
 
This is the published version of: 
 
De Silva, D., et.al. (2015) Addressing the complexities of big data 
analytics in healthcare: The diabetes screening case. Australasian 
Journal of Information Systems, 19, p.S99-S115. 
 
Available online at https://doi.org/10.3127/ajis.v19i0.1183 
 

  Copyright © 2015 De Silva, D. et.al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 

License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/). The 
use, distribution or reproduction in other forums is permitted, provided 

the original author(s) or licensor are credited and that the original 
publication in this journal is cited, in accordance with accepted 

academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms. 

COPYRIGHT NOTICE             
 
 
 
FedUni ResearchOnline 
http://researchonline.federation.edu.au 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213005767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3127/ajis.v19i0.1183
http://creativecommons.org/licenses/by/4.0/


Australasian Journal of Information Systems De Silva, Burstein, Jelinek & Stranieri
2015, vol. 19, pp. S99-S115 Complexities of Big Data

Addressing the Complexities of Big Data Analytics in 
Healthcare: The Diabetes Screening Case 
Daswin De Silva 
La Trobe Business School
La Trobe University
D.DeSilva@latrobe.edu.au

Frada Burstein 
Centre for Organisational and Social Informatics
Monash University
frada.burstein@monash.edu

Herbet Jelinek 
School of Community Health & Centre for Research in Complex Systems
Charles Sturt University
HJelinek@csu.edu.au

Andrew Stranieri 
Centre for Informatics and Applied Optimization
Federation University
a.stranieri@federation.edu.au

Abstract 
The healthcare industry generates a high throughput of medical, clinical and omics data of 
varying complexity and features. Clinical decision-support is gaining widespread attention as 
medical institutions and governing bodies turn towards better management of this data for 
effective and efficient healthcare delivery and quality assured outcomes. Amass of data across 
all stages, from disease diagnosis to palliative care, is further indication of the opportunities 
and challenges to effective data management, analysis, prediction and optimization techniques 
as parts of knowledge management in clinical environments. Big Data analytics (BDA) presents 
the potential to advance this industry with reforms in clinical decision-support and 
translational research. However, adoption of big data analytics has been slow due to 
complexities posed by the nature of healthcare data. The success of these systems is hard to 
predict, so further research is needed to provide a robust framework to ensure investment in 
BDA is justified. In this paper we investigate these complexities from the perspective of 
updated Information Systems (IS) participation theory. We present a case study on a large 
diabetes screening project to integrate, converge and derive expedient insights from such an 
accumulation of data and make recommendations for a successful BDA implementation 
grounded in a participatory framework and the specificities of big data in healthcare context.

Keywords: big data analytics; health informatics; clinical decision support; translational 
research; business analytics; information fusion

1 Introduction 
A new demand, increasingly driven by cost pressures and evidence-based medicine, is pushing 
the healthcare sector to acquire, manage and disseminate relevant data to every stakeholder, 
from medical practitioners to patients and carers (Groves et al. 2013). The type and complexity 
of medical condition(s) has a direct impact on the volume of data accumulated. Groves et al. 
(2013) clearly identify this as a Big Data scenario. Reduced expenditure and improved patient 
outcomes are means of value generation in healthcare. The five pathways to value generation; 
right living, right care, right provider, right value and right innovation are empowered by the 
use of Big Data analytics (Groves et al. 2013). These value pathways are well-positioned with 
recent advances in clinical decision-support (CDS). CDS has evolved from medical data 
processing tools to complex decision support frameworks and infrastructure for clinical 
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knowledge management. Two prominent taxonomies for CDS architectures are presented by 
(Sen et al. 2012) and (Wright and Sittig 2008). In the former, the authors explore CDS 
architectures within the context of underlying technologies of information management, data 
analytics and knowledge management. In the latter, the authors define architecture as the form 
of interaction between related systems, with four distinct CDS phases; standalone, integrated, 
standards-based and the service model. 

Further impetus for Big Data analytics arises from the role of clinical scientists in research into 
disease management. The declining role of clinical scientists in medical research has been 
identified as a potential reason for the critical gap (termed the ‘valley of death’ crisis) that lies 
between bench research and bedside treatment (Butler 2008). (Roberts et al. 2012) emphasise 
the increasingly important role of data and clinical scientists in translational research; research 
that converts laboratory discoveries into clinical interventions. Ambitious projects such as 
(Burton et al. 2007) aim to predict the likelihood of medical conditions based on molecular 
biomarkers derived from datasets of disease-related mutations as well as the simpler history-
based approach proposed by (Davis et al. 2008) are further indications of the potential of Big 
Data. 

