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Abstract. The use of external confining devices to confine concrete has become widely used. 

One of the purposes is to gain additional concrete strength and ductility. Although there are 

many types of external confining devices, in this paper, the attention is limited to the use of the 

steel tube as an external confining device. One of the main objectives of this research is to study 

the plastic dilation rate behavior of concrete-filled-steel-tube (CFST) columns. The 

experimental data for the plastic dilation rate is extracted, and compared with the authors 

concrete plasticity model. In the authors’ previous research, the calibration of the plastic 

dilation rate model was based on confined concrete tested under both active and passive 

confinement using FRP wraps. Since the behavior of the steel tube and the FRP materials are 

different, the author’s plastic dilation rate model needs to be re-evaluated for CFST columns. 

Comparisons of the extracted experimental plastic dilation rates with the model prediction for 

CFST specimens with normal strength concrete show good agreement and requires no 

adjustment in the formulation. However, for a specimen with 80 MPa concrete, the proposed 

formulation shows slightly lower plastic dilation rates. More experimental data for CFST using 

high strength concretes is required for further investigation. For the sake of completeness, the 

overall response of two CFST specimens is also evaluated using an in-house three-dimensional 

non-linear finite element analysis (3D-NLFEA) using the author’s proposed plasticity 

formulation for confined concrete. 
 

 

1 INTRODUCTION 

The use of external confining devices to confine concrete is widely used. The external 

confining device is defined as any material other than concrete (such as FRP or steel tube) 

which has a mechanism to provide a kinematic lateral restraint [1] for the confined material. 

One of the purposes is to gain additional concrete strength and ductility. The kinematic lateral 

restraint is related to the lateral modulus (EL) of the external confining devices. The lateral 
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modulus (EL) of the confining device can be computed by solving the compatibility equation 

between the external confining device and the concrete core. By using EL, the effectiveness of 

the confinement can be measured. For an external confining device made of a material with a 

simple stress-strain relationship, such as FRP wrap, the lateral modulus EL can be assumed to 

be constant throughout the loading. However, for a concrete-filled-steel-tube (CFST) the lateral 

modulus EL keeps changing once the steel yields. 

Recently, the authors proposed a constitutive plasticity model [2, 3] for confined concrete. 

In this model, the flow rule is a function of the plastic dilation rate of the confined concrete. 

The plastic dilation rate (β) was defined as the ratio of the lateral to axial plastic strains (
p p

lat axial/β ε ε= ). The plastic dilation rate formulation itself is a function of the confining 

pressures of the concrete core and lateral modulus (EL) of the external confining device. The 

proposed plastic dilation rate model was calibrated using the experimental data from both active 

and passive confinement. However, for the passive confinement, the calibration of the plastic 

dilation rate was solely based on the FRP confined concrete [2], and therefore, further validation 

of the proposed model with different types of the external confining devices needs to be carried 

out. 

In this paper, the model of [2, 3] is validated for cases where the steel tube is used as the 

external confining device. The focus is to obtain the plastic dilation rate behavior of the 

concrete-filled-steel-tube (CFST). The steel tube material has a different behavior in 

comparison to FRP material. The FRP material has a linear elastic behavior up to failure and is 

considered an orthotropic material. Usually, the axial load carrying capacity of the FRP tube is 

sufficiently small and thus neglected in the analysis. In contrast, the steel tube material is 

considered as an isotropic material and obeys a J2 plasticity model with zero hardening 

modulus. When the CFST column is axially loaded, due to the higher elastic modulus in 

comparison with the concrete material, the steel tube yields first before the concrete core 

reaches its peak stress capacity. Further, at the state where the steel tube is yielding, the axial 

stress is much higher than the stress in the other directions which may complicate the 

measurement of the lateral modulus, as well as the confining pressures to the concrete core. 

Hence, investigating the plastic dilation rate characteristic for CFST is a challenge. 

