
 
Static code analysis of data-driven 

applications through common lingua 
and the Semantic Web technologies 

By Oana-Elena Ureche 

BSc Computer Science, MSc Computer Science  

 

 

 

 

 

 

 

 

 

This thesis is submitted in total fulfillment of the requirements 

for the degree of Doctor of Philosophy at the  

Federation University Australia 

PO Box 663 

University Drive, Mount Helen 

Ballarat, Victoria 3353, 

Australia 

 

 

May 2014 

  



ii 
 

Table of Contents 
List of Figures ...................................................................................................................................... v 

List of Listings .................................................................................................................................... vii 

List of Tables ...................................................................................................................................... ix 

ABSTRACT ........................................................................................................................................... x 

ACKNOWLEDGEMENT ........................................................................................................................ xi 

1. INTRODUCTION ........................................................................................................................... 1 

1.1. Motivations ......................................................................................................................... 3 

1.1.1. Web Applications’ Attacks and Trends ....................................................................... 3 

1.1.2. An Independent Framework for Information-flow Control ........................................ 6 

1.1.3. White-box Testing versus Black-box Testing .............................................................. 7 

1.2. Overview of Web Application Vulnerabilities and Ad-hoc Solutions ................................. 8 

1.2.1. Input Validation Vulnerabilities .................................................................................. 9 

1.2.2. Information Leakage ................................................................................................. 18 

1.3. Problem Statement ........................................................................................................... 19 

1.3.1. Research Questions .................................................................................................. 20 

1.4. Summary of Thesis Contributions ..................................................................................... 20 

1.4.1. Uniform Static Code Analysis .................................................................................... 21 

1.4.2. Fine-grained Approach ............................................................................................. 22 

1.4.3. Detection of Web Application Vulnerabilities through Novel Semantic Web 

Reasoning .................................................................................................................................. 23 

1.5. Thesis Organization ........................................................................................................... 24 

2. RELATED WORK......................................................................................................................... 25 

2.1. Ad-hoc Mechanisms to Enforce Security .......................................................................... 25 

2.1.1. Security Enforced in the Database ............................................................................ 26 

2.1.2. Context-based Solutions ........................................................................................... 26 

2.2. Information-flow Control Using Static Code Analysis ....................................................... 27 

2.2.1. Taint Mode ................................................................................................................ 27 

2.2.2. Language-based Information-flow Control............................................................... 29 

2.2.3. Java Bytecode Analysis ............................................................................................. 35 

2.3. Semantic Web Concepts and Practices ............................................................................ 37 

2.3.1. Vocabularies ............................................................................................................. 38 



iii 
 

2.3.2. RDF Data Model ........................................................................................................ 40 

2.3.3. Reasoning with Jena Rules ........................................................................................ 42 

2.3.4. Representation of Source Code Triples .................................................................... 44 

2.3.5. Enforcing Security and Privacy Using Semantic Web Reasoning .............................. 45 

3. SOURCE CODE FACTS EXTRACTION FRAMEWORK ................................................................... 47 

3.1. Framework Overview ........................................................................................................ 47 

3.2. Independent Fine-grained Representation ...................................................................... 49 

3.2.1. Abstract and Concrete Syntax Trees ......................................................................... 49 

3.2.2. Language Grammar................................................................................................... 51 

3.2.3. Lexers and Parsers .................................................................................................... 52 

3.3. Semantic Data ................................................................................................................... 54 

3.3.1. Representation of an AST Using XML ....................................................................... 54 

3.3.2. Tree Traversal Algorithm .......................................................................................... 55 

3.3.3. XML Query to Obtain RDF ......................................................................................... 56 

3.3.4. XQuery Algorithm ..................................................................................................... 57 

3.4. Summary ........................................................................................................................... 62 

4. DETECTION OF WEB APPLICATION VULNERABILITIES USING SEMANTIC WEB REASONING .... 64 

4.1. Detecting Web Application Security Vulnerabilities Using Code Patterns ....................... 64 

4.1.1. Entry Point Identification .......................................................................................... 66 

4.1.2. Tracing Information Flow .......................................................................................... 68 

4.1.3. Vulnerability Detection ............................................................................................. 70 

4.2. Methodology Overview .................................................................................................... 71 

4.2.1. Forward and Backward Chaining .............................................................................. 75 

4.2.2. Rule Creation ............................................................................................................ 77 

4.2.3. Inference ................................................................................................................... 83 

4.2.4. Interpreting the Deduction Model ........................................................................... 85 

4.3. Sub-graph Generalization ................................................................................................. 87 

5. EXPERIMENTAL RESULTS .......................................................................................................... 91 

5.1. Training Data ..................................................................................................................... 91 

5.1.1. False Positives ........................................................................................................... 94 

5.2. Static Analysis Results ....................................................................................................... 95 

5.2.1. Summary of Discovered Vulnerabilities .................................................................... 96 



iv 
 

5.2.2. Impact of Using Wildcards and Sub-graph Generalization ..................................... 101 

5.2.3. Pattern-based Limitation ........................................................................................ 104 

5.2.4. Analysis Times ......................................................................................................... 105 

6. LIMITATIONS IMPACT ............................................................................................................. 108 

6.1. Unoptimized RETE Network ............................................................................................ 108 

6.2. Language Grammars Requirement for Proper Language Syntax ................................... 110 

6.3. Pattern-Based Modelling and Static Code Analysis ........................................................ 112 

7. CONCLUSIONS AND FUTURE WORK ....................................................................................... 114 

7.1. Future work .................................................................................................................... 116 

BIBLIOGRAPHY ................................................................................................................................ 117 

APPENDIX ........................................................................................................................................ 125 

PHP Grammar for ANTLR (Kuruvila, 2011) .................................................................................. 125 

 

  



v 
 

List of Figures 
Figure 1 Causes of cyber-attacks. Risk sources are depicted using white boxes (Liu & Cheng, 2009)

 ............................................................................................................................................................ 3 

Figure 2 NIST yearly statistics of the number of vulnerabilities caused by insufficient input 

validation ............................................................................................................................................ 4 

Figure 3 Number of information-flow control vulnerabilities in relation to other vulnerabilities for 

the year 2013 ...................................................................................................................................... 5 

Figure 4 Proportion of Web vulnerabilities caused by improper implementation of control flow 

methods in 2013 ................................................................................................................................. 6 

Figure 5 Vulnerabilities by vulnerability class (Finifter & Wagner, 2011) .......................................... 8 

Figure 6 Source code assignment expressed in RDF......................................................................... 22 

Figure 7 Example of an RDF graph .................................................................................................... 40 

Figure 8 Source code facts extraction framework; allows for static code analysis .......................... 48 

Figure 9 Abstract Syntax Tree for 8 – 4 + 1 ....................................................................................... 50 

Figure 10 Generated AST for Java code return a + 2; ............................................................ 51 

Figure 11 Stream of tokens from a lexer to a parser for the line of code a = 1; //assign ... 52 

Figure 12 Generated AST for the 1 + 2 token stream ................................................................... 53 

Figure 13 Representation of an AST using XML ................................................................................ 55 

Figure 14 XML data structure and proposed conversion to RDF (Melnik, 1999) ............................. 58 

Figure 15 Representation of XML data using RDF graph .................................................................. 59 

Figure 16 Notation 3 RDF document and corresponding RDF/XML representation ........................ 60 

Figure 17 Web application vulnerabilities detection methodology using code patterns and 

Semantic Web technologies ............................................................................................................. 72 

Figure 18 Rule creation flow diagram ............................................................................................... 79 

Figure 19 instrread = new InputStreamReader(sock.getInputStream()); 

modelled using an RDF graph ........................................................................................................... 88 

Figure 20 fIn = new File(root + data); modelled using an RDF graph ....................... 88 

Figure 21 RDF graph modelling the Jena rule pattern for matching instrread = new 

InputStreamReader(sock.getInputStream()); and fIn = new File(root + 

data); ............................................................................................................................................ 89 

Figure 22 RDF graph for SQL injection dangerous operation code pattern ..................................... 95 

Figure 23 Accuracy of proposed method ....................................................................................... 101 

file:///C:/Stuff/PhD/Thesis/Thesis.docx%23_Toc409270876


vi 
 

Figure 24 res.getWriter().println("<br>bad() - Parameter name has 

value" + data); modelled using an RDF graph .................................................................... 102 

Figure 25 Jena rule modelling the code pattern res.getWriter().println("<br>bad() 

- Parameter name has value" + data); .................................................................. 102 

Figure 26 

response.getWriter().print(MessageFormat.format(MANAGER_HOST_ROW_B

UTTON_SECTION, args)); modelled using an RDF graph ................................................... 103 

Figure 27 Analysis time in seconds for the number of files in a Web application.......................... 106 

  



vii 
 

List of Listings 

Listing 1 A JFlow password file (Myers, 1999) .................................................................................. 30 

Listing 2 "Simplified PHP code for defining the HotCRP password policy class and annotating the 

password data. This policy only allows a password to be disclosed to the user’s own email address 

or to the program chair." (Yip, Wang, Zeldovich, & Kaashoek, 2009) .............................................. 33 

Listing 3 Web script example of Li’s proposed language (Li, 2005) .................................................. 34 

Listing 4 Representation of RDF statements using RDF/XML ........................................................... 41 

Listing 5 Representation of RDF statements using N3 ..................................................................... 41 

Listing 6 Definition of Jena rules ....................................................................................................... 42 

Listing 7 Inference with generic rule reasoner ................................................................................. 43 

Listing 8 Raw data and rule defining what it means to be an uncle ................................................. 43 

Listing 9 Tree traversal algorithm ..................................................................................................... 56 

Listing 10 XQuery function to convert XML representation of source code to RDF format ............ 61 

Listing 11 Examples of Java patterns of code for input triggering security vulnerabilities in a Web 

application ........................................................................................................................................ 68 

Listing 12 Vulnerable code caused by assignment of unsafe data read from an untrusted source 69 

Listing 13 Examples of potential flaws from the NIST website ......................................................... 71 

Listing 14 Code pattern rule format ................................................................................................. 78 

Listing 15 Java code that reads input from socket ........................................................................... 79 

Listing 16 Code pattern: sock = new Socket("host.example.org", 39544); in 

RDF/XML ........................................................................................................................................... 81 

Listing 17 Jena rule for the sock = new Socket("host.example.org", 39544); 

code pattern ..................................................................................................................................... 82 

Listing 18 Creating a generic rule reasoner using the Jena framework............................................ 83 

Listing 19 Jena rule for the instrread = new 

InputStreamReader(sock.getInputStream()); code assignment ............................ 84 

Listing 20 Console output example for the tracing information flow phase .................................... 86 

Listing 21 Console output example for the vulnerability detection phase....................................... 86 

Listing 22 Code patterns for tracing information flow ..................................................................... 87 

Listing 23 Jena rules patterns for tracing information flow ............................................................. 87 

Listing 24 Jena rule to enable sub-graph generalization .................................................................. 89 

Listing 25 Jena rule for a SQL injection dangerous operation pattern ............................................. 94 



viii 
 

Listing 26 Application output illustrating false positives .................................................................. 95 

Listing 27 OpenEMR vulnerable code snippet .................................................................................. 97 

Listing 28 Dangerous operation that might enable an XSS vulnerability ....................................... 102 

Listing 29 Jena rule enables sub-graph generalization ................................................................... 103 

Listing 30 Dangerous operation found in real-world application ................................................... 103 

Listing 31 Revision code for path disclosure in phpMyAdmin ........................................................ 104 

Listing 32 Generated Jena rule ....................................................................................................... 109 

Listing 33 Optimized Jena rule ........................................................................................................ 109 

Listing 34 Exception when parsing code without proper syntax .................................................... 110 

Listing 35 Code pattern with proper Java syntax ........................................................................... 110 

Listing 36 RDF/XML representation with statements for proper Java syntax ................................ 111 

 

  



ix 
 

List of Tables 

Table 1 Most popular websites and their server-side languages ..................................................... 36 

Table 2 Training data for static code analysis ................................................................................... 93 

Table 3 Classification of vulnerabilities found .................................................................................. 97 

Table 4 Analysis duration of methodology ..................................................................................... 105 

 

  



x 
 

ABSTRACT 
 

Web applications have become increasingly popular due to their potential for businesses’ 

high revenue gain through global reach. Along with these opportunities, also come 

challenges in terms of Web application security. The increased rise in the number of data-

driven applications has also seen an increased rise in their systematic attacks. Cyber-

attacks exploit Web application vulnerabilities. Attack trends show a major increase in 

Web application vulnerabilities caused by improper implementation of information-flow 

control methods and they account for more than 50% of all Web application vulnerabilities 

found in the year 2013. 

Static code analysis using methods of information-flow control is a widely acknowledged 

technique to secure Web applications. Whilst this technique has been found to be both very 

effective and efficient in finding Web application vulnerabilities, specific tools are highly 

dependent on the programming language. This thesis leverages Semantic Web 

technologies in order to offer a common language through source code represented using 

the Resource Description Framework format, whereby reasoning can be applied to securely 

test Web applications. 

In this thesis, we present a framework that extracts source code facts from various 

programming languages at a variable-level of granularity using Abstract Syntax Trees 

(ASTs) generated using language grammars and the ANTLR parser generator. The 

methodology for detecting Web application vulnerabilities implements three phases: entry 

points identification, tracing information-flow and vulnerability detection using the Jena 

framework inference mechanism and rules describing patterns of source code. 

The approach discussed in this thesis is found to be effective and practical in finding Web 

application vulnerabilities with the limitation that it can only detect patterns that are used 

as training data or very similar patterns. False positives are caused by limitations of the 

language grammar, but they do not affect the accuracy of the security vulnerability 

detection method in identifying the correct Web application vulnerability. 

 



xi 
 

ACKNOWLEDGEMENT 

The author takes this opportunity to gratefully acknowledge the assistance and 

contributions of the few people who had faith in this undertaking. 

 

Deserving special mention are my supervisors, Dr. Robert Layton, Assoc. Prof. Peter 

Vamplew and Dr. Paul Watters, for their guidance, patience and advice during the course 

of my thesis. Their experience was proven invaluable to me and this thesis would have not 

existed without them. 

 

And to my family, which provided continuous moral support from a distant continent 

during the whole duration of my course and especially during those times when I was 

doubtful of my strength to finish. 

 

And to Ahmad Azab, for having fascinating history discussions during work breaks. You 

have enlightened me with the knowledge of a culture that is incredibly fascinating. 

 

And to my dearest friends, Gary Holdsworth, Boyd Williams, Ike Anyiam, Michele 

Catasta, Dr. Gabi Ditu and many more. Their company has made my time outside the 

office as equally as good as the time behind the desk. Their worries and doubts built 

strength in me and helped me achieve great things. For that, I am grateful. Their sense of 

humor is one I have never seen before. So, thank you. 

 

And last, but not least, to all the researchers at ICSL who provided a friendly and 

welcoming working atmosphere. I honestly, sincerely and from the bottom of my heart, do 

not think I could have finished this work any place else. 

 

The work presented in this document was supported (in part) by the Federation University, 

the Australian Federal Police, IBM, Westpac and the Victorian Government. 

  





1 
 

1. INTRODUCTION 

The security of Web applications is an important issue recognized at an academic level 

through continuous research of new solutions to protect the confidentiality of sensitive data 

in Web applications (Yip, Wang, Zeldovich, & Kaashoek, 2009; Baca, Carlsson, Petersen, 

& Lundberg, 2013; Roy, Porter, Bond, Mckinley, & Witchel, 2009). At industry level, a 

recent report conducted by Ponemon Institute (Ponemon, 2013) entitled “The Post Breach 

Boom” shows that data breaches cause substantial losses, with 45 percent of losses 

exceeding 500,000 dollars. According to the “2012 Data Breach Investigative Report” by 

Verizon, most attacks are caused by hacking and malware (WhiteHat Security, 2013). The 

majority of attacks targeted the least protected areas: Web applications. 

In practice, developers of Web applications that contain sensitive/hidden data will surround 

the implementation code with security features to protect the sensitive data. Unfortunately, 

it is impossible to guarantee that a piece of complex software does not contain some flaws 

(Ritchey & Ammann, 2000). Developers make mistakes, which results in implementation 

bugs that can be exploited in order to gain access to unauthorized information. 

Static code analysis is a common method successfully applied by industries to improve 

software security by detecting code susceptible to malicious attacks (Baca, Carlsson, 

Petersen, & Lundberg, 2013). Static code analysis is a technique that examines an 

application’s source code to assess its security risk (Louridas, 2006). A primary design 

technique of static analysis is control flow testing at the program’s unit level, where source 

code is reviewed in order to find any patterns discordant with the non-interference 

(Hammer, Krinke, & Nodes, 2006) security policy. The non-interference security policy 

ensures the robustness of a system by guaranteeing that the application does not leak 

confidential information to unauthorized users of the system.  

Existing academic solutions that apply static code analysis to control the flow of 

confidential information have a common limitation: their proposal for new scripting 

languages (Zdancewic, 2004). This clear shortcoming makes proposed solutions infeasible 

to be applied to existing systems, and consequently to traditional programming languages 



2 
 

(i.e. Java, PHP). Yet, surprisingly, there are not many efforts made to develop a method 

that can be uniformly applied to secure test data-driven applications independently of their 

underlying code (Ureche, Layton, & Watters, 2012).  We propose employing Semantic 

Web technologies to transform source code written in various traditional programming 

languages to a common format, so that reasoning using inference engines can be applied to 

assuring code security.  

The Semantic Web is the grand vision of machines understanding the meaning of 

information and rests on the theory that this can be achieved by accommodating semantics 

of Web data (Gruber, 2008). While critics speculated the Semantic Web vision to be 

infeasible (Richardson, Agrawal, & Domingos, 2003), advocates validated the original 

concept with applications in industry, biology and human science (Feigenbaum, Herman, 

Hongsermeier, Neumann, & Stephens, 2007). Typically, data from various sources is 

represented as triples in the Resource Description Framework (RDF) format with the 

purpose of being uniformly queried by machines in order to solve a specific problem or 

answer a specific question (Arenas & Perez, 2011). In this thesis, we turn to static code 

analysis using RDF. 

Although the literature proposes a few RDF converters for source code, these services are 

not suitable for our needs. For example, Keivanloo et al. (2011) proposed the SeCOLD 

framework with the primary focus on providing a Uniform Resource Locator (URL) 

generation schema for sharing source code facts. Ganapathy and Sagayaraj (2011) 

extracted metadata from source code (i.e. author, method name and description) with the 

intention of providing easy reuse of existing code. Both services consider only the Java 

programming language.  

In light of this, it is imperative to both recognize and acknowledge that a method that 

represents traditional programming languages within a common lingua can possibly 

provide the most effective means to uniformly query for vulnerabilities in data-driven 

applications, thus offering a language independent approach towards securing Web 

systems.  



3 
 

1.1. Motivations 

Web applications have become increasingly popular due to their potential for businesses’ 

high revenue gain. Using Web applications, businesses can potentially reach anyone with 

an internet connection at any time, in order to sell their products. Online shopping is a 

cheaper alternative due to the low costs of running an online store. Along with these 

opportunities for both sellers and buyers, also come challenges in terms of Web application 

security. The increased rise in the number of data-driven applications has also seen an 

increased rise in their systematic attacks. These attacks target software bugs, design flaws 

and configuration defects, depicted in Figure 1 and account for major losses of revenue and 

user mistrust in online companies (Liu & Cheng, 2009).  

 

Software
bugs

Configuration
defects

Design
flaws

Vulnerabilities Exploits Breaches

Social
engineering

 

Figure 1 Causes of cyber-attacks. Risk sources are depicted using white boxes (Liu & Cheng, 2009) 

Section 1.1.1 will present the trends in Web application vulnerabilities and cyber-attacks, 

and thus the motivation for our work. 

1.1.1. Web Applications’ Attacks and Trends  

Web applications constitute a major target for computer “hackers”. High profile 

organisations and companies, such as: NASA (Bloomberg, 2008), Sony (The Sydney 

Morning Herald, 2011) and Citigroup Inc. (Business Spectator Pty Ltd., 2011), have 

suffered cyber-attacks that lead to these hackers gaining access to unauthorized data and 

other information (such as bank account and credit card details, contact information, email 

addresses) that could lead to identity theft (Stabek, Watters, & Layton, 2010). According to 

security company McAfee, the last five years have seen the biggest series of cyber-attacks 

in history, including the infiltration of 72 international organisations as well as the United 

Nations (Guardian News and Media Limited, 2011). To further motivate the need for 



4 
 

securing data in Web applications through information-flow control, we will present 

publicly available statistics conducted by several government and not-for-profit 

organizations focused on improving the security of software.  

The National Institute of Standards and Technology (NIST) is a government organization 

that has gathered Web vulnerability data for many years. NIST generates statistical data 

through a National Vulnerability Database
1
 (NVD), a U.S. government repository of 

standards based vulnerability management data. Figure 2 shows generated data for the 

number of vulnerabilities caused by insufficient input validation from year 2004 to 2013.  

 

Figure 2 NIST yearly statistics of the number of vulnerabilities caused by insufficient input validation 

As Figure 2 depicts, the last six years have seen a major increase in Web vulnerabilities 

caused by insufficient input validation, with the highest number of vulnerabilities 

corresponding to the year 2013. We can attribute this high number to the increased 

popularity of Web applications. We can thus speculate that unless remedial action is taken, 

this number is only going to rise in future years. Input validation vulnerabilities are caused 

by an application improperly validating or missing validation of user data and thereby 

                                                           
1
 http://web.nvd.nist.gov/view/vuln/statistics 

14 24 
51 

231 

386 

313 303 

384 373 

480 

0

100

200

300

400

500

600

 2004  2005  2006  2007  2008  2009  2010  2011  2012  2013

N
u

m
b

er
 o

f 
vu

ln
er

ab
ili

ti
es

 
 



5 
 

affecting the control flow or data flow of a program (Scholte, Robertson, Balzarotti, & 

Kirda, 2012).  

We used data generated from the National Vulnerability Database (NVD) to calculate the 

number of vulnerabilities caused by improper information-flow control in relation to other 

vulnerabilities (e.g. configuration, authentication issues, and credential management). As 

depicted in Figure 3 the vulnerabilities caused by improper implementation of information-

flow control methods account for more than 50% of all Web vulnerabilities found in the 

year 2013. 

 

Figure 3 Number of information-flow control vulnerabilities in relation to other vulnerabilities for the 
year 2013 

We classified vulnerabilities belonging to the information-flow control category as the 

ones caused by improper input validation or disclosure of information, such as cross-site 

scripting, SQL injection and information leakage. These vulnerabilities and others are 

described in Sections 1.2.1 and 1.2.2. Figure 4 depicts their proportion in relation to the 

total of number of vulnerabilities that are due to information-flow control issues in the year 

2013. As we can see, the cross-site scripting (XSS) vulnerability is the most prevalent 

issue, followed by information disclosure with the SQL injection coming on the third 

56% 

1% 

4% 

4% 3% 

5% 

23% 

4% 

Information control
vulnerabilities

Configuration

Authentication Issues

Credential Management

Race conditions

Cryptographic Issues

Access control and permissions

Other



6 
 

place. In fact, according to an application vulnerability trends report conducted by Cenzic 

in 2013 (Cenzic, 2013), XSS has been leading the list in terms of frequency of occurrence 

since 2011, significantly rising each year. 

 

Figure 4 Proportion of Web vulnerabilities caused by improper implementation of control flow methods 
in 2013 

In this section, we have shown the importance of a method that controls the flow of 

information in data-driven applications. The next section will further highlight the 

importance of our work, identifying the gap in literature and therefore, the need for a 

uniform static code analysis of programs which are potentially vulnerable to cyber-attacks. 

1.1.2. An Independent Framework for Information-flow Control 

Section 1.1.1 presented the real-world (financial) motivation for our work. A technical 

motivation is driven from a shortcoming of existing static code analysis solutions 

identified as a challenge in (Zdancewic, 2004). 

Zdancewic identified a major limitation of existing systems that control the flow of 

information. These systems have focused their attention on giving better, more precise 

definitions of non-interference policies, which is not the real challenge in building secure, 

sound systems. The more significant challenge is to get the static code analysis application 

12% 

43% 

10% 

18% 

7% 

8% 

2% 

SQL Injection

Cross-site scripting

Code injection

Information Disclosure

Path Traversal

Cross-site request forgery

OS Command Injection



7 
 

interoperable with existing systems. Existing applications that either employ ad-hoc 

mechanisms (e.g. Perl’s taint mode (Perl, 2014)), or implement special type systems (Li, 

2005), have limited applicability (languages that satisfy specific conditions (Hammer, 

2010) or they apply to a single programming language (Graf, Hecker, & Mohr, 2013)). 

These applications are reviewed in more detail in Chapter 2. 

A static code analysis application that can interoperate with existing systems, and thus 

provide a language independent solution has been emphasized as important, in terms of 

practicality, in (Graf, Hecker, & Mohr, 2013; Rakić & Budimac, 2011 and Hammer, 2010) 

to name a few. Benefits, such as precision, scalability and practicality of using a language 

independent approach have been demonstrated in (Hammer, 2010). In this paper, the 

authors used program dependence graphs for information-flow control, but their 

application is only limited to languages that compile to Java bytecode.  

1.1.3. White-box Testing versus Black-box Testing 

Two common methods are used for detecting security vulnerabilities: white-box testing 

(Beizer, 1990) and black-box testing (Beizer, 1995). Static code analysis is usually 

performed as part of white-box testing (OWASP, 2013). 

Whilst white-box testing methods have been proven to be effective in detecting more 

security vulnerabilities than black-box testing methods, testing should be complementary 

in order to ensure the security of a Web application (Finifter & Wagner, 2011). Static code 

analysis complements dynamic analysis by examining the flow of information for all 

execution paths and variables and not just the ones exercised at runtime (Masri, Podgurski, 

& Leon, 2004). This feature of static analysis is particularly useful in assuring a program’s 

security because most security attacks exercise an application in unforeseen and untested 

ways (Intel, 2012). 

Although it falls out of the scope of this thesis to compare the two methods of testing a 

Web application, research (Finifter & Wagner, 2011) shows that some types of security 

vulnerabilities were not detected using a black-box method. White-box testing has been 

proven to detect authentication/authorization bypass Web application vulnerabilities, 

compared to black-box testing which was not able to detect these types of security 



8 
 

vulnerabilities. Moreover, black-box testing detected few Stored XSS vulnerabilities, 

compared to white-box testing. Figure 5 illustrates the types of vulnerabilities detected 

using white-box and black-box methods. White-box testing is represented using the term 

Manual. 

 

Figure 5 Vulnerabilities by vulnerability class (Finifter & Wagner, 2011) 

In light of this, this thesis proposed methodology implements a static code analysis 

approach to detect Web application security vulnerabilities. 

1.2. Overview of Web Application Vulnerabilities and Ad-hoc 

Solutions 

As shown in Section 1.1.1, according to the study conducted by Cenzic (2013), most issues 

in Web application security are caused by improper input/output validation. The 

vulnerabilities resulting from these issues are also known as information-flow control 

vulnerabilities and this thesis focuses on them.  



9 
 

The Open Web Application Security Project (OWASP) published a study that further 

confirms the numbers from the Cenzic statistics. Every three years, OWASP releases its 

top 10 Web vulnerabilities ranking list. The top place in both 2010 and 2013 is held by 

vulnerabilities caused by improper input validation (OWASP, 2013). It should be 

mentioned that efforts to prevent the attacks caused by this type of vulnerabilities have 

been successfully applied in the industry by Perl’s (Perl, 2014) and Ruby’s (Thomas, 

Fowler, & Hunt, 2004) taint mode with very good outcomes (Hurst, 2004). Unfortunately, 

both mechanisms are dependent on the respective scripting language. More details are 

given in Section 2.2.1. 

In order to define our problem statement we chose to classify the security vulnerabilities 

caused by improper input/output validation in two main categories: Input Validation 

Vulnerabilities and Information Leakage.  

1.2.1. Input Validation Vulnerabilities 

Typically, user input capable of compromising a Web application’s security is received 

through HTML forms. If the user input is not properly sanitized, serious security problems 

can occur (Scholte, Robertson, Balzarotti, & Kirda, 2012). Mostly, attackers of Web 

applications that exploit input validation errors use cleverly crafted user input in HTML 

form fields in order to obtain confidential information or engage in a DoS (denial-of-

service) attack. 

Sanitization of user input is dependent on the context in which the user data is used and 

thus, difficult to be implemented correctly and relevantly. For example, while a PHP 

filter_input function is generally suitable for sanitizing input, it would not be 

recommended for a SQL injection attack (SQLIA). In this situation, user input sanitization 

should be implemented using the mysql_real_escape_string() or prepare statements and 

parameter binding, as filter_input cannot guarantee that it will prevent all SQL injection 

attacks in any situation (OWASP, 2014).   

Unfortunately, when the proper sanitization is not in place, vulnerabilities must be 

identified and fixed. Next, we illustrate vulnerabilities caused by improper input 

sanitization and their context dependent solution. We aim to show that different 



10 
 

sanitization solutions apply to different contexts and evidently, to different programming 

languages, making it very easy for developers to make mistakes and leave room for 

vulnerabilities.  

Cross-site scripting. As discussed in Section 1.1.1, XSS (cross-site scripting) has been 

leading the list in terms of frequency of occurrence since 2011, significantly rising each 

year. This type of attack is typically found in Web applications and it enables attackers to 

inject client-side scripts into webpages. A cross-site scripting vulnerability is present 

where a Web application uses input data to generate a webpage’s content to be displayed 

back to the user, without validating or sanitizing the input. Common data-driven 

applications vulnerable to cross-site scripting attacks are online message boards, where 

users can submit HTML formatted messages that will persistently appear on the board’s 

webpage.  

Cross-site scripting is mostly used for transmitting private data, like cookies and session 

information, with the malicious intent of using it to impersonate other users and access 

sensitive information. Typically, a malicious user will post a message to a board containing 

a <script>, e.g. <script>savetofile(document.cookie);</script>. 

For any user that visits the page where the script was injected, assuming that there is no 

prevention of a cross-site scripting attack, their cookie information is saved to the file that 

the attacker specified, which could be used to log in as the specific user. 

There are alternative ways to the <script> tags in which XSS attacks can be conducted. 

Other HTML tags can have the same effect. For example, <body 

onload=alert(‘document.cookie’)>. XSS attacks work because they bypass 

access controls, such as the same-origin policy. The same-origin policy prevents scripts 

from accessing content from a location other than the origin of the script. Because a cross-

site injected script is running from website X, according to the same-origin policy, it can 

read website X’s cookie information. Access to cookie information is legitimate as the 

request came from a trusted source, e.g. the same website that was granted permission to 

the system’s resources. 