We reflect on CDS architectures from the perspective of the updated IS participation theory 
(Markus and Mao, 2004), which allows to not just look at the necessary components of the 
BDA system, but suggest the roles and the level of participation expected to lead to successful 
system implementation and use.

The paper is organised as follows. The following section presents a theoretical underpinning 
for articulating the role of BDA in advancing user participation in development and use of such 
systems from the updated IS participation theory perspective. An account of Big Data analytics 
(BDA) is reported next with examples from healthcare, relevant technology components, use 
and integration. We then review the context of analytics in healthcare, scrutinize the 
complexities of applying Big Data analytics to healthcare data and propose a solution to 
address these complexities. 

2 Value of BDA Platform from the IS Participation Theory 
Perspective 

(Markus and Mao 2004) revisited traditional IS participation theory and proposed the key 
elements of a new theoretical framework that clearly articulates the key parameters for 
designing the systems “for users with users”. In their view, the updated theory of IS 
participation, requires specific re-definition of system success, differentiation among actors’ 
roles in systems development and implementation, and refinement of the concept of 
participation between each actor accordingly (Figure 1). 

Figure 1: Updated Participation Theory (adapted from Markus and Mao, 2004)
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The motivation of their work was to specify the effects of participation on various types of 
outcomes that are clustered together as system success. They identify three theories linking 
participation to system success (buy-in, system quality and emergent interactions) and 
determine conceptual gaps in these links that lead to the updated theory. Foundations of the 
updated theory lie in: 1) the distinction of system success into two concepts: system 
development success and system implementation success, with emergent reciprocal relations 
between them; 2) the description of groups of actors including stakeholders where participants 
are a subgroup, and change agents where IS specialists are a subgroup; 3) a reformulated 
behavioural concept of participation activities, characterized in terms of type and richness, 
methods and conditions; and 4) the hypothesis of emergent causal processes (Markus and 
Mao, 2004). 

Following on from these foundations, (De Silva et al. 2013) adopted other dimensions of 
participatory design processes as suggested by (Bergvall-Kåreborn et al. 2010), e.g. “Designing 
for users” and “Designing with users”. The latter provides an opportunity for closer 
engagement between the IS developers and users. Such participatory design process assumes 
the users’ “voice” to be fully appreciated and better understood, together with the new 
opportunities that flow from full articulation of their needs in an act of active engagement from 
the planning phase to implementation, and commercialisation of the final product. In this 
sense new tools and techniques can be employed for “tracing user needs” by continuously 
monitoring their behaviour both implicitly and through shared data management, as well as 
by making users express their feedback as part of the systems deployment process.

Having a BDA platform increases stakeholder participation in healthcare. It is not only the 
domain experts and technology experts but also other stakeholders, the patients, carers, 
advocacy groups and regulatory bodies that can partake in healthcare delivery and 
management. To this end, the updated IS participation theory proposed by De Silva et al, 
(2013) and contextualised in a participatory information management framework to facilitate 
patient-centred care is even more relevant to the case of BDA as it deals with even greater 
complexity of data and has to address the dynamic and diverse needs of multiple stakeholders.  
Foundations of the updated participation theory lie in: 1) the distinction of system success into 
two concepts: system development success and system implementation success, with emergent 
reciprocal relations between them; 2) a broad engagement of the stakeholder groups where 
participants are a subgroup, and change agents where IS specialists are a subgroup; 3) a 
reformulated behavioural concept of participation activities, characterized in terms of type and 
richness, methods and conditions; and 4) the hypothesis of emergent causal processes (Markus 
and Mao, 2004). The key participation activities, type, richness, methods and conditions are 
enriched by the BDA platform, which leads overall to improved healthcare outcomes. 

3 Big Data Analytics  
This discipline originated as Business Intelligence (BI) in the 1990s but was later renamed to 
business analytics at the turn of the century to reflect the major contribution of analytics and 
a separation from information management. More recently, Big Data and BDA have been 
introduced to comprehend the changing nature of data (Davenport 2006). The formal 
definition by (Gartner) clearly notes these changes, Big Data is high-volume, -velocity and -
variety information assets that demand cost-effective, innovative forms of information 
processing for enhanced insight and decision making (Beyer and Laney 2012). Frequently 
known as the 3Vs, volume (the large quantities of data), velocity (speed of input/output, rate 
of change) and variety (different types of data from varied sources) are also used as quantifiers 
for applying analytics to Big Data. BDA aims to derive value from datasets quantified by these 
parameters. Several other parameters have been introduced to account for further intricacies 
of Big Data. Table 1 presents definitions of these concepts along with examples from 
healthcare.   
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Parameter Description Examples from healthcare

