
Page | 1

Analysis of Mobile Banking Malware

on the Android Operating System

Dan Xu

Submitted in total fulfilment of the requirements for the

degree of Master by Research

School of Science, IT & Engineering

Federation University Australia

PO Box 663

University Drive, Mount Helen

Ballarat Victoria 3353

Australia

November 2017

Page | 2

ABSTRACT

The Android platform is the fastest growing smartphone operating system to date.

Consequently, malware on Android OS has been increasing at an alarming rate. Similar to

Windows-based malware, Android malware also have different families which are

responsible for different malicious activities.

In this thesis, we focused on one particular group of Android malware which is designed to

target banks and financial institutions. These banking malware use different techniques to

attack bank clients and banking servers. A coherent framework to analyse the behaviour of

these malware needs to be developed, so the impact of theirs attacks could be minimised.

This thesis investigates a systematic analysis to understand these malware’s behaviour and

distribution method. From public and private sources, 37 samples of banking malware have

been collected which represent eight major Android Banking malware families. In addition,

we also analysed malware source code by reverse engineering all malware samples. As a

result of analysis, a clear overview and better understanding of mobile banking malware on

Android OS was established. The results indicated that Android banking malware is evolving

in technique and will become more difficult to analyse in the future.

Page | 3

STATEMENT OF AUTHORSHIP

Except where explicit reference is made in the text of the thesis, this thesis contains no

material published elsewhere or extracted in whole or in part from a thesis by which I have

qualified for or been awarded another degree or diploma. No other person’s work has been

relied upon or used without due acknowledgement in the main text and bibliography of the

thesis.

Signed: Signed:

Dated: 30/11/2017 Dated: 30/11/2017

NAME: Dan Xu NAME: Iqbal Gondal

Candidate Principal Supervisor

Page | 4

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisors: A/Prof Iqbal Gondal and Dr.

Robert Layton for their continuous support throughout my thesis. I would never been able

to finish this research without their excellent guidance, patience and immense knowledge.

Their guidance helped me in all the time of research and writing of this thesis. I could not

have imagined having a better supervisor and mentor for my Masters study. I would also

like to thank all the researchers in Internet Commerce Security Lab (ICSL) and Dr. Paul

Watters for their support.

Page | 5

Table of Contents

Table of Contents .. 5

CHAPTER 1: Introduction .. 10

1.1 Research Objectives .. 12

1.2 Android banking malware ... 12

1.3 Behaviour Analysis of Android Banking Malware ... 13

1.4 Static analysis of samples .. 14

1.5 Framework for Systematic Analysis of Mobile Banking Malware (FAM) 14

1.6 Thesis Contribution ... 15

1.7 Thesis Outline .. 15

1.8 Chapter Conclusion ... 16

CHAPTER 2: Mobile Malware Behaviours ... 18

2.1 Banking malware ... 19

2.2 Banking malware families ... 21

2.3 Android malware .. 23

2.4 Android Banking malware ... 24

2.5 Static (Code) VS. Dynamic (Behaviour) Analysis Malware .. 26

2.6 Malware Lab Setup ... 27

2.7 Chapter Conclusions... 29

CHAPTER 3: Android Banking Malware Family Behaviour and Distribution ... 30

3.1 Chapter Introduction .. 31

3.2 Dataset .. 31

3.3 AV Detection and Malware Family ... 32

3.3 Android Banking Malware Family and Distribution .. 35

3.3.1 Zitmo, Spitmo, and Citmo .. 36

3.3.2 Perkele ... 40

3.3.3 smsSpy - Pincer .. 42

3.3.4 smsSpy - Marcher ... 43

3.3.5 Fakebank .. 44

3.3.6 Sypeng ... 45

3.3.7 iBanking .. 49

3.4 Android Banking Malware Family Analysis ... 52

Page | 6

3.4.1 Distribution and Installation .. 52

3.4.2 Privilege and Permission .. 52

3.4.3 Targeting region ... 53

3.4.4 Android Emulator vs. Native Device .. 53

3.5 Automated Dynamic Analysis .. 53

3.5.1 Broadcast Receivers ... 55

3.5.2 Started Services .. 56

3.5.3 SMS Sent .. 57

3.6 Chapter Conclusion .. 58

CHAPTER 4: Android Banking Malware Static Analysis and Evolution in Techniques 59

4.1 Chapter Introduction .. 60

4.2 Tools .. 60

4.2.1 APKtool .. 60

4.2.2 Dex2jar .. 61

4.2.3 JD-GUI.. 61

4.3 Static Analysis.. 61

4.3.1 AndroidManifest.xml .. 62

4.3.2 classes.dex... 65

4.4 Evolution in techniques... 68

4.4.1 Anti-SDK/VM ... 70

4.4.2 AES Encryption .. 71

4.4.3 Code Obfuscation .. 72

4.5 Chapter Conclusion ... 73

CHAPTER 5: Conclusion ... 75

5.1 Future Work .. 77

Appendix A .. 79

REMnux: A Linux Toolkit for Reverse-Engineering and Analyzing Malware 79

Appendix B .. 82

MobiSec - Mobile security testing live environment ... 82

Appendix C .. 88

Glossary: basic terminology of the Android platform .. 88

Appendix D .. 94

Permission in Manifest class ... 94

References .. 101

Page | 7

LIST OF TABLES

Table 1 – Malware Family and Number of Variants ... 32

Table 2 - AV Detection .. 34

Table 3 – AV Detection Rate by year .. 35

Table 4 - Archive that APK files contain .. 62

Table 5 - APK user permission distribution ... 64

Table 6 – Compare Two iBanking Malware Samples .. 68

Page | 8

LIST OF FIGURES

Figure 1 – How fraud Works - FBI ... 20

Figure 2 - Lab Environment ... 29

Figure 3 - Zitmo Distribution ... 37

Figure 4 - Zitmo installation: From left to right: after sample 1 installed, when sample 1 was executed,

after sample 2 installed, when sample2 was executed .. 38

Figure 5 - Spitmo: From left to right: “system” application is showing under application management

on infected device, permissions of this “system” application .. 38

Figure 6 - Citmo distribute by QR code ... 39

Figure 7 - Citmo verify phone number: From left to right: sample 1 verifying phone number, sample 2

verifying phone number ... 40

Figure 8 - Perkele installation: From left to right: permissions required for installation, after malware

execution... 41

Figure 9 – Perkele Network traffic shows the communication to external IPs immediately after

installation .. 42

Figure 10 – Pincer ... 42

Figure 11 – Marcher: From left to right: application permissions when install, loading page when

executed, after application loaded, after tap “Generate” button. ... 43

Figure 12 – FakeBank targets Korean Bank. From left to right: fake Google App Store application

permissions when installed; genuine Korean banking application on the device, fake banking

application permission when install, fake banking application when execute 45

Figure 13 - Fakebank targets European banks. From left to right: Fakebank sample 1 permissions

when installing, sample 1 executed, Fakebank sample 2 permissions when installing, sample 2

executed .. 45

Figure 14 - Svpeng activating device administrator. From left to right: Device administrator access

required when install, password required when delete the application ... 47

Figure 15 – Svpeng malware overlay attacks bank & Google Play: From left to right: fake page

overlays on top of Russian bank app when opened, fake card page asking for credit card information

overlays on top of Google Play store when opened ... 48

Figure 16 – Svpeng Ransomware : From left to right: fake FBI violation notice, specify MoneyPak as

the payment method for the fine , indicate where to buy MoneyPak vouchers 49

Figure 17 - iBanking malware Installation Guide .. 50

Figure 18 - iBanking malware ask for device administrator access .. 51

Figure 19 – Citmo Tree Graph ... 55

Figure 20 - Fakebank Broadcast Receiver ... 56

Figure 21 – Svpeng Started Services .. 57

Page | 9

Figure 22 - user permissions declared in AndroidManifest.xml .. 63

Figure 23 - smsParser.class ... 66

Figure 24 – hackSMS method ... 67

Figure 25 –Contents of arrays.xml from ... 68

Figure 26 – Malware code to steal device info ... 69

Figure 27 – iBanking malware Emulator Detection Code ... 71

Figure 28 – iBanking malware AES Encryption ... 72

Figure 29 – iBanking malware Code Obfuscation ... 73

Page | 10

CHAPTER 1: Introduction

Page | 11

Android became the world’s leading smartphone platform at the end of 2010. As of 2011,

Android has the largest installed base of any mobile OS[1] and as of 2013, its devices also sell

more than Windows, iOS, and Mac OS devices combined.[2] As of July 2013 the Google Play

store has had over 1 million Android apps published, and over 50 billion apps downloaded.[3]

A developer survey conducted in April–May 2013 found that 71% of mobile developers

develop using Android.[4] In 2014, Google revealed that there were over 1 billion active

monthly Android users (that have been active for 30 days), up from 538 million in June

2013.[5]

At the same time, the number of Android mobile malware is growing significantly. In 2013,

Kaspersky Lab detected 3,905,502 installation packages that were used by cybercriminals to

distribute mobile malware, which contributes to overall approximately 10,000,000 unique

malicious installation packages. Android remains a prime target for malicious attacks as

98.05% of all malware detected by Kaspersky Lab in 2013 targeted Android OS, confirming

both the popularity of this mobile OS and the vulnerability of its architecture.[6]

While banks are profiting from online and mobile banking, so are the cyber criminals that

target these services with highly specialized banking malware. It is observed that the

number of banking malware on mobile channel has increased and are a dominant mobile

malware threat.[7] Malware can be characterised by attack vectors e.g. browser exploits,

application (e.g. PDF, office) exploits, code insertions and buffer manipulation etc. There is

a need to understand what are the main attack vectors used by mobile banking malware on

Android OS, as compared to similar attacks on internet banking, such as inserting code into

the browser, modifying the application code, patching the network stack etc. to steal

information, manipulate transactions or make unauthorized and fraudulent money transfers.

In this research, a framework has been developed to systematically analyse Android

malware targeting banks and financial institutions. Then this framework is adopted to

analyse 37 samples, which have been collected from the security researcher community,

both within Australia and internationally. The earliest sample was discovered in June 2011,

and the latest was detected in May 2014.

All samples were analysed in an isolated test environment with realistic scenarios from

mobile banking. Static and dynamic analysis were performed on all samples; malware

Page | 12

classes and method calls were profiled and analysed methodically. Analysis also showed

technique evolution of some mobile banking malware families over the time. These new

techniques were adopted to impede forensic analysis.

In addition to systematically analysing malware binaries, analysis of the whole lifecycle of

these Android banking malware samples was performed, including malware distribution,

infection and AV detection.

1.1 Research Objectives

Due to the emergence of smartphone-based business and banking transactions, there are

significant threats present in the mobile networking environment. In this thesis, a

systematic approach has been adopted to understand the nature of the threat of mobile

banking malware especially for Android devices. A Framework for Systematic Analysis of

Mobile Banking Malware(FAM)has been adopted in responding to critical research

questions:

 What are the major Android banking malware families and what are their properties?

 How is Android banking malware distributed to its victims?

 What common features do different Android banking malware families have?

 Where do Android banking malware originate from?

 Does Android malware utilise anti-forensic techniques to avoid being detected or analysed?

In this thesis, we focus on analysing malware samples, detecting of malware is beyond the

scope of this thesis but will be looked at for future work.

1.2 Android banking malware

Android banking malware are a subcategory of mobile banking malware. The relationship

can be understood with a hierarchy structure:

 (ABM)

Page | 13

In analysing ABM, it is logical to adopt and evaluate methodologies by parent and higher

levels malware types. It is imperative to understand the banking malware profit model e.g.

how cybercriminals make money from malware, so similar models could be studied for ABM.

To study attack models, Android malware attack vectors and common Windows-based

malware analysis methods (dynamic vs. static) need to be studied in a secure analysis

environment.

1.3 Behaviour Analysis of Android Banking Malware

To conduct behaviour analysis, there is a need to scan the collected mobile malware

samples with a view to understanding the time of each sample was first seen, Anti-Virus

engine detection rate and the timeline of each malware family. Then manual execution of

malware in a lab environment should be adopted to examine the behaviour. Behaviour

analysis can be automated using existing tools available, but without proper interaction with

malware the results from automatic behaviour analysis are not as granular as those from

the manual analysis. This analysis should aid in understanding malware families, AV

malware

Banking
malware

Mobile Banking
Malware

Android
Banking

Malware (ABM)

iOS Banking
malware

Other mobile
OS Banking

malware

PC Banking
malware

Other malware e.g Ransomware,
adware, spyware etc

Page | 14

detection and distribution methods. In this thesis, 37 Android banking malware samples

were categorised into 8 different malware families.

1.4 Static analysis of samples

Static analysis requires analysis of important files to explain the main functions of

different Android banking malware families. Here, in-depth understanding of functions and

techniques used by the malware developer are studied. Static and behavioural analyses are

complementary. In this study, it was observed that new techniques have been adopted by

Android malware over the years; this observation was possible with the help of static

analysis. Particularly, there have been significant improvements in coding techniques,

obfuscation, encryption and anti-SDK etc.

1.5 Framework for Systematic Analysis of Mobile

Banking Malware (FAM)

This work proposes FAM, the Framework for Systematic Analysis of Mobile Banking

Malware. FAM aims to be a systematic strategy to analyse ABMs in the quickest possible

way, so harm caused by new types of malware could be minimised and their behaviour

could be understood, so mitigating techniques could be employed. FAM presents a

methodology, which has been adopted to conduct studies in this thesis. Following are the

steps of the framework:

1) Identification of common attack vectors of Android banking malware,

2) Android malware feature analysis

3) Systematic dynamic and static analysis of the malware sample binaries

4) Life cycle analysis of Android banking malware: distribution, infection and AV

detection

5) Anti-forensic techniques adopted by the Android banking malware

Page | 15

1.6 Thesis Contribution

This thesis will address following research questions by adopting the above proposed

Framework for systematic Analysis of Android Banking Malware (FAM):

 What are the major Android banking malware families and how are they distributed?

 What common features do different Android banking malware families have?

 What techniques are used in recent Android banking malware to prevent them from

being analysed?

Android banking malware are posing new threats to financial institutions and consumers,

and indications are that these threats will become more severe in the future. Therefore,

there is need to study these emerging threats and develop strategies to analyse the

behaviour of these malware for harm minimisation purposes. This thesis makes the

following contributions:

a) Extensive literature review - there is significant shortage of literature on mobile

banking malware, so chapter 2 of the thesis presents literature in a very coordinated

manner;

b) Development of a generalised framework for systematic analysis of mobile banking

malware;

c) Collection of mobile banking malware samples and behavioural analysis of the

samples;

d) Static analysis of the collected malware samples; and

e) Validation of proposed framework results and life-cycle analysis of mobile malware

banking samples.

These contributions have been made in chapters 2, 3 and 4.

1.7 Thesis Outline

Page | 16

This thesis makes contribution in presenting investigative studies conducted on samples of

mobile banking malware. Thesis presents studies in very coherent ways. Following is the

outline of the remaining thesis:

Chapter 2 presents a literature review, covering banking malware, banking malware families,

Android malware, static and dynamic analysis of malware, and testing lab setup.

Chapter 3 presents studies on Android Banking Malware Family Behaviour and Distribution.

This chapter also highlights the details of the datasets captured and used in the studies.

Anti-virus studies done on the samples are also presented. Finally, Android banking malware

family and distribution details are presented.

Chapter 4 presents Android Banking Malware Static Analysis and Evolution in Techniques

and introduces the tools used in conducting static analysis on the samples. Analysis of

samples from the same malware family at different time period reveals the improvements

and evolutions of techniques in malware coding.

Chapter 5 presents the findings after analysis of the samples in terms of behavioural and

static fashions. This chapter also makes detailed recommendation on the findings of the

thesis.

1.8 Chapter Conclusion

This chapter has presented high level introduction of Android banking malware and has

indicated that these malware are a subset of mobile malware, where mobile malware are

subset of malware in general. The research objectives have been presented, as well as a

framework to symmetrically analyse malware samples by conducting life-cycle analysis,

behavioural analysis and static analysis. Thesis contributions and organisation have been

presented.

Chapter 2 presents a background and literature review supporting the research on life cycle

and behavioural and static analysis, which are presented in chapter 3 and 4 respectively.

Page | 17

Page | 18

CHAPTER 2: Mobile Malware Behaviours

Page | 19

2.1 Banking malware

Banking malware, sometimes referred as financial malware, is a category of malware

which is developed to defraud customers of banks and financial institutions, making it

possible to transfer funds from the victim’s account to the attacker's using electronic

fund transfers(EFT).

Banking malware can be generic or targeted. A generic banking malware is developed to

steal user login credential from any Secure Socket Layer (SSL) or Transport Layer Security

(TLS) sessions, not only Internet banking web sites. A targeted banking malware has

particular bank or financial institutions configured in their configuration files, and make

use of the configuration file to trigger Man-In-The-Browser attack[8], which is a

technique that takes advantage of vulnerabilities in browser security to modify

webpages, modify transaction content or insert additional transactions, all in a

completely covert fashion invisible to both the user and the host web application.[9]

Historically, only sensitive information like online banking are protected by SSL, however,

in recent years, SSL is used widely to protect any confidential information online. And

the data volume in SSL sessions is becoming so big that it’s hard for the cybercriminals to

extract useful data to perform fraud transactions against the banks. This has made the

generic banking malware less effective. Most attackers have now moved on to targeted

banking malware. In this research, we refer banking malware as targeted banking

malware.