11 
 

For example, the following PHP code is vulnerable to an XSS attack because the age 

parameter is read from an untrusted source (i.e. input from user) and echoed back to the 

user through the generated website page. 

<?php 

$age = $_REQUEST ['age']; 

?> 

<html> 

<body>Your age is <?php echo $age; ?></body> 

</html> 

An attacker can exploit this vulnerability and instead of legitimate data, she could submit 

JavaScript through the age parameter, such as the following: 

http://xss.vulnerable.website.com/vuln.php?age= 
%3Cscript%3Ealert(%22Hello%22)%3B%3C%2Fscript%3E 

The text “Hello” is echoed back to the browser, which demonstrates that the website is 

vulnerable to an XSS attack. There are numerous ways to prevent an XSS attack and they 

range from basic HTML escaping of five characters significant in XML ($, <, >, “, 

’) to employing libraries specially designed for sanitizing HTML input. For example, the 

following PHP code uses the HTMLPurifier
2
 library to sanitize HTML: 

require_once '/path/to/HTMLPurifier.auto.php'; 

 

$conf = HTMLPurifier_Config::createDefault(); 

$purifier = new HTMLPurifier($conf); 

$clean_html = $purifier->purify($vuln_html); 

For Java, OWASP provides a similar library
3
 to sanitize HTML: 

import org.owasp.html.Sanitizers; 

import org.owasp.html.PolicyFactory; 

PolicyFactory sanitizer =   

              Sanitizers.FORMATTING.and(Sanitizers.BLOCKS); 

String clean_html = sanitizer.sanitize(vuln_html); 

Such dedicated libraries to sanitize HTML are straightforward to use, but their policy must 

be updated, as valid tags could be stripped off, especially most of the modern HTML5 and 

CSS3 tags and attributes. If manual HTML escaping is necessary, then the disadvantage is 

                                                           
2
 http://htmlpurifier.org/ 

3
 https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project 



12 
 

that developers can mistakenly overlook some tags and thus still leave opportunities for 

attacks to occur.  

Therefore, when considering the prevention of cross-site scripting attacks, developers must 

be aware of the context in which they can occur, whether this is a different programming 

language or newer markup languages. 

Format string attacks. Printf(user_input) is a common statement in C programs. When 

user input is used, it is imperative that the printf  format function uses format string 

parameters, such as, printf(“%s”, user_input). If not, the user input can be treated as a 

format string and when an attacker exploits this vulnerability, he can submit 

“%s%s%s%s%s%s%s%s%s%s” as input, resulting in the command 

printf(“%s%s%s%s%s%s%s%s%s%s”) being executed. This can result in crashing the 

program as for every %s the program will retrieve data from the stack to use it as a 

memory address fetching whatever is located in the memory at that address. If the content 

fetched from the stack is not a legitimate address for which corresponding memory data 

exists, the program will crash.  

In this case, the vulnerability can be found in C programs and to circumvent it, developers 

must validate the user input by using format string parameters. 

SQL injection. A SQLIA is a type of injection attack, where SQL queries are injected via 

the input data from the Web client to the data-driven application. These types of attacks 

can have a wide range of consequences:  

 Confidentiality: access to sensitive data from the database (e.g. customers credit 

card number) 

 Authentication: exploit poor authentication logic and log in as a different user  

 Authorization: change authorization privileges if available in the database  

 Integrity: changes to the database data via SQL commands (Insert/Update/Delete) 

To illustrate how a SQLIA works, we will assume that a Web application retrieves data 

about a person using the following SQL command in PHP. We used the reserved variable 



13 
 

$_POST to show that input data is retrieved from the client via a POST request and thus 

is not safe: 

 SELECT age, email, marital_status, position  

FROM members  

WHERE full_name = ‘$_POST[full_name]’; 

 

Next, we assume a malicious user is trying to compromise the integrity of the members 

database by deleting it entirely. Because there is no sanitization in place, it is sufficient that 

the attacker submits John Doe’; DROP TABLE members; -- in place of the full 

name POST variable. This constructs the following SQL command, which in fact executes 

two SQL queries. 

  SELECT age, email, marital_status, position  

      FROM members WHERE full_name = ‘John Doe’;  

      DROP TABLE members; --’; 

 
The first one retrieves data about the person named John Doe and the second one deletes 

the members database entirely. The pair of hyphens is used to mark the beginning of a 

comment in SQL and thus everything encountered after this mark is ignored. 

This example shows how little effort is required to compromise the integrity of a database 

when proper input validation is not implemented. 

In order to handle such situations, developers must look at the context in which they occur. 

For example, if an email address is read via a POST request, one way to sanitize input is to 

make sure it only contains these characters: 

 

abcdefghijklmnopqrstuvwxyz 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

0123456789 

@.-_+ 

Unfortunately, this method does not apply in all situations (e.g. when an input field is used 

for a description of a user profile where semicolons, quotes and other characters can be 

present). 

The recommended way (OWASP, 2008) in which user data should be handled is through 

prepared statements. Using prepared statements or parameterized queries enables the 



14 
 

database to distinguish between code and data.  In the example given above the database 

engine will in fact try to match John Doe’; DROP TABLE members; -- against 

records corresponding to full name data, thus not constructing new SQL queries. In PHP, 

this can be achieved using the following syntax: 

$full_name = $_POST[full_name]; 

$stmt = $mysqli->prepare ("SELECT age, email,      

        marital_status, position FROM members  

        WHERE full_name = ?") 

$stmt->bind_param(1, $full_name); 

$stmt->execute(); 

Java has a different syntax: 

String full_name = request.getParameter("full_name");   

String query = "SELECT age, email, marital_status, position   

               FROM members WHERE full_name = ?"; 

PreparedStatement ps = connection.prepareStatement(query ); 

ps.setString( 1, full_name); 

ResultSet results = ps.executeQuery( ); 

 

Fortunately, many programming languages support parameterized queries, but when 

performance becomes an issue (MSDN, 2013), stored procedures can be used instead (Ke, 

Muthuprasanna, & Kothari, 2006). The difference between parameterized queries and 

stored procedures is that the database defines and stores the SQL code for a stored 

procedure, thus making the programming code less portable and reusable.  

As shown, SQL injection attacks can be prevented in numerous ways, but the approach 

used is chosen based on the context of the vulnerability. Sometimes, performance can be 

an important issue and thus, while prepared statements are the preferred way of 

implementing security, they can also cause problems and thus, alternative defenses should 

be considered. Moreover, every programming language uses a different syntax, creating an 

opportunity for developers to make mistakes.  

Command injection. The essence of command injection attacks has been captured in (Su, 

2006).  The authors attributed the susceptibility of Web applications to this large class of 

attacks to two causes: improper handling of user input and a semantic gap. The semantic 

gap is explained by the difference in the way in which databases and Web applications 

interpret query strings. Whilst databases view them as well-defined, meaningful 



15 
 

commands, Web applications typically interpret query strings as an unorganized sequence 

of characters.  

Although security can be enforced in the database and it is recommended by Oracle 

(2014), enforcing security in the database can fail to make an application’s security 

implementation modular or reusable and thus, less portable, since the same application 

using a different database will need a reimplementation of the security policy. Therefore, a 

scalable security application needs to detect if user input is improperly handled. 

Although SQLIA are part of the command injections class of attacks, there are other means 

in which these attacks can be executed, such as through command line arguments. For 

example, the following C code reads a filename via the command line and displays its 

contents to the user: 

int main(char* argc, char** argv) { 

 char cmd[CMD_MAX] = "/usr/bin/cat "; 

 strcat(cmd, argv[1]); 

 system(cmd); 

} 

 

This program will work as expected when a legitimate file name is used. However, if an 

attacker uses the input “;rm –rf /” instead, the system call will not execute the cat 

command due the insufficient number of arguments and if run with root privileges it will 

continue by recursively deleting all the contents of nearly every writable mounted 

filesystem on the computer. Eventually, the computer will crash due to missing a crucial 

file or directory.  

A solution to this problem is to sanitize command line user input. Note that in this case 

stored procedures and parameterized queries do not apply, thus the developer is faced with 

an entirely different context than shown in previous sections.  

HTTP response splitting. HTTP response splitting is a Web application vulnerability that 

results from the failure to properly sanitize user input read in an HTTP request and 

subsequently used to generate an HTTP response. An HTTP response splitting 

vulnerability allows an attacker to break the HTTP response into two or more responses, 

which will both be handled by the server. HTTP responses are separated by a carriage 



16 
 

return (CR, ASCII 0x0D) and a line feed (LF, ASCII 0x0A), therefore this exploit is 

possible if the application allows input containing these characters. 

For example, the following Java code is vulnerable to the HTTP response splitting attack, 

assuming that the fullName variable’s content is read from an untrusted source: 

String name = request.getParameter(fullName); 

Cookie cookie = new Cookie("name", name); 

cookie.setMaxAge(cookieExpiration); 

response.addCookie(cookie); 
 

If the Web application reads as input ‘John Doe’ and saves it as the content of the 

fullName variable, then the subsequent HTTP response will have the following content: 

HTTP/1.1 200 OK 

Content-Length: length 

… 

Set-Cookie: name=John Doe 

… 

Instead of valid input, a malicious attacker can use the following value for the fullName 

variable, resulting in a second HTTP response completely controlled by the attacker. 

‘John Doe 

 

HTTP/1.1 200 OK 

Content-Type: text/html 

Content-Length: 32 

<html>Malicious code here</html>’ 

In order to prevent an HTTP response splitting vulnerability, a developer can choose a 

white-listing approach, where the input can be checked to only allow permissible 

characters. In the example above, the application should allow only characters ranging 

from Aa to Zz. Alternatively, if the input can contain any characters, developers can 

remove all carriage returns that are followed by line feeds. In addition, there are libraries 

that validate untrusted input, such as Validator4 in Java. However, for optimal results, 

the chosen solution must be based on the context in which an HTTP response splitting 

vulnerability could exist. 

                                                           
4
 http://docs.oracle.com/javase/7/docs/api/javax/xml/validation/Validator.html 



17 
 

E-mail injection. E-mail injection, or e-mail header injection, is an attack usually 

performed to send spam emails. By knowing the MIME (Multipurpose Internet Mail 

Extensions) encoding, an attacker is able to inject extra headers, for example a ‘Bcc’ 

(Blind Carbon Copy) field to add recipients for whom their email addresses will be hidden. 

Some spammers do not find it necessary that the recipients email addresses be hidden and 

use a ‘Cc’ (Carbon Copy) field instead. A general description of the PHP mail function is 

as follows: 

<?php mail($recipient, $subject, $message, $headers); ?> 

A legitimate way to call this function could have the following form: 

<?php mail(“recipient@provider.com”, “Hello”, “Hi,\n9am 

meeting tomorrow.\nJohn.”, “From: sender@provider2.com”); ?> 

We will assume that the data used in the $headers is read from a user of the application 

and thus, not trusted. If the PHP email function headers are not properly sanitized, an 

attacker can inject new fields, causing the application to send emails to other recipients. 

According to RFC 822
5
 fields are separated by a line feed (LF, ASCII 0x0A). Therefore, if 

an attacker calls the PHP mail function with the following parameters: 

<?php mail(“recipient@provider.com”, “Hello”, “Hi,\n9am 

meeting tomorrow.\nJohn.”, “From: 

sender@provider2.com%0ACc:recipient@provider3.com%0ABcc:vict

im1@provider4.com,victim2@provider5.com”); ?> 

the corresponding email data will be: 

To: recipient@provider.com 

Subject: Hello 

From: sender@provider2.com 

Cc:recipient@provider3.com 

Bcc:victim1@provider4.com,victim2@provider5.com 

  

Hi, 

9am meeting tomorrow. 

John. 

The attacker has therefore, injected the email headers successfully using the ‘Cc’ and ‘Bcc’ 

fields, allowing him to send spam emails to his victims. 

                                                           
5
 http://www.ietf.org/rfc/rfc822.txt 



18 
 

A solution to this problem is to check the user data for line feeds using regular expressions 

in PHP code: eregi("(\r)”, $from) or (value.indexOf("\n") != -1) in 

Java and declining to send emails that contain line feed characters in the headers under 

inspection. There are also third party classes that protect against this type of attack, such as 

PHP’s PEAR Mail6. The chosen solution should be based on the context and possible 

performance considerations. 

1.2.2. Information Leakage 

Section 1.2.1 focuses on poorly validated user input. However, many of the encountered 

concerns also apply to non-validated or poorly validated output passed from the Web 

application to its users.  

A common Web application vulnerability caused by improperly validating output data is 

information leaks. An information leak commonly occurs when too much information is 

revealed through exception message printings, as in the following Java example: 

try { 

       /.../ 

} catch (Exception e) { 

       System.out.println(e); 

} 

Printed debug information, stack traces or path information may be exposed to end users. 

Many times this leaked information can be helpful to attackers because it reveals 

implementation details and can be used to exploit vulnerabilities. 

One solution to verify that sensitive information is not leaked to users is an automated 

approach (Morisset & Oliveira, 2007) that uses vulnerability scanning tools to generate 

error messages. Security experts can then verify the error messages and ensure that no 

sensitive information is disclosed to users of the application. 

Manual approaches can be successfully used as well and are based on static code analysis 

tools that search for patterns in code that leak information or cause improper error handling 

(Walker, 2010). Therefore, testing for security violations due to non-validated output fits 

well into our source code facts extraction framework described in Chapter 3 and the same 

                                                           
6
 http://pear.php.net/package/Mail/ 



19 
 

concepts of inspecting input validation vulnerabilities are also applicable to information 

leaks.  

1.3. Problem Statement 

The motivation for our research was given in Section 1.1. Web vulnerabilities clearly pose 

serious security problems resulting in substantial consequences. Therefore, we have 

identified two motivations: financial and technical, driven from a shortcoming of existing 

static code analysis solutions. Specifically, businesses benefit financially from using Web 

applications due to their anytime availability and the low cost of running an online store. 

However, Web applications are an easy target for systematic attacks due to software bugs, 

design flaws and configuration defects whilst accounting for major losses of revenue and 

user mistrust. 

Furthermore, Section 1.2 presents an overview of the types of Web vulnerabilities targeted 

by our research and their current ad-hoc solutions. It shows that different vulnerabilities 

have different solutions and that the same vulnerability can have different solutions for 

different contexts, thus making it very hard for a Web application to be security proof.  

We have thus identified two problems:  

1. undesirable effects that Web vulnerabilities can cause when properly exploited by 

attackers 

2. difficulties faced by programmers to write Web applications with no security flaws 

According to the study conducted by Cenzic (2013), presented in Section 1.1.1, most 

issues in Web application security are caused by improper input/output validation. The 

vulnerabilities resulting from these issues are also known as information-flow control 

vulnerabilities and this thesis is focused on them. The introduction chapter shows that 

static code analysis is a common method successfully applied by industries to improve 

software security by detecting code susceptible to malicious attacks. 

In light of this, research towards powerful static code analysis tools for detecting Web 

vulnerabilities caused by improper flow control represents an important step for improving 

the security of Web applications and the consequent societal benefits. 



20 
 

1.3.1. Research Questions 

This research will address the limitations of applicability to existing Web application 

systems of previous approaches (described in Section 2.2) and determine if Semantic Web 

technologies can provide a language independent method using a pattern-based static code 

analysis approach. This research aims to answer the following question: 

Can Semantic Web technologies applied to information-flow control provide a language 

independent method, using a pattern-based static code analysis approach, to address the 

limitation of previous works in terms of applicability to existing Web application systems? 

Most previous approaches propose a new scripting language for developing Web 

application systems, so the programmers are faced with the problem of learning a new 

language to develop a Web application and rewriting existing applications in the proposed 

language. 

Firstly, the proposed method aims to be applicable to existing Web application systems 

written in different traditional scripting languages (PHP, Java, Python) while at the same 

time using a pattern-based static code analysis approach. Secondly, the proposed method 

automates a significant proportion of the work involved to model code, by not requiring 

the developers to rewrite the applications using a proposed scripting language. A summary 

of this thesis’ contributions is given below. 

1.4. Summary of Thesis Contributions  

In research on security testing data-driven applications using static checks, we aim to 

implement a solution that it is independent of the input programming language. Zdancewic 

identified this shortcoming as a challenge in (Zdancewic, 2004). Therefore, this thesis 

makes three main contributions in the area of static code analysis: 

 It presents a new algorithm that converts source code into a common format 

providing for uniform static code analysis  

 It develops a method that represents source code facts with the finest granularity, 

suitable for implementing information-flow control checking 



21 
 

 It presents a rule-based semantic reasoner that detects Web vulnerabilities in data-

driven applications 

1.4.1. Uniform Static Code Analysis  

A common limitation of previous approaches that perform static code analysis to detect 

Web vulnerabilities in data-driven Web systems are their dependence on the programming 

language of the system under examination (Zdancewic, 2004). We propose an algorithm 

that converts source code written in different programming languages to a common format 

to allow for uniform static code analysis. Most tools that offer a standardized source code 

representation are limited to one programming language and their output dataset is coarse-

grained and thus not suitable for our application scope. A recently proposed framework 

that converts source code to an independent form (Rakić, Budimac, & Savic, 2013) uses 

enriched Concrete Syntax Trees (eCST) (Rakić & Budimac, 2011) to uniformly represent 

source code, but the format is a recently proposed, non-standardized description of 

computer programs. 

A few Semantic Web frameworks used to extract source code facts are described in 

Section 2.3.4, but they only provide a coarse granularity representation that does not allow 

the implementation of information-flow control methods and they apply to only one 

programming language. As no other Semantic Web frameworks solutions exist for source 

code representation (Keivanloo, Forbes, Rilling, & Charland, 2011), then no previous tools 

are effective in solving our problem. We are therefore compelled to develop a new model, 

in order to provide the necessary fine granularity for our application scope. A discussion 

on what consists coarse versus fine granularity is given in Section 3.2. 

The proposed framework described in Chapter 3 uses an intermediary form obtained using 

Abstract Syntax Trees by employing Another Tool for Language Recognition (ANTLR), a 

well-established parser generator (Parr & Fisher, 2011).  The result is source code in the 

Semantic Web’s Resource Description Format (RDF) (W3C, 2004) format that allows a 

novel rule-based reasoning implementation that detects Web vulnerabilities independently 

of the input language used. Reasoning using rules to detect Web application vulnerabilities 

is described in Chapter 4. 



22 
 

1.4.2. Fine-grained Approach 

In order to explain our second contribution, an example of an insecure implicit 

information-flow follows.  

a = 1; //public variable  

if (b == True) { //private variable  

        a = 2;  

}  

We assume in this example that a is a public variable and b is a private variable. The 

assignment a = 2 gives out publicly the value of b. Specifically, if a changes its value to 

2 or does not change its value; an attacker can infer that the private variable is True, or 

False, respectively. Using static analysis, the a variable needs to be tracked across the 

source code in order to determine if it leaks any private information. A line representation 

of source code, such as the following, would not be sufficient in this case.  

<http://domain.com/project/line/129>  

<http://domain.com/project/hasContent> "a = 2;".  

A suitable representation of source code needs to evaluate any assignments in the code. 

Thus, a fine-grained representation, at variable and assignment level, would provide 

sufficient details to implement methods of information-flow control. For example, the line 

a = 2; represented in RDF using our proposed algorithm results in the following graph: 

_A:1

rdf:value

:IDENT

rdf:v
alue

EXPR

rdf:value
:DECIMAL_LITERAL

_A:2 _A:3

:ASSIGN

_A:4

=

a

rdf:value

2

 

Figure 6 Source code assignment expressed in RDF 

Using semantics through an RDF graph, we managed to express the assignment in a way 

that can be understood by machines and reasoned upon; the assignment is expressed by the 

:ASSIGN predicate; the assigned value is a decimal according to the 



23 
 

:DECIMAL_LITERAL predicate and its value equals 2. Therefore, our second 

contribution is to offer a method that represents source code facts with the finest 

granularity, suitable for implementing information-flow control. Section 3.2 describes the 

concepts and techniques used for achieving a fine-grained, independent representation of 

source code.  Chapter 3 describes the source code facts extraction framework. 

1.4.3. Detection of Web Application Vulnerabilities through Novel Semantic Web 

Reasoning 

We propose a novel approach to static code analysis that employs Semantic Web 

technologies to convert source code to a common format where reasoning can be applied to 

detect Web application vulnerabilities using rules that describe patterns of code vulnerable 

to security exploits. To the best of our knowledge, a Semantic Web approach to static code 

analysis has not been proposed in the current literature. The methodology that applies 

Semantic Web technologies  to the detection of security vulnerabilities in Web applications 

is described in Chapter 4. 

The reason behind the choice of Semantic Web technologies is threefold. First, policy 

enforcement in the context of security and privacy, leveraging Semantic Web technologies, 

has been previously tested and applied in academia (e.g. Ashri, Payne, Marvin, Surridge, & 

Taylor, 2004; Kagal, Finin, & Joshi, 2003; Rao & Sadeh, 2005; to name just a few). 

Although these frameworks do not apply to software, they do provide a proof of concept 

that security can be enforced with the application of Semantic Web technologies. Second, 

using Semantic Web, computer programs can be published in a language specifically 

designed for data (RDF) and inference capabilities suffice for an implementation of a tool 

that reasons upon data to detect flaws in source code. Third, the Semantic Web offers a 

new dimension to the analysis of code through its inference capability. Therefore, we 

believe that a semantically enhanced static code analysis will allow for applications where 

machines can inference new patterns of vulnerabilities based on rules modelling patterns of 

code. Some examples that prove this concept are given in Sections 4.3 and 5.2.2. 



24 
 

1.5. Thesis Organization 

The rest of this thesis is structured as follows. Chapter 2 presents the literature review from 

two different perspectives. First, it describes the various methods for checking the security 

of Web applications. Second, it discusses Semantic Web frameworks applied in the context 

of security, as well as efforts to convert source code to RDF, together with their 

shortcomings in terms of applicability to our problem statement. Chapter 3 describes the 

source code facts extraction framework and the algorithms used for its implementation. 

Chapter 4 presents the method for detecting Web application vulnerabilities using 

Semantic Web technologies and its implementation. Experiments and results are given in 

Chapter 5. Chapter 6 will discuss limitations of the Web vulnerabilities detection 

methodology and of the techniques employed, as well as their impact on the results. 

Finally, Chapter 7 will conclude the thesis, and will propose future work.     



25 
 

2. RELATED WORK 

Standard security mechanisms, such as access control, do not prevent private information 

from leaking through computations, since they only control information release, not its 

propagation. For example, access control mechanisms can be used to restrict the execution 

of operations on a file only to the administrator of the system, but have no control over 

what the administrator will do with the information read from the file. Oracle recommends 

where possible, security to be enforced in the database using stored procedures, but this 

implementation is neither modular nor portable. Details of these limitations are given in 

Section 2.1.  

In order to detect flaws in Web applications, a promising solution is statically checking 

information flows within systems that manipulate sensitive data. Both the industry and 

academia offer a variety of static checks implementations, but they either propose new 

scripting languages or are designed to operate only on one specific programming language. 

A discussion of these approaches is given in Section 2.2. The solution proposed in this 

thesis aims to use standardized representation of source code in RDF to overcome these 

limitations. 

Although the Web of Data is steadily increasing (Parundekar, Knoblock, & Ambite, 2012) 

with more than 31 billion triples reported to be stored in the Linked Data Cloud in 2011 

(Kaoudi & Manolescu, 2013), not many source code facts representation services are 

available. The few frameworks available have either limited application (e.g. they convert 

only Java source code) or their representation is high-level, where only metadata and 

descriptions of methods are made available in RDF. Section 2.3 presents these 

frameworks.  

In addition, Section 2.3.5 discusses the frameworks that enforce security policies using 

Semantic Web technologies and their limitations in terms of applicability to this thesis 

context, namely that they apply to different fields than testing data-driven applications. 

2.1. Ad-hoc Mechanisms to Enforce Security 

The traditional way of enforcing security is through ad-hoc mechanisms, such as security 

enforced in the database and context-based solutions. While Oracle recommends that when 



26 
 

possible security be enforced using stored procedures, most of the time this does not 

represent the ideal way of preventing certain attacks and thus, other approaches are 

considered. This section aims to show how difficult it is to implement security and 

therefore, how imperative it is to explore ways to detect vulnerabilities in Web 

applications.  

2.1.1. Security Enforced in the Database 

According to Oracle’s security guidelines (Oracle, 2014) there are two questions to 

consider when creating and implementing security for database applications: 

1. Do the application users have database access accounts? 

2. Is it better to enforce security in the application or the database? 

Oracle recommends that where possible, security should be enforced in the database, 

leveraging intrinsic security mechanisms, such as stored procedures and auditing; and that 

security implemented in this way cannot be bypassed. However, in order to enforce 

security mechanisms of the database, the application users must have linked database 

access accounts. 

For many commercial database applications, the application users do not have database 

access accounts. For these applications users connect to the database using a single, highly 

privileged user with database access account; the “One big application user” model 

(Oracle, 2014) is used. 

Apart from commercial applications using the “One big application user” model, enforcing 

security in the database can fail to make an application’s security implementation modular 

or reusable and thus, less portable, since the same application using a different database 

will need a reimplementation of the security policy. 

2.1.2. Context-based Solutions 

Throughout Section 1.2, various forms of attacks and their context-based solutions were 

described. Most attacks are due to insufficient sanitization of input/output data. Different 

sanitization solutions apply to different contexts and evidently, to different programming 

languages, making it very easy for developers to make mistakes and leave room for 



27 
 

vulnerabilities (SANS, 2014). When proper sanitization is not in place, vulnerabilities must 

be identified and fixed.  

For example, sanitization of user input is dependent on the context in which the user data is 

used and thus is difficult to be implemented correctly and relevantly. For example, while a 

PHP filter_input function is suitable for sanitizing input that is echoed back to the 

webpage, it would not be suitable for a SQLIA (SQL injection attack), where user input 

sanitization should be implemented using the mysql_real_escape_string() or prepared 

statements and parameter binding. 

Sanitization can also be dependent on the language used. In order to prevent a cross-site 

scripting attack, PHP offers the HTMLPurifier library, while in Java the OWASP Java 

HTML Sanitizer can be employed with similar effects.  

Sometimes, solutions must be chosen based on performance considerations. The 

recommended way to prevent SQL injection attacks is through parameterized queries. 

Unfortunately, this approach can cause performance issues and in this situation, the 

developer might choose to prevent attacks using stored procedures, or through other 

means. 

2.2. Information-flow Control Using Static Code Analysis 

Static analysis complements dynamic analysis by examining the flow of information for all 

execution paths and variables and not just the ones exercised at runtime (Masri, Podgurski, 

& Leon, 2004). This feature of static analysis is particularly useful in assuring a program’s 

security because most security attacks exercise an application in unforeseen and untested 

ways (Intel, 2012). Static analysis is applied offline to assess an application’s compliance 

with an information-flow policy. Although current static analysis systems are efficient at 

finding vulnerabilities (Baca, Carlsson, Petersen, & Lundberg, 2013), their application is 

limited to a specific programming language. This section reviews these systems and 

presents their limitations in terms of applicability. 

2.2.1. Taint Mode 

Malicious users of data-driven applications can try to exploit security weaknesses by 

cleverly crafting data entered through an HTML form. This type of exploit causes the 



28 
 

application to behave in unexpected ways, which ultimately leads to leakage of 

confidential data. 

Taint mode (Masri, Podgurski, & Leon, 2004) is a run-time check provided by several 

scripting languages, such as Perl and Ruby. A developer can activate taint mode in order to 

check the logic of CGI scripts. This mode will treat all user input data coming from outside 

the application and used in potentially unsafe operations (e.g. system calls) as tainted, 

unless a developer specifically marks the respective data as safe or applies compiled 

templates to the vulnerable code, i.e. by using prepared statements (OWASP, 2014). Taint 

mode ignores safe operations, such as print. 

SQL injection is one example of tainted data used to execute an attack on a target database. 

The example below illustrates code vulnerable to an SQL injection attack. In this case, the 

Perl programming language is used to insert data into a database. 

#!/usr/bin/perl 

my $username = $cgi->param("username"); # Get the name from 

the browser 

... 

$dbh->execute("SELECT * FROM users WHERE username = 

'$username';"); # Execute a SQL query 

 

The $username variable is read from an HTML form and used to retrieve data from a 

database. If an attacker uses the value '; DROP TABLE users;-- for the 

$username variable, then the SQL command becomes SELECT * FROM users 

WHERE username = ''; DROP TABLE users;--. The malicious user added a 

new SQL command with devastating effects: it deletes the entire users table. In order to fix 

this problem, a developer must either sanitize the $username variable or employ prepare 

and execute statements (OWASP, 2014). Because the $username variable is read from 

outside the application and used in a potentially dangerous operation, i.e. accessing a 

database, it cannot be trusted and thus, marked as tainted by the Perl’s taint mode. 

Because Perl’s taint mode is a run-time check, if a variable is marked by Perl’s taint mode 

as tainted, the program running with taint mode will fail with a similar error as the 

following: 



29 
 

Insecure dependency in open while running with -T switch at 

./program.pl line 10. 

To be able to run the program, the programmer has to specifically un-taint the variable 

marked as tainted. 

Perl is not the only language that supports taint checking. Taint mode is also a feature of 

the Ruby scripting language. Ruby uses a variable, named $SAFE, to control five security 

levels (Thomas, Fowler, & Hunt, 2004). The security level ranges from level 0, where no 

data is marked as tainted, to level 4, where modification of global data is forbidden. 

Whilst the taint checking method has been proven both effective and efficient at finding 

Web application vulnerabilities (Hurst, 2004), not all scripting languages support this 

mode. Two examples are Python and PHP. Furthermore, taint mode is language dependent, 

i.e. Perl’s taint mode cannot be applied to Python code. Therefore, taint mode does not 

provide a language independent solution for security checking data-driven applications. 

2.2.2. Language-based Information-flow Control 

This section describes various methods of implementing information-flow control 

proposed in academia and it is divided in three parts corresponding to three category types: 

language extension, language runtime and new scripting language. The first part presents 

methods that use language extensions and achieve the control of information-flow 

statically and with little run-time overhead. The second part describes RESIN, a language 

run-time that can be used to track sensitive data that are annotated with a policy object, but 

incurs a 33% CPU overhead for HotCRP
7
, a conference management system. The last part 

presents a completely new proposed scripting language that implements security. The first 

two categories of methods have the limitation that they cannot be applied to existing Web 

systems written in traditional programming languages, without modifications or added 

information regarding security policies. Adopting the last category of methods would 

necessitate rewriting all existing code in the newly proposed scripting language. 

                                                           
7
 http://read.seas.harvard.edu/~kohler/hotcrp/ 



30 
 

Language Extension 

In academia, researchers have implemented languages or extensions that support 

information flow policies. Myers (1999) and Simonet & Rocquencourt (2003) proposed 

extensions of existing programming languages, Java and Objective Caml, respectively. 