Volume Size of data Cohorts of patients, multiple conditions
and treatment plans

Variety Different formats and types 
(numbers, images, text) 

Medical, clinical and omics data and
images from patients with diverse
conditions

Velocity The rate at which data arrives and changes
(streams, batches, infrequent intervals)

Wearable sensors and diagnostics
transmitting patient behaviour

Veracity Unpredictability of innately imprecise data 
types 

Patient feedback and clinician notes on
patient’s state

Variability Different interpretations of the same data Clinical data on the same condition
affecting a diverse group of patients

Value Inherent value addition to the organisation 
against the costs to acquire/accumulate. 

Extent of value addition to clinical
decision-support and translational
research

Sparseness Low density of useful content 
(missing or null values)

Variability of patient feedback on
symptoms and progress

Complexity Hierarchies, linkages between entities and 
recurrent data structures

Multi-pharmacy and multi-morbidity 

Table 1. Characteristics of Big Data

(Chen et al. 2012) conducted a comprehensive review of business intelligence and analytics 
(BIA) evolution from structured content (BIA 1.0), unstructured content (BIA 2.0) to mobile 
and sensor-based content (BIA 3.0). They signify smart health and wellbeing as a promising 
and high-impact BIA application, alongside ecommerce, e-government, science and 
technology and security and public safety. In healthcare, they identify patient data and 
genomics as the two main sources of Big Data. These two sources pair very well with the 
expectations of CDS and translational research. Privacy preservation and ethical research are 
highlighted as challenges to knowledge discovery from healthcare Big Data. Interestingly, the 
nature of data largely determines phases of evolution while the analytics techniques remain 
fairly consistent. It is this nature of data that gives rise to complexities in healthcare BDA. BDA 
also presents a paradigm shift in computing with the innovation of independent and self-
managed components that can be infinitely scaled to suit large volume computations, without 
the complication of shared resources.

The computing platform most often used for BDA is Apache Hadoop 
(https://hadoop.apache.org/); it consists of a distributed file-system (Hadoop Distributed File 
System; HDFS) and a robust programming model (MapReduce) that work together to 
distribute the algorithm to the data through task assignment (instead of the traditional 
approach of data into the algorithm) and to create schemas/ data models at run-time (instead 
of a static schema). The general-purpose Hadoop stack is illustrated in Figure 2. 

The initial layer is for data import, with two packages, Flume designed to extract data from 
file-based systems (free-form text, log files, etc) and Sqoop, designed to extract structured 
content from enterprise systems and relational databases. Next, data moves to the storage 
layer, HDFS, which introduces redundancy and fault-tolerance in preparation for scalable 
computations. MapReduce introduces the computation in the form of Map and Reduce 
functions to distribute the computation across many nodes and then merge the results into a 
single set of outputs. On the same layer, HBase provides a database-style interface to HDFS to 
deploy programs that can read or write to specific subsets of data.
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Figure 2. Apache Hadoop Ecosystem

The application layer presents end-user abstraction. Converting any computation to 
MapReduce format is complicated, the application layer abstracts this with a set of purpose-
built packages; Hive supports declarative queries for warehouse-type batch operations, Pig 
provides a compiler for sequences of MapReduce sub-modules and Mahout a package of 
machine learning techniques designed to use Hadoop for scalable analysis of Big Data. Oozie 
is a workflow/coordination scheduler system, which can be programmed to execute several 
different jobs (Hive, Pig, Mahout) in sequence. Other extensions such as R connectors to 
Hadoop are available as early trials at the time of writing. Most major software vendors provide 
extended implementations of Hadoop with improvements for faster deployment and/or 
simplified management.