Banking malware is normally distributed via phishing email or drive-by downloads.

Phishing email distribution is more targeted but has a lower infection rate, as malware

can be detected and blocked by email server anti-virus (AV) program. Drive-by

downloads may happen when a user visits a website or clicks on a deceptive pop-up

window. Victims often click on the window by mistaken belief that, for instance, an error

report from the computer's operating system itself is being acknowledged, or that an

innocuous advertisement pop-up is being dismissed. In such cases, the "supplier" may

claim that the user "consented" to the download, although actually the user was

Page | 20

unaware of having started an unwanted or malicious software download[10]. Drive-by

downloads are more generic in nature and attackers always use different techniques to

obfuscate the malicious code so that AV software is unable to recognize it. In recent

time, this has become a popular way to distribute banking malware.

After banking malware is distributed and executed on the victim’s PC, it normally stays

in the background unobtrusively until the victim visits an online banking site in the

browser. Most banking malware have an ability to intercept submitted credentials by

logging the user's keystrokes, which are then sent to cybercriminals who defraud the

bank later using these stolen credentials. The Federal Bureau of Investigation (FBI)

published a fraud scheme in October 2010, which described how cybercriminals commit

fraud using one of the infamous malware - Zeus (figure below). Zeus, also refered as

ZeuS, or Zbot is a Trojan horse malware package that runs on versions of Microsoft

Windows. While it can be used to carry out many malicious and criminal tasks, it is often

used to steal banking information by man-in-the-browser keystroke logging and form

grabbing. Although Zeus is not Android malware, it was heavily used in Android

malware distribution. Below figure shows very clearly that banking malware is playing a

critical role in cyber theft ring.

Figure 1 – How fraud Works - FBI
[11]

Page | 21

To mitigate fraud risks from credential stealing malware, many banks employ virtual

keyboard. Virtual keyboard is a software technology that displays an on-screen keyboard,

requiring the user to use their mouse to click virtual keys to enter sensitive details such

as password. The corresponding key will be typed into the selected textbox on the

screen. In this case, the use of traditional keyboard is nullified so that banking malware

could not intercept anything from monitoring keyboard events. Thus sensitive and

personal information can be protected. However, cybercriminals improved banking

malware to defeat this control as well. Advanced banking malware were developed to

take screenshots on the mouse click event, all screenshots are then uploaded to the

malware control and command server which is managed by the cybercriminal. Even

worse, some more advanced banking malware can even record video of user’s online

banking session, and upload video files to cybercriminals’ servers.

Besides credential stealing, cybercriminals have also worked on malware “automation”,

some complex malware even have the ability to manipulate bank customer initiated

payment details, automate EFT in the background, or add additional fraud EFT when the

victim makes genuine transactions.

2.2 Banking malware families

Malware are generally grouped at two hierarchical levels: “variant” and “family”; where

“variant” refers to a different version of the original malicious code, and “family”

indicates the distinct or original piece of malware.[12]

A few very large malware families are responsible for the majority of Internet banking

related fraud through malware, due to their advanced functionalities. The most notable

of these malware families are Zeus, Citadel, SpyEye and Carberp.[13]

Zeus malware, also referred as Zbot, is one of the original banking malware. It was first

identified in 2007 and became more wide spread in 2009. This infamous banking

malware is normally spread through drive-by downloads and phishing campaigns. It

mainly steals online banking credentials by Man-In-The-Browser keystroke logging and

Page | 22

form grabbing. Functionally, malware in the Zeus family has two main components: a

builder that can generate a bot executable and a Control and Command (C&C) server to

monitor and control the malware. Zeus source code was leaked in May 2011, which

allowed other malware developers to study and create malware based on its code. New

malware families like Ice IX, Citadel, Gameover Zeus, P2P Zeus are all different variations

based on Zeus source code. Citadel was one of the most successful successors of Zeus[14].

Besides newer and more dynamic features of the malware, the creators of Citadel

adopted an open-source development model that let anyone review its code and

improve upon it. In June 2013, Microsoft, along with law enforcement agencies and

other security companies, conducted an operation that helped to disrupt many Citadel-

based botnets. Microsoft then claimed that 88% of the botnets spawned by Citadel

malware had been taken down[15]. SpyEye was designed by a rival group to compete

with Zeus in 2010. Function-wise, it was similar to Zeus in a lot of ways. To compete with

Zeus, the latest SpyEye versions contained an interesting feature called “Kill Zeus”,

which could take over an infected PC when it’s infected by both Zeus and SpyEye.

Although SpyEye had some success in its early days, the run almost ended after a series

of cybercriminal arrests in 2012[16]. Like Zeus, Carberp has the ability to steal sensitive

data from infected machines and download new data from command-and-control

servers. It has complex rootkit functionalities allowing the malware to remain

undetected by antivirus on the victim’s system. Carberp source code was leaked to the

public in June 2013, and security researchers soon discovered a new malware called

Zerp with combined features of both Zeus and Carberp[17].

These major banking malware families have been heavily analyzed by researchers from

different angles. Some researchers focused on malware functionality[1819], and

configuration[2021], and others focus on the techniques that malware employs to deter

analysis e.g code obfuscation[22], or malware detection[23]. Malware source code leaks

and extensive analysis of these malware have led to an enhanced understanding how

many of these malware work.

Page | 23

2.3 Android malware

Due to the popularity of Android OS, it has rapidly become a significant target for

malware attacks.

In, August 2010, the first known SMS malware for Android was discovered and reported

by Dennis Mashlennikov from Kaspersky Lab. This malware disguises itself as a movie

player and sends SMS to two premium rate numbers without the owner’s knowledge.

The cost of each message is $5, resulting in big bills to owners from premium messaging

providers. The malware only targeted Russian users and it was not found on Android

Market (which was renamed to Google Play in 2012)[24].

In the same month as the discovery of first SMS malware for Android, Symantec

discovered a GPS spyware which had the ability to collect and send GPS coordinates to a

remote server every 15 minutes without the mobile phone owner’s knowledge[25].

Because the malware was not found in Android Market and not widespread, the impact

was minimal at that time.

At the end of 2010, mobile security company Lookout announced their discovery of

Android malware Geinimi, which was the most sophisticated malware for Android found

in the wild[26]. Geinimi is an example of repackaging a legitimate application with

malicious code, and demonstrated the possibility of “Trojanization” in the Android world.

More “Trojanized” versions of legitimate apps were discovered and reported in 2011.

Given they were all hosted in unofficial app stores and app download sites, the golden

rule for Android users was to only download and install apps from official app store –

Android Market. However, this recommendation became less effective when Lookout

discovered more than 50 apps containing DroidDream malware in the official Android

Market[27].

In May 2011, a new malware named DroidKungFu was discovered in the official Android

Market by researchers at North Carolina State University[28]. DroidKungFu was a

successor of DroidDream and carried out the same malicious activities: stealing device

Page | 24

information and installing an Android malware downloader app. Unlike DroidDream,

DroidKungFu encrypts the exploits using AES to evade AV detection[29].

Years 2010 and 2011 were the beginning of Android malware epidemic, which can be

clearly verified by security industry statistics. According to Juniper Networks, in 2010

Android malware only comprised 0.5% of total mobile malware. One year later, this

number became 46.7%[30]; by the end of 2011, Android malware increased to 47% of

total mobile malware threat, and this number doubled over 2012, reaching 92% in

March 2013[31]. Kaspersky Lab reported in February 2014 that 98.05% of all malware

detected in 2013 targeted Android platform[32].

The rampant growth of Android malware has led to research from both academia and

industry. Some researchers focused on collecting Android samples, systematically

analysing and characterising the data set, in order to gain better understanding of

Android malware attack vectors and infection behaviours from different malware

families[33]. There are a few tools and systems created by researchers to assist Android

malware analysis. DroidScope is an example[34], developed as a platform that continues

the tradition of virtualization-based malware analysis.

Android malware detection and prevention has also been heavily researched, based on

malware behaviour or code patterns; a few tools have been developed to assist

assessing Android applications and detecting malicious or risky apps. For example,

RiskRanker is developed as an automated system to analyse whether a particular app

exhibits dangerous behaviour (e.g., launching a root exploit or sending background SMS

messages)[35].

2.4 Android Banking malware

Mobile banking is undergoing tremendous growth as customers increasingly choose

smart devices over bank tellers, which has resulted in banks closing branches and

investing in online services. Many banks also believe that mobile devices are a secure

secondary method of out-of-band authentication. To authenticate the people who have

Page | 25

phones, many banks built their second factor authentication solutions on short message

services (SMS), which is one of the most widely available protocols, but this protocol has

its own security flaws. With the perception of extra layer authentication control, bank

customers are allowed to carry out riskier transactions. This makes it more attractive to

cybercriminals, because they can potentially steal more money if this authentication

layer is circumvented.

On September 25th, 2010, a Spanish-based data security company S21sec detected a

malware which targets Symbian and BlackBerry OS. The malware was working in

conjunction with Zeus malware; and developed to forward Mobile Transaction

Authentication Number (mTAN) to the attackers. S21sec published this threat on their

blog.[36] This became the first Zeus in the Mobile (ZitMo) malware detected.

On 21 February 2011, the second ZitMo attack analysis was published by a Polish

blogger, the malware was developed clearly targeting specific organizations: ING and

mBank.[37]

Various modifications of ZitMo have been detected since then; and other PC-based

malware also started to incorporate the same technique to develop their mobile

versions. A number of mobile variants of PC-based malware have been seen e.g. SpyEye

in the Mobile (SPitMo) in 2011[38], and Carberp in the Mobile (CitMo) in 2012. [39]

Although initially mobile banking malware targeted Symbian and BlackBerry OS, but with

the increasing popularity of Android OS and significant growth of malware on this

platform, Android OS has become the primary target by Mobile banking malware in

recent years.

Although a lot of research has been done to counter Android malware, but there is very

little research focusing on a particular subset – Android banking malware. This might be

because the volume of Android banking malware was low and there were not enough

samples for researchers to do the study. However, this has changed in recent two years.

In 2013, there was a dramatic increase in the number of Android banking malware.

Kaspersky Lab quoted this increase as “Trend of the year”, because they only had 67

Android banking malware in January 2013, but collected 1321 unique samples by the

Page | 26

end of the year[40]. Furthermore, Kaspersky Lab reported that in the first quarter of 2014,

the number of mobile banking malware almost doubled from 1321 to 2503. These

malware started initially targeting users from Russian and Commonwealth of

Independent States (CIS), and then it was found that these malware have been affecting

users in other countries: Germany, Sweden, France, Italy, the UK and the US[41].

Kaspersky also reported that 98.5% mobile malware that were collected by Kaspersky

Lab were targeting Android OS, which indicated that almost all of mobile banking

malware they reported were Android banking malware.

Despite dramatic growth, the total number of Android banking malware is still relatively

small. There is no existing Android banking malware sample dataset that are publically

available to the research community. In this research, we managed to collect samples

from different sources including Internet, other security researchers and financial

institutions in Australia and internationally, we believe that our malware sample dataset

is a good representation of past and current Android banking malware.

Like Windows-based malware, Android malware can also be categorized into different

malware families. Some family names are based on the PC malware name that they

work together with, for example ZitMo means Zeus in the Mobile; Some family names

are based on the malware author’s name, e.g Perkele; There are also some malware

with generic family names, e.g SmsSpy. We have detailed analysis on Android banking

families in Chapter 3.

2.5 Static (Code) VS. Dynamic (Behaviour) Analysis

Malware

There are two types of malware analysis – Static and Dynamic. Both static and dynamic

analyses accomplish the same goal of explaining how malware works, but from different

perspectives.

Page | 27

Static analysis, also referred as code analysis, is widely used by antivirus industries. It is

based on malicious binary inspection, looking for malicious functions in malware source

code. On the other hand, dynamic or behaviour analysis involves executing the sample in a

controlled and sanitized environment to record and analyse its behaviour using pre-installed

tools in order to understanding malware execution traces.

Static analysis can reveal all malicious functions used by the malware. However, it is time

consuming due to the fact that techniques like code obfuscation can really slow static

analysis down. Cybercriminals may deliberately obfuscate code to conceal malware purpose

or its logic, in order to deter reverse engineering. Code obfuscation is commonly employed

by Windows malware and is expected in Android malware. The Android SDK includes a tool

named Proguard[42] for obfuscating Apps. Furthermore, bytecode randomization techniques

can be used to completely hide the internal logic of a Dalvic bytcode program[43].

Dynamic analysis is considered relatively faster and immune to code obfuscation. With the

malware being executed, analyst is able to see the malicious behaviour on an actual

execution path. The downside of dynamic analysis is that it only exploits one execution path,

and it may not be effective if user interaction is needed to trigger the malicious activity.

Although it can be ameliorated by exploiting multiple execution paths or a user action can

be configured to trigger malware activity, but additional understanding of the malware will

be required prior to the analysis.

In this research, both static and dynamic analyses were performed to gain a complete

understanding on how that particular malware functions. Analysis of malware distribution

method was also performed.

2.6 Malware Lab Setup

Setting up of a controlled and sanitized environment is absolutely essential for analysing

malware, regardless the Operating System.

Page | 28

The research computer had Windows 7 installed with the following specifications: Intel(R)

Xeon(R) CPU E5620 @ 2.40 GHz 2.39 GHz (2 processors), 4 GB RAM DDR3 and 100 GB hard

disk.

On the research PC, we installed virtual machine VMware Workstation version 9.03 build-

1410761. Inside the virtual machine we have a few virtual machines installed:

MobiSec OS is installed for Android malware analysis. MobiSec is a bootable Linux

distribution designed for mobile devices, applications and infrastructure analysis. MobiSec is

a single environment with several excellent open source mobile malware analysis tools pre-

installed and configured. Tools like dex2jar, apktools, JD-GUI, DroidBox are all used later in

the research. Android emulators are also available in the live environment. MobiSec is

maintained as an open source project on Source Forge[44].

During the research, it has been discovered that many Android banking malware are

associated closely with traditional Windows based malware. Therefore we installed REMnux

version4 to assist with Windows malware analysis. REMnux is a lightweight Linux

distribution to assist malware analysts with reverse-engineering malicious software on

Windows OS. The distribution is based on Ubuntu and is maintained by Lenny Zeltser[45].Two

Windows virtual machine: Windows 7 and Windows XP (SP2) were installed for Windows

malware analysis.

Android SDK [46] - A Software Development Kit that allows users to create and test Android

applications - was installed on the host research PC. An Android Virtual Device can be

created using the Android Virtual Device Manager within Android SDK.

In case malware can detect virtualized environment or emulator, a native Android test

device - Samsung Galaxy S2 was also employed. This test device specs are: Model number:

GT-I9100; Android version: 4.1.2(Jelly Bean); Baseband version: I9100XXLS9; Kernel version:

3.0.31-889555, dpi@Dell144 #3, SMP PREEMPT Tue Feb 10 11:18:12, KST 2013; Build

number: JZO54K.I9100XWLSH. The test device was connected to the same network as the

host research computer, and has several tools (e.g traffic analysis tool: SharkForRoot)

installed for malware analysis. Figure 2 shows how the test lab was set up.

Page | 29

Figure 2 - Lab Environment

2.7 Chapter Conclusions

Malware analysis is very time-consuming and tedious work, so there is need to understand

existing standalone malware analysis techniques in PC environment and formulate a

comprehensive malware analysis framework for banking Android malware. This thesis work

has collected significant samples of Android banking malware, and then has conducted

experiments to complete the analysis using the proposed framework. Application of the

framework is dependent on the nature of the malware sample. The following chapters

present studies done on various aspects of the framework.

Internet

Router

Physical
Host(Win7)

Vmware
Workstation

MobiSec REMnux4 Windows7 Windows XP

Android SDK

Samsung
Galaxy 2

Page | 30

CHAPTER 3: Android Banking Malware Family

Behaviour and Distribution

Page | 31

3.1 Chapter Introduction

In this chapter, we first present an overview of the collected samples created using the

VirusTotal[47] online tool. VirusTotal uses up to 54 different antivirus products and scan

engines to check for viruses, which provides us more detailed information about the

samples. Secondly, we dynamically analyse all collected malware samples manually. Manual

dynamic analysis involves installing the malware in a controlled and sanitized environment,

and observing malware presentation, behaviour and network communication using various

tools. Both an Android emulator and a native test Android device were used for manual

dynamic analysis, in case any malware has the ability to detect a virtual or emulated

environment. When possible, screenshots from analysis were captured and are presented to

demonstrate the “look and feel” of each malware family. We also researched and analysed

how Android banking malware were distributed. Malware distribution methods will help us

understand the full life cycle of each attack. For each malware family, we collected

information about where the samples were originally gathered using primary and secondary

sources, and summarized each Android banking malware families history and attack lifecycle.

Thirdly, we present the results of automated analysis using Droidbox, an Android malware

sandbox tool, against all the samples in the data set. From the automated analysis reports

we found some similarities and commonalities between Android banking malware

behaviours, which could assist with Android banking malware identification and detection in

the future.

