

This is the published version of:

Miller, J., Stratton, D. (2004) Generic three-dimensional visualization for
distributed simulations. SimTect 2004: the Ninth Simulation Technology
& Training Conference, Canberra : 24th June, 2004 .

Copyright © 2004 Miller, J., Stratton, D. all rights reserved.
This article may be used for research, teaching, and private study
purposes. Any substantial or systematic reproduction, redistribution,
reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden.

COPYRIGHT NOTICE

FedUni ResearchOnline
https://researchonline.federation.edu.au

https://researchonline.federation.edu.au/

Generic 3-Dimensional Visualisation for Distributed
Simulations

James Miller

Distributed Simulation Laboratory, University of Ballarat
jg.miller@ballarat.edu.au

Dr David Stratton

Distributed Simulation Laboratory, University of Ballarat
d.stratton@ballarat.edu.au

Abstract. Visualisation is a fundamental aspect of many simulations, providing a layer of abstraction between raw
data and an interested human. This layer allows the user to quickly and easily parse the data and comprehend its
significance. The lack of any generic visualisation tools has seen the widespread use of visualisation applications
designed specifically for individual simulation implementations. The effort required to develop such custom
visualisations constrains the development of distributed simulation beyond relatively well-funded defence simulation
purposes. A framework that provides generic visualisation capabilities to an arbitrary simulation can potentially relax
that constraint. Arguably, the majority of current implementations of distributed simulations model real-world
situations that take place in a three-dimensional space. Further, the interest currently shown in distributed simulation
architectures by new industries such as video game producers demonstrates the growing demand for 3D visualisation.
Therefore, a generic visualisation framework should provide a configurable 3D viewer. This paper describes a
conceptual generic 3D visualisation tool that consumes the specialised data provided by a separate visualisation
framework that is the subject of a related project.

1. INTRODUCTION
Visualisation is a vital part of many simulations. It is
accepted that visualisation takes advantage of the
highest bandwidth connection to the brain [15]. The
ability to present potentially huge datasets in a visual
form allows the user to quickly interpret and understand
them, and make decisions. Many simulations model
objects that exist in a 3-dimensional space. Being able
to “enter” that 3D space and view and interact with the
objects within it is an effective way to understand a
simulation and obtain results.

A review of existing 3D simulation visualisation tools
showed that most are geared towards a single
constrained domain. In the past, this was not a problem,
since the majority of distributed simulations dealt with
military scenarios that were each similar enough that
non-generic tools could be easily adapted to
accommodate any differences.

With interest growing in the use of the High Level
Architecture (HLA) in other domains, such as transport,
medicine and entertainment [9, 13, 11], these restricted
visualisation tools are no longer applicable without
major programmatic modification. There exists,
therefore, a need for a highly configurable, generic
visualisation tool that can be easily adapted to provide
useful 3D visualisation of a range of simulations.

To address this need, this paper describes a conceptual
system that provides generic 3D visualisation of
distributed simulations. It first defines the functionality
that must be included to achieve the aim, and then

illustrates how this functionality will be brought
together in an integrated design.

2. 3D VISUALISATION AND VIEWERS
Most simulation visualisation tools that include a 3D
viewer component are expensive, commercial tools that
require the use of a specific and immutable object
model. Further, the majority of those are designed for
use with military simulations alone. Some examples
follow of systems containing such viewers.

2.1 ModIOS
General Dynamics’ ModIOS system includes a stealth
3D viewer [8]. The 3D viewer is supported by an
extensive framework that provides numerous tools
expressly intended for controlling and monitoring a
military scenario.

To attain some degree of generality, it relies on the
Real-time Platform Reference (RPR) FOM, an industry
standard object model specification. The RPR-FOM is
also intended and optimised for military simulations,
however, and is thus usually unsuitable for business or
medical simulations, for example.

2.2 SVS Stealth
Like ModIOS, Advanced Interactive Systems’ SVS
Stealth 3D viewer is aimed at the military simulation
industry [1]. It is highly customisable, and provides a
slew of interactivity features, including camera attach
modes and an “Individual Combatant” mode, in which

mailto:jg.miller@ballarat.edu.au
mailto:d.stratton@ballarat.edu.au

the user navigates the scenario with the same
constraints a foot soldier would experience.

2.3 JView
JView is a “3D and 2D, runtime configurable and
platform independent visualisation program and API”
[2]. Developed for the US Air Force, it aims to be a
generic visualisation system that provides multiple
views. Its extensibility is supplied by plug-in modules
that can be written by programmers to handle new data
types.

