include
network intrusion detection systems, fraud detection in banking systems, air traffic
control, web logs, sensor networks, social networks and bioinformatics. Data sets
in these applications contain from hundreds of thousands to hundreds of millions of
data points and they may contain hundreds or thousands of attributes.

Recent developments in computer hardware allows to store in random access
memory and repeatedly read data sets with hundreds of thousands and even millions
of data points. This makes possible the use of existing clustering algorithms in such
data sets. However, these algorithms require a prohibitively large CPU time and
fail to produce an accurate solution. Therefore, it is important to develop clustering
algorithms which are accurate and can provide real time clustering in such data sets.
This is especially important in a big data era.

The aim of this PhD study is to develop accurate and real time algorithms for
clustering in very large data sets containing hundreds of thousands and millions of
data points. Such algorithms are developed based on the combination of heuristic
algorithms with the incremental approach. These algorithms also involve a special
procedure to identify dense areas in a data set and compute a subset most informa-
tive representative data points in order to decrease the size of a data set.

It is the aim of this PhD study to develop the center-based clustering algorithms.
The success of these algorithms strongly depends on the choice of starting cluster

2

3

centers. Different procedures are proposed to generate such centers. Special pro-
cedures are designed to identify the most promising starting cluster centers and to
restrict their number.

New clustering algorithms are evaluated using large data sets available in public
domains. Their results will be compared with those obtained using several existing
center-based clustering algorithms.

DECLARATION

I, Syed Abdul Quddus, declare that the PhD thesis entitled “Efficient algorithms for
solving clustering problems in very large data sets” contains no material that has
been submitted previously, in whole or in part, for the award of any other academic
degree or diploma, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the Federation Uni-
versity Australia Library, being made available for loan and photocopying, subject
to the provision of the copyright Act 1968. I also give permission for the digital
version of my thesis to be made available on the web, via the University Library
catalogue, the Australian Digital Theses Program (ADTP) and also through web
search engines, unless permission has been granted by the Federation University
Australia to restrict access for a period of time.

Signature..

April 2017

Syed Abdul Quddus

4

Acknowledgement

It is my pleasure to express my deep gratitude to my principal supervisor, Associate
Professor Adil Bagirov, whose great expertise, consideration, and extreme patience
helped me to construct my PhD thesis with meaning and structure. He is a perfect
mentor and I feel truly fortunate to have worked under his supervision.

I would like to thank my associate supervisors Associate Professor Madhu Chetty
and Dr. Dean Webb for their help and guidance.

This project would not have been completed without the morale support of the
Faculty of Science and Technology, and to them I extend my gratitude. The at-
mosphere and environment in our faculty, both academic and administrative, have
been extremely supportive and enjoyable. I would like also to thank PhD coordina-
tor of the Faculty of Science and Technology Dr. Stephen Carey for his help and
support throughout my PhD study. I would like also to thank Research Services of
Federation University Australia for their support.

Last, but not least, I owe my loving thanks to my whole family for their unfailing
support, constant encouragement and care they have given me throughout the entire
period of my study.

5

Dedication

I dedicate my dissertation work to my family. A special feeling of gratitude to my
loving mother and father, whose words of encouragement ring in my ears.

6

Table of Contents

Abstract 2

Declaration 4

Acknowledgement 5

Dedication 6

1 Introduction 18

2 Literature review 22
2.1 Data collection, cleaning and pre-processing 22
2.2 Definition of clustering problems 24
2.3 Clustering algorithms for large data sets 25

2.3.1 k-means algorithm . 26
2.3.2 Modifications of k-means algorithm 26
2.3.3 Partial/merge k-means algorithm 27
2.3.4 Parallel k-means algorithm 28
2.3.5 BIRCH algorithm . 28
2.3.6 CADD algorithm . 28
2.3.7 Patch clustering algorithm 29
2.3.8 Grid based clustering . 29
2.3.9 Incremental clustering . 30
2.3.10 Subspace clustering . 30

2.4 Evolutionary algorithms for clustering 31
2.4.1 Genetic Algorithm . 32
2.4.2 Artificial Bee Colony Algorithm 32
2.4.3 Particle Swarm Optimization Algorithm 34

7

TABLE OF CONTENTS 8

2.4.4 Ant Colony Optimization 35
2.5 Data mining software . 35

2.5.1 WEKA . 35
2.5.2 R . 36

2.6 Summary . 37

3 Optimization models and algorithms of clustering 38
3.1 Combinatorial model of the clustering problem 38
3.2 Integer programming model of clustering problems 39

3.2.1 Nonsmooth optimization models of clustering problems . . 40
3.2.2 Comparison of two optimization models 42
3.2.3 The auxiliary clustering problem 42
3.2.4 Optimization algorithms for clustering problems 44

3.3 Summary . 47

4 Fast incremental clustering algorithms 48
4.1 Computation of starting points . 48
4.2 Algorithm for reduction of data points 52
4.3 Reduction of computational effort 54
4.4 An incremental clustering algorithm 58
4.5 Hyperbolic smoothing of cluster functions 59

4.5.1 Computational complexity of the fast modied global k-means
algorithm . 62

4.5.2 Incremental Algorithms for fast modified global k-means . . 63
4.6 A smooth incremental clustering algorithm 64
4.7 A modified smooth incremental clustering algorithm 66

5 Computational results: small data sets 68
5.1 Data sets . 69
5.2 Results . 70
5.3 Summary . 75

6 Computational results: medium size data sets 89
6.1 Data sets . 89
6.2 Results . 93
6.3 Summary . 98

TABLE OF CONTENTS 9

7 Computational results: large data sets 117
7.1 Data sets . 117
7.2 Results . 119
7.3 Summary . 123

8 Conclusions and future work 139

Bibliography 142

List of Tables

5.1 Small size data sets . 69
5.2 Results with Wilt data set: Cluster function values, (The best results

are highlighted) . 71
5.3 Results for Wilt data set: CPU time in seconds, (this Table corre-

sponds to the Figure 5.1), (The best results are highlighted) 71
5.4 Results for Wine Quality data set: Cluster function values, (The

best results are highlighted). 72
5.5 Results for Wine Quality data set: CPU time in seconds,(this Table

corresponds to the Figure 5.3), (The best results are highlighted) . . 72
5.6 Results for Waveform Generator data set: Cluster function values,

(The best results are highlighted). 73
5.7 Results for Waveform Generator data set: CPU time in seconds,(this

Table corresponds to the Figure 5.5), (The best results are highlighted) 73
5.8 Results for Turkiye Student Evaluation data set: Cluster function

values, (The best results are highlighted) 74
5.9 Results for Turkiye Student Evaluation data set: CPU time in sec-

onds,(this Table corresponds to the Figure 5.7), (The best results are
highlighted) . 74

5.10 Results for Drug yprop 41 data set: Cluster function values, (The
best results are highlighted) . 75

5.11 Results for Drug yprop 41 data set:CPU time in seconds, (The best
results are highlighted) . 75

5.12 Results for Combined Cycle Power Plant data set: Cluster function
values, (The best results are highlighted) 76

10

LIST OF TABLES 11

5.13 Results for Combined Cycle Power Plant data set: CPU time in
seconds,(this Table corresponds to the Figure 5.9), (The best results
are highlighted) . 76

5.14 Results for Gesture Phase Segmentation data set: Cluster function
values, (The best results are highlighted). 77

5.15 Results for Gesture Phase Segmentation data set: CPU time in sec-
onds, (The best results are highlighted) 77

5.16 Supporting Metrics/Table for counting how many cases the pro-
posed algorithm produces the best(first) and the second best result
in comparison with other algorithms. 87

5.17 Supporting Metrics/Table for counting how many cases out of how
many cases the proposed algorithms achieve the best(first) and the
second best result in terms of its efficiency,when tested over five
small data sets,in comparison with other algorithms, with a break-
down of the numbers for different k values 88

6.1 Description of medium data size data sets 90
6.2 Results for Gas Sensor Array Drift data set,(this Table corresponds

to the Figure 6.1), (The best results are highlighted) 93
6.3 Results for D15112 data set, (this Table corresponds to the Figure

6.11), (The best results are highlighted) 94
6.4 Results for Letter Recognition data set, (this Table corresponds to

the Figure 6.9), (The best results are highlighted) 95
6.5 Results for Chess (King-Rook vs. King) data set, (this Table corre-

sponds to the Figure 6.10), (The best results are highlighted) 96
6.6 Results for Online News popularity data set, (this Table corresponds

to the Figure 6.12), (The best results are highlighted) 97
6.7 Results for Bank Marketing data set, (this Table corresponds to the

Figure 6.3), (The best results are highlighted) 98
6.8 Results for TamilNadu Electricity Board Hourly Reading data set,

(The best results are highlighted) 99
6.9 Results for KEGG Metabolic Relation Network data set, (this Table

corresponds to the Figure 6.5), (The best results are highlighted) . . 100
6.10 Results for Shuttle Control data set, (The best results are highlighted) 100

LIST OF TABLES 12

6.11 Results for Jester Collaborative Filtering data set,(The best results
are highlighted) . 101

6.12 Results for Programmed Logic Array (Pla85900) data set and (this
Table corresponds to the Figure 6.6), (The best results are high-
lighted) . 101

6.13 Results for Sensit-vehicle-acoustic data set, (this Table corresponds
to the Figure 6.7), (The best results are highlighted) 102

6.14 Supporting Metrics/Table for counting how many cases the pro-
posed algorithm produces the best(first) and the second best result
in comparison with other algorithms. 102

6.15 Supporting Metrics/Table for counting how many cases out of how
many cases the proposed algorithms achieve the best(first) and the
second best result in comparison with other algorithms, with a break-
down of the numbers for different k values 116

7.1 The brief description of large data sets. 118
7.2 Results for shuttle2 data set, (this Table corresponds to the Figure

7.1), (The best results are highlighted) 120
7.3 Results for Localization Data for Person Activity data set, (this Ta-

ble corresponds to the Figure 7.6),(The best results are highlighted) 121
7.4 Results for Online Video Characteristics and Transcoding Time data

set, (The best results are highlighted) 122
7.5 Results for artificial-2state-sequence-data set,(The best results are

highlighted) . 123
7.6 Results for Skin-non skin Segmentation data set,(this Table corre-

sponds to the Figure 7.7),(The best results are highlighted) 124
7.7 Results for Cod Coma data set,(The best results are highlighted) . . 125
7.8 Results for Online Retail data set, (The best results are highlighted) 125
7.9 Results for Algebra training data set, (this Table corresponds to the

Figure 7.10), (The best results are highlighted) 126
7.10 Results for Phones Accelrometer data set, (this Table corresponds

to the Figure 7.8), (The best results are highlighted) 126
7.11 Results for Ijcnn1 data set, (The best results are highlighted) 127

LIST OF TABLES 13

7.12 Supporting Metrics/Table for counting how many cases the pro-
posed algorithm produces the best(first) and the second best result
in comparison with other algorithms. 127

7.13 Supporting Metrics/Table for counting how many cases out of how
many cases the proposed algorithms achieve the best(first) and the
second best result in comparison with other algorithms, with a break-
down of the numbers for different k values 138

List of Figures

5.1 The CPU time vs the number of clusters: Wilt data set,(this Figure
corresponds to Table. 5.3) . 78

5.2 The number of distance function evaluations vs the number of clus-
ters: Wilt data set . 79

5.3 The number CPU time vs the number of clusters: Wine Quality data
set,(this Figure corresponds to Table. 5.5) 80

5.4 The number of distance function evaluations vs the number of clus-
ters: Wine Quality data set . 81

5.5 The CPU time vs the number of clusters: Waveform data set,(this
Figure corresponds to Table. 5.7) 82

5.6 The number of distance function evaluations vs the number of clus-
ters: Waveform data set . 83

5.7 The CPU time vs the number of clusters: Turkiye Students evalua-
tions data set,(this Figure corresponds to Table. 5.9) 84

5.8 The number of distance function evaluations vs the number of clus-
ters: Phase Gesture data set,(this Figure corresponds to Table. 5.15). 85

5.9 The number of clusters vs the CPU time: Combined Cycle Power
Plant data set,(this Figure corresponds to Table. 5.13). 86

6.1 The CPU time vs the number of clusters: Drift data set,(this Figure
corresponds to Table. 6.2) . 103

6.2 The number of distance function evaluations vs the number of clus-
ters: Drift data set . 104

6.3 The CPU time vs the number of clusters: Bank Marketing data
set,(this Figure corresponds to Table. 6.7) 105

14

LIST OF FIGURES 15

6.4 The number of distance function evaluations vs the number of clus-
ters: Bank Marketing data set . 106

6.5 The CPU time vs the number of clusters: Relation Network data
set, (this Figure corresponds to Table. 6.9) 107

6.6 The CPU time vs the number of clusters: Programmed Logic Array
(Pla85900) data set,(this Figure corresponds to Table. 6.12) 108

6.7 The CPU time vs the number of clusters: Sensit-vehicle-acoustic
data set, (this Figure corresponds to Table. 6.13) 109

6.8 The number of distance function evaluations vs the number of clus-
ters: Sensit-vehicle-acoustic data set 110

6.9 The CPU time vs the number of clusters: Letters data set, (this
Figure corresponds to Table. 6.4) 111

6.10 The CPU time vs the number of clusters: Chess (King-Rook vs.
King) data set,(this Figure corresponds to Table. 6.5) 112

6.11 The CPU time vs the number of clusters: D15112 data set,(this
Figure corresponds to Table. 6.3) 113

6.12 The CPU time vs the number of clusters: Online popularity data set
,(this Figure corresponds to Table. 6.6) 114

6.13 The number of distance function evaluations vs the number of clus-
ters: Tamilnadu data set . 115

7.1 The CPU time vs the number of clusters: Shuttle2 Mldata data set,
(this Figure corresponds to Table. 7.2) 128

7.2 The number of distance function evaluations vs the number of clus-
ters: Shuttle2 Mldata data set . 129

7.3 The number of distance function evaluations vs the number of clus-
ters: Artificial-2state-sequence-data data set 130

7.4 The number of distance function evaluations vs the number of clus-
ters: Skin-non-skin segmentation data set 131

7.5 The number of distance function evaluations vs the number of clus-
ters: Phones Accelerometer data set 132

7.6 The CPU time vs the number of clusters: Localization for person
Activity data set, (this Figure corresponds to Table. 7.3) 133

7.7 The CPU time vs the number of clusters:Skin-non-skin segmenta-
tion data set, (this Figure corresponds to Table. 7.6) 134

LIST OF FIGURES 16

7.8 The CPU time vs the number of clusters:Phones Accelerometer data
set (this Figure corresponds to Table. 7.10) 135

7.9 The CPU time vs the number of clusters:Online Retail Dataset,(this
Figure corresponds to Table. 7.8) 136

7.10 The CPU time vs the number of clusters:Algebra 2005 2006 train
Dataset, (this Figure corresponds to Table. 7.9) 137

Publications:

The following papers have been published and submitted for publication:

1. S. Quddus, Fast algorithms for unsupervised learning in large data sets, In
Proceedings of the conference: Computer Science and Information Technol-
ogy, Dubai, 2017, January 27-28, pages 15-17.

2. A.M. Bagirov and S. Quddus, Efficient and accurate clustering algorithms for
very large data sets, Submitted for publication.

17

Chapter 1

Introduction

The expression Knowledge Discovery in Databases (KDD) refers to the extensive
process of discovering useful knowledge in a collection of data. Main steps of KDD
are data collection and selection, data cleansing and preparation, data transforma-
tion, data mining, incorporating prior knowledge on data sets and data evaluation
and interpretation [23, 98, 102, 103] .

The data mining, an analysis step of KDD, is the computational process of dis-
covering and extraction of useful information from data sets. This useful informa-
tion may be a model, summary or just derived values relating to a problem defini-
tion [19]. Data mining is a field of computer science which deals with collecting,
analysing, predicting, learning and discovering patterns from data sets. In many
cases, the data mining is used as synonym of KDD [23].

Data mining has been applied in many areas of human activity. Such areas
include spatial data analysis, information retrieval, pattern recognition, image anal-
ysis, signal processing, internet security and many other applications [17]. New
developments in information technology and the demands for more information
shows that the data mining now embraces more areas than ever before.

There are different type of data mining problems including clustering (or unsu-
pervised classification), supervised data classification, feature selection and extrac-
tion. Clustering is among most important problems in data mining. A process of
partitioning or grouping a set of data into meaningful similar subsets based on some
criteria, typically a distance function between objects, called clustering. In other
words, clustering is a certain kind of unsupervised machine learning which means
that the clustering algorithms learns from unlabeled data [77, 98, 101]. Clustering

18

CHAPTER 1. INTRODUCTION 19

has many applications in business, finance and science [77, 98, 101].
Clustering now is a quite advanced area. Many algorithms proposed over the

last fifty years to solve clustering problems. However, there are still clustering prob-
lems that have not been addressed in depth. Clustering problems in very large data
sets are among those problems. Such problems have many applications including
network intrusion detection systems, fraud detection in banking systems, air traffic
control, web logs, sensor networks, social networks and bio-informatics. Data sets
in these applications contain from hundreds of thousands to hundreds of millions of
data points and they may contain hundreds or thousands of attributes.

Recent developments in computer hardware allows one to store in random ac-
cess memory (RAM) and repeatedly read data sets with hundreds of thousands and
even millions of data points. These developments make possible the use of existing
clustering algorithms in such data sets. However, existing clustering algorithms are
either not accurate or require prohibitively large computational effort in such data
sets. The development of accurate real-time clustering algorithms for such data sets
is highly important, especially in a big data era.

The aim of this PhD study is to develop accurate and real time algorithms for
clustering in very large data sets. The term “very large data sets” in this thesis means
that a data set contains from hundreds of thousands to millions of data points. Ac-
curate and real-time algorithms are developed based on the combination of heuristic
algorithms with the incremental approach. These algorithms also involve a special
procedure to identify dense areas in a data set and compute a subset of most in-
formative data points which can represent the whole data set. This allows one to
significantly decrease the size of a data set and keep only those data points which
determine the cluster distribution of a data set.

This PhD study aims to develop the center-based clustering algorithms. The
success of these algorithms strongly depends on the choice of starting cluster cen-
ters. In this thesis various procedures are proposed to generate such centers. Thus,
main objectives of this research are as follows.

Objective 1: Development of a special procedure to identify dense areas in a data
set and introduce an algorithm for data reduction based on this procedure. This
will be done by introducing a tolerance which depends on the size of data set in the
whole search space.

Objective 2: Development of algorithms for finding starting cluster centers. The

CHAPTER 1. INTRODUCTION 20

success of most clustering algorithms strongly depends on the choice of starting
cluster centers. This is especially important in large data sets. Using the nonconvex
nonsmooth optimization model of the clustering problem we will develop an algo-
rithm which will allow to identify most promising starting cluster centers among
data points.

Objective 3: Develop clustering algorithms using data points with weights and
without weights. This algorithms are based on the incremental approach, that is
they build clusters gradually starting from one cluster.

Objective 4: Implement and evaluate proposed clustering algorithms and compare
them with existing clustering algorithms based on optimization techniques. New
clustering algorithms will be evaluated using large data sets available in public do-
mains. Their results will be compared with those obtained using several existing
center-based clustering algorithms based on optimization techniques.

Structure of the thesis

The thesis is structured as follows. In the current chapter, Chapter 1 is an intro-
ductory chapter where we formulate main objectives of this thesis and outline the
structure of the thesis. Chapter 2 presents a literature review of existing algorithms,
including evolutionary algorithms, for solving clustering problems in large data sets.
This chapter also describes widely used data mining software packages containing
various clustering algorithms.

In Chapter 3, we define nonsmooth nonconvex optimization models of cluster-
ing problems and discuss incremental approaches for solving these problems. In
this chapter we also consider procedures for finding starting cluster centers.

Chapter 4 introduces new versions of the incremental algorithms considered in
Chapter 3 where different schemes are applied to accelerate the incremental clus-
tering algorithms.

Chapters 5, 6 and 7 present computational results. Each of these chapters con-
tains information about data sets used in numerical experiments. Chapter 5 presents
results with small, Chapter 6 with medium size and Chapter 7 with large and very
large data sets. All these three chapters also include comparison with other mainly
optimization based incremental clustering algorithms

CHAPTER 1. INTRODUCTION 21

Finally, in Chapter 8 we give a summary of results obtained in this thesis and
also discuss possible directions of future research.

Chapter 2

Literature review

In this chapter first we briefly describe main steps in data analysis, then give overview
of clustering algorithms for large data and clustering algorithms based on evolution-
ary algorithms. We also give a brief description of existing publicly available data
mining software.

2.1 Data collection, cleaning and pre-processing

In this section we discuss main steps in data analysis before applying any clustering
algorithms. These steps are: data collection, data cleaning and data pre-processing.

Data collection can be done in many different ways. There is a large amount
of pre-existing data which can be obtained from repositories all over the world.
Also many companies or academic institutions collect data relevant to solving their
problems. Most important questions here are about the integrity of data and the
means used to source the data. The data collecting process may include a number
of repeat collections, before useful patterns can be found [25, 28, 30].

The methods used to collect data depend on the application, aims for collecting
the data and problem definition. For example, social scientists generally collect
data via observational techniques. This is a systematic process of watching and
recording behavior and characteristics. Another method is interview based, where
questioning of respondents is done either individually or as a group.

Another example of the data collection is their collection using sensors measur-
ing certain activities or data generators designed to create certain distributions for
testing or simulating problems. Generally this is an automated process, where large

22

CHAPTER 2. LITERATURE REVIEW 23

amounts of data can be generated.
The collected data must be stored in a such way that relevant data remains re-

lated to each other and can be called up to be used quickly and easily. With large
amounts of data sourced, it is possible that the data may be stored on multiple ma-
chines and over multiple sites [25, 28, 30].

Since in most cases humans are involved in the collection process, possible er-
rors can be made. In the example considered above about collecting data in social
sciences respondents or observers could be tired or distracted leading to incorrect
values being recorded. Survey questions can be ambiguous or misleading which
can lead to incorrect, redundant or no answers at all.

Moreover, it is obvious that during manual data collection, due to human weak-
nesses, boredom or inadequate surveys, there may occur errors and these erroneous
values can make their way into data. Automated data collection may also experience
problems (missing, noise or outlier data) due to possible damaged sensors or incor-
rectly calibrated measuring equipment. These outlier data values are non-consistent
values with other values in other data observations and may cause difficulties during
the data mining. These occur rarely, generally only representing about two percent
of all measurements pertaining to the observations [19].

If data pre-processing has not been applied, then it is likely that useful hidden
patterns will be disguised leading to the decreased performance of the data mining
techniques. The overall benefits of pre-processing means a smaller, cleaner and
higher quality data set which yields more concentrative patterns [36,37]. Therefore,
in any data mining applications data pre-processing, including data cleaning, is an
important step.

Sometimes, noisy data may also be considered as outliers, though only in the
case of irregular occurrences. For example, the noisy data automatically collected
by sensors is more problematic, as there may occur random noise both as bufirsts or
just intermittently. Noisy data can disagree with values describing classes, break-
ing down the natural pattern correlations and reducing the ability to differentiate
between the certain patterns. However, unrelated attributes do not add any noise
because their values are not indicative of any inherent patterns [17].

There has been a lot of work undertaken in data analysis for pre-processing and
preparation of data. As a result, a lots of data pre-processing tools are available.
A number of data pre-processing techniques can be found in [36]. The paper [31]
proposed a new method for dealing with missing values by using an imputation

CHAPTER 2. LITERATURE REVIEW 24

method based on the k-nearest neighbor algorithm. The papers [31, 32] present
overview of a number of existing methods. These methods include ignoring missing
values, disregarding instances containing missing values and maximum likelihood
procedures.

The paper [34] presents a comprehensive survey of contemporary outlier de-
tection techniques. These include a large array of statistical, neural and machine
learning techniques. This paper highlights the advantages and disadvantages of
each technique and point out that an algorithm’s suitability is based on the data’s
distribution model, correct attribute types, scalability, speed and modelling accu-
racy. The paper [34] demonstrates the benefits of removing observations in terms
of noise and data size complexity.

2.2 Definition of clustering problems

In cluster analysis we assume that we have been given a finite set of points A in the
n-dimensional space Rn, that is

A = {a1, . . . ,am}, where ai ∈Rn, i = 1, . . . ,m.

The hard unconstrained clustering problem is the distribution of the points of the set
A into a given number k of disjoint subsets A j, j = 1, . . . ,k with respect to predefined
criteria such that:

1) A j 6= /0, j = 1, . . . ,k;

2) A j⋂Al = /0, j, l = 1, . . . ,k, j 6= l;

3) A =
k⋃

j=1
A j;

4) no constraints are imposed on the clusters A j, j = 1, . . . ,k.

Remark 1. Constraints in the clustering problems can be on size of clusters (their
radius or the number of data points in each of them) or that given set of points should
belong to the same cluster (this may rely on a priori information on the cluster
structure of a data set). However, in this thesis we consider clustering problems
without any constraints on clusters.

CHAPTER 2. LITERATURE REVIEW 25

The sets A j, j = 1, . . . ,k are called clusters. We assume that each cluster A j

can be identified by its center x j ∈ Rn, j = 1, . . . ,k. The problem of finding these
centers is called the k-clustering (or k-partition) problem.

It is assumed that points from the same cluster are similar to each other and
points from different clusters are dissimlar to each other. Therefore, the similarity
measure is fundamental in cluster analysis. This measure, in particular, can be
defined using different distance functions or norms. For example, the Euclidean
norm, otherwise known as the L2-norm, Manhetten norm, known also as the L1-
norm and L∞-norm can be used to define the similarity measure. Note that the
distance functions and the similarity measures are not the same. In some cases the
similarity may not satisfy the so-called triangle inequality for distance functions (or
norms).

In this thesis, we define the similarity measure using the squared Euclidean
distance. Consider the center x j, j = 1, . . . ,k and a point a ∈ A. Then the similarity
of these two point is defined as:

‖x j−a‖2 =
n

∑
i=1

(x j
i −ai)

2. (2.2.1)

In this case the clustering problem is also known as the minimum sum-of-squares
clustering problem and center x j j = 1, . . . ,k is also called centroid. In general, any
clustering problem is an NP-hard combinatorial optimization problem.

2.3 Clustering algorithms for large data sets

In this section we briefly describe mainstream clustering algorithms for large data
sets. Clustering algorithms need to efficiently scale up with both the dimensionality
and the size of the data set. Due to the amount of data, many standard data mining
approaches can not be applied at all, batch processing of the full data set is infeasible
due to memory restrictions, while online processing requires several passes over
the data set, i.e. it is infeasible due to time constraints. Due to these circumstances,
researchers have worked on modifications of various clustering algorithms such that
they run in a single or few passes over the data and such that they require only a
priori fixed amount of allocated memory.

CHAPTER 2. LITERATURE REVIEW 26

2.3.1 k-means algorithm

The k-means is the most popular clustering algorithm. Here k stands for the number
of clusters. It is typically a user input to the algorithm. Some criteria can be used to
automatically estimate k. The k-means algorithm is an iterative algorithm in nature.
It works only for data sets with numerical attributes [44].

The k-means clustering algorithm for finding the k-partition of the set A pro-
ceeds as follows:

Algorithm 1. A k-means algorithm for clustering.

Step 1. Choose seed solution consisting of k centers.

Step 2. Allocate all data points a ∈ A to its closest centers and obtain the k-partition
of A.

Step 3. Recompute centers for this new partition and go to Step 2. Continue until
no more data points change their clusters.

In Step 1 of the k-means algorithm initial cluster centers can be chosen ran-
domly but not necessarily among data points. This algorithm is a local search al-
gorithm and it converges only to a local minimum of the clustering problem. The
k-means algorithm is fast algorithm even in very large data sets. However, a solu-
tion obtained by this algorithm differs significantly from the global solution of the
clustering problem as the size of a data set increases. Therefore, different versions
of this algorithm have been developed to improve the quality of a solution. We will
consider some of these algorithms in next subsections.

2.3.2 Modifications of k-means algorithm

The success of the k-means algorithms strongly depends on the choice of starting
cluster centers. To date, different clustering algorithms have been developed which
are modifications of the k-means algorithm and these modifications differ from each
other on the way the starting cluster centers are chosen.