To maintain clarity in the discussion, the sections in this paper are organized by firstly 

presenting a short introduction showing the main objective of the paper followed by the study 

on the plastic dilation rate behavior for CFST. In the second section, previous studies on the 

plastic dilation rate behavior for FRP confined concrete and then the plastic dilation rate 

behavior for the CFST are discussed. It will be shown that despite the different constitutive 

behavior between the FRP confined concrete and CFST, the authors’ plastic dilation rate 

formulation is sufficiently accurate and adaptable. In the third section, numerical modeling to 

investigate the performance of the authors’ plasticity model is presented by using a three-

dimensional non-linear finite element analysis (3D-NLFEA) developed by the authors [4]. 

Finally, conclusions are drawn, and some future research suggested. 

2 PLASTIC DILATION RATE BEHAVIOR OF CFST 

The plastic dilation rate from any experiment is evaluated by observing the changes of the 

plastic strain both in the lateral and axial direction. However, from the experiments, mostly, 

only the axial force, axial strain and circumferential strain are obtained. Hence, to get the plastic 
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dilation rate from the experiments, the raw data needs to be further processed. During the 

extraction process, some assumptions are made, and it is important to note that different 

assumptions may lead to a different value for the plastic dilation rate. The plastic dilation rate 

itself is highly sensitive to the increment of the selected data points from the experiment. The 

smaller the increment, the distortion of the plastic dilation rate becomes more pronounced. Due 

to this sensitivity, obtaining the data from available experiments in the literature requires a 

special filtering, unless, the experiments have complete data sets including the computed 

confining pressure and the axial stress within the concrete core. 

To extract the confining pressure from the experiments, it is required computing the stress 

in the radial direction which is equal to the confining pressure of the concrete core. In the case 

of FRP confined concrete, because the FRP material is always elastic up to the fracturing point, 

the computation of the confining pressure is obtained by multiplying the lateral strain with the 

lateral modulus of the FRP confining device. Further, for FRP confined concrete, the axial stress 

in the FRP material can be neglected. These material assumptions simplify the data extraction 

for the plastic dilation rate. However, for an external confining devices with a yield point such 

as a steel-tube, computing the confining pressure must conform to the stress-strain relation of 

the J2 material. Generally, during the loading, initially before the steel starts to yield, the axial 

stress in the steel tube is higher than the stresses in other directions. Once the steel yields, the 

axial stress in the steel tube reduces and the stresses in other directions increase.  

Before looking further at the plastic dilation rate behavior for CFST columns, it is important 

to understand the plastic dilation rate behavior for FRP confined concrete. Figure 1 shows the 

plastic dilation rate behavior for FRP confined concrete extracted from experiments. A method 

to extract the plastic dilation rate for FRP confined concrete is explained in [2]. The expression 

of the plastic dilation rate formulation at peak stress in [2] is written here as: 

 ( )
4

r
0 core 0 4 '

c

tanh

b

f
a

f
β β β β

  
 = + −     

  (1) 

in the above, β0 is the uniaxial plastic dilation rate at the peak stress, βcore is the upper limit of 

the plastic core compaction, a4 and b4 are the calibrated parameters. Samani and Attard [5] 

suggested a value for β0 of -2.5. The upper limit of the plastic core compaction (βcore) is 

calibrated with the experimental data for FRP confined concrete and is a function of both the 

confining pressure (fr) and the lateral modulus (EL) of the external confining devices. However, 

the value for βcore should not be less than the elastic Poisson’s ratio of the external confining 

devices (μExt). The expression for βcore is: 

 r L
core Ext ' '

c c

0.5 0.0275  
f E

f f
β µ= − + Φ ≤ − Φ =  (2) 

in the above, fc is the uniaxial concrete compressive strength. In [2], the calibration of the 

parameters a4 and b4 uses a genetic optimization algorithm, and the expressions for both 

parameters are: 

 'L r L
4 4 c c' ' '

c c c

 2.5 0.25 0.0915 exp 0.0192 73
E f E

a b f f
f f f

 = + = − Φ − Φ =   (3) 