Although some of the samples were a few years old and previously studied and analysed by

researchers and industry malware analysts, our research aimed to cluster them based on

presentation, distribution technique, and attack flow and explore differences and

similarities between malware software. In addition, by dynamically analysing all samples in a

consistent environment, we verify previous analysis.

3.2 Dataset

Page | 32

The dataset comprises 37 samples that were collected from publicly-available such as

GitHub and private sources such as security industry forums etc.. Based on source code

structure and development group, malware samples in the dataset has been categorized in

to 8 different malware families: Citmo, Fakebank, iBanking, Perkele, smsSpy, Spitmo ,

Svpeng and Zitmo.

Table 1 – Malware Family and Number of Variants

Virus Total was employed to scan the collected mobile malware samples to gain an

understanding about the time of each sample was first seen, Anti-Virus engine detection

rates and the timeline of each malware family. Different antivirus engines normally assign

different names to the same malware sample; we also used this information to validate the

family that a sample belongs to. The "first-seen" date is taken to mean the date when the

malware was first uploaded to VirusTotal for analysis. Although it is not the date of malware

release, it is a good indication of when malware was discovered.

3.3 AV Detection and Malware Family

From the VirusTotal scan, we recorded the malware MD5, first-seen dates and detection

rates from various antivirus engines, which are presented in Table 2 below. The MD5

algorithm is a widely used hash function producing a 128-bit hash value, It has be used as a

Family No. of Variant Appearance time period

Citmo 3 Dec-12

Fakebank 8 Aug 2013-Apr 2014

iBanking 7 Nov 2013-2014

Perkele 4 Mar 2013 - Mar 2014

SmsSpy 4 Mar 2013 - Dec 2013

Spitmo 1 Aug-11

Svpeng 1 Sep 2013 - 2014

Zitmo 9 Feb 2011 - Apr 2013

Page | 33

checksum to verify data integrity. MD5 has been used by anti-virus company as virus

identifier for a long time, it has been the fastest and shortest generated hash, although it

was found vulnerable to collision attack[48], it doesn’t impact this research. The VirusTotal

scan results suggest a timeline for the emergence of each malware family. We can see that

most *itMo(Zitmo, Spitmo, Citmo) malware were seen from 2010 to 2012, followed by

Perkele, smsSpy, FakeBank, Svpeng in 2013, and most iBanking in 2014.

Page | 34

Table 2 - AV Detection

Although some of these samples were originally detected several years ago, the AV

detection rates were only at an average of 64.36%. We also observed that older

Family MD5 First seen AV Detection Detection ratio

07d2ee88083f41482a859cd222ec7b76 13/12/2012 38/54 70.37%

117d41e18cb3813e48db8289a40e5350 15/12/2012 38/54 70.37%

f27d43dfeedffac2ec7e4a069b3c9516 13/12/2012 38/54 70.37%

37dff309cc911a1dc16cce4e51f9827b 16/08/2013 33/54 61.11%

67e7bb573eaa1f25772809a471cda327 16/08/2013 33/54 61.11%

7276e76298c50d2ee78271cf5114a176 14/11/2013 29/54 53.70%

8bf10991f292ec7d165086506e8f0eda 22/09/2013 35/54 64.81%

98eea1d94a479e022e46d69b0fbe2453 5/11/2013 32/53 60.38%

a0721023ec39948251818306a15d3268 22/09/2013 35/54 64.81%

a15b704743f53d3edb9cdd1182ca78d1 3/04/2014 30/54 55.56%

aac4d15741abe0ee9b4afe78be090599 13/02/2014 28/54 51.85%

009e60205b8fbc780a2dd3083cdd61cb 4/02/2014 33/54 61.11%

1f68addf38f63fe821b237bc7baabb3d 17/12/2013 34/54 62.96%

d1059b52b6127b758581eb86247bc34f 4/02/2014 34/54 62.96%

df1c6dfb6830ba845231af26d80354de 5/04/2014 31/54 57.41%

e1b86054468d6ac1274188c0c579ccaf 19/11/2013 35/54 64.81%

f06af629d33f17938849f822930ae428 29/12/2013 34/53 64.15%

f1bc8520754d2ac4a920b3ef5c732380 26/02/2014 33/53 62.26%

22d67d86493e9f16e7e5a8cd87ca177c 8/03/2013 31/54 57.41%

4efa9b64dd3171bc584becc8c5e3bebb 19/04/2013 26/54 48.15%

9f42936cdc6fb3a4cf146c85b376f85a 7/03/2014 28/51 54.90%

b597850b04140e0e28749e0a11cc0118 5/05/2013 32/54 59.26%

98951168215955a1f14198b19a134b14 6/05/2013 28/51 54.90%

74e09c5f57d5a040c86a86cdad7f04fa 3/05/2013 33/52 63.46%

b226a66a2796e922302b96ae81540d5c 12/03/2013 40/54 74.07%

e29cec3924426dda960633fe56e0b86a 12/12/2013 27/55 49.09%

Spitmo cfa9edb8c9648ae2757a85e6066f6515 10/08/2011 44/53 83.02%

Svpeng a3eb6b30e23146d9d44103addc71a41b 15/09/2013 34/54 62.96%

1cf41bdc0fdd409774eb755031a6f49d 19/04/2013 34/54 62.96%

2dfccca5a9cdf207fb43a54b2194e368 19/06/2012 39/54 72.22%

6ddaae38a49cefcb1445871e0955bef3 19/06/2012 39/54 72.22%

a1593777ac80b828d2d520d24809829d 4/04/2012 39/53 73.58%

b1ae0d9a2792193bff8c129c80180ab0 13/06/2012 42/54 77.78%

d1cf8ab0987a16c80cea4fc29aa64b56 19/06/2012 41/54 75.93%

e9068f116991b2ee7dcd6f2a4ecdd141 19/06/2012 39/54 72.22%

e98791dffcc0a8579ae875149e3c8e5e 8/08/2012 36/53 67.92%

ecbbce17053d6eaf9bf9cb7c71d0af8d 2/06/2011 42/53 79.25%

Citmo

Fakebank

iBanking

Perkele

Zitmo

SmsSpy

Page | 35

malware samples have better detection rates (Table 3). However, this detection rate

might be low as not all antivirus engines used by VirusTotal were able to detect mobile

malware[49].

Table 3 – AV Detection Rate by year

3.3 Android Banking Malware Family and

Distribution

3

In order to understand malware behaviour, each malware sample was manually installed

and executed in a sandboxed environment or isolated native Android device in cases where

the malware could detect the virtual environment. We then observed the appearance and

behaviour of the malware. The distribution method of each malware family was

investigated and compared in order to understand the whole malware attack flow.

Banking malware that target Windows OS are normally distributed via phishing emails and

drive-by downloads. This distribution is non-targeted but effective, because these malware

are normally configured to target multiple banks and financial institutions. When the

infected user logs in to their online banking, if the online banking URL matches the URL

wildcard in malware configuration file – which is basically the malware’s target list, the

malware injects itself into browser processes to hook selected APIs, and then steal user’s

credentials or manipulate user’s online banking session.

Banking malware that target Android OS, on the other hand, are more targeted. Most

samples in the dataset works in tandem with the traditional Windows desktop malware,

aiming to steal the second factor passed via mobile phone, which could be later used to

Year of samples Detection rate Average detection rate

2011 81.13%

2012 72.30%

2013 60.56%

2014 58.01%

64.36%

Page | 36

complete fraudulent transactions together with the login username and password that were

captured in Windows.

3.3.1 Zitmo, Spitmo, and Citmo

We put Zitmo, Spitmo and Citmo together to analyse because they share the same

“surname” - *itmo. The name of the malware families indicated the Windows malware

families they are working in tandem with – Zeus, Spyeye, Carberp.

On a high level, Android malware Zitmo, Spitmo and Citmo are served as malicious payloads

by their Windows “brothers” - Zeus, Spyeye and Carberp. While these windows malware

can steal Online Banking login credentials, Zitmo, Spitmo and Citmo play the part to

compromise the mobile component in order to complete an unauthorized transaction.

Technically, Zitmo, Spitmo and Citmo malware are distributed via Windows malware’s

webinjects[50] in online banking sessions; when a user on an infected PC authenticates to an

online banking session using SMS authentication, the Windows malware injects malicious

code components that can modify the bank web pages which are being displayed in the

victim’s browser.

Page | 37

Figure 3 - Zitmo Distribution
[51]

Figure 3 is an example of how the Zeus malware distributed Zitmo: a webinject from Zeus

requires the installation of new “security update” to user’s mobile device, the user is asked

to provide mobile phone model and number in order to receive and install the new “security

update”. After providing mobile phone information, the user will receive an SMS with a link

to click and download the “security update” to his/her mobile device, alternatively, a link is

injected to the online banking session and displayed on the screen for the user to type in

his/her mobile phone. After installation, the user sees a new icon on the dashboard. Once

the app is started, a “security code” will be generated. Figure 4 below shows two examples

of Zitmo app after installation, and the look when it’s started.

Page | 38

Figure 4 - Zitmo installation: From left to right: after sample 1 installed, when sample 1 was executed, after

sample 2 installed, when sample2 was executed

The distribution method of Spitmo is very similar to Zitmo, however after installation,

there’s no new item added to the dashboard. Under application management function, we

found a new application called “System”, which did not exist before the malware installation.

This app has permission to receive, read, edit, send messages, access Internet, as well as

intercept outgoing phone calls (See Figure 5 below).

Figure 5 - Spitmo: From left to right: “system” application is showing under application management on

infected device, permissions of this “system” application

Page | 39

Citmo utilize webinjects from Carberp malware, and is distributed to potential victims in the

same way as Zitmo and Spitmo. Some Citmo variants even employ Quick Response (QR)

code for distribution. QR code is normally injected to the webpage by Carberp malware so

that the mobile user can scan the code to download and install the Citmo malware. This

distribution technique not only made the malware installation easier, but also potentially

reduces the risk of being suspected by the potential victim – people tend to be more careful

when they key in a URL than scan a QR code[52].

Figure 6 - Citmo distribute by QR code
[53]

A bank-themed icon will be added after Citmo malware installation. When started, the user

will be asked to enter his/her phone number to get verified. Below screenshots are from 2

different samples:

Page | 40

Figure 7 - Citmo verify phone number: From left to right: sample 1 verifying phone number, sample 2

verifying phone number

It is worthwhile to point out that, these three Citmo samples in the dataset were uploaded

to Google play (Russia) on 30th November 2012. Google removed them quickly, however,

these three malware applications were downloaded over 150 times.

Although the Citmo samples in the dataset only target Russian banks, after the July 2013

leak of Carberp source code[54], anyone can modify Carberp, it’s possible to see new Citmo

variants targeting users in other countries.

Some *itmo variants also target other mobile operating systems such as BlackBerry[55];

however investigating these variants is not in scope of this research.

3.3.2 Perkele

The release of the *itmo malware was later followed by the next Android banking malware

family – Perkele. In March 2013, the Perkele malware was uncovered by Brain Krebs on

underground Russian-language forums[56]. “Perkele” is a Finnish curse word for “devil” or

“damn”, and was used as nickname by the malware coder. This Android malware is

designed to work in tandem with Windows malware webinjects. Unlike its *itmo

predecessors, Perkele is able to work with any Windows banking malware family that

supports webinjects –it can essentially be loaded as an add-on by the malware. When the

victim attempts to log in to their bank account using their infected PC, malware webinject

Page | 41

informs the victim that in order to complete the second, mobile authentication portion of

the login process, the user will need to install a special security certificate on their phone.

The victim is then prompted to enter their mobile device’s model, OS and number

information. A link is sent to the mobile device which, when clicked on, installs Perkele on

the device. During installation, the malware requests the permissions to read and send SMS

messages. When started, the Perkele malware asks for a password and password

confirmation. After providing and confirming the password, a “certificate” and a number is

showed on the screen. See Figure 7 below.

Figure 8 - Perkele installation: From left to right: permissions required for installation, after malware

execution

We also monitored incoming and outgoing network traffic from the infected device under

dynamic analysis. It is observed that once the mobile “security” app was installed, it

communicated to a few external IPs immediately. Below is a screenshot of traffic over HTTP:

Page | 42

Figure 9 – Perkele Network traffic shows the communication to external IPs immediately after installation

3.3.3 smsSpy - Pincer

Pincer was one of the main variant from smsSpy family. It was first uncovered by a Finnish

security firm F-Secure in April 2013. It comes disguised as a security certificate and,

according to F-Secure notes, is designed to surreptitiously intercept and forward text

messages[57]. In our dataset, malware with MD5:98951168215955a1f14198b19a134b14 is a

Pincer sample. Below is a screenshot of Pincer being started after installation:

Figure 10 – Pincer

Pincer has not been found on Google Play and was not heavily distributed. It appears to be

meant for precise attacks, as opposed to being aimed at as many users as possible[58].

Page | 43

3.3.4 smsSpy - Marcher

Marcher was the other main variant from smsSpy family. The sample with MD5:

e29cec3924426dda960633fe56e0b86a in our dataset is a Marcher sample. AVG ThreatLabs

described this malware as a malicious Android app used to interrupt the normal operations

of an Android device and gain access to private information stored in it. One example of

malicious behaviour is to disguise as legitimate banking applications and steal bank

credentials when the user logs in. Below are some screenshots that were taken when this

sample was installed and run. Upon installation, the app requires the permission to receive

and send SMS, and also requests the permission to read phone status and make phone calls

directly. It is branded as “SMSAES” and has a function to generate code and close the

application.

Figure 11 – Marcher: From left to right: application permissions when install, loading page when executed,

after application loaded, after tap “Generate” button.

The major malicious function of this group of malware is spying on SMS, as indicated by its

generic name. The distribution method varies from Instant Messaging over mobile phone to

phishing email.

Page | 44

3.3.5 Fakebank

The next malware family in our dataset was Fakebank. Fakebank malware was first

uncovered in mid-2013, and appears to target online banking users from South Korea.

According to Symantec’s research, this FakeBank Android malware was distributed by a

Windows malware called Trojan.Droidpak[59]. When infected, it drops a DLL file on the

Windows PC and ensures its persistence across reboots by registering a new system service.

It then downloads a configuration file from a remote server that contains the malicious APK

(Android application package) file called AV-cdk.apk. The Windows malware downloads the

malicious APK, as well as the Android Debug Bridge (ADB) command line tool that allows

users to execute commands on Android devices connected to a PC. ADB is part of the official

Android Software Development Kit (SDK). The malware executes the “adb.exe install AV-

cdk.apk” command repeatedly to ensure that if an Android device is connected to the host

computer at any time, the malicious APK is silently installed on it. However, this approach

has a limitation—it will work only if “USB debugging” is enabled on the Android device.

USB debugging setting is normally used by Android developers, but it’s also required for

some operations that are not directly related to development, like gaining root/privilege

user access to the OS, taking screen captures on devices running old Android versions or

installing custom Android firmware. Even if this feature is rarely used, users who turn it on

once to perform a particular task may forget to disable it when they don’t need it

anymore.[60]

When the user installs this malware, it creates an icon like Google Play and calls itself

Google App Store. After installation, the malware looks for certain Korean online banking

applications on the compromised device and, if found, prompts users to delete them and

install malicious versions. When users starts the disguised smart banking apps it asks them

to fill in their account information, and submits the information to a malicious server.

Page | 45

Figure 12 – FakeBank targets Korean Bank. From left to right: fake Google App Store application permissions

when installed; genuine Korean banking application on the device, fake banking application permission

when install, fake banking application when execute

Fakebank Android malware variants have been seen targeting some European banks too.

Below are some screenshots of permission requests upon installation (Figure 13).

Figure 13 - Fakebank targets European banks. From left to right: Fakebank sample 1 permissions when

installing, sample 1 executed, Fakebank sample 2 permissions when installing, sample 2 executed

3.3.6 Sypeng

Page | 46

We have only one sample for the Svpeng malware family, because it is still relatively new

and few samples are available for research. Svpeng malware was first uncovered and

reported by Kaspersky Lab in 2013. It disguises itself as an Adobe Flash Player update, and

spread via spam emails. Like other Android banking malware, upon installation, the sample

requires permission to access personal information and networks; receive, read and send

SMS; and read and make phone calls. In addition, Svpeng also requires permissions for

storage access (modify or delete the contents of USB storage), hardware controls (record

audio), development tools (test access to protected storage) and System tools (e. g, change

network connectivity, connect and disconnect from WiFi, disable screen lock , close other

apps, run at start up).

Once installed, the application displays an icon with a letter "F" on a red background. When

started, the app requires activating the "device administrator" feature of the mobile device.

The Android Device Administration API was introduced by Android 2.2, and provides mobile

device administration features at system level[61]. With the device administrator privilege,

an app can prompt the user to set a new password, lock the device immediately or wipe the

device’s data without the user’s knowledge. Furthermore, the device administration API

supports additional policies, in this case, “set storage encryption” is the policy supported.

This policy was introduced in Android 3.0 and allows an application to specify that the

storage area should be encrypted if the device supports it. Device administrator privileges

can be disabled from the device settings; however, this malware displays a lock screen and

asks for a passcode in order to de-activate device administrator privileges. Without the right

passcode, this privilege cannot be disabled.