These modifications include the following algorithms:

1. Lloyd algorithm. This clustering algorithm is the version of the k-means
algorithm. It was introduced in [114].

CHAPTER 2. LITERATURE REVIEW 27

2. Forgy algorithm. This algorithm is an alternative of least-squares algorithm
for clustering [115].

3. MacQueen algorithm. This clustering algorithm introduced in [116] is sim-
ilar to the Forgys algorithm. The difference is in the last stage where the
MacQueen algorithm moves the center points to the mean of their Voronoi
set.

4. Hartigan algorithm. This algorithm was introduced in [117] and it is another
version of the k-means algorithm. The difference is in the stopping criteria
used in these algorithms.

5. k-means++ algorithm. This algorithm is the version of the k-means algorithm
and was introduced in [118]. It uses a special procedure for initialization of
cluster centers using data points. The k-means++ algorithm is among most
efficient algorithms for clustering. It can be applied to large data sets.

6. X-means algorithm. This algorithm is an improvement of the original k-
means algorithm [119]. It uses a special procedure for initialization of cluster
centers.

All these algorithms can be applied to solve clustering algorithms in large data
sets. They are fast and can provide real time clustering. However, results presented
in [120] demonstrate that all these algorithms, except the k-means++ algorithm are
highly inaccurate in large data sets. Even multi-start versions of these algorithms
are inaccurate and cannot be considered as alternatives to many other algorithms
for clustering in large data sets. The k-means++ algorithm is not always efficient in
data sets with not separated clusters.

2.3.3 Partial/merge k-means algorithm

In the paper [44], the authors introduce the partial/merge k-means algorithm which
processes the overall set of points in cells, and merges the results of the partial
k-means steps into an overall cluster representation. The partial k-means and the
merge k-means are implemented as data stream operators that are adaptable to avail-
able computing resources such as volatile memory and processors by parallelizing
and cloning operators, and by computing k-means on partitions of data that can be
fit into memory.

CHAPTER 2. LITERATURE REVIEW 28

Partial/merge k-means re-runs the k-means several times to get better result at
each partition. However, this algorithm is sensitive to the size of partitioning in
massive data sets and can end up at a solution which is significantly different from
the global solution.

2.3.4 Parallel k-means algorithm

In [43], the authors develop a parallelized version of the k-means algorithm. This al-
lows them to apply the k-means algorithm to very large data sets. The authors use a
network of homogeneous workstations with Ethernet network and message-passing
for communication between processors. In an Ethernet network, all communica-
tions consist of packets transmitted on a shared serial bus available to all processors
and a master-slave single program multiple data approach (SPMD) is used.

The concept is to distribute processing of k-means on k machines which result
in a satisfactory time complexity. On the other hand for k clusters we have to con-
figure exactly k machines and every time rerun the k-means form the starting cluster
centers. However, due to memory limitation this algorithm may not be efficient for
massive data set.

2.3.5 BIRCH algorithm

One of the earliest clustering methods for large data sets is BIRCH (Balanced It-
erative Reducing and Clustering using Hierarchies) algorithm [38]. This algorithm
adopts the notion of clustering feature to summary description of clustering proper-
ties, which is demonstrated that it is especially suitable for very large data sets. The
BIRCH incrementally and dynamically clusters incoming multi dimensional metric
data points to try to produce the best quality clustering with the available resources
(i.e., available memory and I/O time constraints). It utilizes measurements that cap-
ture the natural closeness of data. These measurements can he stored and updated
incrementally in a height balanced tree.

2.3.6 CADD algorithm

Clustering Algorithm based on Density and adaptive Density-reachable (CADD) is
proposed in [42]. According to the notion and enlightenment of BIRCH, the author
in this paper proposes an incremental clustering algorithm based on definitions of

CHAPTER 2. LITERATURE REVIEW 29

subcluster similarity for very large spatial data sets. The incremental clustering
algorithm is simple and efficient, and has good performance especially for very
large spatial data sets. Similar to the Clustering Feature CF, a SubCluster Feature
SCF is also presented by a triple of numbers, which gives out the statistic description
of a subcluster.

Since the CADD algorithm is an extension of the BIRCH algorithm in some
extend, which has argued that unlike BIRCH, it can detect clusters with arbitrary
shape and size, however the same shortcomings of the former algorithm is still
unsolved.

2.3.7 Patch clustering algorithm

Batch clustering (like k-means) requires all training data to be stored in the main
memory which becomes infeasible for very large or massive data sets. The paper
[45] proposes a simple and efficient strategy for k-means clustering with restricted
buffer where data are processed consecutively in patches of predefined size (Patch
Clustering). In [46] the same strategy is transferred to Neural Gas Network.

Apart from memory reduction, patch clustering allows a reduction of time be-
cause of the faster convergence of the separate patch clustering. This can be ex-
plored even further by introducing parallelization into the procedure. The paral-
lelization can be done in a way such that almost no communication over head is
included.

2.3.8 Grid based clustering

The Grid File [47] is a multidimensional data structure, which adapts gracefully to
the distribution of patterns X in the value space of the domains of X . The Grid
Structure is a main memory data structure. It lacks the external disk storage support
and the data manipulation facilities of the original Grid File. The Grid Structure
consists of d scales (one for each dimension), the grid directory (a d-dimensional
array) and b data blocks. Each scale is a 1-dimensional array. A value of this array
represents a (d−1)-dimensional hyperrectangle, which partitions the value space.

The grid directory is a d-dimensional dynamic array and represents the grid
partition produced by the d scales. The data blocks contain the stored patterns.
Each element of the grid directory refers to a data block. It is possible that two or

CHAPTER 2. LITERATURE REVIEW 30

more directory elements reference the same data block. The value space defined
by the union of the directory elements referencing the data block i is called block
region VBi. Each block region is always shaped like a d-dimensional rectangular
box.

Conventional cluster algorithms calculate a distance based on a dissimilarity
metric (e.g. Euclidean distance, etc.) between patterns and cluster centers. The
patterns are clustered accordingly to the resulting dissimilarity index. The Grid
Clustering algorithm organize the value space containing the patterns. For more
than one dimensional data a variation of the multidimensional data structure of the
Grid File will be used, which is called Grid Structure.

The patterns are treated as points in a d-dimensional value space and are ran-
domly inserted into the Grid Structure. These points are stored according to their
pattern values, preserving the topological distribution. The Grid Structure partitions
the value space and administrates the points by a set of surrounding rectangular
shaped blocks. In the literature many grid based clustering algorithms [47, 49–51]
are proposed.

2.3.9 Incremental clustering

Usually the massive data set can not fit into the available main memory, therefore
the entire data matrix is stored in a secondary memory and data items are transferred
to the main memory one at a time for clustering. Only the cluster representations
are stored in the main memory to alleviate the space limitations.

Incremental clustering is based on the assumption that it is possible to consider
patterns one at a time and assign them to existing clusters. A new data item is as-
signed to a cluster without affecting the existing clusters significantly. Typically,
they are non-iterative. So their time requirements are also small. The major ad-
vantage of the incremental clustering algorithms is their limited space requirement
since the entire data set is not necessary to store in the memory. Therefore, these
algorithms are well suited for very large or massive data sets.

2.3.10 Subspace clustering

Unlike feature selection and feature transformation methods which examine the data
set as a whole, subspace clustering algorithms localize their search and are able to

CHAPTER 2. LITERATURE REVIEW 31

uncover clusters that exist in multiple, possibly overlapping subspaces in a massive
data set. Just as with feature selection, subspace clustering requires a search method
and an evaluation criteria. In addition, subspace clustering must somehow limit the
scope of the evaluation criteria so as to consider different subspaces for each cluster.

Subspace clustering must evaluate features on only a subset of the data, repre-
senting a cluster. They must use some measure to define this context. We refer
to this as a measure of locality. Some authors categorized the subspace clustering
algorithms into two groups of Bottom-up and Top-down based on how they deter-
mine a measure of locality with which to evaluate subspaces. A very good survey
of subspace clustering can be found in [52, 53, 55, 56, 58, 60].

2.4 Evolutionary algorithms for clustering

Evolutionary algorithms have been widely used to design clustering algorithms.
They have been applied either directly to clustering problems, considering these
problems as global optimization problems or in combination with other clustering
algorithms to improve the quality of solutions obtained by the latter algorithms.

Evolutionary algorithms are easy to implement and they have both local and
global search properties. These properties explain why these algorithms are at-
tractive for solving clustering problems. However, in large data sets evolutionary
algorithms become inaccurate and may require large computational effort. On the
other side these algorithms can be used to generate good strating cluster centers for
other clustering algorithms.

The paper [75] applies the tabu search algorithm for solving clustering prob-
lems. Comparison of clustering algorithms based on different evolutionary tech-
niques is presented in [76]. The simulated annealing method for clustering is de-
veloped in [85, 95, 98] and a branch and bound algorithm for clustering is studied
in [87, 91]. The paper [121] presents an algorithm based on the combination of the
k-means and genetic algorithms.

Evolutionary algorithms can be used to generate good starting cluster centers
distributed over all search space. The combination of these algorithms with other
clustering may lead to the design efficient and accurate clustering algorithms for
large data sets. Here we briefly describe four evolutionary algorithms which have
been used to design clustering algorithms:

CHAPTER 2. LITERATURE REVIEW 32

1. Genetic Algorithm

2. Artificial Bee Colony (ABC) Optimization

3. Particle Swarm Algorithm

4. Ant Colony Algorithm

2.4.1 Genetic Algorithm

D. Goldberg developed a computational algorithm based on the Darwin theory rule:
“the strongest species that survives” and “the survival of an organism can be main-
tained through the process of reproduction, crossover and mutation”. This is called
Genetic Algorithm (GA). It is used to get solution to an optimization problem in a
natural fashion. This solution is called a chromosome which is made up of genes.
To get the optimum solution (maximum/minimum) of the optimization problem by
GA, the chromosomes will undergo a process called fitness function. This fitness
function is used to measure the suitability of a solution generated by GA with the
problem [39, 40].

2.4.2 Artificial Bee Colony Algorithm

Basturk and Karaboga introduced an Artificial Bee Colony (ABC) algorithm for
numerical optimization problems based on the foraging behavior of honey bees for
[41]. The ABC model is consisted of three kinds of bees colony: employed bees,
onlookers and scouts. It is assumed that for each food source there is only one
artificial employed bee. It can be said that the number of employed bees in the
colony is equal to the number of food sources around the hive. The employed
bees function like that they go to their food source and come back to hive and
dance on this area. When food source of an employed bee has been abandoned, it
becomes a scout bee which then starts searching a new food source. On the other
hand, onlooker bees watch the dances of employed bees and select the food sources
depending on dances [41]. The ABC algorithm is used to solve both unconstrained
and constrained optimization problems.

We describe the ABC algorithm for unconstrained optimization problems. In
this case the number of the employed bees is equal to the number of solutions in
the population. At the first step, a randomly distributed initial population (food

CHAPTER 2. LITERATURE REVIEW 33

source positions) is generated. After initialization, the population is subjected to
repeat the cycles of the search processes of the employed, onlooker, and scout bees,
respectively. An employed bee produces a modification on the source position in
her memory and discovers a new food source position. The ABC algorithm [41]
is explained by the colony of artificial bees which are divided into three groups of
bees: employed bees, onlookers and scouts, respectively. First half majority of the
bee colony consists of the employed artificial bees and the second half contains the
onlookers. There is only one employed bee for each food source. The employed bee
whose food source has been ended by the bees becomes a scout. In mathematical
equation representation, we may express the above statement as:

• No. of employed bees = No. of food sources around the hive.

• No. of the employed bees or the onlooker bees = No. of solutions in the
population.

In the ABC algorithm, the position of a food source shows a possible solution to
the optimization problem and the nectar amount of a food source relates to the qual-
ity (fitness) of the associated solution. In the initialization step, the ABC produces
a randomly distributed initial population P(G = 0) of SN solutions (food source
positions), where SN denotes the size of population. Each solution xi, i = 1, . . . ,SN

is a D-dimensional vector, where D is the number of optimization parameters. Af-
ter initialization, the population of the positions (solutions) is subjected to repeated
cycles (C = 1,2, . . . ,MCN), of the search processes of the employed bees, the on-
looker bees and scout bees [41]. Here MCN is the maximum number of cycles.

An employed bee generates an alteration on the position (solution) in her mem-
ory which depends upon the local information (visual information) and checks the
nectar amount (fitness value) of the new source (new solution). If the nectar amount
of the new one (position) is higher than that of the previous one, the bee memorizes
the new position and disregards the old one. Or else she holds the previous posi-
tion in her memory. When all employed bees finish the search process, they share
the nectar information of the food sources and their position information with the
onlooker bees in the dance area.

An onlooker bee evaluates the nectar information taken from all employed bees
and selects a food source with a probability associated to its nectar amount. As in
the case of the employed bee which makes a modification on the position in her

CHAPTER 2. LITERATURE REVIEW 34

memory and tests the nectar amount of the candidate source. If, its nectar is evalu-
ated higher than that of the previous one, the bee memorizes the new position and
not remembers the old position. An artificial onlooker bee decides a food source,
based on the the probability value related with that food source. Details of this
algorithm can be found in [41].

2.4.3 Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is a population based stochastic optimization
technique developed by Eberhart and Kennedy in 1995 [61], inspired by social be-
havior of bird flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such as
Genetic Algorithms. The system is initialized with a population of random solutions
and searches for optima by updating generations. However, unlike GA, PSO has no
evolution operators such as crossover and mutation. In PSO, the potential solutions,
called particles, fly through the problem space by following the current optimum
particles.

Compared to GA, the advantages of PSO are that PSO is easy to implement and
there are few parameters to adjust. PSO learned from the scenario and used it to
solve the optimization problems. In PSO, each single solution is a “bird” in the
search space. We call it “particle”. All of particles have fitness values which are
evaluated by the fitness function to be optimized, and have velocities which direct
the flying of the particles. The particles fly through the problem space by following
the current optimum particles.

PSO is initialized with a group of random particles (solutions) and then searches
for optima by updating generations. In every iteration, each particle is updated
by following two “best” values. The first one is the best solution (fitness) it has
achieved so far. (The fitness value is also stored.) This value is called pbest . An-
other “best” value that is tracked by the particle swarm optimizer is the best value,
obtained so far by any particle in the population. This best value is a global best and
called gbest . When a particle takes part of the population as its topological neigh-
bors, the best value is a local best, called lbest . Details of this algorithm can be found
in [61, 62, 65].

CHAPTER 2. LITERATURE REVIEW 35

2.4.4 Ant Colony Optimization

The ant colony optimization (ACO) search process was initially described, and has
been used to address problems in many different fields, including telecommunica-
tion, transportation and forestry. ACO algorithms are based on the mechanics of
ants searching for food from a nest area. It was initially suggested for route man-
agement problems. This algorithm is inspired by observation of real ants.

Individually, each ant is blind, frail and almost insignificant. Yet, by being
able to co-operate with each other, the colony of ants demonstrates complex be-
haviour. One of these is the ability to get the closest route to a food source or some
other interesting landmark. This is done by laying down special chemicals called
“pheromones.” As more ants use a particular trail, the pheromone concentration on
it increases, hence attracting more ants. In our example, an artificial ant is placed
randomly in each city and, during each iteration, chooses the next city to go to
(see, [68, 70, 71], for details).

2.5 Data mining software

In this section we briefly describe publicly available data mining packages.

2.5.1 WEKA

WEKA (an abbreviation for Waikato Environment for Knowledge analysis) is data
mining software, which is developed by the Department of Computer Science, Uni-
versity of Waikato, New Zealand [36] with the funding of the New Zealand gov-
ernment since 1993. It is open source application software written in the Java pro-
gramming language [36].

This was first used in agriculture industries for a work bench for machine learn-
ing tools, to determine the necessary success factors. Secondly, it was trained to
develop new methods and then assess their efficiency. This has led to a data min-
ing application that possesses many learning algorithms, pre-processing and post-
processing tools and a perceptive graphical user interface [36]. WEKA, an out of
the box application (that can be used immediately after installation), is widely used
in research and education and industry for data mining applications. There are many
methods of interfacing with the WEKA software in order to challenge the data min-

CHAPTER 2. LITERATURE REVIEW 36

ing problem [36]. In our case, it is then practical that the user begins the data mining
procedure by using the application’s “explorer” graphical user interface. The user
interface shows a well-defined menu which includes the following tasks [36]:

• Data pre-processing;

• Supervised data classification;

• Clustering (or unsupervised classification);

• Associate rules;

• Attribute selections;

• Visualization.

These tasks roughly imitate the steps shown in the Knowledge Discovery in Databases
process. For the collection phase, WEKA can connect to databases, although it does
not allow for a storage solution itself. It is required to collect data and store it else-
where.

2.5.2 R

R is a language and environment for statistical computing and graphics. R language
is widely used among statisticians and data miners for developing statistical and
data analysis software. It includes the following features [113]:

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data analysis,

• graphical facilities for data analysis and display either onscreen or on hard
copy, and

• A well-developed, simple and effective programming language which in-
cludes conditionals, loops, user defined recursive functions and input and
output facilities.

CHAPTER 2. LITERATURE REVIEW 37

2.6 Summary

This chapter provides the literature review of algorithms for solving clustering prob-
lems in very large data sets. First, we briefly discuss main steps for data pre-
processing. Then we consider clustering algorithms including those based on the
evolutionary algorithms. Finally, we briefly describe publicly available data mining
software containing clustering algorithms.

Chapter 3

Optimization models and algorithms
of clustering

In this chapter we consider optimization models of the clustering problem and dis-
cuss algorithms for its solution. These algorithms are based on different optimiza-
tion techniques and an incremental approach is used for their design.

Definition of the clustering problem is given in Chapter 2. We use the squared
Euclidean distance function to define the similarity in this problem. Clusters are
identified by their centers (called also centroids).

Suppose that a data set A containing finite number of points a1, . . . ,am in the
n-dimensional space Rn is given. Our aim is to compute k > 0 clusters in this data
set. This problem is also known as the k-clustering problem.

3.1 Combinatorial model of the clustering problem

Denote the set of k clusters in the set A by Ā = (A1, . . . ,Ak) and a set of all possible
k-partitions of the set A by Ã. Then the combinatorial model can be given as:

minimize Ψk(Ā) =
1
m

m

∑
i=1

k

∑
j=1

d(x j,ai) (3.1.1)

subject to
Ā = (A1, . . . ,Ak) ∈ Ã. (3.1.2)

38

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING39

Here x j is the center of the cluster A j, j = 1, . . . ,k which can be found by solving
the following optimization problem:

minimize
1
|A j| ∑

a∈A j

d(x,a) subject to x ∈Rn. (3.1.3)

Here | · | stands for the cardinality of a set. If the squared Euclidean distance is used
for the similarity measure then the center x j can be found explicitly as follows:

x j =
1
|A j| ∑

a∈A j

a, j = 1, . . . ,k. (3.1.4)

Note that in this formulation decision variables are nonempty subsets of the set A

and therefore optimization algorithms cannot be directly applied to solve the prob-
lem (3.1.1)-(3.1.2). The combinatorial model can be used to solve clustering prob-
lems only in very small data sets.

3.2 Integer programming model of clustering prob-
lems

The k-clustering problem is formulated as the following optimization problem (see
[84, 97]):

minimize ψk(x,w) =
1
m

m

∑
i=1

k

∑
j=1

wi j ‖x j−ai‖2 (3.2.1)

subject to
k

∑
j=1

wi j = 1, i = 1, . . . ,m, (3.2.2)

wi j ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . ,k. (3.2.3)

Here wi j is the association weight of pattern ai with the cluster j. wi j is 1 if pattern
ai is allocated to the cluster j and 0 otherwise. We can see that w is an m×k-matrix.
The function ψk is called a cluster function.

Cluster centers x j are computed using binary coefficients wi j, i = 1, . . . ,m, j =

1, . . . ,k:

x j =
∑

m
i=1 wi jai

∑
m
i=1 wi j

, j = 1, . . . ,k. (3.2.4)

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING40

In fact this optimization model of the clustering problem contains continuous
variables x j ∈ Rn, j = 1, . . . ,k which are cluster centers and also binary variables
wi j, i = 1, . . . ,m, j = 1, . . . ,k, however, continuous variables are expressed via bi-
nary variables using (3.2.8). Therefore in this problem binary variables are decision
variables and for this reason the problem (3.2.1)-(3.2.3) is called the integer pro-
gramming model of the clustering problem.

In the next chapter we will develop algorithms for identifying dense areas in a
data set. This algorithm will allow us to reduce the number of data points by remov-
ing data points from some neighborhood of a given point and assigning it a weight
depending on the number of removed points. Such an approach necessitate to con-
sider data sets where points may have different weights. We formulate optimization
models for such data sets.

Now we assume that each data point ai ∈ A, i = 1, . . . ,m has own weight ci ≥ 0.
Then the integer programming model (3.2.1)-(3.2.3) of the k-clustering problem can
be reformulated as follows:

minimize ψ̄k(x,w) =
1
m

m

∑
i=1

ci

k

∑
j=1

wi j ‖x j−ai‖2 (3.2.5)

subject to
k

∑
j=1

wi j = 1, i = 1, . . . ,m, (3.2.6)

wi j ∈ {0,1}, i = 1, . . . ,m, j = 1, . . . ,k. (3.2.7)

In this case cluster centers x j are computed as:

x j =
∑

m
i=1 ciwi jai

∑
m
i=1 ciwi j

, j = 1, . . . ,k. (3.2.8)

3.2.1 Nonsmooth optimization models of clustering problems

Nonsmooth nonconvex optimization formulation of the clustering problem is as
follows (see [78–80, 84]):

minimize fk(x) subject to x = (x1, . . . ,xk) ∈Rn×k, (3.2.9)

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING41

where

fk(x1, . . . ,xk) =
1
m

m

∑
i=1

min
j=1,...,k

‖x j−ai‖2. (3.2.10)

The objective function fk is called a cluster function. This function is convex when
k = 1. It is also continuously differentiable in this case since the minimum operation
is not used. The function fk is both nonsmooth and nonconvex when k > 1 and both
these properties stem from the use of minimum operation.

The number of local minimizers of the objective function fk increases signifi-
cantly as the number of clusters k and the number of data points m increase. Func-
tion under minimum are simple convex quadratic functions, however, the use of
minimum operation leads to appearance of many local minimizers when k is rela-
tively large.

The objective function fk can be represented as a difference of two convex func-
tions as follows:

fk(x) = f 1
k (x)− f 2

k (x),

where

f 1
k (x) =

1
m

m

∑
i=1

k

∑
j=1
‖x j−ai‖2,

f 2
k (x) =

1
m

m

∑
i=1

max
j=1,...,k

k

∑
t=1,t 6= j

‖xt−ai‖2.

This leads to the nonsmooth difference of convex model of the clustering problem.
If the data set A contains points ai with weights ci, i = 1, . . . ,m then the nons-

mooth optimization model (3.2.9)-(4.3.6) can be reformulated as:

minimize f̄k(x) subject to x = (x1, . . . ,xk) ∈Rn×k, (3.2.11)

where

f̄k(x1, . . . ,xk) =
1
m

m

∑
i=1

ci min
j=1,...,k

‖x j−ai‖2. (3.2.12)

The expression for the difference of convex components of this function are:

f̄ 1
k (x) =

1
m

m

∑
i=1

ci

k

∑
j=1
‖x j−ai‖2,

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING42

f̄ 2
k (x) =

1
m

m

∑
i=1

ci max
j=1,...,k

k

∑
t=1,t 6= j

‖xt−ai‖2.

3.2.2 Comparison of two optimization models

Comparing the integer programming and nonsmooth optimization models of the
clustering problems we can come to the following conclusions:

1. The objective function ψk depends only on binary variables wi j, i= 1, . . . ,m, j =

1, . . . ,k, however, the objective function fk depends only on continuous vari-
ables x1, . . . ,xk. It is easy to deal with continuous variables than integer and
in particular, binary variables.

2. The number of variables in the integer programming model (3.2.1)-(3.2.3) is
m× k whereas this number in nonsmooth optimization model (3.2.9) is n× k

and the number of variables does not depend on the number of instances. It
should be noted that in many real-world data sets the number of instances
m is significantly greater than the number of features n. This means that
the number of variables in the integer programming model can easily reach
millions in large data sets however, this number will not change with increase
of the number of data points in the nonsmooth optimization model.

3. The function ψk is continuously differentiable with respect to w. Since the
function fk is represented as a sum of minima functions it is nonsmooth for
k > 1.

4. Problem (3.2.1)-(3.2.3) is integer programming problem and problem (3.2.9)
is nonsmooth global optimization problem. These problems are equivalent in
the sense that their global minimizers coincide (see [84]).

Items 1 and 2 can be considered as advantages of the nonsmooth optimization
formulation (3.2.9) of the clustering problem.

3.2.3 The auxiliary clustering problem

The clustering problem is a global optimization problem and in large data sets
the objective function in this problem has many local minimizers. Conventional
global optimization methods are very time-consuming when one applies to solve

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING43

such problems. Local search methods demand significantly less computational time
and computer memory than global optimization methods, however they can get only
local solutions which can be significantly different from global ones. Global solu-
tions or solutions close to them provide the best cluster distribution of a data set
with least number of clusters.

The success of local search methods strongly depends on the set of starting
cluster centers. Therefore, it is imperative to develop a special procedure to generate
good starting cluster centers. One such procedure will be introduced in the next
chapter. This procedure uses the so-called auxiliary clustering problem which we
define below. For k > 1 this problem is defined under assumption that the solution
to (k−1)-clustering problem is known.

Let x1, . . . ,xk−1, k ≥ 2 be a solution to the (k− 1)-clustering problem. Denote
by di

k−1 the distance between ai, i = 1, . . . ,m and the closest cluster center among
k−1 centers x1, . . . ,xk−1:

di
k−1 = min

{
‖x1−ai‖2, . . . ,‖xk−1−ai‖2

}
. (3.2.13)

We will also use the notation da
k−1 for a ∈ A. Define the following function:

f̄k(y) =
1
m

m

∑
i=1

min
{

di
k−1,‖y−ai‖2} , y ∈Rn. (3.2.14)

We call f̄k the k-th auxiliary cluster function. This function is nonsmooth and as
a sum of minima of convex functions it is, in general, nonconvex. Moreover, the
function is locally Lipschitz and directionally differentiable. It is obvious that

f̄k(y) = fk(x1, . . . ,xk−1,y), ∀y ∈Rn.

A problem:
minimize f̄k(y) subject to y ∈Rn (3.2.15)

is called the k-th auxiliary clustering problem.

Now consider the case when each data point ai ∈ A has a weight ci ≥ 0, i =

1, . . . ,m. In this case we have

di
k−1 = ci min

{
‖x1−ai‖2, . . . ,‖xk−1−ai‖2

}
.

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING44

the function f̄k can be rewritten as:

f̄k(y) =
1
m

m

∑
i=1

min
{

di
k−1,ci‖y−ai‖2} , y ∈Rn.

3.2.4 Optimization algorithms for clustering problems

Optimization methods, both deterministic and stochastic, have been applied to de-
velop different algorithms for solving clustering problems and especially, for solv-
ing the minimum sum-of-squares clustering problems. These algorithms can be
categorized into the following groups:

1. Clustering algorithms based on deterministic optimization techniques. The
clustering problem is a global optimization problem. Both global and lo-
cal search methods were applied to solve this problem. These methods in-
clude the dynamic programming, the interior point method, the cutting plane
method, the branch and bound and the neighborhood search methods [87, 88,
90, 91, 94]. Other deterministic optimization techniques include the discrete
gradient, truncated codifferential and hyperbolic smoothing methods which
were applied to solve the minimum sum-of-squares clustering problem using
its nonsmooth optimization formulation [82, 86, 100, 101]. In [96], the clus-
tering problem is formulated as a nonlinear programming problem for which
a tight linear programming is constructed via the reformulation-linearization
technique. This construction is embedded within a specialized branch-and-
bound algorithm to solve the problem to global optimality. A clustering algo-
rithm based on a variant of the generalized Benders decomposition, denoted
as the global optimum search, is developed in [99].

