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    Abstract— Pairwise (dis)similarity measure of data objects is central to many applications of image analytics, such as image retrieval 
and classification. Geometric distance, particularly Euclidean distance (𝓵𝟐 − 𝒏𝒐𝒓𝒎), is a popular choice of dissimilarity measure. 
Because the distance between two data instances is solely based in their spatial positions, the distribution of data around them has no 
influence in the dissimilarity of two instances. Recently, a data-dependent dissimilarity measure called 𝒎𝒑 − 𝒅𝒊𝒔𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚  is 
introduced where the dissimilarity of two instances is based on the distribution of data between the two instances. Though it takes the 
data distribution into account, it completely ignores the geometric proximity of the two data points.  
 
In this paper, we investigate the strengths and weaknesses of geometric and data-dependent dissimilarity measures. They have their 
own strengths and weaknesses. To overcome their limitations, we introduce a hybrid dissimilarity measure where the dissimilarity of 
two instances is based on a combination of the geometric distance and data distribution between them. It uses the strengths of both 
measures. We present two variants of our proposed hybrid dissimilarity measure. Our empirical results in the image retrieval show that 
both variants of hybrid dissimilarity measures produce better retrieval results than Euclidean distance and 𝒎𝒑 − 𝒅𝒊𝒔𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 by 
themselves. 
Keywords—Image retrieval;  Dissimilarity measure; Data dependent dissimilarity measure 
 

I. INTRODUCTION  
 

Pairwise (dis)similarity measure of data objects is central to many applications in image analytics, such as image retrieval and 
classification. For example, in image retrieval, .images are defined by a fixed set of features such as colour, texture, shape and 
gradient [1-4] A dissimilarity measure is used to rank database images based on their dissimilarity to a given query image. The 
performances of image retrieval algorithms rely on the effectiveness of the dissimilarity measure used to calculate the similarity 
of data images to the query.  
 
Miknowski_distance (also known as ℓ! − 𝑛𝑜𝑟𝑚), specifically ℓ! − 𝑛𝑜𝑟𝑚 commonly known as Euclidean distance (ED), is a 
common dissimilarity measure [5-9]. However, ℓ! − 𝑛𝑜𝑟𝑚  only focuses on geometric distance between two vectors and 
completely ignores the influence of data distribution on the dissimilarity measure. Based on a psychological theory, perceptual 
dissimilarity between two instances is influenced by the distribution of data, i.e. two instances in a relatively dense area are 
perceived less similar than in less dense (sparser) area [5, 9, 10]. For example, two red apples among green apples perceptually 
look more similar than the same two red apples among other red apples. Based on this theory, a mass-based dissimilarity measure, 
called 𝑚! − 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  (we refer to ℓ! − 𝑛𝑜𝑟𝑚  and 𝑚! − 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  by ℓ!  and 𝑚!  respectively hereon) has been 
proposed in [9].  It focuses on the data distribution instead of geometric distance and calculates dissimilarity of two instances 
based on data density/ distribution in the region covering two instances Two instances in a dense region are more dissimilar than 
two instances of the same geometric distance located in a sparse region.  𝑚! uses data distribution only [5, 9] and completely 
ignores the geometric distance that results in some undesirable consequences. For example, it may result in two instances having 
large geometric distance to be similar if they are in sparse region, i.e., data mass between them is low. However if the same two 
instances are located in a dense region then 𝑚! will find them dissimilar. So considering only data distribution changes the 
dissimilarity judgment to a great extent that may be in contrast with the dissimilarity measured by geometric distance. The 
dissimilarity measured by geometric distance intuitively corresponds to the dissimilarity defined in real three-dimensional world 
[5].  So to measure the dissimilarity properly 𝑚! and geometric distance should be consistent.  
 
In this paper, we propose a new hybrid dissimilarity measure that incorporates both geometric distance and region density 
between two data instances. We propose two variants of hybrid dissimilarity measure. In the first variant, the base measure is 𝑚! 
but it is adjusted by ED in situations where it would fail to express their actual perceived similarity. In the second variant, 
geometric distance of two instances in each dimension is adjusted by data mass between them. The base measure is distance but it 



weighted by the mass. The proposed dissimilarity measure can be applied in different applications such as information retrieval 
and classification. In this paper, we evaluate their performance in image retrieval task.  
 
The rest of the paper is organised as follows. In Section II, we discuss the limitations of ℓ! and 𝑚! and identify situations where 
they would fail to express the actual perceived similarity between two instances. The concept of hybrid dissimilarity and its two 
variants are discussed in Section III. Section IV discusses experimental setup and results. Section VI presents the conclusions and 
future work. 