Page | 47

Figure 14 - Svpeng activating device administrator. From left to right: Device administrator access required

when install, password required when delete the application

Besides the extensive permissions the Svpeng sample asks for installation, this sample in our

dataset doesn’t seem to be very banking-related. Later versions of Svpeng have more

malicious functions, which makes it more effective as banking malware. Kaspersky Lab

reported a variant of Svpeng malware with the ability to carry out overlay attacks[62]. After

infection, the attack starts as soon as the victim clicks on his or her banking app. Following a

click on the app, Svpeng generates a window that looks like the banking app that was just

launched, which is presented on top of the actual app. This fools the victim into thinking

that he or she is interacting with the legitimate app, but is actually feeding credentials to the

malware. This is not a typical HTML injection attack as we know them from the Windows

world, but rather a dedicated phishing window displayed on top of the genuine app. Using a

similar method, the malicious program also tries to steal information about the user’s credit

cards. When the user launches Google Play, the malware displays a window requesting card

info on top of the Google Play window. Below are some screenshots from Kaspersky Lab’s

research:

Page | 48

Figure 15 – Svpeng malware overlay attacks bank & Google Play
[63]

: From left to right: fake page overlays on

top of Russian bank app when opened, fake card page asking for credit card information overlays on top of

Google Play store when opened

In addition to the overlay attack, at the beginning of 2014, Kaspersky Lab uncovered a new

modification of Svpeng with ransomware capabilities[64]. Just as PC ransomware attacks

scare and force the victim into paying the attacker money to regain control or access to the

infected device, infected users receive a message on the device, which claims to have been

sent by the FBI, explaining that the infected device has been used to access some prohibited

content. The malware then locks the mobile device unless the user pays $200 ransom. It

also takes a photo using the front camera and displays on the ransom message window.

The malware accepts MoneyPak vouchers for the ransom payments, and indicates where

the vouchers can be purchased. Figure 16 shows some relevant screenshots from Kaspersky

Lab's research.

Page | 49

Figure 16 – Svpeng Ransomware
[65]

 : From left to right: fake FBI violation notice, specify MoneyPak as the

payment method for the fine , indicate where to buy MoneyPak vouchers

According to Kaspersky Lab’s analysis, the ransomware function of Svpeng completely

blocks the mobile device, and persists after rebooting.

3.3.7 iBanking

iBanking was the last malware family investigated. iBanking malware was uncovered by

researchers at Symantec in 2013, and became available for purchase at a major Eastern

European underground forum in September 2013, replete with a broad range of malicious

functionalities. In February 2014, RSA reported the leak of iBanking mobile bot source code.

The leaked files also included a bash script builder that can un-pack the existing iBanking

APK file and re-pack it with different configurations. Such malware source code leaks are

always a double-edged sword, it allowed security researchers and analysts to understand

more about this malware family, it also provided fraudsters with the means to create their

own unique mobile malware.

Similar to other mobile banking malware, iBanking also uses social engineering tactics to

lure victims into downloading and installing the malware on their Android devices. The

Page | 50

victim is usually already infected with a banking malware on their Windows computer.

When they visit a banking or social networking website, the Windows malware will generate

a pop up message or inject malicious content in the web session, asking the victim to install

a mobile app as an additional security measure.

The user is prompted for their phone number, and the device will then be sent a download

link for the fake software by SMS. If the user fails to receive the message for any reason, the

attackers also provide a direct link and QR code as alternatives for installing the software. In

some later version of iBanking malware distribution, we saw an “Installation Guide” injected

to the victim’s internet banking session, which aims to guide the user to install the “security

certificate”. The “Installation Guide” has 5 steps, instructing the user to download, install,

and use the app. In order to have the malware installed successfully, the installation guide

also shows the user how to lower their mobile security by enabling unknown sources app

installation and activating device administrator for the app. Figure 17 is a screenshot of an

installation guide of one sample in the dataset.

Figure 17 - iBanking malware Installation Guide

Page | 51

iBanking malware are normally configured to look like official mobile applications from a

range of different banks and social networks; both the installation APK and the installed

application are target-brand themed.

Like other Android banking malware, iBanking malware requires various permissions upon

installation, including but not limited to: personal information; receive, read, edit and send

SMS; network communication; storage; phone calls; hardware controls; system tools; and

development tools. These permissions give the attacker almost complete access to the

handset including the capability to intercept voice and SMS communications.

When a user starts iBanking malware, the malware asks the user to activate device

administrator, which allows the application to erase the phone’s data without warning by

performing a factory data reset, and controls how and when the screen locks. (Figure 18

below).

Figure 18 - iBanking malware ask for device administrator access

After activating device administrator privileges, a target-brand-themed interface displays

with a button to generate an “activation code”. This code is required to complete the

“security certificate” installation from the user’s Internet banking session. After filling in the

activation code on the fake Internet banking page, the user is redirected to their normal

Internet banking pages.

Page | 52

3.4 Android Banking Malware Family Analysis

3.4.1 Distribution and Installation

All samples use social engineering techniques to spread.

Zitmo, Spitmo, Citmo, Perkele, FakeBank, and iBanking malware work in tandem with

traditional banking malware on Windows OS, using webinjects for distribution. SmsSpy and

Svpeng malware are spread via spam emails and SMS or instant messages on mobile devices.

Social engineering techniques are also applied to the appearance of these Android banking

malware - all of the samples in the dataset had been disguised as applications that provide

extra security or imitate well known applications such as Google Play Store and Adobe Flash

Update.

Of all the samples, only three Citmo samples had been found on Google Play. For all other

samples, the potential victims must enable “Unknown Sources” from the device settings to

be able to install the malware.

3.4.2 Privilege and Permission

All samples requests permissions for SMS functions, which was used by many banks to

deliver their second-factor to authenticate an electronic funds transfer. Permissions to

access personal information, network, phone calls and storage are also heavily required

from the samples.

Two malware families, iBanking and Svpeng, require the device administrator privilege to be

activated upon application start. The iBanking malware family require basic device

administrator privilege while Svpeng invoke a policy of setting storage encryption. To

sustain this powerful privilege, the Svpeng family configure the device to prevent

administrator privilege from being deactivated by a password.

Page | 53

3.4.3 Targeting region

We observed that samples from the Zitmo, Spitmo, Citmo, Perkele , Svpeng and iBanking

families initially targeted Russian-speaking users, some were then spread to other European

countries and English speaking counties (mainly US). The Fakebank family was first seen

targeting Korean speaking users, then found targeting European banks.

3.4.4 Android Emulator vs. Native Device

During manual dynamic analysis, all but one malware sample ran successfully in both the

emulator environment and on native device. The exception was a sample of the iBanking

family; it crashes on launch in the emulator.

3.5 Automated Dynamic Analysis

Automated dynamic analysis was performed to understand how the malware behaves when

executed, e.g which C&C service it communicates with, what application is installed, and

what service is enabled when the application is executed etc.. As a part of this analysis, we

used the Android application sandbox - Droidbox[66] to generate behavioural graphs for each

sample, and these provide the basis of the development patterns to aid in malware

identification and detection.

DroidBox is a dynamic analysis tool for Android applications targeting Android OS. The tool

is based on TaintDroid[67] for detecting information leaks but has been extended, by

modifying the Android framework, to monitor API calls of interest invoked by an application.

Applications are executed within the Android SDK emulator, and logs are collected in the

Page | 54

host operating system each monitored behaviour. For each sample, DroidBox created a log

file and generated two graphs visualizing the behaviour.

DroidBox was designed to collect information about a sample and its activities during

interaction over a fixed time period. In this research, each sample is executed for 60 seconds

to enable simpler comparison of the output of samples. (Other research on malware for

Windows computers indicates that 60 seconds is sufficient to extract the important

information[68])

DroidBox generates a text-based report on completion of analysis, including:

a) File Activities

b) Crypto API activities

c) Network activity

d) DexClassLoader

e) Broadcast Receivers

f) Started Services

g) Enforced permissions

h) Permission bypassed

i) Information leakage

j) Sent SMS

k) Phone calls

Additionally, two images are generated visualizing the behaviour of the sample. One shows

the temporal order of the operations with a timestamp. The other being a “treemap”

showing the service started by the particular sample after installed. This can be used to

discover behavioural similarity between analysed samples.

It was observed that the majority of the samples in the dataset have very similar treemaps.

All of our samples contains three sections in their Treemaps: SERVICE, FILEWRITE, and

FILEREAD. Figure 19 is a tree graph of a Citmo sample analysis:

Page | 55

Figure 19 – Citmo Tree Graph

It was also observed from text based reports that all samples have activities with Broadcast

Receivers and Started services.

3.5.1 Broadcast Receivers

While executing samples in Droidbox, it was observed that almost all of them listened to

broadcast receivers such as BOOT_COMPLETE and SMS_RECEIVED. The Android system

sends broadcasts to receivers to announce events such as receiving incoming calls or

messages. Applications can also send broadcast messages as ‘intent messages’ to the

system, for example, indicating that applications are waiting for an event. Utilizing

broadcast receivers, malware can be designed to listen for incoming messages and forward

them to pre-determined mobile phone numbers. This is one of the key features of Android

banking malware. Figure 16 shows a snapshot of the Fakebank sample report.

Page | 56

Figure 20 - Fakebank Broadcast Receiver

3.5.2 Started Services

For Android OS, a Service is an application component that can perform long-running

operations in the background and does not provide a user interface. An application

component can start a service and it will continue to run in the background even if the user

switches to another application. Additionally, a component can bind to a service to interact

with it and perform inter-process communication (IPC)[69]. A service is "started" when an

application component (such as an activity) starts it by calling startService(). Once started, a

service can run in the background indefinitely, even if the component that started it is

destroyed.

It was observed that all of the samples started some services while under dynamic analysis.

Figure 21 is an example from the Svpeng sample analysis report.

Page | 57

Figure 21 – Svpeng Started Services

Because services do not provide a user interface and run silently in the background, they

can be employed by malware developers to carry on malicious activities. In the above

example, DownloadService and SmsReceiverService started are very suspicious because

download service can be used to download other malicious applications on to the device,

and SmsReceiverService can be leveraged to intercept incoming SMS on the device.

3.5.3 SMS Sent

Droidbox also logs if an application sends an SMS out. We observed that none of the

samples sent SMS during dynamic analysis with Droidbox. This might be because the SMS

activity is only triggered by an incoming SMS event. Like other automated malware analysis

tools, Droidbox has only limited interaction with the application, so that SMS forwarding

activity was not captured by analysis. This assumption was validated using static analysis,

the results of which are presented in the next chapter.

Page | 58

3.6 Chapter Conclusion

In this chapter, manual and automated dynamic analysis was performed against our

malware sample dataset.

During manual analysis, malware samples were installed and executed in both Android

emulator and native device where possible. We observed the permissions required for each

sample upon installation, as well as the look and behaviour upon application start. We also

investigated the history of each malware family and their corresponding distribution

methods. From manual analysis results, we summarized our dataset from the following

perspectives: Distribution and Installation, Privilege and Permission, Targeting region and

Android Emulator vs. Native Device.

During automated analysis, we piped all malware samples to DroidBox and ran them for 60

seconds then analysed the logs and graphs that generated by DroidBox. We observed some

common malware behaviours, and some similarities in malware activities.

Given dynamic analysis only exploits one execution path; it may not be effective if a special

user interaction is required to trigger the malicious activity. The next chapter presents the

results of reverse engineering the samples using static analysis tools to obtain deeper

understanding of Android banking malware.

Page | 59

CHAPTER 4: Android Banking Malware Static

Analysis and Evolution in Techniques

Page | 60

4.1 Chapter Introduction

Malware static analysis is the actual viewing of malware code and walking through it to get

a better understanding of the malware and its behaviour. A common method for analysing

malware code on Android OS is malware reverse engineering - the process of disassembling

or decompiling malicious Android apps using a variety of tools, in order to analyse and

understand its structure, function, and operation.

In this chapter, we employed a set of tools to reverse engineer all malware samples in the

dataset, then statistically analysed malware code with a focus on certain functions. From

code analysis, we validated the assumptions from the previous chapter; furthermore, we

gained a better understanding of Android banking malware inner working and application

logic.

For each malware family, we compared source code from earlier samples with source code

from later samples to identify any continuous developments and improvements of malware

code over time. For one malware family, we found new techniques in malware code, and

then dissected the new techniques and how these techniques made the malware more

effective.

4.2 Tools

A few manual and automatic tools are used in static analysis to assist Android malware

reverse engineering:

 4.2.1 APKtool

APKtool is a command line tool for reverse engineering Android applications. It can

decompile the application source to its nearly original form and recompile it after applying

Page | 61

certain changes. It can be employed for Android application debugging; we mainly use it to

determine the malicious activity in the application.

4.2.2 Dex2jar

Android applications are commonly written in Java and compiled to bytecode for the Java

virtual machine, which is then translated to Dalvik bytecode and stored in .dex (Dalvik

EXecutable) files. The main application logic is present in a classes.dex file but it is not

viewable by user. Therefore Dex2jar was developed to convert .dex file into human

readable .jar format[70].

4.2.3 JD-GUI

JD-GUI is a standalone graphical utility that displays Java code, mainly .class and .jar files. JD-

GUI is a part of the “Java Decompiler project” which aims to develop tools in order to

decompile and analyse java 5 byte code and later versions. JD-GUI handles decompilation

of .class binaries, presenting the source in a structured hierarchy. Essentially, we use JD-GUI

to view .jar file that is converted by Dex2jar.

4.3 Static Analysis

Android OS is developed by Open Handset Alliance, led by Google, and is based upon the

Linux kernel and GNU software. Android application package files use the .apk (Android

application package) extension. APK files are used to install applications onto Android OS.

Each Android application is compiled and packaged in a single APK file that includes all of

the application's code (.dex files), resources, assets, and manifest file. APK files are ZIP files

formatted packages based on the JAR file format, with the .apk file extension. The source

Page | 62

files can be extracted easily from Android applications using a ZIP decompression program.

It means that after compiling the source files, they do not perform cryptographic operations.

When uncompressed, the following folders and files can be found inside APK files (Table 4):

Table 4 - Archive that APK files contain

In static analysis, we focused on two main files in the APK: AndroidManifest.xml and

classes.dex, as well as the internal resource folder - res.

4.3.1 AndroidManifest.xml

The Android manifest is an XML file that each application must include, which describes the

application's package name, version, components (activities, intent filters, services),

imported libraries, activities, and more[71].

APKTool is used to extract the AndroidManifest.xml files from the APKs to identify the

permissions requested by each application.

By default, a basic Android application has no permissions assigned to it, which means it

cannot do anything to impact the user experience or any data on the device. To make use of

protected features of the device, an Android application developer must include one or

more <uses-permission> tags in AndroidManifest.xml to declare the permissions that the

application needs. When a user installs an application, permissions requested by the

application are granted to it by the package installer, based on checks against the signatures

of the applications declaring those permissions and/or interaction with the user[72]. This is

an “All or nothing” choice for the user - the application is either granted all permissions that

Contents Description

assets Package with an external resource folder

res Package with an internal resource folder

META-INF Program information data itself, the folder containing the signed certificate

classes.dex Implication of the class file with the information

resources.arsc Compiled file into a separate resource

AndroidManifest.xml File containing general information about Android Application

Page | 63

it requested when installed, or no permission is granted and the application will not be

installed. The user cannot selectively grant permissions to an application. After the

permissions are granted to the application, there will not be any further checks with the

user when the application is started or running. It should be noted that Android developers

can define their own permissions to protect their applications from being exploited;

however, we focus only on the set of permissions defined in the official documentation[73].

Figure 22 is an example of user permissions stated in AndroidManifest.xml of an Android

banking malware sample that belongs to the family of Perkele.

Figure 22 - user permissions declared in AndroidManifest.xml

In this example, the malicious Android application requires three permissions upon

installation. These permissions allow the application to write to external storage

(WRITE_EXTERNAL_STORAGE); monitor, record or perform processing on incoming

messages (RECEIVE_SMS) and to send out SMS messages (SEND_SMS).

Using the same method, we extracted all required permissions from every sample in our

data set, and then put them together for statistical analysis. Table 5 is the distribution of

user permissions requested by all samples in the dataset. We use the first column to

indicate the percentage of applications requesting a corresponding permission.

Page | 64

Table 5 - APK user permission distribution

We observed that all of the samples in our dataset request permission to monitor, record or

perform processing on incoming SMS (RECEIVE_SMS), 89.19% of samples require permission

to send out SMS (SEND_SMS) AND 86.49% of the samples require permission to open

network sockets – accessing the Internet (INTERNET).

