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Abstract

The diagnosis of many sleep disorders is a labor intensive
task that involves the specialised interpretation of
numerous signals including brain wave, breath and heart
rate captured in overnight polysomnogram sessions. The
automation of diagnoses is challenging for data mining
algorithms because the data sets are extremely large and
noisy, the signals are complex and specialist's analyses
vary. This work reports on the adaptation of approaches
from four fields; neural networks, mathematical
optimisation, financial forecasting and frequency domain
analysis to the problem of automatically determining a
patient's stage of sleep. Results, though preliminary, are
promising and indicate that combined approaches may
prove more fruitful than the reliance on a single
approach.
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1 Introduction

Sleep Stage Identification (SSI) is the first step in the
process of modern sleep disorder diagnostics. Currently,
the identification of stages 1, 2, 3, REM and Awake is
performed manually using rules drafted for medical
practitioners based on the frequency and amplitude of
waves recorded during polysomnogram sleep sessions
(PSG). A polysomnogram sleep session (PSG) includes
measures of eye movement (EOG), brain wave
fluctuations (EEG), heart rhythm (ECG), muscle activity
(EMG), respiratory effort and other biophysiological
characteristics while a patient is asleep.

SSI is a time consuming, manual process that requires
a great deal of skill and expertise in scanning PSG graphs
and applying SSI rules. Recent advances in computing
performance has made computer-based automatic scoring
of sleep stages very attractive.
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However, sleep practitioners report that existing
automated techniques are not accurate enough to be
routinely used (Robert, Guilpin et al. 1998).

PSG scoring experts apply rules based on the visual
appearance of frequencies and amplitudes of waves on
screen rather than using quantitative data describing
frequencies and amplitudes. A survey of existing
automatic tools for SSI by Bashashati, Fatourechi et al.
(2007) and Rajeev and Gotman (2002) reveals that the
majority of approaches apply signal processing (SP)
methods (Bashashati, Fatourechi et al. 2007), Artifical
Neural Network (ANN) methods (Robert, Guilpin et al.
1998) or Wavelet Transformations (Virkkalaa, Hasan et
al. 2007). Approaches based on Financial Forecasting,
Mathematical Optimisation and Hidden Markov Models
have been deployed with other time series data and could
conceivably lead to accurate classifications of SSI.

Much of of the challenge in automated SSI is due to
the translation of open textured standards to mathematical
models (Rajeev and Gotman 2002) and the dimension of
the problem. Raw data for one patient for 10 hours results
in a single file more than 300 MB large with over
3,600,000 observations. Further, over 65% of records are
sleep stage 2 and less than 5% for sleep Stage 1 and 3.
This adds to the complexity of the challenge. Further,
PSG data contains a great deal of noise. With practice,
experts are able to ignore noise to an extent that is
challenging for automated scoring tools. In addition, SSI
can be performed differently by two sleep practitioners
with an 80% level of agreement.

Rules for SSI originally were standardized by
Rechtschaffen and Kales (1968). Since then, the rules
have been updated numerous times. The most recent
version is reported by Iber, Ancoli-Israel et al. (2007). A
comprehensive explanation on why this update was
necessary can be found in Schulz (2008).

In SSI doctors rely on the visual presentation of
waves. Recorded waves are signals and therefore it is
natural to analyze them with existing SP techniques,
especially given the theoretical advances in this field in
recent decades. The drawback of this approach is that in
many cases SP completely ignores manual scoring
characteristics, which are not described in general scoring
rules, but are often taken into account by medical doctors.
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Since doctors are not experts in SP they learn the shapes
of the waves through their visual characteristics rather
than wave characteristics used in SP.

The main problem with ANN approaches is that the
dimension of the problem challenges most learning
algorithms. Several simplifications have been used
including using fewer variables in order to overcome the
dimensionality problem. However, simplified models are
not accurate enough to meet the needs of sleep disorder
specialists. Problems associated with the use of ANN and
SP approaches suggest the need to explore combinations
of ANN and SP with other approaches.