Both proposed approaches use type systems to annotate data and statically check that every 

information flow is legal concerning a security policy. 

Myers (1999) describes JFlow, a new language that extends the Java programming 

language developed to protect the confidentiality and integrity of sensitive data mostly 

using statically checked data flow assertions. JFlow’s goal is to prevent sensitive 

information from being leaked through computation and it achieves this using 

decentralized label modeling (DLM). JFlow uses static checking, allowing a detailed 

tracking of security classes without incurring run-time overhead. The author provides 

programmers with a JFlow compiler that will statically check programs written in JFlow. 

Furthermore, JFlow supports the development of secure applets and servers that handle 

sensitive data. 

class passwordFile authority(root) { 

public boolean 

check (String user, String password) 

where authority(root) { 

// Return whether password is correct 

boolean match = false; 

try { 

for (int i = 0; i < names.length; i++) { 

if (names[i] == user && 

passwords[i] == password) { 

match = true; 

break; 

} 

} 

} 

catch (NullPointerException e) {} 

catch (IndexOutOfBoundsException e) {} 

return declassify(match, {user; password}); 

} 

private String [ ] names; 

private String { root: } [ ] passwords; 

} 
 

Listing 1 A JFlow password file (Myers, 1999)  



31 
 

Although JFlow addressed some of the limitations of previous proposed approaches, (e.g. 

mutable objects, subclassing, exceptions) programmers are required to write applications 

in the JFlow language. Listing 1 shows an example of JFlow code that protects passwords 

using information flow controls. The method check accepts two arguments, a username 

and a password and returns a boolean value that indicates whether the password is a 

match for the username. Declassification is used for practicality reasons in order to relax 

policies owned by principals, as strict information-flow control is too restrictive to write 

real applications. The method check is executed with the root authority, which has the 

ability to declassify data. 

The authors write that due to checking being done statically, there is little run-time 

overhead. Although the JFlow annotations are used only in situations where security issues 

may arise, and only three annotations were required to prevent leakage of information in 

the example from Listing 1, the proposed approach cannot be applied to traditional 

scripting languages such as PHP, Python or Perl, used in the development of Web 

information systems.  

Flow Caml (Simonet & Rocquencourt, 2003) is an extension of the Objective Caml 

language that introduces a type system to trace information-flow control. Flow Caml first 

checks for information leaks using static code analysis and then translates the program 

under inspection to regular Objective Caml producing code that is safe from Web 

application attacks. Flow Caml ensures security by assigning policies to variables and 

expressions. For example, to assign a policy and a value to a variable in Flow Caml, the 

programmer can use the following expression: let x1 : !alice int = 42;; 

thus the integer x1 has level !alice. The x1 integer can legally be stored in r1: 

r1 := x1;; 

Furthermore, an integer x2 is declared with the level !bob. A rule is defined to forbid 

an information flow from !bob to !alice, and thus assigning it to r1 raises a typing 

error: 

 



32 
 

r1 := x2;; 

This expression generates the following information flow(s): 

from !bob to !alice 

which are not legal. (Simonet & Rocquencourt, 2003) 
 

Flow Caml’s default security policy does not allow information to flow from one principal 

to another, where stdout and alice are principals. However, information flow 

constraints can be redefined using the flow keyword and resulting in a security policy 

relaxation. In this case, the assertion flow !alice < !stdout;; would allow 

information to flow from the principal alice to stdout and thus, printed to standard 

output. 

A few differences exist in the way these proposed extensions implement security. 

Simonet’s Flow Caml features polymorphism and a full type inference algorithm, while 

Myers’ JFlow uses monomorphic types and must fully annotate, including their security 

level, the arguments of methods. Although both approaches are successful at checking that 

a program is obeying a security policy, they both require existing systems to be rewritten 

using the proposed languages and the added extensions, which make them infeasible to be 

applied to already developed Web systems in popular scripting languages, such as PHP, 

Python and Perl. 

Language Runtime 

Yip et al. (2009) introduced a new language runtime called RESIN that prevents security 

vulnerabilities using three concepts: policy objects, data tracking and filter objects. 

Developers of applications must specify the policy and filter objects in the application’s 

programming language. At runtime, RESIN will track sensitive data annotated with a 

policy object and will not allow this data to cross a boundary defined in a filter object. 

For example, to track passwords in programs written in the PHP programming language, 

programmers will use RESIN concepts to annotate the passwords with policy objects, 

similar to the one in Listing 2. If RESIN catches any inappropriate disclosure of passwords 

annotated with such policy, it will throw an exception. The runtime is a modified 

interpreter of the PHP language causing CPU overhead.  



33 
 

class PasswordPolicy extends Policy { 

private $email; 

function __construct($email) { 

$this->email = $email; 

} 

function export_check($context) { 

if ($context[’type’] == ’email’ && 

                $context[’email’] == $this->email) return; 

global $Me; 

if ($context[’type’] == ’http’ && 

$Me->privChair) return; 

throw new Exception(’unauthorized disclosure’); 

} 

} 

 

policy_add($password, new PasswordPolicy(’u@foo.com’)); 

Listing 2 "Simplified PHP code for defining the HotCRP password policy class and annotating the password 
data. This policy only allows a password to be disclosed to the user’s own email address or to the 

program chair." (Yip, Wang, Zeldovich, & Kaashoek, 2009) 

Although RESIN is effective at preventing a series of common attacks, it does not use 

static checks of code. RESIN is not a method employed to verify that the code is written 

with safety in mind, but a mechanism that prevents leakage of confidential data by 

applications that contain vulnerable code. Furthermore, RESIN adds extra overhead in 

terms of application processing time (i.e. it adds 33% CPU over-head when generating a 

page for a conference management software). Programmers are still faced with the 

challenge of learning new concepts, writing policy objects, data flow assertions and filter 

objects, although the specifications are expressed using existing programming languages. 

New Scripting Language 

Others propose completely new Web scripting languages to enforce confidentiality and 

integrity of data. For example, Li (2005) and Zdancewic (2005) introduced a domain-

specific Web scripting language designed for interfacing with databases. Their rationale 

behind this approach includes the implementation of DBMS stored procedures as not 

modular, nor reusable, and taint mode as only an ad-hoc mechanism. Li’s proposed Web 

scripting language is similar to PHP.  

Li’s scripting language uses strongly typed queries to the application’s underlying database 

to prevent security violations. Listing 3 shows an example of a Web script written in the 



34 
 

newly proposed scripting language. It implements two query interfaces to enable 

interaction with the database.  

<?ssp_header 

     FormInputs ("UserName" => u, "Password" => p, "QueryYear" => y); 

 

     Query GetID ( username: !tainted ) => ( 

          PASSWORD : {this=*}, 

      ID : {if (PASSWORD=*) this 0} 

      ); 

 

     Query FetchRecords( index: !untainted, year:!{Integer(*)} ) => ( 

   ORDERID : public, 

            AMOUNT : public, 

            CCNUM : {tailstr(this,4)} 

      ); 

 

      Variables ( pub_id: public!untainted ); 

 !ssp_header> 

 <html><head><title>....</title> 

 <meta http-equiv="content-type" content="text/html; charset=UTF-8"> 

 </head><body> 

 ...... 

 <?ssp 

       q1 := query GetID(u); 

       if ( empty(q1) ) { 

         print 'Unknown username'; 

       } else { 

             (pwd, id) := readrow(q1); 

             L_AUTH: if (pwd=p) 

             { 

     print 'Username = '; print u; 

                   pub_id := declassify(id, L_AUTH:(pwd=*)); 

                   print 'School ID ='; print pub_id; 

                   q2 := query FetchRecords( pub_id, Integer(y) ); 

                   while (!empty(q2)) { 

           (orderid, amount, ccnum) := readrow(q2); 

      print 'Order ID = '; print orderid; 

           print 'Amount = '; print amount; 

      print 'Credit Card = XXXX-XXXX-XXXX-'; 

      print tailstr(ccnum, 4); 

    } 

   } else { 

    print 'Wrong password'; 

   } 

  } 

 !ssp> 

Listing 3 Web script example of Li’s proposed language (Li, 2005) 

It reads the username and password as input, fetches records from the database and 

displays results. Public, tainted data coming from outside the application is marked with 

the “public ! tainted” security level and thus considered untrusted by the 



35 
 

application. Using the security level “!untainted”, Li’s scripting language can 

prevent passing tainted data to the index variable, marked using this security level (e.g. 

index: !untainted). Moreover, the argument year in the FetchRecords query, 

can only be of type integer, achieved by converting data received as a string to an 

integer. This type of enforcement can stop certain SQL injection attacks, as it does not 

allow reading strings that can be used as SQL queries. 

Although the proposed Web scripting language provides strong enforcement of 

confidentiality and integrity policies, it is a completely new scripting language. This makes 

it infeasible to be applied to existing systems written in popular programming languages. 

2.2.3. Java Bytecode Analysis 

Some research only focusses on testing the security of the Java programming language 

(Graf, Hecker, & Mohr, 2013; Hammer, 2010 and Barthe, Pichardie, & Rezk, 2007) due to 

its popularity. 

Hammer (2010) uses system dependence graphs (SDG) to represent the semantics of a 

Java program and their major contribution is the implementation of the first dependence-

graph-based information-flow control application for full Java bytecode, including taking 

into account exceptions, constructors, or unstructured control flow. The validation of the 

code is achieved through graph traversal in the style of program slicing and according to 

the non-interference security policy, assures that no secret data is leaked to unauthorized 

users of the system. Program slicing considers statements that carry information used in 

the statement that is being analyzed for security compliance. A statement’s (backward) 

slice contains all the statements that might semantically influence the statement under 

inspection. Using this method, the author reduced the annotation burden associated with 

type systems, such as those presented in Section 2.2.2. 

Based on the above work, Graf, Hecker, & Mohr (2013) developed more recent work on an 

information-flow control method for Java bytecode. Their solution is also based on SDGs, 

but with a focus on practicality. The authors state that in contrast with other theoretical 

methods, their approach is the first tool that can check for both possible and probable 

information flow leaks. Their proposed approach can deal with sequential and multi-



36 
 

threaded medium sized programs, in some cases, up to 100kLoC (lines of code). One of 

their contributions is a user interface of their IFC framework (Information-Flow Control), 

named IFC console, used to analyze information flow. 

Barthe, Pichardie, & Rezk (2007) propose an information-flow control method operating 

on Java bytecode as well. They handle the unstructured nature of bytecode programs 

caused by jumps and exceptions using three successive phases. A PA (pre-analyzer) phase 

detects branches that will never be taken. A CDR (control dependence regions) analyzer 

reduces the size of the control graph by eliminating the branches found in the PA phase. 

Lastly, an IF (information flow) analyzer verifies the correctness of the program according 

to the non-interference policy. 

Table 1 Most popular websites and their server-side languages ( Rossum, 2006; Hoff, 2008; Campbell, 
2010) 

Website Popularity (unique 

visitors) 

Server-side language 

Google.com 1,000,000,000 C, C++, Go, Java, Python, 

PHP 

Facebook.com 880,000,000 PHP, C++, Java, Python, 

FBML, Ajax, Erlang, D, Xhp 

YouTube.com 800,000,000 C, Python, Java 

Yahoo 590,000,000 PHP 

Live.com 490,000,000 ASP.NET 

MSN.com 440,000,000 ASP.NET 

Wikipedia.org 410,000,000 PHP 

Blogger 340,000,000 Python 

Bing 230,000,000 ASP.NET 

Twitter.com 160,000,000 C++, Java, Scala, Ruby on 

Rails 

The methods presented in this section have a common limitation; they only apply to Java 

bytecode. Although these approaches offer promising results, other programming 

languages need to be considered. Google released a list of the top 1000 visited websites in 

the world
8
. Part of this list is illustrated in Table 1, which includes the first 10 websites, 

their popularity and the server-side programming language used for implementation. This 

                                                           
8
 http://www.google.com/adplanner/static/top1000/ 



37 
 

table shows that although Java and PHP seem to be more popular, a substantial number of 

websites are implemented using different languages. 

Note that Java, PHP and Python are the most common used languages, but others, such as 

ASP.NET and C are also used in website development. Because industries employ many 

other programming languages than Java, approaches should consider a uniform way of 

securing code independently of the underlying code syntax. 

2.3. Semantic Web Concepts and Practices 

The Semantic Web is the grand vision of machines understanding the meaning of 

information and rests on the theory that this can be achieved by accommodating semantics 

of Web data (Gruber, 2008). While critics speculated the Semantic Web vision to be 

infeasible (Richardson, Agrawal, & Domingos, 2003), advocates validated the original 

concept with applications in industry, biology and human science (Feigenbaum, Herman, 

Hongsermeier, Neumann, & Stephens, 2007). Typically, data from various sources is 

represented as triples in the Resource Description Framework (RDF) format with the 

purpose of being uniformly queried by machines in order to solve a specific problem or 

answer a specific question (Arenas & Perez, 2011). In this paper, we apply RDF to static 

code analysis. 

Semantic Web technologies can provide a solution to the limitations of existing 

information-flow control using the static analysis methods presented in Section 2.2. Using 

Semantic Web technologies, programming code can be exported to a common format, 

where reasoning using rules and inference engines can be uniformly implemented 

independently of the input language. This research aims to implement a method that finds 

Web application vulnerabilities for any existing Web system, regardless of the chosen 

language for its development. In this approach, new languages can be supported by 

implementing a translator to the common format: the existing analysis engine can then be 

applied without modification. 

This section reviews different technologies that the Semantic Web offers starting with an 

introduction on vocabularies and the Resource Description Framework (RDF) data model, 

which the Semantic Web builds upon. A Semantic Web framework with flexible inference 



38 
 

mechanisms will be described in Section 2.3.3. This framework will be used by the 

analysis method described in Chapter 4. For the sake of clarity, Section 2.3.3 will also 

describe how reasoning with rules works. Section 2.3.4 continues with presentation of 

current methods that extract source code facts and represent them with RDF, as well as 

their limitations. Section 2.3.5 will finish with the presentation of existing frameworks that 

use Semantic Web technologies to apply security concepts. Although these frameworks 

apply in a different context than static analysis of source code, they demonstrate that 

Semantic Web reasoning and RDF can be successfully employed to implement security. 

2.3.1. Vocabularies 

Vocabularies (W3C, 2013) are used on the Semantic Web to define concepts and 

relationships of a domain of interest. Relationships are also called “terms”. If vocabularies 

are complex, containing several thousands of terms, they are usually referred to as 

ontologies. 

Vocabularies are commonly used to enable applications that use data integration for 

solving problems. An example is the use of vocabularies to describe pharmaceutical 

products and patient data. Integrating the knowledge from both vocabularies and using 

Semantic Web technologies, decision support systems can be developed that can 

automatically prescribe treatments for patients. 

In order to represent source code in the RDF format, as well as reasoning on top of the 

RDF data, we used two vocabularies: the RDF concepts vocabulary (RDF) and Flow 

Control (FC). Note that vocabularies are abbreviated using capital letters, but when used to 

represent data in the RDF format, the abbreviation uses lower case letters. The purpose of 

existing vocabularies is to offer concepts and relationships that are only useful for 

representing certain data, but that can be also reused by other applications. The RDF 

concepts vocabulary (RDF) was chosen to represent some relationships. The RDF 

vocabulary provides a couple of terms that can be used by the proposed methodology to 

create anonymous nodes (rdf:parseType Resource) and to assign values to nodes 

(rdf:value). More information about the use of these terms is given in Chapter 3. 

Although the authors of the RDF vocabulary chose the same abbreviation as the format 

itself (i.e. RDF); it should be clear from the context in which it appears, whether RDF is 



39 
 

used as a vocabulary rather than the format for representing data. Flow Control (FC) is a 

vocabulary created for the purpose of this research, in order to represent concepts such as 

fc:assign, fc:number, fc:variable, in the source code representation realm.  

The concepts and relationships for representing source code facts necessary for the 

development of this research are derived from the grammar of a programming language. 

Grammars are explained in Section 3.2.2. For example, if the source code facts extraction 

framework described in Chapter 3 extracts source code facts from a PHP program, then the 

FC vocabulary’s concepts and relationships are derived from the description of the PHP 

grammar. More details are given in Chapter 3. To the best of our knowledge, vocabularies 

that are derived from the grammars used by the proposed methodology do not exist.   

Vocabularies have namespaces that are unique on the Web. For example, the RDF 

vocabulary can be accessed at http://www.w3.org/1999/02/22-rdf-syntax-ns#. 

Unique namespaces are necessary to avoid name conflicts. For example, the term lift 

can be used as both a verb and a noun and can be a member of two vocabularies. One 

vocabulary might describe a building and use this term to represent data about an elevator. 

Another vocabulary could be a representation of a body builder’s activities and thus, lift 

could be used to describe the action of lifting weights.  

A unique URI was used for the source code facts namespace: 

http://oanaureche.com/flowcontrol. It should be noted that this unique URI 

was not necessary, as the source code facts data represented in RDF are not published on 

the Web and therefore there is no risk of name conflicts. However, for the sake of 

compliance with the Semantic Web vision and for future work that might involve 

publishing or linking data on the Web, a unique URI was created. Furthermore, the FC 

vocabulary has no contents as the concepts and relationships are created on the fly, derived 

from the description of the language grammar. Future work that involves publishing data 

should include creating a vocabulary for the source code facts representation, in order for 

source code represented in RDF to have meaning for machines crawling or reasoning on 

the Web. For the proposed methodology, this step was not necessary, as work is done 

internally.  



40 
 

2.3.2. RDF Data Model 

RDF (W3C, 2004) is a W3C recommendation and a specification for defining information 

on the Web. RDF supports the Extensible Markup Language (XML) syntax and it is used 

to make statements about Web resources represented by Universal Resource Identifiers 

(URIs).    

 

 

 

 

 

 

The underlying structure of an RDF statement is a directed graph representing triples in the 

form of subject-predicate-object. For example, the RDF graph in Figure 7 makes the 

following statements: “A document with the URI fc:ApplicationSecurity  has the 

title ‘Finding vulnerabilities through the SW’. The author of this document is a person and 

her name is ‘Oana Ureche’”. RDF can use a blank node (also called an anonymous node or 

bnode) to create a statement. A blank node represents a resource for which there is no URI 

or literal. 

The meaning of the predicates, subjects and objects is given by the vocabularies used: 

Dublin Core
9
 (DC), RDF concepts, Friend of a Friend (FOAF) and lastly, Flow Control

10
 

(FC).  

Commonly, two RDF serialization formats are used: RDF/XML
11

 and Notation 3
12

 (N3). 

Listing 4 and Listing 5 describe the RDF graph from Figure 7, using these serialization 

                                                           
9
 http://purl.org/dc/elements/1.1/ 

10
 http://xmlns.com/foaf/0.1/ 

11
 http://www.w3.org/TR/rdf-syntax-grammar/ 

12
 http://www.w3.org/2000/10/swap/Primer 

foaf:name 

dc:author 

rdf:type 

fc:ApplicationSecurity 

dc:title 

“Finding 

vulnerabilities 

through the SW” 

 

foaf:Person “Oana Ureche” 

bnode 

Figure 7 Example of an RDF graph 



41 
 

formats. N3 was proposed as an alternative to the RDF/XML serialization, due to its 

readability and the ease of writing RDF statements. 

<?xml version=”1.1”?> 

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” 

         xmlns:foaf=”http://xmlns.com/foaf/0.1/” 

         xmlns:dc=”http://purl.org/dc/elements/1.1/” 

         xmlns:fc=”http://oanaureche.com/flowcontrol/”> 

<rdf:Description rdf:about=”fc:ApplicationSecurity”> 

  <dc:title>Finding vulnerabilities through the SW</dc:title> 

     <dc:author> 

       <rdf:Description foaf:name=”Oana Ureche”> 

    <rdf:type   

          rdf:resource=”http://xmlns.com/foaf/0.1/Person/”/> 

  </rdf:Description> 

     </dc:author> 

</rdf:Description> 

</rdf:RDF> 

Listing 4 Representation of RDF statements using RDF/XML 

 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

@prefix dc: <http://purl.org/dc/elements/1.1/> . 

@prefix fc: <http://oanaureche.com/flowcontrol/> . 

 

<fc:ApplicationSecurity> dc:author _:b1; 

 dc:title “Finding vulnerabilities through the SW” . 

_:b1 a <http://xmlns.com/foaf/0.1/Person/>; 

 foaf:name “Oana Ureche” .  

Listing 5 Representation of RDF statements using N3 

As previously mentioned, a blank node represents a resource for which there is no URI or 

literal. It can serve as a parent node to a grouping of data. Such nodes can be observed in 

the graph as well as in the two different serialization formats. In the statement  

<fc:ApplicationSecurity> dc:author _:b1;  

the _:b1 node is the blank node. Notation 3 uses the _: namespace to identify blank 

nodes. There is no commitment to the chosen name b1, but it has to be consistent 

throughout the RDF serialization to identify statements that have the node :_b1 in 

common. When writing Jena rules to infer statements, the ? symbol is used to identify 

blank nodes. Rules and inference mechanisms are discussed in the next section. 



42 
 

2.3.3. Reasoning with Jena Rules 

Jena is a leading Semantic Web toolkit for Java programmers (Carroll, et al., 2004). The 

open source Jena framework provides Java libraries for flexible inference using Semantic 

Web technologies. It is important to describe this framework, as it will constitute the 

programming toolkit for the methodology implementation phase described in Chapter 4. 

Jena was chosen as it is the most widespread Semantic Web framework (Lindorfer, 2010) 

and it is sufficient for this project. While there are other frameworks, it falls out of the 

scope of this research to analyze which framework is the most productive or usable. 

The Jena machinery is designed to be used for general inference purposes and it includes a 

generic rule engine that supports user-defined rules. By Jena definition, the term inference 

represents the action of deriving additional information, while reasoner refers to the code 

function that performs the inference task.  

Rule :=   bare-rule . 

          or   [ bare-rule ] 

          or   [ ruleName : bare-rule ] 

 

bare-rule :=   term, ... term -> hterm, ... hterm    // forward rule 

          or   bhterm <- term, ... term              // backward rule 

 

hterm     :=   term 

          or   [ bare-rule ] 

 

term      :=   (node, node, node)       // triple pattern 

          or   (node, node, functor)    // extended triple pattern 

          or   builtin(node, ... node)  // invoke procedural primitive 

 

bhterm      :=   (node, node, node)     // triple pattern 

 

functor   :=   functorName(node, ... node)  // structured literal 

 

node      :=   uri-ref            // e.g. http://foo.com/eg 

          or   prefix:localname   // e.g. rdf:type 

          or   <uri-ref>          // e.g. <myscheme:myuri> 

          or   ?varname           // variable 

          or   'a literal'        // a plain string literal 

          or   'lex'^^typeURI     // a typed literal 

          or   number             // e.g. 42 or 25.5 

Listing 6 Definition of Jena rules
13 

Listing 6 shows the description of Jena rules syntax. There are two parts to a rule: the If 

clause and the Then clause. The rules written throughout the proposed methodology use 

                                                           
13

 http://jena.apache.org/documentation/inference/ 



43 
 

the forward chaining method. Forward chaining starts with available data and infers new 

data when the antecedent (If clause) is met. Using the forward chaining method an 

inference engine will look for statements that match the antecedent and, when found, the 

consequent (Then clause) is inferred. 

Commonly, applications that access the Jena inference machinery use the ModelFactory 

class to associate a data set with some reasoner, in order to create a new InfModel.  The 

example in Listing 7 illustrates this process. It uses a generic rule reasoner to programmer-

defined rules. The new resulting model (e.g. InfModel inf) can be queried for data. 

Statements that already existed in the original dataset will be found together with new 

inferred statements resulting from the application of programmer-defined rules.  

String rules = "[rule1: (?a :hasFather ?b) (?b :hasBrother ?c) ->  

         (?a :hasUncle ?c)]"; 

Reasoner reasoner = new GenericRuleReasoner(Rule.parseRules(rules)); 

InfModel inf = ModelFactory.createInfModel(reasoner, rawData); 

Listing 7 Inference with generic rule reasoner 

Consider the raw data as the statements in Listing 8 together with the rule that defines what 

it means to be an uncle. After applying reasoning in the form of the code from Listing 7, 

the inferred statement will be :John :hasUncle :James . When queried for 

statements, the new model (e.g. InfModel inf) will return three statements, the original 

two statements and the inferred statement. 

@prefix : <http://namespaceexample.org/> 

:John :hasFather :Jim . 

:Jim :hasBrother :James . 

{ ?a :hasFather ?b . ?b :hasBrother ?c . } -> { ?a :hasUncle ?c } . 

Listing 8 Raw data and rule defining what it means to be an uncle 

This section briefly presented the syntax of a Jena rule and a small reasoning example. 

Anonymous nodes were discussed in the previous section. Although these examples are 

simplistic, these concepts will be applied in the vulnerability detection method described in 

Chapter 4. 



44 
 

2.3.4. Representation of Source Code Triples 

A few Semantic Web frameworks to extract source code facts exist for different purposes. 

This section presents these frameworks and describes their shortcomings in terms of our 

application scope. 

Ganapathy and Sagayaraj (2011) proposed a framework that extracts Java source code 

metadata and stores it in the OWL (Web Ontology Language) using the Jena framework, 

briefly described in Section 2.3.3. The metadata extraction process is achieved using 

QDox
14

, a parser for extracting definitions of classes, interfaces and methods from Java 

source code files.  Their motivation was driven by the fact that organizations spend a lot of 

time re-doing the same work that had been done already, work that had already been 

tested. Their goal was to help organizations in reusing existing code, and thus, to reduce 

their production time. Using the proposed framework, developers can search for methods 

using parameters that match the metadata stored in the OWL. Once a method is found, the 

source code corresponding to the respective method is retrieved from a Hadoop Distributed 

File System (HDFS) repository. 

The limitation of this framework is that it only stores high-level source code facts in the 

OWL, such as function, definition, type, arguments, brief description, author etc. The code 

inside a method is only stored intact in a HDFS repository for future retrieval. Therefore, 

we cannot perform a data-flow analysis on the resulting dataset of the proposed 

framework. 

Keivanloo et al. (2011) was concerned with two research challenges identified in (W3C, 

2004): 1) design an ontology for source code ecosystems, covering a wide range of 

aspects, such as revisions, presentation, syntax and semantics; and 2) create a generation 

schema to uniquely identify source code entities. They embedded the implementation of 

these two requirements into a Linked Data publication framework (SeCOLD) that provides 

access to 1.5 billion triples of source code data. Software engineering researchers and 

practitioners can use this data for mining, searching and analysis purposes. 

                                                           
14

 http://qdox.codehaus.org/index.html 



45 
 

The resulting datasets, with respect to the granularity of the source code facts, have a 

coarse granularity that does not go deeper than the source code line level. For example, 

consider the following Java code, where 128, 129 and 130 are the line numbers: 

128    public void printData() { 

129             System.out.println(this.data); 

130      } 

The SeCOLD framework would express the line with number 129 using the following 

triple. Note that the line content is not dissected any further. Therefore, this coarse 

granularity does not allow information-flow control, where the information regarding the 

flow of a variable is imperative. For example, if data were modified using a side channel, it 

would not be observed. Because the proposed model covers only high-level aspects of 

source code it does not meet our requirements in terms of granularity. 

<http://domain.com/secold/resource/line/project_link/129> 

<http://domain.com/ontologies/2010/11/socon/hasContent>     

"System.out.println(this.data);" . 

Furthermore, the framework only applies to Java source code, because the authors did not 

include source code facts extraction methods for other programming languages. This also 

makes this framework unsuitable for our purposes. 

As no other Semantic Web framework solutions exist for source code representation 

(Keivanloo, Forbes, Rilling, & Charland, 2011), then no previous tools are effective at 

solving our problem. We are therefore compelled to develop a new model, in order to 

provide the necessary fine granularity for our application scope. 

2.3.5. Enforcing Security and Privacy Using Semantic Web Reasoning 

Policy enforcement in the context of security and privacy, leveraging Semantic Web 

technologies, has been previously tested and applied in academia (e.g. Ashri et al., 2004; 

Kagal, Finin & Joshi, 2003; Rao & Sadeh, 2005; to name just a few). Particularly, in (Rao 

& Sadeh, 2005) the authors implemented a Semantic Web framework and a meta-control 

model to control service discovery and access of information using Policy Enforcing 

Agents. Rao and Sadeh are concerned with the issue of enforcing security and privacy 

policies in pervasive computing environments. Apart from enforcing access of data, a 



46 
 

particular type of PEA, namely an Information Disclosure Agent (IDA) is responsible for 

enforcing obfuscation policies concerning the accuracy or inaccuracy of the released data. 

The framework exercises several Semantic Web concepts. First, it uses OWL-S (W3C, 

2004) to advertise service profiles modeling sources of information. Second, services have 

owners that set their policies using rules, translated into CLIPS using XSLT. Third, rules 

related to ontologies are expressed using ROWL (Gandon & Sadeh, 2004). Finally, the 

IDA is implemented in JESS, one of the fastest rule engines available
15

. 

Similar to Rao and Sadeh’s work, Kagal, Finin and Joshi (2003) used OWL-S to describe 

Semantic Web services and implemented an algorithm to check their policy compliance. 

The purpose of the work was to handle users’ private information by using Web services 

that reason about their users’ policies. Two kinds of policies are used. Privacy policies 

specify how private information is accessed (e.g. under what conditions). Authorization 

policies specify who can access the private information. In order to write the policies, the 

authors used Rei
16

, a policy specification language.  

Ashri et al. (2004) argue that in order to be able to provide dynamic and adaptive network 

security, conventional security mechanisms need to be combined with the openness and 

expressive power associated with Semantic Web technologies. Their research uses 

semantic reasoning to implement a security device, termed a Semantic Firewall. The 

Semantic Firewall would provide a safe environment supporting autonomous systems and 

their interactions without direct user intervention. Leveraging semantic reasoning allows 

services from different organization to safely communicate using information from 

security requirements and capabilities attached to each service. This information can allow 

or disallow interaction based on the security data associated with the service. 

In this section, we have shown that reasoning with rules and ontologies in order to enforce 

security and integrity of information has been previously proposed in academia. Although 

these frameworks do not apply to source code analysis, they do provide the proof of 

concept that security can be enforced with the application of Semantic Web technologies. 

                                                           
15

 http://www.jessrules.com/ 
16

 http://rei.umbc.edu/ 



47 
 

3. SOURCE CODE FACTS EXTRACTION FRAMEWORK 

This chapter gives a description of the proposed source code facts extraction framework. 

Section 3.1 gives an overview of the framework and the chapter continues with detailed 

descriptions of the components involved in the framework.   