2.4 Major problems with these viewers
ModIOS and SVS Stealth, as well as numerous other
visualisation tools, rely on the simulation conforming
to—or at least being translatable into—a specific object
model. This is fine when most simulations naturally
correspond to this object model; however no universal
standard has yet been developed that accounts for all
possible objects used in any possible simulation. In
order to visualise simulations outside this confined
domain, a generic viewer must by some means support
any relevant object model.

JView is designed for its ability to display multiple
views in different formats, rather than for generality in
object model specification. To support different
simulations or models, a programmer must write plug-
ins. This approach requires that simulation designers
must also be programmers. Such a situation cannot be
guaranteed, especially given the effort to introduce
distributed simulation into fields where users are more
accustomed to visual, drag-and-drop style design. The
generic viewer must therefore also provide its support
of different object models by means of configuration
files that can be manipulated within a visual designer.

3. CONSIDERATIONS
Numerous issues must be considered in the creation of a
generic 3D visualisation system. In this investigation,
four major factors are identified: the viewer must

1. display the objects that are simulated in a 3D
space;

2. depict an environment around the simulation
objects;

3. use configuration files to specify both the objects
and environment, rather than through
reprogramming; and,

4. provide an interface that enables users to obtain
useful information from the visualisation.

3.1 Simulation Objects
The main function of a simulation visualisation tool is
to display the objects within the simulation in such a
way that they impart useful information to the user.
This involves portraying the object with a relevant and

accurate 3D model. When displaying the simulation
objects, most existing visualisation tools include
enhancements that enable users to track object paths
and view detailed information on their current state.

3.1.1 Object-to-model mapping
Since—at least in the case of the HLA—all simulation
objects are explicitly specified in the Federation Object
Model (FOM), objects can generally be mapped to 3D
models directly from the FED file (which defines the
FOM). As will be shown in section 3.3 below, support
for dynamic acquisition of models is a technique that
could help to reduce the amount of manual
configuration that simulation designers are required to
perform.

3.1.2 Network Latency
Real-time 3D visualisation requires at least 24 frames
per second for the animation to be perceived as smooth
[6]. Since there may be latencies in data transfer over a
network from a simulation to the viewer, it is unlikely
that this ideal can be upheld without some system that
accounts for any lapses. One method of overcoming this
is called dead reckoning [3].

Dead reckoning involves predicting the possible future
location of an object, and using that prediction in lieu of
actual data. Once the actual location has been
discovered, the visualisation can be updated to reflect
any difference. If the object is immediately relocated,
however, it creates a jumpy and stuttered visualisation,
thus defeating the purpose of the dead reckoning. An
alternative is to employ a technique called linear
convergence, whereby once actual data is received the
object is gradually brought back into line with its actual
position. The degree of positioning error created by
dead reckoning is greater the less predictable the
movement of the object. For certain simulations, any
errors in the visualisation may negatively influence
conclusions. In other cases, though, it is more useful for
the user to experience smooth animation [6].

3.1.3 Articulated and Animated Models
A simulation may have two objects that in a 3D
representation must be somehow joined together. For
instance, a tank object with a turret direction attribute
should be displayed with a turret that can rotate
independently. Here the attributes may either be
mapped to different components of a single model, or to
two separate models that are “welded” together by the
viewer. When “welded”, the relative position and
distance between the two models would be maintained.

Additionally, certain objects might perform actions that
should transform their model, or even change their
representation completely. This change may be either
permanent or temporary. For instance, a simulated tank
may fire its cannon. This action should be represented
in the visualisation in a visible and obvious fashion: in
this case, with a bright flash from the barrel.

3.2 Environments
The major obstacle faced when designing a generic 3D
visualisation tool is not displaying the objects within a
federation; rather, the environment in which the objects
exist that is outside the bounds of the simulation poses
the greatest challenge. For many existing simulations, a
representation of terrain and sky will suffice; indeed,
this would cater for most military, transport and gaming
simulations. To create a truly generic system, however,
other potential environments must be considered. For
example, a simulation set in outer space, whilst still a
real world environment, has many different
visualisation requirements. Even more exotic
environments can be imagined for medical simulations
that might study anything from cellular-level
interactions, to human physiology as a whole [13]. At
the other end of the spectrum, simulations such as
mechanical testing may need no more environment than
a black void.

3.3 Configuration
To uphold the aim of generality, the viewer will require
relatively extensive configuration for each simulation it
must visualise. However, the benefits of this approach
are that: a) programming skills are not required to adapt
the viewer to new simulations; and b) much of the
configuration can be automated within a visual
designer.