In Eqn.(3), the presence of the McCauley bracket is because of the variation of the plastic 

dilation rate for high strength concrete. To implement the plastic dilation rate formulation in 
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the flow rule, a method involving the plastic dilation rate control parameter ( P0α ) in the flow 

rule is used in [2]. Further a scaling function is introduced for the smooth transition of the plastic 

dilation rate from the beginning of plastic flow up to the peak stress. At the start of plastic flow, 

the plastic dilation rate is equal to zero and at the peak stress, the plastic dilation rate is equal 

to Eqn.(1). 

In Figure 1, there are two regions of the plastic dilation rate. The first region is where the 

increment of the plastic volumetric strain is in compaction ( 0.5β < ) and the second region is 

where the increment of the plastic volumetric strain is in dilation ( 0.5β > ). The predicted 

plastic dilation rates in Figure 1 are generated using the expression from Eqn. (1). The 

predictions represent different stiffness of the external confining devices and their effect on the 

plastic dilation rate behavior of FRP confined concrete. Note that the observed value of the 

plastic dilation rate, which is shown in Figure 1, shows the peak plastic dilation rate. For 

actively confined concrete (EL = 0 MPa), the plastic dilation rate asymptotes to a value of -0.5. 

As the EL increases, the plastic dilation rate shifts to the plastic volumetric compaction region. 

This phenomenon occurs for FRP confined concrete with sufficiently high stiffness [6, 7].  

 

Figure 1 Plastic dilation rate behavior for FRP confined concrete [2] 

Figure 2 shows the development of the plastic dilation rate for FRP confined concrete with 

different ply tested by [8] with ID 01-09. In Figure 2, the prediction of the plastic dilation rate 

using Eqn.(1) and also using the complete stress-strain curve for FRP confined concrete via the 

constitutive driver are presented. By looking at the complete development of the plastic dilation 

rate from the analysis, at the initial plastic flow, the value of the plastic dilation rate starts from 

zero and goes up to a value of -0.5. this region is called the initial plastic compaction. It is also 

worth mentioning that a flow rule that always dilates such as in [9, 10], will never be able to 

capture initial plastic compaction. After passing the initial plastic compaction region, the plastic 

dilation rate keeps increasing until reaching the peak plastic dilation ratio and continues to 
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follow the path of the peak plastic dilation rate as shown in Figure 2. Note, in the experiments, 

the plastic dilation rate also starts from zero. In Figure 2, however, the experimental plastic 

dilation rate is plotted once the minimum secant dilation rate is found in the experiment (see 

[2]) and therefore the plastic dilation rate from the zero point up to the minimum plastic dilation 

rate is not shown. 

For CFST, it is expected that the plastic dilation rate after the steel tube yields should be 

almost equal to that of actively confined concrete (EL = 0). After the steel yields, the confining 

pressure increases, the value for the initial lateral modulus will be small. The experiments 

carried out in [11] are examined and are used in this study. The work in [11] provides a complete 

data set which can be used for evaluating the plastic dilation rate for CFST. The axial stress in 

the concrete and the confining pressure is extracted, and Hook’s law is used to compute the 

axial and lateral elastic strains. The axial and lateral plastic strains are further computed by 

subtracting the elastic strains from the total strains. The plastic dilation rate is obtained by 

computing the ratio of the lateral to axial plastic strains. 