In this study, approaches based on financial
forecasting, mathematical optimisation, frequency
domain analysis and neural networks have been adapted
for SSI. The approaches have been applied to data
supplied and classified from overnight sleep records from
100 patients from the Tenon Hospital sleep research
group in Paris. Each approach is described and results
presented in the sections below, before providing a cross-
approach analysis and concluding remarks.

2 Neural network approach

ANN is a network composed of artificial nodes that
process input activation for transmission to connected
nodes. Input vectors to the ANN are treated as a temporal
sequence whose analysis requires consideration of a set of
prior input vectors. (Waibel, Sawai, et al. 1989) used
Time-Delay Neural Networks (TDNNs) for speech
recognition. The delay-based methodology of TDNNS,
which reduces the high dimensionality of the input data to
the network, is very important in the SSI, due to the
length of input sequences.

A TDNN is a type of dynamic ANN where the output
of the network at time t; is not only dependent on the
input p; at this time, but also on a range of previous inputs
Pi-ts Pi2s---s Pin cOrresponding to ti, tio,..., ti, Where n is
the delay length that is to be considered by the network.
The main benefit obtained when using TDNN's is that
there is no need for the network to contain many input
nodes to deal with the whole set of delayed input vectors.
The sequential data (original signal information) is
presented to the network over time and the network is
trained to deal with desired steps of delay.

A focused TDNN (delay only at the input layer) was
configured with 1 input layer, 3 hidden layers, and 1
output layer using MATLAB’s ANN package. Six input
layer nodes represent PSG variables, EEG Curve 1, 2 &
3, EOG Curve 1 & 2 and EMG. Each hidden layer
included 6 nodes, and the output layer comprised 6 nodes
corresponding to sleep stage classes, Awake, Stage 1, 2, 3
and REM. The input signals were first normalized to the
range of [-1,+1] and then converted to time sequences.
The delay length of the network was set to 1 second
(equal to 100 input vectors).
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We have implemented a focused TDNN (delay only at
the input layer) with an input layer, 3 hidden layers, and
an output layer using MATLAB’s ANN package. The
training procedure is carried out with 500 epochs. The
classification accuracy obtained as a baseline for
comparison with other approaches is 76.15% of correctly
classified records. A total number of records=33,407
were used to train the network.

3 Financial forecasting

A forecasting approach applied to financial market
predictions by Bertoli and Stranieri (2004) was adapted in
this study to predict sleep stages using data on six PSG
variables. Like the TDNN, the approach is based on the
intuition that a classification at a point in a series depends
on classifications on previous sequences. The approach
combines subsequence conditional probabilities to
perform a classification in a way that is scalable to large
data sets. The adapted forecasting algorithm was applied
to data collected from the same patient in an overnight
sleep session which included over 3.5 million records on
six real-valued PSG signals. The size of the data makes
this dataset challenging for any algorithm.

The real valued raw data was first converted to five
point interval data labelled BI (big increase), SI (small
increase), N (no change), SD (small decrease) and BD
(big decrease). Threshold values for the intervals derived
from percentiles. The algorithm was applied to discover
all unique sequences shorter than 7. The intuition being
that a sequence such as BI, BI, BI, SI, N, SD and SI could
be discovered on each variable that could discriminate
one sleep stage from another.