3.1. Framework Overview 

Section 2.3.4 contained a few examples of academic efforts to extract source code facts 

from programming code, but their limitations included a coarse-grained approach or their 

method only applied to one programming language (Java). While the Java language is 

popular, Section 2.2.3 demonstrated that other programming languages are extensively 

used by popular websites and thus, the focus should be on a uniform method to extract 

source code facts independently of the input language.  

As part of this research, the aim is to offer a service that represents source code within a 

common format, where reasoning can be achieved, in terms of assuring code security. 

Therefore, two challenges were identified, which are also part of the thesis contributions, 

presented in Section 1.4.  

1) Uniform static code analysis: to develop a framework that converts source code to 

RDF independently of the input language 

2) Fine-grained approach: to extract source code facts with enough detail for 

enforcing security policies through the information-flow control 

The challenge to provide a solution independent of the programming language results in 

the need to keep input data and business logic separate. Thus, we employed APIs from the 

ANTLR
17

 (Another Tool for Language Recognition) library to parse external sources with 

their own specific syntax. Specifically, ANTLR allows for adapting the interface between 

the source code and the language grammar without changing the implementation. Because 

we separate the source code language from the reasoning part, using an independent syntax 

for the latter, we further prevent coupling. Figure 8 shows the translation process using the 

ANTLR parser generator and an XQuery processor. The translation process has two 

phases: a language specific phase and language independent phase. 

                                                           
17

 http://www.antlr.org/   



48 
 

Language 
grammar

Source
 code

Lexer

Parser

T
o

ke
n

s

ANTLR

Ancillary data
 structures: 

symbol table, 
flow graph..

XML Tree

Tree 
walker

AST

XQuery

XQuery
processor

Language 
independent RDF 
representation

Language specific Language independent

 

Figure 8 Source code facts extraction framework; allows for static code analysis 

The language specific phase uses data specific to the programming language given as input 

(e.g. the source code and its language grammar) and transforms the input into an 

independent form. We mentioned that the representation of source code must be of the 

finest level of detail in order to allow the implementation of information-flow control 

methods. Abstract Syntax Trees (ASTs) are used to provide the lowest level of detail 

through nodes and edges (Appel & Ginsburg, 1998) containing information about the 

source program in a tree-like structure (Zou & Kontogiannis, 2001). ASTs achieve this 

using lexers and parsers that match symbols from the language grammar with the source 

program given as input and attach semantics to the matched symbols. 

The language independent phase receives as input an AST. This second phase’s process 

maps the AST into a form that allows static code analysis using Semantic Web reasoning. 

Our framework uses XML as an intermediary between an AST and source code 

represented in RDF. First, similar to an AST, an XML document provides a representation 

of data in a tree manner using nodes and edges to encode relationships (attributes) between 

objects. Second, XML can be transformed into RDF using an XQuery processor. We used 



49 
 

a standardized open source Saxon XQuery processor
18

. It provides the functionality needed 

for the proposed methodology and it is available for Java, therefore easy to integrate into 

our implementation. 

3.2. Independent Fine-grained Representation 

One of the challenges encountered during this research, which is also one of the 

contributions of this thesis is the representation of source code facts independently of the 

input language used by a Web system susceptible to attacks. Another challenge and 

contribution is that this representation should be suitable for further information-flow 

control method implementation. That is, it should be fine-grained. The contributions were 

presented in Section 1.4.  The need for a fine-grained approach was explained in Section 

1.4.2. To summarize, a source code fact such as “a = 2” needs to be broken down into 

three units “a”, “=”, “2” to allow for static code analysis. Section 2.3.4 described a 

few frameworks that extract source code facts, but their limitation is that their extraction is 

coarse-grained, such as this above example, or even coarser, by only extracting metadata. 

3.2.1. Abstract and Concrete Syntax Trees 

Abstract Syntax Trees (ASTs) are used to provide the lowest level of detail through nodes 

and edges (Appel & Ginsburg, 1998) containing information about the source program in a 

tree-like structure (Zou & Kontogiannis, 2001). ASTs achieve this using lexers and parsers 

that match symbols from the language grammar with the source program given as input 

and attach semantics to the matched symbols. More information about lexers and parsers 

can be found in Section 3.2.3. Abstract Syntax Trees are widely used by compilers due to 

their ability of representing source code structure (Aho, Lam, Sethi, & Ullman, 2006). 

Eclipse
19

 is one program that uses ASTs, not only for compiling purposes, but also for 

tracking function and variable names throughout the project package. 

In (Aho, Lam, Sethi, & Ullman, 2006) the authors used ASTs as a starting point in 

designing a translator. In an AST, interior nodes represent operators and the children of the 

nodes represent operands. For the tree in Figure 9 the + is the root and the operator, while 

the union 8-4 and 1 are operands. Leveraging the same concepts, in the expression 8-4, 

                                                           
18

 http://saxon.sourceforge.net/   
19

 http://www.eclipse.org/ 



50 
 

- represents an operator, while 8 and 4 are operands. In general, to represent a 

programming construct using ASTs, an operator for the constructor is created and the 

operands are represented by the semantically meaningful components of that construct. 

The order of the operators and operands is preserved in an AST tree by reading the tree 

using an in in-order traversal algorithm. However, if we are trying to match the pattern a 

= b + c, in order to trace the variable c,  then the pattern will match the variable b also 

as a variable  to trace. Therefore, the second match results in a false positive. These false 

positives are described in Section 5.1.1. 

+

- 1

8 4
 

Figure 9 Abstract Syntax Tree for 8 – 4 + 1 

As opposed to an AST where interior nodes represent programming constructs, in a 

Concrete Syntax Tree (CST), or a parse tree, the interior nodes represent nonterminals 

(Ranta, 2012). Nonterminals can many times be programming constructs, but they can be 

also represented by “helpers”, such as semicolons, parenthesis etc. These “helpers” have 

been dropped in the building of an AST, as they are not needed for analysing. Therefore, 

the syntactic clutter is removed from the parse tree by discarding all the information that is 

necessary for parsing the code, but irrelevant for static code analysis. This research uses 

ASTs to represent source code without the syntactic clutter that is irrelevant for static code 

analysis. 

An AST for the Java code line return a + 2; will produce the AST from Figure 10 as 

generated by this thesis’ proposed methodology algorithm.  



51 
 

Return: ‘return’ PLUS: ‘+’

IDENT: ‘a’

DECIMAL_LITERAL: ‘2’

 

Figure 10 Generated AST for Java code return a + 2; 

Figure 10 shows that unnecessary syntax for analysis of code has been omitted from the 

generated tree (e.g. the semicolon), while the line of code was broken into four parts, each 

enhanced with semantics and generating a fine-grained result to allow for static code 

analysis. 

To generate an AST from programming code, the ANTLR library was employed. A brief 

introduction of the ANTLR library was given in Section 3.1. The reason for using a parser 

generator library was also mentioned in Section 3.1 and it is driven by the need to keep the 

input data and business logic separate. Due to its ability to parse external sources with their 

own specific syntax and to generate ASTs, ANTLR can transform input into an 

independent form, used later by the methodology for uniform reasoning. 

Thus, the methodology uses ANTLR and ASTs to transform programming code into a 

form independent from the input syntax. This output is detailed enough to allow for 

uniform static code analysis. 

3.2.2. Language Grammar 

Language description files, also called language grammars, are available from the ANTLR 

website’s grammar list
20

. A comprehensive list includes grammars for Java, PHP, C#, 

Pascal and many other programming languages. The methodology uses grammars from 

this list and the ANTLR APIs to generate lexers and parsers for building and traversing 

ASTs. Lexers and parsers will be discussed in the next section. An example of a PHP 

grammar file is given in the APPENDIX. 

                                                           
20

 http://www.antlr3.org/grammar/list.html 



52 
 

To generate a parser that outputs an AST from a grammar, the methodology includes the 

command output = AST; inside the options section of the grammar file. 

It should be noted that the contents of grammar files are changeable. Although there was 

flexibility in changing contents of grammar files, which may have provided better results, 

this was not possible due to time restrictions. Although existing grammars caused 

limitations in experimental results, it was still possible to obtain a proof of concept. The 

limitations will be discussed in Chapter 6. Therefore, future work should include rewriting 

language grammars. 

3.2.3. Lexers and Parsers 

The source code facts extraction framework uses ANTLR’s tool org.antlr.Tool to 

generate source files for the lexer and parser. The generated files are copied in the 

development environment to be compiled. The compiled files are called using the 

ANTLR’s library API to generate the intermediate tree representation (AST) for further 

processing.  

The lexer attaches meanings to the lexemes read from an input stream (i.e. source code). 

For example, in the PHP grammar from the APPENDIX, the lexemes: '==', '!=', 

'===', '!==' are classified as the EqualityOperator token by the PHP lexer. The 

lexer outputs a token stream, which is fed into the parser. Considering the line of code:  

a = 1; //assign  

the stream of tokens from a lexer to a parser will look as depicted in Figure 11. 

Lexer a = 1 ; //assign Parser

 

Figure 11 Stream of tokens from a lexer to a parser for the line of code a = 1; //assign 

The parser reads the token stream and matches patterns according to the specified rules. 

Consider the following lexer and parser rules: 



53 
 

 
/*--------------------------------------------------------------- 
 * PARSER RULES 
 *--------------------------------------------------------------*/ 
  
add:  NUMBER PLUS NUMBER;  
  
/*---------------------------------------------------------------- 
 * LEXER RULES 
 *--------------------------------------------------------------*/ 
  
NUMBER: ('0'..'9')+ ; 
  
PLUS: '+';  

 

For the 1 + 2 token stream the parser will match it as an add operation between two 

lexemes of type NUMBER. The action performed by the source code facts extraction 

framework is to generate an AST based on the matched pattern. This action results in the 

AST depicted in Figure 12. 

PLUS: ‘+’

NUMBER: ‘2’NUMBER: ‘1’

 

Figure 12 Generated AST for the 1 + 2 token stream 

The generated AST is a Java object of type CommonTree
21

 from the Java ANTLR API 

and it is used to manually traverse the AST by getting the children, token types etc. The 

algorithm for tree traversal is given in Section 3.3.1. The objective of the methodology is 

to obtain an independent form where reasoning about security vulnerabilities is possible. 

Section 3.2 focused on how to provide a fine-grained representation of source code. The 

framework achieves this using ASTs and the ANTLR’s library APIs. Section 3.3 describes 

the process of transforming source code represented by ASTs into a format (i.e. RDF) 

where static code analysis independent of the input format can be implemented. 

                                                           
21

 http://www.antlr3.org/api/Java/org/antlr/runtime/tree/CommonTree.html 



54 
 

3.3. Semantic Data  

An AST is an intermediate representation. Further processing is usually necessary (Aho, 

Lam, Sethi, & Ullman, 2006), whether it is for compiling purposes or in the case of this 

research, static code analysis. It was mentioned and demonstrated in Section 3.2 that an 

AST provides a fine-grained representation of source code facts, necessary for static code 

analysis, whilst also removing irrelevant information from parse trees. Next, the AST 

representation needs to be converted into a format where it is possible to detect patterns of 

code susceptible to malicious attacks independently of the format of the input data.  

Existing solutions as discussed in Section 2.2 have a common limitation, in that their 

solution is dependent on the input format. In this thesis, we turn to static code analysis 

using RDF. Data from potentially vulnerable programs is represented as triples in the 

Resource Description Framework (RDF) format with the purpose of being uniformly 

queried by machines in order to solve the problem of independent static code analysis. 

Programming code is exported to RDF, where reasoning using rules and inference engines 

can be uniformly implemented independently of the input language. 

The methodology uses Extensible Markup Language (XML) (W3C, 2013) as an 

intermediate representation between an AST and RDF. The algorithms that convert an 

AST to XML and XML data to the RDF format are given in Section 3.3.2 and Section 

3.3.4, respectively. This section also explains the reasoning behind choosing XML as an 

intermediate representation. First, information from an AST can be represented losslessly 

in XML using the same tree structure. Second, existing query languages can be employed 

to transform XML to RDF, whereas tools for direct conversion of an AST to RDF are not 

available. Sections 3.3.1 and 3.3.3 explain the motivation for choosing XML as an 

intermediate format between an AST and source code represented in RDF. 

3.3.1. Representation of an AST Using XML 

Similar to an AST, XML documents are represented using a tree-like structure. The tree 

starts with a root node and branches to the leaves. Figure 13 shows an AST represented 

using XML. Both representations have the node ASSIGN: ‘assign’ as the root node 



55 
 

and VARIABLE: ‘a’, VARIABLE: ‘n’ and NUMBER: ‘1’ as leaves, with node 

branches in between. 

The source code facts extraction framework manually traverses the AST (obtained using 

the ANTLR APIs) recursively. For every node in the AST, a corresponding XML node is 

created. The XML node name corresponds to the token name of the AST node. The XML 

node content corresponds to the AST node string content. Details of the algorithm used 

follow in the next section. 

ASSIGN: ‘assign’

OPERATOR: ‘*’VARIABLE: ‘a’

OPERATOR: ‘-’VARIABLE: ‘a’

NUMBER: ‘1’VARIABLE: ‘n’

<ASSIGN>
assign
          <VARIABLE>
          a
          </VARIABLE>
          <OPERATOR>
          *
                  <VARIABLE>
                  a
                 </VARIABLE>
                 <OPERATOR>
                 -
                            <VARIABLE>
                             n
                             </VARIABLE>
                             <NUMBER>
                             1
                             </NUMBER>
                  </OPERATOR>
           </OPERATOR>
</ASSIGN>

AST representation XML representation

 

Figure 13 Representation of an AST using XML 

3.3.2. Tree Traversal Algorithm  

We used the following algorithm to output an AST into an XML document. Using a top-

down approach, each node of the AST is traversed and its children type and value are 

printed as <type>value</type>. For each child the process is repeated recursively, 

until the algorithm visits all nodes. The XML indentation is achieved using print “ “; 

times the given node’s depth level. Please note that the indentation is only for the purpose 

of improving readability; functionality wise it is of no importance. 



56 
 

void function outputXMLTree(tree, indent) { 

   if tree not empty { 

      for (i=0; i<=indent; i++) 

         print “ “; 

      for (i=0; i<number of tree children; i++){ 

         print “<” + child i type + “>”; 

         print child value; 

         outputXMLTree(child, indent+1); 

         print “<” + child i type + “>”;

      }

   }

}  

Listing 9 Tree traversal algorithm 

The previous section and this section showed that due to the structural similarity of an AST 

and an XML document, XML was chosen to first represent the information contained in an 

AST, because existing query languages can then be employed to convert XML to RDF. 

The next section describes this process.  

3.3.3. XML Query to Obtain RDF 

The Extensible Stylesheet Language Transformation (XSLT) provides one of the standard 

methods of querying XML documents (W3C, 1999). However, extracting RDF data from 

existing XML documents using XSLT has been acknowledged to be a non-trivial task 

(Akhtar, Kopecky, Krennwallner, & Polleres, 2008), by the Gleaning Resource 

Descriptions from Dialects of Languages (GRDDL) working group (W3C, 2007). Due to 

the flexibility of an RDF representation and its several serialization formats, using XSLT 

to handle RDF data is greatly complicated (Akhtar, Kopecky, Krennwallner, & Polleres, 

2008). XSLT was optimized to handle a fixed hierarchy in the form of a tree-like structure 

found in XML documents. The structure is conceptually different in an RDF document that 

does not contain a simple, well-known hierarchy. 

XQuery
22

 was introduced in 2007 to assist in processing XML, when it also became a 

W3C recommendation. Studies show that XQuery’s usability is greater than XSLT 

(Graaumans, 2005), introducing fewer concepts and less verboseness. Therefore, while 

                                                           
22

 http://www.w3.org/TR/xquery/ 



57 
 

either XML query language could have been used, XQuery was chosen based on its 

usability. 

Some tools are available for converting XML to RDF. However, these tools are not easy to 

integrate, as most are available as Web services
23

 or they need to be accessed via the 

command line
24

. Moreover, the available tools use only XSLT and as mentioned above, 

due to usability concerns, XQuery was chosen to extract data from XML. 

In light of this, the source code facts extraction framework uses XQuery to extract data 

from XML and to render it using RDF. The algorithm used for querying the XML data is 

given in the next section. 

3.3.4. XQuery Algorithm  

This section describes the process of converting XML data resulted from traversing an 

AST as described in Section 3.3.1, into RDF data. The reason for using XQuery to extract 

information from XML was explained in the previous section. Next, XML to RDF 

mapping steps are developed based on previous research. Based on the resulting mapping 

conventions, an XQuery algorithm is implemented. 

Mapping XML to RDF 

In querying and extracting data from XML in order to create an RDF document containing 

the same information, a top-down approach was used, starting with the mapping of an 

XML document into an RDF document. The mapping process is based on previous 

research on a simplified syntax for RDF (Melnik, 1999 and W3C, 2007). This research is 

suitable for our needs, as the XML data resulted from traversing the source code’s AST 

follows a simple structure, containing only tags and text content and no attributes (e.g. 

<tag noattribute=”attributevalue”>text content</tag>).  

When converting XML to RDF, every tag encountered in the XML document is 

considered a property name (or predicate) in RDF. The structure of the XML and its 

corresponding RDF representation as proposed in (Melnik, 1999) is shown in Figure 14. 

The nodes _:A1, _:A2 and _:A3 are anonymous nodes. Section 2.3.2 introduces the 

                                                           
23

 http://rhizomik.net/html/redefer/#XML2RDF 
24

 http://sourceforge.net/projects/xmltordf/ 



58 
 

concept of an anonymous node, or a blank node. A blank node is an RDF resource for 

which an URI or a literal does not exist. The Notation 3 convention is used for representing 

blank nodes, i.e. Notation 3 uses a special _: namespace prefix to define blank nodes. 

<?xml  version=”1.0"?>
<root>
          <child>
                    <subchild>
                            Text content
                   </subchild>
           </child>
</root>

XML structure

_:A1

root

_:A2

child

_:A3

subchild

Text content

RDF graph

 
Figure 14 XML data structure and proposed conversion to RDF (Melnik, 1999) 

As opposed to the XML structure analysed in previous research, when traversing a source 

code’s AST to obtain XML, the resulting nodes can contain both text content and sub 

children.  For example, in Figure 15, the <OPERATOR> node contains both the “-“ text 

content and two children, <VARIABLE> and <NUMBER>. As previously proposed, the tag 

can be represented by an RDF property. However, text content cannot be considered a 

predicate, as it has no sub children and thus, no RDF objects to create an RDF statement. 

Therefore, the text content must be considered an RDF object and thus, an RDF predicate 

is needed to create an RDF triple. The RDF concepts vocabulary defines the value 

predicate as “Idiomatic property used for structured values.” (W3C, 2004). Based on the 

discussion from Section 2.3.1, the predicate can be reused to create RDF statements.  

In light of this, Figure 15 shows the corresponding representation of an XML document 

resulted from the AST traversal, into an RDF graph. The “:” prefix corresponds to the 

http://oanaureche.com/flowcontrol/ namespace, discussed in Section 2.3.1. 

The Notation 3 representation from Figure 15 aims to provide clarification in terms of full 

predicate names, including namespaces.  



59 
 

<?xml  version=”1.0"?>
<OPERATOR>
 -
          <VARIABLE>
           n
           </VARIABLE>
           <NUMBER>
            1
           </NUMBER>
</OPERATOR>

XML document from 
AST traversal

_:A0

:OPERATOR

_:A1

rdf:v
alue -

:VARIABLE

_:A2

rdf:value

n

_:A3

:N
U

M
B

ER

rdf:value

1

RDF graph

_:A0                                                                      <http://oanaureche.com/flowcontrol/OPERATOR>             _:A1
_:A1                                                           <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>            "-"
_:A1                                                           <http://oanaureche.com/flowcontrol/VARIABLE>             :_A2
_:A2                                                           <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>            "n"
_:A1                                                           <http://oanaureche.com/flowcontrol/NUMBER>                  _:A3
_:A3                                                                       <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>            "1"

RDF triples (N3)

 

Figure 15 Representation of XML data using RDF graph 

Algorithm 

The previous section details the mapping process between the source code facts XML 

representation and the corresponding RDF representation. In order to translate source code 

from an XML format to an RDF format, anonymous nodes and the rdf:value predicate 

were used.   

XQuery is used in this research to query an XML document and to build a new RDF 

document. The reason for choosing the XQuery language was given in the introduction of 

Section 3.3.4. In order to build new documents, XQuery provides constructors that can 

create XML structures (W3C, 2010). Because XQuery provides constructors for an XML 

structure, the output RDF format after conversion will be RDF/XML and thus, XQuery 

cannot be used to create N3 (Notation 3) documents. Introduced first in Section 2.3.2, 

RDF/XML is a syntax used to express an RDF graph as an XML document. Therefore, 

before designing the XQuery algorithm, an RDF/XML representation of the RDF graph is 

needed. Figure 16 shows the RDF/XML representation of the RDF document given in 

Notation 3 format. The RDF document in Notation 3 is the result of mapping XML to 



60 
 

RDF, explained in the previous section. To convert from Notation 3 to RDF/XML, the 

RDF Validator and Converter
25

 tool was used. 

RDF document (RDF/XML)

<rdf:RDF 
   xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<rdf:Description> 
   <OPERATOR xmlns="http://oanaureche.com/flowcontrol/"
             rdf:parseType="Resource">
       <rdf:value>-</rdf:value>
       <VARIABLE rdf:parseType="Resource">
           <rdf:value>n</rdf:value>
       </VARIABLE>
       <NUMBER rdf:parseType="Resource">
           <rdf:value>1</rdf:value>
       </NUMBER>
    </OPERATOR>
</rdf:Description>
</rdf:RDF>

_:A0                                                                      <http://oanaureche.com/flowcontrol/OPERATOR>             _:A1
_:A1                                                           <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>            "-"
_:A1                                                           <http://oanaureche.com/flowcontrol/VARIABLE>             :_A2
_:A2                                                           <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>            "n"
_:A1                                                           <http://oanaureche.com/flowcontrol/NUMBER>                  _:A3
_:A3                                                                       <http://www.w3.org/1999/02/22-rdf-syntax-ns#value>            "1"

RDF document (N3)

 

Figure 16 Notation 3 RDF document and corresponding RDF/XML representation 

The algorithm that is required to produce the RDF/XML representation is outlined as 

follows. A recursive method visits all nodes in the XML document, and depending on 

whether the XML node currently processed has text content or it is an XML element two 

actions are taken. If the XML node has text content, then the XQuery algorithm creates an 

rdf:value RDF/XML node. Otherwise, the XQuery algorithm creates an 

rdf:parseType= “Resource” RDF/XML node and the recursive method is called 

on the children of the currently processed element. The recursive method stops when there 

are no more XML nodes to process.  

The XQuery function that implements the algorithm is given in Listing 10. An XML node 

has an element and an optional attribute. The query traverses every element from the XML 

DOM tree, and uses the XQuery element and attributes constructors to create an 

                                                           
25

 http://www.rdfabout.com/demo/validator/ 



61 
 

RDF statement. The element part is created with the element XQuery constructor and 

the attribute part is created with the attribute XQuery constructor. QName is used to 

create the name of the element, i.e. for the <OPERATOR> element, OPERATOR is the 

name. The QName function also provides the possibility to add a namespace to the local 

name of the XML element processed. In the function from Listing 10, 

‘http://oanaureche.com/flowcontrol/’ is a namespace that it added to every 

newly created RDF/XML element. Therefore, if the XML element to convert is 

<OPERATOR> then its corresponding RDF/XML element is <OPERATOR 

xmlns=”http://oanaureche.com/flowcontrol/”>. 

declare function local:extract($element as element()) as element() {

   element {QName('http://oanaureche.com/flowcontrol/', 

            local-name($element))}

      { attribute { 'rdf:parseType' } { 'Resource' }, 

for $child in $element/node()

            return

            if ($child instance of element())

         then local:extract($child)

      else

         if (normalize-space($child) = '')

       then()

                   else element { 'rdf:value'} 

                                { normalize-space($child) }

      }

}

 

Listing 10 XQuery function to convert XML representation of source code to RDF format 

The algorithm performs two steps: 

1. Creates an XQuery element in the form of: 

element {computedname} {content} 

where {computedname} is an XQuery QName and {content} is an XQuery 

attribute element. In an RDF statement, the QName will represent a predicate for 

the XML element nodes with a blank node as the subject. Specifically, to create a 

QName a namespace is added to the local name of the element. We used a domain 

name for the namespace to uniquely identify the source code entity: 



62 
 

QName('http://oanaureche.com/flowcontrol/’,  

local-name($element)) 

2. Creates an XQuery attribute element in the form of: 

attribute {computedname} {content} 

where {computedname} is rdf:parseType= ”Resource” and the value 

of {content} depends whether the XML node is an element node or a text node. 

(a) If the XML node is an element node then its children are traversed starting from 

step 1.; 

(b) If the XML node is a text node then the text will be represented as the RDF 

object part of an rdf:value predicate. In XQuery a new element is constructed 

for the {content} part of the attribute element: 

element {'rdf:value'} 

        {normalize-space($child)} 

The algorithm uses blank nodes to create the RDF document. As mentioned in Section 

2.3.2 a blank node is an RDF resource for which an URI or a literal does not exist. Blank 

nodes are created with the attribute rdf:parseType=”Resource” and a set of 

properties are attached to these anonymous resources. Notation 3 uses a special _: 

namespace prefix to define blank nodes. The blank node _:A1 has three properties: an 

rdf:value, a :VARIABLE and a :NUMBER property. As mentioned in Section 2.3.2 

RDF is commonly represented using Notation 3 and RDF/XML. Notation 3 is used for 

improving its readability. 

When converting source code to RDF, the properties of a node (e.g. VARIABLE and 

NUMBER) correspond to the lexemes defined by the lexer and the operations defined by the 

parser of the applied grammar. 

3.4. Summary 

Chapter 3 describes the methodology and the algorithms for extracting source code facts 

and representing them using a common format, specifically RDF. Extracting source code 

facts had two objectives. First, the representation needs to have the fine-granularity for 



63 
 

permitting a static code analysis, whilst also removing unnecessary information that would 

cause performance issues. This was achieved using ASTs and the ANTLR library. Second, 

the representation must be in a format independent of the source code programming 

language that will also allow for detection of security vulnerabilities. In order to leverage 

Semantic Web technologies and reason about security vulnerabilities, an AST was used as 

an independent, intermediate representation. Therefore, an AST was converted to RDF as 

the final representation, where reasoning techniques can be applied to find code susceptible 

to malicious attacks using Semantic Web technologies. The motives for using Semantic 

Web technologies are supported by existing frameworks that employ these technologies to 

implement security, as described in Section 2.3.5. 

The next chapter will describe the methodology, including algorithms and implementation 

for finding Web application vulnerabilities by reasoning with Semantic Web technologies 

on top of the source code in RDF format. This methodology is applied after extracting the 

source code facts as described throughout Chapter 3. 

  



64 
 

4. DETECTION OF WEB APPLICATION VULNERABILITIES USING 

SEMANTIC WEB REASONING 

This chapter focuses on the methods used to detect security vulnerabilities in source code 

represented in RDF, after being translated from original input. The framework and 

algorithms employed to extract source code facts from programs are described in the 

previous chapter. 

The objectives of the methods presented in this chapter are to detect code susceptible to 

malicious attacks independently of the input language. The focus is on detecting input 

validation vulnerabilities and information leaks, as they account for the majority of 

problems related to Web application attacks, as illustrated in Sections 1.1 and 1.2. 

As shown in Section 1.1.1, the last six years have seen a major increase in security 

vulnerabilities caused by insufficient input validation, with the highest number of 

vulnerabilities corresponding to the year 2013. Furthermore, the vulnerabilities caused by 

improper implementation of information-flow control methods account for more than 50% 

of all Web application vulnerabilities found in the year 2013. 

This research focuses on SQL injection, cross-site scripting, HTTP splitting, e-mail 

injection and information leak attacks, but it is not limited to only these attacks. This 

chapter will describe the methodology for detecting Web application vulnerabilities in 

code, which can be applied to a broader list of attacks than the ones mentioned for the 

proof of concept. 

4.1. Detecting Web Application Security Vulnerabilities Using Code 

Patterns  

Section 2.2 mentions that a viable method for securing programming code is the analysis 

of its information flow. In determining for example, whether a potentially dangerous 

function call can cause a security problem if exploited by an attacker, in general, it can be 

answered by analysing its arguments and determining if their value originates from a 

trusted source. These arguments, however, need to be traced in the source code to find out 

where their value originates. If their value originates from an untrusted source, and the 

value was not properly sanitized, it can be concluded that the potentially dangerous 



65 
 

function call is a vulnerable piece of code. Tracing the origin of the argument of the 

function call represents the process of analysing the information flow in a program.  

A recently found bug in the OpenSSL
26

 implementation of the Transport Layer Security 

(TLS) protocol, called the Heartbleed bug
27

, allows an attacker to read up to 64KB of 

memory in a single request, which if done a sufficient number of times, will expose the 

Web application server’s main private keys. The vulnerability is caused by not properly 

checking the value of an argument given as input to a potentially dangerous operation. A 

static code analysis method of the program’s information flow control could have detected 

the vulnerability. In this case, the potentially dangerous operation used was 

OPENSSL_malloc that allocates memory for the server’s response. See code snippet 

below. 

/* Allocate memory for the response, size is 1 byte 

 * message type, plus 2 bytes payload length, plus 

 * payload, plus padding 

 */ 

buffer = OPENSSL_malloc(1 + 2 + payload + padding); 

 

The value of one of the arguments, payload, is not checked and thus, it can contain any 

value, causing the function call to allocate the maximum size of the server’s private 

memory and ultimately, to return its contents to the user. Tracing the payload variable 

for its value’s origin shows that the payload value is created by copying payload 

length bytes from the pointer pl. See lines 1 and 2 of the code snippet below. Thus, the 

value of payload is tainted which makes the code vulnerable to a Web application 

attack.   

1. n2s(p, payload); 

2. unsigned char *p = &s->s3->rrec.data[0], *pl; 

Using information flow control static code analysis, the OPENSSL_malloc function call 

could have been marked as a potentially dangerous operation and thus, its arguments 

would have been required to be checked against the possibility of being tainted. Tracing 

                                                           
26

 https://www.openssl.org/ 
27

 http://heartbleed.com/ 



66 
 

the origin of the payload argument shows that its value is tainted and therefore, that the 

program contains a vulnerable piece of code.  

In determining what operations are considered as potentially dangerous, a viable approach 

is to determine the entry points into a Web application and train the code review method 

with patterns of code vulnerable to Web application attacks (Shah, 2006). For example, 

vulnerable entry points into a Web application are the HTTP variables. Developers use the 

HTTP Request variable to read information from a user of the Web application through an 

HTTP form. Therefore, in a ASP.NET application, the code review needs to be trained that 

the pattern of code ".*.[Rr]equest.*[^\n]\n" expressed as a regular expression, 

constitutes an entry point to a Web application that if not guarded can open up potential 

vulnerabilities in the application. Once the patterns are expressed and the code scanned for 

these patterns, their arguments need to be traced to determine if their value is tainted. We 

have shown using the Heartbleed bug example, how this approach can help to determine if 

a program contains snippets of vulnerable code. 