II. LIMITATIONS OF EXISTING GEOMETRIC AND MASS- BASED DISSIMILARITIES 
 

In this section, we will discuss the limitations with geometric distances and the existing mass-based dissimilarity. 

A. Limitation of Geometric Distance  
 

A wide range of geometric dissimilarity measures are discussed in [11]. For the rest of this paper, we will use geometric distance 
and distance interchangeably. [12, 13] have provided a comprehensive analysis and comparison of the dissimilarity measures in 
image retrieval. The study in [12] has compared the  performance of Histogram Intersection, Minkowski-type Quadratic  and 
Mahalanobis distances. Its results have shown that ED has achieved the best retrieval results.In [13] authors compared the 
performance of sum of squared of absolute differences, sum of absolute difference, maximum value, Canberra, city block, 
Minkowski (p=3) and ED. Their results have also confirmed the suitability of ED for image retrieval. An image 𝑥 is represented 
by a 𝑑–dimensional vector < 𝑥!, 𝑥!,⋯ , 𝑥! > where 𝑥! represent the value of 𝑖!!feature of 𝑥. Generally, ℓ! between two vectors 
of x and y is defined as follows [1]: 

 ℓ! 𝑥, 𝑦 = 𝑥 − 𝑦 ! = 𝑎𝑏𝑠 𝑥! − 𝑦! !
!

!!!

! !

 (1) 

where 𝑝 > 0, . ! is the 𝑝 order norm of a vector, , and 𝑎𝑏𝑠(. ) is the absolute value. ℓ! − 𝑛𝑜𝑟𝑚 is a popular choice of distance 
function as it intuitively corresponds to the distance defined in the real three-dimensional world. It has been widely used as the 
dissimilarity measure to compare the feature vectors derived from images in many image retrieval systems [6-8, 14, 15].  
 
However, ℓ! has its limitations. It measures dissimilarity by combining the distance of two data instances in each dimension of 
the feature space. It computes the dissimilarity between two instances solely based on geometric positions of them in feature 
space and completely ignores the distribution of data (position of other instances). However, the distribution of image features 
influences considerably on the perceived dissimilarity between two instances as explained in previous section. Also ℓ! is under 
the influence of dominant dimension when combining the distances in each dimension. This may results in situation that 
dimensions with smaller distances do not contribute proportionally in the calculation of dissimilarity between two instances.  
    
 

B. Limitation of Mass-based Dissimilarity 
 

To address the discussed limitation of ℓ!, a data dependent dissimilarity measure has been proposed [9]. This measure is called 
𝑚! and it focuses on the data distribution of the dataset instead of simply measuring the distance. It has been shown to perform 
comparably to or better than ℓ! in context of information classification and retrieval problems on text, image, music, digits and 
artificial datasets [5].  
 
𝑚! is developed based on a distance-density model proposed by Krumhausl [10] and a psychological argument which prescribes 
that two instances in a sparse region are perceptually more similar than in a dense region. In this measure, the dissimilarity 
between two instances, x and y, is measured by considering data distribution. It defines a region, 𝑅 𝑥, 𝑦 , between two instances 
(that encloses the two instances) and finds the data mass. Data mass is the number of data instances from dataset that fall in this 
region. In order to measure the dissimilarity between two images, x and y, 𝑚! considers the relative positions of x and y with 
respect to the distribution of the rest of the data in each dimension of their feature vectors and is defined as: 

 𝑚! 𝑥, 𝑦 =
1
𝑑

𝑅!(𝑥, 𝑦)
𝑁

!!

!!!

! !

 (2) 

 



where 𝑅!(𝑥, 𝑦)  is the data mass in region of 𝑅!(𝑥, 𝑦), and 𝑁 is the total number of instances in the dataset. The enclosing region 
is defined as follows. 𝑅! 𝑥, 𝑦 = min 𝑥! , 𝑦! − 𝜎,max 𝑥! , 𝑦! + 𝜎 , 𝜎 is a small number and 𝜎 ≥ 0.  
 
Data distribution has an effect on the perceived similarity as considered in 𝑚!. However, the geometric distance between two 
instances should not be ignored, as it intuitively corresponds to the defined dissimilarity in the real three-dimensional world, 
specifically when the magnitude of vectors in feature space matters. 𝑚! calculates the dissimilarity between two instances solely 
based on data distribution in the region covering the two instances. If we change the location of the same two instances to a region 
with different data distribution the dissimilarity may change to the extend that would be in contrast with geometric distance 
between them which is not desirable. 
 