We also observed that READ_PHONE_STATE, ACCESS_NETWORK_STATE, and

WRITE_EXTERNAL_STORAGE permissions are largely required by more than half of the

samples. READ_PHONE_STATE permission allows an application to access to phone state,

<user-permission>

100.00% RECEIVE_SMS 

89.19% SEND_SMS 

86.49% READ_PHONE_STATE 

86.49% INTERNET 

70.27% READ_SMS 

62.16% WRITE_EXTERNAL_STORAGE 

56.76% ACCESS_NETWORK_STATE 

45.95% WRITE_SMS                 

40.54% CHANGE_NETWORK_STATE               

40.54% RECEIVE_BOOT_COMPLETED 

40.54% ACCESS_WIFI_STATE               

40.54% CHANGE_WIFI_STATE               

35.14% READ_CONTACTS             

35.14% WAKE_LOCK             

32.43% CALL_PHONE            

24.32% RECORD_AUDIO         

24.32% SYSTEM_ALERT_WINDOW         

18.92% BROADCAST_SMS       

18.92% DISABLE_KEYGUARD       

18.92% WRITE_SETTINGS       

16.22% MODIFY_PHONE_STATE      

16.22% BROADCAST_STICKY      

16.22% INTERNAL_SYSTEM_WINDOW      

16.22% ADD_SYSTEM_SERVICE      

16.22% RECORDER_TASKS      

16.22% CHANGE_CONFIGURATION      

16.22% STATUS_BAR      

16.22% DEVICE_POWER      

16.22% WRITE_APN_SETTINGS      

16.22% BROADCAST_WAP_PUSH      

16.22% UPDATE_DEVICE_STATS      

16.22% WRITE_SECURE_SETTINGS      

13.51% MOUNT_UNMOUNT_FILESYSTEMS     

8.11% WRITE_CONTACTS   

8.11% INSTALL_PACKAGES   

8.11% DELETE_PACKAGES   

8.11% ACCESS_COARSE_LOCATION   

8.11% INSTALL_SHORTCUT   

5.41% MODIFY_AUDIO_SETTINGS  

5.41% ACCESS_FINE_LOCATION  

2.70% PROCESS_OUTGOING_CALLS 

2.70% CALL_PRIVILEGED 

2.70% GET_TASKS 

2.70% RESTART_PACKAGES 

2.70% KILL_BACKGROUND_PROCESSES 

2.70% READ_LOGS 

2.70% READ_HISTORY_BOOKMARKS 

2.70% BROADCAST_PACKAGE_INSTALL 

2.70% BROADCAST_PACKAGE_REPLACED 

sample user permission distribution

Page | 65

ACCESS_NETWORK_STATE permission allows an application to access information about

networks and WRITE_EXTERNAL_STORAGE permission allows an application to write to

external storage. However, these three permissions are widely requested in both malicious

and benign applications[74]. Thus we don’t consider these three as unique feature of

Android banking malware.

Besides receive and send SMS, collected samples clearly tend to request other SMS related

permissions, such as READ_SMS (70.27%) and WRITE_SMS (45.95%). This indicates that SMS

functions are heavily abused by Android banking malware; therefore, we focused more on

SMS function in later static analysis.

Further investigation shows that all samples require SEND_SMS permission, INTERNET

permission, or both. This means any sample that does not require SEND_SMS permission,

will ask for INTERNET permission, and vice versa. This provides an indication as to how

malware forwards SMS back to cybercriminals - RECEIVE_SMS permission enables SMS

interception; once intercepted, SMS is forwarded to cybercriminals by SMS (SEND_SMS) or

HTTP POST (INTERNET), or both. This assumption, based on the inspection of

AndroidManifest.xml file, was validated in later static analysis.

4.3.2 classes.dex

classes.dex is compressed program code of Android application. Android application is

written in Java and compiled to bytecode for the Java virtual machine, which is then

translated to Dalvik bytecode and stored in classes.dex (Dalvik EXecutable) file. The compact

Dalvik Executable format is designed for systems that are constrained in terms of memory

and processor speed[75].

In order to have a better understanding of the malware code, we employed dex2jar to

decompile the application package files into JAR format, which can be read by a Java

decompiler – JD-GUI. JD-GUI handles decompilation of .class binaries, presenting the source

in a structured hierarchy.

Page | 66

As the main target of Android malware static analysis, classes.dex file contains implicit

information. It helps us to understand the inner works and logic of the application.

Analysis of AndroidManifest.xml file shows SMS related functions what we want to further

investigate in static analysis. SMS is a unique feature that mobile has as opposed to PCs.

More importantly, it has been used by many banks and financial institutions as an out-of-

band authentication factor[76] (mTAN) in their Online Banking authentication controls. This

means if a cybercriminal wants to make a fraudulent electronic funds transfer, knowing only

the victim’s login and password is not enough, the cybercriminal also need to know the

security code that is sent to the victim’s mobile phone via SMS. Therefore, SMS stealing

became a key feature of Android banking malware.

In this respect, we inspected source code of all malware samples, with a focus on SMS

related functions. From source code analysis, we validated our assumption - all samples

have functions to intercept SMS and forward SMS on to the cybercriminal.

The example below is from analysis of iBanking malware sample, where the malware

intercepts SMS and forwards to cybercriminal via SMS:

Figure 23 - smsParser.class

Page | 67

In class smsParser , a Turkish phone number +4367676800505127 was hard coded and

assigned to a few different variables – tel1, tel1_1, tel_temp, tel2.

These variables are later used in different classes and methods, below screenshot shows a

method called hackSMS; in this method , an intercepted SMS message is logged to a server

under the cybercriminals control. The SMS is also forwarded to the Turkish number which

was hard coded in smsParser class (Figure 23).

Figure 24 – hackSMS method

This piece of analysis indicates that the phone number +4367676800505127 is under

cybercriminal control. Further investigations can be carried on to trace more details about

the cybercriminal.

Page | 68

4.4 Evolution in techniques

Static analysis of samples from the same malware family but different time periods also

reveals the improvements and evolutions of malware coding techniques.

In this respect, I compared static analysis of two iBanking samples:

Table 6 – Compare Two iBanking Malware Samples

iBanking Sample: e1b86054468d6ac1274188c0c579ccaf.apk was first seen by VirusTotal in

November 2013. Dynamic analysis using Android Emulator indicates that it targets a

European bank. Malware requests to activate device administrator privilege upon start and

it has a button to generate a “security code”, which was actually just a meaningless code.

Static analysis indicated that the malware could communicate with and accept commands

from a C&C webserver and a phone number. C&C domains are defined in

res/values/arrays.xml (Figure 25)

Figure 25 –Contents of arrays.xml from

MD5 First seen by VT

e1b86054468d6ac1274188c0c579ccaf 19/11/2013

df1c6dfb6830ba845231af26d80354de 5/04/2014

Page | 69

It iterates the list of C&C web servers and checks if they are active via HTTP POST to

{domain}/iBanking/sms/ping.php

If the server responded as expected, it will POST to {domain}/iBanking/sms/index.php

(Figure 26)

a) bot_id (defined in strings.xml)

b) telephone number

c) iccid, device model

d) OS version

e) IMEI

f) control number (this is the C&C phone number)

Figure 26 – Malware code to steal device info

The malware can be controlled by SMS or HTTP command.

If the commands come from SMS, it needs to validate the C&C number (+790xxxxxx45),

alternatively, commands can come via HTTP by polling {domain}/iBanking/sms/sync.php

The malware also predefined the following command strings:

a) sms start - start intercepting and reading SMS

b) sms stop - stop intercepting and reading SMS

Page | 70

c) call start - forward calls to +790xxxxxx45

d) call stop - stop call forwarding

e) change num - update the C&C phone number

f) sms list - read SMS inbox and sent messages and POST to

{domain}/iBanking/getList.php

g) call list - read call history and POST to {domain}/iBanking/getList.php

h) start record - start audio recording. The file is saved as

{externaldir}/Android/obb/{dd-MM-yyyy_HH-mm-ss}.txt. The files are then sent to

{domain}/iBanking/sendFile.php

i) stop record - stop recording

j) sendSMS - send intercepted SMS to the C&C phone number.

k) contact list - get contact list

l) wipe data - wipe data (malware ask for device administrator to be activated upon

starting).

m) ping - check if the CnC server is active

iBanking Sample: df1c6dfb6830ba845231af26d80354de.apk was first seen by VirusTotal in

April 2014, analysis shows that this malware targets two Australian banks in the same way

as sample e1b86054468d6ac1274188c0c579ccaf.apk. Malicious functions of these two

malware are identical, however, our analysis discovered that the later sample had a few

significant improvements in coding, which including anti-SDK/VM, data encryption, and

code obfuscation.

4.4.1 Anti-SDK/VM

Dynamic analysis using Android Emulator doesn’t work well for this new sample - the app

crashes upon starting. Static analysis shows the malware had improved the code to detect

an SDK/VM environment. The below piece of code in onCreate() method shows exactly how

this was done:

Page | 71

Figure 27 – iBanking malware Emulator Detection Code

On starting, the malware checks if one of the following condition is true:

a) Device IMEI = 000000000000000

b) Phone number start with 155521

c) Operator is Android

d) Sim Serial Number = 89014103211118510720

These hard coded values are commonly used in Android Emulator and app analysis

environments. The app will terminate itself and appear to crash if any of these conditions is

true.

4.4.2 AES Encryption

Static analysis shows that sample df1c6dfb6830ba845231af26d80354de.apk protects itself

using AES encryption. In order to hide its different resources, this iBanking sample made use

of a hardcoded private key (within the app) that encrypted the contents of XML and

communication resources. XML included data relating to external resources such as imagery,

Page | 72

but also information relating to the app’s settings. Encryption was also applied to the app’s

communication resources including both URLs and telephone control numbers.

Figure 28 – iBanking malware AES Encryption

4.4.3 Code Obfuscation

Another evasion technique that the malware used is code obfuscation.

Obfuscation increased the number of classes to 238, assigning random names to the newly

created classes. The old variant (e1b86054468d6ac1274188c0c579ccaf.apk) only has 33

classes.

Obfuscation also replaced all static variable names with meaningless strings and encoded

string values. The obfuscator was smart enough to avoid encoding/obfuscating system

variables such as “app_name”. String encoding was done with a hardcoded, relatively simple

function.

Page | 73

Figure 29 – iBanking malware Code Obfuscation

4.5 Chapter Conclusion

In this chapter, static analysis was performed against our malware sample dataset.

During static analysis, we tried reverse engineering malware samples using open source

tools and analysed malware functions by inspecting a few main files of Android malware.

We statistically compared permissions being requested by all samples in our data set. We

also gain a better understanding in regards how does Android banking malware intercept

and steal SMS.

Page | 74

During static analysis, we also discovered the evolution in malware coding techniques. This

discovery indicated the fast development of the underground economy and level of

maturity of Android banking malware. This chapter highlights that temporal evolution of the

malware is important aspect of malware analysis.

Page | 75

CHAPTER 5: Conclusion

Page | 76

In the past few years mobile banking has been growing exponentially. Banks are moving

online-banking from PC to mobile phone, which provides greater flexibility for both bank

customers and at the same creates more opportunities for cybercriminals. Attackers have

been releasing malware for PCs, but now there are attackers who are now targeting

smartphones especially Android OS. In this thesis, we investigated a particular group of

Android malware which is designed to target banks and financial institutions.

We firstly presented a framework to symmetrically analyse the collected malware samples.

The framework consists of malware life cycle analysis, behavioural analysis and static

analysis.

Before conducting the analysis, we presented literature review and background knowledge

of PC malware, Android malware and malware families. We also presented two main

malware analysis types: behaviour and static analysis, followed by how the malware analysis

laboratory is set up.

In Chapter 3, manual and automated dynamic analysis was performed against collected

malware sample dataset. Observations of malware behaviour have been statistically

analysed.

Below are the observations:

 Most samples in the dataset works in tandem with the traditional PC/Windows

malware, aiming to steal the second factor passed via mobile phone, which could be

later used to complete fraudulent transactions

 All samples requested permissions for SMS functions, which was used by many

financial institutions to deliver their second-factor to authenticate an electronic

funds transfer. Permissions to access personal information, network, phone calls and

storage are also heavily required from the samples.

 All sample Android banking malware started with targeting one region then spread

globally.

 All samples has similar behaviour when executed, as broadcast-receivers and

started-services are the two services that all sample malware manipulate.

Page | 77

To gain better and deeper understanding of Android banking malware, we performed static

analysis in Chapter 4 and presented the analysis results. We also managed to discover a

temporal evolution of a particular Android banking malware family.

Main observations from static analyses are:

 All of the samples in our dataset request permission to monitor, record or perform

processing on incoming SMS (RECEIVE_SMS).

 All samples require either SEND_SMS permission (89.19%) or INTERNET permission

(86.49%). or both.

 Android banking malware have been examining fast anti-reversing techniques and

evasion from these techniques have been added to newer versions to gain higher

penetration rate and create additional barrier for forensic analysis.

In this thesis, we analysed all malware sample in our dataset by adopting proposed

framework for systematic analysis of Android Banking Malware (FAM). FAM can standardise

Android banking malware analysis process to achieve quick understanding of malware

behaviour and minimize the possible harm caused by new type of malware by employing

mitigation controls.

FAM can also help to improve antimalware system from our obseration. By analysing a

larger banking malware data set and also a large genuine banking app data set, we can

analytically analyse and compare the results from FAM. The results can help to discover the

pattern of android banking malware behaviour and the services that android malware

usually starts on the infected device, which can be further used to improve antimalware

system for better malware detection and identification.

 mitigation contr ols.

5.1 Future Work

Page | 78

Since mobile banking malware is a fairly new topic, this thesis mainly focussed on

understanding the malicious behaviour and functions which were also validated using our

proposed FAM. When we analyse Android banking malware in FAM, significant manual

analysis was performed to understand malware code and configuration. One opportunity

for future work is to optimize and automate FAM, so that Android banking malware analysis

can be performed both more quickly and by people with minimal coding experience.

As demonstrated in this thesis, Android banking malware is an evolving field, and so future

work will include enhancing and improving FAM, and ongoing analysis to monitor the

evolution of Android banking malware.

Further analysis of samples by FAM will enable future work on development of a system to

automatically detect and validate banking malware on Android operating system.

Page | 79

Appendix A

REMnux: A Linux Toolkit for Reverse-Engineering and Analyzing

Malware[77]

REMnux® is a free Linux toolkit for assisting malware analysts with reverse-engineering malicious

software. It strives to make it easier for forensic investigators and incident responders to start using

the variety of freely-available tools that can examine malware, yet might be difficult to locate or set

up.

The heart of the REMnux® project is the REMnux Linux distribution based on Ubuntu. This

lightweight distribution incorporates many tools for analysing Windows and Linux malware,

examining browser-based threats such as obfuscated JavaScript, exploring suspicious document files

and taking apart other malicious artefacts. Investigators can also use the distribution to intercept

suspicious network traffic in an isolated lab when performing behavioural malware analysis.

Download the REMnux Virtual Appliance

The simplest way to get the distribution is to download the REMnux virtual appliance file in the OVA

format.

The file is around 2GB in size; its SHA-256 hash is

C26BE9831CA414F5A4D908D793E0B8934470B3887C48CFE82F86943236968AE6.

Be sure to only download the OVA file from the link off this official REMnux website and validate

that the file’s hash matches the one above. Note that Internet Explorer or Edge browsers might

rename the OVA file to have the .tar extension; if this happens, simply rename the file to have

the .ova extension.

You’ll need to install virtualization software such as VMware Workstation Player, VMware

Workstation Pro, VMware Fusion and VirtualBox prior to using the REMnux virtual appliance.

Import the REMnux Virtual Appliance

Once you’ve downloaded the REMnux OVA file, import it into your virtualization software, then start

the virtual machine. For step-by-step instructions for importing the virtual appliance, take a look at

the VirtualBox screenshot and VMware Workstation screenshot slideshows.

There is no need to extract contents of the OVA file manually before importing it. Simply load the

OVA file into your virtualization software to begin the import. If you attempt to extract OVA file’s

contents and try importing the embedded OVF file in VirtualBox, you will likely encounter an error,

such as “could not verify the content of REMnux.mf against the available files, unsupported digest

type.”

If importing into QEMU, extract contents of the OVA file and run the qemu-img command like this:

tar xvf remnux-6.0-ova-public.ova

Page | 80

qemu-img convert -O qcow2 REMnuxV6-disk1.vmdk remnux.qcow2

In all cases, once you boot up the imported virtual machine, it will automatically log you into the

system using the user named “remnux”. The user’s password is “malware”; you might need to

specify it when performing privileged operations.

After booting into the virtual appliance, run the update-remnux full command on REMnux to update

its software. This will allow you to benefit from any enhancements introduced after the virtual

appliance has been packaged. Your system needs to have Internet access for this to work.

Install REMnux on an Existing System

As an alternative to downloading the virtual appliance, you can run the REMnux installation script on

an existing Ubuntu 14.04 64-bit system. This allows you to install REMnux on a physical host or a

virtual machine. You can use this method to add REMnux software and settings to a brand new

system or to the host you’ve been using for a while. SIFT Workstation users can utilize this approach

to combine SIFT and REMnux into a single system.

If you’d like to build a REMnux system from scratch, use the Ubuntu 14.04 64-bit minimal ISO as the

starting point. If building a virtual machine, allocate at least 1GB of RAM and 25GB disk (more

recommended). When going through the Ubuntu installer, consider creating the user named

“remnux” with the password “malware”, though any credentials will work. For step-by-step

instructions, see the screenshots of the Ubuntu installation steps.

Once you’ve logged into the newly-built or existing system compatible with REMnux, run the

following command to install the REMnux distribution:

wget --quiet -O - https://remnux.org/get-remnux.sh | sudo bash

This installation script will configure your system and download and install the necessary software

without asking you any questions. It requires Internet access to accomplish this. The installer will run

for approximately 45 minutes, depending on the strength of your system and the speed of your

Internet connection.