As a discipline related to healthcare, bio-informatics has been quick to utilise the strength of 
Hadoop with extended frameworks such as CloudBurst and Crossbow. These have been able 
to achieve record speeds for next generation sequencing via read mapping (Schatz 2009). 
However in contrast, Big Data management and analytics has had limited impact on 
healthcare. Adoption of electronic health records (EHR) in clinics and hospitals can be the 
much needed platform for BDA projects. (Jensen et al. 2012) present a complete review of the 
key issues in accumulating EHR data and integrating these with genetic data. (Hanauer et al. 
2011) performed a simple symptom–disease–treatment association rule mining on a large 
collection of EHR through which they were able to identify clinically relevant and accurate 
associations for seven distinct diseases. Further impetus towards BDA is through large-scale 
online data collection projects driven by crowd intelligence, such as Daily Strength 
(http://www.dailystrength.org/) and PatientsLikeMe (http://www.patientslikeme.com/).
BDA outcomes from the accumulated data can be a useful resource for patient empowerment 
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(Miller 2012). Other prominent examples do not link directly into BDA but through a support 
technology such as mobile phones or wearable sensors. Ginger.io is a BDA application 
(Ginger.io 2015) that utilises mobile sensors present in smartphones in order track, record and 
analyse physical movements, phone activity (such as calls, texts) in order to monitor 
behavioural health therapies for chronic illnesses. Another BDA application in healthcare, 
(PropellerHealth 2015) utilises a GPS-enabled tracker to monitor inhaler usage by asthmatics. 
The information collected is used to determine behaviours across populations and also 
integrates this information with known asthma catalysts to improve treatment and prevention 
of asthma. The lack of BDA having a direct impact on healthcare can be attributed to the 
complexities delineated in the following section. 

4 Analytics in Healthcare 
Analytics in healthcare is driven by the gradual shift from disease-centred to patient-centred 
care (PCC).  PCC models transcend traditional boundaries that isolate patients from their 
clinical context. Patient-centred care was first featured in healthcare as one of the six aims for 
high-quality healthcare in a report ‘Crossing the Quality Chasm’ published by the USA Institute 
of Medicine (Bloom 2002). This report defines PCC as care that is “respectful of and responsive 
to individual patient preferences, needs, and values, and ensuring that patient values guide all 
clinical decisions”. In the traditional approach, the clinician addresses the medical condition 
and thereby cures/improves the health of the patient whereas with PCC this becomes a shared 
responsibility between healthcare professionals, the patient and family members. Frequent 
communication and information sharing leads to a further accumulation of data besides the 
actual clinical data and can be used effectively to understand patients with similar 
circumstances. 

Gartner’s business analytics framework (Chandler et al. 2011) is a useful tool to identify the 
role of analytics in healthcare. The framework can be presented as a matrix to highlight its key 
elements (Table 2). The primary activities ‘enable’, ‘produce’ and ‘consume’ run across the 
main entities of ‘people’, ‘processes’ and ‘platform’. 

People Processes Platform

Consume Decision makers Decision processes Decision capabilities

Produce Analysts/Data scientists Analytic processes Analytics capabilities

Enable ICT Administrators Information governance Information capabilities

Table 2. Business analytics framework (Chandler et al. 2011)

BDA maintains its potential to fulfil the expectations of the ‘platform’ element. It can become 
the patient-centred healthcare platform for information management, analytics and decision-
making capabilities. The following complexities need to be addressed for the eventuation of 
this platform. Based on our investigations, the key complexities impacting BDA in healthcare 
are granular data accumulation, temporal abstraction, multimodality, unstructured data, and 
integration of multi-source data. They are distributed across the ‘enable, produce, consume’ 
activities noted above.  These will be explored bottom-up so that low-level explanations 
contribute to understanding at the high-level. 

5 Granular data accumulation 
From a general practitioner’s desktop computer to cardiac monitors in an emergency room, a 
multitude of clinical information systems capture patient information. This information exists 
at different levels of granularity, in diverse formats and recorded at varying frequency. For 
instance, sensor readings from a cardiac monitor are well-defined in terms of grain, format 
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and frequency, however blood glucose measurements, although in the same format, can vary 
in terms of grain and frequency. A patient can record blood glucose levels at different times 
during the day when at home whereas a clinic may capture a single measurement but derive a 
different measure (glycated haemoglobin) to determine the three month average. This 
difference in granularity can be an extra dimension of information for BDA when paired with 
medication, demographic or behavioural information. Another example is recording 
medication information along with medical imaging. BDA can be used to identify changes in 
medical images and relate these to changes in medications or dosage. BDA is not limited by 
volume, velocity or variety so it is pertinent to capture and accumulate information at all levels 
of granularity. 

Granular data accumulation also extends to capturing outcomes and feedback. Outcomes from 
a specific exercise routine, dietary modifications or change of medication need to be captured 
and recorded. Completeness of medical data from start to end of the patient lifecycle is crucial 
for successful BDA in translational research. It is equally important to capture patient feedback 
as this reflects their experience of the medical condition. BDA can be used to identify 
associations between outcomes, feedback, symptoms, medication and behavioural changes but 
the quality of the findings is heavily dependent on the completeness of the data accumulated. 