 

 
Figure 2 Comparison of the plastic dilation rate formulation with the constitutive driver and the experiments [2] 

Figure 3 shows the plastic dilation rate behavior for CFST specimens taken from [11] are 

selected for investigation. Two specimens with normal strength concrete (NSC) and one 

specimen with high strength concrete (HSC) are selected. In Figure 3, the plastic dilation rates 

are plotted as a function of axial strain. In Figure 3, the peak plastic dilation rate are generated 

using Eqn. (1) with two different values of the lateral modulus. One with zero lateral modulus, 

which in Figure 3 is represented as the active model and the other with the lateral modulus 

calculated from the experiments and is represented as the passive model. Note, for zero 

confining pressure (uniaxial case) or when the confining pressure is tensile, the plastic dilation 

rate at the peak stress is equal to β0 which is equal to -2.5. Hence, in Figure 3, at the initial 

loading stage, where the confining pressure is in tension (see [11]), the peak plastic dilation rate 

is equal to -2.5.   
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The plastic dilation rate from all the specimens starts at zero plastic dilation rate which 

clearly identifies the initial plastic volumetric compaction for CFST specimens. As the loading 

increases, the absolute value of the plastic dilation rate also increases up to the maximum value. 

For NSC, it is difficult to distinguish between the maximum and the minimum values of the 

plastic dilation rate once the steel tube yields. However, for the HSC specimen, we can easily 

distinguish between the maximum and the minimum values of the plastic dilation rate. The 

maximum absolute plastic dilation rate for the 80 MPa concrete occurs at an axial strain of 

about -0.0025 and as the loading increases, the plastic dilation rate drops to a value of -1.2. 

Notice that there is a small increase in the plastic dilation rate throughout the loading for HSC 

while for NSC, the plastic dilation rate is almost constant.  

 

  

 
Figure 3 Plastic dilation rate behavior for CFST specimens 
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may provide good predictions, they lack the explanation of what is happening in the 

experiments. 

For high strength concrete, the prediction of the plastic dilation rate is lower in absolute 

terms than the experiments. When evaluating the experimental data for FRP confined concrete, 

there is a term inside the McCauley bracket Eqn.(3) to cater for the test results available for 

HSC which were from one source and had a compressive strength of 73 MPa. The term has a 

purpose to accelerate the increase in the plastic dilation rate for high strength concrete. It is 

therefore important to investigate more HSC experimental results and re-evaluate Eqn.(3). 

Further, for a CFST specimen, the yielding of the steel tube lowered the value of the lateral 

modulus, and thus the limit of plastic dilation rate as shown in Eqn.(2) remain untouched.   

3 MODELLING AND DISCUSSION 

This section presents two finite element models for CFST short column specimen using an 

in-house three-dimensional non-linear finite element analysis (3DNLFEA) program. 

3DNLFEA is an in-house program developed by the authors which focuses on non-linear 

analysis for reinforced concrete structures. 3DNLFEA is now under heavy development 

focusing on parallel computation and the use of Graphical Processing Unit (GPU) to improve 

the computational performance. The pre- and post-processor use SALOME [12] and ParaView 

[13, 14], respectively. In solving the global equilibrium equations in the non-linear finite 

element analysis, the initial elastic stiffness method combined with a process modification [15] 

(acceleration technique) are used in the analysis. The constitutive model for concrete and steel 

materials are based on the plasticity model developed by the authors [2, 3] and a J2 plasticity 

with zero hardening modulus, respectively. The 2nd order effects are considered using an 

updated Lagrangian formulation. 

Two experiments from Lai and Ho [11] are selected for comparisons. The first and the second 

specimen have an annotation of CN0_4_139_100 and CN0_8_168_120, respectively. The first 

term of the annotation which is “CN0” shows that the specimen is a pure CFST column with 

no additional external confining devices provided. The second term shows the thickness of the 

steel tube in mm. The outer diameter (mm) is shown in the third term and the uniaxial concrete 

compressive strength (MPa) is shown in the fourth term. The height of the CN0_4_139_100 

and CN0_8_168_120 specimens are 420 mm and 330 mm, respectively. The CN0_4_139_100 

and CN0_8_168_120 specimens are constructed with 1,953 and 1,944 hexahedral elements, 

respectively. Both ends of the CFST column are fixed. The loading in the analysis is controlled 

using a displacement control applied at the top end of the specimen.  