2. Clustering algorithms based on metaheuristics. Some metaheuristics were
applied to solve the clustering problem including tabu search, simulated an-
nealing and genetic algorithms [75, 76, 85, 95, 98]. Metaheuristics can effi-
ciently deal with both integer and continuous variables and therefore they can
be applied to solve the clustering problem using its integer programming for-
mulation (3.2.1)-(3.2.3). However, it is also well-known that metaheuristics
are not efficient for solving clsutering problems in very large data sets. In
such data sets they require huge computational effort.

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING45

3. Heuristics. These algorithms were specifically designed to solve the clus-
tering problem. The k-means and its variations are representatives of such
heuristics [89, 97]. In these algorithms starting cluster centers are generated
randomly either among data points or from the search space. Clustering al-
gorithms belonging to this class are very sensitive to the choice of starting
cluster centers.

4. Heuristics based on the incremental approach. These algorithms start with
the computation of the center of the whole data set A and attempt to optimally
add one new cluster center at each stage. In order to solve Problem (3.2.9)
for k > 1 these algorithms start from an initial state with the k−1 centers for
the (k− 1)-clustering problem and the remaining k-th center is placed in an
appropriate position. The global k-means and modified global k-means are
representatives of these algorithms [77, 81, 90, 93].

Numerical results demonstrate that most of algorithms mentioned in items 1)
and 2) are not always efficient to solve the clustering problems in large data sets. For
example, some deterministic methods and metaheuristics cannot efficiently solve
clustering problems in data set with thousands of data points. These methods require
considerably more computational effort than heuristic algorithms in such data sets.
They can be applied to solve clustering problems in large data sets in combination
with other fast algorithms.

Heuristic clustering algorithms have shown to be efficient algorithms. Their
typical representative, k-means algorithm, can deal with very large data sets. How-
ever, this algorithm is very sensitive to the choice of starting points. It can calculate
only local minimizers of the clustering problem and in large data sets these local
minimizers might be significantly different from the global minimizers. The multi-
start versions of these algorithms are not alternatives to more accurate and efficient
algorithms based on various optimization techniques.

Since the clustering is a global optimization problem the use of local meth-
ods for its solution should be combined with algorithms for finding good starting
cluster centers. Algorithms based on an incremental approach are able to get such
starting points. Incremental clustering algorithms have been developed over the
last decade [77, 81, 90, 92, 93]. Numerical results demonstrate that these algorithms
are efficient for solving clustering problems in large data sets. However, in very
large data sets containing hundreds of thousands and millions of data points these

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING46

algorithms may require prohibitively large computational time. Therefore, special
algorithms should be developed to accurately and efficiently solve clustering prob-
lems in such data sets.

Next we describe several incremental and optimization based clustering algo-
rithms which will be used for comparison in Chapters 5, 6 and 7. All these al-
gorithms compute clusters incrementally that is they start with one cluster center
which is the center of the whole data set A and gradually add a new cluster center.
Main difference between these algorithms is in the way they compute the starting
point for the next cluster center. For given k > 1 assume that the solution to the
(k− 1)-clustering problem is known and we show how each algorithm solves the
k-clustering problem.

Global k-means algorithm (GKM). The GKM algorithm is introduced in [93]. In
this algorithm all data points are considered as a starting point for the k-th cluster
center. Each data point is added to (k−1) cluster centers and the k-means algorithm
starts from these points to solve k-clustering problem. This means that one gets new
m solutions to the k-clustering problem. The solution with the smallest value of the
objective function in clustering problem is chosen as a solution to the k-clustering
problem. Although such an algorithm is accurate however it is not efficient even for
data sets containing tens thousands of data points. Therefore, in its implementation
not all data points but the data point providing largest decrease of the objective
function is chosen as a starting point for the k-th cluster center.

Modified Global k-means algorithm (MGKM). The MGKM algorithm was intro-
duced in [77]. In this algorithm data points providing the decrease of the objective
function more than some threshold are chosen as a starting points to solve the auxil-
iary clustering problem. Then the solution to the auxiliary clustering problem with
the smallest value of the auxiliary clustering function is chosen as the starting point
for the k-th cluster center. This point is added to k− 1 cluster centers to form a
starting point for the k-clustering problem and the k-means algorithm is applied to
solve the problem starting from this starting point.

The multi-start modified global k-means algorithm (MS-MGKM) was devel-
oped in [104]. This algorithm is an extension of the MGKM algorithm. In this
algorithm a special procedure is introduced to generate a set of starting cluster cen-
ters. Data points and the auxiliary clustering problem are used to generate these
centers. The k-means algorithm is applied starting from each of these points and

CHAPTER 3. OPTIMIZATION MODELS AND ALGORITHMS OF CLUSTERING47

previous k− 1 cluster centers to solve the k-clustering problem. The best solution
with lowest value of the clustering function is accepted as a solution to the k-th
clustering problem.

Difference of convex model based clustering algorithm (DCClust). This algorithm
was developed in [122]. It is based on the difference of convex model of the clus-
tering problem. The nonsmooth optimization algorithm was introduced to solve
this problem. A special procedure is applied to get good starting points for cluster
centers.

Algorithm based on the Difference of convex algorithm (DCA). This algorithm is
considered in [122]. It is also based on the difference of convex model of the clus-
tering problem. The Difference of Convex Algorithm, introduced in [106, 107],
is applied to solve optimization problems both clustering and auxiliary clustering
problems. A special procedure is used to generate starting points for cluster cen-
ters.

3.3 Summary

In this chapter three models of the hard unconstrained clustering problem is con-
sidered. The comparison of optimization models is presented. It is shown that
the nonsmooth optimization model allows one to significantly reduce the number
of decision variables and to avoid using binary variables. These models also were
introduced for data sets where each data point has own weight.

Different algorithms for solving the clustering problems are discussed and com-
pared. It is noted that most of these algorithms are not applicable to solve the clus-
tering problems in very large data sets. Finally, more detailed discussion on cluster-
ing algorithm, which are used for comparison using numerical results, is provided.

Chapter 4

Fast incremental clustering
algorithms

In this chapter we introduce fast clustering algorithms. These algorithms are appli-
cable to solve clustering problems in very large data sets. Most important compo-
nents of these algorithms are the procedure for finding good starting cluster centers,
a special procedure to reduce computational efforts and a procedure to reduce the
size of a data set. We start with description of the procedure for finding starting
cluster centers. This procedure is described for data sets where each data point has
a weight.

4.1 Computation of starting points

An algorithm proposed in this section is an extension of the algorithm from [104]
for data sets with weights.

Let a data set A = {a1, . . . ,am} ⊂ Rn, m ≥ 1 be given. Moreover, assume that
each data point ai has a weight ci ≥ 0. Let l > 1 and the solution (x1, . . . ,xl−1) ∈
R

(l−1)n to the (l−1)-partition problem is known. Consider the following two sets:

S1 =
{

y ∈Rn : ci‖y−ai‖2 ≥ di
l−1, ∀i ∈ {1, . . . ,m}

}
,

S2 =
{

y ∈Rn : ∃i ∈ {1, . . . ,m} such that ci‖y−ai‖2 < di
l−1
}
.

The set S1 contains all points y ∈ Rn which do not attract any point from the set A

and the set S2 contains all points y ∈ Rn which attract at least one point from A. It

48

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 49

is obvious that cluster centers x1, . . . ,xl−1 ∈ S1. Since the number l of clusters is
less than the number of data points in the set A all data points which are not cluster
centers belong to the set S2 (because such points attract at least themselves) and
therefore this set is not empty. Note that S1

⋂
S2 = /0 and S1

⋃
S2 = R

n. It is clear
that

f̄l(y)≤
1
m

m

∑
i=1

di
l−1, ∀y ∈R

n

and

f̄l(y) = fl−1(x1, . . . ,xl−1) =
1
m

m

∑
i=1

di
l−1, ∀y ∈ S1

that is the l-th auxiliary cluster function is constant on the set S1 and any point from
this set is a global maximizer of this function. In general, a local search method will
terminate at any of these points. Therefore, starting points for solving Problems
(3.2.9) and (3.2.15) should not be chosen from the set S1. In this section, we design
a special procedure which allows one to select starting points from the set S2.

Take any y ∈ S2. Then one can divide the set A into two subsets as follows:

B̄1(y) =
{

a ∈ A : ca‖y−a‖2 ≥ da
l−1
}
,

B̄2(y) =
{

a ∈ A : ca‖y−a‖2 < da
l−1
}
.

Here ca is a weight of the point a ∈ A. Notice that B̄1(y) = B2(y)
⋃

B3(y) and
B̄2(y) = B1(y). The set B̄2(y) contains all data points a ∈ A which are closer to
the point y than to their cluster centers and the set B̄1(y) contains all other data
points. Since y ∈ S2 the set B̄2(y) 6= /0. Furthermore, B̄1(y)

⋂
B̄2(y) = /0 and A =

B̄1(y)
⋃

B̄2(y). Then

f̄l(y) =
1
m

(
∑

a∈B1(y)
da

l−1 + ∑
a∈B2(y)

ca‖y−a‖2

)
.

The difference zl(y) between the value of the l-th auxiliary cluster function at y and
the value fl−1(x1, . . . ,xl−1) for the (l−1)-clustering problem is:

zl(y) =
1
m ∑

a∈B̄2(y)

(
da

l−1− ca‖y−a‖2)

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 50

which can be rewritten as

zl(y) =
1
m ∑

a∈A
max

{
0,da

l−1− ca‖y−a‖2} . (4.1.1)

The difference zl(y) shows the decrease of the value of the l-th cluster function fl

comparing with the value fl−1(x1, . . . ,xl−1) if the point (x1, . . . ,xl−1,y) is chosen as
the cluster center for the l-clustering problem.

If a data point a ∈ A is the cluster center then this point belongs to the set S1,
otherwise it belongs to the set S2. Therefore we choose a point y from the set A\S1.
We take any y = a ∈ A\S1, compute zl(a) and introduce the following number:

z1
max = max

a∈A\S1
zl(a). (4.1.2)

Let γ1 ∈ [0,1] be a given number. We compute the following subset of A:

Ā1 =
{

a ∈ A\S1 : zl(a)≥ γ1z1
max
}
. (4.1.3)

If γ1 = 0 then Ā1 = A\S1 and if γ1 = 1 then the set Ā1 contains data points with the
largest decrease z1

max (the global k-means algorithm from [93] uses such data points
as the starting point for the l-th cluster center).

For each a ∈ Ā1 we compute the set B̄2(a) and its center c(a). We replace the
point a ∈ Ā1 by the point c(a) because the latter is better representative of the set
B̄2(a) than the former. Denote by Ā2 the set of all such centers. For each c ∈ Ā2 we
compute the number z2

l (c) = zl(c) using (4.3.3). Finally, we compute the following
number:

z2
max = max

c∈Ā2

z2
l (c). (4.1.4)

The number z2
max represents the largest decrease of the values fl(x1, . . . ,xl−1,c)

among all centers c ∈ Ā2 comparing with the value fl−1(x1, . . . ,xl−1).
Let γ2 ∈ [0,1] be a given number. We define the following subset of Ā2:

Ā3 =
{

c ∈ Ā2 : z2
l (c)≥ γ2z1

max
}
. (4.1.5)

If γ2 = 0 then Ā3 = Ā2 and if γ2 = 1 then the set Ā3 contains only centers c with the
largest decrease of the cluster function fl . If take γ1 = 0 and γ2 = 1 then we get the
scheme for finding starting points used in the modified global k-means algorithm

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 51

[77].
All points from the set Ā3 are considered as starting points for solving the aux-

iliary clustering problem (3.2.15). This problem is nonconvex and it is important to
get good starting points if one applies a local method for its solution. We use all
data points for the computation of the set Ā3 and therefore this set contains start-
ing points from different parts of the data sets. Such a strategy allows to get either
global or near global solutions to Problem (3.2.9) (as well as to Problem (3.2.15))
using only local methods.

Applying the k-means algorithm and using starting points from Ā3 we get a set
of local minimizers of Problem (3.2.15). Since the k-means algorithm starting from
different points can arrive to the same solution, the number of local minimizers
found is no greater than the cardinality of the set Ā3. We denote by Ā4 the set
of local minimizers of Problem (3.2.15) obtained using the k-means algorithm and
starting points from Ā3. Define

f̄ min
l = min

y∈Ā4

f̄l(y). (4.1.6)

Let γ3 ∈ [1,∞) be a given number. Compute the following set:

Ā5 =
{

y ∈ Ā4 : f̄l(y)≤ γ3 f̄ min
l
}
. (4.1.7)

If γ3 = 1 then Ā5 contains the best local minimizers of the function f̄l obtained using
starting points from the set Ā3. If γ3 is sufficiently large then Ā5 = Ā4.

We use each point from the set Ā5 as a starting point ȳ for the l-th cluster center.
That is we use more than one starting point to solve Problem (3.2.9). The best
solution found is accepted as a solution to the l-partition problem in Step 5. Thus,
an algorithm for finding starting points to solve Problem (3.2.9) can be summarized
as follows.

Algorithm 2. Algorithm for finding the set of starting points.

Input: The solution (x1, . . . ,xl−1) to the (l−1)-clustering problem.

Output: The set of starting points for the l-th cluster center.

Step 0. (Initialization). Select γ1,γ2 ∈ [0,1] and γ3 ∈ [1,∞).

Step 1. Compute z1
max using (4.1.2) and the set Ā1 using (4.1.3).

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 52

Step 2. Compute z2
max using (4.1.4) and the set Ā3 using (4.1.5).

Step 3. Compute the set Ā4 of local minimizers of the auxiliary clustering problem
(3.2.15) using starting points from the set Ā3.

Step 4. Compute f̄ min
l using (4.1.6) and the set Ā5 using (4.1.7). Ā5 is the set of

starting points for the l-th cluster center.

4.2 Algorithm for reduction of data points

Most very large data sets contain dense areas and points in such areas are very close
to each other. Contribution of these points to the objective function in the clustering
problem is almost the same and therefore if two points are very close to each other
one of these points can be removed by giving more weight to another point.

The vicinity of each point depends on the number of points in the data set and
the number of attributes in this data set, that is, this vicinity is defined depending on
the size of the data set and the user provided tolerance. The tolerance should be the
same for all data sets.

Denote this tolerance by ε > 0.

Algorithm 3. Algorithm for finding key points.

Input: The data set A and tolerance ε > 0.

Output: The reduced data set Ā.

Step 0. Set A0 = A and Ā = /0.

Step 1. Take any a ∈ A0. Compute the set

B(a) =
{

b ∈ A0 : ‖a−b‖2 ≤ ε
}
.

Step 2. Update the sets

A0 = A0 \B(a), Ā = Ā∪{a}

and compute the weight ca of a as: ca = |B(a)|.

Step 3 (Stopping criterion). If A0 = /0 then stop. Otherwise go to Step 1.

Algorithm 3 allows one to identify dense areas in the data set A, replace it by
its representative and compute the weight of this representative point. It is obvious

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 53

that for any x = (x1, . . . ,xk) ∈Rnk

fk(x1, . . . ,xk)≤
1
m ∑

a∈Ā

ca min
j=1,...,k

‖x j−a‖2 (4.2.1)

On the other side for each a ∈ Ā and for any y ∈Rn we have

ca‖a− y‖2 ≤ ∑
b∈B(a)

‖b− y‖2 + caε. (4.2.2)

In this case
fk(x1, . . . ,xk) =

1
m ∑

a∈Ā
∑

b∈B(a)
min

j=1,...,k
‖x j−b‖2

Then it follows from (4.2.2) that

∑
a∈Ā

ca min
j=1,...,k

‖x j−a‖2 ≤ ∑
a∈Ā

∑
b∈B(a)

min
j=1,...,k

‖x j−b‖2 +mε

Here we note that m = ∑a∈Ā ca. Thus, we have that for any x = (x1, . . . ,xk) ∈Rnk

∑
a∈Ā

ca min
j=1,...,k

‖x j−a‖2 ≤ fk(x1, . . . ,xk)+ ε. (4.2.3)

Define the cluster function for the data set Ā as follows:

fck(x1, . . . ,xk) =
1
m ∑

a∈Ā

ca min
j=1,...,k

‖x j−a‖.

The k-clustering problem for the data set Ā is:

minimize fck(x) subject to x = (x1, . . . ,xk) ∈Rnk, (4.2.4)

Combining (4.2.1) with (4.2.3) leads to the following result:

fk(x1, . . . ,xk)≤ fck(x1, . . . ,xk)≤ fk(x1, . . . ,xk)+ ε (4.2.5)

for all x = (x1, . . . ,xk) ∈Rnk.
Let x∗ ∈ Rnk be a solution to the k-th clustering problem (3.2.9) and x∗∗ be a

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 54

solution to the problem (4.2.4). This means that

fk(x∗)≤ fk(x) for all x ∈Rnk,

fck(x∗∗)≤ fck(x) for all x ∈Rnk.

Then it follows from (4.2.5) that

fk(x∗)≤ fk(x∗∗)≤ fck(x∗∗)≤ fck(x∗)≤ fk(x∗)+ ε.

Thus, we have
fk(x∗)≤ fck(x∗∗)≤ fk(x∗)+ ε.

This means that accuracy of a clustering algorithm will depend on the tolerance
ε > 0. As it was mentioned above this tolerance depends on the size of a data set
(the number of data points and the number of attributes). The following simple
procedure is proposed to define the tolerance ε .

First, we compute the centroid of the whole data set A and then compute the
value f̂1 of the cluster function f1. Define the tolerance ε as follows:

ε =
n f̂1

m
ε0

where m is the number of data points, n is the number of attributes. Here ε0 is a
tolerance and it is the same for all data sets. We suggest to set ε0 = 10−6.

4.3 Reduction of computational effort

In this section we will discuss some approaches to reduce the amount of computa-
tions in the incremental clustering algorithms. Clustering algorithms use an affinity
(or distance) matrix at each iteration. Even in moderately large data sets this matrix
cannot be stored in memory and therefore should be repeatedly computed at each it-
eration. This makes clustering algorithms very time consuming. An incremental ap-
proach provides opportunity to decrease the computational effort in such algorithms
and to avoid to compute the whole affinity matrix at each iteration [81, 104, 110].

We consider two schemes to reduce the amount of computational effort. Both
schemes are applicable to incremental algorithms. We suggest to use the distances

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 55

between data points and cluster centers instead of the affinity matrix. Since the
number of clusters is significantly less than the number of data points the former
matrix is much smaller than the latter one. We describe these schemes for the data
set A and they can be described for the reduced data set Ā in the same way.

Assume that for given k ≥ 2 the solution x1, . . . ,xk−1 to the (k− 1)-clustering
problem is known. Let vil = ‖xi− al‖2 be the squared distance between the data
point ai, i= 1, . . . ,m and the cluster center xl, l = 1, . . . ,k−1. Then we can consider
an m×(k−1) matrix Vk−1 = (vil), i = 1, . . . ,m, l = 1, . . . ,(k−1). We also consider
the vector Dk−1 = (d1

k−1, . . . ,d
m
k−1) of m components where k− 1 is the squared

distance between the data point ai and its cluster center in the k−1-partition. Note
that the matrix Vk−1 and the vector Dk−1 are available after the k− 1-th iteration
[81, 104].

The first approach to reduce the computational effort is simple. Let a data point
ai ∈ A be given and xl(i) is its cluster center. Here l(j) ∈ (1, . . . ,k−1). For a given
u and data point ai if

vil(j)≥ (1+
1√
(u)

)2d j
k−1. (4.3.1)

‖ai−a j‖ ≥ ‖ai− xl(j)‖−‖a j− xl(j)‖ ≥ 1√
(u)
‖a j− xl(j)‖. (4.3.2)

‖ai−a j‖2 ≥ d j
k−1 and therefore a j /∈ Su(ai). This condition allows us to reduce

the number of pairwise distance computations.This reduction becomes substantial
as the number of clusters increases We introduce the following set

Ru(ai) = a j ∈ A : vil(j)< (1+
1√
(u)

)2d j
k−1 (4.3.3)

Results described above show that Su(ai)⊂ Ru(ai). Then we can use the set Ru(ai)

instead of the set A to compute the value of the function f̄ u
k in Step 2 of Algorithm

1. In this case we may not get the exact value of this function, however, it gives a
good approximation to the exact value. Moreover, one can take

W ∈ (1,(1+
1√
(u)

)2]. (4.3.4)

Consider the set Ru(ai) = a j ∈ A : ‖ai−a j‖2 <Wd j
k−1 and then replace A by

Ru(ai) for the computation of the function f̄ u
k . This will further reduce the amount

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 56

of computational effort in Step 2 of Algorithm 1. In numerical experiments in the
next section we take w = 1.5.

The second approach is based on the fact that data points which are very close
to previous cluster centers cannot be considered as candidates to be starting cluster
center to minimize the auxiliary function. At the k− 1-th iteration, we compute a
squared averaged radius of each cluster Al, l = 1, . . . ,k−1:

r2
l =

1
|Al| ∑

a∈Al

‖xl−a‖2. (4.3.5)

and a squared maximum radius rmax
l = maxa∈Al ‖xl−a‖2. Here | · | is the cardinality

of a set. Consider the following numbers

rmax
l =

rmax
l

|r2
l |
≥ 1,β = ε(α−1),ε = 0.001,rlk = 1+βl(k−1), l = 1, . . . ,(k−1).

(4.3.6)
It is clear that γlk ≥ 1 where as: l = 1, . . . ,(k−1): We consider the following subset
of the cluster Al:

Āl = a ∈ Al : ‖xl−a‖2 ≥ γlkr2
l (4.3.7)

In other words we remove from the cluster Al all points for which ‖xl−a‖2 < γlr2
l .

In incremental approach the clusters are becoming more stable as their number k
increases. Therefore we also increase the numbers γlk as k increases. Consider the
set

Ā = ∪l=1,...,(k−1)Ā
l (4.3.8)

Only data points a ∈ |barA are considered as the candidates to be starting points
for minimizing the auxiliary function f̄k. One can see that the use of the above
described approaches allow us to avoid the computation of the whole affinity matrix.
Thus, Steps 2 and 3 of Algorithm 1 can be rewritten as follows: [81, 104, 110].

Step 2u. For each a ∈ P(u(t)))∩ Ā compute the set Su(t)(a), its center c and
the value f̄ u(t)

(k,a) = f̄ u(t)
k (c) of the function f̄ u(t)

k at the point c over the set Ru
W (ai)

[81, 104, 110]. Step 3u. Compute

f̄ u(t)
(k,min) = min

a∈P(u(t)))∩A
f̄ u(t)
(k,a)(ā) = argmin

a∈P(u(t)))∩A
f̄ u(t)
(k,a), (4.3.9)

[81, 93, 110, 111]. the corresponding center c and the set Su(t)(c), knowing the

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 57

solution for the (k− 1)-partition problem. In order to do so, first, we compute a
starting point for the k-th cluster center (Step 2 of Algorithm 2). This is done by
minimizing the auxiliary cluster function. Since this function is nonconvex and it
has many local solutions we use several starting points, scattered over the data set,
to get its global or near global minimizer (unlike in the modified global k-means
algorithm where one starting point is used). We achieve this by introducing the
parameter u in the auxiliary function as in [81]. For different values of the parameter
u we select the data point which attracts the cluster providing the lowest value for
the function [81, 104, 110]. (Step 2u of Algorithm 1) [81, 110, 111]

In order to compute the cluster attracted by a given data point one should com-
pute the whole affinity matrix. Here we apply the first scheme to reduce the com-
putational effort by excluding data points which lie nearby cluster centers from the
(k− 1)-partition. This allows us to exclude these data points from: (a) the list of
points which can attract large clusters and (b) the list of points which can be at-
tracted by non-excluded data points. In data sets with good cluster structure this
allows us to significantly reduce the number of candidates for starting points and
the number of data points which can be attracted by a given candidate. This means
that using the incremental nature of the algorithm we avoid any computation of the
affinity matrix.

For each value of the parameter u we obtain a starting point for solving problem.
Again when solving this problem we exclude from our computations those data
points which are nearby their cluster centers. As a result we get a set of local
minimizers of problem (Steps 3u and 4 of Algorithm 1). We evaluate the auxiliary
cluster function at these local minimizers still excluding data points nearby their
cluster centers from our computations. Then we choose the best local minimizer
as a starting point for the k-th cluster center (Step 6 of Algorithm 1). We combine
this starting point for the k-th cluster center with the k−1 centers from the previous
iteration to form a starting point for solving the k-partition problem. Then we apply
the k-means algorithm starting from this point and get k-partition of the data set
(Step 3 of Algorithm 2). In this step we apply the triangle inequalities for distances
to reduce the computational effort used by the k-means algorithm. This makes it
necessary to store in the memory the matrix which contains distances between data
points and cluster centers from the (k−1)-st iteration. This matrix is much smaller
than the affinity matrix.

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 58

4.4 An incremental clustering algorithm

In this section we present an incremental algorithm for solving Problem (3.2.9).
This problem is a global optimization problem and it may have many local solutions,
however only global solutions or solutions close to global ones provide the best
cluster distribution of a data set with the least number of clusters. Clustering in
very large data sets is out of reach of conventional global optimization methods.
Therefore, clustering algorithms which can get at least near global solutions are of
interest. To be efficient such algorithms should employ local search optimization
methods and involve special procedures to generate good starting points.

The incremental approach allows one to design such algorithms. It should be
noted that there are two types of incremental algorithms for clustering. Algorithms
of the first type use the data incrementally while algorithms of the second type com-
pute clusters incrementally. We consider the second type of the incremental algo-
rithms. These algorithms compute clusters incrementally starting from one cluster
which is the whole data set and gradually adds one cluster at each iteration.

The use of the incremental approach allows one to design efficient procedures
for generating starting cluster centers. Cluster centers from the previous iteration
are considered as good candidates to be starting cluster centers at the current itera-
tion. Next, we design a quite general incremental algorithm for solving clustering
problems.

Algorithm 4. An incremental clustering algorithm.

Input: The data set A = {a1, . . . ,am}.

Output: The set of k cluster centers {x1, . . . ,xk}.

Step 1. (Initialization). Compute the center x1 ∈Rn of the set A. Set l := 1.

Step 2. (Stopping criterion). Set l := l + 1. If l > k then stop. The k-partition
problem has been solved.

Step 3. (Computation a set of starting points for the next cluster center). Apply
Algorithm 2 to compute the set Ā5 defined by (4.1.7).

Step 4. (Computation a set of cluster centers). For each ȳ ∈ Ā5 take (x1, . . . ,xl−1, ȳ)

as a starting point, solve Problem (3.2.9) and get a solution (ŷ1, . . . , ŷl). Denote by
Ā6 a set of all such solutions.

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 59

Step 5. (Computation of the best solution). Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}
and the collection of cluster centers (ȳ1, . . . , ȳl) such that

fl(ȳ1, . . . , ȳl) = f min
l .

Step 6. (Solution to the l-partition problem). Set x j := ȳ j, j = 1, . . . , l as a solution
to the l-th partition problem and go to Step 2.

One can see that Algorithm 6 in addition to the k-partition problem solves also
all intermediate l-partition problems where l = 1, . . . ,k− 1. Steps 3 and 4 are the
most important steps of this algorithm. The success of the algorithm heavily de-
pends on Step 3. In these two steps one solve optimization problems: the auxiliary
clustering problem and clustering problem. Optimization methods (local search or
global search) and heuristic algorithms such as the k-means algorithm can be ap-
plied to solve these problem. In next section we consider two such algorithms: one
algorithm is based on the heuristic algorithms and another algorithm is based on
the optimization technique. We will describe these algorithms for a data set whose
points have weights.

4.5 Hyperbolic smoothing of cluster functions

In this section we define the hyperbolic smoothing of the cluster function fk and
the auxiliary cluster function f̄k. We start with the brief definition of hyperbolic
smoothing functions. Consider the following maximum function:

ϕ(x) = max{0,x}, x ∈R. (4.5.1)

The hyperbolic smoothing function approximating the function (4.5.1) can be de-
fined as:

φτ(x) =
x+
√

x2 + τ2

2
. (4.5.2)

Here τ > 0 is called a precision or smoothing parameter. The hyperbolic smooth-
ing functions and their properties were studied in [4, 100, 101]. In particular, the

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 60

following proposition is true.

Proposition 1. The function φτ(x) has the following properties:

1. φτ(·) is an increasing convex C∞ function;

2. ϕ(x)< φτ(x)≤ ϕ(x)+ τ

2 , ∀τ > 0.