6 Temporal abstraction 
Time is the supporting dimension for granularity as patient information is collected over time. 
Temporal abstraction (TA) is defined as a process which takes in a set of time-stamped 
parameters, external events and abstraction goals to generate abstractions of the data to be 
used for interpretation of past/present data (Shahar 1994). The intention is to transform 
temporal data from a simple, numerical form to informative and qualitative descriptions, 
which can be understood by clinicians. (Stacey and McGregor 2007) present a comprehensive 
review of techniques used in clinical data analysis systems. They highlight several 
inadequacies, such as confinement to temporal trends and level shifts, limited dimensionality 
of abstraction output and lack of integration with other analysis outcomes. Complex TA is a 
further development to represent higher-level abstractions not directly from the data but from 
intermediate TA outcomes. (Keravnou 1997) describes complex TAs as compound time objects 
with a repeating element, a repeating pattern and progression pattern where the repeating 
element itself could be periodic. (Bellazzi et al. 2000) developed a complex TA in the domain 
of diabetes monitoring to detect two overlapping interval abstractions and also the successive 
increase and decrease of blood glucose levels. Another well-researched approach to complex 
TAs is to represent the changing nature of a timer series using characters and words as 
symbols. (Sharshar et al. 2005) separated a data stream into trend and stability for each data 
point and applied rules to convert the signal into transient, decrease, increase or constant 
categories. A further abstraction was applied when individual characters, defining the state of 
the signal, are merged to form words. These ‘words’ can be mined for clinically relevant 
associations and projections.  TA and complex TA effectuate summarisation of highly granular 
data to abstract clinically relevant representations recorded over time for conventional data 
mining techniques. However with the advent of BDA the clinical knowledge embedded into TA 
of the same becomes equally useful to navigate the large space of granular data accumulation.  

7 Multimodality 
Mode is a resource for sense-making, it introduces context to an entity. Many contexts/modes 
can be found in a clinical environment to represent and also identify a patient. Modes such as 
demography, behaviour, symptoms, diagnosis, blood-gas measurements and medication are 
indicative of the patient’s condition, disease trajectory and future well-being. Clinical decision-
support greatly benefits from this multimodal representation of the patient’s state.  Capturing 
the multiple modes of an entire sample of patients is an equally rich resource for inference and 
prediction in translational research. Multimodality in business analytics is frequently 
addressed by data warehousing technologies. Despite its prevalence in many industries, its 
adoption by medical organizations has been limited. Early implementations of clinical data 
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warehousing (CDW) were aimed at solving specific clinical problems. There are still a few 
recent case studies that demonstrate the applicability of data warehouse concept in medical 
domain. For example, (Wisniewski et al. 2003) describe the use of a data warehouse for 
hospital infection control. It was populated with data from three hospitals and demonstrated 
to be useful for measurement of antimicrobial resistance, antimicrobial use, the cost of
infections, and detection of antimicrobial prescribing errors. (Chute et al. 2010) present a 
review of the Enterprise Data Trust at the Mayo Clinic, which is a collection of all electronic 
data organized to support information management, analytics and high-level decision-making. 
In recent research endeavours (Hu et al. 2011; Lowe et al. 2009) have proposed and 
implemented data warehousing solutions to address the information needs of translational 
research, which can among other functions integrate pathology and molecular data with a 
clinical data model to support a breast cancer translational research program (Hu et al. 2011). 
STRIDE (Stanford Translational Research Integrated Database Environment) is an 
informatics platform for clinical and translational research. It consists of a data management 
system, a CDW and a development framework for new applications. 

The complexity with healthcare data arises when designing a suitable dimensional model to 
encompass the variety of information (demographic to clinical) and type of information 
(structured and unstructured) accumulated. 

8 Unstructured data 
Healthcare data is inundated with unstructured content consisting mainly of textual records 
ranging from clinician comments to patient feedback. Textual records of this nature can exist 
at all levels of granularity noted earlier. Patient feedback can be collected before and after a 
surgery, during a period of new medication or a behavioural change. In addition to text, other 
unstructured formats include images, audio/video recordings and associative datasets. Given 
the inherent structure of the discipline, a majority of clinical text can be associated with well-
formed ontologies. However, textual records received from patients need to be interpreted 
using a trusted knowledge base. The design and development of such user-warrant ontology 
becomes a complex task given the variety of terms that can be used to refer to medical 
conditions and symptoms. (Nguyen et al. 2014; Prakasa and De Silva 2013) have studied the 
extraction of an ontology from end-user feedback in healthcare. Many of the Big Data 
technologies have been developed to address the complexities of unstructured data. The 
central data models are key-value pair (KVP), column family stores, document databases and 
graph databases (Chen et al. 2012). The lack of a fixed schema makes these data models flexible 
and scalable, however they do not follow standard properties found in relational databases. 
Each type of unstructured data can be analysed independently for patterns of interest, however 
complexities arise when outcomes from such disparate sources needs to be integrated, in part 
or whole. 