If mass-based dissimilarity and geometric distance measure dissimilarity between two instances properly they must be 
consistent. 𝑚!  considers the lower data mass between two instances as lower dissimilarity and vice versa. However, sometimes 
the data mass is not consistent with geometric distance. In some situations, 𝑚! will find two instances similar due to low data 
mass between them while they have a large geometric distance. In other situations, 𝑚! may find two instances dissimilar based on 
high data mass between them while they are perceptually similar and have small geometric distance. In such situations, mass-
based dissimilarity and geometric distance are not consistent and 𝑚! may not retrieve accurate results. A skewed data distribution 
may result in the discussed situations where 𝑚! would fail to express the actual perceived similarity. In such a data distribution, 
data mass in some regions is extremely high while it is very low in some other regions.  𝑚!  combines the mass-based 
dissimilarity in each dimension of feature vector to estimate the final dissimilarity. To further illustrate the aforementioned 
limitation, we provide an example of 𝑚! dealing with skewed distribution in one dimension, as follows.  
 
Figure 1 shows three images and their color histograms from ebay dataset, in which ground truth is based on colour and images of 
the same color are considered as relevant. Figure 2 shows the distribution of HSV color histograms of ebay dataset in Dimension 
6, which is highly skewed. In Figure 1 values in HSV colour histograms for the green shoe, green pot and white shoe in 
Dimension 6 are 0.1,0.03 and 1. As shown in Figure 2, data distribution in Dimension 6 is highly skewed which means some 
regions are very dense and some sparse. Data distribution in Dimension 6 shows the region between 0 and 0.1 is very dense while 
its very sparse between 0.1 and 1. So the number of data fall in the region between 0.1 and 0.03, belong to values of green pot and 
shoe in this dimension is around 400, that is much higher compared to this number in the region between green and white shoe, 
0.1 and 1 which is only 144. However, the distance between the green shoe and green pot is 0.07, which is much smaller 
compared to 0.9 between green and white shoe .In this situation 𝑚! will find the white shoe more similar to the green shoe in 
Dimension 6 due to lower data mass between them compared to green pot. So the highly skewed data distribution has resulted in 
the situation that dissimilarity measured by 𝑚! is not consistent with distance, which reflects the perceptual dissimilarity more 
accurately. 
 

   
(a) Green Shoe (b) Green Pot (c) White Shoe 

   
(d) HSV Histogram of Green Shoe (e) HSV Histogram of Green Pot (f) HSV Histogram of White Shoe 

Figure 1. Sample of images from ebay dataset and their colour histograms. 

 



 
Figure 2. A sample of a skewed distribution from features in Dimension 6 of ebay dataset. 

 

Also similar to 𝓵𝒑, 𝒎𝒑 is under the influence of the dominant dimension when combines the data masses in each dimension for 
calculating the total dissimilarity. A dimension with very high data mass may influence the total dissimilarity between two 
instances and result in a situation where other dimensions with lower data masses do not contribute proportionally in the 
calculating the dissimilarity. 

 

III. PROPOSED NEW DISSIMILARITY 
 

In this section we propose a new dissimilarity to address the limitations with 𝑚!  and geometric distance. Our proposed 
dissimilarity measure will incorporate the effect of region density and geometric distance. The data mass between two instances is 
used as a proxy for density region. We propose two variants for our new dissimilarity measure as described in the following 
sections. In the first variant we focus to improve 𝑚! that was proposed in [9] to address the limitations of geometric distance. 𝑚! 
has its limitations by ignoring the geometric distance, and  we propose a  weighting using geometric distance to improve the 
performance of  𝑚!. The second variant focuses on geometric distance and especially ED that is commonly used, as distance 
measure while it does not consider any impact of data distribution on perceived dissimilarity. To address this limitation, we 
propose to incorporate the effect of data distribution in the region covering two instances by weighting the geometric distance 
using the data mass. Also in both variants the weighting helps to moderate the effect of dominant dimension in calculation of total 
dissimilarity, which was recognised as a limitation with ℓ! and 𝑚!. In the first variant, the basis of dissimilarity calculation is 𝑚! 
and geometric distance as a weight to moderate the data mass in certain circumstances, where it would fail to express the actual 
perceived dissimilarity. In the second variant, geometric distance is the basis for dissimilarity calculation and data mass is used 
for moderation.  
 

A. Hybrid Data Dependent Dissimialrity 
 

The first variant of the new dissimilarity measure we are proposing is called Hybrid Data Dependent Dissimilarity (HDDD). It 
uses the geometric distance as a weight for mass-based dissimilarity, where mass-based dissimilarity may not retrieve accurate 
results. In certain circumstances that mass-based dissimilarity and geometric distance are not consistent, mass-based dissimilarity 
may fail to retrieve accurate results.  
 
Generally when we calculate the dissimilarity between two instances using 𝑚! four situations may happen.  