The hyperbolic smoothing functions for more general maximum functions were
studied in [9, 105]. Consider the following maximum function:

ψ(x) = max
j=1,...,p

ψ j(x)

where p ≥ 1 and functions ψ j, j = 1, . . . , p are continuously differentiable. We
introduce the following function using functions ψ j, j = 1, . . . , p and an additional
variable t ∈R :

Ψ(x, t) = t +
p

∑
j=1

max(0,ψ j(x)− t).

It is clear that
ψ(x) = Ψ(x,ψ(x)). (4.5.3)

Applying (4.5.2) we can write the hyperbolic smoothing function F̄τ(x, t) for the
function Ψ as

F̄τ(x, t) = t +
1
2

p

∑
j=1

(
ψ j(x)− t +

√
(ψ j(x)− t)2 + τ2

)
.

Then using (4.5.3) one can write the hyperbolic smoothing function Fτ(x, t) for the
maximum function ψ as follows:

Fτ(x, t) = t +
1
2

p

∑
j=1

(
ψ j(x)− t +

√
(ψ j(x)− t)2 + τ2

)
(4.5.4)

where t = ψ(x).
Hyperbolic smoothing for minimum functions can be defined in a similar way.

For the function
ϕ̄(x) = min{0,x}, x ∈R

we have
ϕ̄(x) =−max{0,−x}

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 61

and therefore the hyperbolic smoothing function Φ̄τ for ϕ̄ is as follows:

Φ̄τ(x) =
1
2

(
x−
√

x2 + τ2
)
, x ∈R. (4.5.5)

Now consider the following minimum function

θ(x) = min
j=1,...,p

θ j(x)

where p≥ 1 and functions θ j, j = 1, . . . , p are continuously differentiable. Then

θ(x) =− max
j=1,...,m

−θ j(x)

and applying (4.5.4) we get that the hyperbolic smoothing function Qτ(x, t) for the
function θ as:

Qτ(x, t) = t +
1
2

p

∑
j=1

(
θ j(x)− t−

√
(θ j(x)− t)2 + τ2

)
. (4.5.6)

Here
t =− max

j=1,...,p
−θ j(x) = min

j=1,...,p
θ j(x).

Now we can define hyperbolic smoothing functions to both the clustering func-
tion fk and the auxiliary cluster function f̄k. We start with the function f̄k. Since

f̄k(y) =
1
m

[
m

∑
i=1

di
k−1 +

m

∑
i=1

min(0,‖y−ai‖2−di
k−1)

]

applying (4.5.5) we get that the hyperbolic smoothing function Uk,τ to f̄k is:

Uk,τ(y) =
1

2m

m

∑
i=1

(
di

k−1 +‖y−ai‖2−
√
(‖y−ai‖2−di

k−1)
2 + τ2

)
, y ∈Rn.

In order to define the hyperbolic smoothing function for fk consider the follow-
ing functions:

vi(x1, . . . ,xk) = min
j=1,...,k

‖x j−ai‖2, i = 1, . . . ,m.

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 62

Applying (4.5.6) we get the following smoothing function for vi

Qi
τ(x

1, . . . ,xk, ti) = ti +
1
2

k

∑
j=1

(
‖x j−ai‖2− ti−

√
(‖x j−ai‖2− ti)2 + τ2

)

with
ti = min

j=1,...,k
‖x j−ai‖2. (4.5.7)

Then it is easy to formulate the smoothing function Vk,τ for the function fk:

Vk,τ(x1, . . . ,xk, t) =
1
m

m

∑
i=1

[
ti +

1
2

k

∑
j=1

(
‖x j−ai‖2− ti−

√
(‖x j−ai‖2− ti)2 + τ2

)]

where t = (t1, . . . , tm) and ti, i = 1, . . . ,m is defined by (4.5.7).
Take any sequence {τp} such that τp ↓ 0 as k→∞. Then Problem (3.2.9) can be

replaced by the sequence of smooth problems as follows (see [9]):

minimize Vk,τp(x
1, . . . ,xk, t) subject to x1, . . . ,xk ∈Rn×k. (4.5.8)

Similarly, Problem (3.2.15) can be replaced by the sequence of the following smooth
problems:

minimize Uk,τp(y) subject to y ∈Rn. (4.5.9)

The convergence of the hyperbolic smoothing method was studied in [9, 11].

4.5.1 Computational complexity of the fast modied global k-means
algorithm

In order to select an initial point for the next cluster center in the modied global
k-means algorithm one needs O(m22 + mt) distance calculations. Here t is the
number of iterations by Algorithm 1. Then the estimation for the total number
of distance calculations at the k-th iteration of Algorithm 2 is O(mkT +m2 +mt).
Here T is the number of iterations by Algorithm 2. Thus, in order to compute k
cluster centers the modied global k-means algorithm requires O(mkT + km+ kmt)

distance calculations. To get k cluster centers the fast modied global k-means al-
gorithm(without complexity reduction schemes) requires O(p(mk2T + km2 + kmt))
distance calculations. Here p is the cardinality of the set U [81, 93, 110, 111] Steps

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 63

2u and 3u require O(m1+m1t) distance calculations. Here m1 is the number of data
points in the set m1 ∈ P(u(t)))∩A and m1 6 m, m becomes smaller and smaller as
the number of clusters increases. Therefore the fast modied global k-means algo-
rithm, with Steps 2 and 3 in Algorithm 1 replaced by Steps 2u and 3u, requires
O(p(mk2T + km1+ km1t)) distance calculations [81, 93, 110]. The fast global k-
means algorithm from [81, 93, 110] requires O(mkT + km) and the fast global k-
means clustering algorithm from [81,104,110] requires O(mm2k+mkk1+mn) dis-
tance calculations to generate k cluster centers. Here m2 ≤ m, k1 ≤ k and n is the
number of attributes. Comparing with other global k-means algorithms and tak-
ing into account that the number p is small (in most cases p 6 5) and m1 6 m,
we can see that the fast modied global k-means algorithm with complexity reduc-
tion schemes requires less computational effort than the global and modied global
k-means algorithms. The fast global k-means algorithm has similar computational
complexity with the algorithm from [81, 104, 110].

4.5.2 Incremental Algorithms for fast modified global k-means

The existing incremental algorithms in cluster analysis can be divided into the fol-
lowing classes:

1. Single pass incremental algorithms: Algorithms in which new data points are
added at each iteration and cluster centers are improved accordingly [81,104,
110].

2. Fast Global Incremental Algorithms: Algorithms where clusters are built in-
crementally adding one cluster center at a time [81, 104, 110].

In this section, a new version of the revised global k-means algorithm is suggested.
The algorithms described in this section belong to the second class. These algo-
rithms are not directly applicable to solve clustering problems in vast data sets. In
order to solve k- partition clustering problem these algorithms start from one cluster
center (centroid of the dataset) and compute cluster centers incrementally adding a
new center at each iteration. However, this algorithm uses signicantly more compu-
tational effort than other incremental algorithms.

In the new version we reduce the amount of computational effort by:

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 64

1. Removing data points which are close to cluster centers found in the previous
iteration. Thus we use the whole dataset only at the first iteration when we
compute the centroid of the data set [81, 110].

2. Using the triangle inequality for distances to avoid unnecessary computations
[81, 110].

3. Introducing a scheme to generate starting points from different parts of the
data set to minimize the auxiliary function [81, 110].

4. Applying k-means algorithm,starting from these points to minimize the aux-
iliary cluster function and the best solution is selected as a starting point for
the next cluster center [81, 104, 105].

The proposed algorithm is applicable to only data sets with numeric attributes. Clus-
tering algorithms for categorical data sets can be found, for example,in [81, 109,
110]. These algorithms are capable of getting either global or near global solutions
for clustering problems in many data sets.

4.6 A smooth incremental clustering algorithm

In this section we describe an incremental algorithm for solving Problem (3.2.9). In-
cremental clustering algorithms build clusters dynamically adding one cluster center
at a time. The smooth incremental clustering algorithm for finding the k-partition
of the set A proceeds as follows:

Algorithm 5. A smooth incremental algorithm for clustering.

Step 1. (Initialization). Compute the center x1 ∈Rn of the set A. Set l := 1.

Step 2. (Stopping criterion). Set l := l + 1. If l > k then stop. The k-partition
problem has been solved.

Step 3. (Computation of the next cluster center). Select any starting point y0 ∈ Rn

and solve Problem (4.5.9). Let ȳ ∈Rn be a solution to this problem.

Step 4. (Refinement of all cluster centers). Take (x1, . . . ,xl−1, ȳ) as a starting point
and solve Problem (4.5.8). Let (y1, . . . ,yk) be a solution to this problem.

Step 5. (Solution to the l-partition problem). Set x j := y j, j = 1, . . . , l as a solution
to the l-th partition problem and go to Step 2.

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 65

An algorithm to get the starting point for the fast modified global k-means algorithm
for clustering.

Step 1. Set t := 0.

Step 2. Set t := t +1. If t > p. then go to step 6. Otherwise u(t) ∈ ∪

Step 3. For each a ∈ P(u(t)))∩ Ā compute the set Su(t)(a), its center c and the value
f̄ u(t)
(k,a) = f̄ u(t)

k (c) of the function f̄ u(t)
k at the point c over the set Ru

W (ai).

Step 4.Compute

f̄ u(t)
(k,min) = min

a∈P(u(t)))∩A
f̄ u(t)
(k,a)(ā) = argmin

a∈P(u(t)))∩A
f̄ u(t)
(k,a), (4.5.10)

the corresponding center c and the set Su(t)(c).

Step 5. Recompute the set Su(t)(c) and its center until no more data points escape or
return to this set. Let c̄(u(t)) be the nal value for the center c. Compute the value
f̄(k,t) of the auxiliary function f̄k at the point c̄(u(t)).

Step 6. Go to Step 1.

Step 7. Compute f̄(k,min) = mint∈1,...,p f̄(k,t)
and t0 ∈ (1, . . . , p) such that f̄(k,t0) = f̄(k,min). Set c̄ f = c̄(u(t0)).c̄ f is a starting point
for the k-th cluster center.

A fast modified global k-means algorithm for clustering.

Step 1. (Initialization).Select a tolerance ε > 0.

Step 2. (Initialization).Compute the center x1 ∈Rn of the set A of the set A. Let f 1

be the corresponding value of the objective function. Set k = 1.

Step 3. (Computation of the next cluster center). Set k = k+1.Let x1, ...,xk−1 be
the cluster centers for (k− 1)-partition problem. Apply the Algorithm-1 to get a
starting point ȳ ∈Rn for the k-th cluster center.

Step 4.(Refinement of all cluster centers). Take (x1, ...,xk−1, (̄y)) as a new starting
point, apply algorithm to solve k-partition problem. Let (y1, ...,yk), be a solution to
this problem and f k be the corresponding value of the objective function.

Step 5. (Computation of the best solution) Keep the best k partition(objective func-
tion) obtained and its centers x1, ...,xk−1.

Step 6. (Stopping criterion). If f k−1 f k

f 1 < ε ,then stop, otherwise set xi = yi and go
to Step 2.

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 66

Remark 2. One can see that Algorithm 5 in addition to the k-partition problem
solves also all intermediate l-partition problems where l = 1, . . . ,k−1. Steps 3 and
4 are the most important steps of Algorithm 5. Both (4.5.8) and (4.5.9) are global
optimization problems. The success of an incremental clustering algorithm heavily
depends on Step 3. The right choice of the starting point for the l-th cluster center
in Step 3 may lead to the finding of the global or near global minimizers of the
clustering function in Step 4. In the next section we will design an algorithm for
finding such starting points.

Remark 3. Both (4.5.8) and (4.5.9) are smooth optimization problems and one can
use local search algorithms of smooth optimization to solve them. Therefore we
call this algorithm the smooth incremental clustering algorithm. In our numerical
experiments, we apply the quasi-Newton method with the BFGS updates to solve
problems (4.5.8) and (4.5.9).

4.7 A modified smooth incremental clustering algo-
rithm

Now we can modify Algorithm 5 applying Algorithm 2 in Step 3.

Algorithm 6. A modified smooth incremental algorithm for clustering.

Step 1. (Initialization). Compute the center x1 ∈Rn of the set A. Set l := 1.

Step 2. (Stopping criterion). Set l := l + 1. If l > k then stop. The k-partition
problem has been solved.

Step 3. (Computation a set of starting points for the next cluster center). Apply
Algorithm 2 to compute the set Ā5 defined by (4.1.7).

Step 4. (Computation a set of cluster centers). For each ȳ ∈ Ā5 take (x1, . . . ,xl−1, ȳ)

as a starting point and solve Problem (4.5.8). Let (ŷ1, . . . , ŷl) be a solution to this
problem. Denote by Ā6 a set of all such solutions.

Step 5. (Computation of the best solution). Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ Ā6

}

CHAPTER 4. FAST INCREMENTAL CLUSTERING ALGORITHMS 67

and the collection of cluster centers (ȳ1, . . . , ȳl) such that

fl(ȳ1, . . . , ȳl) = f min
l

Step 6. (Solution to the l-partition problem). Set x j := ȳ j, j = 1, . . . , l as a solution
to the l-th partition problem and go to Step 2.

Chapter 5

Computational results: small data
sets

In this chapter we present and discuss computational results using small size data
sets. All data sets contain only numeric attributes and they do not contain missing
values. First, we give a brief description of data sets, then present results. These re-
sults include optimal values of the cluster function obtained by each algorithm and
CPU time required by them. The following algorithms are used for comparison:
the global k-means algorithm (GKM), the multi-start modified global k-means al-
gorithm (MS-MGKM), the multi-start k-means algorithm (MS-KM), the difference
of convex clustering algorithm (DCA), the clustering algorithm based on the differ-
ence of convex representation of the cluster function and nonsmooth optimization
(DCClust) and two algorithms proposed in this thesis: the fast multi-start modi-
fied global k-means algorithm without weights (FMS-MGKM2) and with weights
(FMS-MGKM). The description of these algorithms can be found in Chapter 4.

The number of starting points in the MS-KM algorithm is set to 500. Algorithms
MS-MGKM, DCA and DCClust use the algorithm for computation of starting clus-
ter centers described in the previous chapter. The implementation of FMS-MGKM
and FMS-MGKM2 algorithms was also discussed in the previous chapter. CPU
time in all tables are in seconds. In all data sets up to 25 clusters are computed.

68

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 69

5.1 Data sets

The brief description of small data sets is given in Table 5.1. In this table we include
the number of instances (m, the number of attributes (n) and the total number of
entries (Ne) for each data set. The number of instances in these data sets is less than
ten thousand and the number of attributes is ranging from 5 to 41.

Table 5.1: Small size data sets

No. Data sets m n Ne

1 Wilt 4839 5 24195
2 Wine Quality 4898 12 58776
3 Waveform Generator 5000 41 205000
4 Turkiye Student Evaluation 5820 28 162960
5 Drug data sets yprop 41 8885 22 195470
6 Combined Cycle Power Plant 9568 4 38272
7 Gesture Phase Segmentation 9900 18 178200

• Wilt is a data set which contains information of Root-wilt-disease (RWD),
caused by phytoplasma, in Pine trees, in Jiangsu Province and collected by
Remote sensing. This remote sensing study is using a multiscale object-based
classification method for detecting diseased trees in high-resolution multi
spectral satellite imagery. This data set has six attributes but only five at-
tributes contributes to clustering as one attribute is categorical [13, 83].

• Wine Quality Data Set contains the information of two data sets, related to
red and white vinho verde wine samples, from the north of Portugal. The aim
is to model physicochemical tests [14, 83] to predict wine quality based. The
eleven attributes which take part in physicochemical tests are: fixed acidity,
volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulphates, alcohol.

• Waveform Database Generator data-set contains information of three classes
of noise waves generated , each of which class wave is generated from a
combination of 2 of 3 “base” waves. Each instance is generated frequency
added noise (mean 0 and variance 1) in each attribute. This data set has 41

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 70

attributes but only 40 attributes take part in clustering experiments, as one
attribute is categorical [15, 83].

• Turkiye Student Evaluation data-set consists of evaluation scores made avail-
able by students of Gazi University in Ankara (Turkey). There are total 33 at-
tributes but 28 are of course specific questions and additional 5 attributes are
about named, instructor ID, class room number, number of repeat, attendance
and number of difficulties. These additional are removed before clustering as
these are categorical [16, 83].

• Drug data set “yes on Proposition 41” is abbreviated as yprop-41, is a cancer
drug data set which gets a striking difference in the behavior of cancer-drug
targets as compared with targets of non-cancer drugs, it has 267 attributes, all
binary and categorical values are removed before data clustering [6].

• Combined Cycle Power Plant data set contains data points gathered from a
Combined Cycle Power Plant (when the plant was tuned to work with full
load), over 6 years (2006-2011). It has five attributes, hourly average ambient
variables Temperature (T), Ambient Pressure (AP), Relative Humidity (RH)
and Exhaust Vacuum (V) to predict the net hourly electrical energy output
(EP) of the plant. The attribute related to the output is removed before the
clustering experiments on plant input variable data sets [83].

• Gesture Phase Segmentation is a data set which is made up of features ex-
tracted from 7 videos with people suffering from gesticulating problems, the
focus in this study is at Gesture Phase Segmentation. This data set contains
50 attributes divided into two files: 18 raw files and 32 processed files. We
used only attributes with numeric values of the raw files. The input file data
is extracted from 18 XML files which have eighteen features [21, 83].

5.2 Results

Results for small data sets are given in Tables 5.2-5.15.The best results in all the
tables are highlighted using the bold font. Results for the Wilt data set presented in
Tables 5.2 and 5.3 show that the proposed algorithms almost reach the best results
obtained other algorithms, however, CPU time used by these algorithms is less than

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 71

Table 5.2: Results with Wilt data set: Cluster function values, (The best results are
highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS−MGKM2
2 78554702.33 78554709.00 78554702.33 78554702.33 78554702.68 78554744.95 78555651.30
3 59442307.84 59443256.00 59443242.92 59077391.41 59443266.72 59442349.22 59443351.15
5 33381076.98 33381076.00 33380360.93 32680810.26 33380388.32 33380787.51 33380655.41
7 22137549.10 22138268.00 22137315.23 21751701.08 22137345.77 22137564.46 22138055.82
10 14030481.79 14037919.00 14030458.96 15258276.19 14073744.17 14030571.59 14073364.05
12 11314144.17 11312393.00 11312331.46 13223502.32 11314145.25 11312441.47 11314573.84
15 9173076.52 9172478.00 9182731.42 10841596.98 9172492.64 9172525.66 9185524.01
17 8115173.80 8124023.00 8115119.56 9960732.14 8115187.48 8115241.14 8128690.80
20 6998566.24 7025471.00 7003329.45 9143588.30 7004011.21 7002936.48 7012471.99
22 6455609.47 6464891.00 6451519.29 7370285.87 6455617.36 6451857.14 6432172.46
25 5756465.36 5802688.00 5755493.87 5957685.96 5756478.70 5771804.81 5780406.52

Table 5.3: Results for Wilt data set: CPU time in seconds, (this Table corresponds
to the Figure 5.1), (The best results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 3.07 1.34 0.81 6.19 0.59 0.91 1.41
3 4.20 2.45 1.68 8.27 1.47 1.75 2.47
5 7.69 4.77 5.02 15.30 3.77 4.44 5.44
7 9.88 6.83 8.60 19.31 5.55 6.11 6.97
10 15.37 10.67 32.03 31.08 11.72 11.67 12.53
12 19.08 13.13 50.78 38.24 21.50 16.55 19.20
15 21.95 16.23 63.32 44.04 30.77 18.98 21.83
17 28.39 18.25 108.08 57.03 41.69 23.48 24.80
20 31.64 21.09 147.31 63.35 71.08 26.28 27.67
22 33.43 23.23 179.76 67.13 75.88 28.58 30.52
25 37.25 26.16 235.17 75.40 111.20 31.92 33.42

that used by other algorithms (except the GKM algorithm). There is no any signif-
icant difference between the performance of the FMS-MGKM and FMS-MGKM2
algorithms in this data set.

Results for the Wine Quality data set are presented in Tables 5.4 and 5.5. These
results demonstrate that the proposed algorithms are not as accurate as some other
algorithms, however, their results quite close to the best results obtained by other
algorithms. The proposed algorithms require less CPU time than other algorithms
(except the GKM algorithm).It is true that in some data sets GKM is faster than the
proposed algorithms, however all these data sets are small data sets. In large data
sets especially in very large data sets, GKM is not comparable with the proposed al-
gorithms both in the sense of accuracy and efficiency. The algorithm FMS-MGKM2
is more accurate and uses less CPU time than the FMS-MGKM algorithm in this

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 72

Table 5.4: Results for Wine Quality data set: Cluster function values, (The best
results are highlighted).

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 4169863.00 4169864.00 4169863.00 4169862.95 4169863.12 4173774.50 4173011.96
3 2748617.00 2748617.00 2748617.00 2748616.89 2748617.48 2751017.69 2751778.45
5 1753079.00 1753105.00 1753071.00 1753079.21 1753079.50 1757998.82 1757365.87
7 1379225.00 1380989.00 1379222.00 1379224.93 1379224.97 1387195.04 1385208.72
10 1043490.00 1047523.00 1042472.00 1064727.29 1042527.88 1047497.41 1044720.46
12 902114.70 908470.10 901751.10 940903.15 902021.51 914542.43 918006.52
15 748865.00 748590.80 749185.50 762507.19 750167.62 763623.17 755429.79
17 675497.90 674520.70 672146.90 690590.25 675530.36 686225.49 676926.77
20 585058.10 588463.60 584682.30 607520.21 584614.53 593040.49 586838.73
22 540633.40 540511.00 540222.00 569023.90 541354.81 549616.03 542023.25
25 488982.30 489235.90 486233.20 523750.07 488107.33 496960.96 492118.96

Table 5.5: Results for Wine Quality data set: CPU time in seconds,(this Table cor-
responds to the Figure 5.3), (The best results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS−MGKM2
2 2.03 1.88 2.16 4.07 1.33 1.14 1.77
3 4.67 3.55 5.31 9.19 2.86 2.39 3.22
5 12.08 7.31 20.89 25.16 7.83 6.56 9.14
7 17.22 10.84 43.95 34.15 17.25 10.20 11.58
10 25.16 16.28 89.67 50.05 36.55 16.89 16.44
12 29.36 19.30 136.83 58.34 65.09 21.06 20.20
15 34.06 24.25 220.09 68.67 99.47 29.73 24.72
17 36.92 27.30 263.31 73.34 109.47 33.36 26.59
20 43.55 32.13 520.13 87.66 159.78 36.77 34.20
22 49.55 35.56 742.44 99.75 199.59 41.47 38.00
25 54.11 40.38 944.05 109.34 252.63 49.44 45.83

data set.
Results for the Waveform Generator data set presented in Tables 5.6 and 5.7.

These results show that the proposed algorithms are more accurate than other al-
gorithms in this data set and they use less CPU time. There is no any significant
difference between the performance of the FMS-MGKM and FMS-MGKM2 algo-
rithms in this data set.

Results for the Turkiye Student Evaluation data set, given in Tables 5.8 and
5.9, show that the proposed algorithms fail to produce accurate results in this data
set, however, they require significantly less CPU time than other algorithms. The
FMS-MGKM2 algorithm is more accurate and requires less CPU time than the
FMS-MGKM algorithm.

Tables 5.10 and 5.11 contains results on the Drug yprop 41 data set. These

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 73

Table 5.6: Results for Waveform Generator data set: Cluster function values, (The
best results are highlighted).

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 2.64E+05 2.64E+05 2.64E+05 235000 2.61E+05 2.61E+05 2.61E+05
3 2.30E+05 2.30E+05 2.30E+05 227591.6 2.28E+05 2.28E+05 2.28E+05
5 2.13E+05 2.13E+05 2.13E+05 2.11E+05 2.11E+05 211241.61 2.11E+05
7 2.05E+05 2.06E+05 2.05E+05 2.04E+05 2.04E+05 204063.67 2.04E+05
10 2.01E+05 2.01E+05 2.00E+05 199462.48 199460.15 1.99E+05 1.99E+05
12 1.99E+05 1.99E+05 1.99E+05 1.98E+05 1.98E+05 197844.09 1.98E+05
15 1.97E+05 1.98E+05 1.97E+05 1.98E+05 1.96E+05 195940.42 1.96E+05
17 1.96E+05 1.98E+05 1.96E+05 1.97E+05 1.95E+05 194988.81 1.95E+05
20 1.95E+05 1.97E+05 1.95E+05 1.95E+05 1.94E+05 193594.93 1.94E+05
22 1.94E+05 1.96E+05 1.95E+05 1.94E+05 1.93E+05 192751.66 1.93E+05
25 1.93E+05 1.96E+05 1.95E+05 1.94E+05 1.93E+05 192169.3 1.92E+05

Table 5.7: Results for Waveform Generator data set: CPU time in seconds,(this
Table corresponds to the Figure 5.5), (The best results are highlighted)

Clustering time values by the following Algorithms
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2

Waveform Generator
2 4.92 7.23 8.06 1.89 4.44 5.88 6.73
3 8.98 14.31 14.97 17.92 9.03 9.18 10.02
5 18.66 27.98 35.88 36.67 22.23 16.73 17.28
7 29.92 42.09 59.91 59.09 39.36 25.77 26.23
10 52.36 63.59 140.39 104.70 144.27 46.65 46.81
12 67.09 77.81 293.11 134.05 224.91 58.80 58.78
15 91.16 96.98 480.77 182.80 318.66 80.32 79.73
17 108.92 111.86 584.70 217.22 406.89 90.35 89.56
20 132.23 130.75 921.27 264.27 506.92 108.59 107.31
22 144.69 144.30 1138.66 290.00 660.19 120.40 118.66
25 163.58 163.16 1965.91 328.30 699.52 136.65 134.25

results show that both the FMS-MGKM and FMS-MGKM2 algorithms produce
results which are very close to the best results obtained by all algorithms. However,
these two algorithms use significantly less CPU time than other algorithms. There
is no any significant difference between the performances of the FMS-MGKM and
FMS-MGKM2 algorithms.

Results for the Combined Cycle Power Plant data set are presented in Tables
5.12 and 5.13. One can see in this data set both proposed algorithms produce re-
sults which are close to the best results obtained other algorithms. Again these two
algorithms use less CPU time than other algorithms and again there is no any signif-
icant difference between the performances of the FMS-MGKM and FMS-MGKM2
algorithms.

Tables 5.14 and 5.15 present results for the Gesture Phase Segmentation data set.

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 74

Table 5.8: Results for Turkiye Student Evaluation data set: Cluster function values,
(The best results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 130969.15 130969.00 130807.50 130807.52 130969.23 135968.75 139959.09
3 81781.85 89800.00 81781.83 81781.83 81781.91 86920.25 90621.85
5 60648.18 60648.00 60647.47 60647.47 60648.25 69869.18 71870.32
7 54722.64 54055.00 54724.32 54023.71 54723.85 64444.01 58660.34
10 49208.80 48802.00 48884.38 49124.25 49209.11 59580.30 54960.44
12 46912.68 46463.00 46437.43 47464.04 46953.48 58881.23 53083.43
15 44578.11 43939.00 44074.83 45346.34 44567.35 55592.27 51010.33
17 43182.14 42686.00 42638.70 44438.78 43157.76 54430.62 48703.83
20 41658.83 41459.00 41107.82 43350.21 41600.85 52461.64 47477.00
22 40984.65 40501.00 40480.12 42264.53 40959.66 50560.46 46776.43
25 39940.88 39448.00 39506.32 41572.60 39999.61 49929.37 44839.15

Table 5.9: Results for Turkiye Student Evaluation data set: CPU time in sec-
onds,(this Table corresponds to the Figure 5.7), (The best results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 3.28 6.39 4.13 6.18 3.22 1.63 1.16
3 6.25 12.48 8.52 12.36 6.47 3.23 1.75
5 10.83 24.45 17.21 21.04 11.80 6.88 2.95
7 14.86 36.14 30.59 29.05 17.58 10.66 4.09
10 20.39 54.08 56.99 41.53 26.56 16.25 5.61
12 24.20 66.48 91.09 48.52 33.13 19.52 6.86
15 29.56 84.66 162.48 59.33 60.33 23.81 8.64
17 33.34 97.72 229.98 66.00 77.91 26.59 9.66
20 38.64 116.83 309.94 77.81 110.02 30.98 11.45
22 41.86 128.83 344.36 83.55 122.06 33.41 12.50
25 47.61 147.38 431.67 95.78 195.66 37.58 14.25

The proposed FMS-MGKM and FMS-MGKM2 algorithms obtain results which are
close to the best results obtained other algorithms and they use less CPU time than
other algorithms. There is no any significant difference between the performances
of the FMS-MGKM and FMS-MGKM2 algorithms.