9 Information fusion 
Information fusion is a widely researched field, which is an efficient method for automatically 
or semi-automatically transforming information from different sources and different points in 
time into a representation that provides effective support for human or automated decision 
making (Boström et al. 2007). Focus is largely on the transformation of information, which 
includes means for combining and aggregating to infer as well as reduce information. Much 
research has been conducted on multi-sensor fusion (Khaleghi et al. 2013), image fusion 
(Goshtasby and Nikolov 2007) and web information fusion (Yao et al. 2008). Independently, 
intelligent fusion techniques have been developed based on post-perceptual integration 
phenomena (Torra 2003) and cross-modal influence strategy (Coen 2005). In healthcare, 
levels of granularity and the temporal factor need to be well aligned with the purpose of 
information fusion. Structured and unstructured healthcare data accumulated at different 
levels of granularity will be processed by BDA within the mutually exclusive modals to generate 
analytics outcomes. Although these outcomes are beneficial on their own, they can be further 
fused to create a comprehensive account of a patient (for clinical decision support) or a medical 
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condition (for translational research). The computational requirements of such large-scale 
information fusion can be efficiently handled by Big Data technologies, however the 
complexities of the data model for effective information fusion is largely unaddressed. 

10 The Analytics Team 
It is pertinent to briefly discuss the analytics team most suited for BDA applications in 
healthcare. The team broadly consists of domain experts and analytics experts. A clinical 
scientist will be the primary contributor of domain expertise. Having a thorough knowledge of 
both the nature of medical data and expected outcomes, a clinical scientist can guide the 
knowledge discovery process. A physician is a preferred secondary role to further improve the 
domain expertise. The analytics experts will comprise a data scientist, a data analyst, a software 
developer and a project manager. Depending on the size of the organisation and the analytics 
effort, the team can expand or take multiple roles. The data analyst is generally in charge of 
data extraction and processing following which the data scientist and analyst will team 
together for the analytics phase. A software developer is required for new interface 
development or integration with existing systems. Another useful role for the analytics team is 
that fulfilled by a simplified version of the Business Intelligence Competency Centre (BICC) 
commonly found in large-scale analytics projects (Hostmann et al. 2006). The BICC is 
responsible for the strategic plan, prioritisation, data quality, governance and uptake of 
analytics outcomes in business activities. These responsibilities can be also assigned to the 
roles identified earlier. The next section presents a case study of BDA platform design and 
implementation as part of the Diabetes Screening Research Initiative (DiScRi) project with a 
review of outcomes and their benefits (Burstein et al. 2013). 

11 Addressing the complexities: the case study 
A prototypical trial was conducted on data accumulated by the Diabetes Screening 
Complications Research Initiative (DiScRi) run at a regional Australian university (Jelinek et 
al. 2006). It is a diabetes complications screening program in Australia where members of the 
general public participate in a comprehensive one-stop health review. The screening clinic has 
been collecting data for over ten years and includes close to a hundred features including 
demographics, socio-economic variables, education background, clinical variables such as 
blood pressure, body-mass-index (BMI), kidney function, sensori-motor function as well as 
blood glucose levels, cholesterol profile, inflammatory markers, oxidative stress markers and 
use of medication. The dataset is reflective of typical Big Data accumulation in a clinical 
environment to be used for both clinical decision support and translational research. Figure 3 
illustrates the solution used to address the stated complexities to BDA.
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Figure 3. BDA solution - DiScRi experiment