The confusion matrix (CM) represented in Table 1
depicts classifications made by the Tenon Hospital sleep
experts against classifications predicted using the FF
approach. This CM illustrates the forecasting approach
has some promise given the large and noisy data set,
however the prevalence of Stage 2 classifications in the
training set led to relatively high mis-classifications. It
was also found that the thresholds used in the
transformation of real values to interval data for the
classification labels (BI, SI, N, SD, BD) had significant
impact so further work is required to identify optimal
mappings. Unexpectedly, the experiments also found that
the length of the pattern used to make the prediction did
not need to be particularly long and that a pattern length
of 6 or more did not result in any improvement to the
predictions but did have a detrimental effect on the
processing time.
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Predicted

Actual A S1 S2 S3 REM
A 70,000 45% | 35,000 23% | 44,000 28% 1,000 1% 5,000 3%

S1 9 4% 195 81% 28 12% 3 1% 5 2%
S2 317,000 1,700,000 13,000,000 1,300,000 2,400,000

2% 9% 60% 7% 13%

S3 0 1 2% 1 2% 45 96% 0
REM 23 4% 22 4% 103 20% 2 0% 374 71%

Table 1. Confusion matrix for financial forecasting approach

4  Non-smooth optimisation

The adaptation of non-smooth optimisation to SSI is
based on minimising the deviation between the actual
PSG curve and modelled wave patterns. This approach
extracts wave characteristics (similar to SP), but these
characteristics are more flexible than ‘“standard” SP
characteristics and are targeting wave shape descriptions.
These characteristics can be used for explicit description
of wave shape patterns (similar to ANN), but the
dimension of the problem is considerably lower.

The EEG curves are taken to be the sum of two sine
curves. The first curve (lower frequency) represents a
general trend which is passing through the whole
observation sub-period. The second one (higher
frequency) is the actual behaviour of the curve along the
general trend. The amplitude of each curve is modelled as
a piece-wise linear function. This approach allows more
precise curve patterns then in the case of classical sine
curves where the amplitude is scalar. Additionally, it

allows for abrupt changes in the wave patterns with the
piecewise linear function (non-smoothness). In our
experiments we use non-smooth optimisation techniques
from the GANSO library (Ganso 2006).

All the experiments have been performed on an EEG
curve with the horizontal axis corresponding to time.
First, the higher frequency sine curve was obtained
(Figure 1). This curve is the first approximation of EEG
data. The accuracy of approximation is improved by
taking into account the general trend of the curve. In
Figure 2, the general trend is plotted against the data
which represents the difference between the original data
and the first trend. Finally, Figure 3 represents the final
pattern which follows the original EEG data quite well. In
these experiments the subinterval corresponds to 5
seconds of sleep, therefore for each epoch we construct 6
patterns. The dimension of this problem is 12. The
dimension of an ANN problem would be 500. This
suggests the use of the output of the optimisation problem
as an input for ANN could lead to good results.

Figure 1 Actual behaviour and main frequency
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Figure2 General trend
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5 Frequency domain analysis

The frequency domain analysis (FDA) approach is based
on the basic concept of windowing the signal in the time
domain and then taking it into the frequency domain, also
called Short-Time Fourier Transform (STFT). The
resultant signal is mapped into a two dimensional
function of time and frequency. As signals of EEG, EOG,
and EMG are not stationary, hence, such techniques give
limited precision over this conversion. EEG power
spectra has been used in the literature for detecting
behavioural microsleeps and estimating the alertness
(Jung, Makeig et al. 1997), (Peiris, Jones et al. 2006).
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EEG, EMG, and EOG signals are taken into the
frequency domain with a window of 30 seconds. The
frequency components can be divided into four bands: &
(<4 Hz),0 (4 -7Hz), a (8- 13 Hz) and B (> 13 Hz)
(Carney, Berry et al. 2005). Once these frequency
components are separated, the power spectral density is
plotted for the window. The power spectral density can be

(F(0)F (0))
2r

is the complex conjugate of the frequency matrix.

REMs are generally characterized by a number of
features (Pressman 2007), i.e., a low voltage, fast
frequency EEG. This is marked by an increase in ®(B)

calculated as P (@) = , where F *(a))



Proc. 4th Australasian Workshop on Health Informatics and Knowledge Management (HIKM 2010), Brisbane, Australia

and relative decrease in the spectral densities of low
frequency components. These characteristics will be
exploited to detect REM.