Figure 4 and Figure 5 shows the meshed elements, Von-Mises stresses, the hardening 

parameter and the lateral modulus for the CN0_4_139_100 and CN0_8_168_120 specimens, 

respectively. The output data was evaluated at the final load step. The Von-Mises stress 

distribution in concrete for both specimens is similar despite the different ratio of the height 

over diameter (l/d) of the specimen (see Figures 1b and 2b). Since both ends of the specimens 

were fixed, the localization during softening occurs at the mid-height of the specimen.  From 

Figures 4c and 5c, the hardening parameter (k), which is a measure of cumulative plastic 

volumetric strain, has the highest value at the mid height. As for the lateral modulus, 

theoretically, if there are no increases in the confining pressure, the value of the lateral modulus 

should be zero. However, the values of the lateral modulus shown in Figures 4d and 5d are not 
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zero which explains that even under softening, the confining pressure is still increasing. 

Figure 6 and Figure 7 show the comparison of the axial force versus the axial strain between 

the 3DNLFEA and the experimental results. Note that in Figures 6 and 7, the input data for the 

3DNLFEA is shown below the specimen ID. For example, in Figure 6, the first line below the 

specimen ID identifies the actual concrete compressive strength in MPa (F104.5), the Young’s 

Modulus of the concrete in GPa (E34.5) and the concrete uniaxial axial peak strain at the peak 

stress (EPS0.0038). The second line below the specimen ID shows the actual yield stress of the 

steel tube in MPa (S361), the Poisson’s ratio of the steel tube (P0.29), the Young’s Modulus of 

the steel tube in GPa (E205) and the thickness of the steel tube in mm (T7.82). 

From the comparisons, the overall predicted responses for both specimens are in good 

agreement. The prediction of the peak axial load for CN0_4_139_100 is slightly higher than 

the experiment and the traced softening response is steeper than the experiment. However, the 

predicted residual stress, where the axial load is almost like a plateau, is in good agreement with 

the experiments. For the CN0_8_168_120 specimen, the predicted peak stress and peak strain 

are excellent. The softening response is excellent up to some degree, however, as the specimen 

softens further, the predicted axial load carrying capacity is higher than the experiment.  

 

 
 (a) (b) (c) (d) 

Figure 4 (a) 3D Model of CN0_4_139_100 specimen (b) Von-Mises Stress (c) Hardening parameter  

(d) Lateral Modulus parameter (EL) 
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 (a) (b) (c) (d) 

Figure 5 (a) 3D Model of CN0_8_168_120 specimen (b) Von-Mises Stress (c) Hardening parameter  

(d) Lateral Modulus parameter (EL)   

 

 
Figure 6 Comparison between 3DNLFEA and CN0_4_139_100 experimental result 
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Figure 7 Comparison between 3DNLFEA and CN0_8_168_120 experimental result 

 

4 CONCLUSIONS 

This paper investigates the plastic dilation rate behavior of CFST columns. The experimentally 

extracted plastic dilation rates are compared with the plastic dilation rate formulation proposed 

by the authors. The comparison of the plastic dilation rate shows good agreement despite 

slightly higher prediction for high strength concrete. For a concrete-filled-steel-tube (CFST) 

specimen, once the steel tube yields, the value of the lateral modulus drops and thus the limit 

of the plastic dilation rate [2] remains untouched. Further, it was found that for normal strength 

concrete, the plastic dilation rate after the steel tube yields is almost constant. However, this did 

not mean that the confining pressure is constant. The confining pressure increases, but the 

lateral modulus reduces and produces an almost constant plastic dilation rate. Although the 

plastic dilation formulation was initially developed using data from FRP confined concrete, the 

formulation is also valid for CFST specimens. To further verify the developed plasticity 

constitutive model, comparisons between the CFST experiments from the literature with the 

non-linear finite element analysis (3D-NLFEA) were also presented. The comparisons between 

the model and the experiments were excellent with sufficiently high accuracy prediction of the 

peak axial load and peak axial strain. Further work will concentrate on obtaining more 

experimental data for high strength concretes. 
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