• Case 1: 𝑚! is small due to locating data instances in a sparse region where data mass is low and geometric distance is 
small too; 



• Case 2- 𝑚! is small due to locating data instances in a sparse region where data mass is low, but geometric distance is 
large,  

• Case 3- 𝑚! is large due to locating data instances in a dense region where data mass is high and geometric distance is 
large too, 

• Case 4- 𝑚! is large due to locating data instances in a dense region where data mass is high, but geometric distance is 
small. 

 
In Cases 1 and 3, 𝑚! and geometric distance are consistent. However, in Cases 2 and 4, their measurements are not consistent and 
using 𝑚! alone may not be effective. We define the high/low data mass and large/small distance using a threshold, which is the 
mid-point between minimum and maximum of data mass/distance values between a query and all other data instances in the 
dataset. Cases 2 and 4 are the situations discussed in the previous section as the limitations of mass-based dissimilarity. 
 
To address the discussed limitations of Cases 2 and 4, we will incorporate the geometric distance between two instances and 
weight the data mass in each dimension proportionally. So the weight will be applied in two situations. First, in Case 2 where data 
mass between two instances is low but their distance is large; and second, in Case 4 where data mass between two instances is 
high but their distance is small. 
  
HDDD is defined as using conventional 𝑚! in Cases 1 and 3, and in Cases 2 and 4, using the weighted 𝑚! as follows: 

𝑊𝑚! 𝑥, 𝑦 =
1
𝑑

𝑎𝑏𝑠 𝑊!
𝑅!(𝑥, 𝑦)
𝑁

!!

!!!

! !

 

 

(3) 

 
Where 𝑊! depends on whether 𝑙! and 𝑚! agree in Dimension i. 𝑊! = 1 is used in the cases where 𝑙! and 𝑚! agree (i.e, Cases 1 
and 3). It is set appropriately to weight the data mass in each dimension proportionally to the geometric distance where𝑙! and 𝑚! 
do not agree. In Case 2 where data mass is low but distance is large, 𝑊! = 𝑎𝑏𝑠 𝑥! −  𝑦!  is used to assign a higher weight to the 
data mass,. In Case 4, where data mass is high between two points but distance is small, 𝑊! =  !"# !!! !!

!"#!∈! !"#(!!!!!)
 is used to assign 

a lower weight to data mass. 𝐷 is the set of images in the given database. 
 
In HDDD, we modified 𝑚! and weighted with distance in Cases 2 and 4, and for the rest of situations we used conventional 𝑚!. 
So basically the calculation of dissimilarity in HDDD is based on 𝑚!. The preliminary results of this method is published in [16]. 
 

B. Density Affected Dissimilarity 
 
As discussed in Section II, geometric distance has a limitation by ignoring the data distribution and mass-based dissimilarity may 
not retrieve the accurate results in certain situations as a result of not considering the geometric distance. In this section, we 
propose our second variant of our new dissimilarity measure that incorporates geometric distance and data distribution. In this 
approach, to consider the effect of region density on final perceived dissimilarity, we will moderate the geometric distance 
between two instances using the density of the region. In the following, we first describe this variant of our new dissimilarity 
measure, called Desnity Affected Dissimilarity (DAD), and then define the nature of region density effect on final perceived 
dissimilarity. In the last part, we discuss the proper use of region density as a weight for geometric distance.  

 
1) Density Afftected Dissimilarity 

 
The effect of region density is explained as two instances located in a dense region look more dissimilar compared to locating 
them in a sparse region. So density of a region can moderate the perceived dissimilarity. Considering this, when dissimilarity 
between two instances is measured using geometric distance, we need to proportionally weight it based on the density of the 
region. We propose our new dissimilarity measure as: 

 𝐷𝐴𝐷(𝑥, 𝑦) = 𝑎𝑏𝑠 𝑥! − 𝑦! × 𝑇 𝑅!(𝑥, 𝑦)
!

!

!!!

!/!

 (4) 

 
where 𝑇 𝑅!(𝑥, 𝑦)  is the transformation of data mass between 𝑥 and 𝑦 in Dimension 𝑖 of the feature vector. In the proposed 
variant, density of the region is used to weight the distance between two instances. If distance is measured in a denser region, then 



a higher weight will be assigned to that while in sparser region this weight is lower. So the perceived dissimilarity would be 
different depending on the density of the region that distances is measured. 
 
 

2) Interaction Effect of Region Density on Geometric Distance 
 

In this section, we explain why the effect of region density on the final perceived dissimilarity is multiplicative. The interaction 
effect is said to exist when the effect of independent variable on a dependent variable differs depending on the value of a third 
variable, called moderator variable. This effect is not additive but  a multiplicative effect [17-20]. We define the effect of region 
density on perceived dissimilarity as an interaction effect as follows. In our case, dependent variable is the final perceptual 
dissimilarity, which depends on the geometric distance between two data points. Geometric distance between two data points is an 
independent variable and data mass (region density) is the moderator variable. The effect of geometric distance on final perceptual 
dissimilarity will differ depending on the region density. So an interaction effect exists between geometric distance and region 
density, which is multiplicative. 
 