At the lowest layer, data is accumulated at varied grains. High level data such as patient 
demographics and diagnosis are recorded by medical practitioners while low level blood 
glucose measurements, blood pressure, body mass index and others are recorded by lab 
technicians at the screening clinic and by patients and carers in their own homes. Structured 
data is maintained in a relational database while unstructured data, mainly free-flow text such 
as patient feedback and clinician notes, is saved in flat files. Clinical scientists derive standard 
statistics (patient numbers, average age, average clinician visits etc.) from the granular data 
for routine reporting. In the secondary layer, time-series data is fed into temporal abstraction 
techniques in order to embed clinical knowledge into the sequence of data points. Blood 
pressure recordings, blood glucose levels and sensori-motor function data are transformed in 
this manner. Free flow text is pre-processed to a format suitable for analysis; stop word 
removal, lemmatisation and named entity recognition are conducted in this phase. Optionally, 
a verified ontology as specified by (Nguyen et al. 2014; Prakasa and De Silva 2013) can be used 
to add context to patient comments and feedback. The third layer consists of two functions, 
dimensional modelling and the actual BDA. Temporal abstraction generates structured 
information with embedded clinical knowledge. For instance the number of visits per patient
and the outcomes of each such visit are useful to determine the patient’s current condition and 
disease trajectory. Temporal abstraction is necessary to extract this information that occurs 
over time at different stages of the medical condition. Integrating time-dependent information 
with static data (such as demographics) necessitates a multi-dimensional structure. This 
inherent structure can be captured in a dimensional model and implemented as a data 
warehouse. 

A novelty in this dimensional model is the cardinality dimension. Individual patients attend 
the screening clinic multiple times, the cardinality dimension captures each visit. Except for 
Personal Information (which contained attributes such as gender, family history of medical 

S108



Australasian Journal of Information Systems De Silva, Burstein, Jelinek & Stranieri
2015, vol. 19, pp. S99-S115 Complexities of Big Data

conditions), all other dimensions were composed of attributes recorded for each visit/test. 
While the fact table would distinguish between records, the cardinality dimension was 
necessary to distinguish between patients. Figure 4 presents the DiScRi dimensional model.

BDA is the second function. The primary input is semi-structured text data containing patient 
feedback and clinician notes. Clinical abstractions and granular data form the secondary input. 

Figure 4. DiScRi dimensional model

The analytics outcomes from BDA range from clustering, classification, association rules, 
predictions, summarisation and visualisation. This primary output is fused with the outputs 
from clinical abstractions and models of structured information. For instance, the association 
of patient age with feedback provided can be understood by fusing the BDA outcome with the 
demographic dimension in the warehouse. Similarly, fusion of other structured with the 
unstructured information leads to expedient insights on patients and their conditions. These 
insights can lead to the five pathways of value generation in healthcare noted earlier, right 
living, right care, right provider, right value and right innovation.

The following figures present an interesting instance of fused outcomes. Figure 5 illustrates the 
use of a temporal abstraction scheme and drill-down queries on the data warehouse to extract 
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information on hypertension from granular data. Patients with hypertension were identified 
by their age groups and by the number of years since diagnosis of hypertension. The drill-down 
feature in age groups detects a significant drop in the number of 5-10 year hypertension cases 
in the age sub-groups of 70-75 and 75-80.

Separately, clinician notes were clustered using Apache Mahout running on a Hadoop instance. 
The 70-80 age group was found to be closely grouped and further intra-cluster exploration 
uncovered a distinction in multi-word term association. The same group with a drop in 5-10 
year hypertension linked into multi-word term associations related to renal conditions. Fusion 
of information from the structured and unstructured analysis led to this outcome. 

Figure 5. Distribution of number of years since diagnosis of hypertension by age groups. 

Although one would normally suggest that the drop in the number of cases in the 80+ age 
group with greater than 20 years hypertension is largely due to mortality, the current BDA has 
found that this is possibly related to renal disease. Results from this large screening study 
provide further evidence for the role of BDA in translational research. 

Figure 6 indicates that urinary and kidney disease play a role in the reduction of people over 
80 years attending screening clinics due to medical care moving from observation as is the case 
in a screening clinic to intervention in primary health care.

Figure 6. Multi-word term association for 70-80 age group cluster, with the sub-group 
affected by urinary tract infections coloured in brown.  
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This highlights the necessity to include more urinary and renal testing in screening clinics to 
identify these conditions early in the older age group and provide timely personalised 
intervention.

The aforementioned outcomes from temporal abstraction, information fusion and text 
analytics can be further scrutinised using conventional data mining techniques such as 
classification, association and Bayesian techniques. An ideal scenario that can be realised is 
the capacity to predict the likelihood of clinical outcomes based on current knowledge of the 
patient and similar patients’ information.    