Figures 5.2,5.4,5.6,5.8, present the dependence of the number of distance func-
tions evaluations on the number of clusters for four small size data sets. These fig-
ures clearly show that the proposed algorithms: FMS-MGKM and FMS-MGKM2
require significantly less distance function evaluations than any other clustering al-
gorithms used in comparison. One can see similar dependence also for other small
size data sets.

Figures 5.1, 5.3, 5.5, 5.7 and 5.9 present the dependence of CPU time on the
number of clusters for five small size data sets. This figure clearly show that the
proposed algorithms: FMS-MGKM and FMS-MGKM2 in most of datasets, require

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 75

Table 5.10: Results for Drug yprop 41 data set: Cluster function values, (The best
results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1414.58 1414.58 1414.58 1414.58 1415.60 1414.58 1414.58
3 1188.44 1188.44 1188.44 1188.44 1188.57 1188.44 1188.44
5 998.95 998.93 998.94 998.93 1000.67 998.93 998.93
7 901.66 901.72 901.57 900.68 903.43 901.53 901.53
10 799.27 809.27 799.25 807.92 801.93 809.27 809.27
12 755.99 762.94 756.07 759.35 757.79 759.78 759.77
15 704.09 707.07 703.38 703.60 707.51 704.36 704.36
17 675.07 680.35 675.05 675.90 678.12 678.26 678.25
20 639.15 643.41 639.02 642.63 639.39 640.82 641.29
22 617.23 619.78 617.09 619.29 619.35 620.09 617.53
25 588.53 589.42 588.34 595.96 591.36 589.10 589.11

Table 5.11: Results for Drug yprop 41 data set:CPU time in seconds, (The best
results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 16.56 13.25 7.23 33.50 4.94 8.98 9.20
3 32.16 26.64 16.31 65.41 9.94 13.48 13.72
5 55.61 51.77 35.42 112.20 19.69 21.91 21.84
7 103.13 77.19 118.92 280.16 31.47 34.47 34.30
10 158.80 116.00 226.61 318.45 57.81 50.97 50.42
12 190.03 138.41 278.38 381.33 74.52 63.78 62.84
15 246.64 171.81 480.19 495.34 100.13 78.08 76.14
17 293.67 195.39 777.34 588.53 123.00 87.34 85.33
20 337.08 229.56 1027.81 674.47 166.00 108.39 107.34
22 371.31 253.81 1255.80 744.69 185.98 118.22 116.83
25 418.23 290.33 2175.34 838.98 234.34 135.84 130.61

significantly less CPU time than any other clustering algorithms used in compari-
son. One can see similar dependence also for other small size data sets.

Table 5.16 demonstrates the overall performance of the proposed algorithm.
Table 7.13 demonstrates the overall performance of the proposed algorithm with

a with a breakdown of the numbers for different k values .

5.3 Summary

In this chapter, we applied the proposed algorithms to solve the clustering problem
in seven small data sets. These data sets contain between 4800 and 10000 instances.
We computed up to 25 clusters and compared results with other incremental clus-
tering algorithms as well as with the multi-start k-means algorithm.Overall exactly
five times, the proposed algorithms require less CPU time than other algorithms.

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 76

Table 5.12: Results for Combined Cycle Power Plant data set: Cluster function
values, (The best results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 2428026.00 2428026.00 2428026.00 2428025.99 2428026.25 2428032.47 2428064.02
3 1686857.00 1686857.00 1686857.00 1686857.45 1686857.79 1686863.39 1686892.82
5 1130678.00 1139016.00 1130673.00 1130667.59 1130750.09 1139024.63 1139046.97
7 894119.50 894119.50 894103.30 894105.62 894124.45 894124.29 894145.67
10 697473.20 697483.00 697473.80 753577.61 697491.97 697483.52 697496.49
12 617462.40 616323.20 616305.50 655172.08 616373.74 616839.87 616856.44
15 529446.00 529558.10 529077.50 550913.50 529472.63 529110.57 529108.20
17 492065.30 493070.60 491084.80 511649.21 492065.64 491632.69 491657.81
20 443155.30 446557.30 443119.80 533811.29 443329.38 446620.44 446501.62
22 421878.50 420930.00 420860.90 436805.32 421289.98 421261.28 420964.49
25 393242.10 394367.90 392503.90 407027.14 392122.17 393973.67 393922.74

Table 5.13: Results for Combined Cycle Power Plant data set: CPU time in sec-
onds,(this Table corresponds to the Figure 5.9), (The best results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 5.38 4.3 2.92 11.28 2.78 4.31 4.219
3 10.17 7.36 4.94 20.39 4.91v 6.13 6.109
5 19.11 13.53 10.22 38.55 10.38 10.20 10.25
7 24.72 19.13 15.64 49.87 14.86 13.88 14.031
10 41.5 27.72 31.66 84.52 25.27 21.27 20.86
12 50.7 33.25 61.41 102.85 37.7 26.52 25.28
15 61.03 41.23 99.8 123.01 64.39 32.06 31.45
17 64.14 46.45 128 129.98 71.63 36.16 35.52
20 76.09 54.91 173 152.88 105.03 43.02 42.16
22 79.91 59.63 192 160.77 127.56 46 45.20
25 86.83 66.53 281.23 175.08 171.98 51.19 49.98

Results show that in most data sets the proposed algorithms get solutions which
are very close to the best solutions found by all algorithms used in our computations.
Only data set where the proposed algorithms failed to produce accurate results was
Turkiye Student Evaluation data set.

In most cases the proposed algorithms require less, and in some instances sig-
nificantly less, CPU time than other algorithms used for comparison. In most cases,
we did not observe any significant difference between algorithms with weights and
without weights both in the sense of accuracy and used computational effort.

Overall, results from this chapter allow us to conclude that the proposed clus-
tering algorithms are accurate and efficient clustering algorithms in small data sets
used in computations.

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 77

Table 5.14: Results for Gesture Phase Segmentation data set: Cluster function val-
ues, (The best results are highlighted).

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 63910.85 63910.85 63910.85 63910.85 63910.96 63910.85 63911.07
3 45381.58 45381.58 45381.58 32445.45 45381.74 45381.58 45381.79
5 30489.75 31172.83 30489.75 30489.75 30491.07 31172.83 31174.04
7 23188.67 23188.67 23188.67 23195.82 23190.50 23188.67 23189.15
10 18102.91 18102.91 17963.28 18135.51 18104.48 18102.91 18103.30
12 15812.57 15812.69 15820.64 16222.81 15814.39 15812.68 15813.07
15 13341.09 13419.43 13341.04 14688.70 13344.82 13419.43 13419.72
17 12155.19 12245.28 12167.16 14180.72 12219.40 12245.52 12245.81
20 10926.95 10954.84 10842.72 13197.47 10888.97 10909.53 10910.01
22 10237.48 10264.94 10148.45 12950.69 10236.51 10265.34 10265.82
25 9303.73 9274.61 9234.66 12610.59 9312.64 9274.59 9275.24

Table 5.15: Results for Gesture Phase Segmentation data set: CPU time in seconds,
(The best results are highlighted)

k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 7.08 10.55 8.81 14.16 9.17 9.81 9.81
3 12.25 20.39 15.70 24.01 15.80 15.08 14.95
5 23.56 42.80 36.52 47.55 28.97 23.80 23.36
7 32.95 63.66 57.44 66.58 41.70 32.77 32.76
10 47.50 95.41 138.52 95.33 65.31 46.50 45.34
12 57.19 115.69 208.64 114.95 77.42 54.23 53.34
15 71.73 146.47 360.30 143.14 106.31 66.41 65.97
17 81.33 168.05 411.81 163.41 119.66 74.41 74.31
20 95.30 199.88 662.81 192.44 166.20 88.47 88.23
22 103.92 221.44 790.84 206.55 190.30 97.64 97.44
25 117.23 252.27 1083.89 234.22 223.70 109.56 109.45

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 78

0.00

50.00

100.00

150.00

200.00

250.00

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No.of clusters

Wilt

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.1: The CPU time vs the number of clusters: Wilt data set,(this Figure
corresponds to Table. 5.3)

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 79

0.00

2000000000.00

4000000000.00

6000000000.00

8000000000.00

10000000000.00

12000000000.00

14000000000.00

16000000000.00

18000000000.00

20000000000.00

2 3 5 7 10 12 15 17 20 22 25

N
o

.o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n

No.of clusters

Wilt

FMS-MGKM

FMS-MGKM2

DCClust

Multistart KM

DCA

MS-MGKM

MGK

Figure 5.2: The number of distance function evaluations vs the number of clusters:
Wilt data set

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 80

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Wine Quality

MS-MGKM

GKM

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.3: The number CPU time vs the number of clusters: Wine Quality data
set,(this Figure corresponds to Table. 5.5)

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 81

0.00

2000000000.00

4000000000.00

6000000000.00

8000000000.00

10000000000.00

12000000000.00

2 3 5 7 10 12 15 17 20 22 25N
o

.o
f

d
is

ta
n

ce
 e

va
lu

at
io

n
 f

u
n

ct
io

n
s

No. of clusters

Wine Quality

MS-MGKM

GKM

DCClust

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.4: The number of distance function evaluations vs the number of clusters:
Wine Quality data set

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 82

0.00

500.00

1000.00

1500.00

2000.00

2500.00

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Waveform Generator

MS-MGKM

GKM

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.5: The CPU time vs the number of clusters: Waveform data set,(this Figure
corresponds to Table. 5.7)

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 83

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

4.5E+09

5E+09

2 3 5 7 10 12 15 17 20 22 25N
o

.o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n
s

No. of clusters

Waveform

MS-MGKM

GKM

DCClust

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.6: The number of distance function evaluations vs the number of clusters:
Waveform data set

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 84

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of Clusters

TurkiyeStudentevaluation

MS-MGKM

GKM

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.7: The CPU time vs the number of clusters: Turkiye Students evaluations
data set,(this Figure corresponds to Table. 5.9)

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 85

0

200

400

600

800

1000

1200

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Gesture Phase Segmentation

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.8: The number of distance function evaluations vs the number of clusters:
Phase Gesture data set,(this Figure corresponds to Table. 5.15).

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 86

0

50

100

150

200

250

300

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Combined Cycle Power Plant

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 5.9: The number of clusters vs the CPU time: Combined Cycle Power Plant
data set,(this Figure corresponds to Table. 5.13).

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 87

Table 5.16: Supporting Metrics/Table for counting how many cases the proposed
algorithm produces the best(first) and the second best result in comparison with
other algorithms.

No. Parameters/Approach Proposed algorithm
1 Efficiency Produced 5 times the best (first) and

few times the second best result.
2 Computation Requires low computations
3 Performance Fast and accurate in comparison

with the existing algorithms
(finds similar objective function values

but superior in CPU time)

CHAPTER 5. COMPUTATIONAL RESULTS: SMALL DATA SETS 88

Table 5.17: Supporting Metrics/Table for counting how many cases out of how
many cases the proposed algorithms achieve the best(first) and the second best result
in terms of its efficiency,when tested over five small data sets,in comparison with
other algorithms, with a breakdown of the numbers for different k values

K. No. of times the proposed No. of times the proposed
algorithms shows the best algorithm shows the second best
results for given k results for given k

2 2 1
3 2 2
5 2 2
7 4 3
10 4 3
12 5 2
15 5 2
17 5 2
20 5 2
22 5 2
25 5 2

Chapter 6

Computational results: medium size
data sets

In this chapter we present and discuss computational results using medium size
data sets. All data sets contain only numeric attributes and data sets do not contain
missing values. First, we give a brief description of data sets and then present
computational results. These results include optimal values of the cluster function
obtained by each algorithm and CPU time required by them.

The following algorithms are used for comparison: the GKM algorithm, the
MS-MGKM algorithm, the MS-KM algorithm, the DCA algorithm, the DCClust al-
gorithm and two newly proposed algorithms: the FMS-MGKM and FMS-MGKM2
algorithms. The description of these algorithms are given in Chapter 4.

The number of starting points in the MS-KM algorithm is set to 400. Algorithms
MS-MGKM, DCA and DCClust use the algorithm for computation of starting clus-
ter centers described in the previous chapter. CPU time in all tables are in seconds.
In all data sets up to 25 clusters are computed.

6.1 Data sets

The brief description of medium size data sets is given in Table 6.1. In this table
we include the number of instances (m), the number of attributes (n) and the total
number of entries (Ne) for each data set. The number of instances in these data sets
is between ten thousand and one hundred thousand and the number of attributes is
ranging from 2 to 128.

89

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 90

Table 6.1: Description of medium data size data sets

Sr.No. Data sets m n Ne

1 Gas Sensor Array Drift 13910 128 1780480
2 D15112 in TSPLIB 15112 2 30224
3 Letter Recognition 20000 16 320000
4 Chess (King-Rook vs. King) 28056 3 84168
5 Online News popularity 39644 38 1506472
6 Bank Marketing 45211 7 316477
7 Tamilnadu Electricity s 45781 2 91562

Board Hourly Readings
8 KEGG Metabolic Relation 53413 20 1068260

Network
9 Shuttle Landing Control 58000 10 580000
10 Jester Collaborative 73421 101 7415521

Filtering
11 Programmed Logic Array 85900 2 171800
12 Sensit-vehicle-acoustic 98528 51 5024928

Some explanations on these data sets follow.

• Gas Sensor Array Drift data set contains information from 16 chemical sen-
sors employed, which are used in simulations for drift return in a discrim-
ination task of 6 gases at different levels of concentrations. The categorial
features are removed and the remaining 128 attributes are used in cluster-
ing [22, 83].

• D15112 is a data set which contains information of mathematical problems
related to the traveling salesman problem, it shows a large TSP instances in
TSPLIB. it consists of 15,112 cities of Germany (D = Deutschland). The
data set was contributed to TSPLIB by Andre Rohewe. it contains only two
attributes [27, 83].

• Letter Recognition is a database of character image features which is used
to identify each of the 26 capital letters in the English alphabet. The alpha-
bet images depends on 20 different fonts and each letter among these 20 fonts
was randomly deformed to produce a file of 20,000 unique stimuli and each of
it is converted into 16 primitive numerical attributes which were then scaled

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 91

between values from 0 through 15. All sixteen attributes are used for cluster-
ing [29, 83].

• Chess (King-Rook vs. King) database is generated by Michael Bain and
Arthur van Hoff of the Turing Institute, Glasgow, UK, to compute complex
domains of Chess endgames countable and enumerable values for White King
and Rook against Black King(KRK). All the database enumerable values are
produced in a single iterative process utilizing the “standard backup” algo-
rithm [24, 83].

• Online News popularity data set expresses a set of heterogeneous attributes
of the articles published by Mashable in a period of two years, to predict the
number of stocks in social networks (popularity). In the data file, the columns
which contain complete zero values are removed as well as categorical values
are removed and a data input file of thirty eight features is used in clustering
[26, 83].

• Bank Marketing data is associated with direct marketing campaigns based
on phone calls of a Portuguese banking institution, used to forecast if the
client will subscribe a term deposit or not. The following features of the bank
client data: age (numeric), type of job, marital status, education credit in de-
fault, has housing loan, personal loan, contact communication, last contact
month, last contact day of the week, last contact duration, campaign: num-
ber of contacts performed during this campaign, days: number of days that
passed by after the client was last contacted from a previous campaign (nu-
meric: 999 means client was not previously contacted), previous: number of
contacts performed before this campaign and for this client (numeric), out-
come: outcome of the previous marketing campaign (categorical: “failure”,
“nonexistent”, “success”), emp.var.rate: employment variation rate - quar-
terly indicator (numeric), cons.price.idx: consumer price index - monthly in-
dicator (numeric), cons.conf.idx: consumer confidence index - monthly indi-
cator (numeric), euribor3m: euribor 3 month rate - daily indicator (numeric),
nr.employed: number of employees - quarterly indicator (numeric) are input
to predict the desired output variable. In the clustering experiments, cate-
gorical and completely zero column values are removed from the input data
file [20, 83].

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 92

• KEGG Metabolic Relation Network contains information data, which is used
to examine, which pathways and associated functions are likely to be encoded
in the genome. In the computer representation of relation network, substrate
and product compounds are considered as edges while enzyme and genes are
placed as nodes. Only 20 features of Relation Networks are used in clustering
and categorical attributes were removed [8, 83].

• TamilNado Electriciy Board Hourly Reading data set shows a state-of-the-
art survey of Tamil Nadu Electricity Board Data set structure and real time
electricity readings of load demand for residential, commercial, industrial and
agriculture in Tamil Nadu Around Thanajvur [7, 83].

• Shuttle Landing Control database contains information of a partially reusable
low Earth orbital spacecraft system operated by the U.S, reported by Michie,
D. in 1988. The report states that Burke’s group utilized RULEMASTER
to produce intelligible and under standable rules for deciding the conditions
under which an auto landing would be better for manually controlling the
spacecraft [10, 83].

• Programmed Logic Array (pla85900, Johnson) is a database created by Bell
Labs in 2006. It along with a computer code certify the optimality of a solu-
tion to the 85,900-city traveling salesman problem. This is a largest instances
data set in the TSPLIB collection of challenge problems [12, 83].

• Jester Collaborative Filtering Data set consists of 4.1 Million continuous rat-
ings (-10.00 to 10.00) of 100 jokes from 73,421 users all gathered in a time
between April 1999 and May 2003. It recommends you jokes, based on
your ratings of previous jokes, by utilizing a collaborative filtering algorithm
known as Eigentaste. For clustering purpose, the categorial attribute are re-
moved [6, 35].

• Sensit-vehicle-acoustic data set contains information of vehicle acoustic sig-
nals which are considered as unwanted traffic noise, collected by wireless
sensor networks [6, 33].

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 93

6.2 Results

Numerical results with medium size data sets are presented in Tables 6.2-6.13. The
best results in all the tables are highlighted using the bold font.

Table 6.2: Results for Gas Sensor Array Drift data set,(this Table corresponds to the
Figure 6.1), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 7.91E+13 7.91E+13 7.91E+13 7.91E+13 7.91E+13 8.04E+13 8.04E+13
3 5.02E+13 5.02E+13 5.02E+13 5.02E+13 5.02E+13 5.07E+13 5.07E+13
5 3.22E+13 3.23E+13 3.23E+13 3.22E+13 3.23E+13 3.39E+13 3.39E+13
7 2.25E+13 2.25E+13 2.25E+13 2.25E+13 2.25E+13 2.40E+13 2.40E+13
10 1.66E+13 1.66E+13 1.66E+13 1.70E+13 1.66E+13 1.81E+13 1.81E+13
12 1.41E+13 1.41E+13 1.41E+13 1.55E+13 1.41E+13 1.60E+13 1.60E+13
15 1.13E+13 1.14E+13 1.14E+13 1.28E+13 1.14E+13 1.36E+13 1.36E+13
17 1.02E+13 1.01E+13 1.01E+13 1.12E+13 1.01E+13 1.24E+13 1.24E+13
20 8.92E+12 8.85E+12 8.85E+12 1.03E+13 8.86E+12 1.15E+12 1.15E+12
22 8.13E+12 8.18E+12 8.14E+12 9.77E+12 8.15E+12 1.09E+12 1.09E+12
25 7.27E+12 7.27E+12 7.27E+12 8.83E+12 7.28E+12 1.02E+12 1.02E+12

CPU time (in seconds)
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 103.19 174.66 88.3 209.89 101.32 116.69 122.97
3 264.52 346.02 236.8 531.64 249.82 177.06 186.11
5 604.47 690.28 654.95 1213.59 667.97 316.44 326.84
7 931.2 1038.91 1312.55 1866.47 1329.57 460.03 471.72
10 1445.64 1556.23 2254.56 2893.48 2271.58 699.39 702.95
12 1794.22 1895.47 3068.98 3588.81 3088 853.28 858.64
15 2334.22 2412.06 4471.97 4676.03 4490.99 1087.63 1080.61
17 2677.39 2761.03 5301.02 5009.2 5320.04 1252.38 1231.91
20 3227.33 3281.16 7027.03 6456.66 7048.05 1486.91 1461.98
22 3619.2 3656.97 7862.98 7251.23 7884 1648.83 1616.75
25 4148.95 4214.33 9319.44 8305.23 9340.46 1885.59 1849.03

Results for the Gas Sensor Array Drift data set presented in Table 6.2 show that
although the proposed algorithms are not accurate in this data set they use signifi-
cantly less CPU time than other algorithms. There is no any significant difference
between the performance of the FMS-MGKM and FMS-MGKM2 algorithms in
this data set.

Table 6.3 contains results for the D15112 data set. One can see that the proposed
algorithms produce results which are close to the best results among all algorithms,
however, they use significantly less CPU time than most other algorithms. Again in
this data set there is no any significant difference between the performance of the
FMS-MGKM and FMS-MGKM2 algorithms.

Results for the Letter Recognition data set presented in Tables 6.4 show that,
overall, the proposed algorithms almost reach the best results obtained by all algo-

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 94

Table 6.3: Results for D15112 data set, (this Table corresponds to the Figure 6.11),
(The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 3.68E+11 3.68E+11 3.68E+11 3.68E+11 3.68E+11 3.68E+11 3.68E+11
3 2.53E+11 2.53E+11 2.53E+11 2.53E+11 2.53E+11 2.53E+11 2.53E+11
5 1.33E+11 1.33E+11 1.33E+11 1.33E+11 1.33E+11 1.33E+11 1.33E+11
7 9.32E+10 9.32E+10 9.32E+10 9.32E+10 9.32E+10 9.32E+10 9.32E+10
10 6.49E+10 6.54E+10 6.45E+10 6.45E+10 6.45E+10 6.54E+10 6.54E+10
12 5.45E+10 5.45E+10 5.45E+10 5.45E+10 5.45E+10 5.45E+10 5.45E+10
15 4.31E+10 4.32E+10 4.32E+10 4.31E+10 4.32E+10 4.32E+10 4.32E+10
17 3.80E+10 3.80E+10 3.78E+10 3.84E+10 3.78E+10 3.80E+10 3.80E+10
20 3.25E+10 3.23E+10 3.24E+10 3.26E+10 3.25E+10 3.23E+10 3.23E+10
22 2.90E+10 2.92E+10 2.90E+10 2.92E+10 2.91E+10 2.91E+10 2.91E+10
25 2.53E+10 2.54E+10 2.53E+10 2.54E+10 2.54E+10 2.54E+10 2.54E+10

CPU time (in seconds)
2 15.02 11.05 6.27 36.58 6.46 7.55 7.53
3 31.72 18.22 10.23 66.47 13.63 14.59 14.61
5 42.92 26.8 15.58 85.28 16.21 21.44 21.14
7 56.13 34.49 24.23 112.69 29.9 27.22 26.95
10 73.67 45.04 42.43 152.58 50.45 35.41 35.19
12 86.97 52.09 73.21 176.47 79.5 40.83 40.63
15 110.56 63.2 114.63 233.06 118.61 50.45 50.28
17 123.13 77.24 179.79 246.14 182.65 56.09 55.94
20 145.73 89.53 266.64 292.39 274.94 65.00 64.88
22 159.67 96.02 291.96 359.52 294.43 72.11 72.00
25 185.22 106.27 471.79 370.36 489.68 79.66 79.56

rithms, however, CPU time used by these algorithms is significantly less than that
used by other algorithms. In this data set, the performance of the FMS-MGKM2
algorithm is better than that of the FMS-MGKM algorithm in this data set both in
sense of accuracy and the used computational time.

Based on results for the Chess (King-Rook vs. King) data set given in Tables
6.5 we can conclude the FMS-MGKM algorithm failed to produce good results.
Although the FMS-MGKM2 algorithm is not accurate in this data set, however its
results much better than that by the FMS-MGKM algorithm. We have completely
different picture on the used computational time. Both the FMS-MGKM and FMS-
MGKM2 algorithms are extremely fast. They are significantly better than other
algorithms in this sense.

We can see from results for the Online News popularity data set, presented in
Table 6.6, that although the proposed algorithms are not as accurate as other algo-
rithms they require significantly less computational time. There is no any significant
difference between the performance of the FMS-MGKM and FMS-MGKM2 algo-
rithms in this data set.

Results for the Bank Marketing data set presented in Table 6.7 show that the

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 95

Table 6.4: Results for Letter Recognition data set, (this Table corresponds to the
Figure 6.9), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1.38E+06 1.38E+06 1.38E+06 1.38E+06 1.38E+06 1.38E+06 1.38E+06
3 1.25E+06 1.25E+06 1.25E+06 1.25E+06 1.25E+06 1.25E+06 1.25E+06
5 1.10E+06 1.10E+06 1.10E+06 1.10E+06 1.10E+06 1.08E+06 1.10E+06
7 9.72E+05 9.72E+05 9.72E+05 9.70E+05 9.72E+05 9.73E+05 9.73E+05
10 8.58E+05 8.58E+05 8.58E+05 8.58E+05 8.58E+05 8.78E+05 8.63E+05
12 8.04E+05 8.05E+05 8.05E+05 8.02E+05 8.04E+05 8.23E+05 8.05E+05
15 7.44E+05 7.48E+05 7.48E+05 7.62E+05 7.54E+05 7.49E+05 7.51E+05
17 7.15E+05 7.20E+05 7.16E+05 7.16E+05 7.19E+05 7.23E+05 7.18E+05
20 6.76E+05 6.77E+05 6.76E+05 6.74E+05 6.80E+05 6.82E+05 6.77E+05
22 6.52E+05 6.60E+05 6.56E+05 6.50E+05 6.54E+05 6.68E+05 6.55E+05
25 6.24E+05 6.32E+05 6.24E+05 6.22E+05 6.24E+05 6.32E+05 6.25E+05

CPU time (in seconds)
2 55.92 48.11 19.77 119.38 53.61 38.33 36.44
3 99.22 99.42 40.72 200.88 105.20 61.56 58.50
5 219.14 200.81 85.63 446.09 213.56 105.20 94.83
7 325.56 299.72 134.02 654.31 353.83 144.58 140.95
10 498.11 440.17 216.00 1002.30 571.50 205.44 194.92
12 584.56 522.45 278.60 1195.72 718.08 241.38 227.67
15 756.83 655.75 381.58 1414.16 994.70 300.38 275.45
17 841.92 735.80 450.09 1690.45 1263.03 334.45 309.45
20 970.95 865.25 563.60 1898.00 1569.30 387.88 359.83
22 1054.42 945.13 668.15 2110.33 1991.63 426.88 391.48
25 1177.03 1076.86 813.44 2367.39 2410.45 486.67 441.86

proposed algorithms reach good accuracy and they use less CPU time than other
algorithms (except the DCClust algorithm). The FMS-MGKM2 algorithm is more
efficient than the the FMS-MGKM algorithm in this data set.

Table 6.8 contains results for the TamilNadu Electricity Board Hourly Reading
data set. In this data set both proposed algorithms achieved similarly very good
results in the sense of accuracy, they obtained the best result. Computational time
used by these algorithms are similar to that of most other algorithms. These means
that only small portion of data points was removed by the algorithm for data point
reduction.

Results for the KEGG Metabolic Relation Network data set are given in Table
6.9. These results show that the proposed FMS-MGKM algorithm failed to solve
the clustering problem in this data set. The FMS-MGKM2 algorithm was more
successful, its results are acceptable in sense of accuracy. However, both algorithms
are very fast in this data set in comparison with other algorithms.