Also, multiplication is more robust to outlying values with significantly large/ small ranges than addition, which can be dominated 
by those outlying values. We can see this varying value ranges in data masses as they can range from the minimum number of two 
(each defined region between two data instances at least cover those two points) to maximum, the number of data instances in the 
dataset. In following, we apply this effect as a multiplicative effect in calculation of our proposed variant. 
 

 
3) Log Transform of Region Density 

 
So far, we have discussed the multiplicative effect of the density of a region on the perceived dissimilarity, and proposed to use it 
as a weight for geometric distance. So in our proposed dissimilarity, data mass will be multiplied to geometric distance. 𝑅!(𝑥, 𝑦)  
in a dataset can be between 2 to N. The minimum data mass is two as the defined region between two instances enclose the two 
instances and in case of having no data point between them the region include at least two points. So data mass may have very 
large range dependent on the size of dataset. As shown in equation 4, we consider the effect of region density in each dimension 
of feature vector, and finally aggregate the dissimilarity in all the dimensions. So in this aggregation process data masses with 
very large ranges, which represent denser regions, will dominate the final dissimilarity. So the effect of sparse regions/ low data 
mass, will not contribute proportionally to the final dissimilarity calculation. To consider the region density effectively in our new 
dissimilarity we have to use a transformation of data mass that balances the over influence of very high and/or very low data mass 
in some dimensions in the overall dissimilarity.  
 

 
Figure 3. Data masses between two feature vectors. 

 



 Logarithmic transform is an established method to deal with highly skewed data distributions [21-23]. The Log transform 
changes a highly skewed data to a distribution closer to normal and draws out the small numbers. As we mentioned we aim to use 
data mass as weight for geometric distance and using Log transform balance the contribution of very high and/or very low data 
mass in some dimensions in the overall dissimilarity. Thus, we used log transformation of 𝑅!(𝑥, 𝑦) , 
i.e.,T(|𝑅! 𝑥, 𝑦 |) =  log |𝑅! 𝑥, 𝑦 |. Figure 4, shows the Log transform of data masses presented in Figure 3, and we can see not 
only the distribution is less skewed but also the dimensions with low data masses have a proportional role in the distribution. So 
Log transform can serve for both of our purposes in rescaling data masses and also give all dimensions a proportional contribution 
in final dissimilarity estimation as a weight.  
 
 
 

 
Figure 4. The Log transformed data masses of the ones presented in Figure 3. 

 

IV. FEATURE EXTRACTION 
 

In this section, we describe the features that are used to represent images in this paper. Color is an intuitive and useful feature to 
represent images. Color histograms are rotation invariant and has been used in image retrieval studies [1, 2]. A colour space is 
specification of a coordinate system and subspace within that system where a single point represents a distinct colour value.  This 
representation is used for image analysis like extraction of colour histograms. Each colour space has its own merits and demerits 
depending on the application and hardware specification where it is going to be used. HSV is one of the popular colour spaces. It 
has three dimensions; hue, which represents the colour, saturation for purity of the colour and value for intensity that ranges from 
black to white.  
 
As suggested in [24, 25], hue has more importance in distinguishing the perceived colour and two other components has equal 
importance  to represent using colour histogram. So based on literature and discussed HSV colour space, we will give a higher 
weight to hue and equal weights to saturation and value components. So in this case to apply the weights for HSV colour 
histogram we will modify Equations 1-4 for calculation of ℓ! 𝑚! and DAD as follows: 

 𝑙! 𝑥, 𝑦 = 𝐻𝑆𝑉_𝑊!×𝑎𝑏𝑠 𝑥! − 𝑦! !
!

!!!

! !

 (5) 

 
 

 𝑚! 𝑥, 𝑦 =
1
𝑑

𝐻𝑆𝑉_𝑊!×𝑎𝑏𝑠
𝑅!(𝑥, 𝑦)
𝑁

!!

!!!

! !

 
(6) 

 



 

 𝐻𝐷𝐷𝐷 𝑥, 𝑦 = 𝐻𝑆𝑉_𝑊!×𝐻𝐷𝐷𝐷! 𝑥, 𝑦 !
!

!!!

!/!

 (7) 

 

 𝐷𝐴𝐷(𝑥, 𝑦) = 𝐻𝑆𝑉_𝑊! 𝑥! − 𝑦! × 𝑇 𝐷𝑎𝑡𝑎𝑚𝑎𝑠𝑠 𝑥! , 𝑦!
!!