12 Discussion 
Revisiting the three entities of the business analytics framework (Chandler et al. 2011), people, 
processes and platform, it is evident that BDA maintains capacity to fulfil the expectations of 
the platform entity across the three primary activities of consume, produce and enable. Big 
Data in healthcare demonstrates distinct characteristics in comparison to other domains. Each 
patient’s healthcare record represents a temporal sequence of events, and each event maintains 
a number of attributes (of varying modalities) captured over the duration or a specific point in 
time. The complexities delineated in this paper arise due to this distinctive nature of healthcare 
Big Data. As reflected in the results reported from our experiments, expedient insights can only 
be derived in collaboration with the domain expert – a clinical scientist in our case study. 
Access to the adequately designed BDA platform addresses these complexities, and allows 
domain experts to interrogate the data and dynamically manipulate hypotheses formulation, 
thus fulfilling the requirements for decision support. . 

The evolving role of CDS into clinical knowledge management is well positioned to leverage on 
the capabilities of such a BDA platform (Burstein et al, 2013). The fusion of highly structured 
domain knowledge with insights derived from unstructured patient data, for which no fixed 
schema can be developed in advanced, is a significant contribution towards updated clinical 
knowledge. The BDA platform addresses complexities arising due to the nature of Big Data 
described in Table 1. The parameters of volume, variety, veracity, sparseness and complexity 
are exemplified in the reported experiment. Resolving the Big Data complexities in this manner 
lays a robust foundation for a complete business analytics framework as shown in Table 2 with 
improved processes and empowered people.

From the IS Participation theory perspective, online accessibility to real-time patient 
information, analytics outcomes and updated clinical knowledge leads to increased 
stakeholder participation in healthcare delivery and management. Participation activities of 
type, richness, methods and conditions of all stakeholders from healthcare professionals, 
caregivers to patients themselves are empowered by access to relevant and reliable 
information. Therefore it is very convincing that the five pathways to value generation are 
sustained by the strong foundation of a BDA platform. 

13 Conclusion 
Significant clinical knowledge and a unique understanding of disease patterns can be acquired 
by utilising Big Data technologies for data management and analytics in the healthcare 
discipline (Chen et al, 2012). The nature of data and expectations of the healthcare professional 
has led to complexities when developing this inter-disciplinary focus area. The primary aim of 
this paper was to examine these issues in-detail from the perspectives of the participation 
theory (Markus and Mao, 2004) and illustrate how a potential solution was applied to the 
Diabetes screening case. 

The paper presented the Big Data paradigm, supporting technologies and their relevance to 
BDA in healthcare. Thereafter, complexities to BDA in healthcare were discussed in detail 
followed by a proposed solution that addresses these complexities and unifies structured and 
unstructured data collected within a healthcare environment. The method and outcomes from 
a prototypical trial conducted on the DiScRi project were presented to implicate the 
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significance and contribution of the proposed solution. The inherent limitations of most data 
collections, such as missing data, null values, incorrect values and unmatched records were 
observed and accounted for in the BDA process.  The fusion of structured and unstructured 
data is aptly demonstrated in the outcomes and is of significant value in a clinical context. To 
enhance translational research, data obtained from the annual screening clinic needs to be 
interpreted in terms of outcome measures following diverse treatment options present in the 
screening cohort. New associations between personal health status, intervention and 
individual outcome that also reflects a wider population use is an essential part of current 
healthcare research. Following the updated participatory theory led to engaging domain 
experts in the process of BDA platform design and implementation.  We also confirmed that 
IS Specialists played a role of Change Agents in facilitating the adoption of BDA platform and 
leading to a better appreciation of the possibilities of data analytics for clinical decision support 
through this emergent process of engagement.   

BDA architecture for healthcare applications should overcome the complexities of granular 
data accumulation, temporal abstraction, multimodality, unstructured data and integration of 
multi-source data in order to provide a robust platform for effective workflows and improved 
engagement. The stakeholders of the BDA solution have to be clearly identified and fully 
involved in the process of BDA platform design. Their role will be in defining the boundaries 
and expected outcomes of the platform, identifying the right data sources, transformation of 
unstructured data, integration with structure content and developing analytics pathways for 
CDS. In our case study their participation led to the emergent success of the BDA platform as 
it overcame the limitations to unified data exploration and led to analytics outcomes previously 
unknown to stakeholders.  We also confirmed that strategic benefits of BDA are not visible 
upfront. Instead, an overall success of data analytics is generated by long-term use and appears 
of significant value in terms of knowledge management in a clinical setting. The authors are 
currently involved in expanding this work to include real-time sensor data into the BDA 
process to further empower clinical decision support. Future work can include expansion of 
this approach to other complex medical conditions which record a multitude of data points, 
such as cognitive decline (Alzheimer's disease) and psychosis (schizophrenia and depression).
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