A handful of people running the installation script within virtual machines noticed that the antivirus

tool installed on their underlying host flagged some REMnux packages as malicious and blocked their

download. This is a false alarm. However, if you encounter this, you might need to disable the host’s

anivirus tool while running the script or whitelist the offending files or URLs to avoid getting them

blocked.

Connecting the REMnux Virtual Appliance to the Internet

The REMnux virtual appliance is initially configured to use the “NAT” mode, so it can connect to the

Internet through the host on which it is running. This way, if your underlying host has Internet

connectivity, REMnux should be able to access the Internet as well. You can isolate REMnux within

your lab by configuring the virtual appliance to use a “host only” network. After switching networks,

run the renew-dhcp command in REMnux to refresh its network settings.

Page | 81

Some of the REMnux tools are designed to run in an isolated laboratory environment, so you can

perform behavioural analysis of malicious software running in the lab. In this case, configure

REMnux use a virtual network without Internet connectivity. Other tools are designed to allow you

to explore suspicious websites and interact with online resources; REMnux will need to be

connected to an Internet-accessible network when performing these tasks.

Installing Virtualization Tools on REMnux

When running REMnux on a VMware platform, it’s usually a good idea to install VMware Tools

within the virtual machine. This will allow the REMnux screen resolution to automatically adjust to

match your monitor’s geometry. It will also provide some additional enhancements, such as the

opportunity to share clipboard contents across your underlying host and the virtual machine.

When running REMnux on VMware Workstation, Player or ESX, the simplest way to install VMware

Tools using the open VM tools package by running the following command on REMnux, assuming it’s

connected to the Internet:

sudo apt-get install open-vm-tools-desktop

On VMware Fusion, the best approach is to install proprietary VMware Tools. To do this, activate the

VMware Tools installation via Virtual Machine > Install VMware Tools, then run the command sudo

install-vmware-tools on REMnux. You can install VMware Tools this way on VMware Workstation

and Player as well. For additional details, see the VMware article on this topic.

Please note that if you wish to use the shared folders feature of VMware, you will need to install

proprietary VMware Tools with several adjustments to compensate for a compatibility issue

between VMware Tools and the Ubuntu-supplied Linux kernel. These steps are described in an

article devoted to this topic. A more practical option for transferring files in and out of REMnux

might be to use SFTP through the installed SSH server (sshd start) instead of using shared folders.

If using VirtualBox, consider installing Guest Additions software. To accomplish this, first shut down

the REMnux virtual machine, then use the VirtalBox menu Devices > Insert guest additions CD image,

and then start up the VM. Mount the virtual CD containing Guest Additions software like this and

reboot:

sudo mount /dev/sr0 /mnt/cdrom

sudo /mnt/cdrom/VBoxLinuxAdditions.*

Updating Your REMnux System

To update REMnux after connecting your system to the Internet, simply run the update-remnux

command. This tool will update the software that comprises the REMnux distribution, which

includes the applications installed from standard Ubuntu and the REMnux-specific repository. The

updater will also install any tools added to the distribution after your last update.

Page | 82

Appendix B

MobiSec - Mobile security testing live environment [78]

The MobiSec Live Environment Mobile Testing Framework project is a live environment for testing

mobile environments, including devices, applications, and supporting infrastructure. The purpose is

to provide attackers and defenders the ability to test their mobile environments to identify design

weaknesses and vulnerabilities. The MobiSec Live Environment provides a single environment for

testers to leverage the best of all available open source mobile testing tools, as well as the ability to

install additional tools and platforms, that will aid the penetration tester through the testing process

as the environment is structured and organized based on an industry¬‐proven testing framework.

Using a live environment provides penetration testers the ability to boot the MobiSec Live

Environment on any Intel-¬based system from a DVD or USB flash drive, or run the test environment

within a virtual machine.

DVD Installation Instructions

Once the ISO file is downloaded, the user will need to burn it to a DVD. The method and steps for

burning a DVD differs depending on the operating system. The link below provides instructions on

how to burn a DVD using Mac, Windows, and Ubuntu operating systems.

https://help.ubuntu.com/community/BurningIsoHowto

From our own experience on burning DVDs on Mac OSX, we have discovered that using the hdiutil

command line utility works well if there are issues using Mac OSX Disk Utility. Instructions on using

this command line utility can be found at the link below.

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/hdiu

til.1.html

Once the DVD has been successfully burned, insert the DVD into the computer to be used for testing,

and boot the computer. Be sure to either configure the BIOS to have the computer attempt to boot

from the CD/DVD player before booting from the hard disk, or press the appropriate key sequence

during boot up to present the boot manager window. On a typical Intel computer, pressing the F12

key during boot up will present a Boot Manager, which then provides the ability to select and boot

from the CD/DVD drive. On an Intel-¬‐based Mac computer, pressing the option key during startup

will present the Startup Manager, which then provides the option to boot from the CD/DVD volume.

USB Installation Instructions

Once the ISO file is downloaded, the user will need to burn it to a USB. It is recommended to use the

UNetbootin software to create the bootable Live USB for the Ubuntu operating system. UNetbootin

is free and is available for Windows, Mac, and Linux. Use the links below to download and install

UNetbootin, and then for creating a live USB bootable drive.

Download & Install:

Page | 83

http://unetbootin.sourceforge.net/

Create live USB drive:

http://sourceforge.net/apps/trac/unetbootin/wiki/guide

Once the live USB drive has been successfully created, insert the USB flash drive into the USB port on

the computer to be used for testing, and boot the computer. Be sure to either configure the BIOS to

have the computer attempt to boot from the USB flash drive before booting from the hard disk, or

press the appropriate key sequence during boot up to present the boot manager window. On a

typical Intel computer, pressing the F12 key during boot up will present a Boot Manager, which then

provides the ability to select and boot from the USB drive. On an Intel-¬‐based Mac computer,

pressing the option key during startup will present the Startup Manager, which then provides the

option to boot from the USB volume.

Virtual Machine Installation Instructions

Once the ISO file is downloaded, the user can create a virtual machine using either VMWare’s

VMPlayer, or Virtual Box. Other virtual machine software may also work. Use one of the links below

to download and install the desired virtual machine software

VMPlayer:

http://downloads.vmware.com/d/info/desktop_end_user_computing/vmware_player/4_0

Virtual Box:

https://www.virtualbox.org/wiki/Downloads https://www.virtualbox.org/manual/UserManual.html

Once the desired virtual machine software is installed, use one of the links below for instructions on

creating a virtual machine.

VMPlayer:

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&external

Id=1002

Virtual Box:

http://www.virtualbox.org/manual/ch01.html#idp7595344

Virtual Machine Configuration Settings

The following configuration settings are recommended for installation of MobiSec onto a virtual

machine:

 Processor: 1 CPU

 Memory: 2GB

 Hard Disk Size: 15GB

 CD/DVD: Use disc image MobiSec-¬‐#.#.#.iso

 Bridged Network (preferred)

Page | 84

Once the virtual machine is created, it is recommended that the MobiSec Live Environment be

installed on the virtual machine’s hard disk, which provides the ability to permanently retain updates

configuration changes, and any additional tools installed by the user.

Persistent Installation

MobiSec offers two different methods of installation. Both of these are performed in the same way,

the difference is the destination of the installation. When the system is booted, an installation icon

will appear on the desktop. This icon launches the installation program. Depending on if MobiSec

has been launched within a VM or from a DVD/USB drive, the installation will target the virtual

environment or the base computer system.

Installation Instructions

Open a terminal window and enter the following commands:

cd ~/Desktop

sudo chmod +x ubiquity-gtkui.desktop

Close the terminal window and then double-¬‐click on the Install RELEASE icon to install MobiSec

permanently onto the virtual machine’s hard disk. Follow the install instructions, basically using

the defaults. For the username and password, we recommend using mobisec:mobisec, with

computer name of mobisec-¬‐desktop (the default).

Once the installation is completed, the computer or virtual machine will need to be rebooted. Any

updates, modifications, or new tool installations should be persistent going forward.

Firewall Configuration "How To" Instructions

1. Select System --> Administration --> Firewall configuration to start the firewall GUI

2. When prompted for the administrative password type in "mobisec"

3. To create a new firewall rule click on the "Add" button within the firewall GUI

4. When the Add Rule dialog box appears click on the "Simple" tab to add a firewall rule

5. Let's create a rule to allow connections to a Metasploit listener on port 4444

6. Leave the first drop down box as "Allow", leave the second drop down box as "In", leave the

third drop down box as "TCP"

7. In the blank box next to the third drop down box enter "4444" to allow incoming

connections to port 4444

8. Click on the "Add" button from the "Add Rule" dialog box to add you new rule Once you've

added a new rule you can verify that it is active.

To verify open a terminal window and issue the following command (you can grep for the port

number you just added)

sudo iptables -L -n | grep 4444

You should see output from the command similar to the following

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:4444

Page | 85

You have now opened port 4444 for incoming connections

How to Setup SSH on MobiSec

For most testers, MobiSec will be installed on a VM running on their testing machine, however, I

recently came across the need to run MobiSec on an ESXi server, and I don't want to have to use the

vSphere client (which only runs on Windows) to access the "console" on the VM. I could setup VNC

on MobiSec (maybe an idea for a future blog entry), but my needs today are just for using MobiSec

as a BeEF server, and possibly for Metasploit. Neither of these tools require the Ubuntu GUI to setup

and launch, so I decided on using SSH to remote access to MobiSec. The problem is, it's not setup for

that as it wasn't something I thought of as a need until recently. So I'm including the instructions for

setting up SSH using MobiSec v1.1, which is the latest release and is available on Source Forge at

http://sourceforge.net/p/mobisec. I'm sure many of you already know how to setup a ssh server on

Ubuntu, so these instructions will look familiar, however, there are a couple items to be aware of on

MobiSec, so be sure to look through them before you get started.

First, you will need to startup MobiSec and login. Hopefully by now you already know the default

username and password is mobisec:mobisec. MobiSec by default comes with the OpenSSH server

installed, but, if it's been removed, you can re-install it using apt-get

 sudo apt-get install openssh-server

The next step is to configure the SSH server, but before you do, it's a good idea to make a read-only

backup copy of the config file.

 sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.backup

 sudo chmod a-w /etc/ssh/sshd_config.backup

Now you have a backup of the config file, use your favorite editor and edit the SSH server config file

as root.

 sudo vi /etc/ssh/sshd_config

The SSH server needs to be configured to not permit root login and to allow only a specific user or

users, such as mobisec. If you have added additional users to your MobiSec install, then you may

want to add them as well, or instead of the mobisec user.

 PermitRootLogin no

 AllowUsers mobisec

Now it's time to start the ssh server, or restart it if it's already running, to have the changes made to

the config file take effect. Let's first check if it's running, which is always good to know how to do.

 ps -ef | grep sshd

Check the output for /usr/sbin/sshd running as root. If it's not running, then you can start it using

this command:

Page | 86

 sudo /etc/init.d/ssh start

If it's already running, then ssh will need to be restarted using this commend.

 sudo /etc/init.d/ssh restart

It is strongly recommended to use SSH keys instead of passwords for remote access, especially if

MobiSec is, or will be, accessible on the Internet or even a large internal network. Creating the SSH

key pair is performed on your remote (local) machine. It is recommended to create and use RSA

(Rivest-Shamir-Adleman) key type as the DSA (Digital Signature Algorithm) key type is considered to

be less secure, however, SSH will use either. The key pair must be created on the remote machine

that will be connecting via SSH to MobiSec. For Mac OSX and Linux platforms, the key pair is

generated using the ssh-keygen command. Firstly, a .ssh folder needs to be created, as this is where

the ssh config file and rsa keys will be stored, and should have directory permissions set to be 700

(drwx------). Once the directory is created and permissions set, the key pair can be generated and

should be stored in the .ssh directory, and permissions set so that the public key (.pub file) is 644 (-

rw-r--r--), and the private key is set to 600 (-rw-------).

 mkdir ~/.ssh

 chmod 700 ~/.ssh

 ssh-keygen -t rsa -f ~/.ssh/ssh_rsakey

 chmod 644 ssh_rsakey.pub

 chmod 600 ssh_rsakey

If you're using Windows, then it is recommended to use PuttyGen (or similar product) to generate

the RSA key pair. Be sure to select RSA protocol 2 (SSH-2 RSA) and use at least 2048 bits to generate

the key. For help on generating RSA keys and setting up Putty for SSH, go to the link below. If you

use PuttyGen to generate the keys, you will need to export the public key using the Conversion ->

Export OpenSSH key function. If you created the key pair using ssh-keygen, then the private key will

need to be converted for Putty by using the Conversion -> Import key function in PuttyGen. Be sure

to continue reading below as it will provide the details for setting up Putty to connect to MobiSec.

 http://theillustratednetwork.mvps.org/Ssh/copSSH-WinSCP-KeyPair.html

Once the key pair is created, you'll need to copy the public key over to MobiSec. Since SSH is up and

running, you can connect to MobiSec and copy the file over. But before you can do that, ssh has to

be configured on the remote machine. For Mac OSX and Linux, the config file needs to be created

and stored in the ~/.ssh folder

 vi ~/.ssh/config

To create the config file, you will need the IP address or resolvable hostname of MobiSec. The

default port number for SSH is 22. If you need to use a different port number, it must be configured

in both sshd_config on MobiSec, and in the config file on the remote machine, which of course need

to be the same. To change the port number in the sshd_config on MobiSec, search for Port and

Page | 87

replace the number 22 with the desired port. Don't forget to restart SSH on MobiSec if you change

the port number. The config file on the remote machine should look something like this:

 Host ssh-mobisec

 Hostname <enter IP address of MobiSec here>

 Port <port number that is configured in sshd_config on MobiSec>

Once the config file is ready, connect to MobiSec via SSH using the following syntax:

 ssh <username>@<hostname>

So for our configuration, the command would be:

 ssh mobisec@ssh-mobisec

Enter the password for the mobisec user account (mobisec) and you should then be connected.

Before we can copy the public rsa key file, we need to create a folder to store it in. The sshd_config

file has a setting for the default location for authorized keys, which should

be %h/.ssh/authorized_keys (the %h refers to the home directory of the current user, which for

mobisec is /home/mobisec).

 mkdir ~/.ssh

Once the .ssh folder is created, the public rsa key can be copied over to MobiSec using the following

syntax:

 scp <local filename> <username>@<hostname>:<remote directory path/filename>

To copy the public key that was just created to the mobisec home directory, the command would be:

 scp ssh_rsakey.pub mobisec@ssh-mobisec:/home/mobisec/.ssh/authorized_keys

Once the rsa public key is copied over to MobiSec, the sshd_config file must be modified to disable

password authentication. Edit /etc/ssh/sshd_config and search for #PasswordAuthentication, and

replace it with this:

 PasswordAuthentication no

Once the sshd_config file has been modified and saved, ssh must be restarted.

 sudo /etc/init.d/ssh restart

On your remote (local) machine, logout of the current ssh session and attempt to reconnect.

 logout

 ssh mobisec@ssh-mobisec

You should now be logged in via ssh using your RSA key pair and not prompted for a password.

Page | 88

Appendix C

Glossary: basic terminology of the Android platform[79]

The list below defines some of the basic terminology of the Android platform.

.apk file

Android application package file. Each Android application is compiled and packaged in a single file

that includes all of the application's code (.dex files), resources, assets, and manifest file. The

application package file can have any name but must use the .apk extension. For example:

myExampleAppname.apk. For convenience, an application package file is often referred to as an

".apk".

Related: Application.

.dex file

Compiled Android application code file.

Android programs are compiled into .dex (Dalvik Executable) files, which are in turn zipped into a

single .apk file on the device. .dex files can be created by automatically translating compiled

applications written in the Java programming language.

Action

A description of something that an Intent sender wants done. An action is a string value assigned to

an Intent. Action strings can be defined by Android or by a third-party developer. For example,

android.intent.action.VIEW for a Web URL, or com.example.rumbler.SHAKE_PHONE for a custom

application to vibrate the phone.

Related: Intent.

Activity

A single screen in an application, with supporting Java code, derived from the Activity class. Most

commonly, an activity is visibly represented by a full screen window that can receive and handle UI

events and perform complex tasks, because of the Window it uses to render its window. Though an

Activity is typically full screen, it can also be floating or transparent.

adb

Android Debug Bridge, a command-line debugging application included with the SDK. It provides

tools to browse the device, copy tools on the device, and forward ports for debugging. If you are

developing in Android Studio, adb is integrated into your development environment. See Android

Debug Bridge for more information.

Application

Page | 89

From a component perspective, an Android application consists of one or more activities, services,

listeners, and intent receivers. From a source file perspective, an Android application consists of

code, resources, assets, and a single manifest. During compilation, these files are packaged in a

single file called an application package file (.apk).

Related: .apk, Activity

Canvas

A drawing surface that handles compositing of the actual bits against a Bitmap or Surface object. It

has methods for standard computer drawing of bitmaps, lines, circles, rectangles, text, and so on,

and is bound to a Bitmap or Surface. Canvas is the simplest, easiest way to draw 2D objects on the

screen. However, it does not support hardware acceleration, as OpenGL ES does. The base class is

Canvas.

Related: Drawable, OpenGL ES.