!!!

!/!

 (8) 

 
Figure 5. Image retrieval results on ebay dataset using HSV colour historgam with different sets of weights on ED. 

 

 
Figure 6. Image retrieval results on ebay dataset using HSV colour historgam with different sets of weights on 𝑚!. 

 

To determine the appropriate weight for different HSV components, we perform image retrieval experiments on ebay [26] dataset 
using ED and 𝑚!,.  We extracted colour histograms of 30 bins for each dimension. Figures 5-6 show the retrieval results and its 
improvement using different sets of weights. As the weight of 60% for Hue and 20% for Saturation and 20% for Value 
components showed the optimum performance, we used this setting in this paper 



 
 

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION 
 

In this section, we present and discuss the empirical results on image retrieval. First, we explain our experimental setup and then 
we compare the performance of the two variants of our proposed dissimilarity, i.e. HDDD and DAD, with 𝑚! and ED. 

A. Experimental Setup 
 

In our experiments, images will be presented using HSV colour histogram [24] and we will use the weight (60% H, 20% S, 20% 
V) as determined in Section IV. The benchmark dataset used in this work is ebay [26] which has the ground truth based on the 
colour. It has 11 classes. Each class presents one colour and has four categories of objects, 12 images for each object. So it has 48 
images in each class and a total of 528 images in the dataset. In this dataset, objects of the targeted colour have been segmented. 
So our colour histogram will represent only the colour for the main object in the image. Images containing objects with the same 
colour as that of the query image are considered as relevant images.  Figure 8 shows four objects with the same colour from one 
class and their respective mask images. The colour histogram is extracted from the white section of mask images shown in Figure 
7. We will use precision and recall to evaluate the performance of image retrieval in our work. In information retrieval task where 
an instance can be relevant or non-relevant, precision shows the fraction of retrieved instances that are relevant while recalls is the 
fraction of relevant instances that are retrieved [27]. The further PR curve is away from the origin, the better is the retrieval 
performance of the method that curve is representing. 
 

 
Pink Class Car Dress Pot Shoe 

Original image 

    
Mask image 

    
Figure 7. Sample of images and their respected mask image in one class of ebay dataset. 

B. Retrieval Results 

 
Figure 8 shows the overall retrieval results using, ED, 𝑚!, HDDD and DAD. Equations 5-8 were used for this experiment in order 
to consider the HSV colour histogram weights as well. Parameter 𝑝 was set to 2 in related equations for calculation of 𝑚!, HDDD 
and DAD. Our experimental results show that DAD performs best overall for image retrieval. ED performs second best, followed 
by HDDD and then 𝑚!. In the next two sub-section, we will provide a more in-depth comparison and discussion on the 
performance of HDDD versus 𝑚!, as well as the performance of DAD versus ED. We will also explain why HDDD performs 
worse than ED.   

 



 

Figure 8. Retrieval results from ebay dataset using different dissimilarity measures. 

Figures 9-10 show two visual examples from top 10 retrievals using ED, 𝑚!, HDDD and DAD. Images from the same colour 
with query are considered as relevant while images with other different colours are considered as non-relevant (NR).  
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(a) Using DAD 

      
Query 1 2 3 4 5 
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(b) Using ED 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

   

Query 1  2 NR 3 4 5 NR 



 

     
 6 7 8 9 NR 10 NR 

(c) Using 𝒎𝒑 
 

    
  

Query 1  2 3 NR 4 5 
 

     
 6 7 8 NR 9 10 

(d) Using conventional HDDD 
Figure 9.  Top 10 retrieval for Query 1 
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Figure 10.  Top 10 retrieval for Query 1 

 
 

C. Comparison of HDDD and 𝑚! 
 

Figure 8 shows that HDDD preforms better than 𝑚!. This improvement occurred as in HDDD, we incorporate geometric distance 
with region density where 𝑚! may not to retrieve accurate results. We used weighted 𝑚! as in Equation 3, to address the 
limitations in Cases 2 and 4.  So the basis for dissimilarity calculation in HDDD is 𝑚! and in Cases 2 and 4 it will be weighted 
using ED.  
 
In this section, to show HDDD obtains better retrieval results than 𝑚!, we show the components that it uses for the calculation of 
dissimilarity. HDDD uses the data mass between feature vectors of two images and their distance to estimate the final 
dissimilarity. We show the HDDD dissimilarity in each dimension to illustrate the effect of using distance as the weight in 
situations where data mass is above the threshold while distance is below that or vice versa. As mentioned before threshold in 
each dimension is determined as the mid point between the minimum and maximum of data masses/ distances between query and 
all other data in the dataset. 
 