This thesis’ proposed method will use inference rules to express patterns of code 

vulnerable to malicious attacks and will apply reasoning to determine vulnerable entry 

points and to trace arguments for their value’s origin, independently of the application’s 

underlying programming language. The rest of this chapter will describe the creation of the 

inference rules and the reasoning algorithm. 

4.1.1. Entry Point Identification 

In securing a Web application’s underlying code, entry points into the Web application 

must be identified, as they can also serve as entry points for attacks (Microsoft 

Corporation, 2003). It was shown throughout Section 1.2 that an attacker can potentially 

use specially crafted data to cause the application to behave in an unexpected way and gain 

access to sensitive information. These issues can in general be prevented by sanitizing user 

input. However, when the proper sanitization is not in place, a testing tool should detect 

the code that is vulnerable to attack. Furthermore, the previous section reiterates that a 

phase to identify entry points is needed early in the process of testing an application for 

vulnerabilities. After the identification of entry points, the variables that contain the tainted 

data coming from entry points need to be traced throughout the application in order to 



67 
 

determine if the tainted data is used in a potentially dangerous operation. Once the entry 

points are identified, using this thesis’ proposed methodology, Jena rules will be created 

from patterns of code that allow untrusted data to enter the application through these entry 

points. Reasoning with rules over a Web application’s RDF translation will infer whether 

the application is using any information coming from an untrusted source. 

This section identifies commonly used entry points into a Web application. According to 

Microsoft Corporation (2003) a Web application can have the following entry points: 

1. Logical application entry points that are available to the client through the Web 

application user interface, such as:  

 Query strings are part of a uniform resource locator (URL), in the following 

form: http://server/program/path/?query_string, containing 

data that needs to be passed to a Web application. An attacker can easily 

manipulate the query string values, as they are displayed in the browser’s 

address bar, due to the use of the HTTP GET protocol. 

 Form field values are sent to the server using the HTTP POST protocol. Form 

fields can be visible or hidden and the values of both types of fields can be used 

to for example, inject code, such as in the case of SQL injection attacks. 

 Cookie values can be changed by a client of a Web application using tools, such 

as Edit Cookies Firefox add-on
28

 and used to gain unauthorized access to a 

website. 

2. Physical or platform entry points include ports and sockets. Programming 

constructs can be used to access and read information from these resources and 

information read from these entry points is considered untrusted. One Java example 

is reading data using an outbound TCP connection using the Socket
29

 class: sock 

= new Socket("host.example.org", 39544);  

Once the entry points are identified, the next step is to find patterns of code that allow 

entry point data to enter an application. Together with test cases
30

 that are made available 

                                                           
28

 https://addons.mozilla.org/en-US/firefox/addon/edit-cookies/ 
29

 http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html 
30

 http://samate.nist.gov/SRD/testsuite.php 



68 
 

by the National Institute of Standards and Technology (NIST), we identified these patterns 

by manually analyzing the source code in the test cases. The test cases contain examples of 

various injection issues, including input triggering the vulnerability. Some examples of 

these patterns of code are given in Listing 11. 

/* Read data using an outbound tcp connection */  

Socket sock = new Socket("host.example.org", 39544); 

          

/* Read data from an HTML form */  

String user = request.getParameter("user"); 

 

/* Read data from console */  

InputStreamReader instrread = null; 

instrread = new InputStreamReader(System.in); 

 

/* Get environment variable ADD */ 

data = System.getenv("ADD"); 

Listing 11 Examples of Java patterns of code for input triggering security vulnerabilities in a Web 
application 

Jena rules are created from these patterns of code. An inference engine will use these rules 

to reason on top of the code in RDF and to check if data from untrusted sources enters the 

application under inspection. If the application reads data from an untrusted source, then 

the data will be traced throughout the application’s code to determine if tainted data is used 

in a potentially dangerous operation. This approach was illustrated using the Heartbleed 

bug example in the beginning of Section 4.1. The next section describes the methodology 

for tracing information flow in a program. 

4.1.2. Tracing Information Flow 

In the context of static code analysis, information-flow control methods trace the flow of 

data throughout the application’s code to ensure no leakage of sensitive data. Several types 

of information-flow control methods were described in Section 2.2. 

In this thesis, the tracing of information flow takes place after patterns of code have 

indicated that unsafe data coming from untrusted sources has entered the application. The 

previous section describes how to determine if the code under inspection uses data from 

outside the application. 



69 
 

Using variable assignments in the code, unsanitized and unsafe data could travel inside the 

application and ultimately be used in a potentially dangerous operation causing a security 

breach. A simple example is a vulnerable segment of C# code shown in Listing 12. 

Through the Request object in line 1, unsafe data enters the application. Using the 

variable assignments in lines 2, 3 and 4, this data travels inside the application, propagating 

itself as the code runs. Because the tainted data contained in the pro_id variable is used 

in dangerous operations, lines 5 and 6 represent vulnerable code. Line 5 can cause a SQL 

injection attack and line 6 can cause an XSS attack. These attacks were explained in 

Section 1.2.1. 

1. NameValueCollection nvc = Request.QueryString; 
2. String[] arr1 = nvc.AllKeys; 
3. String[] sta2 = nvc.GetValues(arr1[0]); 
4. pro_id = sta2[0]; 
5. String qry = "select * from items where product_id=" + 

pro_id; 

6. response.write(pro_id); 

Listing 12 Vulnerable code caused by assignment of unsafe data read from an untrusted source 

In tracing information flow, patterns of code that represent assignments need to be 

identified and Jena rules need to be created to express these patterns of code. Using the 

same method as the previous section, reasoning using the resulting Jena rules will infer 

whether data is propagated in the code and this reasoning will be applied until the end of 

the trace is reached. The end of the trace is reached when there are no more assignments. 

In Listing 12, the end of the trace is reached when the inference engine finds the 

assignment of tainted data to the pro_id variable. Because no new variables use the 

value of pro_id, the tracing of information flow phase ends. 

Examples of patterns of code that propagate data inside the application can be classified 

under two categories: direct assignments and indirect assignments using programming 

language library objects. An example of a direct assignment is pro_id = sta2[0], 

while an indirect assignment could be: instrread = new 

InputStreamReader(sock.getInputStream()). Although the second type of 

assignment is dependent on the programming language used, Section 4.2.2 shows that 



70 
 

wildcards can be used inside the Jena rules in order to reason on top of the programming 

code, independently of the language used. 

This phase is the most tedious one as there are numerous patterns of code that cause 

possible propagation of tainted data. As mentioned in Section 4.1.1, we chose the test 

cases
31

 that are made available by the National Institute of Standards and Technology 

(NIST) to identify these patterns. This website includes a collection of test cases in several 

programming languages: Java, PHP, C/C++, JSP as well as several Web applications 

containing CVEs (Common Vulnerabilities and Exposures), such as chrome-5.0.375.54 

and wireshark-1.2.0. It contains examples of CVEs, for example, various injection issues 

and tainted data mishandling, including input triggering the vulnerability. The current 

release contains 32 test suites, while 11 test suites reside in the archive. The number of test 

cases contained in every archive varies from three in the jspwiki-2.5.124 Web application 

to 61,387 in the Juliet Test Suite for C/C++. 

4.1.3. Vulnerability Detection 

The previous section describes how to trace tainted data inside a Web application. When 

the end of the trace is reached, the last variable that contains tainted data is checked, in this 

phase, to determine if it is used in a potentially dangerous operation. This phase is the 

vulnerability detection phase. In the example from Listing 12, the end of the information 

flow trace is reached with the pro_id variable, as there are no more assignments that use 

this variable. 

The vulnerability detection phase will match patterns of code that may cause a security 

breach and that use as arguments variables found in the previous section to contain tainted 

data. This phase finds that the pro_id variable from Listing 12 is used in two operations 

that may cause different Web application attacks, SQL injection and cross-site scripting. 

The patterns of code are the building of a SQL query using tainted data:  

String qry="select * from items where product_id=" + pro_id,  

and throwing non-validated input back to the browser using 

response.write(pro_id). Section 1.2.1 explains why these operations may cause 

                                                           
31

 http://samate.nist.gov/SRD/testsuite.php 



71 
 

security breaches. In the former case, because the pro_id is passed non-validated to the 

SQL SELECT statement, an attacker can manipulate its value and inject SQL payload. 

Similarly, an attacker, in the latter case, can inject client-side script into the user’s webpage 

and steal session cookies for user authentication, for example. 

The patterns that can cause security breaches if used in conjunction with non-validated 

data are identified from the NIST website mentioned in the previous sections. Some 

examples of patterns of code and the potential flaws taken from the website are given in 

Listing 13. 

/* POTENTIAL FLAW: absolute path traversal */ 

IO.writeLine(new BufferedReader (new             

                 FileReader(fIn)).readLine()); 

 

/* POTENTIAL FLAW: command injection */ 

Process p = Runtime.getRuntime().exec(osCommand + data); 

 

/* POTENTIAL FLAW: HTTP response splitting, input not 

verified before inclusion in the cookie */ 

response.addCookie(cookieSink); 

 

/* POTENTIAL FLAW: use of hard-coded password */ 

conn2 = DriverManager.getConnection("data-url","root", pw); 

Listing 13 Examples of potential flaws from the NIST website 

This section describes when it is necessary to identify patterns of code susceptible to Web 

attacks. Identifying vulnerable patterns alone is not sufficient. These patterns of code need 

to contain as input non-validated data in order to cause a security breach. Input from 

previous phases, described in Sections 4.1.1 and 4.1.2, will be used to determine if 

potentially dangerous operations represent a security breach. 

The next section describes how to create rules from the patterns identified throughout 

Section 4.1 and the methodology used to reason on top of the code in RDF. 

4.2. Methodology Overview     

Section 4.1 describes how to detect Web application vulnerabilities using code patterns. 

This section illustrates how to implement this approach using Semantic Web technologies. 

In Section 4.1, this approach is divided into three main phases: entry point identification, 



72 
 

tracing information flow and vulnerability detection. It was explained that Jena rules are 

created from patterns of code identified in these three phases. Figure 17a illustrates the 

process of creating rules from patterns of code. The end of the rule creation phase will 

result in three Jena rule sets corresponding to the patterns identified in the entry points 

identification, tracing variable and vulnerability detection phases. Section 4.2.2 describes 

how Jena rule sets are created. 

1. Rule 
Creation

Code patterns
Jena rule 
set

Entry points
Tracing variables

Vulnerabilities

Jena rule 
set (N3)

Configuration 
(forward RETE)

Reasoner

Source code 
(Java, PHP, etc.)

Model (source
code in RDF)

Source Code 
Extraction 

Framework

2. Inference
3. Interpreting 

Results
Get Deduction Model

Add Results to Model

a. Rule creation stage

b. Vulnerability detection 
stage  

Figure 17 Web application vulnerabilities detection methodology using code patterns and Semantic Web 
technologies 

The three main phases described in Section 4.1 follow the same path, which is illustrated 

using a graph in Figure 17b. A Semantic Web reasoner is created using the Jena rule set 

corresponding to the entry point patterns and a chosen configuration for the inference 

engine. The proposed methodology uses a forward chaining engine with the RETE 

algorithm (Forgy, 1982). Because the Jena framework offers two types of inference 

engines, Section 4.2.1 explains why this configuration was chosen.  



73 
 

The RDF data extracted from the source code of the Web application under test is available 

in the form of a Jena RDF Model (a set of RDF statements), after the initial source code 

facts extraction phase. The source code facts extraction framework is described in Chapter 

3. An inference model is created by associating the reasoner with the source code model. If 

additional RDF assertions are derived, then they are added to the initial source code model 

and used as input for the next phase. The same steps are followed in the next phase.  

For example, if the entry points identification phase finds that the application uses data 

from untrusted sources, then the deduction model will contain new RDF statements 

indicating the variables that contain data from outside the application. These statements 

will be added to the source code’s RDF model and the new deduction model from the 

information flow trace phase will infer new statements if there are assignments from the 

entry points variables to new variables. The dotted line in Figure 17b indicates the flow of 

information from the output of one phase into the input of the next phase.  

The vulnerability detection phase is the last phase with its output only being interpreted, 

and not used as input for another phase. At the end of this phase, the interpretation of the 

results will conclude if the source code is vulnerable to attacks or not. In the former case, 

the output of the last phase is the types of attack that can be performed successfully on the 

input program. The deduction model at the end of every phase and its interpretation is 

described in Section 4.2.4. 

Therefore, three major stages are identified in the methodology of vulnerability detection 

using Semantic Web technologies. These are illustrated using numbers in Figure 17: 

1. Rule creation  

2. Inference 

3. Interpreting the deduction model  

These three major stages are described in more detail in the rest of this chapter. In Section 

4.2.1, the motives for using the forward chaining engine with the RETE algorithm are 

given.  



74 
 

Section 4.2.2 describes how patterns of code are represented using Jena rules. For every 

type of pattern (e.g. entry point identification, tracing information flow and vulnerability 

detection) a set of Jena rules are created using the source code facts extraction framework. 

This represents the rule creation phase. In this case, the Source code item from Figure 8 in 

Section 3.1 is a code pattern: an entry point, an assignment or a vulnerability pattern. 

Therefore, the source code facts extraction framework is used to create the patterns of code 

in RDF (represented by Jena rules). Section 4.2.2 describes this process in detail. 

After the patterns of code are represented in RDF, an inference engine is employed to find 

these patterns in the source code. The source code facts extraction framework described in 

Section 3.1 is also used to represent the source code of the Web application under test in 

RDF.  The inference mechanism is described in detail in Section 4.2.3. Figure 17b 

illustrates that the patterns represented in RDF (e.g. the Jena rule set) are an input to the 

reasoner used by the inference mechanism. The output from applying the inference 

mechanism is a set of statements (e.g. RDF triples) that are further interpreted in a last 

phase to determine if the RDF patterns were found in the source code. Section 4.2.4 

describes how the result from the inference process (e.g. the deduction model) is 

interpreted. 

The proposed methodology does not use ontologies for the inference process. Although the 

use of ontologies has been considered for the implementation of the methodology, there 

are published works describing the limitations of ontologies and the need to add rules to 

overcome these limitations (Eiter, Ianni, Polleres, Schindlauer, & Tompits, 2006; Bavarian 

& Wohner, 2001). Moreover, the limitations of the proposed methodology described in 

Chapter 6 could not be overcome by using an ontology in addition to rules. 

 

 



75 
 

4.2.1. Forward and Backward Chaining 

For reasoning purposes, the Jena framework includes a general rule-based reasoner that 

can be used to implement an RDFS
32

 or an OWL
33

 reasoner, but which can be also used 

for general purposes (Apache Software Foundation, 2014). The Jena framework was first 

introduced in Section 2.3.3 and the reasons for choosing this framework for processing 

data were given.  

RDFS and OWL are Semantic Web formats, commonly used to process information. 

However, they have limitations and cause performance issues (Gua, Punga, & Zhang, 

2005). Reasoning using user-defined rules has been proven to be more flexible than 

reasoning using OWL and RDFS (Clark & Parsia, 2014). Therefore, this methodology 

employs the Jena rule-based reasoner for its general use.  

The general use reasoner supports rule-based inference over RDF graphs and provides 

functionality through two internal engines;  a forward chaining engine and a backward 

chaining engine. The forward chaining engine is based on the standard RETE algorithm 

(Forgy, 1982). The RETE algorithm will be discussed in Section 6.1, as it has a limitation 

that affects the performance of the proposed methodology for detecting Web application 

vulnerabilities. These engine configurations are accessible through the 

GenericRuleReasoner
34

 class. To create a GenericRuleReasoner object the 

minimum required is a list of Jena rules, also called a rule set. Section 4.2.2 describes the 

creation of rules that will be given as a parameter to the generic rule reasoner constructor. 

This section aims to compare the two different engine configurations and to outline the 

motives for this methodology’s choice for forward chaining. 

For the detection of Web application vulnerabilities using reasoning, data consists of 

source code extracted from a Web application. Given this data, the goal is to find Web 

application vulnerabilities by searching for patterns of code susceptible to Web application 

attacks. Often, to conclude that a line of code causes a security breach, the line of code 

itself is not enough to make a final decision and more information is needed. Section 1.2.1 

                                                           
32

 http://www.w3.org/TR/rdf-schema/ 
33

 http://www.w3.org/TR/owl-features/ 
34

 http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/reasoner/rulesys/GenericRuleRe 
asoner.html 



76 
 

contains an example of a command injection vulnerable code. The code below illustrates 

this example.  

int main(char* argc, char** argv) { 

 char cmd[CMD_MAX] = "/usr/bin/cat "; 

 strcat(cmd, argv[1]); 

 system(cmd); 

}  

The line of code system(cmd); displays a file’s content to the user. Analysing the line 

of code alone will not result in a definite conclusion, whether it is susceptible to an attack 

or not. However, by analysing the lines of code above it, it can be concluded that command 

line input that was not sanitized is used for building the filename for which the contents 

will be displayed to the user. As mentioned in Section 1.2.1, if an attacker uses the input 

“;rm –rf /” instead, the system call will not execute the cat command due the 

insufficient number of arguments and if run with root privileges it will continue by 

recursively deleting all the contents of nearly every writable mounted filesystem on the 

computer. Eventually, the computer will crash due to missing a crucial file or directory. In 

this instance, more data needs to be extracted before inferring that the line of code 

system(cmd); is susceptible to a command injection attack.  

In (Feigenbaum, McCorduck, & Nii, 1988) forward chaining was described as a reasoning 

method employed by inference engines that starting with known facts uses inference rules 

to extract more facts until a goal is reached. The example above shows that in order to 

reach the goal that the inspected code is susceptible to a command injection attack, new 

facts were asserted, i.e. command line arguments were not properly sanitized and used in a 

potentially dangerous operation. As opposed to forward chaining, the backward chaining 

method (Feigenbaum, McCorduck, & Nii, 1988) does not start with known facts. 

Backward chaining starts with a goal and tries to find facts that satisfy that goal. Therefore, 

forward chaining was used as the preferred method for reasoning. 

The Jena framework provides two forward chaining engines for its inference support, an 

earlier non-RETE engine and a RETE engine. The non-RETE implementation can be more 

efficient in some circumstances (Apache Software Foundation, 2014), but according to the 

Jena framework documentation, this alternative engine is likely to be removed in a future 



77 
 

release. Specifically, there is an issue where the non-RETE engine multi-triggers when it 

should only trigger once and the issue will not be fixed, as explained in the Jena mailing 

list
35

. The non-RETE engine functionality is only available because of backward 

compatibility. Therefore, the RETE engine was chosen for the implementation of the 

inference mechanism.  

4.2.2. Rule Creation 

In the rule creation stage, the rules are created automatically from source code patterns 

given as input, corresponding to the three phases mentioned in Section 4.1: entry points 

identification, tracing information flow and vulnerability detection. Examples of these code 

patterns were given in Section 4.1.1, 4.1.2, and 4.1.3, respectively.  

During the rule creation stage, we encountered a limitation when working with language 

grammars. More details of this limitation will be given in Section 6.2. In order to be able to 

parse Java code, for example, to create an AST, the code must have a proper Java syntax 

(e.g. package name, class name, method declaration etc.). Therefore, although a rule is 

created for a single line of code, several other lines of code needed to be added first, in 

order to have a proper Java file that can be parsed and converted to RDF. This results in 

extra RDF statements, which need to be removed after the rule creation process. During 

this stage, most statements that are irrelevant for reasoning (e.g. the extra RDF statements) 

are removed. More detail about this will be given in Section 6.2.  

The result of the rule creation stage is three Jena rule sets corresponding to the three phases 

described in Section 4.1 and used by the Jena reasoner to match patterns in a Web 

application’s source code. The same process is followed for all three rule sets. A rule set is 

simply a list of rules. This stage is the most tedious as several different patterns may exist 

for the same type of attack or entry points. Furthermore, there are numerous patterns of 

code for entry points, propagation of data and dangerous operations. Examples for these 

patterns were given in Section 4.1. We chose the test cases
36

 that are made available by the 

National Institute of Standards and Technology (NIST) to identify these patterns. This 

website includes a collection of test cases in several programming languages. It contains 

                                                           
35

 http://sourceforge.net/p/jena/mailman/message/1070814/ 
36

 http://samate.nist.gov/SRD/testsuite.php 



78 
 

examples of various injection issues and tainted data mishandling, including input 

triggering the vulnerability. 

It was explained that the rules written throughout the proposed methodology use the 

forward chaining method. Forward chaining starts with available data and infers new data 

when the antecedent (If clause) is met. Using the forward chaining method, an inference 

engine will look for statements that match the antecedent and when found, the consequent 

(Then clause) is inferred. The reason for using forward chaining as opposed to backward 

chaining was given in Section 4.2.1. 

The definition of a Jena rule was discussed in Section 2.3.3. The format used for rules 

throughout the detection of vulnerabilities is given in Listing 14.  

Rule := [ ruleName : bare-rule ] 

 

bare-rule :=   term, ... term -> hterm    // forward rule 

 

hterm     :=   term 

          

term      :=   (node, node, node)       // triple pattern 

           

node      :=   uri-ref            // e.g. http://foo.com/eg 

          or   prefix:localname   // e.g. rdf:type 

          or   <uri-ref>          // e.g. <myscheme:myuri> 

          or   ?varname           // variable 

          or   'a literal'        // a plain string literal 

          or   'lex'^^typeURI     // a typed literal 

          or   number             // e.g. 42 or 25.5 

Listing 14 Code pattern rule format 

Variables and Wildcards 

When creating Jena rules from code patterns two terms are defined: Variables and 

Wildcards. Variables are any programming code identifiers and they are used to trace 

information throughout the process of finding Web application vulnerabilities. Wildcards 

are any programming code variables, object names or method names that can contain any 

value. Wildcards in the generated Jena rules can be substituted with any values. Their 

numbers are assigned randomly as there is no need for tracing their value. 

For example, consider the Java code in Listing 15 that reads input from a socket. The entry 

point in this case is through the sock variable and the entry point pattern is sock = new 



79 
 

Socket("host.example.org", 39544); According to the proposed 

methodology, a Jena rule needs to be generated. The sock variable is considered to 

contain tainted data, as it contains information from outside the application, and therefore 

tracing the information flow is imperative. The tainted data is propagated through the 

instrread variable, using the second assignment in the code. 

sock = new Socket("host.example.org", 39544); 

 

/* read input from socket */ 

instrread = new InputStreamReader(sock.getInputStream()); 

Listing 15 Java code that reads input from socket 

To generate a Jena rule for the entry point pattern sock = new 

Socket("host.example.org", 39544);, sock is considered a Variable, whilst 

"host.example.org" and 39544 are considered Wildcards. The sock object is a 

Variable because it requires tracing. In this instance, it does propagate the data from the 

sock.getInputStream() object method via the second line of code. The two 

Wildcards can take any value.  

Remove 
headers 
triples

Add 
headers

Create rule: source 
code extraction 

framework + triple 
traversal

Code 
pattern

Rule

Variables,
Wildcards

 

Figure 18 Rule creation flow diagram 

Figure 18 shows the flow diagram involved in creating any rule for any type of pattern. 

This stage, as well as the Web application’s source code translation to RDF, requires the 

source code facts extraction framework. This framework is used to convert the code pattern 

to RDF after the headers for proper syntax have been added. An input to this step is the 

array of Variables and Wildcards, for which the content is decided manually, by looking at 



80 
 

the code pattern. The source code facts extraction framework converts the code pattern to 

an RDF/XML representation, which is then traversed to build the Jena rule, as it requires a 

specific syntax. This syntax is given at the beginning of this section, in Listing 14. 

For the sock = new Socket("host.example.org", 39544); code pattern, 

the source code facts extraction framework has the output given in Listing 16. It was 

mentioned that RDF/XML is a verbose format, and thus we have previously refrained from 

listing examples using this format, although for the sake of this example, the output of the 

translation process was printed. Section 2.3.2 mentions that N3 was proposed as an 

alternative to the RDF/XML serialization, due to its readability and the ease of writing 

RDF statements. Note that the bold font is used to highlight the extra statements that were 

added automatically through the conversion of the class (e.g class 

SQLInjection_example1) and method (e.g. public method) Java definitions to 

RDF, in order to create a proper Java program. 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
   <rdf:Description rdf:about="http://www.oanaureche.com/unit"> 
      <unit xmlns="http://oanaureche.com/flowcontrol/"  
    rdf:parseType="Resource"> 
         <ANNOTATION_LIST rdf:parseType="Resource"> 
            <rdf:value>ANNOTATION_LIST</rdf:value> 
         </ANNOTATION_LIST> 
         <CLASS rdf:parseType="Resource"> 
            <rdf:value>class</rdf:value> 
            <MODIFIER_LIST rdf:parseType="Resource"> 
               <rdf:value>MODIFIER_LIST</rdf:value> 
            </MODIFIER_LIST> 
            <IDENT rdf:parseType="Resource"> 
               <rdf:value>SQLInjection_example1</rdf:value> 
            </IDENT> 
            <CLASS_TOP_LEVEL_SCOPE rdf:parseType="Resource"> 
               <rdf:value>CLASS_TOP_LEVEL_SCOPE</rdf:value> 
               <VOID_METHOD_DECL rdf:parseType="Resource"> 
                  <rdf:value>VOID_METHOD_DECL</rdf:value> 
                  <MODIFIER_LIST rdf:parseType="Resource"> 
                     <rdf:value>MODIFIER_LIST</rdf:value> 
                     <PUBLIC rdf:parseType="Resource"> 
                        <rdf:value>public</rdf:value> 
                     </PUBLIC> 
                  </MODIFIER_LIST> 
                  <IDENT rdf:parseType="Resource"> 
                     <rdf:value>method</rdf:value> 
                  </IDENT> 
                  <FORMAL_PARAM_LIST rdf:parseType="Resource"> 
                     <rdf:value>FORMAL_PARAM_LIST</rdf:value> 



81 
 

                  </FORMAL_PARAM_LIST> 
                  <BLOCK_SCOPE rdf:parseType="Resource"> 
                     <rdf:value>BLOCK_SCOPE</rdf:value> 
                     <EXPR rdf:parseType="Resource"> 
                        <rdf:value>EXPR</rdf:value> 
                        <ASSIGN rdf:parseType="Resource"> 
                           <rdf:value>=</rdf:value> 
                           <IDENT rdf:parseType="Resource"> 
                              <rdf:value>sock</rdf:value> 
                           </IDENT> 
                           <CLASS_CONSTRUCTOR_CALL rdf:parseType="Resource"> 
                              <rdf:value>STATIC_ARRAY_CREATOR</rdf:value> 
                              <QUALIFIED_TYPE_IDENT rdf:parseType="Resource"> 
                                 <rdf:value>QUALIFIED_TYPE_IDENT</rdf:value> 
                                 <IDENT rdf:parseType="Resource"> 
                                    <rdf:value>Socket</rdf:value> 
                                 </IDENT> 
                              </QUALIFIED_TYPE_IDENT> 
                              <ARGUMENT_LIST rdf:parseType="Resource"> 
                                 <rdf:value>ARGUMENT_LIST</rdf:value> 
                                 <EXPR rdf:parseType="Resource"> 
                                    <rdf:value>EXPR</rdf:value> 
                                    <STRING_LITERAL rdf:parseType="Resource"> 
                                      <rdf:value>"host.example.org"</rdf:value> 
                                    </STRING_LITERAL> 
                                 </EXPR> 
                                 <EXPR rdf:parseType="Resource"> 
                                    <rdf:value>EXPR</rdf:value> 
                                    <DECIMAL_LITERAL rdf:parseType="Resource"> 
                                       <rdf:value>39544</rdf:value> 
                                    </DECIMAL_LITERAL> 
                                 </EXPR> 
                              </ARGUMENT_LIST> 
                           </CLASS_CONSTRUCTOR_CALL> 
                        </ASSIGN> 
                     </EXPR> 
                  </BLOCK_SCOPE> 
               </VOID_METHOD_DECL> 
            </CLASS_TOP_LEVEL_SCOPE> 
         </CLASS> 
      </unit> 
   </rdf:Description> 
</rdf:RDF> 

Listing 16 Code pattern: sock = new Socket("host.example.org", 39544); in RDF/XML 

The output in RDF/XML is traversed using the NxParser Java library
37

, a parser for the N3 

format.  While traversing the output, the nodes in triples are checked against the contents 

of the Variables or Wildcards arrays. The output of this step, concerning the code pattern 

in the given example, after the extra statements removal is shown in Listing 17. The ? 

                                                           
37

 https://code.google.com/p/nxparser/ 



82 
 

symbol in the Jena syntax is used to create anonymous nodes. The numbers (i.e. 

A744806, A744807) are automatically generated by the Java parser libraries. There are 

two wildcards: ?wildcard56 and ?wildcard77 and one variable: ?entry_point. 

The Jena rule corresponds to the code pattern: ?entry_point = new 

Socket(?wildcard56, ?wildcard77);, where the variables and wildcards are 

explicitly shown. 

The RDF predicates, e.g. fc:EXPR, fc:DECIMAL_LITERAL, fc:IDENT etc., where 

the namespace fc=http://oanaureche.com/flowcontrol, are created on the 

fly, derived from the description of the language grammar. A discussion on vocabularies 

and the FC vocabulary was given in Section 2.3.1. The process of representing source code 

using RDF and the ANTLR language grammars was described in Section 3.3. 

@prefix fc: http://oanaureche.com/flowcontrol/ 
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#  
[rule: 

(?A744806   fc:CLASS_CONSTRUCTOR_CALL   ?A744807 ), 
(?A744807   fc:ARGUMENT_LIST   ?A744808 ), 
(?A744808   fc:EXPR   ?A744809 ), 
(?A744810   rdf:value   ?wildcard56 ), 
(?A744809   fc:DECIMAL_LITERAL   ?A744810 ), 
(?A744808   fc:EXPR   ?A744811 ), 
(?A744812   rdf:value   ?wildcard77 ), 
(?A744811   fc:STRING_LITERAL   ?A744812 ), 
(?A744808   rdf:value   "ARGUMENT_LIST" ), 
(?A744807   fc:QUALIFIED_TYPE_IDENT   ?A744813 ), 
(?A744814   rdf:value   "Socket" ), 
(?A744813   fc:IDENT   ?A744814 ), 
(?A744815   rdf:value   ?entry_point ), 
(?A744806   fc:IDENT   ?A744815 ), 
(?A744806   rdf:value   "=" ) -> 
(fc:unit   fc:socket_entry_point   ?entry_point)] 

Listing 17 Jena rule for the sock = new Socket("host.example.org", 39544); code pattern 

The inferred statement in a situation where a match is found is: (fc:unit 

fc:socket_entry_point “sock”), because the Jena variable ?entry_point 

matched the Java variable sock that contains the tainted data. This statement is analyzed 

in the interpreting the deduction model stage and additional steps are taken. More details 

about this stage in the process of finding vulnerabilities is given in 4.2.4. 