According to (Pressman 2007) it is not essential that
all the characteristics described before for REM detection
are present simultaneously. The presence of only two
features out of three can be accepted as a valid REM
stage. Figure 4 illustrates the Short Time Fourier
Transform (STFT) plot of EMG and Figure 5 represents
the STFT for EOG signals. Figure 6 presents the STFT
plot of EEG signal and Figure 7 depicts the manual
scoring of sleep stages where Stage 5 is REM. One case
is described below to explain the REM detection.

Figure 4 EMG in frequency domain against time and
sleep stages
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Figure 5 EOG in frequency domain against time and
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Figure 6 EEG in frequency domain against time and slee
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REM starts with rise in EMG ®(6), as ®(0)
corresponds to very low frequency components. ‘a’ and
‘D’ cannot be considered the start of REM stage because
EEG ®(a) also increases sharply with EMG ®(8). ‘¢’ is
also not the start of REM because there should be a small
rise in EEG ®(P). ‘d’ is the start of REM as there is an
increase in EMG ®(6) and a small increase in EEG ®(p).
There is also a rise in all the frequencies of EOG. At ‘e’,
the REM finishes at a sharp increase of EEG ®(),
marking an awake stage. ‘" marks the start of REM as
there is an increase in EMG ®(6) accompanied by small
increase in EEG ®(B). ‘g’ marks the finish of this REM
stage as there is an increase in EEG ®(a). The last REM
for a short time duration has not been detected. All these
rules, which are inferred from the characteristics of REM
stages described by doctors, can be elegantly
implemented using a state machine. However, thresholds
of different frequency components that would trigger the
state change varies from case to case.

6 Analysis and discussion

In this project it has been shown that the automated
SSI procedure is a complex process which cannot readily
be achieved without employing a number of diverse
methods. This diversity allows one to overcome the
problem of “translating” manual scoring rules into
automated algorithms.

In our study we used TDNN which can handle higher
dimension data better than other types of ANN. The
accuracy of 76% is quite good since 2 manual scorers
may also produce different classification results (the level
of agreement is around 80%). One possible way to
enhance the obtained accuracy is to apply TDNN after
dimension reduction using NOM. Another possible way
is to detect different sleep stages with different
approaches, e.g., to identify REM using FDA and Stage 3
using FF. It was also found that the correct detection of
Stage 2 is a challenging task for several methods. This is
mainly due to the presence of short lasting events (K-
complexes), which are difficult to detect by our methods.
One future research direction involves the identification
of these events using NOM.
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7 Conclusions and further research

directions

This project is an attempt to build an automated SSI
procedure as a meta-classifier, which involves different
methods to solve the problem. We identify strengths of
particular methods and distribute the “roles”.

In the future we are planning to incorporate these
methods in a single procedure. Basing on the research
findings of this paper the procedure can be organised as
follows:

1. NOM is used as a specific preprocessing tool
to convert raw data into a lower dimensional
space.

2. Apply ANN methods (or other classification
method) to a lower dimensional space of
extracted features, obtained on the previous
stage.

3. Refine our classification results using FDA
and FF for some specific sleep stages (REM
and Stage 3 respectively).

7.1 Further research directions

Our future research directions include the meta-
classifier building and testing on available data. Also, we
are planning to conduct a study on how tis meta-learner
would learn from two medical experts scored the same
data. As it was mentioned before, the level of agreement
between two experts can be as low as 80%.

Another promising method for SSI is the Hidden
Markov Model (HMM). HMM has a powerful ability to
model signals statistically and represent arbitrarily
complex probability density functions of the underlying
systems. Previous attempts on sleep stage identification
(Flexer A., et.al 2002) using HMM did not have much
success. One of the important reasons is that these
approaches consider modelling sleep stage sequences
using a single HMM with a small number of HMM states.
The elaboration of this method is another future research
direction.
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