In Figure 9 (c), 𝑚! ranks a relevant image, which appears in the fifth rank of HDDD, lower than 10. It determines that the 
relevant image: the green pot, is more dissimilar to the query due to the high data mass between them compared to the white shoe 
which is in its fifth rank. The skewed distribution of features could result in this situation as explained in Section II.B. As an 
example it is shown in Figures 11 (c-f) that in Dimension 6 of features distance between green shoe and green pot is considerably 
smaller compared to the white shoe, however the data mass between the green shoe and pot is much higher compared to green and 
white shoes. So there is an inconsistency between data mass and distance in this dimension that HDDD will adjust that by 
weighting the data mass accordingly with distance. It is shown in Figure 11 (h) that HDDD weights the data mass by distance in 
Dimension 6 where the data mass between green shoe and pot is above the threshold while their distance is below the threshold. 
Using HDDD, the consistency between data mass and distance results in finding the green shoe and pot more similar in dimension 
six compared to white shoe. Also, HDDD moderates the effect of dominant dimension in calculating the dissimilarity where a 
dimension with very high data mass could influence the total dissimilarity between green shoe and pot measured by 𝑚!. These 
can happen in multiple dimensions and finally improve the ranking in HDDD compared to 𝑚!. HDDD has calculated the 
dissimilarity of 1149.22 between green shoe and pot and ranked it as fifth rank while the white shoe with dissimilarity of 1398.74 
has been ranked much lower as 58th. 
 
Figure 12 is another example of inconsistency between data mass and distances in Dimension three of Figures 12 (c, e and g) and 
Dimension 80 of Figures 12 (d, f and h). The highly skewed data distribution in bin three and 80 is shown in Figures 13-14. 



 

    
(a) Query (left) and Rank 5th  (right) from 𝑚! (b) Query (left) and Rank 5th  (right) from HDDD 

  
(c) Distance (ED) between images in  (a) (d) Distance (ED) between images in  (b) 

  
(e) Data mass  between images in  (a) (f) Data mass between images in  (b) 

  
(g) HDDD between images in  (a) (h) HDDD between images in  (b) 

Figure 11. HDDD components and final dissimilarity estimation 

 
 

 

   

 



(a) Query (left) and Rank 1th  (right) from 𝑚! (b) Query (left) and Rank 1th  (right) from HDDD 

  
(c) Distance (ED) between images in  (a) (d) Distance (ED) between images in  (b) 

  
(e) Data mass between images in  (a) (f) Data mass between images in  (b) 

  
(g) HDDD between images in  (a) (h) HDDD between images in  (b) 

Figure 12. HDDD components and final dissimilarity estimation 



 
Figure 13. Distribution of features in Dimension 3 of dataset. 

 

 
Figure 14. Distribution of features in Dimension 80 of dataset. 

HDDD has not performed better than ED. It occurred as weighted 𝑚!that incorporates distance and region density is applied 
where data mass and distance are not consistent in Cases 2 and 4. In the discussed cases data mass between two instances is 
high/low while the respected distance is small/large. To determine the high/ low data mass and small/ large distance a threshold is 
defined which is the mid point between minimum and maximum of data masses/ distances between a query point and all data 
points in the dataset. The defined threshold may raise a potential limitation as the point just below and above the mid point will be 
considered as low and high data mass or small and large distance. However these two border points are very close and their 
difference does not represent the actual difference between low and high data mass or small and large distance. It considers a 
border point just below the threshold as located in a low data mass area (sparse region) and the one just above the threshold as 
located in a dense area however they have very similar data masses. The same situation is for distance values. 
 

D. Comparison of DAD and ED 
 

In this section we discuss the performance of ED and DAD, through visual examples in Figures 9-10. To discuss the performance 
of DAD, we show the components that it uses for calculating dissimilarity between two instances, which are distance and Log 



transformation of data mass. The basis for calculation of DAD is geometric distance, which is moderated by region density as the 
weight. We show DAD in each dimension, to illustrate how region density could moderate the geometric distance between two 
images in the feature space.  
 
As shown in Figures 9-10, DAD as the dissimilarity measure could retrieve all images from the same class with query compared 
to ED and 𝑚! and HDDD.  For example in Figure 9 (a) using DAD all the top 10 retrieved images are from the class of green, the 
same colour with the query, however in Figure 9 (b-d), ED and 𝑚! and HDDD retrieved images from other colours such as blue, 
pink, yellow. Figure 10 (a) also shows that top 10 retrieval using DAD are from the same class with query which is brown colour, 
compared to Figures 10 (b-d) that have more retrievals from other colours such as, grey red, purple and pink.  
 