Content Provider

A data-abstraction layer that you can use to safely expose your application's data to other

applications. A content provider is built on the ContentProvider class, which handles content query

strings of a specific format to return data in a specific format. See Content Providers topic for more

information.

Related: URI Usage in Android

Dalvik

The Android platform's virtual machine. The Dalvik VM is an interpreter-only virtual machine that

executes files in the Dalvik Executable (.dex) format, a format that is optimized for efficient storage

and memory-mappable execution. The virtual machine is register-based, and it can run classes

compiled by a Java language compiler that have been transformed into its native format using the

included "dx" tool. The VM runs on top of Posix-compliant operating systems, which it relies on for

underlying functionality (such as threading and low level memory management). The Dalvik core

class library is intended to provide a familiar development base for those used to programming with

Java Standard Edition, but it is geared specifically to the needs of a small mobile device.

DDMS

Dalvik Debug Monitor Service, a GUI debugging application included with the SDK. It provides screen

capture, log dump, and process examination capabilities. If you are developing in Android Studio,

DDMS is integrated into your development environment. See Using DDMS to learn more about the

program.

Dialog

A floating window that acts as a lightweight form. A dialog can have button controls only and is

intended to perform a simple action (such as button choice) and perhaps return a value. A dialog is

not intended to persist in the history stack, contain complex layout, or perform complex actions.

Page | 90

Android provides a default simple dialog for you with optional buttons, though you can define your

own dialog layout. The base class for dialogs is Dialog.

Related: Activity.

Drawable

A compiled visual resource that can be used as a background, title, or other part of the screen. A

drawable is typically loaded into another UI element, for example as a background image. A

drawable is not able to receive events, but does assign various other properties such as "state" and

scheduling, to enable subclasses such as animation objects or image libraries. Many drawable

objects are loaded from drawable resource files — xml or bitmap files that describe the image.

Drawable resources are compiled into subclasses of android.graphics.drawable. For more

information about drawables and other resources, see Resources.

Related: Resources, Canvas

Intent

An message object that you can use to launch or communicate with other applications/activities

asynchronously. An Intent object is an instance of Intent. It includes several criteria fields that you

can supply, to determine what application/activity receives the Intent and what the receiver does

when handling the Intent. Available criteria include include the desired action, a category, a data

string, the MIME type of the data, a handling class, and others. An application sends an Intent to the

Android system, rather than sending it directly to another application/activity. The application can

send the Intent to a single target application or it can send it as a broadcast, which can in turn be

handled by multiple applications sequentially. The Android system is responsible for resolving the

best-available receiver for each Intent, based on the criteria supplied in the Intent and the Intent

Filters defined by other applications. For more information, see Intents and Intent Filters.

Related: Intent Filter, Broadcast Receiver.

Intent Filter

A filter object that an application declares in its manifest file, to tell the system what types of Intents

each of its components is willing to accept and with what criteria. Through an intent filter, an

application can express interest in specific data types, Intent actions, URI formats, and so on. When

resolving an Intent, the system evaluates all of the available intent filters in all applications and

passes the Intent to the application/activity that best matches the Intent and criteria. For more

information, see Intents and Intent Filters.

Related: Intent, Broadcast Receiver.

Broadcast Receiver

An application class that listens for Intents that are broadcast, rather than being sent to a single

target application/activity. The system delivers a broadcast Intent to all interested broadcast

receivers, which handle the Intent sequentially.

Page | 91

Related: Intent, Intent Filter.

Layout Resource

An XML file that describes the layout of an Activity screen.

Related: Resources

Manifest File

An XML file that each application must define, to describe the application's package name, version,

components (activities, intent filters, services), imported libraries, and describes the various

activities, and so on. See The AndroidManifest.xml File for complete information.

Nine-patch / 9-patch / Ninepatch image

A resizeable bitmap resource that can be used for backgrounds or other images on the device. See

Nine-Patch Stretchable Image for more information.

Related: Resources.

OpenGL ES

Android provides OpenGL ES libraries that you can use for fast, complex 3D images. It is harder to

use than a Canvas object, but better for 3D objects. The android.opengl and

javax.microedition.khronos.opengles packages expose OpenGL ES functionality.

Related: Canvas, Surface

Resources

Nonprogrammatic application components that are external to the compiled application code, but

which can be loaded from application code using a well-known reference format. Android supports a

variety of resource types, but a typical application's resources would consist of UI strings, UI layout

components, graphics or other media files, and so on. An application uses resources to efficiently

support localization and varied device profiles and states. For example, an application would include

a separate set of resources for each supported local or device type, and it could include layout

resources that are specific to the current screen orientation (landscape or portrait). For more

information about resources, see Resources and Assets. The resources of an application are always

stored in the res/* subfolders of the project.

Service

An object of class Service that runs in the background (without any UI presence) to perform various

persistent actions, such as playing music or monitoring network activity.

Related: Activity

Surface

Page | 92

An object of type Surface representing a block of memory that gets composited to the screen. A

Surface holds a Canvas object for drawing, and provides various helper methods to draw layers and

resize the surface. You should not use this class directly; use SurfaceView instead.

Related: Canvas

SurfaceView

A View object that wraps a Surface for drawing, and exposes methods to specify its size and format

dynamically. A SurfaceView provides a way to draw independently of the UI thread for resource-

intensive operations (such as games or camera previews), but it uses extra memory as a result.

SurfaceView supports both Canvas and OpenGL ES graphics. The base class is SurfaceView.

Related: Surface

Theme

A set of properties (text size, background color, and so on) bundled together to define various

default display settings. Android provides a few standard themes, listed in R.style (starting with

"Theme_").

URIs in Android

Android uses URI strings as the basis for requesting data in a content provider (such as to retrieve a

list of contacts) and for requesting actions in an Intent (such as opening a Web page in a browser).

The URI scheme and format is specialized according to the type of use, and an application can handle

specific URI schemes and strings in any way it wants. Some URI schemes are reserved by system

components. For example, requests for data from a content provider must use the content://. In an

Intent, a URI using an http:// scheme will be handled by the browser.

View

An object that draws to a rectangular area on the screen and handles click, keystroke, and other

interaction events. A view is a base class for most layout components of an Activity or Dialog screen

(text boxes, windows, and so on). It receives calls from its parent object (see ViewGroup) to draw

itself, and informs its parent object about where and how big it would like to be (which may or may

not be respected by the parent). For more information, see View.

Related: View Hierarchy, ViewGroup, Widget

View Hierarchy

An arrangement of View and ViewGroup objects that defines the user interface for each component

of an app. The hierarchy consists of view groups that contain one or more child views or view groups.

You can obtain a visual representation of a view hierarchy for debugging and optimization by using

the Hierarchy Viewer that is supplied with the Android SDK.

Related: View, ViewGroup

ViewGroup

Page | 93

A container object that groups a set of child views. The view group is responsible for deciding where

child views are positioned and how large they can be, as well as for calling each to draw itself when

appropriate. Some view groups are invisible and are for layout only, while others have an intrinsic UI

(for instance, a scrolling list box). View groups are all in the widget package, but extend ViewGroup.

Related: View, View Hierarchy

Widget

One of a set of fully implemented View subclasses that render form elements and other UI

components, such as a text box or popup menu. Because a widget is fully implemented, it handles

measuring and drawing itself and responding to screen events. Widgets are all in the android.widget

package.

Window

In an Android application, an object derived from the abstract class Window that specifies the

elements of a generic window, such as the look and feel (title bar text, location and content of

menus, and so on). Dialog and Activity use an implementation of this class to render a window. You

do not need to implement this class or use windows in your application.

Page | 94

Appendix D

Permission in Manifest class[80]

Constants

String ACCESS_CHECKIN_PROPERTIES
Allows read/write access to the "properties" table in the checkin database, to change values
that get uploaded.

String ACCESS_COARSE_LOCATION
Allows an app to access approximate location.

String ACCESS_FINE_LOCATION
Allows an app to access precise location.

String ACCESS_LOCATION_EXTRA_COMMANDS
Allows an application to access extra location provider commands.

String ACCESS_NETWORK_STATE
Allows applications to access information about networks.

String ACCESS_NOTIFICATION_POLICY
Marker permission for applications that wish to access notification policy.

String ACCESS_WIFI_STATE
Allows applications to access information about Wi-Fi networks.

String ACCOUNT_MANAGER
Allows applications to call into AccountAuthenticators.

String ADD_VOICEMAIL
Allows an application to add voicemails into the system.

String ALLOCATE_AGGRESSIVE
Allows an application to aggressively allocate disk space.

String ANSWER_PHONE_CALLS
Allows the app to answer an incoming phone call.

String BATTERY_STATS
Allows an application to collect battery statistics

String BIND_ACCESSIBILITY_SERVICE
Must be required by an AccessibilityService, to ensure that only the system can bind to it.

String BIND_APPWIDGET
Allows an application to tell the AppWidget service which application can access
AppWidget's data.

String BIND_AUTOFILL
Must be required by a AutofillService, to ensure that only the system can bind to it.

String BIND_AUTO_FILL
TODO(b/35956626): temporary until clients change to BIND_AUTOFILL
Protection level: signature

String BIND_CARRIER_MESSAGING_SERVICE
This constant was deprecated in API level 23. Use BIND_CARRIER_SERVICES instead

String BIND_CARRIER_SERVICES
The system process that is allowed to bind to services in carrier apps will have this
permission.

String BIND_CHOOSER_TARGET_SERVICE
Must be required by a ChooserTargetService, to ensure that only the system can bind to it.

String BIND_CONDITION_PROVIDER_SERVICE
Must be required by a ConditionProviderService, to ensure that only the system can bind to

Page | 95

it.

String BIND_DEVICE_ADMIN
Must be required by device administration receiver, to ensure that only the system can
interact with it.

String BIND_DREAM_SERVICE
Must be required by an DreamService, to ensure that only the system can bind to it.

String BIND_INCALL_SERVICE
Must be required by a InCallService, to ensure that only the system can bind to it.

String BIND_INPUT_METHOD
Must be required by an InputMethodService, to ensure that only the system can bind to it.

String BIND_MIDI_DEVICE_SERVICE
Must be required by an MidiDeviceService, to ensure that only the system can bind to it.

String BIND_NFC_SERVICE
Must be required by a HostApduService or OffHostApduService to ensure that only the
system can bind to it.

String BIND_NOTIFICATION_LISTENER_SERVICE
Must be required by an NotificationListenerService, to ensure that only the system can bind
to it.

String BIND_PRINT_SERVICE
Must be required by a PrintService, to ensure that only the system can bind to it.

String BIND_QUICK_SETTINGS_TILE
Allows an application to bind to third party quick settings tiles.

String BIND_REMOTEVIEWS
Must be required by a RemoteViewsService, to ensure that only the system can bind to it.

String BIND_SCREENING_SERVICE
Must be required by a CallScreeningService, to ensure that only the system can bind to it.

String BIND_TELECOM_CONNECTION_SERVICE
Must be required by a ConnectionService, to ensure that only the system can bind to it.

String BIND_TEXT_SERVICE
Must be required by a TextService (e.g.

String BIND_TV_INPUT
Must be required by a TvInputService to ensure that only the system can bind to it.

String BIND_VISUAL_VOICEMAIL_SERVICE
Must be required by a link VisualVoicemailService to ensure that only the system can bind to
it.

String BIND_VOICE_INTERACTION
Must be required by a VoiceInteractionService, to ensure that only the system can bind to it.

String BIND_VPN_SERVICE
Must be required by a VpnService, to ensure that only the system can bind to it.

String BIND_VR_LISTENER_SERVICE
Must be required by an VrListenerService, to ensure that only the system can bind to it.

String BIND_WALLPAPER
Must be required by a WallpaperService, to ensure that only the system can bind to it.

String BLUETOOTH
Allows applications to connect to paired bluetooth devices.

String BLUETOOTH_ADMIN
Allows applications to discover and pair bluetooth devices.

String BLUETOOTH_PRIVILEGED
Allows applications to pair bluetooth devices without user interaction, and to allow or
disallow phonebook access or message access.

String BODY_SENSORS

Page | 96

Allows an application to access data from sensors that the user uses to measure what is
happening inside his/her body, such as heart rate.

String BROADCAST_PACKAGE_REMOVED
Allows an application to broadcast a notification that an application package has been
removed.

String BROADCAST_SMS
Allows an application to broadcast an SMS receipt notification.

String BROADCAST_STICKY
Allows an application to broadcast sticky intents.

String BROADCAST_WAP_PUSH
Allows an application to broadcast a WAP PUSH receipt notification.

String CALL_PHONE
Allows an application to initiate a phone call without going through the Dialer user interface
for the user to confirm the call.

String CALL_PRIVILEGED
Allows an application to call any phone number, including emergency numbers, without
going through the Dialer user interface for the user to confirm the call being placed.

String CAMERA
Required to be able to access the camera device.

String CAPTURE_AUDIO_OUTPUT
Allows an application to capture audio output.

String CAPTURE_SECURE_VIDEO_OUTPUT
Allows an application to capture secure video output.

String CAPTURE_VIDEO_OUTPUT
Allows an application to capture video output.

String CHANGE_COMPONENT_ENABLED_STATE
Allows an application to change whether an application component (other than its own) is
enabled or not.

String CHANGE_CONFIGURATION
Allows an application to modify the current configuration, such as locale.

String CHANGE_NETWORK_STATE
Allows applications to change network connectivity state.

String CHANGE_WIFI_MULTICAST_STATE
Allows applications to enter Wi-Fi Multicast mode.

String CHANGE_WIFI_STATE
Allows applications to change Wi-Fi connectivity state.

String CLEAR_APP_CACHE
Allows an application to clear the caches of all installed applications on the device.

String CONTROL_LOCATION_UPDATES
Allows enabling/disabling location update notifications from the radio.

String DELETE_CACHE_FILES
Allows an application to delete cache files.

String DELETE_PACKAGES
Allows an application to delete packages.

String DIAGNOSTIC
Allows applications to RW to diagnostic resources.

String DISABLE_KEYGUARD
Allows applications to disable the keyguard if it is not secure.

String DUMP
Allows an application to retrieve state dump information from system services.

String EXPAND_STATUS_BAR

Page | 97

Allows an application to expand or collapse the status bar.

String FACTORY_TEST
Run as a manufacturer test application, running as the root user.

String GET_ACCOUNTS
Allows access to the list of accounts in the Accounts Service.

String GET_ACCOUNTS_PRIVILEGED
Allows access to the list of accounts in the Accounts Service.

String GET_PACKAGE_SIZE
Allows an application to find out the space used by any package.

String GET_TASKS
This constant was deprecated in API level 21. No longer enforced.

String GLOBAL_SEARCH
This permission can be used on content providers to allow the global search system to
access their data.

String INSTALL_LOCATION_PROVIDER
Allows an application to install a location provider into the Location Manager.

String INSTALL_PACKAGES
Allows an application to install packages.

String INSTALL_SHORTCUT
Allows an application to install a shortcut in Launcher.

String INSTANT_APP_FOREGROUND_SERVICE
Allows an instant app to create foreground services.

String INTERNET
Allows applications to open network sockets.

String KILL_BACKGROUND_PROCESSES
Allows an application to call killBackgroundProcesses(String).

String LOCATION_HARDWARE
Allows an application to use location features in hardware, such as the geofencing api.

String MANAGE_DOCUMENTS
Allows an application to manage access to documents, usually as part of a document picker.

String MANAGE_OWN_CALLS
Allows an application to manage its own calls, but rely on the system to route focus to the
currently active call.

String MASTER_CLEAR
Not for use by third-party applications.

String MEDIA_CONTENT_CONTROL
Allows an application to know what content is playing and control its playback.

String MODIFY_AUDIO_SETTINGS
Allows an application to modify global audio settings.

String MODIFY_PHONE_STATE
Allows modification of the telephony state - power on, mmi, etc.

String MOUNT_FORMAT_FILESYSTEMS
Allows formatting file systems for removable storage.

String MOUNT_UNMOUNT_FILESYSTEMS
Allows mounting and unmounting file systems for removable storage.

String NFC
Allows applications to perform I/O operations over NFC.

String PACKAGE_USAGE_STATS
Allows an application to collect component usage statistics
Declaring the permission implies intention to use the API and the user of the device can
grant permission through the Settings application.

Page | 98

String PERSISTENT_ACTIVITY
This constant was deprecated in API level 9. This functionality will be removed in the future;
please do not use. Allow an application to make its activities persistent.

String PROCESS_OUTGOING_CALLS
Allows an application to see the number being dialed during an outgoing call with the option
to redirect the call to a different number or abort the call altogether.

String READ_CALENDAR
Allows an application to read the user's calendar data.

String READ_CALL_LOG
Allows an application to read the user's call log.

String READ_CONTACTS
Allows an application to read the user's contacts data.

String READ_EXTERNAL_STORAGE
Allows an application to read from external storage.

String READ_FRAME_BUFFER
Allows an application to take screen shots and more generally get access to the frame buffer
data.

String READ_INPUT_STATE
This constant was deprecated in API level 16. The API that used this permission has been
removed.

String READ_LOGS
Allows an application to read the low-level system log files.

String READ_PHONE_NUMBERS
Allows read access to the device's phone number(s).