Any configuration effort will be focussed on three
things: translating simulation object types to types
suitable for visualisation, mapping simulation objects to
models, and specifying the nature of the 3D
environment. As discussed in section 4.1 below,
reference [7] details a system that obtains data from a
distributed simulation, and translates it into a form that
is specific to a visualisation tool.

The requirement for simulation designers to pre-
configure object-to-model mapping could be lifted by
using automatic model acquisition. Work such as that
discussed in [12] has investigated the categorisation of
3D models using detailed meta-data. This work
expanded upon the Environmental Data Coding
Specification (EDCS) that formed part of the DMSO’s
SEDRIS project. Although this work focussed on
objects that are present in the real world, similar
standards for other types of 3D models may be
developed in the future. Given this meta-data, the
viewer could automatically access a central database of
uniquely identified models when a new object is
encountered, and download the associated files.

3.4 Interface
The user interface is the most important aspect of the
viewer, since it is this component that facilitates the
user’s access to the visualised data. The primary
purpose of the visualisation tool is to allow the user to
comprehend and understand the relationships within a
large dataset. The design for the user interface must

therefore support the user in this process. Numerous
techniques exist that assist in providing a useful and
accessible interface to users.

3.4.1 Dynamic functionality
Since interactivity requirements may change depending
upon the type of simulation visualised, the interface
functionality may also need to change. For example, the
ability to track an object’s movement might be useful in
a large-scale military simulation, but may not be needed
in a smaller-scale medical model. In such a case,
removing access to the tracking functionality for users
of the medical simulation would reduce screen clutter
and improve useability.

Various methods for defining user interfaces have been
devised. One such system is called Extensible User
Interface Language (XUL) [5]. This technology, based
upon the Extensible Modelling Language (XML),
allows developers to define a user interface in a non-
platform-specific manner. Work is currently taking
place on a runtime environment for XUL applications;
however this outcome is still some time away. Since
XUL uses simple formatted text files for interface
specification, its adoption would allow simulation
designers to easily redefine existing interfaces or design
new ones.

3.4.2 Navigation and depth perception
Navigation through a 3-dimensional space should come
easily given that humans exist naturally in such a world;
however using 2D input devices makes for challenging
navigation [10]. The common human-computer
interface (HCI) devices—the mouse and keyboard—are
not well suited to 3D navigation, since they were
designed for 2-dimensional interaction. Whilst research
has been conducted that examines alternative HCI
technologies, such as gloves and VR headsets, as of yet
none has come into common, widespread use.
Furthermore, such hardware is expensive, restricting its
use to well-funded projects. The viewer must therefore
use techniques to improve user control given the limited
available input functionality.

The output generated on a monitor is often referred to
as 2.5D [4], since the image only gives the impression
of 3D space. This means that users cannot use their
brain’s depth perception abilities—it is like viewing the
world with one eye closed. Many existing tools include
support for true 3D via special hardware, such as
stereoscopic glasses. These allow users to view
computer-generated 3D spaces with the benefit of true
depth perception. Provision of the ability to interface
with these devices is important, from red-and-blue
stereoscopic glasses, to high-tech headsets.

4. DESIGN OF SV3D
To fulfil these requirements, a visualisation system
dubbed Simulation Viewer 3D (SV3D) has been
designed. The SV3D system will provide the

4.2.2 Configuring SV3D visualisation functionality that existing 3D viewers
present, whilst being able to display relevant data from
any simulation.

SV3D will use XML files to configure its operation and
interaction. These can be edited manually, allowing full
control over the visualisation, but this process is
potentially time-consuming, so it is planned that SV3D
will have an inline scene composer. This will facilitate
rapid design practices, such as combining pre-existing
elements visually to create a new environment. This
allows simulation designers to ignore menial tasks that
can be handled automatically.

The SV3D viewer is based upon an existing framework
that allows it to access simulations. The system will
initially be a stealth viewer—able only to view
simulations, not manipulate them—but it is designed
such that it will be easy to integrate interactive features
when the necessary infrastructure becomes available.

It is likely that most object-to-model mapping will be
conducted at design time, with appropriate models
selected manually by the designer. As mentioned in
section 3.3 above, however, efforts to design a
framework for a 3D model acquisition system have
been made. In SV3D, model acquisition is expected to
occur at three times: 1) during the design process,
where FOM data can be used to establish model
requirements; 2) when a simulation is first viewed on a
client machine and model files have not been supplied
by the simulation designer; and, 3) a federation that
supports some form of FOM agility may allow new
object types to be merged dynamically. In each case,
until a suitable model can be obtained, a temporary
avatar such as a simple box will be displayed.
Unfortunately, automatic model acquisition is not yet
viable given the lack of a well-stocked, publicly
accessible database. SV3D is designed such that this
functionality will be easy to incorporate at a later date.