DAD improved retrieval results by considering both geometric distance and the effect of region density in estimating the final 
dissimilarity between two images. Here we use the visual examples to compare the performance DAD and ED. We choose ED as 
it is the basis for dissimilarity calculation in DAD and it showed the second best performance after DAD in our retrieval results.  
 
In Figure 9 (b), ED has ranked the green pot as a relevant image in its seventh rank lower than a pink pot as a non-relevant image. 
This occurred as ED relies only on the distance between colour histogram of query and these two images and does not consider 
the data distribution. The green pot has been ranked higher in retrievals from DAD in Figure 9 (a) and pink pot ranked lower than 
10.  Unlike ED, DAD considers if two instances are located in a dense/ sparse region their distance will be perceived differently.  
 
 
 

 

    
(a) Query (left) and Rank 5th  (right) from DAD (b) Query (left) and Rank 6th  (right) from ED 

  
(c) Distance (ED) between images in  (a) (d) Distance (ED) between images in  (b) 

  
(e) Log transfrom of data masses between images in  (a) (f) Log transfrom of data mass between images in  (b) 



  
(g) DAD between images in  (a) (h) DAD f between images in  (b) 

Figure 15.  Comparison of ED and data mass between two feature vectors and their effect on DAD. 

 
Here we use an example to show how DAD is calculated and improved the results. Figures 15 (c-d) show that the distance 
between the query and the green and pink pots in Dimension 8 are very similar, 0.96 and 0.99. However in this dimension the 
distance between the query and green pot has been measured where two points have been located in a denser area (higher data 
mass) as it is shown in Figure 15 (f), compared to the same bins in Figure 15 (e) which is located in a sparser region. The Log of 
data mass between green shoe and green pot in Dimension 8 is 3.8 while it is 5.4 for the pink pot. Using the Log transformation of 
data mass as the proxy for region density gave higher weight to the distance, which is measured in a denser area and vice versa. 
DAD in Figures 15 (g-h) shows the weighted distances, which means geometric distance is moderated by the region density. The 
weighted distances in Dimension 8 between the green shoe, green and pink pots are 3.6 and 5.34. Although they have similar 
distances, using the density of the region to moderate the distance resulted that pink pot in Dimension 8 be found much more 
dissimilar to the green shoe compared to the green pot. Also, the weighting in DAD helped to moderate the effect of dominant 
dimension in calculating the distance where in Dimension 8 the large distance between green shoe and pot could influence the 
total distance measured by ED. Considering this weighting in other dimensions that moderate the distances resulted in the 
dissimilarity of 7.3 between the green shoe and pot while the dissimilarity of 7.8 for the pink pot ranked it lower than 10 in 
retrievals from DAD. Figure 16 is another example that illustrates the same scenario. 
 
 
 

    
(a) Query (left) and Rank 7th  (right) from DAD (b) Query (left) and Rank 7th  (right) from ED 

  
(c) Distance (ED) between images in  (a) (d) Distance (ED) between images in  (b) 



  
(e) Log transfrom of data masses between images in  (a) (f) Log transfrom of data mass between images in  (b) 

  
(g) DAD between images in  (a) (h) DAD between images in  (b) 

Figure 16. Comparison of ED and data mass between two feature vectors and their effect on DAD. 

 

VI. CONCLUSION 
 

In this work, we studied the strengths and limitations of geometric distance and mass-based dissimilarity. Geometric distance 
relies only spatial distance of two instances and ignores the data density/ distribution in the dataset. However, density of the 
region has an effect on the perceived dissimilarity. On the other hand mass-based dissimilarity only considers the data 
distribution/ region density and completely ignores the geometric distance that measures the dissimilarity to a certain extent. Also 
both geometric distance and mass-based dissimilarity are under the influence of dominant dimension when they combine the 
dissimilarities in each dimension. We used the strengths of both measures and incorporated the geometric distance and region 
density into a new dissimilarity measure. We defined two variants for the proposed dissimilarity, HDDD and DAD. In the first 
one, the basis for calculation of dissimilarity is 𝑚!, which is weighted by geometric distance in Cases 2 and 4 where it may fail to 
express their actual perceived dissimilarity. In the second variant, geometric distance is basis for calculation of dissimilarity and 
region density as the weight is used to moderate it in the final perceived dissimilarity. 
 
The new hybrid dissimilarity measure considers the effect of region density on geometric distance and the final perceived 
dissimilarity. The weighting used in the new hybrid dissimilarity also moderates the effect of dominant dimension in 
dissimilarities measured by  ℓ! and 𝑚!. We evaluated our proposed dissimilarity measure in image retrieval and it could perform 
better than 𝑚! and ED. The proposed dissimilarity has the potential to be used in other applications such as information retrieval 
and classification.  
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