String READ_PHONE_STATE
Allows read only access to phone state, including the phone number of the device, current
cellular network information, the status of any ongoing calls, and a list of any
PhoneAccounts registered on the device.

String READ_SMS
Allows an application to read SMS messages.

String READ_SYNC_SETTINGS
Allows applications to read the sync settings.

String READ_SYNC_STATS
Allows applications to read the sync stats.

String READ_VOICEMAIL
Allows an application to read voicemails in the system.

String REBOOT
Required to be able to reboot the device.

String RECEIVE_BOOT_COMPLETED
Allows an application to receive the ACTION_BOOT_COMPLETED that is broadcast after the
system finishes booting.

String RECEIVE_MMS
Allows an application to monitor incoming MMS messages.

String RECEIVE_SMS
Allows an application to receive SMS messages.

String RECEIVE_WAP_PUSH
Allows an application to receive WAP push messages.

String RECORD_AUDIO
Allows an application to record audio.

String REORDER_TASKS
Allows an application to change the Z-order of tasks.

Page | 99

String REQUEST_DELETE_PACKAGES
Allows an application to request deleting packages.

String REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
Permission an application must hold in order to use
ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS.

String REQUEST_INSTALL_PACKAGES
Allows an application to request installing packages.

String RESTART_PACKAGES
This constant was deprecated in API level 8. The restartPackage(String) API is no longer
supported.

String RESTRICTED_VR_ACCESS
Must be required by system apps when accessing restricted VR APIs.

String RUN_IN_BACKGROUND
Allows an app to run in the background.

String SEND_RESPOND_VIA_MESSAGE
Allows an application (Phone) to send a request to other applications to handle the respond-
via-message action during incoming calls.

String SEND_SMS
Allows an application to send SMS messages.

String SET_ALARM
Allows an application to broadcast an Intent to set an alarm for the user.

String SET_ALWAYS_FINISH
Allows an application to control whether activities are immediately finished when put in the
background.

String SET_ANIMATION_SCALE
Modify the global animation scaling factor.

String SET_DEBUG_APP
Configure an application for debugging.

String SET_PREFERRED_APPLICATIONS
This constant was deprecated in API level 7. No longer useful, see
addPackageToPreferred(String) for details.

String SET_PROCESS_LIMIT
Allows an application to set the maximum number of (not needed) application processes
that can be running.

String SET_TIME
Allows applications to set the system time.

String SET_TIME_ZONE
Allows applications to set the system time zone.

String SET_WALLPAPER
Allows applications to set the wallpaper.

String SET_WALLPAPER_HINTS
Allows applications to set the wallpaper hints.

String SIGNAL_PERSISTENT_PROCESSES
Allow an application to request that a signal be sent to all persistent processes.

String STATUS_BAR
Allows an application to open, close, or disable the status bar and its icons.

String SYSTEM_ALERT_WINDOW
Allows an app to create windows using the type TYPE_APPLICATION_OVERLAY, shown on
top of all other apps.

String TRANSMIT_IR
Allows using the device's IR transmitter, if available.

Page | 100

String UNINSTALL_SHORTCUT
This permission is no longer supported.

String UPDATE_DEVICE_STATS
Allows an application to update device statistics.

String USE_DATA_IN_BACKGROUND
Allows an app to use data in the background.

String USE_FINGERPRINT
Allows an app to use fingerprint hardware.

String USE_SIP
Allows an application to use SIP service.

String VIBRATE
Allows access to the vibrator.

String WAKE_LOCK
Allows using PowerManager WakeLocks to keep processor from sleeping or screen from
dimming.

String WRITE_APN_SETTINGS
Allows applications to write the apn settings.

String WRITE_CALENDAR
Allows an application to write the user's calendar data.

String WRITE_CALL_LOG
Allows an application to write (but not read) the user's call log data.

String WRITE_CONTACTS
Allows an application to write the user's contacts data.

String WRITE_EXTERNAL_STORAGE
Allows an application to write to external storage.

String WRITE_GSERVICES
Allows an application to modify the Google service map.

String WRITE_SECURE_SETTINGS
Allows an application to read or write the secure system settings.

String WRITE_SETTINGS
Allows an application to read or write the system settings.

String WRITE_SYNC_SETTINGS
Allows applications to write the sync settings.

String WRITE_VOICEMAIL
Allows an application to modify and remove existing voicemails in the system.

Page | 101

References

[1] Butler, Margaret. "Android: Changing the mobile landscape." IEEE Pervasive Computing 10, no. 1
(2011): 4-7.
[2] Mahapatra, Lisa. "Android Vs. iOS: What’s The Most Popular Mobile Operating System In Your
Country?." International Business Times. Retrieved 1 Mar. 2014.
[3] Victor, H. "Android's Google Play beats App Store with over 1 million apps, now officially largest."
Retrieved January 16 (2013): 2014.
[4] Economics, Developer. "Q3 2013 analyst report–http://www. visionmobile. com." Retrieved 25 Jul.
2015
[5] Kahn, Justin. 2014. "Google Shows Off New Version Of Android, Announces 1 Billion Active
Monthly Users". Techspot. http://www.techspot.com/news/57228-google-shows-off-new-version-
of-android-announces-1-billion-active-monthly-users.html.
[6] Chebyshev, Victor, and Roman Unuchek. "Mobile malware evolution: 2013." Kaspersky Lab ZAO’s
SecureList 24 (2014).
[7] Doherty, Stephen, Piotr Krysiuk, and Candid Wueest. "The state of financial trojans 2013."
Luettavissa: http://www. symantec. com/content/en/us/enterprise/media/security_response/whit
epapers/the_state_of_financial_trojans_2013. pdf. Retrieved 4 (2013): 2014.
[8] Dougan, Timothy, and Kevin Curran. "Man in the browser attacks." International Journal of
Ambient Computing and Intelligence (IJACI) 4, no. 1 (2012): 29-39.
[9] Gühring, Philipp. "Concepts against man-in-the-browser attacks." (2006).
[10] Niki, Aikaterinaki. "Drive-by download attacks: Effects and detection methods." In 3rd IT student
conference for the next generation, University of East London, London, UK. 2009.
[11] Fraud, FBI Cyber Banking. "Global Partnerships Lead to Major Arrests." (2010): 38
[12] Maggi, Federico, et al. "Finding non-trivial malware naming inconsistencies." International
Conference on Information Systems Security. Springer Berlin Heidelberg, 2011.
[13] Donohue, Brian. "The big four banking Trojans." https://blog. kaspersky. com/the-big-four-
banking-trojans/. Retrieved 5 (2013): 2014.
[14] Milletary, Jason. "Citadel Trojan Malware Analysis." http://botnetlegalnotice.
com/citadel/files/Patel_Decl_Ex20. pdf. Retrieved 13 (2012): 2014.
[15] Lerner, Zach. "Microsoft the Botnet Hunter: The Role of Public-Private Partnerships in Mitigating
Botnets." Harv. J. Law & Tec 28 (2014): 237-593.
[16] Walker, Danielle Senior Reporter. "Spyeye's Primary Developer And Distributor Pleads Guilty In
U.S.". http://www.scmagazine.com/spyeyes-primary-developer-and-distributor-pleads-guilty-in-
us/article/331667/. Retrieved 13 (2014): 2015.
[17] David, Omid E., and Nathan S. Netanyahu. "Deepsign: Deep learning for automatic malware
signature generation and classification." 2015 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2015.
[18] Falliere, Nicolas, and Eric Chien. "Zeus: King of the bots, 2009." Symantec Corporation (2014).
[19] Dolmans, Ralph, and Wouter Katz. "RP1: Carberp Malware analysis." (2013).
[20] Sherstobitoff, Ryan. "Inside the world of the citadel trojan." Emergence 9 (2012).
[21] Sood, Aditya K., Richard J. Enbody, and Rohit Bansal. "Dissecting SpyEye–Understanding the
design of third generation botnets." Computer Networks 57, no. 2 (2013): 436-450.
[22] Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, Moutaz Alazab, and Ammar Alazab.
"Cybercrime: the case of obfuscated malware." In Global Security, Safety and Sustainability & e-
Democracy, pp. 204-211. Springer Berlin Heidelberg, 2012.
[23] Riccardi, Marco, Roberto Di Pietro, Marta Palanques, and Jorge Aguila Vila. "Titans’ revenge:
Detecting Zeus via its own flaws." Computer Networks 57, no. 2 (2013): 422-435.
[24] Maslennikov, Dennis. "First sms trojan for android." Online] Kaspersky, August 10 (2010).
[25] Clapsadl, Michael. Standardizing the security of mobile app store platforms. Diss. Utica College,
2012.

Page | 102

[26] Wyatt, Tim. "Security alert: Geinimi, sophisticated new android trojan found in wild." Online]
December 2010 (2010).
[27] Mahaffey, Kevin. "Security alert: Droiddream malware found in official android market." Lookout
Blog (2011).
[28] Jiang, Xuxian. "Security alert: New sophisticated android malware droidkungfu found in
alternative chinese app markets." URL http://www. csc. ncsu. edu/faculty/jiang/DroidKungFu. html
(2011).
[29] Apvrille, A. "Android/DroidKungFu uses AES encryption." (2011).
[30] Networks, Juniper. “2011 Mobile Threats Report”
http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-mobile-threats-report.pdf
Retrieved 18 Apr. 2014
[31] Networks, Juniper “Third Annual Mobile Threats Report”
http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2012-mobile-threats-report.pdf
Retrieved 18 Apr. 2014
[32] Chebyshev, Victor, and Roman Unuchek. "Mobile malware evolution: 2013." Kaspersky Lab ZAO’s
SecureList 24 (2014).
[33] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution." 2012
IEEE Symposium on Security and Privacy. IEEE, 2012.
[34] Yan, Lok Kwong, and Heng Yin. "Droidscope: seamlessly reconstructing the os and dalvik semantic
views for dynamic android malware analysis." Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12). 2012.
[35] Grace, Michael, et al. "Riskranker: scalable and accurate zero-day android malware detection."
Proceedings of the 10th international conference on Mobile systems, applications, and services.
ACM, 2012.
[36] Barroso, David. "ZeuS Mitmo: Man-in-the-mobile." S21 Security) Retrieved 2.11 (2010): 2016.
[37] Konieczny, Piotr “ZeuS haunted Polish banks (ING and mBank)”
http://niebezpiecznik.pl/post/zeus-straszy-polskie-banki/ Retrieved 8 Jun. 2015
[38] F-Secure Labs, Sean “Trojan:SymbOS/Spitmo.A” http://www.f-
secure.com/weblog/archives/00002135.html Retrieved 11 Jul. 2015
[39] Fu, Yu, Benafsh Husain, and Richard R. Brooks. "Analysis of Botnet Counter-Counter-Measures."
Proceedings of the 10th Annual Cyber and Information Security Research Conference. ACM, 2015.
[40] Chebyshev, Victor, and Roman Unuchek. "Mobile malware evolution: 2013." Kaspersky Lab ZAO’s
SecureList 24 (2014).
[41] News, Virus Kaspersky Lab. ” Q1 2014: Mobile Banking Trojans Double, Surge in Bitcoin Wallet
Attacks, and Cyber-Espionage Threats Back From the Dead”
http://www.kaspersky.com/about/news/virus/2014/Q1-2014-Mobile-Banking-Trojans-Double-
Surge-Bitcoin-Wallet-Attacks-Cyber-Espionage-Back-From-Dead Retrieved 1 Mar. 2015
[42] Lafortune, Eric. "ProGuard." http://proguard.sourceforge.net Retrieved 12 May. 2014
[43] Yan, Lok Kwong, and Heng Yin. "Droidscope: seamlessly reconstructing the os and dalvik semantic
views for dynamic android malware analysis." Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12). 2012.
[44] Hacking, Ethical “MobiSec Mobile Penetration Testing”
http://www.ehacking.net/2014/08/mobisec-mobile-penetration-testing.html Retrieved 21 Mar.
2015
[45] Yeboah-Boateng, Ezer Osei, and Elvis Akwa-Bonsu. "Digital Forensic Investigations: Issues of
Intangibility, Complications and Inconsistencies in Cyber-Crimes." Journal of Cyber Security 4: 87-104.
[46] Android, S. D. K. "Android software development." Android: High-impact Strategies-What You
Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors (2012): 27.
[47] Total, Virus. "VirusTotal-Free Online Virus, Malware and URL Scanner." (2012).

Page | 103

[48] Daum, Magnus, and Stefan Lucks. "Hash Collisions (The Poisoned Message Attack)“The Story of
Alice and her Boss”." rump session of Eurocrypt 5 (2005): 253-271.
[49] Czachórski, Tadeusz, Erol Gelenbe, and Ricardo Lent, eds. Information Sciences and Systems 2014:
Proceedings of the 29th International Symposium on Computer and Information Sciences. Springer,
2014(P182).
[50] Boutin, Jean-Ian. "The evolution of webinjects." (2014).
[51] ACH, Fraudulent Automated Clearing House. "ZitMo hits hard in Europe." Computer Fraud &
Security (2012).
[52] Jackson, William. "With QR codes, even security pros play the fool." (2012).
[53] Maslennikov,Denis. “Carberp-in-the-Mobile” http://securelist.com/blog/virus-
watch/57658/carberp-in-the-mobile/ Retrieved 12 Mar. 2015
[54] Krebs, B. "Carberp code leak stokes copycat fears." (2013).
[55] Mansfield-Devine, Steve. "Paranoid Android: just how insecure is the most popular mobile
platform?." Network Security 2012.9 (2012): 5-10.
[56] Krebs, B. "Mobile malcoders pay to (Google) Play. Krebs on security." (2013).
[57]F-Secure, Sean. “Trojan:Android/Pincer.A” http://www.f-
secure.com/weblog/archives/00002538.html Retrieved 2 Dec. 2014
[58] Protalinski, Emil. “New Android malware intercepts incoming text messages, silently forwards
them on to criminals” http://thenextweb.com/insider/2013/05/23/new-android-malware-
intercepts-incoming-text-messages-silently-forwards-them-on-to-criminals/ Retrieved 2 Dec. 2014
[59] Flora Liu; Windows Malware Attempts to Infect Android Devices -
http://www.symantec.com/connect/blogs/windows-malware-attempts-infect-android-devices
[60] Constantin, Lucian. “New Windows malware tries to infect Android devices connected to PCs”
http://www.pcworld.com/article/2090940/new-windows-malware-tries-to-infect-android-devices-
connected-to-pcs.html Retrieved 15 Dec. 2015
[61] Developers, Android “Device Administration”
http://developer.android.com/guide/topics/admin/device-admin.html Retrieved 15 Dec. 2015
[62] List, Secure. "The Android Trojan Svpeng now capable of mobile phishing, last access 2015."
[63] Unuchek, Roman. “Latest version of Svpeng targets users in US”
http://securelist.com/blog/mobile/63746/latest-version-of-svpeng-targets-users-in-us/ Retrieved 16
Dec. 2015
[64] Chebyshev, Victor, and Roman Unuchek. "Mobile malware evolution: 2013." Kaspersky Lab ZAO’s
SecureList 24 (2014).
[65] Unuchek, Roman. “Latest version of Svpeng targets users in US”
http://securelist.com/blog/mobile/63746/latest-version-of-svpeng-targets-users-in-us/ Retrieved 16
Dec. 2015
[66] Lantz, Patrik. "An android application sandbox for dynamic analysis." Master, lectrical and
Information Technology, Lund university,. Lund, Sweden (2011).
[67] Enck, William, et al. "TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones." ACM Transactions on Computer Systems (TOCS) 32.2 (2014): 5.
[68] Moonsamy, Veelasha, Ronghua Tian, and Lynn Batten. "Feature reduction to speed up malware
classification." Nordic Conference on Secure IT Systems. Springer Berlin Heidelberg, 2011.
[69] Developer, Android “Services” http://developer.android.com/guide/components/services.html
Retrieved 16 Dec. 2015
[70] Manjunath, Vibha, and Martin Colley. "Reverse Engineering of Malware on Android." SANS
Institute InfoSec Reading Room (2011).
[71] Developer, Android. “Glossary” https://developer.android.com/guide/appendix/glossary.html
Retrieved 16 Dec. 2015
[72] Developer, Android. “System Permissions”
http://developer.android.com/guide/topics/security/permissions.html Retrieved 16 Dec. 2015

Page | 104

[73] Developer, Android. “Manifest.permission”
http://developer.android.com/reference/android/Manifest.permission.html, Retrieved May 2015
[74] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution." 2012
IEEE Symposium on Security and Privacy. IEEE, 2012.
[75] Bornstein, Dan. "Dalvik vm internals." Google I/O developer conference. Vol. 23. 2008.
[76] Dmitrienko, Alexandra, et al. "On the (in) security of mobile two-factor authentication."
International Conference on Financial Cryptography and Data Security. Springer Berlin Heidelberg,
2014.
[77]

 Zeltser,Lenny. “REMnux Documentation” https://remnux.org/docs/distro/get/
[78]

 Jason Gillam, Kevin Johnson,Tony DeLaGrange, and Chris Cuevas. “MobiSec Live Environment”
https://sourceforge.net/p/mobisec/wiki/Home/
[79]

 https://developer.android.com/guide/appendix/glossary.html
[80]

 https://developer.android.com/reference/android/Manifest.permission.html