83 
 

4.2.3. Inference 

It was mentioned that the three main phases described in Section 4.1 follow the same path, 

which is illustrated using a graph in Figure 17. All phases, entry points identification, 

tracing information flow and vulnerability detection have three stages: rule creation, 

inference and interpreting the deduction model. 

The second stage is the inference stage. This stage tries to match patterns of code using the 

rules created in the first stage. In case of a found match, the result is the inference of new 

statements. On the contrary, if no match was found, there are no new inferred statements. 

A Semantic Web reasoner is created using the Jena rule set corresponding to the phase that 

is being processed and a chosen configuration for the inference engine. For this thesis 

approach, the forward chaining engine with the RETE algorithm is used and Section 4.2.1 

explains why this configuration was chosen. Listing 18 shows the Java code for creating 

the reasoner used in the proposed methodology. 

Model m = ModelFactory.createDefaultModel(); 

Resource configuration =  m.createResource(); 

configuration.addProperty(ReasonerVocabulary.PROPruleMode,      

        "forwardRETE"); 

configuration.addProperty(ReasonerVocabulary.PROPruleSet, 

        rules_filename); 

 

// Create an instance of such a reasoner 

Reasoner reasoner = GenericRuleReasonerFactory. 

                    theInstance().create(configuration); 

Listing 18 Creating a generic rule reasoner using the Jena framework 

Two inputs are required for the inference process: the reasoner and the data. An inference 

model is created by associating the reasoner with a Jena Model. For the entry points 

identification phase the data represents the Web application’s source code in RDF. For the 

next two phases, the data represents the Web application’s source code in RDF plus 

inferred statements from the previous phase. For example, for the tracing information flow 

phase, the data represents the Web application’s source code in RDF plus the statements 

that were inferred in the entry points identification phase. This flow is illustrated using the 

“Add Results to Model” dotted line in Figure 17b. 



84 
 

This section follows the example from the previous section. The code is given below. After 

running the entry points identification phase and associating the data with the entry points 

rules, during the inference stage, a new statement is inferred, according to the rule written 

for the entry point: (fc:unit fc:socket_entry_point “sock”). The rule is 

available in the previous section. 

sock = new Socket("host.example.org", 39544); 

 

/* read input from socket */ 

instrread = new InputStreamReader(sock.getInputStream()); 

The name of the predicate socket_entry_point is used for interpreting the results in 

the next stage. For tracing the sock variable, this predicate is changed to trace_var 

and a new RDF triple is created and added to the data. The new statement to add to the 

model is: (fc:unit fc:trace_var “sock”).  The rule generated for the 

instrread = new InputStreamReader(sock.getInputStream()); 

code line is given in Listing 19, which corresponds to the assignment ?new_trace_var 

= new InputStreamReader(?trace_var.getInputStream()); , where 

Variables and Wildcards are used. There are no Wildcards used in this instance. 

@prefix fc: http://oanaureche.com/flowcontrol/ 
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#  
[assignment_rule: 

(fc:unit fc:trace_var ?trace_var), 
(?A747941   fc:CLASS_CONSTRUCTOR_CALL   ?A747942 ), 
(?A747942   fc:ARGUMENT_LIST   ?A747943 ), 
(?A747943   fc:EXPR   ?A747944 ), 
(?A747944   fc:METHOD_CALL   ?A747945 ), 
(?A747945   fc:DOT   ?A747946 ), 
(?A747947   fc:value   "getInputStream" ), 
(?A747946   fc:IDENT   ?A747947 ), 
(?A747948   fc:value   ?trace_var ), 
(?A747946   fc:IDENT   ?A747948 ), 
(?A747946   fc:value   "." ), 
(?A747942   fc:QUALIFIED_TYPE_IDENT   ?A747949 ), 
(?A747950   rdf:value   "InputStreamReader" ), 
(?A747949   fc:IDENT   ?A747950 ), 
(?A747951   rdf:value   ?new_trace_var ), 
(?A747941   fc:IDENT   ?A747951 ), 
(?A747941   rdf:value   "=" ) -> 
(fc:unit fc:new_trace_var ?new_trace_var)]  

Listing 19 Jena rule for the instrread = new 

InputStreamReader(sock.getInputStream()); code assignment 



85 
 

The new RDF triple that was added in the entry points identification phase (e.g. 

(fc:unit fc:trace_var “sock”)) is going to match the triple (fc:unit 

fc:trace_var ?trace_var), in the rule from Listing 19, and in case of a match 

using the assignment rule, the new inferred statement will be (fc:unit 

fc:new_trace_var “instrread”).  Therefore, the new variable instrread 

needs tracing. In order to trace the new variable, the same inference process is used. As 

mentioned in Section 4.1.2 this process is repeated until the end of the trace is reached. If 

there are no more variables to trace, the last variable traced is checked to see if it is used in 

a potentially dangerous operation. This last phase will apply the same inference 

mechanism, by associating the source code in RDF with the rules created for the dangerous 

operations patterns and the new statements inferred in the tracing information flow phase.  

4.2.4. Interpreting the Deduction Model 

At the end of every phase, (e.g. entry points identification, tracing information flow and 

vulnerability detection) decisions are made based on the deduction model resulting from 

applying the inference mechanism. Using the Jena framework, the deduction model is 

accessed by employing the InfModel interface’s getDeductionsModel
38

 method. 

This deduction model is a graph containing the triples added to the base graph due to rule 

firings and thus, only inferred statements are included in this graph without the raw data 

used to derive information.   

Depending on the size of the deduction model and the phase that is currently processed, 

different actions are taken. If the deduction model is empty, then no actions are taken. For 

example, if the entry points identification phase does not find a match against any entry 

points rule, then it is concluded that the Web application under test does not use any data 

from outside the application, and thus, it is a secure application with regards to the 

proposed methodology. If the deduction model includes statements such as (fc:unit 

fc: socket_entry_point “sock”) then the action taken will be to trace these 

variables during the next phase (i.e. tracing information flow). 

                                                           
38

 
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/InfModel.html#getDedu
ctionsModel() 



86 
 

The deduction model is also used for printing out messages to the tester. For example, 

Listing 20 shows a typical console output of the testing method during the tracing 

information flow phase: 

Inferred statement: [http://www.oanaureche.com/flowcontrol/unit, 
http://www.oanaureche.com/flowcontrol/socket_entry_point, "sock"] 
Tracing variable: sock 
Inferred statement: [http://www.oanaureche.com/flowcontrol/unit, 
http://www.oanaureche.com/flowcontrol/new_trace_var, "instrread"] 
Tracing variable: instrread 
Inferred statement: [http://www.oanaureche.com/flowcontrol/unit, 
http://www.oanaureche.com/flowcontrol/new_trace_var, "buffread"] 
Tracing variable: buffread 
Inferred statement: [http://www.oanaureche.com/flowcontrol/unit, 
http://www.oanaureche.com/flowcontrol/new_trace_var, "data"] 
Tracing variable: data 
Reached the end of trace with variable: data 

Listing 20 Console output example for the tracing information flow phase 

In the vulnerability detection phase, the deduction model from the tracing information flow 

phase will be used to determine which variable needs to be checked against usage in a 

potentially dangerous operation. In the example from Listing 20, the end of the trace was 

reached with the data variable and thus, the next phase will use this variable to match 

dangerous operations pattern rules against the raw model. If matches are found, the console 

messages will be similar to the ones from Listing 21. 

Use of variable in dangerous operations: 
 
Type of vuln: sqlinjection 
SQL_statement_name: "sqlstatement" 
Variable_used: "data" 

End of use in dangerous operations 

Listing 21 Console output example for the vulnerability detection phase 

In this case, vulnerable patterns were found and thus, the proposed methodology will 

conclude that the code is vulnerable to the type of attack for which the pattern had a match.  

The deduction model is thus used as input for the next phase, as well as for printing 

messages to the console in order to provide input to users of the testing application. 



87 
 

4.3. Sub-graph Generalization 

Jena rules can be used to infer additional statements that can match more patterns than the 

ones identified in the training data using sub-graph generalization, i.e. by training the 

methodology to not distinguish between two argument lists with different formats, for 

example. We will next consider the Java code lines in Listing 22 used for tracing 

information flow. The Java code lines were taken from the NIST website previously 

mentioned in Section 4.2.2 for generating Jena rules.  

Code patterns for tracing information flow: 

1. instrread = new InputStreamReader(sock.getInputStream()); 

2. fIn = new File(root + data); 

Listing 22 Code patterns for tracing information flow 

In line 1, there is a flow of data from the sock variable to the instrread variable. 

During the tracing information flow phase, the instrread variable will be the new 

variable to trace. In line 2, the flow of data is from the data variable to the fIn variable 

and in this case, fIn becomes the new variable to trace. These lines of code are modelled 

using the RDF graphs from Figure 19 and Figure 20, respectively. The graphs are using the 

Notation 3 format for the anonymous node (e.g. the _: namespace). 

When generating the Jena rules, it was mentioned that the wildcards and variables are 

assigned manually. In Listing 23 the patterns, including wildcards and variables, used for 

generating the corresponding Jena rules are listed. We chose the same name for wildcards 

in order to highlight the similarity between the two code patterns.  

Jena rules patterns for tracing information flow: 

1. ?new_trace_var = new ?wildcard2(?trace_var.?wildcard1()); 

2. ?new_trace_var = new ?wildcard2(?wildcard1 + ?trace_var); 

Listing 23 Jena rules patterns for tracing information flow 

The value of constructor names and method names can be replaced with wildcards because 

when tracing information flow we need to determine only if there is a flow of data from 

one variable to another and not the methods employed to achieve this. Figure 21 depicts 

the RDF graph used to model the Jena rules for the analyzed code patterns. 



88 
 

Note that the graphs are similar, with the exception of the RDF graph part that models the 

called method’s argument list. However, using reasoning, a Jena rule can be used to infer 

additional statements that can match both patterns using only the Jena rule for matching 

the instrread = new InputStreamReader(sock.getInputStream()); 

code pattern. 

_:A1

:A
RGUMENT_LIST

:EXPR

_:A2

:CLASS_

CONSTRUCTOR_CALL

_:A3 _:A4

“getInputStream”

:QUALIFIED_

TYPE_IDENT

_:A9 _:A10

:IDENT :rdf:value

“InputStreamReader”

_:A5

:METHOD_CALL :DOT :ID
EN

T _:A7

rdf:value
:ID

EN
T

“sock”_:A8

rdf:value

_:A6

_:A11

:IDENT

:rdf:value

“instrread”

rdf:value

“=”

 

Figure 19 instrread = new InputStreamReader(sock.getInputStream()); modelled 

using an RDF graph 

_:A2

:A
RGUMENT_LIST

:EXPR

_:A8

:CLASS_

CONSTRUCTOR_CALL

_:A9 _:B1

“data”
:QUALIFIED_

TYPE_IDENT

_:A4 _:A5

:IDENT :rdf:value

“File”

_:B2

:PLUS :ID
ENT _:B8

rdf:value

:IDENT

“root”

_:B9

rdf:value

_:A11

:IDENT

:rdf:value

“fIn”

rdf:value

“=”

 

Figure 20 fIn = new File(root + data); modelled using an RDF graph 



89 
 

_:A1

:A
RGUMENT_LIST

:EXPR

_:A2

:CLASS_

CONSTRUCTOR_CALL

_:A3 _:A4

?wildcard1

:QUALIFIED_

TYPE_IDENT

_:A9 _:A10

:IDENT :rdf:value

?wildcard2

_:A5

:ID
EN

T _:A7

rdf:value

:ID
EN

T

?trace_var_:A8

rdf:value

_:A6

_:A11

:IDENT

:rdf:value

?new_trace_var

rdf:value

“=”

:METHOD_CALL :DOT

:PLUS

 

Figure 21 RDF graph modelling the Jena rule pattern for matching instrread = new 

InputStreamReader(sock.getInputStream()); and fIn = new File(root + data); 

We assume that tracing information flow contains only one Jena rule matching the pattern 

fIn = new File(root + data); and that the Web application under test uses the 

instrread = new InputStreamReader(sock.getInputStream()); 

code to assign values from the sock variable to the instrread variable. When testing 

the Web application for security vulnerabilities the proposed methodology must match the 

instrread = new InputStreamReader(sock.getInputStream()); code 

as an information flow pattern. However, the training data does not include a Jena rule to 

match this pattern.  

[rule: 

(?A1 <http://oanaureche.com/flowcontrol/METHOD_CALL> ?A2 ), 

(?A2 <http://oanaureche.com/flowcontrol/DOT> ?A3 ) -> 

(?A1   <http://oanaureche.com/flowcontrol/PLUS> ?A3)] 

Listing 24 Jena rule to enable sub-graph generalization 

Next, consider the Jena rule in Listing 24. Jena rules use the ? character for anonymous 

nodes. When this Jena rule is associated with the raw data that includes the instrread 

= new InputStreamReader (sock.getInputStream()); code it will infer 

a new statement, as it finds a match for the rule antecedent. The inferred rule (e.g. ?A1   

<http://oanaureche.com/ flowcontrol/PLUS> ?A3) will be added to the 

raw model, thus allowing for matching the instrread = new 



90 
 

InputStreamReader(sock. getInputStream()); pattern with the Jena rule 

generated for the fIn = new File(root + data); pattern. 

This sub-graph generalization capability was employed throughout the methodology in 

order to enable not straightforward matching. The results of writing Jena rules to enable 

sub-graph generalization will be discussed in Section 5.2.2. 

This chapter described the methodology for detecting Web application vulnerabilities by 

employing Semantic Web reasoning and Jena rules over the source code represented in 

RDF. The results of this methodology are described in Chapter 5. The limitation of this 

methodology is described in Section 6.3. Other limitations, caused by the RETE algorithm 

and the language grammars are described in Section 6.1 and 6.2. However, they affect only 

the creation of rules stage. 

  



91 
 

5. EXPERIMENTAL RESULTS 

This chapter summarizes experimental results for the static analysis method described in 

Chapter 4. The analysis is applied to a set of real-world open source Java and PHP 

applications. The applications were chosen based on the availability of the source code, 

publicity of their security issues and the language used for implementation (PHP and Java). 

Prior to applying the proposed method to real-world applications, we used collections of 

test cases in the Java and PHP language as training data for our system. This chapter starts 

with the description of the training data.  

Comparing the proposed methodology with existing work in terms of accuracy and 

efficiency has been considered. This comparison was not a viable solution, due to the 

related works either not being applied to real-world applications, such as JFlow (Myers, 

1999) and Flow Caml (Simonet & Rocquencourt, 2003) or not explicitly stating which 

vulnerabilities were detected or not detected, such as RESIN (Yip, Wang, Zeldovich, & 

Kaashoek, 2009). In the first case, the authors focused on how to implement assertions to 

detect vulnerabilities and compared their solutions based on improved functionality over 

previous works. In the latter case, the authors applied their solution to existing Web 

applications, but they did not include specific references to the Web vulnerabilities found 

(e.g. using links from the CVE website).  

Our methodology is applied to existing Web applications and explicitly states the CVE 

number for every Web vulnerability, whether discovered or not discovered. As opposed to 

other woks, the experimental results use direct links to the discovered vulnerabilities. The 

ones that are not discovered are also linked to published vulnerabilities and reasons why 

they were not detected are individually given.  

5.1. Training Data 

It was mentioned in Section 4.2.2 that the Jena rules were created from patterns of code. 

We chose the test cases
39

 that are made available by the National Institute of Standards and 

Technology (NIST) to identify these patterns. This website includes a collection of test 

                                                           
39

 http://samate.nist.gov/SRD/testsuite.php 



92 
 

cases in several programming languages. It contains examples of various injection issues 

and tainted data mishandling, including input triggering the vulnerability.  

These test cases provided patterns for all three types of rules: entry points identification, 

tracing information flow and vulnerability detection. Examples of these types of patterns 

were previously given in Section 4.1. The resulting Jena rule sets are used by the inference 

mechanism to match patterns in a Web application’s source code. The reasoning 

methodology description is described in Section 4.2. 

Table 2 gives information about the training data used for the static code analysis. 

Although the NIST website includes test cases for other types of vulnerabilities, for the 

training data we chose the most common vulnerabilities caused by improper 

implementation of control flow methods. The most common vulnerabilities were identified 

in Section 1.1.1. Table 2 is sorted according to the proportion of the vulnerabilities 

identified as the most common. The chart illustrating their proportion was given in Figure 

4 from Section 1.1.1. For clarity, the chart is duplicated below. 

 

 

 

 

 

12% 

43% 

10% 

18% 

7% 

8% 

2% 
SQL Injection

Cross-site scripting

Code injection

Information Disclosure

Path Traversal



93 
 

Table 2 Training data for static code analysis 

Vulnerability type Files Blank lines Lines of 

Comments 

Lines of Code 

SQL Injection 

(CWE89) 

2,024 76,134 79,544 695,620 

XSS (CWE80) 506 9,779 13,653 46,298 

XSS Error Message 

(CWE81) 

506 9,779 14,500 46,298 

XSS Attribute 

(CWE83) 

506 9,779 13,653 46,298 

HTTP Response 

Splitting (CWE113) 

2,024 54,564 79,544 305,274 

Information Leak 

Error (CWE209) 

508 13,351 17,806 90,253 

Absolute Path 

Traversal (CWE36) 

506 9,779 13,653 47,651 

Relative Path Traversal 

(CWE23) 

506 9,779 13,653 48,498 

Cross Site Request 

Forgery (CWE352) 

140 4,002 6,814 18,792 

OS Command Injection 

(CWE78) 

506 10,626 15,347 52,227 

Total 7,728 207,337 268,015 1,396,395 

 

The Common Weakness Enumeration (CWE) (community-developed dictionary of 

software weakness types)
40

 classifies software weaknesses using numbers and Table 2 

includes the CWE number classification for the Web application vulnerabilities listed. 

Note that a cross-site scripting (XSS) attack can have several causes and they are classified 

under different CWE types. A cross-site scripting attack can be caused by an improper 

neutralization of scripts in attributes in a webpage, corresponding to the CWE-83 software 

weakness and one possible code pattern is response.getWriter(). 

println("<br>bad() - <img src=\"" + data + "\">"); where input is 

not verified before used in an image tag. Another cause for a cross-site scripting attack can 

                                                           
40

 http://cwe.mitre.org/ 



94 
 

be an error message sent to the client containing input that is not sanitized, such as 

response.sendError(404, "<br>bad() - Parameter name has 

value " + data);. 

The CLOC
41

 tool was employed to count the number of files, blank lines, comments and 

lines of code, as it provides the tools necessary to analyze a Web application’s source code. 

5.1.1. False Positives 

During the training process, false positives were observed, however with no impact over 

the accuracy of the methodology. The correct type of vulnerability was still identified. 

[sqlinjection:   
 (fc:unit fc:trace_var ?trace_var), 
 (?A1 :METHOD_CALL ?A2), 
     (?A2 :DOT ?A3), 
     (?A3 :IDENT ?A4), 
     (?A3 :IDENT ?A5), 
     (?A4 rdf:value ?sqlStatement_name), 
    (?A5 rdf:value "execute"),   
     (?A2 :ARGUMENT_LIST ?A6), 
     (?A6 :EXPR ?A7), 
     (?A7 :PLUS ?A8), 
     (?A8 :PLUS ?A9), 
     (?A9 :IDENT ?A10), 
     (?A10 rdf:value ?trace_var) -> 
     (fc:unit fc:sql_injection_statement ?sqlStatement_name) 
 (fc:unit fc:sql_injection_with_var ?trace_var)] 

Listing 25 Jena rule for a SQL injection dangerous operation pattern 

We will demonstrate false positives using an example. In the case of a SQL injection with 

the following dangerous operation code pattern: bResult = 

sqlstatement.execute("insert into users (status) values 

('updated') where surname = '"+data+"'"); the corresponding generated 

Jena rule is given in Listing 25. 

For clarity, the generated numbers for the anonymous nodes have been reduced to one and 

two digits size numbers and the RDF graph for this rule is given in Figure 22. Note the 

paths that are highlighted using the colors red and green.  

                                                           
41

 http://cloc.sourceforge.net/ 



95 
 

_:A1

:DOT

:ID
ENT

_:A2

:METHOD_CALL

_:A3

_:A4

_:A5

:IDENT

rdf:value

?sqlStatement_name

“execute

rdf:value:ARGUMENT_LIST

_:A6 _:A7

:EXPR

_:A8

:PLUS

_:A9

:PLUS

_:A10

:IDENT rdf:value

?trace_var

 

Figure 22 RDF graph for SQL injection dangerous operation code pattern 

The inference engine makes no distinction between these paths as they use the same triple 

structure (?Anon1 predicate ?Anon2), where the predicate value is the same. Thus, 

when inferring new data the Jena inference mechanism will infer two statements for the 

(fc:unit fc:sql_injection_statement ?sqlStatement_name) part of 

the Jena rule antecedent, given in the listing below. 

Inferred statement: [http://www.oanaureche.com/flowcontrol/unit, 
http://www.oanaureche.com/flowcontrol/sql_injection_statement, "execute"] 
 
Inferred statement: [http://www.oanaureche.com/flowcontrol/unit, 

http://www.oanaureche.com/flowcontrol/sql_injection_statement, "sqlstatement"] 

Listing 26 Application output illustrating false positives 

Although the inference engine infers an extra statement that represents a false positive, it 

does however identify the correct name for the SQL statement variable.   

The issue that causes false positives in this case can be overcome by modifications to the 

language grammar and making the distinction that sqlstatement is an object, whilst 

execute is a method. The :IDENT predicate could then be replaced by :OBJECT, and 

:METHOD respectively. However, the modification of language grammars falls out of the 

scope of this thesis. 

5.2. Static Analysis Results 

Experimental results were obtained by applying our proposed methodology to real-world 

applications with known vulnerabilities. These Web application security vulnerabilities are 

published for the application’s older versions. For example, the Apache Tomcat website 



96 
 

publishes its older version’s vulnerabilities on their “Reporting security problems” page
42

. 

It was possible to download previous versions of these applications and run our 

methodology on their source code. Results were compared against their known security 

vulnerabilities. 

5.2.1. Summary of Discovered Vulnerabilities 

The real-world applications used for the experimental phase were: Apache Tomcat
43

, 

OpenEMR
44

, phpMyAdmin
45

, Jetty
46

, Quick & Dirty PHPSource Printer
47

, WebCollab
48

 

and Moodle
49

. These applications offer access to their source code and they are developed 

in Java and PHP. Not all applications’ websites contain the details of their security 

vulnerabilities. However, it was still possible to obtain their list of security vulnerabilities 

using an interface to CVE vulnerability data
50

. The data are taken from the NVD (National 

Vulnerability Database) XML feeds provided by NIST. For example, Moodle’s SQL 

injection security vulnerability list is available here
51

. 

The proposed methodology was only able to identify types of vulnerabilities and patterns 

used in the training data for entry points identification, tracing information flow and 

dangerous operations. The pattern-based limitation is explained in Section 6.3. It was 

however possible to identify vulnerabilities with similar patterns of code using wildcards 

and sub-graph generalization. The impact of using wildcards and sub-graph generalization 

is described in Section 5.2.2. The sub-graph generalization concept is explained in Section 

4.3.  

Table 3 shows the number and type for each identified vulnerability, as well as the entry 

points source for the tainted data. The rows specify the entry point source. The 

                                                           
42

 http://tomcat.apache.org/security.html 
43

 http://tomcat.apache.org/index.html 
44

 http://www.open-emr.org/ 
45

 http://www.phpmyadmin.net/home_page/index.php 
46

 http://www.eclipse.org/jetty/ 
47

 http://guff.szub.net/quick-and-dirty-phpsource-printer/ 
48

 http://webcollab.sourceforge.net/ 
49

 https://moodle.org/ 
50

 http://www.cvedetails.com/ 
51

 http://www.cvedetails.com/vulnerability-list/vendor_id-2105/product_id-3590/opsqli-1/Moodle-
Moodle.html 



97 
 

vulnerability type is shown in columns. The table’s data represents the number of 

vulnerabilities found for each type of entry point. 

Table 3 Classification of vulnerabilities found 

 Cross-site 

scripting 

SQL injection Directory 

traversal 

HTTP response 

splitting 

HTML form fields 17 4 1 1 

URL manipulation 0 0 1 0 

Parameter tampering 1 1 0 0 

Non-Web input 4 0 1 0 

 

Vulnerabilities caused by improper sanitization of HTML form fields are the most 

common ones. An example of a SQL injection vulnerability found in OpenEMR
52

 allowed 

malicious users to execute arbitrary SQL commands via the u parameter. The vulnerable 

code is given in Listing 27. 

$user = $_GET['u']; 

 

$authDB = sqlQuery("select password,length(password) as 

passlength from users where username = " + $user + "'"); 

Listing 27 OpenEMR vulnerable code snippet 

Web applications were also found to use non-Web input that can trigger certain attacks. 

For example, phpMyAdmin was found to be vulnerable to a cross-site scripting attack 

through importing a file, the name of which was used later for output in a webpage. By 

using a crafted name for the file name, it is possible to trigger a cross-site scripting attack. 

However, only someone logged into phpMyAdmin can trigger this vulnerability. The same 

application was used to echo a file’s content without sanitizing it. A cross-site scripting 

attack via parameter tampering could have been triggered in earlier versions of 

phpMyAdmin, through a crafted logo URL in the navigation panel. These vulnerabilities 

are assigned the same CVE identifier
53

. 

                                                           
52

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2115 
53

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4996 



98 
 

URL manipulation was able to be performed on the Jetty Web server by making HTTP 

requests as the following: http://jetty-server:8080/cgi-bin/..\..\..\ 

..\..\..\winnt/notepad.exe, causing a directory traversal attack
54

. However, 

URL manipulation was commonly implemented through HTTP parameters. For example, a 

SQL vulnerability
55

 in Moodle was caused by not sanitizing the id URL parameter. 

Although other types of vulnerabilities found in the applications under test were not 

detected, due to the training data not containing patterns for these types of vulnerabilities, 

we found that our proposed methodology could have been successfully applied in other 

instances. For example, older versions of the Jetty HTTP server allow attackers to cause a 

denial of service using HTTP requests with a large Content-Length. In order to detect this 

vulnerability, input read through HTTP requests should be checked if used unsanitized in a 

denial of service dangerous operation. 

Details of discovered/not discovered vulnerabilities  

This section provides detailed information on the type of vulnerabilities found, together 

with the vulnerabilities that were not detected. Reasons why some vulnerabilities were not 

detected are given next. 

The Web application phpMyAdmin, version 3.5.5 contains nine cross-site scripting 

vulnerabilities. The proposed methodology was able to detect eight. The vulnerability that 

was not detected is assigned the CVE identifier CVE-2013-5002
56

 and it uses a non-

sanitized public variable, specifically public $pageNumber;, to echo a message on the 

Web page. However, the value for this variable is assigned in a different script and the 

methodology does not trace information flow across different programming scripts. 

PhpMyAdmin 3.5.5 includes one SQL injection vulnerability, assigned the CVE number 

CVE-2013-5003
57

, which has been detected by the proposed methodology. There are no 

directory traversal or HTTP response splitting vulnerabilities reported and the other 

                                                           
54

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178 
55

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6538 
56

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5002 
57

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5003 



99 
 

reported vulnerabilities (e.g. bypass authentication, DoS) were not used in the training 

data. 

OpenEMR 4.1.0 contains one SQL injection and one cross-site scripting vulnerability. 

These vulnerabilities were detected. No path traversal or HTTP response splitting 

vulnerabilities were reported. A code execution vulnerability, assigned the CVE identifier 

CVE-2011-5161
58

, was reported, but the methodology could not detect it, due to the code 

pattern missing from the training data. The vulnerability is caused by an unrestricted file 

upload. This pattern of entry points identification is not currently available as a Jena rule, 

although it is possible to generate a Jena rule for matching a file upload entry point pattern. 

Three vulnerabilities were reported for the Jetty Web server, version 4.0.0. The directory 

traversal vulnerability was detected by the proposed methodology. The other two 

vulnerabilities were not detected, as their types, (e.g. bypass authentication and DoS) were 

not included in the training data. It is possible to detect the DoS
59

 vulnerability as it allows 

attackers to cause a denial of service using HTTP requests with a large Content-Length. In 

order to detect this vulnerability, input read through HTTP requests should be checked if 

used unsanitized in a denial of service dangerous operation.  

In Apache Tomcat 6.0.0, eight cross-site scripting vulnerabilities were reported. The 

proposed methodology was able to identify four of them. Of the others, three cross-site 

scripting vulnerabilities (CVE-2009-0781
60

, CVE-2007-2449
61

, CVE-2007-1355
62

) were 

found in JSP files. Although possible to detect vulnerabilities in other scripting language, 

to the best of our knowledge there are no ANTLR grammars available for parsing JSP 

source code. The fourth non-detected vulnerability
63

 was due to an unsanitized variable 

used in a dangerous operation. However, the value is read in another class and current 

methodology does not trace information flow across different programming scripts. One 

                                                           
58

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-5161 
59

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2381 
60

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0781 
61

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2449 
62

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1355 
63

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1232 



100 
 

directory traversal was accurately identified. The remaining two directory traversal 

vulnerabilities (CVE-2009-2902
64

, CVE-2009-2693
65

) used cross-script information. 

There is no SQL injection and HTTP response splitting vulnerability reported for Apache 

Tomcat 6.0.0. Most vulnerabilities are of type DoS, bypass authentication and gain 

privileges which were not used in the training data.  

Quick & Dirty PHPSource Printer 1.1 reported only one directory traversal vulnerability
66

, 

which was correctly identified by the proposed methodology. 

WebCollab 3.30 reported one security vulnerability: an HTTP response splitting
67

. This 

vulnerability allows attackers to conduct response splitting attacks via an item parameter 

read through an HTML form.  

Moodle version 1.9.1 was reported to be vulnerable to four SQL injection attacks, out of 

which three were identified by the proposed methodology. The fourth vulnerability
68

 was 

not discovered due to the entry points pattern (e.g. file upload) not available as a Jena rule. 

Most cross-site scripting vulnerabilities reported in Moodle 1.9.1 are due to unsanitized 

input read through HTML forms and used on output
69

. This information flow is typical for 

a cross-site scripting vulnerability and thus, the proposed methodology was trained for this 

type of situation. Although the code follows a typical flow for an XSS vulnerability, the 

methodology could not detect vulnerabilities
70

 caused by unsanitized input read using a 

for loop (e.g. foreach($_GET as $var => $val)) as this pattern of entry point 

was not included in the training data. The proposed methodology identified 56% (9 out of 

16) of the XSS vulnerabilities reported for Moodle 1.9.1.  