Results for the Shuttle Control data set presented in Table 6.10 show that the
proposed algorithms reach good accuracy in this data set, however, they use signif-
icantly less CPU time than other algorithms. There is no any significant difference

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 96

Table 6.5: Results for Chess (King-Rook vs. King) data set, (this Table corresponds
to the Figure 6.10), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 2.01E+05 2.01E+05 2.01E+05 2.06E+05 2.02E+05 2.38E+05 2.17E+05
3 1.37E+05 1.37E+05 1.37E+05 1.37E+05 1.37E+05 1.82E+05 1.49E+05
5 8.49E+04 8.48E+04 8.47E+04 8.49E+04 8.49E+04 1.65E+05 9.66E+04
7 6.77E+04 6.69E+04 6.66E+04 6.77E+04 6.67E+04 1.35E+05 7.90E+04
10 5.26E+04 5.24E+04 5.22E+04 5.25E+04 5.25E+04 8.17E+04 6.28E+04
12 4.72E+04 4.68E+04 4.75E+04 4.70E+04 4.70E+04 6.65E+04 5.59E+04
15 4.02E+04 4.04E+04 4.03E+04 4.09E+04 4.06E+04 5.71E+04 4.44E+04
17 3.75E+04 3.66E+04 3.60E+04 3.76E+04 3.66E+04 5.28E+04 4.01E+04
20 3.39E+04 3.23E+04 3.10E+04 3.28E+04 3.14E+04 4.50E+04 3.55E+04
22 3.13E+04 2.95E+04 2.83E+04 3.04E+04 2.84E+04 4.32E+04 3.31E+04
25 2.76E+04 2.68E+04 2.59E+04 2.74E+04 2.64E+04 3.81E+04 3.02E+04

CPU time (in seconds)
2 37.32 29.97 10.94 74.03 37.81 0.08 0.06
3 68.03 57.05 21.09 136.06 65.61 0.08 0.08
7 147.05 138.52 66.72 294.39 164.02 0.09 0.09
10 200.34 194.88 102.85 400.00 239.34 0.13 0.11
12 233.39 231.88 129.81 466.11 288.72 0.14 0.13
15 288.35 286.13 176.23 576.70 363.47 0.17 0.16
17 326.12 321.56 205.02 653.21 420.56 0.19 0.17
20 389.68 375.17 258.62 779.11 504.61 0.23 0.22
22 431.37 409.91 294.16 864.75 555.70 0.27 0.23
25 487.49 461.73 359.19 973.58 641.50 0.31 0.28

between the accuracy of the FMS-MGKM and FMS-MGKM2 algorithms, however,
the latter algorithm a bit faster than the former one.

Table 6.11 contain results for the Jester Collaborative Filtering data set. Both
proposed algorithms achieved good accuracy in this data set, however, they use sig-
nificantly less CPU time than other algorithms. There is no any significant differ-
ence between the performance of the FMS-MGKM and FMS-MGKM2 algorithms
in this data set.

Results for the Programmed Logic Array (Pla85900) data set are presented in
Tables 6.12. These results show that the proposed algorithms demonstrate very
similar performance with other algorithms both in sense of accuracy and used com-
putational time.

Table 6.13 contains results obtained using the Sensit-vehicle-acoustic data set.
Both newly developed algorithms achieved, in many cases, best results and they
used significantly less computational time than other algorithms. There is no any
significant difference between the performance of the FMS-MGKM and FMS-MGKM2
algorithms in this data set.

Table 6.14 demonstrates the overall performance of the proposed algorithm.

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 97

Table 6.6: Results for Online News popularity data set, (this Table corresponds to
the Figure 6.12), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 3.88E+14 9.54E+14 3.70E+14 3.70E+14 3.71E+14 3.88E+14 3.88E+14
3 2.57E+14 5.92E+14 2.48E+14 2.41E+14 2.49E+14 2.57E+14 2.57E+14
5 1.30E+14 3.11E+14 8.91E+14 1.96E+14 8.92E+14 1.30E+14 1.30E+14
7 8.05E+13 1.80E+14 6.00E+13 1.72E+13 6.01E+13 8.50E+13 8.50E+13
10 5.10E+13 1.17E+14 3.69E+13 1.62E+13 3.70E+13 5.10E+13 5.10E+13
12 3.91E+13 9.67E+13 2.69E+13 1.57E+13 2.70E+13 3.91E+13 3.91E+13
15 3.03E+13 7.76E+13 2.06E+13 1.50E+13 2.07E+13 3.06E+13 3.06E+13
17 2.69E+13 6.99E+13 1.78E+13 1.47E+13 1.79E+13 2.74E+13 2.73E+13
20 2.35E+13 5.98E+13 1.44E+13 1.46E+13 1.45E+13 2.36E+13 2.36E+13
22 2.14E+13 5.56E+13 1.25E+13 1.45E+13 1.26E+13 2.13E+13 2.14E+13
25 1.93E+13 4.96E+13 1.03E+13 1.45E+13 1.04E+13 1.94E+13 1.94E+13

CPU time (in seconds)
2 443.00 786.23 43.15 925.17 50.82 369.41 377.86
3 1048.39 1714.05 118.55 2113.28 126.22 575.02 569.27
5 2126.63 3325.65 476.57 4458.38 484.24 977.17 958.17
7 3445.95 4870.41 908.77 7089.89 916.44 1344.66 1312.02
10 4272.92 7151.20 1875.44 80963.63 1883.11 1864.13 1830.45
12 5236.14 8695.73 2602.61 10651.50 2608.28 2224.38 2185.64
15 6142.14 10978.93 4191.36 12374.05 4197.03 2737.66 2702.80
17 6874.69 12489.18 5536.69 13811.38 5542.36 3048.47 3017.25
20 7832.80 14775.26 7515.88 15695.09 7525.55 3538.70 3498.67
22 8472.58 16293.56 8908.39 17042.16 8918.06 3905.84 3870.59
25 9580.64 18608.83 11348.37 19164.05 11358.04 4359.69 4359.64

Figures 6.2, 6.4, 6.6, 6.8 and 6.13 illustrate dependence of the number of dis-
tance functions evaluations on the number of clusters. These figures clearly show
that the proposed algorithms: FMS-MGKM and FMS-MGKM2 require signifi-
cantly less distance function evaluations than any other clustering algorithms used
in comparison. The similar picture exists also for all other data sets used in our
computational experiments.

Figures 6.1, 6.3,6.5, 6.7,6.9,6.10, 6.11 and 6.12 present the dependence of CPU
time on the number of clusters for eight medium size data sets. These figure clearly
show that the proposed algorithms: FMS-MGKM and FMS-MGKM2 require sig-
nificantly less CPU time in most of the datasets than any other clustering algorithms
used in comparison. One can see similar dependence also for other very large size
data sets.

Table 7.13 demonstrates the overall performance of the proposed algorithm with
a with a breakdown of the numbers for different k values .

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 98

Table 6.7: Results for Bank Marketing data set, (this Table corresponds to the Figure
6.3), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 2.02E+11 2.02E+11 2.02E+11 2.02E+11 2.02E+11 2.02E+11 2.02E+11
3 1.13E+11 1.13E+11 1.13E+11 1.13E+11 1.13E+11 1.13E+11 1.13E+11
5 4.88E+10 4.88E+10 4.92E+10 4.88E+10 4.87E+10 4.88E+10 4.88E+10
7 2.89E+10 2.89E+10 3.10E+10 2.89E+10 2.88E+10 2.89E+10 2.89E+10
10 1.64E+10 1.67E+10 1.64E+10 1.64E+10 1.64E+10 1.67E+10 1.67E+10
12 1.24E+10 1.31E+10 1.23E+10 1.22E+10 1.23E+10 1.31E+10 1.31E+10
15 9.18E+09 9.49E+09 9.51E+09 9.17E+09 9.18E+09 9.49E+09 9.49E+09
17 7.72E+09 7.73E+09 7.74E+09 7.62E+09 7.72E+09 7.73E+09 7.73E+09
20 6.34E+09 6.43E+09 6.43E+09 6.24E+09 6.34E+09 6.43E+09 6.43E+09
22 5.59E+09 5.65E+09 5.66E+09 5.59E+09 5.58E+09 5.65E+09 5.65E+09
25 4.77E+09 4.91E+09 4.78E+09 4.76E+09 4.85E+09 4.91E+09 4.91E+09

CPU time (in seconds)
2 100.28 332.22 11.78 200.02 39.78 292.83 239.13
3 468.61 727.7 314.16 936.2 414.16 1017.59 782.42
5 1226.9 1671.78 2849.81 2451.9 2949.81 1802.44 1390.03
7 1773.37 2672.81 4534 3416.75 4634 2295.33 1802.22
10 3017.89 3597.41 16875.19 5905.77 16975.19 2706.55 2171.48
12 3412.24 4050.63 17456.58 6694.48 17556.58 2979.72 2423.81
15 3765.88 4683.03 19556.11 7401.76 19656.11 3290.7 2719.34
17 4087.87 5036.25 21287.75 8045.73 21387.75 3471.8 2895.53
20 4284.6 5495.91 40045.36 8439.2 40045.36 3685.16 3104.16
22 4461.33 5825.25 47980.75 8792.66 48980.75 3898.69 3312.17
25 4684.6 6200.42 54144.16 9239.2 55144.16 4041.97 3453.53

6.3 Summary

In this chapter, we applied the proposed algorithms to solve the clustering problem
in twelve medium size data sets. These data sets contain between 13900 and 100000
data points. We computed up to 25 clusters in these data sets and compared results
with other incremental clustering algorithms and also with the multi-start k-means
algorithm.Overall exactly ten times, the proposed algorithms require less CPU time
than other algorithms.

With some exceptions the proposed in this thesis algorithms demonstrated good
performance in the sense clustering accuracy. In most data sets the proposed algo-
rithms get solutions which are very close to the best solutions found by all algo-
rithms used in our computational experiments.

In most cases the proposed algorithms require less, and in some instances sig-
nificantly less, CPU time than other algorithms. In some cases, we did not see any
significant difference between algorithms with weights and without weights both in
the sense of accuracy and used computational effort, however in some other cases
the algorithm without weights demonstrated better performance than the algorithm

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 99

Table 6.8: Results for TamilNadu Electricity Board Hourly Reading data set, (The
best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 4.77E+03 4.77E+03 4.77E+03 4.77E+03 4.77E+03 4.77E+03 4.77E+03
3 3.03E+03 3.03E+03 3.03E+03 3.03E+03 3.03E+03 3.03E+03 3.03E+03
5 1.62E+03 1.62E+03 1.62E+03 1.62E+03 1.62E+03 1.62E+03 1.62E+03
7 1.18E+03 1.16E+03 1.16E+03 1.39E+03 1.17E+03 1.16E+03 1.16E+03
10 7.86E+02 7.82E+02 7.80E+02 7.80E+02 7.95E+02 7.82E+02 7.86E+02
12 6.54E+02 6.51E+02 6.51E+02 6.54E+02 6.56E+02 6.51E+02 6.51E+02
15 5.11E+02 5.13E+02 5.12E+02 5.18E+02 5.19E+02 5.13E+02 5.13E+02
17 4.52E+02 4.51E+02 4.50E+02 4.50E+02 4.59E+02 4.51E+02 4.51E+02
20 3.86E+02 3.84E+02 3.84E+02 3.84E+02 3.87E+02 3.84E+02 3.84E+02
22 3.48E+02 3.49E+02 3.48E+02 3.46E+02 3.50E+02 3.46E+02 3.46E+02
25 3.03E+02 3.03E+02 3.03E+02 3.03E+02 3.04E+02 3.03E+02 3.03E+02

CPU time (in seconds)
2 133.19 109.34 26.50 293.88 40.69 111.78 127.50
3 265.47 269.80 49.81 565.59 72.17 216.58 237.28
5 399.50 413.73 91.35 828.52 127.81 303.22 319.97
7 560.08 534.94 138.42 981.35 190.41 376.92 389.77
10 800.73 850.47 214.81 1029.00 285.48 567.88 581.50
12 955.64 1025.88 263.20 1930.72 347.08 646.75 670.73
15 1198.48 1237.75 382.06 2030.06 437.89 779.23 797.42
17 1357.23 1351.02 430.97 2720.63 496.25 852.20 868.42
20 1584.73 1509.08 533.13 3208.16 585.17 951.56 965.00
22 1701.97 1612.92 598.36 3407.88 646.16 1032.05 1040.39
25 1884.77 1778.19 728.41 3804.59 738.09 1133.31 1149.30

with weights.

Overall, results from this chapter allow us to conclude that the proposed cluster-
ing algorithms are accurate and efficient clustering algorithms in most medium size
data sets.

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 100

Table 6.9: Results for KEGG Metabolic Relation Network data set, (this Table
corresponds to the Figure 6.5), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1.14E+09 1.14E+09 1.14E+09 1.35E+09 1.14E+09 1.37E+09 1.31E+09
3 4.90E+08 4.90E+08 4.90E+08 1.10E+09 4.90E+08 1.15E+09 5.76E+08
5 1.88E+08 1.88E+08 1.88E+08 1.88E+08 1.88E+08 1.94E+08 2.26E+08
7 1.20E+08 1.20E+08 1.21E+08 1.16E+08 1.20E+08 1.26E+08 1.44E+08
10 6.35E+07 6.35E+07 6.36E+07 8.28E+07 6.35E+07 8.89E+07 7.63E+07
12 4.78E+07 4.78E+07 4.81E+07 7.53E+07 4.80E+07 8.49E+07 6.46E+07
15 3.51E+07 3.66E+07 3.51E+07 6.96E+07 3.55E+07 7.65E+07 4.31E+07
17 2.99E+07 3.19E+07 2.96E+07 6.81E+07 3.00E+07 7.38E+07 3.62E+07
20 2.56E+07 2.55E+07 2.51E+07 6.63E+07 2.55E+07 7.27E+07 3.28E+07
22 2.26E+07 2.25E+07 2.28E+07 6.53E+07 2.26E+07 7.23E+07 2.87E+07
25 1.95E+07 1.97E+07 1.96E+07 6.21E+07 1.93E+07 7.20E+07 2.55E+07

CPU time (in seconds)
2 49.23 345.22 39.14 98.55 38.31 36.89 29.11
3 221.19 777.47 95.75 446.73 113.80 60.52 48.80
5 1426.56 2001.05 319.46 2854.78 525.98 132.44 86.16
7 1782.48 2900.36 806.51 3563.83 2555.22 204.30 119.84
10 3185.13 4637.73 1605.47 6387.84 4483.98 298.84 176.89
12 4317.17 5399.95 2229.33 8621.16 5855.23 359.33 215.27
15 5693.55 6547.58 3300.64 11546.15 8401.22 452.45 306.52
17 6204.28 7436.16 3941.13 12832.34 9502.72 511.45 357.81
20 6726.13 8556.98 4963.48 13924.35 13264.66 588.45 406.45
22 7425.95 9392.09 5773.16 15289.94 15120.80 638.84 444.63
25 8402.20 10499.50 7261.91 16458.01 21249.03 708.59 500.11

Table 6.10: Results for Shuttle Control data set, (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 2.13E+09 2.81E+09 2.13E+09 2.13E+09 2.14E+09 2.13E+09 2.13E+09
3 1.09E+09 1.51E+09 1.09E+09 2.18E+09 1.10E+09 1.09E+09 1.09E+09
5 7.25E+08 8.39E+08 7.26E+08 1.00E+09 7.36E+08 7.25E+08 7.25E+08
7 4.34E+08 4.45E+08 4.37E+08 6.83E+08 4.47E+08 4.34E+08 4.34E+08
10 2.83E+08 3.02E+08 2.85E+08 5.42E+08 2.95E+08 2.83E+08 2.83E+08
12 2.14E+08 2.42E+08 2.21E+08 5.36E+08 2.31E+08 2.14E+08 2.14E+08
15 1.53E+08 1.71E+08 1.60E+08 4.59E+08 1.70E+08 1.53E+08 1.53E+08
17 1.24E+08 1.41E+08 1.30E+08 4.38E+08 1.40E+08 1.27E+08 1.27E+08
20 1.02E+08 1.07E+08 1.06E+08 4.08E+08 1.07E+08 1.06E+08 1.06E+08
22 9.06E+07 9.32E+07 9.57E+07 3.69E+08 9.67E+07 9.41E+07 9.41E+07
25 7.70E+07 7.55E+07 8.12E+07 3.57E+08 8.22E+07 8.00E+07 8.00E+07

CPU time (in seconds)
2 17.06 118.47 8.38 17.06 8.38 99.53 97.38
3 80.09 235.39 25.69 330.25 22.43 115.03 111.13
5 277.08 527.89 84.92 706.53 149.93 156.89 150.5
7 407.5 878.97 309.22 1027.36 384.26 223.77 215.19
10 646.91 1293.28 688.1 1583.8 808.49 388.25 369.64
12 862.22 1620.07 1095.82 1724.14 1648.26 457.53 435.25
15 1176.7 1995.72 2276.91 2537.52 2394.41 641.52 606.28
17 1476.47 2244.56 2600.52 3014.47 2696.06 814.81 768.59
20 2064.61 2483.18 3251.2 4186.13 3333.29 1062 1000.98
22 2555.3 2688.62 3556.58 5220.25 3849.22 1235.16 1165.31
25 2990.11 2997.96 4735.23 6054.34 4925.58 1568.45 1478.25

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 101

Table 6.11: Results for Jester Collaborative Filtering data set,(The best results are
highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 6.97E+09 6.99E+09 6.97E+09 6.99E+09 6.99E+09 6.99E+09 6.99E+09
3 5.02E+09 5.02E+09 5.02E+09 5.84E+09 5.04E+09 5.02E+09 5.02E+09
5 4.03E+09 3.81E+09 3.81E+09 4.17E+09 3.91E+09 3.81E+09 3.81E+09
7 3.53E+09 3.53E+09 3.53E+09 3.66E+09 3.63E+09 3.53E+09 3.53E+09
10 3.33E+09 3.33E+09 3.33E+09 3.49E+09 3.53E+09 3.33E+09 3.33E+09
12 3.26E+09 3.26E+09 3.26E+09 3.42E+09 3.46E+09 3.26E+09 3.26E+09
15 3.20E+09 3.22E+09 3.20E+09 3.36E+09 3.40E+09 3.20E+09 3.20E+09
17 3.16E+09 3.21E+09 3.16E+09 3.23E+09 3.26E+09 3.16E+09 3.16E+09
20 3.12E+09 3.18E+09 3.12E+09 3.25E+09 3.18E+09 3.12E+09 3.12E+09
22 3.09E+09 3.11E+09 3.09E+09 3.18E+09 3.17E+09 3.08E+09 3.08E+09
25 3.00E+09 2.90E+09 2.90E+09 2.96E+09 2.93E+09 3.05E+09 3.05E+09

CPU time (in seconds)
2 7390.63 5332.91 4960.29 14904.25 4960.42 725.3 738.34
3 13554.22 10583.34 9828.61 27231.44 9828.09 1063.45 1079.94
5 22788.06 21296.45 18593.62 45699.12 16005.22 1656.19 1655.92
7 32650.73 31507.22 22888.66 65424.47 22888.66 2301.27 2279.03
10 49149.63 47093.31 31001.19 98422.25 35054.64 3414.3 3363.97
12 60054.28 57172.88 42633.53 120231.56 42633.53 4148.95 4088.61
15 76696.36 72105.86 55303.64 153515.72 55303.64 5266.88 5193.36
17 87952 81937.81 66124.03 176027 66124.03 6044.86 5968.53
20 990123.33 990716.33 80735.33 1980369.66 87125.33 7149.61 7087.94
22 100935.33 100935.33 85935.33 201993.66 90938.23 7875.16 7830.49
25 116331.13 103735.33 96735.33 232785.26 98425.42 8937.85 8904.57

Table 6.12: Results for Programmed Logic Array (Pla85900) data set and (this Table
corresponds to the Figure 6.6), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 3.75E+15 3.75E+15 3.75E+15 3.79E+15 3.75E+15 3.75E+15 3.75E+15
3 2.28E+15 2.28E+15 2.28E+15 2.29E+15 2.28E+15 2.28E+15 2.28E+15
5 1.34E+15 1.34E+15 1.34E+15 1.45E+15 1.34E+15 1.34E+15 1.34E+15
7 9.71E+14 9.71E+14 9.71E+14 9.82E+14 9.71E+14 9.71E+14 9.71E+14
10 6.83E+14 6.83E+14 6.83E+14 6.87E+14 6.83E+14 6.83E+14 6.83E+14
12 5.76E+14 5.75E+14 5.75E+14 5.73E+14 5.76E+14 5.75E+14 5.75E+14
15 4.61E+14 4.63E+14 4.62E+14 4.61E+14 4.62E+14 4.63E+14 4.63E+14
17 4.10E+14 4.10E+14 4.10E+14 4.21E+14 4.15E+14 4.10E+14 4.10E+14
20 3.52E+14 3.53E+14 3.52E+14 3.70E+14 3.50E+14 3.51E+14 3.51E+14
22 3.20E+14 3.23E+14 3.20E+14 3.32E+14 3.21E+14 3.20E+14 3.20E+14
25 2.87E+14 2.85E+14 2.83E+14 2.88E+14 2.83E+14 2.85E+14 2.85E+14

CPU time (in seconds)
2 960.67 435.28 80.08 950.67 113.67 329.75 344.81
3 1715.31 1247.08 153.48 1701.31 216.05 793.08 822.44
5 2413.36 1836.36 307.22 2210.32 457.05 1220.67 1253.33
7 2965.28 2301.94 470.89 2861.10 723.38 1563.53 1597.02
10 4012.20 3081.13 728.34 4012.20 1171.80 2138.47 2171.05
12 4464.11 3605.94 930.08 4361.61 1503.06 2539.84 2571.34
15 5703.02 4264.78 1278.09 5801.22 2034.44 3026.88 3056.53
17 6224.19 4672.17 1580.19 6325.79 2469.42 3338.78 3367.19
20 6878.20 5299.33 2021.56 7171.26 3106.67 3804.59 3830.86
22 7407.25 5654.97 2273.89 7512.16 3624.02 4043.47 4068.27
25 8048.31 6177.55 2725.47 8328.73 4337.30 4394.53 4418.09

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 102

Table 6.13: Results for Sensit-vehicle-acoustic data set, (this Table corresponds to
the Figure 6.7), (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1.38E+05 1.38E+05 1.38E+05 1.34E+05 1.38E+05 1.38E+05 1.38E+05
3 1.17E+05 1.17E+05 1.17E+05 1.17E+05 1.17E+05 1.17E+05 1.17E+05
5 9.99E+04 1.00E+05 1.00E+05 9.72E+04 1.00E+05 1.00E+05 1.00E+05
7 8.85E+04 8.85E+04 8.85E+04 8.98E+04 8.85E+04 8.85E+04 8.85E+04
10 7.80E+04 7.70E+04 7.76E+04 7.88E+04 7.76E+04 7.80E+04 7.80E+04
12 7.37E+04 7.11E+04 7.16E+04 7.23E+04 7.16E+04 7.20E+04 7.20E+04
15 6.51E+04 6.48E+04 6.48E+04 6.70E+04 6.48E+04 6.48E+04 6.48E+04
17 6.15E+04 6.15E+04 6.15E+04 6.13E+04 6.15E+04 6.15E+04 6.15E+04
20 5.76E+04 5.74E+04 5.85E+04 5.77E+04 5.86E+04 5.85E+04 5.85E+04
22 5.58E+04 5.53E+04 5.58E+04 5.60E+04 5.65E+04 5.62E+04 5.63E+04
25 5.36E+04 5.27E+04 5.32E+04 5.33E+04 5.32E+04 5.31E+04 5.31E+04

CPU time (in seconds)
2 3378.84 3605.23 2083.05 5146.63 2749.48 3352.36 3253.19
3 6843.64 6978.44 4636.83 10254.62 5918.64 5104.09 5004.67
5 13616.49 13561.53 8850.87 22167.38 11728.61 8357.94 8213.02
7 19859.77 20092.96 12588.49 32667.7 17347.13 11221.48 11272.48
10 27818.33 29752.99 17690.15 44740.51 23930.06 15573.59 15546.59
12 32925.62 36165.92 21069.23 53408.19 28703.89 18193.03 18195.03
15 40301.25 45550.5 26085.07 64300.29 36885.17 22009.23 22162.23
17 44881.44 51392.56 29406.47 71400.6 42482.89 24516.42 24513.42
20 51451.7 60160.35 34480.01 81000.37 50448.47 28213.06 28112.06
22 55820.03 65867.82 37829.54 87114.16 55033.02 30667.98 30660.98
25 62103.61 74362.01 43139.39 96159.36 61835.38 34575.41 34528.41

Table 6.14: Supporting Metrics/Table for counting how many cases the proposed
algorithm produces the best(first) and the second best result in comparison with
other algorithms.

No. Parameters/Approach Proposed algorithm
1 Efficiency 10 times gives the best result and

few times gives the second best result
2 Computation Requires low memory and

small amount of calculations
3 Performance Fast and accurate in comparison

with the existing algorithms
(finds similar objective function values

but much superior in CPU time)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 103

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

k 2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Gas Sensor Array Drift Dataset

MS-MGKM

GKM

DC

MS-KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.1: The CPU time vs the number of clusters: Drift data set,(this Figure
corresponds to Table. 6.2)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 104

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

1.8E+10

2E+10

2 3 5 7 10 12 15 17 20 22 25N
o

. o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n
s

No. of clusters

Gas Sensor Array Drift Dataset

MGKM

GKM

DCClust

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.2: The number of distance function evaluations vs the number of clusters:
Drift data set

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 105

0

10000

20000

30000

40000

50000

60000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Bank Marketing

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.3: The CPU time vs the number of clusters: Bank Marketing data set,(this
Figure corresponds to Table. 6.7)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 106

0

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

7E+11

8E+11

2 3 5 7 10 12 15 17 20 22 25

N
o

. o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n

No. of clusters

Bank Marketing

MGKM

GKM

DCClust

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.4: The number of distance function evaluations vs the number of clusters:
Bank Marketing data set

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 107

0

5000

10000

15000

20000

25000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Relation Network

MS-MGKM

MGK

DC-L2

MS-KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.5: The CPU time vs the number of clusters: Relation Network data set,
(this Figure corresponds to Table. 6.9)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 108

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

pla85900

MS-MGKM

MGK

DC-L2

MS-KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.6: The CPU time vs the number of clusters: Programmed Logic Array
(Pla85900) data set,(this Figure corresponds to Table. 6.12)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 109

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

120000.00

140000.00

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Sensit-vehicle-acoustic

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.7: The CPU time vs the number of clusters: Sensit-vehicle-acoustic data
set, (this Figure corresponds to Table. 6.13)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 110

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

2 3 5 7 10 12 15 17 20 22 25

N
o

. o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n

No. of clusters

sensit-vehicle-acoustic

MGKM

GKM

DCClust

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.8: The number of distance function evaluations vs the number of clusters:
Sensit-vehicle-acoustic data set

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 111

0

500

1000

1500

2000

2500

3000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Letters Recognition

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.9: The CPU time vs the number of clusters: Letters data set, (this Figure
corresponds to Table. 6.4)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 112

0

200

400

600

800

1000

1200

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clustes

Chess (King-Rook vs. King)

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.10: The CPU time vs the number of clusters: Chess (King-Rook vs. King)
data set,(this Figure corresponds to Table. 6.5)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 113

0

100

200

300

400

500

600

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clustrs

D15112 in TSPLIB

MS-MGKM

MGK

DC-L2

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.11: The CPU time vs the number of clusters: D15112 data set,(this Figure
corresponds to Table. 6.3)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 114

0

5000

10000

15000

20000

25000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Online News popularity

MS-MGKM

MGK

DC-L2

MS-KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.12: The CPU time vs the number of clusters: Online popularity data set
,(this Figure corresponds to Table. 6.6)

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 115

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

2 3 4 7 10 12 15 17 20 22 25N
o

. o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n

No. of clusters

Tamil Nado Electrcity

MGKM

GKM

DC based

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 6.13: The number of distance function evaluations vs the number of clusters:
Tamilnadu data set

CHAPTER 6. COMPUTATIONAL RESULTS: MEDIUM SIZE DATA SETS 116

Table 6.15: Supporting Metrics/Table for counting how many cases out of how
many cases the proposed algorithms achieve the best(first) and the second best result
in comparison with other algorithms, with a breakdown of the numbers for different
k values

K. No. of times the proposed No. of times the proposed
algorithm shows the best algorithm shows the second best
results for given k results for given k

2 3 0
3 3 2
5 5 2
7 6 3
10 10 0
12 10 0
15 10 0
17 10 0
20 10 0
22 10 0
25 10 0

Chapter 7

Computational results: large data
sets

In this chapter we present and discuss computational results using very large data
sets. All data sets contain only numeric attributes and data sets do not contain
missing values. We give a brief description of data sets and then present computa-
tional results. These results include optimal values of the cluster function obtained
by each algorithm and CPU time required by them. The following algorithms are
used for comparison: the GKM algorithm, the MS-MGKM algorithm, the MS-KM
algorithm, the DCA algorithm, the DCClust algorithm and two newly proposed
algorithms: the FMS-MGKM and FMS-MGKM2 algorithms. The description of
these algorithms are given in Chapter 4.