                                                           
64

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2902 
65

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2693 
66

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169 
67

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2652 
68

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4305 
69

 https://moodle.org/mod/forum/discuss.php?d=108590 
70

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2362 



101 
 

 

Figure 23 Accuracy of proposed method 

Figure 23 illustrates the accuracy of the proposed method. As described throughout this 

section, most of the vulnerabilities that were not discovered are due to the methodology not 

previously being trained with appropriate rules for vulnerability patterns and entry points, 

as well as vulnerabilities found in different programming/scripting languages (e.g. JSP) 

than the ones used for the proof of concept. The pattern-based limitation is explained in 

Section 6.3. In Apache Tomcat 6.0.0, another limitation of the proposed methodology was 

found. Specifically, the current methodology cannot trace information flow across different 

programming scripts. 

5.2.2. Impact of Using Wildcards and Sub-graph Generalization  

Section 4.2.2 introduces the concept of wildcards and variables used when generating Jena 

rules. Section 4.3 describes how employing Jena rules can enable the generalization of 

RDF sub-graphs. This section illustrates the impact of using wildcards and sub-graph 

generalization capabilities on the results of the methodology.  

The methodology’s training data included the dangerous operation code pattern in Listing 

28. This operation can enable a cross-site scripting attack if the data parameter is not 

properly sanitized. This code pattern can be modelled using the graph in Figure 24. We 

intentionally omitted the statements that model the message "<br>bad() - Parameter 

name has value" as they do not offer any value in matching the code pattern. 

83.33% 
70.59% 

60.00% 

100.00% 

SQL Injection Cross-site scripting Directory traversal HTTP response
splitting

Accuracy of proposed method 



102 
 

Moreover, by omitting these statements, other patterns using different messages can be 

matched. 

res.getWriter().println("<br>bad() - Parameter name has value" +       

                data);  

Listing 28 Dangerous operation that might enable an XSS vulnerability 

_:A1

:EXPR

_:A8

:A
RG

U
M

EN
T_LIS

T _:A9

_:A7

:ID
ENT

:rdf:value

“println”

:PLUS

_:A10

:IDENT

“data”_:A11

rdf:value

_:A2

:DO
T

:METHOD_CALL

_:A3 _:A4

:DOT
:ID

ENT “getWriter”_:A6

rdf:value

“res”_:A5

rdf:value

:IDENT

Statements omitted

…..

 

Figure 24 res.getWriter().println("<br>bad() - Parameter name has value" + 

data); modelled using an RDF graph 

This code pattern will be matched using the Jena rule modelled by an RDF graph in Figure 

25. The ?trace_var node matches the data parameter, used in a potentially dangerous 

operation that can enable a cross-site scripting attack. For the object name and the print 

method, we used wildcards. 

_:A1

:EXPR

_:A2

:A
RG

U
M

EN
T_LIS

T _:A3

_:A10

:ID
ENT

:rdf:value

?wildcard1

:PLUS

_:A7

:IDENT

?trace_var_:A8

rdf:value

_:A11

:DO
T

:METHOD_CALL

_:A12 _:A13

:DOT
:ID

ENT “getWriter”_:A15

rdf:value

?wildcard2_:A15

rdf:value

:IDENT

 

Figure 25 Jena rule modelling the code pattern res.getWriter().println("<br>bad() - 
Parameter name has value" + data); 



103 
 

The Jena rule in Listing 29 was written during the training phase to enable sub-graph 

generalization. Using this rule, the pattern shown in Figure 26 can be matched along with 

the pattern used in the training data. 

[rule: 
 (?A1 <http://oanaureche.com/flowcontrol/METHOD_CALL>     ?A2 ), 
 (?A2 <http://oanaureche.com/flowcontrol/ARGUMENT_LIST> ?A3 ), 
 (?A3 <http://oanaureche.com/flowcontrol/EXPR>   ?A4 ) -> 
 (?A1   <http://oanaureche.com/flowcontrol/PLUS>   ?A4)] 

Listing 29 Jena rule enables sub-graph generalization 

Therefore, by associating the raw model with the Jena rule that generalizes sub-graphs, the 

operation in Listing 30 was identified as a potentially dangerous operation in a real-world 

application. The args argument is traced and echoed unsanitized to the user of the 

application. We intentionally omitted the statements that include the MessageFormat 

settings, as these statements are not necessary in matching the dangerous operation pattern. 

_:A1

:EXPR

_:A2

:A
RG

U
M

EN
T_LIS

T _:A3

_:A10

:ID
ENT

:rdf:value

“print”

_:A4

:METHOD_CALL :ARGUMENT_LIST :EXPR

_:A7

:IDENT

“args”_:A8

rdf:value

_:A6

_:A11

:DO
T

:METHOD_CALL

_:A12 _:A13

:DOT
:ID

ENT “getWriter”_:A15

rdf:value

“response”_:A15

rdf:value

:IDENT

Statements omitted

…..

 

Figure 26 
response.getWriter().print(MessageFormat.format(MANAGER_HOST_ROW_BUTTON_S

ECTION, args)); modelled using an RDF graph 

response.getWriter().print(MessageFormat.format( 
          MANAGER_HOST_ROW_BUTTON_SECTION, args)); 

Listing 30 Dangerous operation found in real-world application 

The code from Listing 30 was identified as a dangerous operation in Apache Tomcat 

version 6.0.18, CVE-2008-1947
71

. A similar pattern was identified as a cross-site scripting 

                                                           
71

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1947 



104 
 

vulnerability in Apache Tomcat, versions 6.0.0-6.0.29, with the identifier CVE-2011-

0013
72

. 

5.2.3. Pattern-based Limitation 

This section describes a few concrete examples that we encountered in the experimental 

phase, during which the methodology was not able to match vulnerable code, including 

types of vulnerabilities that were part of the training data. 

The first example consists of a local path disclosure vulnerability in phpMyAdmin, 

identified internally using the security identifier PMASA-2012-2
73

.  

The revision code in Listing 31 shows the code lines that were removed, as well as the 

code lines that were added in order to mitigate this vulnerability. Removed lines are 

marked with a “-” sign and added lines are marked with a “+” sign. 

  /* Read config file. 

  */ 

-require CONFIG_FILE; 

+if (is_readable(CONFIG_FILE)) { 

+    require CONFIG_FILE; 

+} 

Listing 31 Revision code for path disclosure in phpMyAdmin 

The vulnerability appears in the show_config_errors.php. An error message can 

show the full path of the CONFIG_FILE, leading to possible further attacks. In order to 

avoid this, the presence of the configuration file must be validated. 

This snippet of vulnerable code does not follow an information flow type pattern, e.g. it 

does not contain a pattern for an entry point into the Web application and a method that 

uses tainted data, and thus, the methodology proposed cannot match this type of pattern. 

Another limitation of the methodology was encountered during the testing of the Moodle 

open-source learning platform. The disclosed vulnerability is assigned the identifier CVE-

                                                           
72

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0013 
73

 http://www.phpmyadmin.net/home_page/security/PMASA-2012-2.php 



105 
 

2012-2363
74

. It is a SQL injection vulnerability in calendar/event.php that allows 

attackers to execute arbitrary SQL commands via crafted form input. However, the form 

input is read using a method that is imported: $form = data_submitted();. 

Although the data contained in the $form is tainted and coming from untrusted sources 

outside the application, the vulnerable assignment is not matched by the proposed 

methodology. Currently, the proposed methodology does not trace user defined methods in 

order to detect vulnerabilities. 

5.2.4. Analysis Times 

This section shows the time necessary to analyze the real-world Web applications used in 

our experimental phase. Table 4 shows the duration, in seconds, for each Web application 

analyzed using the proposed methodology. The machine used for running the methodology 

uses an Intel Core i5 processor @ 2.67GHz and 4.00GB RAM (2.99GB usable). We used 

the same tool as the one mentioned in Section 5.1 (e.g. CLOC) for counting the lines of 

code, blank lines, comments and number of files. 

Table 4 Analysis duration of methodology 

Web 

application 

Files Blank 

lines 

Lines of 

Comments 

Lines of Code Time 

(seconds) 

Apache 

Tomcat 6.0.0 

1,056 52,756 103,687 154,602 4,429 

OpenEMR 

4.1.0 

2,130 71,542 84,075 451,352 10,651 

phpMyAdmin 

3.5.5 

338 11,862 36,325 116,958 976  

Jetty 4.2.27 440 14,665 31,022 58,131 779 

WebCollab 

3.30 

252 7,885 7,943 28,278 524 

Moodle 2.0.1 4,496 124,544 310,309 623,420 17,654 

 

                                                           
74

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2363 



106 
 

The analysis time data is plotted using a chart in Figure 27. The red, dashed line illustrates 

the ideal progression for duration in relation to the size of the application. For plotting the 

processing time, we chose the number of files in a Web application for the x-axis, as this 

number provides a good representation of the size of the data analyzed. Although blank 

lines are ignored by the proposed methodology, comments are modeled in the source code 

RDF graph and thus, the number of lines of code alone does not provide a good 

representation of the size of the data that is being analyzed. As shown in Figure 27 the 

processing time is in proportion with the size of the Web application being analyzed, 

resulting in an almost linear type graph. 

 

Figure 27 Analysis time in seconds for the number of files in a Web application 

Although, the analysis time grows linearly with the size of the Web application, there are 

exceptions, as described below. If more applications are to be considered for running the 

proposed methodology, the chart may not result to be linear. Whilst XML is time 

consuming, only one Web application file at the time is analyzed and thus, the analysis 

time does not grow exponentially for Web applications that contain significantly more files 

than other Web applications. Furthermore, the Jena rule sets representing patterns for entry 

points, information flow assignments and Web vulnerabilities are created prior to the 

application/detection phase, and thus not influencing the overhead of the work. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1000 2000 3000 4000 5000

Time  
(seconds) 

Web application number of files 

Analysis time 



107 
 

We have identified an exception concerning the linearity of the analysis time graph. For a 

Web application containing 338 files, the processing time was equal to 976 seconds, while 

for a Web application containing 440 files, there were required 779 seconds to analyze it. 

During the experimental phase, we have observed that, for example, to process the 

interface/main/calendar/includes/pntables.php file from the 

OpenEMR Web application, 70 seconds were required. This file’s size is 44KB. However, 

for the import.php file in the same folder, the time required to process it was one 

second. This file’s size is 21KB. However, the pntables.php file contains only arrays 

declarations, with no PHP code implementing functionality. Therefore, the structure of the 

contents of the source code files can affect the proposed methodology processing time.  

  



108 
 

6. LIMITATIONS IMPACT 

This chapter presents the impact of the limitations of this thesis’ approach to static code 

analysis. The limitations described in Sections 6.1 and 6.2 are caused by dependencies of 

our methodology, specifically the Jena forward engine using the RETE algorithm and the 

language grammars used by the ANTLR parser generator to extract source code facts. 

However, these issues only affect the rule creation process. During the detection of 

security vulnerabilities, runtime performance is not affected. The third limitation, 

described in Section 6.3 is a common limitation of methodologies that employ matching 

algorithms, in that they fail to match patterns that were not used in the training stage. 

However, adding more training data will result in fewer security vulnerabilities not being 

discovered. Furthermore, limitations of white-box testing compared to black-box testing 

are discussed in the last section.  

6.1. Unoptimized RETE Network 

During the development of the methodology, significant delays (approximately 10 seconds 

and more to reason using a single rule) and Java heap size memory errors in processing the 

inference model were observed. Further testing concluded that the order of the statements 

in the Jena rule affects the performance of the reasoning engine. 

These delays are caused by the compiling of rules into a crude RETE network within Jena 

(Reynolds, 2013). The shape of the network and distance between nodes depends on the 

order or the statements in the rule and thus, different intermediate joins with different 

queue lengths are expected, causing different processing times. Research is being 

conducted to improve the performance of a RETE-based inference engine (Özacar, Öztürk, 

& Ünalir, 2007). 

As an example, consider the rules in Listing 32 and Listing 33. Both Jena rules infer the 

name of the Java Connection
75

 object from the Java pattern: Connection conn = 

IO.getDBConnection(). Reasoning on a sample dataset using the Jena rule in 

Listing 33 takes approximately 2 seconds, compared to the Jena rule in Listing 32 that 

causes a delay of approximately 10 seconds on the same dataset. The Jena rule in Listing 

                                                           
75

 http://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html 



109 
 

32 was generated during the rule creation phase described in Section 4.2.2. The order of 

the RDF statements in the Jena rule from Listing 33 was optimized for better performance. 

[connection: 

  (?A3 :METHOD_CALL ?A4 ), 

  (?A2 rdf:value ?variable_conn ), 

  (?A1 :EXPR ?A3 ), 

  (?A6 rdf:value "getDBConnection" ), 

  (?A4 :DOT ?A5 ), 

  (?A5 :IDENT ?A6 ), 

  (?A5 :IDENT ?A7 ), 

  (?A7 rdf:value "IO" ), 

  (?A1 :IDENT ?A2 ), 

  (?A8 rdf:value "Connection" ) -> 

  (fc:unit fc:variable_conn ?variable_conn)] 

Listing 32 Generated Jena rule 

[connection: 

  (?A1 :IDENT ?A2 ), 

  (?A2 rdf:value ?variable_conn ), 

  (?A1 :EXPR ?A3 ), 

  (?A3 :METHOD_CALL ?A4 ), 

  (?A4 :DOT ?A5 ), 

  (?A5 :IDENT ?A6 ), 

  (?A5 :IDENT ?A7 ), 

  (?A7 rdf:value "IO" ), 

  (?A6 rdf:value "getDBConnection" ), 

  (?A8 rdf:value "Connection" ) -> 

  (fc:unit fc:variable_conn ?variable_conn)] 

Listing 33 Optimized Jena rule 

The statements in the optimized Jena rule have the smallest distance between them. For 

example, the first statement is linked to the second statement using the ?A2 blank node, 

the first statement is linked to the third statement using the ?A3 node and so on. In the 

generated Jena rule from Listing 32 the second statement is not linked to any adjacent RDF 

statement; the ?A2 node from the second statement, appears again only in the eighth 

statement, causing distance between nodes in the compiled RETE network and thus delays 

in the processing time. 

The optimization process was achieved using a service
76

 provided by the World Wide Web 

Consortium (W3C). This service translates an RDF/XML representation into an N3 

                                                           
76

 http://www.w3.org/RDF/Validator/documentation#intro 



110 
 

representation and outputs the RDF statements in an optimized order suitable for 

processing by the RETE network.   

This limitation affected the time required to generate Jena rules and caused overhead in 

terms of implementation design. However, using optimized Jena rules increases the Web 

application vulnerability’s runtime performance. It is worth mentioning that un-optimized 

Jena rules commonly resulted in an “out of memory” error, thus un-optimized Java rules 

was not a viable option. 

6.2. Language Grammars Requirement for Proper Language Syntax 

It was briefly mentioned in Section 4.2.2 that during the rule creation stage, we 

encountered a limitation when working with language grammars. In order to be able to 

parse Java code, for example to create an AST, the code must have a proper Java syntax 

(e.g. package name, class name, method declaration etc.). Therefore, although a rule is 

created for a single line of code, several other lines of code needed to be added first, in 

order to have a proper Java file that can be parsed and converted to RDF. This results in 

extra RDF statements, which need to be removed after the rule creation process. During 

this stage, most statements that are irrelevant for reasoning (e.g. the extra RDF statements) 

are removed. This limitation is illustrated next using a simple example. We assume that a 

Jena rule needs to be generated for the assignment a = 1;. Using the current Java 

grammar when employing the ANTLR parser generator for the code a = 1; throws the 

exception in Listing 34.  

org.xml.sax.SAXParseException: The content of elements must consist of 

well-formed character data or markup. 

2014-05-12 12:04:37 ERROR RDFDefaultErrorHandler:59 - (line 1 column 1): 

Content is not allowed in prolog. 

Listing 34 Exception when parsing code without proper syntax 

//proper Java syntax 

1. class Generic_class_name{ 
2.          public void generic_method_name() { 
3.                 a = 1; 
4.          } 
5. } 

Listing 35 Code pattern with proper Java syntax 

 



111 
 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 

   <rdf:Description rdf:about="http://www.oanaureche.com/unit"> 

      <unit xmlns="http://oanaureche.com/flowcontrol/"    

              rdf:parseType="Resource"> 

         <ANNOTATION_LIST rdf:parseType="Resource"> 

            <rdf:value>ANNOTATION_LIST</rdf:value> 

         </ANNOTATION_LIST> 

         <CLASS rdf:parseType="Resource"> 

            <rdf:value>class</rdf:value> 

            <MODIFIER_LIST rdf:parseType="Resource"> 

               <rdf:value>MODIFIER_LIST</rdf:value> 

            </MODIFIER_LIST> 

            <IDENT rdf:parseType="Resource"> 

               <rdf:value>Generic_class_name</rdf:value> 

            </IDENT> 

            <CLASS_TOP_LEVEL_SCOPE rdf:parseType="Resource"> 

               <rdf:value>CLASS_TOP_LEVEL_SCOPE</rdf:value> 

               <VOID_METHOD_DECL rdf:parseType="Resource"> 

                  <rdf:value>VOID_METHOD_DECL</rdf:value> 

                  <MODIFIER_LIST rdf:parseType="Resource"> 

                     <rdf:value>MODIFIER_LIST</rdf:value> 

                     <PUBLIC rdf:parseType="Resource"> 

                        <rdf:value>public</rdf:value> 

                     </PUBLIC> 

                  </MODIFIER_LIST> 

                  <IDENT rdf:parseType="Resource"> 

                     <rdf:value>generic_method_name</rdf:value> 

                  </IDENT> 

                  <FORMAL_PARAM_LIST rdf:parseType="Resource"> 

                     <rdf:value>FORMAL_PARAM_LIST</rdf:value> 

                  </FORMAL_PARAM_LIST> 

                  <BLOCK_SCOPE rdf:parseType="Resource"> 

                     <rdf:value>BLOCK_SCOPE</rdf:value> 

                     <EXPR rdf:parseType="Resource"> 

                        <rdf:value>EXPR</rdf:value> 

                        <ASSIGN rdf:parseType="Resource"> 

                           <rdf:value>=</rdf:value> 

                           <IDENT rdf:parseType="Resource"> 

                              <rdf:value>a</rdf:value> 

                           </IDENT> 

                           <DECIMAL_LITERAL rdf:parseType="Resource"> 

                              <rdf:value>1</rdf:value> 

                           </DECIMAL_LITERAL> 

                        </ASSIGN> 

                     </EXPR> 

                  </BLOCK_SCOPE> 

               </VOID_METHOD_DECL> 

            </CLASS_TOP_LEVEL_SCOPE> 

         </CLASS> 

      </unit> 

   </rdf:Description> 

</rdf:RDF> 

Listing 36 RDF/XML representation with statements for proper Java syntax 

In order to fix the code for generating a Jena rule, the assignment needs to be enclosed in a 

proper Java program. A basic syntax shown in Listing 35, lines 1 to 5, will suffice. In this 



112 
 

case, however, when extracting source code facts necessary for generating the Jena rule, 

additional RDF statements are added to the RDF representation. The RDF statements 

necessary for generating a Jena rule corresponding to the pattern a = 1; are highlighted 

using the bold style in Listing 36. The remaining RDF statements represent the 

surrounding Java basic syntax. It is necessary for these statements to be removed as real 

world applications will have different names and access modifiers for classes and methods 

than the ones we used for generating the Jena rule (e.g. Generic_class_name and 

public generic_method_name). 

Although this limitation affects the overall performance when creating rules and caused 

overhead in terms of implementation design and time, it does not affect the runtime 

performance of the security vulnerability detection methodology, as this limitation’s issues 

are only dealt with in the rule creation phase. 

6.3. Pattern-Based Modelling and Static Code Analysis 

A common limitation of methods that employ matching techniques based on patterns 

(Parasoft, 2013 and Costanza, 2004) is the fact that they can only detect patterns that were 

used as training data or very similar to the training data when wildcards and sub-graph 

generalization are used. The impact of using wildcards and sub-graph generalization is 

discussed in Section 5.2.2. However, as the training data grows, the number of patterns that 

these methods cannot detect becomes less significant. 

During the experimental phase, when testing our methodology against real-world 

applications, patterns that our proposed methodology could not detect were observed. 

These patterns included Web application vulnerabilities that were not included in the 

training data. Concrete examples are given in Section 5.2.3. The training data consisted of 

the most common security vulnerabilities, mentioned in Section 1.1.1. Section 5.1 contains 

details of the training data used. 

Security vulnerabilities found in Web application’s security reports, such as Frame 

injection in Javadoc documentation discovered in Apache Tomcat 6.0.39, Digest 

Authentication weakness found in Apache Tomcat 6.0.36, and Local file inclusion 



113 
 

vulnerability in phpMyAdmin versions prior to 4.0.0, were not detected by our 

methodology, as the training data did not include patterns for these types of vulnerabilities.  

Furthermore, this thesis approach is a white-box testing approach and although the 

proposed methodology can detect a wide variety of security vulnerabilities, it is not 

possible to be trained to secure all aspects of a Web application. Section 1.1.3 shows that 

although white-box testing was able to detect more types of security vulnerabilities than 

black-box testing, some security vulnerabilities were only detected using a black-box 

testing approach. Static code analysis is also only possible when the source code of the 

Web application is available. Therefore, the methods proposed in this thesis should be used 

in conjunction with other approaches, such as black-box testing. 

Furthermore, we mentioned that only the last variable traced was used for testing against 

use in a potentially dangerous operation. Although it constitutes a limitation of the 

proposed methodology, it was not found necessary to check intermediary variables in the 

tracing information flow phase, as these were not used in dangerous operations during the 

training phase. This situation was also not encountered during the experimental phase. 

  



114 
 

7. CONCLUSIONS AND FUTURE WORK 

This thesis provided a novel methodology for finding security vulnerabilities in Web 

applications. The methodology addresses a current limitation of previously proposed 

approaches: their dependence on the programming language of the Web application under 

test. 

To address this limitation, we proposed reasoning over source code represented 

independently of its programming language. The motives for using a Semantic reasoner 

were supported by previous research in the area of security. We have shown that reasoning 

with rules and ontologies in order to enforce security and integrity of information has been 

previously proposed in academia. Although the proposed frameworks do not apply to 

source code analysis, they provided the proof of concept that security can be enforced with 

the application of Semantic Web technologies. 

The representation chosen was the format the Semantic Web is built upon, specifically 

RDF. This format allows the methodology to employ Semantic Web technologies, and 

therefore, its inference capabilities. Although previous research proposed the conversion of 

source code to RDF, their result was a coarse-grained representation of source code facts, 

and static code analysis could have not been implemented. We thus, provided the 

following contributions: 

 An algorithm that converts source code into a common format that allows static 

code analysis independently of the input programming language  

 A method that represents source code facts with the finest granularity, suitable for 

implementing static code analysis 

 A novel approach that employs a Semantic reasoner to detect security 

vulnerabilities in Web applications 

The implementation of the source code extraction framework employs the ANTLR parser 

generator and language grammars to represent the source code using Abstract Syntax 

Trees. The ASTs are traversed into an XML document that is converted to RDF using 

XQuery. The language grammars caused limitations during the Jena rule creation stage, as 



115 
 

it required the code patterns to be enclosed in a program with proper syntax. Although this 

limitation caused delays in the implementation duration, it does not affect the performance 

of the vulnerability detection methodology. 

Jena rules were generated from three types of patterns of code, corresponding to the phases 

of the methodology: entry points identification, tracing information flow and vulnerability 

detection. These rules are associated with the source code model by the Semantic reasoner 

during testing of the Web application for security vulnerabilities.  Additional data is 

inferred if the patterns converted into Jena rules match code in the Web application turned 

into RDF. The pattern-based approach had a common limitation identifiable in static code 

analysis methods that use patterns to match data. Specifically, the methodology cannot 

match patterns that were not included in the training data. Although a known limitation of 

a pattern-based approach, using sub-graph generalization and wildcards we were able to 

match not only precise patterns, but also similar patterns, with no discovered false 

positives. 

False positives were caused when additional statements were inferred. These statements 

did not add any value to the results of the methodology.  However, they did not affect the 

accuracy of the methodology. We were still able to identify the correct type of 

vulnerability. 

The patterns for generating Jena rules were selected from the test cases made available by 

the National Institute of Standards and Technology (NIST). The patterns were selected for 

the most common vulnerabilities caused by improper implementation of control flow 

methods. These types of vulnerabilities were identified in the introduction chapter. 

In order to test the proposed methodology against real-world applications, we chose Web 

applications with known vulnerabilities. Although the methodology could not identify all 

the published security vulnerabilities, due to the pattern-based approach limitation and 

patterns that do not follow an information flow model (e.g. source-data flow-sink), we 

were still able to identify a substantial amount of Web application vulnerabilities. 

Detection of vulnerabilities was also limited due to variables values assigned through 

method calls, as this feature was not implemented.  



116 
 

Nevertheless, similar patterns not included in the training data were matched due to the 

implementation of reasoning using sub-graph generalization and wildcards. Furthermore, 

the objective of this research, e.g. a language independent method that detects security 

vulnerabilities in Web applications using a pattern-based approach, was met. 

7.1. Future work 

As a pattern-based approach, the methodology will be limited to detecting only the patterns 

for which the Jena rules were generated. Therefore, future work should include more 

training data that contains a larger variety of security vulnerabilities patterns and types. 

However, this may result in CPU overhead, as the methodology will need to find a match 

against a potentially large amount of data. Therefore, future work should also include ways 

to minimize the CPU overhead or to find a compromise between the size of the Jena rule 

set and the CPU processing power. 

Larger coverage of code can be achieved through analysis of method calls. For example, if 

the value of variable file is assigned using a method call, such as file = 

read_contents(), the methodology should analyze the contents of the 

read_contents() method. In an entry points identification phase, this method could 

return tainted data and thus, the file variable would need to be traced inside the 

application. However, this feature can cause CPU overhead as well. Assuming the 

read_contents() method is not defined in the current script file which includes 

dozens of imports. The static code analysis method would need to analyze the contents of 

every imported file for declaration of the read_contents()method. In this case, in 

order to save the CPU processing power, the methodology may choose not to trace this 

method. 

A useful feature of the proposed methodology is the capability to detect vulnerabilities 

across a system written in different programming languages. Although the methodology 

could be currently applied to such system, considering that the sub-systems interoperate 

and that the current methodology does not implement cross-script analysis, the proposed 

methodology is limited for a multi-language system. Future work should include a feature 

to enable the possibility of cross-script and cross-subsystem analysis. 



117 
 

BIBLIOGRAPHY 

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, Techniques, and 

Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc. 

Akhtar, W., Kopecky, J., Krennwallner, T., & Polleres, A. (2008). XSPARQL: Traveling Between the 

XML and RDF Worlds - and Avoiding the XSLT Pilgrimage. Proceedings of the 5th European 

Semantic Web Conference on The Semantic Web: Research and Applications (pp. 432-

447). Tenerife, Canary Islands, Spain: Springer-Verlag. 

Apache Software Foundation. (2014). Reasoners and rule engines: Jena inference support. 

Retrieved from Apache Jena: http://jena.apache.org/documentation/inference/ 

Appel, A. W., & Ginsburg, M. (1998). Modern Compiler Implementation in C. Cambridge University 

Press. 

Arenas, M., & Perez, J. (2011). Querying semantic web data with SPARQL. Proceedings of the 

thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 

305-316). Athens, Greece: ACM. 

Ashri, R., Payne, T., Marvin, D., Surridge, M., & Taylor, S. (2004). Towards a Semantic Web Security 

Infrastructure. In Proceedings of Semantic Web Services Symposium. Standford. 

Baca, D., Carlsson, B., Petersen, K., & Lundberg, L. (2013). Improving software security with static 

automated code analysis in an industry setting. Software: Practice and Experience, 43(3), 

259–279. 

Barthe, G., Pichardie, D., & Rezk, T. (2007). A Certified Lightweight Non-interference Java 

Bytecode Verifier. In Programming Languages and Systems (pp. 125-140). Springer Berlin 

Heidelberg. 

Bavarian, W. W. & Wohner, W. (2001). A Modest Proposal: Reasoning Beyond the Limits of 

Ontologies. In Proceedings of IJCAI-01 Workshop on Ontologies and Information Sharing 

(pp. 4-5). 

Beizer, B. (1990). Software Testing Techniques. Boston: International Thompson Computer Press. 

Beizer, B. (1995). Black Box Testing. New York: John Wiley & Sons, Inc. 

Benantar, M. (2010). Access Control Systems: Security, Identity Management and Trust Models. 

Springer. 

Bloomberg. (2008). Bloomberg L.P. Network Security Breaches Plague NASA. Retrieved from 

Bloomberg - Business & Financial News: http://www.businessweek.com/stories/2008-11-

19/network-security-breaches-plague-nasa 



118 
 

Brumley, D., & Song, D. (2006). Towards attack-agnostic defenses. Proceedings of the 1st USENIX 

Workshop on Hot Topics in Security (pp. 57-62 ). USENIX Association. 

Business Spectator Pty Ltd. (2011). Citigroup cyber security breached. Retrieved from 

http://www.businessspectator.com.au/bs.nsf/Article/UPDATE-3-Citi-says-hackers-access-

bank-card-data-HNAQP 

Campbell, S. (2010, February 27). How Does Facebook Work? The Nuts and Bolts. Retrieved from 

http://www.makeuseof.com/tag/facebook-work-nuts-bolts-technology-explained/ 

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K. (2004). Jena: 

implementing the semantic web recommendations. Proceedings of the 13th international 

World Wide Web conference (pp. 74-83). New York. 

Cenzic. (2013). Application Vulnerability Trends Report. Retrieved from 

http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-Vulnerability-Trends-Report-

2013.pdf 

Clark & Parsia. (2014). OWL & Rule Reasoning. Retrieved from Stardog Docs: 

http://docs.stardog.com/owl2/ 

Costanza, P. (2004, March 13). Dynamic vs. Static Typing - A Pattern-Based Analysis. Retrieved 

from http://www.p-cos.net/documents/dynatype.pdf 

Eiter, T., Ianni, G., Polleres, A., Schindlauer, R. & Tompits, H. (2006). Reasoning with rules and 

ontologies. In Reasoning Web 2006. Springer (pp. 93-127). 

Feigenbaum, E. A., McCorduck, P., & Nii, H. P. (1988). The Rise of the Expert Company. Macmillan. 

Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E., & Stephens, S. (2007). The Semantic 

Web in Action. Scientific American, vol. 297 (pp. 90-97). 