The number of starting points in the MS-KM algorithm is set to 200. In all data
sets up to 25 clusters are computed. The computational time by all algorithms is
restricted by 30 hours. If an algorithm uses more than 30 hours this is considered as
“failure” and in tables it is shown with the letter “F”. Algorithms MS-MGKM, DCA
and DCClust use the algorithm for computation of starting cluster centers described
in the previous chapter. CPU time in all tables are in seconds.

7.1 Data sets

The brief description of very large data sets is given in Table 7.1. In this table
we include the number of instances (m, the number of attributes (n) and the total
number of entries (Ne) for each data set. The number of instances in these data sets

117

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 118

is from one hundred thousand to over one million and the number of attributes is
ranging from 2 to 23.

Table 7.1: The brief description of large data sets.

No. Data sets n m Ne
1 Shuttle2 Mldata 101500 10 1015000
2 Localization Person Activity 164860 4 494580
3 Online Video Characteristics 168268 5 1177876

and Trans coding Time
4 Ijcnn1 191681 23 4408663
5 Skin-non-skin segmentation 245057 4 980228
6 Artificial-2state-sequence-data 250000 14 3500000
7 Cod Coma 488565 9 4397085
8 Online Retail Data Set 541910 2 2167640
9 Algebra 2005 2006 train 809694 3 2429082
10 Phones Accelerometer 1048576 4 6291456

• Localization Data Data for Person Activity database consists of data informa-
tion of demos of five people implementation various activities. Each person
put on four sensors (tags) on ankle left, ankle right, belt and chest respectively
whilst going through the same situation five times. [59, 83].

• Online Video Characteristics and Transcoding Time Data set, consists of a
million randomly sampled video instances listing 10 fundamental video char-
acteristics. Cluster analysis, which is reported in this work ,is carried on the
bitrate(video bitrate in Kbits),height(in pixle), width(in pixles), frame rate
and estimated frame rate of the data set, gives insight statistics on characteris-
tics of consumer fundamental online videos, which can be more used to model
and optimize parts of a multimedia processing systems. Attributes YouTube
video id, duration, bitrate(total in Kbits) and categorical URL are removed
from data input file [57, 83].

• Ijcnn1 is a data set which contains information on protein sequence identifi-
cation. Five categorical features are removed from data set [54, 83].

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 119

• Online Retail data set is a multinational data set which consists of all the
trades and transactions information, which is happening between 01.12.2010
and 09.12.2011 for a UK-based and registered online retail (which is not a
store). Categorical attributes are removed before clustering [63, 83].

• Skin-non skin Segmentation data set is built by using information over Blue,
Green and Red color space. Skin and Non skin data set is created by utiliz-
ing skin textures of face images of the peoples from a variety of age group,
genders, and races [66, 83].

• Cod Comma data set is a collection of data about the possible causes of having
lower energy of transition in the regions of the coma samples of Cod [6,108].

• Algebra training data set provides the information about Algebra courses for
the entire school for the year of 2005-2006 [6].

• Phones accelerometer data set contains information of the tilting motion and
orientation of a mobile phone, which is collected by phone sensors [6].

7.2 Results

Numerical results with medium size data sets are presented in Tables 7.2-7.11. The
best results in all the tables are highlighted using the bold font.

Results for the shuttle2 data set data set presented in Table 7.2 show that the
proposed in this thesis algorithms are not accurate in this data set. On the same
time they use significantly less CPU time than other algorithms. The FMS-MGKM
algorithm failed to produce a good quality solution in this data set, however the
FMS-MGKM2 algorithm produced much better solution.

Results for the Localization Data for Person Activity data set presented in Table
7.3 show that the new algorithms produce the best or close to the best solution. Their
CPU time is comparable with that of by other algorithms. It is easy that there is no
any difference between the performance of the FMS-MGKM and FMS-MGKM2
algorithms in this data set. This is due to the fact that the algorithm for reduction of
the number of data points removed only very few points from the data set.

Table 7.4 contains clustering results for the Online Video Characteristics and
Transcoding Time data set. These results demonstrate that the proposed algorithm

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 120

Table 7.2: Results for shuttle2 data set, (this Table corresponds to the Figure 7.1),
(The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1.37E+04 1.37E+04 1.37E+04 1.36E+04 1.37E+04 1.38E+04 1.43E+04
3 6.78E+03 6.78E+03 6.78E+03 6.66E+03 6.78E+03 6.80E+03 7.98E+03
5 3.78E+03 3.78E+03 3.78E+03 3.66E+03 3.78E+03 3.79E+03 6.87E+03
7 2.54E+03 2.54E+03 2.54E+03 2.42E+03 2.54E+03 2.83E+03 3.90E+03
10 1.60E+03 1.60E+03 1.60E+03 1.48E+03 1.60E+03 1.77E+03 2.51E+03
12 1.31E+03 1.30E+03 1.30E+03 1.18E+03 1.30E+03 1.62E+03 2.44E+03
15 1.03E+03 1.02E+03 1.02E+03 9.08E+03 1.03E+03 1.38E+03 1.72E+03
17 9.01E+03 8.97E+03 8.85E+03 7.80E+03 8.89E+03 1.01E+03 1.27E+03
20 7.43E+03 7.43E+03 7.43E+03 6.26E+03 7.47E+03 9.50E+02 1.21E+02
22 6.74E+03 6.61E+03 6.60E+03 5.44E+03 6.64E+03 8.23E+02 1.19E+02
25 5.78E+02 5.65E+03 5.65E+02 4.48E+02 5.69E+02 7.38E+02 7.70E+01

CPU time (in seconds)
2 330.11 738.58 223.34 353.11 235.47 6.53 4.75
3 545.52 1449.91 488.08 698.52 500.21 7.05 4.92
5 1561.59 3204.28 1132.44 1714.59 1144.57 8.11 5.30
7 2385.18 4595.58 1789.53 2538.18 1801.66 9.27 5.78
10 3758.77 6702.84 2859.94 3911.77 2872.07 10.95 6.56
12 4378.61 8027.61 3650.63 4531.61 3661.76 12.13 6.97
15 5069.55 9761.14 4833.31 5222.55 4844.44 13.88 7.61
17 5489.00 10846.52 5607.42 5642.00 5618.55 15.00 8.34
20 6052.54 12458.61 6848.88 6205.54 6866.01 16.84 9.16
22 6411.14 13535.42 7672.48 6564.14 7689.61 18.09 9.75
25 6975.05 15135.48 8944.22 7128.05 8961.35 20.00 10.81

achieved much better results than other algorithms. This is due to the fact that the
reduced data set allows one to easily get better cluster structure in the data set.
The proposed algorithms use significantly less CPU time than other algorithms in
this data set. The FMS-MGKM2 algorithm performs better than the FMS-MGKM
algorithm.

Clustering results for the artificial-2state-sequence-data data set are given in Ta-
ble 7.5. The FMS-MGKM2 algorithm produces high quality solutions which are
very close to the best solutions obtained by all algorithms. The FMS-MGKM al-
gorithm also was quite successful however its solutions are not close to the best
solutions. One can see that there is a huge difference between the computational
time used by the proposed algorithms and other algorithms.

Table 7.6 presents clustering results for the Skin-non skin Segmentation data set.
One can see that both proposed algorithms are able to produce good quality solu-
tions, their performance is quite similar. We can also see that these two algorithms
require significantly less CPU time than other algorithms.

All other algorithms used in comparison failed to solve clustering problems in
the Cod Coma data set in given time frame. This can be seen from Table 7.7. The

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 121

Table 7.3: Results for Localization Data for Person Activity data set, (this Table
corresponds to the Figure 7.6),(The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1.04E+05 1.04E+05 1.04E+05 1.04E+05 1.04E+05 1.04E+05 1.04E+05
3 7.72E+04 7.72E+04 7.72E+04 7.72E+04 7.73E+04 7.72E+04 7.72E+04
5 5.60E+04 5.60E+04 5.60E+04 5.60E+04 5.61E+04 5.60E+04 5.60E+04
7 4.45E+04 4.45E+04 4.45E+04 4.45E+04 4.46E+04 4.45E+04 4.45E+04
10 3.34E+04 3.34E+04 3.34E+04 3.34E+04 3.35E+04 3.34E+04 3.34E+04
12 3.03E+04 3.03E+04 3.04E+04 3.03E+04 3.05E+04 3.04E+04 3.04E+04
15 2.63E+04 2.63E+04 2.63E+04 2.63E+04 2.67E+04 2.63E+04 2.63E+04
17 2.41E+04 2.41E+04 2.41E+04 2.41E+04 2.44E+04 2.41E+04 2.41E+04
20 2.17E+04 2.17E+04 2.17E+04 2.17E+04 2.20E+04 2.20E+04 2.20E+04
22 2.05E+04 2.05E+04 2.06E+04 2.05E+04 2.07E+04 2.06E+04 2.06E+04
25 1.93E+04 1.93E+04 1.89E+04 1.93E+04 1.92E+04 1.89E+04 1.89E+04

CPU time (in seconds)
2 2232.33 881.00 345.56 2232.33 419.53 1931.73 1931.73
3 3808.05 1761.28 758.77 3808.05 915.08 3313.06 3313.06
5 7080.29 3501.96 1622.44 7080.29 1891.91 6345.42 6345.42
7 8604.84 5264.86 2417.47 8604.84 2747.83 7467.47 7467.47
10 10427.61 7875.70 3649.28 10427.61 4057.70 9365.45 9365.45
12 12135.58 9631.03 4466.06 12135.58 4953.22 10786.44 10786.44
15 13943.59 12244.38 5769.06 13943.59 6372.55 12598.80 12598.80
17 14756.54 13984.60 6766.88 14756.54 7339.22 13695.44 13695.44
20 17201.09 16608.13 8321.16 17201.09 8783.89 15341.31 15341.31
22 18218.41 18360.74 9337.19 18218.41 9706.11 16414.44 16414.44
25 19180.95 21017.56 10972.97 19180.95 11073.14 18289.28 18289.28

FMS-MGKM2 algorithm was able to get the best solution or the solution close to
the best one. The FMS-MGKM algorithm also produced good quality of solutions
however, they are always worse than those obtained by the FMS-MGKM2 algo-
rithm. CPU time used by both these algorithms is too little for data sets of this size.

All clustering algorithms, except the FMS-MGKM and FMS-MGKM2 algo-
rithms, failed to solve clustering problems in the Online Retail data set. However,
we can see from Table 7.8 that the FMS-MGKM algorithm also could not produce
any reasonable solutions, except for small number of clusters. CPU time used by
these two algorithms is extremely small for this type data sets.

Results for the Algebra training data set are presented in Table 7.9. Again we
can see that all clustering algorithms, except algorithms FMS-MGKM and FMS-
MGKM2, failed to solve clustering problems in this data set. The FMS-MGKM
and FMS-MGKM2 algorithms demonstrated the similar performance, although the
FMS-MGKMs algorithm is more accurate than the FMS-MGKM2 algorithms. Again
CPU time used by these two algorithms is too small for this type of data sets.

We can see from Table 7.10 that again, all clustering algorithms, except algo-

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 122

Table 7.4: Results for Online Video Characteristics and Transcoding Time data set,
(The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1.50E+11 1.50E+11 1.50E+11 1.50E+11 1.50E+11 5.23E+10 5.47E+10
3 1.11E+11 1.11E+11 1.11E+11 1.11E+11 1.11E+11 3.39E+10 3.36E+10
5 6.07E+10 6.07E+10 6.07E+10 6.07E+10 6.07E+10 1.39E+10 1.97E+10
7 4.52E+10 4.41E+10 4.52E+10 4.52E+10 4.52E+10 1.09E+10 1.46E+10
10 3.29E+10 3.31E+10 3.29E+10 3.29E+10 3.29E+10 8.42E+09 9.11E+09
12 2.66E+10 2.66E+10 2.80E+10 2.80E+10 2.80E+10 7.93E+09 7.53E+09
15 2.22E+10 2.23E+10 2.22E+10 2.22E+10 2.22E+10 6.61E+09 6.39E+09
17 2.01E+10 2.06E+10 2.02E+10 2.02E+10 2.01E+10 6.26E+09 5.94E+09
20 1.80E+10 1.81E+10 1.80E+10 1.80E+10 1.80E+10 6.00E+09 5.12E+09
22 1.68E+10 1.69E+10 1.68E+10 1.68E+10 1.68E+10 5.84E+09 3.96E+09
25 1.52E+10 1.52E+10 1.53E+10 1.53E+10 1.52E+10 5.65E+09 3.43E+09

CPU time (in seconds)
2 2092.48 1337.49 164.48 1.19 181.45 33.61 32.77
3 4597.52 3216.40 595.33 885.42 558.89 64.75 50.92
5 12067.36 9667.24 1905.78 1619.05 1748.17 115.86 87.20
7 17126.50 17756.36 3575.25 4306.89 3181.94 161.08 128.11
10 25216.92 24233.99 6334.16 6736.84 5863.72 207.75 171.52
12 29452.44 26135.13 8219.20 11510.56 8530.20 234.81 191.97
15 34253.50 30080.46 10893.52 15480.39 11648.61 273.25 224.61
17 38335.75 31701.26 12678.55 20071.36 14227.36 295.80 247.73
20 42799.13 34718.60 15805.55 23572.92 18354.52 330.20 283.53
22 45797.11 36475.42 17910.77 28682.36 22050.39 356.55 312.30
25 49395.06 38985.68 22464.30 32905.17 44945.09 389.80 342.02

rithms FMS-MGKM and FMS-MGKM2, failed to solve clustering problems in this
data set. The FMS-MGKM and FMS-MGKM2 algorithms demonstrated the simi-
lar performance both in the sense of accuracy and used computational time. Again
CPU time used by these two algorithms is too small for this type of data sets.

Results for the Ijcnn1 data set are presented in Table 7.11. The proposed algo-
rithms outperform other algorithms in sense of clustering accuracy. Moreover, they
use significantly less computational time than other algorithms. There is no any
significant difference between the performance of the algorithms FMS-MGKM and
FMS-MGKM2 in this data set.

Figures 7.2, 7.3, 7.4 and 7.5 illustrate dependence of the number of distance
functions evaluations on the number of clusters. These figures clearly show that the
proposed algorithms: FMS-MGKM and FMS-MGKM2 require significantly less
distance function evaluations than any other clustering algorithms used in compari-
son. The similar picture exists also for all other data sets used in our computational
experiments.

Figures 7.1, 7.6, 7.7, 7.7,7.8,7.9 and 7.10 present the dependence of CPU time
on the number of clusters for seven very large data sets. These figure clearly show

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 123

Table 7.5: Results for artificial-2state-sequence-data set,(The best results are high-
lighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 5.21E+15 5.21E+15 5.21E+15 5.21E+15 5.21E+15 6.07E+15 5.21E+15
3 2.31E+15 2.31E+15 2.31E+15 2.31E+15 2.31E+15 2.45E+15 2.31E+15
5 8.33E+14 8.33E+14 8.33E+14 8.33E+14 8.33E+14 1.26E+15 8.34E+14
7 4.25E+14 4.25E+14 4.25E+14 4.26E+14 4.25E+14 5.47E+14 4.26E+14
10 2.09E+14 2.09E+14 2.08E+14 2.09E+14 2.09E+14 2.82E+14 2.09E+14
12 1.45E+14 1.45E+14 1.45E+14 1.45E+14 1.45E+14 1.59E+14 1.45E+14
15 9.31E+13 9.31E+13 9.28E+13 9.31E+13 9.31E+13 1.21E+14 9.35E+13
17 7.25E+13 7.25E+13 7.24E+13 7.25E+13 7.25E+13 9.70E+13 7.23E+13
20 5.25E+13 5.25E+13 5.25E+13 5.25E+13 5.25E+13 6.48E+13 5.26E+13
22 4.31E+13 4.31E+13 4.31E+13 4.31E+13 4.31E+13 5.35E+13 4.36E+13
25 3.36E+13 3.36E+13 3.36E+13 3.36E+13 3.36E+13 3.86E+13 3.33E+13

CPU time (in seconds)
2 7374.89 8.88 2881.07 7374.89 5101.94 14.41 14.03
3 11385.53 14.93 5354.55 11385.53 9336.02 14.48 14.13
5 22678.83 26.36 11038.74 22678.83 17076.05 14.73 14.36
6 28351.42 34.35 13968.88 28351.42 23429.53 15.08 14.67
10 49232.34 56.94 24217.78 49232.34 33815.97 15.77 15.28
12 58995.98 68.61 29630.69 58995.98 39959.72 16.31 15.8
15 71898.74 84.12 37735.92 71898.74 51655.33 17.27 16.73
17 80706.49 94.15 43352.38 80706.49 58650.28 17.98 17.47
20 51968.23 109.97 51968.23 51968.23 69267.66 19.27 18.72
22 58295.53 120.26 58295.53 58295.53 80291.74 20.2 19.67
25 68716.39 136.35 68716.39 68716.39 96241.24 21.77 21.25

that the proposed algorithms: FMS-MGKM and FMS-MGKM2 for most of the
datasets, require significantly less CPU time than any other clustering algorithms
used in comparison. One can see similar dependence also for other very large size
data sets.

Table 7.12 demonstrates the overall performance of the proposed algorithm.
Table 7.13 demonstrates the overall performance of the proposed algorithm with

a with a breakdown of the numbers for different k values .

7.3 Summary

In this chapter, we applied the proposed algorithms to solve the clustering problem
in ten large and very large data sets. These data sets contain between 100000 and
over 1000000 instances. We computed up to 25 clusters and compared results with
other incremental clustering algorithms as well as with the multi-start k-means al-
gorithm.Overall exactly nine times, the proposed algorithms require less CPU time
than other algorithms.

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 124

Table 7.6: Results for Skin-non skin Segmentation data set,(this Table corresponds
to the Figure 7.7),(The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 1.32E+09 1.32E+09 1.32E+09 1.32E+09 1.32E+09 1.58E+09 1.57E+09
3 8.94E+08 8.94E+08 8.94E+08 8.94E+08 8.94E+08 1.09E+09 1.12E+09
5 5.18E+08 5.02E+08 5.02E+08 5.18E+08 5.02E+08 6.21E+08 6.08E+08
7 3.61E+08 3.63E+08 3.63E+08 3.61E+08 3.63E+08 4.51E+08 4.59E+08
10 2.51E+08 2.51E+08 2.51E+08 2.51E+08 2.51E+08 3.41E+08 3.55E+08
12 2.14E+08 2.14E+08 2.14E+08 2.14E+08 2.15E+08 2.75E+08 2.72E+08
15 1.71E+08 1.70E+08 1.70E+08 1.70E+08 1.70E+08 2.23E+08 2.16E+08
17 1.50E+08 1.48E+08 1.48E+08 1.50E+08 1.48E+08 2.01E+08 2.02E+08
20 1.26E+08 1.28E+08 1.28E+08 1.26E+08 1.28E+08 1.67E+08 1.62E+08
22 1.15E+08 1.17E+08 1.16E+08 1.15E+08 1.17E+08 1.61E+08 1.52E+08
25 1.02E+08 1.03E+08 1.03E+08 1.02E+08 1.03E+08 1.52E+08 1.34E+08

CPU time (in seconds)
2 4230.51 5010.19 846.02 8331.03 970.31 216.58 262.89
3 7633.08 10768.66 1484.54 15136.16 1825.25 308.36 333.52
5 12313.42 16479.37 2596.12 24496.84 3380.70 451.61 451.41
7 14563.29 20957.30 4045.54 28996.58 5135.22 581.38 566.94
10 18130.61 27357.77 5607.72 36131.22 7451.09 727.02 684.06
12 19813.58 31226.22 6960.31 39497.16 8941.08 841.56 787.48
15 22034.95 37881.38 8701.50 43939.90 11946.05 994.64 911.73
17 23426.09 41655.43 9987.12 46722.18 13862.67 1080.00 983.20
20 25633.29 46495.40 11539.28 51136.58 16675.11 1215.69 1095.92
22 26796.21 49691.59 12664.96 53462.42 18759.27 1349.86 1170.95
25 28461.48 54499.17 14575.80 56792.96 22161.98 1497.52 1276.97

We can note that the performance of all clustering algorithms used in this com-
parison are different from that in small and medium size data sets. First, the al-
gorithm which do not use data points weights is more accurate than the algorithm
which uses such weights. There is any significant between these algorithms in large
data sets.

In some data sets these two algorithms were only algorithms which were able
to produce a solution in a reasonable time (less than 30 hours). Other algorithms
failed to produce any solution in a reasonable time in some cases. This algorithm
cannot be directly applied to solve clustering algorithms in very large data sets.

In most cases the proposed algorithms require less, and in some instances signif-
icantly less, CPU time than other algorithms used for comparison. Overall, results
from this chapter allow us to conclude that the proposed clustering algorithms are
accurate and efficient clustering algorithms in very large data sets used in computa-
tions.

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 125

Table 7.7: Results for Cod Coma data set,(The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 9.78E+15 Fail 9.78E+15 9.57E+15 9.78E+15 1.17E+16 9.82E+15
3 4.36E+15 Fail 4.36E+15 4.85E+15 4.36E+15 4.65E+15 4.39E+15
5 1.58E+15 Fail 1.58E+15 1.67E+15 1.58E+15 2.56E+15 1.59E+15
7 Fail Fail 8.11E+14 Fail 8.11E+14 1.43E+15 8.20E+14
10 Fail Fail 4.01E+14 Fail 4.01E+14 4.81E+14 4.10E+14
12 Fail Fail 2.80E+14 Fail 2.80E+14 3.09E+14 2.84E+14
15 Fail Fail 1.80E+14 Fail 1.80E+14 2.32E+14 1.83E+14
17 Fail Fail 1.41E+14 Fail 1.41E+14 1.56E+14 1.42E+14
20 Fail Fail 1.03E+14 Fail 1.03E+14 1.29E+14 1.03E+14
22 Fail Fail Fail Fail Fail 1.18E+14 8.57E+13
25 Fail Fail Fail Fail Fail 7.65E+13 6.56E+13

CPU time (in seconds)
2 23146.93 Fail 3985.09 23143.33 3985.09 16.23 16.11
3 36958.81 Fail 8093.16 36848.71 8093.16 16.31 16.19
5 89271.76 Fail 15605.59 89373.66 15605.59 16.56 16.45
7 Fail Fail 22772.67 Fail 22772.67 16.92 16.81
10 Fail Fail 33702.10 Fail 33702.10 17.61 17.56
12 Fail Fail 41018.95 Fail 41018.95 18.20 18.17
15 Fail Fail 52138.73 Fail 52138.73 19.31 19.27
17 Fail Fail 60086.86 Fail 60086.86 20.16 20.13
20 Fail Fail 70953.01 Fail 70953.01 21.66 21.56
22 Fail Fail Fail Fail Fail 22.77 22.67
25 Fail Fail Fail Fail Fail 24.63 24.52

Table 7.8: Results for Online Retail data set, (The best results are highlighted)

Cluster function values
k FMS−MGKM FMS-MGKM2
2 3.09E+10 1.01E+11
3 2.98E+10 7.97E+10
5 2.87E+10 1.70E+10
7 2.84E+10 1.85E+10
10 2.79E+10 3.82E+09
12 2.78E+10 3.31E+09
15 2.78E+10 1.39E+09
17 2.78E+10 1.31E+09
20 2.78E+10 1.23E+09
22 2.78E+10 1.15E+09
25 2.77E+10 7.08E+08

CPU time (in seconds)
2 0.34 0.23
3 0.41 0.27
5 0.58 0.36
7 0.80 0.48
10 1.23 0.75
12 1.53 1.02
15 2.06 1.41
17 2.50 1.70
20 3.13 2.25
22 3.61 2.70
25 4.47 3.38

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 126

Table 7.9: Results for Algebra training data set, (this Table corresponds to the Figure
7.10), (The best results are highlighted)

Cluster function values
k FMS−MGKM FMS-MGKM2
2 2.77E+16 1.64E+16
3 1.07E+16 7.24E+15
5 3.22E+15 2.70E+15
7 1.58E+15 1.40E+15
10 7.51E+14 6.74E+14
12 5.23E+14 4.69E+14
15 3.33E+14 3.05E+14
17 2.70E+14 2.38E+14
20 1.82E+14 1.73E+14
22 1.52E+14 1.43E+14
25 1.16E+14 1.09E+14

CPU time (in seconds)
2 7.48 6.97
3 7.58 7.02
5 7.81 7.27
7 8.19 7.64
10 8.97 8.41
12 9.63 9.08
15 10.83 10.33
17 11.80 11.30
20 13.39 12.81
22 14.61 13.89
25 16.61 16.00

Table 7.10: Results for Phones Accelrometer data set, (this Table corresponds to the
Figure 7.8), (The best results are highlighted)

Cluster function values
k FMS−MGKM FMS-MGKM2
2 4.09E+15 2.32E+15
3 1.39E+15 9.93E+14
5 4.32E+14 3.76E+14
7 2.10E+14 1.92E+14
10 9.69E+13 9.02E+13
12 6.54E+13 6.21E+13
15 4.14E+13 4.00E+13
17 3.27E+13 3.15E+13
20 2.38E+13 2.34E+13
22 1.92E+13 1.97E+13
25 1.50E+13 1.47E+13

CPU time (in seconds)
2 9.41 7.67
3 9.50 7.73
5 9.80 7.94
7 10.16 8.25
10 11.02 8.92
12 11.77 9.50
15 13.13 10.55
17 14.16 11.39
20 16.00 12.86
22 17.38 13.98
25 19.80 15.86

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 127

Table 7.11: Results for Ijcnn1 data set, (The best results are highlighted)

Cluster function values
k MS−MGKM GKM DCClust MS−KM DCA FMS−MGKM FMS-MGKM2
2 2.58E+05 2.68E+05 2.58E+05 2.58E+05 2.58E+05 1.04E+05 1.04E+05
3 2.40E+05 2.50E+05 2.40E+05 2.40E+05 2.40E+05 7.72E+04 7.72E+04
5 2.03E+05 2.13E+05 2.03E+05 2.03E+05 2.03E+05 5.60E+04 5.60E+04
7 1.65E+05 1.75E+05 1.65E+05 1.65E+05 1.66E+05 4.45E+04 4.45E+04
10 1.11E+05 1.21E+05 1.11E+05 1.11E+05 1.11E+05 3.34E+04 3.34E+04
12 8.97E+04 9.98E+04 8.97E+04 8.97E+04 8.97E+04 3.04E+04 2.99E+04
15 8.29E+04 9.30E+04 8.11E+04 8.29E+04 8.14E+04 2.63E+04 2.63E+04
17 7.72E+04 8.73E+04 7.55E+04 7.72E+04 7.70E+04 2.41E+04 2.41E+04
20 6.87E+04 7.88E+04 6.71E+04 6.87E+04 6.78E+04 2.20E+04 2.17E+04
22 6.31E+04 7.32E+04 6.22E+04 6.31E+04 6.11E+04 2.06E+04 2.06E+04
25 5.64E+04 6.65E+04 5.62E+04 5.64E+04 5.78E+04 1.89E+04 1.89E+04

CPU time (in seconds)
2 2683.84 2715.26 2340.75 2693.84 3880.77 2379.20 2401.53
3 6354.87 6386.29 6161.59 6354.87 8695.66 3931.09 4090.08
5 13018.66 13050.08 12755.78 13028.66 18086.95 8643.22 7613.30
7 18659.83 18691.25 20808.58 18651.83 27319.53 10332.44 9383.66
10 26296.98 26328.40 30904.59 26296.98 40431.33 12844.81 11722.19
12 30949.80 30981.22 36311.08 30959.81 49553.89 14270.36 13574.55
15 39028.28 39059.70 44229.14 39028.28 64377.05 16554.77 15192.22
17 44673.13 44704.55 49372.45 44773.13 74991.75 17808.69 16480.17
20 52863.93 52895.35 57229.23 52863.93 92377.83 19783.08 18605.63
22 58058.72 58090.14 62480.70 58058.72 105163.36 20822.22 19487.72
25 65849.21 65880.63 70285.09 66849.21 120830.17 22524.67 21193.34

Table 7.12: Supporting Metrics/Table for counting how many cases the proposed
algorithm produces the best(first) and the second best result in comparison with
other algorithms.

No. Parameters/Approach Proposed algorithm
1 Efficiency 9 times gives the best result and

few times gives the second best result
2 Computation Requires low memory and

small amount of calculations
3 Performance Fast and accurate in comparison

with the existing algorithms
(finds similar objective function values

but much superior in CPU time)

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 128

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Shuttle2mldata

MS-MGKM

MGK

DC-L2

MS-KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 7.1: The CPU time vs the number of clusters: Shuttle2 Mldata data set, (this
Figure corresponds to Table. 7.2)

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 129

0.00E+00

5.00E+10

1.00E+11

1.50E+11

2.00E+11

2.50E+11

3.00E+11

2 3 5 7 10 12 15 17 20 22 25N
o

. o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n
s

No. of clusters

Shuttle2mldata

MGKM

GKM

DCClust

Multistart MK

DCA

FMS-MGKM

FMS-MGKM2

Figure 7.2: The number of distance function evaluations vs the number of clusters:
Shuttle2 Mldata data set

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 130

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

8.00E+11

9.00E+11

1.00E+12

2 3 5 7 10 12 15 17 20 22 25

N
o

.o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n

No. of clusters

artificial-2state-sequence-data

MGKM

GKM

DCClust

Multistart KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 7.3: The number of distance function evaluations vs the number of clusters:
Artificial-2state-sequence-data data set

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 131

0.00E+00

2.00E+11

4.00E+11

6.00E+11

8.00E+11

1.00E+12

1.20E+12

1.40E+12

1.60E+12

2 3 5 7 10 12 15 17 20 22 25

N
o

. o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n

No. of clusters

Skin_Nonskin

MGKM

GKM

DCClust

Modified GKM

DCA

FMSMGKM

FMSMGKM2

Figure 7.4: The number of distance function evaluations vs the number of clusters:
Skin-non-skin segmentation data set

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 132

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

2 3 5 7 10 12 15 17 20 22 25

N
o

. o
f

d
is

ta
n

ce
 f

u
n

ct
io

n
 e

va
lu

at
io

n
s

No.of clusters

Phones accelrometer

FMSMGKM

FMSMGKM2

Figure 7.5: The number of distance function evaluations vs the number of clusters:
Phones Accelerometer data set

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 133

0

5000

10000

15000

20000

25000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Localization Person Activity

MS-MGKM

MGK

DC-L2

MS-KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 7.6: The CPU time vs the number of clusters: Localization for person Ac-
tivity data set, (this Figure corresponds to Table. 7.3)

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 134

0

10000

20000

30000

40000

50000

60000

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Skin-nonskin Segmentation

MS-MGKM

MGK

DC-L2

MS-KM

DCA

FMS-MGKM

FMS-MGKM2

Figure 7.7: The CPU time vs the number of clusters:Skin-non-skin segmentation
data set, (this Figure corresponds to Table. 7.6)

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 135

0

5

10

15

20

25

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Phones accelrometer

FMSMGKM

FMSMGKM2

Figure 7.8: The CPU time vs the number of clusters:Phones Accelerometer data set
(this Figure corresponds to Table. 7.10)

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 136

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Online Retail Data Set

FMS-MGKM

FMS-MGKM2

Figure 7.9: The CPU time vs the number of clusters:Online Retail Dataset,(this
Figure corresponds to Table. 7.8)

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 137

0

2

4

6

8

10

12

14

16

18

2 3 5 7 10 12 15 17 20 22 25

C
P

U
 t

im
e

No. of clusters

Algebra 2005 2006 train

FMS-MGKM

FMS-MGKM2

Figure 7.10: The CPU time vs the number of clusters:Algebra 2005 2006 train
Dataset, (this Figure corresponds to Table. 7.9)

CHAPTER 7. COMPUTATIONAL RESULTS: LARGE DATA SETS 138

Table 7.13: Supporting Metrics/Table for counting how many cases out of how
many cases the proposed algorithms achieve the best(first) and the second best result
in comparison with other algorithms, with a breakdown of the numbers for different
k values

K. No. of times the proposed No. of times the proposed
algorithm shows the best algorithm shows the second best
results for given k results for given k

2 6 3
3 9 0
5 9 0
7 9 0
10 9 0
12 9 0
15 9 0
17 9 0
20 9 0
22 9 0
25 9 0

Chapter 8

Conclusions and future work

In this thesis fast and accurate clustering algorithms have been studied to solve
the minimum sum-of-squares clustering problems in very large data sets. In this
study the term “very large data set” means that the data set contains hundreds of
thousands or millions points and/or maximum hundreds of attributes. However, we
assume that this data set can be stored in random access memory of a computer.

Most clustering algorithms, including those based on optimization techniques,
and their applicability to very large data sets have been discussed. It has been noted
that most of these algorithms are not applicable to solve clustering problems in
such data sets. Because they may require a large computational effort and may not
produce any solution in a reasonable time. Therefore, there is a need to develop new
clustering algorithms which are real time and accurate algorithms for clustering in
very large data sets.

According to objectives of this study we introduced the algorithm to reduce the
number of data points in a data set. This algorithm reads the whole data only twice.
This algorithm identifies dense areas in a data set and replace these areas by their
representative points by assigning them weights. Weights of representative points
are defined as the number of points from some its vicinity. This leads to generation
of data sets with weights and clustering algorithms are modified to solve clustering
problems in such data sets.

Most clustering algorithms are based on local search techniques and therefore,
their success strongly depends on the choice of starting cluster centers. Using the
nonconvex nonsmooth optimization model of the clustering problem we developed
the algorithm to generate good starting cluster centers. This algorithm use data

139

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 140

points and then generates starting cluster centers from the whole search space.

Using the algorithm for reduction of data points and the algorithm for generating
starting cluster centers we design new clustering algorithms for solving clustering
algorithm in very large data sets. These algorithms are based on the incremental
approach, they build clusters gradually starting from one cluster which is the whole
data sets. New clustering algorithms are extensions of optimization based incre-
mental clustering algorithms for data sets with weights. These algorithms involve
also some schemes to reduce computational effort.

The implementation of the proposed algorithms is discussed and algorithms
were evaluated using small size (with tens of thousands of data points), medium
size (with up to a few hundreds of thousands of data points) and very large (with
several hundreds of thousands and millions of data points) data sets. These data sets
contains from very few to more than one hundred attributes.

Results clearly demonstrate new algorithms are very fast even in very large data
sets. Results also demonstrate that these algorithms are real-time clustering algo-
rithms. Their results were compared with those obtained using several center-based
clustering algorithms based on optimization techniques.

In conclusion, we can say that this research demonstrate how the existing clus-
tering algorithms can be scaled up to solve clustering problems in very large data
sets. This research develops algorithms which are accurate, efficient and real-time
clustering algorithms for very large data sets.

In this thesis we did not consider the problem of clustering in data sets which
cannot be stored in the random access memory of a computer. These problems can
be considered as directions of future research. Two main directions can be identified
here:

1. Most clustering algorithms have good potential for parallelization. The use
of many processors in supercomputers will significantly accelerate the con-
vergence of such algorithms. Here we can mention two possibilities for par-
allelization. One possibility is that to divide the data set into many pieces
and pass each piece to one processor and to solve the clustering separately
for each piece of data. Then special techniques should be developed to merge
clustering results from each processor.

2. This direction does not assume the presence of many processors, that is, in

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 141

this case the clustering problem is solved using normal computer not super-
computer. The idea is to consider the data set as a streamline data set, divide
it into many pieces and at each iteration the clustering problem for one piece-
wise of data. In this case special techniques should be developed to identify
most informative points at each iteration to pass them to the next iteration.

Bibliography

[1] R. Dubes and A.K. Jain, Clustering techniques: the user’s dilemma, Pattern

Recognition, 8(1976), 247-260.

[2] K.R. Rao, Data Mining and Clustering Techniques, DRTC Workshop on Se-

mantic Web, 11(2003), 8-10.

[3] P. Hanjoul, D. Peeters, A comparison of two dual-based procedures for
solving the p-median problem, European Journal of Operational Research,

20(1985), 387-396.

[4] A.E. Xavier and A.A.F.D. Oliveira, Optimal covering of plane domains by
circles via hyperbolic smoothing, Journal of Global Optimization, 31(2005),
493-504.

[5] UCI repository of machine learning databases,
http://www.ics.uci.edu/mlearn/MLRepository.html.

[6] Machine learning repository mldata.ord, http://mldata.org/repository/data/

[7] T. M. Usha , Knowledging on Tamil Nadu electricity board (TNEB) and
electricity load demand forecasting by Gaussian processes using real time
data,Fourth International Conference on Computing, Communications and
Networking Technologies (ICCCNT), (2013).

[8] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N.
Amin, B. Schwikowski and T. Ideker, Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome Res,

13(2003),2498–2504.

[9] A.M. Bagirov, A. Al Nuaimat and N. Sultanova, Hyperbolic smoothing
method for minimax problems, Optimization, 2012.

142

BIBLIOGRAPHY 143

[10] D.Michie,The Fifth Generation’s Unbridged Gap:In Rolf Herken (Ed.)
The Universal Turing Machine: A Half-Century Survey,Oxford University

Press,1988, 466-489.

[11] R. Xu and D. Wunsch, Survey of clustering algorithms,IEEE Transactions

on Neural Networks, 16(2005), 645-678.

[12] http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/pla85900.tsp

[13] B.Johnson, R.Tateishi, N. Hoan, A hybrid pansharpening approach and
multiscale object-based image analysis for mapping diseased pine and oak
trees,International Journal of Remote Sensing, 34 (2013), 6969-6982.

[14] P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine pref-
erences by data mining from physicochemical properties.In Decision Support
Systems, Elsevier,47(2009),547-553.

[15] Leo Breiman, Jerome H. Friedman, Adam Olshen, Jonathan Stone. Classifi-
cation and Regression Trees, 1984.

[16] Gunduz, G. Fokoue, E., 2013.

[17] D. Webb, Efficient piecewise linear classifiers and applications, A PhD
Thesis, Federation University, Science Technology and Engineering Fac-
ulty,2010.

[18] Pnar Tfekci, Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods, In-

ternational Journal of Electrical Power and Energy Systems, 60(2014),126-
140.

[19] M. Kantardzic, Data Mining: Concepts, Models, Methods and Algorithms.

John Wiley & Sons, Inc., NY, 2002.

[20] S. Moro, P. Cortez and P. Rita. A Data Driven Approach to Predict the Suc-
cess of Bank Telemarketing. Decision Support Systems, Elsevier, 62(2014)
22-31.

BIBLIOGRAPHY 144

[21] R. C. B.Madeo, C. A. M.Lima , S. M.Feres . Gesture Unit Segmenta-
tion using Support Vector Machines: Segmenting Gestures from Rest Po-
sitions,Proceedings of the 28th Annual ACM Symposium on Applied Com-

puting (SAC), 2013,46-52.

[22] A.Vergara,S.Vembu,T.Ayhan,L. Homer, Chemical gas sensor drift compen-
sation using classifier ensembles, Sensors and Actuators Chemical,2012.

[23] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[24] M. Bain, Learning optimal chess strategies,Institute for New Generation

Computer Technology, Tokyo, Japan,1994.

[25] A. Asuncion and D. Newman, UCI machine learning repository, 2007.

[26] K. Fernandes, P. Vinagre and P. Cortez, A Proactive Intelligent Decision Sup-
port System for Predicting the Popularity of Online News,Proceedings of the

17th EPIA - Portuguese Conference on Artificial Intelligence,2015.

[27] G. Reinelt, TSP-LIB-A Traveling Salesman Library, ORSA J. Comput.
3(1991), 319-350.

[28] R. Kimball. The data warehouse toolkit: practical techniques for building
dimensional data warehouses, John Wiley & Sons, Inc., NY,USA, 1996.

[29] P. W. Frey and D. J. Slate,Letter Recognition Using Holland-style Adaptive
Classifiers, Machine Learning, 6(1991).

[30] J. Einbinder, K. Scully, R. Pates, J. Schubart and R. Reynolds, Case study:
a data warehouse for an academic medical center, J. Health Inf. Manag.,

15(2001),165-175.

[31] G. Batista and M. Monard, An analysis of four missing data treatment meth-
ods for supervised learning, Applied Artificial Intelligence, 17(2003),519-
533.

[32] S. Zhang, C. Zhang and Q. Yang, Data preparation for data mining. Applied

Artificial Intelligence, 17(2002),375-381.

BIBLIOGRAPHY 145

[33] M. Duarte and Y. H. Hu, Vehicle classification in distributed sensor net-
works,Journal of Parallel and Distributed Computing, 64(2004),826-838.

[34] H. Liu and H. Motoda, Instance Selection and Construction for Data Mining.

Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[35] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins, A Constant
Time Collaborative Filtering Algorithm: Information Retrieval, 4(2001),
133-151.

[36] I. Witten and E. Frank, Data Mining: Practical machine learning tools and

techniques, Morgan Kaufmann, San Francisco, 2nd edition edition, 2005.

[37] L. Shalabi, Z.Shaaban, and B. Kasasbeh, Data mining: A preprocessing en-
gine. Journal of Computer Science, 2(2006),735-739.

[38] T. Zhang and R. Ramakrishnan, BIRCH: An Efficient Data Clustering
Databases Method for Very Large Databases. ACM SIGMOD Record,

1(1996),103-114.

[39] D.E. Goldberg and K. Deb, A comparison of selection schemes used in
genetic algorithms, Foundations of Genetic Algorithms, edited by G. J. E.
Rawlins,1991,69-93.

[40] M. Gen and R. Cheng, Genetic algorithms & engineering design. Wiley, New
York, 1997.

[41] B. Basturk and D. Karaboga, An Artificial Bee Colony (ABC) Algorithm for
Numeric function Optimization, IEEE Swarm Intelligence Symposium, 2006,
12 - 14.

[42] H.D. Meng, Y.C. Song, F.Y. Song and S.L.Wang, Clustering for Complex and
Massive Data, 2009 International Conference on Information Engineering

and Computer Science, 2009, 1–4.

[43] S. Kantabutra and A. Couch, Parallel K-means clustering algorithm on
NOWs. NECTEC Technical journal, 1(2000),243-247.

[44] S. Nittel, K. Leung, and A. Braverman, Scaling clustering algorithms for
massive data sets using data streams. In Proceedings of the 19th International

Conference on Data Engineering, March, 2003,5-8.

BIBLIOGRAPHY 146

[45] F. Farnstrom, J. Lewis, and C. Elkan, Scalability for Clustering Algorithms
Revisited. ACM SIGKDD Explorations Newsletter, 2(2000),51–57.

[46] N. Alex, A. Hasenfuss and B. Hammer, Patch clustering for massive data
sets. Neurocomputing, 72(2009), 1455-1469.

[47] J. Nievergelt and H. Hinterberger, The grid file: An adaptable, symmetric
multikey file structure. ACM Transactions on, 9(1984), 38-71.

[48] H. Nagesh, S. Goil and A. Choudhary, Adaptive Grids for Clustering Massive
Data Sets. In Proceedings of the 1st SIAM ICDM, Chicago, IL, 477(2001),
1–17.

[49] E. Schikuta, Grid-Clustering: An Efficient Hierarchical Clustering Method
for Very Large Data Sets, Proceedings of the 13th International Conference

on Pattern Recognition, 2(1996),101–105.

[50] E. Schikuta and M. Erhart. BANG-clustering: A novel grid-clustering algo-
rithm for huge data sets. Advances in Pattern Recognition, 1998,867-874.

[51] E. Wmma, A new shifting grid clustering algorithm, Pattern Recognition,

37(2004),503-514.

[52] K. Woo, GETIT: a fast and intelligent subspace clustering algorithm using
dimension voting, Information and Software Technology, 46(2004),255-271.

[53] L. Parsons and E. Haque, Subspace clustering for high dimensional data: a
review. ACM SIGKDD Explorations Newsletter, 6(2004),90–105.

[54] Chih-Chung Chang and Chih-Jen Lin,IJCNN 2001 challenge: Generalization
ability and text decoding. In Proceedings of IJCNN. IEEE, 2001.

[55] H. Nagesh, S. Goil and A. Choudhary, A scalable parallel subspace clustering
algorithm for massive data sets. Proceedings 2000 International Conference

on Parallel Processing,,2000, 477–484.

[56] S. Goil, H. Nagesh and A. Choudhary, MAFIA: Efficient and scalable sub-
space clustering for very large data sets. In ICDE (International Conference

on Data Engineering), Germany, 2001.

BIBLIOGRAPHY 147

[57] Tewodors Deneke, Analysis and Transcoding Time Prediction of Online
Videos Multimedia (ISM), IEEE International Symposium,2015,14-16.

[58] C.H. Cheng, A.W. Fu and Y. Zhang. Entropy-based subspace clustering for
mining numerical data. Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining, 1999, 84-93.

[59] B. Kaluza, V. Mirchevska, E. Dovgan, M. Lustrek, M. Gams, An Agent-
based Approach to Care in Independent Living, International Joint Confer-
ence on Ambient Intelligence (AmI-10), Malaga, Spain, 1999.

[60] C. Aggarwal, J. Wolf, P. Yu, C. Procopiuc and J. Park, Fast algorithms for
projected clustering. ACM SIGMOD Record, 28(1999),61-72.

[61] J. Kennedy and R.C. Eberhart, Particle swarm optimization. Proc. IEEE int’l

conf. on neural networks,1(1995), 1942-1948.

[62] R.C. Eberhart and Y. Shi, Comparison between genetic algorithms and parti-
cle swarm optimization. Evolutionary programming vii: proc. 7th ann. conf.

on evolutionary conf., Springer-Verlag, Berlin, San Diego, CA., 1998.

[63] Daqing Chen, Sai Liang Sain, and Kun Guo, Data mining for the online
retail industry: A case study of RFM model-based customer segmentation
using data mining, Journal of Database Marketing and Customer Strategy

Management,19 (2012), 197-208.

[64] S.Jeffrey, A collection of data sets used in the book ”Analyzing Categorical
Data,” New York, 2003.

[65] Q. Bai, Particle swarm optimization algorithm, Computer and Information

System, 2010.

[66] Rajen B. Bhatt, Gaurav Sharma, Abhinav Dhall, Santanu Chaudhury, Ef-
ficient skin region segmentation using low complexity fuzzy decision tree
model, IEEE-INDICON, 2009,16-18.

[67] M. Vahdat, A. Ghio, L. Oneto, D. Anguita, M. Funk, M. Rauterberg, Ad-
vances in learning analytics and educational data mining, in: European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning (2015).

BIBLIOGRAPHY 148

[68] M. Dorigo, and L.M. Gambardella, Ant colonies for the traveling salesman
problem. BioSystems, 43(1997), 73-81.

[69] Guo.Chenjuan, Yu Ma, Bin Yang and S. Jensen, Evaluating models of vehic-
ular environmental impact, SIGSPATIAL/GIS 2012, 269-278.

[70] M. Dorigo and Ch. Blum, Ant Colony optimization theory: A survey, Science

Direct, 344(2005), 243-278.

[71] Zar Chi Su and May Aye Khan, Solving Travel Salesman Problem using
improved ant colony optimization algorithm, International Journal of Infor-

mation and Education Technology, 5, 2011.

[72] X-S. Yang and S. Deb, Cuckoo search via Levy flights. In: Proceedings of

World Congress on Nature & Biologically Inspired Computing.IEEE Publi-

cations,2009, 210-214.

[73] R.B. Payne, M.D. Sorenson and K. Klitz, The Cuckoos. Oxford University
Press, New York, 2005.

[74] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul
Lamere, The Million Song Dataset, In Proceedings of the 12th International

Society for Music Information Retrieval Conference (ISMIR), 2011.

[75] K.S.Al-Sultan, A tabu search approach to the clustering problem, Pattern

Recognition,1995, 28(9), 1443-1451.

[76] K.S.Al-Sultan, M.M.Khan, Computational experience on four algorithms for
the hard clustering problem, Pattern Recognition Letters,1996, 17, 295–308.

[77] A.M.Bagirov, Modified global k-means algorithm for sum-of-squares clus-
tering problems, Pattern Recognition,2008, 41(10), 3192–3199.

[78] A.M.Bagirov, A.M.Rubinov,J. Yearwood, A global optimisation approach to
classification, Optimization and Engineering,2002, 3(2), 129–155.

[79] A.M.Bagirov, A.M.Rubinov,N.V. Soukhoroukova,J. Yearwood, Supervised
and unsupervised data classification via nonsmooth and global optimization,
TOP: Spanish Operations Research Journal,2003, 11(1), 1–93

BIBLIOGRAPHY 149

[80] A.M.Bagirov, and J.Ugon,An algorithm for minimizing clustering functions,
Optimization, 2005,54(4-5),351-368.

[81] A.M.Bagirov, J.Ugon, D.Webb, Fast modified global k-means algorithm for
sum-of-squares clustering problems,Pattern Recognition,2011, 44, 866–876.

[82] A.M. Bagirov,J. Yearwood, A new nonsmooth optimization algorithm for
minimum sum-of-squares clustering problems,European Journal of Opera-

tional Research, 170(2006), 578–596.

[83] C.Blake,E. Keogh,C.J. Merz, UCI Repository of machine learning databases:
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: Univer-
sity of California, Department of Information and Computer Science, 1998.

[84] A.Rizzi, M.Vichi,H.H. Bock, Clustering and Neuralnetworks: Advances in
Data Science and Classification,Springer-Verlag,,1998,265–277.

[85] D.E.Brown,C.E. Entail, A practical application of simulated annealing to the
clustering problem, Pattern Recognition,,1992, 25, 401–412.

[86] V.F. Demyanov, A.M. Bagirov, A.M. Rubinov, A method of truncated cod-
ifferential with application to some problems of cluster analysis, Journal of

Global Optimization,2002, 23(1), 63–80.

[87] G.Diehr, Evaluation of a branch and bound algorithm for clustering, SIAM J.

Scientific and Statistical Computing,1985, 6, 268–284.

[88] P.Hansen,B. Jaumard, Cluster analysis and mathematical programming,
Mathematical Programming,1997, 79(1-3), 191–215.

[89] P.Hansen,N. Mladenovic, J-means: a new heuristic for minimum sum-of-
squares clustering, Pattern Recognition,2001 4, 405–413.

[90] P.Hansen,N. Mladenovic, Variable neighborhood decomposition search,
Journal of Heuristic,2001, 7, 335–350.

[91] W.L.G.Koontz,P.M. Narendra,K, Fukunaga, A branch and bound clustering
algorithm, IEEE Transactions on Computers,1975, 24, 908–915.

[92] J,Z.C.Lai,T.J. Huang, Fast global k-means clustering using cluster member-
ship and inequality, Pattern Recognition,2010, 43(3), 731–737.

BIBLIOGRAPHY 150

[93] A.Likas,M. Vlassis,J. Verbeek, The global k-means clustering algorithm,
Pattern Recognition,2003, 36, 451–461.

[94] O.du.Merle,P. Hansen,B. Jaumard,N. Mladenovic, An interior point method
for minimum sum-of-squares clustering, SIAM J. on Scientific Comput-

ing,2001, 21, 1485–1505.

[95] S.Z.Selim,K,S. Al-Sultan, A simulated annealing algorithm for the cluster-
ing, Pattern Recognition,1992, 24(10), 1003–1008.

[96] H.D.Sherali and J.Desai, A global optimization RLT-based approach for solv-
ing the hard clustering problem, Journal of Global Optimization,2005, 32,
281–306.

[97] H.Spath, Cluster Analysis Algorithms, Ellis Horwood Limited, Chichester

,1980.

[98] L.X.Sun,Y.L. Xie,X.H. Song,J.B. Wang,R.Q. Yu, Cluster analysis by simu-
lated annealing, Computers and Chemistry,1994, 18, 103–108.

[99] Meng Piao Tan, James R. Broach, Christodoulos A. Floudas, A novel cluster-
ing approach and prediction of optimal number of clusters: global optimum
search with enhanced positioning, Journal of Global Optimization,2007,
39(3), 323–346.

[100] A.E.Xavier, The hyperbolic smoothing clustering method, Pattern Recogni-

tion,,2010, 43(3), 731–737.

[101] A.E.Xavier and V.L.Xavier, Solving the minimum sum-of-squares clustering
problem by hyperbolic smoothing and partition into boundary and gravita-
tional regions, Pattern Recognition,,2011, 44(1), 70–77.

[102] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, Advances in knowledge
discovery and data mining,in: American Association for Artificial Intelli-
gence,1996, 1-34.

[103] Petar Ristoski, Heiko Paulheim,Semantic Web in data mining and knowl-
edge discovery: A comprehensive survey,Science, Services and Agents on

the World Wide Web, 36 (2016), 1-22.

BIBLIOGRAPHY 151

[104] B. Ordin and A.M.Bagirov, A heuristic algorithm for solving the minimum-
sum of squares clustering problems, J. Global Optim, 61(2015), 341–361.

[105] A.M.Bagirov, B.Ordin, G.Ozturk, A.E.Xavier, An incremental clustering al-
gorithm based on hyperbolic smoothing, Comput. Optim. Appl, 61(2015),
219–241.

[106] L.T.H.An, H.V.Ngai and P.D.Tao, Exact penalty and error bounds in DC pro-
gramming, J.Global Optim,2012, 52(3), 509–535.

[107] P.D.Tao and L.T.H.An, Convex analysis approach to DC
programming:theory,algorithms and applications, Act a
Math.Vietnam,1997,22(1),289–355.

[108] P.H.Wolfe,Finding the nearest point in a
polytope,Math.Progr,1976,11(2),128–149.

[109] A. Agresti, Categorical Data Analysis, Wiley, NY, 1990.

[110] J.Z.C. Lai, T.-J. Huang, Fast global k-means clustering using cluster mem-
bership and inequality, Pattern Recognition,2010, 43(3), 731–737.

[111] E.Hansen, B.K.Ngai,N. Cheung, Analysis of global k-means, an incremen-
tal heuristic for minimum sum-of-squares clustering, Journal of Classica-

tion,2005, 22(2), 287–310.

[112] R. Cattral, F. Oppacher, D. Deugo, Evolutionary Data Mining with Auto-
matic Rule Generalization, Recent Advances in Computers, Computing and

Communications, 2002,296-300.

[113] http://www.r-project.org.

[114] S. Lloyd, Least squares quantization in pcm, IEEE Transactions on Informa-

tion Theory,1982, 28(2),129–137.

[115] E.W. Forgy, Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications. Biometrics,1965,21, 768–769.

[116] J.B. MacQueen, Some methods for classification and analysis of multivariate
observations. In: L.M.L. Cam, J. Neyman (eds.) Proc. of the fifth Berkeley

Symposium on Mathematical Statistics and Probability, 1(1967),281297.

BIBLIOGRAPHY 152

[117] J.A. Hartigan and M.A.Wong, Algorithm as 136: A k-means clustering al-
gorithm. Journal of the Royal Statistical Society. Series C (Applied Statis-

tics),1979, 28(1), 100–108.

[118] D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful seed-
ing. In: Bansal, N. and Pruhs, K. and Stein, C. (ed.) SODA 07 Proceed-

ings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

2007,1027–1035.

[119] D. Pelleg and A. Moore, X-means: Extending k-means with efficient esti-
mation of the number of clusters. In: Langley, P. (ed.) ICML00 Proceedings
of the Seventeenth International Conference on Machine Learning, Morgan

Kaufmann Publishers Inc, 2000,727–734.

[120] A.M. Bagirov and E. Mohebi, Nonsmooth optimization based clustering al-
gorithms,

[121] Md A. Rahman and Md Z. Islam, A hybrid clustering technique combining a
novel genetic algorithm with k-means, Knowledge-Based Systems,2014, 71,
345–365.

[122] A.M. Bagirov, S. Taheri and J. Ugon, Nonsmooth DC programming ap-
proach to the minimum sum-of-squares clustering problems, Pattern Recog-

nition,,2016, 53, 12–24.