Finifter, M., & Wagner, D. (2011). Exploring the Relationship Between Web Application 

Development Tools and Security. In USENIX Conference on Web Application Development 

(WebApps). USENIX Association. 

Forgy, C. (1982). Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match 

Problem. In Artificial Intelligence (pp. 17–37). 

Ganapathy, G., & Sagayaraj, S. (2011). To Generate the Ontology from Java Source Code. 

International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 2 (pp. 

111-116). 

Gandon, F., & Sadeh, N. (2004). Semantic web technologies to reconcile privacy and context 

awareness. Web Semantics: Science, Services and Agents on the World Wide Web, 1(3), 

241-260. 



119 
 

Graaumans, J. P. (2005). Usability of XML Query Languages. Utrecht University. 

Graf, J., Hecker, M., & Mohr, M. (2013). Using JOANA for Information Flow Control in Java 

Programs. Proceedings of the 6th Working Conference on Programming Languages (ATPS 

2013).  

Gruber, T. (2008). Collective knowledge systems: Where the Social Web meets the Semantic Web. 

6(1). 

Gua, T., Punga, H. K., & Zhang, D. Q. (2005). A service‐oriented middleware for building context‐

aware services. Journal of Network and Computer Applications, Volume 28, Issue 1, , 1-18. 

Guardian News and Media Limited. (2011). Biggest series of cyber-attacks in history uncovered. 

Retrieved from http://www.theguardian.com/technology/2011/aug/03/biggest-series-

cyber-attacks-uncovered 

Hammer, C. (2010). Experiences with PDG-Based IFC. ESSoS'10 Proceedings of the Second 

international conference on Engineering Secure Software and Systems, (pp. 44-60). 

Hammer, C., Krinke, J., & Nodes, F. (2006). Intransitive Noninterference in Dependence Graphs. 

Proceedings of the Second International Symposium on Leveraging Applications of Formal 

Methods, Verification and Validation (pp. 119-128). IEEE Computer Society. 

Hoff, T. (2008, November 22). Google Architecture. Retrieved from 

http://highscalability.com/google-architecture 

Hoff, T. (2008, March 12). YouTube Architecture. Retrieved from 

http://highscalability.com/youtube-architecture 

Hurst, A. (2004). Analysis of Perl’s Taint Mode. Retrieved from 

http://hurstdog.org/papers/hurst04taint.pdf 

Intel. (2012). Improve C++ Code Quality with Static Analysis. Retrieved February 25, 2013, from 

http://software.intel.com/sites/products/evaluation-guides/docs/studioxe-evalguide-

SSA-with_C++_020812.pdf 

Kagal, L., Finin, T., & Joshi, A. (2003). A policy language for a pervasive computing environment. In 

Collection of IEEE 4th International Workshop on Policies for Distributed Systems and 

Networks.  

Kaoudi, Z., & Manolescu, I. (2013). Triples in the clouds. Retrieved from http://web.imis.athena-

innovation.gr/~zoi/rdfcloud_icde13.pdf 

Ke, W., Muthuprasanna, M., & Kothari, S. (2006). Preventing SQL injection attacks in stored 

procedures. Software Engineering Conference, 2006. Australian, 18-21. 



120 
 

Keivanloo, I., Forbes, C., Rilling, J., & Charland, P. (2011). Towards sharing source code facts using 

linked data. Proceedings of the 3rd International Workshop on Search-Driven 

Development: Users, Infrastructure, Tools, and Evaluation (pp. 25-28). Waikiki, Honolulu: 

ACM. 

Kuruvila, S. (2011, December 13). PHP Parser - An antlr grammar for parsing php source files. 

Retrieved from https://code.google.com/p/phpparser/ 

Li, P. (2005). Practical information-flow control in web-based information systems, In Proceedings 

of 18th IEEE Computer Security Foundations Workshop. IEEE Computer (pp. 2-15). Society 

Press. 

Lindorfer, F. (2010). Semantic Web Frameworks. Basel: Basel University. 

Liu, S., & Cheng, B. (2009). Cyberattacks: Why, What, Who, and How. IT Pro, pp. 14-18. 

Louridas, P. (2006, July). Static Code Analysis. IEEE Software, 23(4). 

Masri, W., Podgurski, A., & Leon, D. (2004). Detecting and Debugging Insecure Information Flows. 

In ISSRE’04: the 15th International Symposium on Software Reliability Engineering, (pp. 

198-209). 

Melnik, S. (1999, November 19 ). Simplified Syntax for RDF. Retrieved from 

http://infolab.stanford.edu/~melnik/rdf/syntax.html 

Microsoft Corporation. (2003, September 2). Improving Web Application Security: Threats and 

Countermeasures. Microsoft Press. 

Morisset, C., & Oliveira, A. S. (2007). Automated Detection of Information Leakage in Access 

Control. Preliminary Proceedings of the 2nd International Workshop on Security and 

Rewriting Techniques (SecReT’07). Paris. 

Microsoft Developer Network (MSDN). (2013, September 3). Forced Parameterization Can Lead to 

Poor Performance. Retrieved from 

http://blogs.msdn.com/b/sql_pfe_blog/archive/2013/09/03/forced-parameterization-

can-lead-to-poor-performance.aspx 

Myers, A. (1999). JFlow: Practical Mostly-Static Information Flow Control. In Proc. 26th ACM 

Symp. on Principles of Programming Languages., (pp. 228-241). 

Noonan, W., & Dubrawsky, I. (2006). Firewall Fundamentals. Cisco Press. 

Oracle. (2014, January). Security guide. Retrieved from 

http://download.oracle.com/docs/cd/B28359_01/network.111/b28531.pdf 



121 
 

Open Web Application Security Project (OWASP). (2008, January 14). Preventing SQL Injection in 

Java. Retrieved from 

https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java 

Open Web Application Security Project (OWASP). (2013). 2013 OWASP Top 10 Most Dangerous 

Web Vulnerabilities. Retrieved from 

http://www.port80software.com/support/articles/2013-owasp-top-10 

Open Web Application Security Project (OWASP). (2013, March 19). Static code analysis. 

Retrieved from https://www.owasp.org/index.php/Static_Code_Analysis 

Open Web Application Security Project (OWASP). (2014). SQL Injection Prevention Cheat Sheet. 

Retrieved May 8, 2013, from 

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet 

Özacar, T., Öztürk, Ö., & Ünalir, M. O. (2007). Optimizing a Rete-based Inference Engine using a 

Hybrid Heuristic and Pyramid based Indexes on Ontological Data. Journal of Computers, 

Vol 2, No 4, 41-48. 

Paar, C., Pelzl, J., & Preneel, B. (2010). Understanding Cryptography: A Textbook for Students and 

Practitioners. Springer. 

Parasoft. (2013). Static Analysis Best Practices. Retrieved from 

http://www.parasoft.com/printables/staticanalysis.pdf?path=/products/article.jsp 

Parr, T., & Fisher, K. (2011). LL(*): The Foundation of the ANTLR Parser Generator. Proceedings of 

the 32nd ACM SIGPLAN Conference on Programming Language Design and 

Implementation (pp. 425-436). San Jose: ACM. 

Parundekar, R., Knoblock, C. A., & Ambite, J. L. (2012). Discovering concept coverings in ontologies 

of linked data sources. ISWC'12 (pp. 427-443). Boston: Springer-Verlag. 

Perl. (2014). Perl Security. Retrieved from http://perldoc.perl.org/perlsec.html 

Ponemon. (2013, February 26). The Post Breach Boom. Retrieved from 

http://www.ponemon.org/blog/the-post-breach-boom 

Rakić, G., & Budimac, Z. (2011). Introducing Enriched Concrete Syntax Trees. In Proc. of the 14th 

International Multiconference on Information Society (IS), Collaboration, Software And 

Services In Information Society (CSS), 211-214. 

Rakić, G., Budimac, Z., & Savic, M. (2013). Language Independent Framework for Static Code 

Analysis. Proceedings of the 6th Balkan Conference in Informatics (pp. 236-243). 

Thessaloniki: ACM. 



122 
 

Ranta, A. (2012). Implementing Programming Languages. An Introduction to Compilers and 

Interpreters. London: College Publication. 

Rao, J., & Sadeh, N. (2005). A Semantic Web Framework for Interleaving Policy Reasoning and 

External Service Discovery. Proceedings of RuleML, (pp. 56-70). 

Reynolds, D. (2013, July 18). Retrieved from Jena-users Mailing List Archives: http://mail-

archives.apache.org/mod_mbox/jena-

users/201307.mbox/%3C51E7A0DE.5000801@gmail.com%3E 

Richardson, M., Agrawal, R., & Domingos, P. (2003). Trust Management for the Semantic Web. In 

Proceesings of the Second International Semantic Web Conference, (pp. 351-368). 

Ritchey, R. W., & Ammann, P. (2000). Using model checking to analyze network vulnerabilities. 

IEEE Symposium on Security and Privacy, (pp. 156 -165). 

Rossum, G. v. (2006, January 10). Python Status Update. Retrieved from 

http://www.artima.com/weblogs/viewpost.jsp?thread=143947 

Roy, I., Porter, D. E., Bond, M. D., Mckinley, K. S., & Witchel, E. (2009). Laminar: Practical Fine-

Grained Decentralized Information Flow Control. Proceedings of the 2009 ACM SIGPLAN 

conference on Programming language design and implementation (pp. 63-74). ACM. 

Sabelfeld, A., & Myers, A. C. (2003). Language-based information-flow security. IEEE Journal on 

Selected Areas in Communications, 5-19. 

SANS. (2014, May 26). AppSec - Protecting Your Web Apps: Two Big Mistakes and 12 Practical Tips 

to Avoid Them. Retrieved from http://www.sans.org/reading-

room/whitepapers/application/appsec-protecting-web-apps-big-mistakes-12-practical-

tips-avoid-33038 

Scholte, T., Robertson, W., Balzarotti, D., & Kirda, E. (2012). Preventing Input Validation 

Vulnerabilities in Web Applications through Automated Type Analysis. Computer Software 

and Applications Conference (COMPSAC), 2012 IEEE 36th Annual (pp. 233-243). Izmir: 

IEEE. 

Shah, S. (2006, February 11). Detecting Web Application Security Vulnerabilities. Retrieved from 

O'Reilly SysAdmin: 

http://www.onlamp.com/pub/a/sysadmin/2006/11/02/webapp_security_scans.html 

Simonet, V., & Rocquencourt, I. (2003). Flow Caml in a Nutshell. Proceedings of the first APPSEM-

II workshop, (pp. 152-165). 

Stabek, A., Watters, P., & Layton, R. (2010). The Seven Scam Types: Mapping the Terrain of 

Cybercrime. Second Cybercrime and Trustworthy Computing Workshop, (pp. 41-51). 



123 
 

Stallings, W. (2010). Cryptography and Network Security: Principles and Practice. Upper Saddle 

River, NJ, USA: Prentice Hall Press. 

Su, Z. (2006). The essence of command injection attacks in web applications. (pp. 372-382). ACM 

Press. 

The Sydney Morning Herald. (2011). PlayStation hacking scandal: police chief says contact your 

bank now. Retrieved from http://www.smh.com.au/digital-life/games/playstation-

hacking-scandal-police-chief-says-contact-your-bank-now-20110427-1dvts.html 

Thomas, D., Fowler, C., & Hunt, A. (2004). Programming Ruby: The Pragmatic Programmer's 

Guide. Pragmatic Bookshelf. 

Thomson-Smith, L. D. (2011). Anti-Virus Software: Guarding systems from the malware pandemic. 

FastBook Publishing. 

Ureche, O., Layton, R., & Watters, P. (2012). Towards an Implementation of Information Flow 

Security using Semantic Web Technologies. Cybercrime and Trustworthy Computing 

Workshop. Ballarat, Australia: IEEE. 

World Wide Web Consortium (W3C). (1999, November 16). XSL Transformations (XSLT) Version 

1.0. Retrieved from http://www.w3.org/TR/xslt 

World Wide Web Consortium (W3C). (2004). OWL-S: Semantic Markup for Web Services. 

Retrieved from http://www.w3.org/Submission/OWL-S/ 

World Wide Web Consortium (W3C). (2004, February 10). Resource Description Framework (RDF): 

Concepts and Abstract Syntax. Retrieved November 5, 2011, from 

http://www.w3.org/TR/rdf-concepts/ 

World Wide Web Consortium (W3C). (2007, March 22). A strawman Unstriped syntax for RDF in 

XML. Retrieved from http://www.w3.org/DesignIssues/Syntax 

World Wide Web Consortium (W3C). (2007, September 11). Gleaning Resource Descriptions from 

Dialects of Languages (GRDDL). Retrieved from http://www.w3.org/TR/grddl/ 

World Wide Web Consortium (W3C). (2010). XQuery 1.0: An XML Query Language (Second 

Edition). Retrieved from http://www.w3.org/TR/xquery/ 

World Wide Web Consortium (W3C). (2013, October 29). Extensible Markup Language (XML). 

Retrieved from http://www.w3.org/XML/ 

World Wide Web Consortium (W3C). (2013). Vocabularies. Retrieved from 

http://www.w3.org/standards/semanticweb/ontology 

Walker, B. (2010). Using Static Code Analysis to Find Bugs Before They Become Failures. Retrieved 

from http://www.uploads.pnsqc.org/2010/slides/p39_Walker_slides.pdf 



124 
 

WhiteHat Security. (2013). Web Application Security: Identifying appropriate investments for 

positive ROI. Retrieved from 

https://www.whitehatsec.com/assets/presentations/13PPT/PPTroi0513.pdf 

Yip, A., Wang, X., Zeldovich, N., & Kaashoek, M. (2009). Improving application security with data 

flow assertions. Proceedings of the ACM SIGOPS 22nd symposium on Operating systems 

principles (pp. 291-304). New York: ACM. 

Zdancewic, S. (2004). Challenges for information-flow security. In Proc. Programming Language 

Interference and Dependence (PLID).  

Zdancewic, S. (2005). Practical Information-flow Control in Web-Based Information Systems. 18th 

IEEE Computer Security Foundations Workshop CSFW05 (pp. 2-15). IEEE. 

Zou, Y., & Kontogiannis, K. (2001). Towards A Portable XML-based Source Code Representation. In 

International Conference on Software Engineering (ICSE) 2001.  

 

 

  



125 
 

APPENDIX 

PHP Grammar for ANTLR (Kuruvila, 2011) 

grammar Php; 

 

options { 

    backtrack = true;  

    memoize = true; 

    k=2; 

    output = AST; 

    ASTLabelType = CommonTree; 

} 

 

tokens{ 

    SemiColon = ';'; 

    Comma = ','; 

    OpenBrace = '('; 

    CloseBrace = ')'; 

    OpenSquareBrace = '['; 

    CloseSquareBrace = ']'; 

    OpenCurlyBrace = '{'; 

    CloseCurlyBrace = '}'; 

    ArrayAssign = '=>'; 

    LogicalOr = '||'; 

    LogicalAnd = '&&'; 

    ClassMember = '::'; 

    InstanceMember = '->'; 

    SuppressWarnings = '@'; 

    QuestionMark = '?'; 

    Dollar = '$'; 

    Colon = ':'; 

    Dot = '.'; 

    Ampersand = '&'; 

    Pipe = '|'; 

    Bang = '!'; 

    Plus = '+'; 

    Minus = '-'; 

    Asterisk = '*'; 

    Percent = '%'; 

    Forwardslash = '/';  

    Tilde = '~'; 

    Equals = '='; 

    New = 'new'; 

    Clone = 'clone'; 

    Echo = 'echo'; 

    If = 'if'; 

    Else = 'else'; 

    ElseIf = 'elseif'; 

    For = 'for'; 

    Foreach = 'foreach'; 



126 
 

    While = 'while'; 

    Do = 'do'; 

    Switch = 'switch'; 

    Case = 'case'; 

    Default = 'default'; 

    Function = 'function'; 

    Break = 'break'; 

    Continue = 'continue'; 

    //Goto = 'goto'; 

    Return = 'return'; 

    Global = 'global'; 

    Static = 'static'; 

    And = 'and'; 

    Or = 'or'; 

    Xor = 'xor'; 

    Instanceof = 'instanceof'; 

     

    Class = 'class'; 

    Interface = 'interface'; 

    Extends = 'extends'; 

    Implements = 'implements'; 

    Abstract = 'abstract'; 

    Var = 'var'; 

    Const = 'const'; 

    Modifiers; 

    ClassDefinition; 

     

    Block; 

    Params; 

    Apply; 

    Member; 

    Reference; 

    Empty; 

    Prefix; 

    Postfix; 

    IfExpression; 

    Label; 

    Cast; 

    ForInit; 

    ForCondition; 

    ForUpdate; 

    Field; 

    Method; 

} 

 

@header{ 

package net.kuruvila.php.parser;  

} 

@lexer::header{ 

package net.kuruvila.php.parser; 

} 

@lexer::members{ 



127 
 

    // Handle the first token, which will always be a BodyString. 

    public Token nextToken(){ 

        //The following code was pulled out from super.nextToken() 

        if (input.index() == 0) { 

            try { 

                state.token = null; 

                state.channel = Token.DEFAULT_CHANNEL; 

                state.tokenStartCharIndex = input.index(); 

                state.tokenStartCharPositionInLine = 

input.getCharPositionInLine(); 

                state.tokenStartLine = input.getLine(); 

                state.text = null; 

                mFirstBodyString(); 

                state.type = BodyString; 

                emit(); 

                return state.token; 

            } catch (NoViableAltException nva) { 

                reportError(nva); 

                recover(nva); // throw out current char and try 

again 

            } catch (RecognitionException re) { 

                reportError(re); 

                // match() routine has already called recover() 

            }     

        } 

        return super.nextToken(); 

    } 

} 

 

 

prog : statement*; 

 

statement 

    : simpleStatement? BodyString 

    | '{' statement '}' -> statement 

    | bracketedBlock 

    //| UnquotedString Colon statement -> ^(Label UnquotedString 

statement) 

    | classDefinition 

    | interfaceDefinition 

    | complexStatement 

    | simpleStatement ';'! 

    ; 

     

bracketedBlock 

    : '{' stmts=statement* '}' -> ^(Block $stmts) 

    ; 

 

interfaceDefinition 

    : Interface interfaceName=UnquotedString interfaceExtends? 

        OpenCurlyBrace 

        interfaceMember* 



128 
 

        CloseCurlyBrace 

        -> ^(Interface $interfaceName interfaceExtends? 

interfaceMember*) 

    ; 

 

interfaceExtends 

    : Extends^ UnquotedString (Comma! UnquotedString)* 

    ; 

interfaceMember 

    : Const UnquotedString (Equals atom)? ';'  

        -> ^(Const UnquotedString atom?) 

    | fieldModifier* Function UnquotedString parametersDefinition 

';' 

        -> ^(Method ^(Modifiers fieldModifier*) UnquotedString 

parametersDefinition) 

    ; 

 

classDefinition 

    :   classModifier?  

        Class className=UnquotedString  

        (Extends extendsclass=UnquotedString)?  

        classImplements? 

        OpenCurlyBrace 

        classMember* 

        CloseCurlyBrace  

        -> ^(Class ^(Modifiers classModifier?) $className 

^(Extends $extendsclass)? classImplements? 

            classMember* 

        ) 

    ; 

     

classImplements 

    :  Implements^ (UnquotedString (Comma! UnquotedString)*) 

    ; 

 

classMember 

    : fieldModifier* Function UnquotedString parametersDefinition  

        (bracketedBlock | ';') 

        -> ^(Method ^(Modifiers fieldModifier*) UnquotedString 

parametersDefinition bracketedBlock?) 

    | Var Dollar UnquotedString (Equals atom)? ';'  

        -> ^(Var ^(Dollar UnquotedString) atom?)  

    | Const UnquotedString (Equals atom)? ';'  

        -> ^(Const UnquotedString atom?) 

    | fieldModifier* (Dollar UnquotedString) (Equals atom)? ';'  

        -> ^(Field ^(Modifiers fieldModifier*) ^(Dollar 

UnquotedString) atom?) 

    ; 

 

fieldDefinition 

    : Dollar UnquotedString (Equals atom)? ';'-> ^(Field ^(Dollar 

UnquotedString) atom?) 



129 
 

    ; 

     

classModifier 

    : 'abstract'; 

     

fieldModifier 

    : AccessModifier | 'abstract' | 'static'  

    ; 

 

 

complexStatement 

    : If '(' ifCondition=expression ')' ifTrue=statement 

conditional? 

        -> ^('if' expression $ifTrue conditional?) 

    | For '(' forInit forCondition forUpdate ')' statement -> 

^(For forInit forCondition forUpdate statement) 

    | Foreach '(' variable 'as' arrayEntry ')' statement -> 

^(Foreach variable arrayEntry statement) 

    | While '(' whileCondition=expression? ')' statement -> 

^(While $whileCondition statement) 

    | Do statement While '(' doCondition=expression ')' ';' -> 

^(Do statement $doCondition) 

    | Switch '(' expression ')' '{'cases'}' -> ^(Switch expression 

cases) 

    | functionDefinition 

    ; 

 

simpleStatement 

    : Echo^ commaList 

    | Global^ name (','! name)* 

    | Static^ variable Equals! atom 

    | Break^ Integer? 

    | Continue^ Integer? 

    //| Goto^ UnquotedString 

    | Return^ expression? 

    | RequireOperator^ expression 

    | expression 

    ; 

 

 

conditional 

    : ElseIf '(' ifCondition=expression ')' ifTrue=statement 

conditional? -> ^(If $ifCondition $ifTrue conditional?) 

    | Else statement -> statement 

    ; 

 

forInit 

    : commaList? ';' -> ^(ForInit commaList?) 

    ; 

 

forCondition 

    : commaList? ';' -> ^(ForCondition commaList?) 



130 
 

    ; 

     

forUpdate 

    : commaList? -> ^(ForUpdate commaList?) 

    ; 

 

cases  

    : casestatement*  defaultcase 

    ; 

 

casestatement 

    : Case^ expression ':'! statement* 

    ; 

 

defaultcase  

    : (Default^ ':'! statement*) 

    ; 

 

functionDefinition 

    : Function UnquotedString parametersDefinition bracketedBlock 

->  

        ^(Function UnquotedString parametersDefinition 

bracketedBlock) 

    ; 

 

parametersDefinition 

    : OpenBrace (paramDef (Comma paramDef)*)? CloseBrace -> 

^(Params paramDef*)  

    ; 

 

paramDef 

    : paramName (Equals^ atom)? 

    ; 

 

paramName 

    : Dollar^ UnquotedString 

    | Ampersand Dollar UnquotedString -> ^(Ampersand ^(Dollar 

UnquotedString)) 

    ; 

 

commaList 

    : expression (','! expression)*  

    ; 

     

expression 

    : weakLogicalOr 

    ; 

 

weakLogicalOr 

    : weakLogicalXor (Or^ weakLogicalXor)* 

    ; 

 



131 
 

weakLogicalXor 

    : weakLogicalAnd (Xor^ weakLogicalAnd)* 

    ; 

     

weakLogicalAnd 

    : assignment (And^ assignment)* 

    ; 

 

assignment 

    : name ((Equals | AsignmentOperator)^ assignment) 

    | ternary 

    ; 

 

ternary 

    : logicalOr QuestionMark expression Colon expression -> 

^(IfExpression logicalOr expression*) 

    | logicalOr 

    ; 

     

logicalOr 

    : logicalAnd (LogicalOr^ logicalAnd)* 

    ; 

 

logicalAnd 

    : bitwiseOr (LogicalAnd^ bitwiseOr)* 

    ; 

     

bitwiseOr 

    : bitWiseAnd (Pipe^ bitWiseAnd)* 

    ; 

 

bitWiseAnd 

    : equalityCheck (Ampersand^ equalityCheck)* 

    ; 

 

equalityCheck 

    : comparisionCheck (EqualityOperator^ comparisionCheck)? 

    ; 

     

comparisionCheck 

    : bitWiseShift (ComparisionOperator^ bitWiseShift)? 

    ; 

 

bitWiseShift 

    : addition (ShiftOperator^ addition)* 

    ; 

     

addition 

    : multiplication ((Plus | Minus | Dot)^ multiplication)* 

    ; 

 

multiplication 



132 
 

    : logicalNot ((Asterisk | Forwardslash | Percent)^ 

logicalNot)* 

    ; 

 

logicalNot 

    : Bang^ logicalNot 

    | instanceOf 

    ; 

 

instanceOf 

    : negateOrCast (Instanceof^ negateOrCast)? 

    ; 

 

negateOrCast 

    : (Tilde | Minus | SuppressWarnings)^ increment 

    | OpenBrace PrimitiveType CloseBrace increment -> ^(Cast 

PrimitiveType increment) 

    | OpenBrace! weakLogicalAnd CloseBrace! 

    | increment 

    ; 

 

increment 

    : IncrementOperator name -> ^(Prefix IncrementOperator name) 

    | name IncrementOperator -> ^(Postfix IncrementOperator name) 

    | newOrClone 

    ; 

 

newOrClone 

    : New^ nameOrFunctionCall 

    | Clone^ name 

    | atomOrReference 

    ; 

 

atomOrReference 

    : atom 

    | reference 

    ; 

 

arrayDeclaration 

    : Array OpenBrace (arrayEntry (Comma arrayEntry)*)? CloseBrace 

-> ^(Array arrayEntry*) 

    ; 

 

arrayEntry 

    : (keyValuePair | expression) 

    ; 

 

keyValuePair 

    : (expression ArrayAssign expression) -> ^(ArrayAssign 

expression+) 

    ; 

 



133 
 

atom: SingleQuotedString | DoubleQuotedString | HereDoc | Integer 

| Real | Boolean | arrayDeclaration 

    ; 

 

reference 

    : Ampersand^ nameOrFunctionCall 

    | nameOrFunctionCall 

    ; 

 

nameOrFunctionCall 

    : name OpenBrace (expression (Comma expression)*)? CloseBrace 

-> ^(Apply name expression*) 

    | name 

    ; 

 

name: staticMemberAccess 

    | memberAccess 

    | variable 

    ; 

     

staticMemberAccess 

    : UnquotedString '::'^ variable 

    ; 

 

memberAccess 

    : variable  

        ( OpenSquareBrace^ expression CloseSquareBrace! 

        | '->'^ UnquotedString)* 

    ; 

     

variable 

    : Dollar^ variable 

    | UnquotedString 

    ; 

 

BodyString  

    : '?>' (('<' ~ '?')=> '<' | ~'<' )* ('<?' ('php'?))? 

    ; 

 

fragment 

FirstBodyString 

    : (('<' ~ '?')=> '<' | ~'<' )* '<?' ('php'?) 

    ; 

 

MultilineComment     

    : '/*' (('*' ~ '/')=>'*' | ~ '*')* '*/' {$channel=HIDDEN;} 

    ; 

 

SinglelineComment 

    : '//'  (('?' ~'>')=>'?' | ~('\n'|'?'))* {$channel=HIDDEN;} 

    ; 

 



134 
 

UnixComment 

    : '#' (('?' ~'>')=>'?' | ~('\n'|'?'))* {$channel=HIDDEN;} 

    ; 

     

 

Array 

    : ('a'|'A')('r'|'R')('r'|'R')('a'|'A')('y'|'Y') 

    ; 

 

RequireOperator 

    : 'require' | 'require_once' | 'include' | 'include_once' 

    ; 

 

PrimitiveType 

    : 'int'|'float'|'string'|'array'|'object'|'bool' 

    ; 

 

AccessModifier 

    : 'public' | 'private' | 'protected'  

    ; 

 

fragment 

Decimal  

 :('1'..'9' ('0'..'9')*)|'0' 

 ; 

fragment 

Hexadecimal 

 : '0'('x'|'X')('0'..'9'|'a'..'f'|'A'..'F')+ 

 ; 

  

fragment 

Octal 

 : '0'('0'..'7')+ 

 ; 

Integer 

 :Octal|Decimal|Hexadecimal 

 ; 

  

fragment 

Digits 

 : '0'..'9'+ 

 ; 

  

fragment 

DNum 

 :(('.' Digits)=>('.' Digits)|(Digits '.' Digits?)) 

 ; 

  

fragment 

Exponent_DNum 

 :((Digits|DNum)('e'|'E')('+''-')?Digits) 

 ; 



135 
 

  

Real 

    : DNum|Exponent_DNum 

    ; 

 

Boolean 

    : 'true' | 'false' 

    ; 

 

SingleQuotedString 

    : '\'' (('\\' '\'')=>'\\' '\'' 

    |         ('\\' '\\')=>'\\' '\\'  

    |         '\\' | ~ ('\'' | '\\'))*  

      '\'' 

    ; 

 

fragment 

EscapeCharector 

    : 'n' | 'r' | 't' | '\\' | '$' | '"' | Digits | 'x' 

    ; 

 

DoubleQuotedString 

    : '"'  ( ('\\' EscapeCharector)=> '\\' EscapeCharector  

    | '\\'  

    | ~('\\'|'"') )*  

      '"' 

    ; 

 

HereDoc  

    : '<<<' HereDocContents 

    ; 

 

UnquotedString 

   : ('a'..'z' | 'A'..'Z' | '_')  ('a'..'z' | 'A'..'Z' | '0'..'9' 

| '_')* 

   ; 

    

fragment  

HereDocContents 

    : { 

        StringBuilder sb = new StringBuilder(); 

        while(input.LA(1)!='\n'){ 

            sb.append((char)input.LA(1)); 

            input.consume(); 

        } 

        input.consume(); 

        String hereDocName = sb.toString(); 

        int hdnl = hereDocName.length(); 

        while(true){ 

            boolean matchEnd = true; 

            for(int i = 0; i<hdnl; i++){ 

                if(input.LA(1)!=hereDocName.charAt(i)){ 



136 
 

                    matchEnd=false; 

                    break; 

                } 

                input.consume(); 

            } 

            if(matchEnd==false){ 

                while(input.LA(1)!='\n'){ 

                    input.consume(); 

                } 

                input.consume(); 

            }else{ 

                break; 

            } 

        } 

    } 

    ; 

 

AsignmentOperator 

    : '+='|'-='|'*='|'/='|'.='|'%='|'&='|'|='|'^='|'<<='|'>>=' 

    ; 

     

EqualityOperator 

    : '==' | '!=' | '===' | '!==' 

    ; 

 

ComparisionOperator 

    : '<' | '<=' | '>' | '>=' | '<>' 

    ; 

     

ShiftOperator 

    : '<<' | '>>' 

    ; 

 

IncrementOperator 

    : '--'|'++' 

    ; 

     

 

fragment 

Eol : '\n' 

    ; 

 

WhiteSpace 

@init{ 

    $channel=HIDDEN; 

} 

 : (' '| '\t'| '\n'|'\r')* 

 ; 

  