4.1 NOVA
The Nova Open Visualisation Architecture (NOVA)1
framework provides generic visualisation data to clients
[7]. It uses a highly configurable system that is able to
convert simulation data into a form that is useful for
specific visualisation systems.

NOVA accesses distributed simulations using software
called fedWS2 [14]. FedWS is designed to provide
read-only access to a private HLA Federation through a
web service interface. Rather than adding a new viewer
federate for every client, it becomes highly scalable by
allowing multiple remote clients to access the federation
via a single static proxy federate.

Because fedWS makes its data available by means of a
web service, a bottleneck may exist where bandwidth is
limited over an Internet connection. NOVA attempts to
compensate for this by creating its own object store that
caches federation data. The cache reduces the amount
of traffic that must pass between it and the simulation
by drawing upon the stored data when providing
updates to clients.

4.3 Use-case scenario
As an example, say a simulation designer was working
with a simulation of race cars driving around a track. In
this simple scenario, each car has direction and speed
attributes, and races on a flat, oval shaped track. The
designer’s first step is to set up fedWS and NOVA so
that simulation data is transformed into relevant data for
SV3D. Next, they locate appropriate 3D models to
represent the cars, and then, through the configuration
files, map these models to objects or attributes. They
would then create the track by integrating 3D primitives
(e.g. cubes or spheres) with custom models using
SV3D’s inline scene composer. For this example, this
involves creating the track surface with primitive
planes, and adding pre-existing tree models and a sky.
Once this is completed, execution of the simulation
could begin. SV3D displays the car models on the track
(accurately thanks to NOVA’s transformation pipe),
and moves them as their simulated position changes. If
the designer specifies dead reckoning, SV3D would
predict the next location of each car depending upon its
previous actions. As the simulation runs, the viewer
position can be moved around to get different angles on
the action.

The SV3D viewer will use NOVA and fedWS to relay
simulation data from the distributed simulation, and to
convert the data into a form that is relevant and
understandable.

4.2 Configuration
SV3D will need configuration by simulation designers
to work with different simulations. The extent to which
this must take place depends on the degree of
outlandishness of the object model. As will be shown,
various techniques are used to avoid unnecessary steps
in the definition and design of a visualisation.

4.2.1 Configuring NOVA
NOVA allows visualisation tool designers to specify the
simulation inputs required, and any data transformation
that must take place for simulation data to become
understandable to the viewer. The NOVA framework
uses a transformation pipe system that performs any
translations of simulation data by means of user-
definable methods. These methods may, for example,
perform unit conversion, offsetting or scaling of data. 4.4 The SV3D Architecture

SV3D will be constructed with a modular approach, as
shown in Figure 1: below, allowing for individual

1 For more information, see http://hsv.littlebluefrog.com/
2 For more information, see http://fedws.littlebluefrog.com/

http://hsv.littlebluefrog.com/
http://fedws.littlebluefrog.com/

components to be easy to replace as old technologies
become outdated or new functionality is required.

Figure 1: The SV3D architecture.

4.4.1 Engine
The Engine is the central organiser. It is responsible for
processing incoming data, obtaining necessary support
files such as 3D models or terrain from databases, and
coordinating data flow amongst the other components.
The Engine also intercepts data between the Data Store
and Renderer, and performs any further transformations
required, such as dead reckoning.

4.4.2 Data Relay
The Data Relay module is responsible for obtaining the
simulation data from a provider, which will in this case
be the NOVA framework. This module is passive,
simply exposing an interface and shipping data to the
Engine module and into the Data Store.

Separating this component allows for the support of
different communication methods. For example, one
version may support an XML-based transfer such as the
Simple Object Access Protocol (SOAP), another may
implement a proprietary TCP protocol, and another yet
may use UDP for high-speed, unreliable transport.
Furthermore, the ability to replace the Data Relay lends
the system data source independence. Were it the case
that NOVA was deemed unsuitable for a particular
situation, a new Data Relay module could be written
that interfaced with a different data provider. It is also
possible that a Data Relay implementation could draw
its data from multiple sources. If, for instance, by
changing the User Interface module to include a 2D
map view, the Data Relay module could also be
modified to accept data from another NOVA view
server that supplied specific map data. These
modification techniques would require programming

skills, however, and are thus not intended for regular
use by designers.

Data Relay

NOVASimulation

Data StoreEngine

Renderer

User
Interface

SV3D

4.4.3 Data Store
The Data Store's primary function is to keep track of the
current state of objects, but it also provides a limited
caching service that supports the dead reckoning
functions. This involves storing at least the previous
update’s object state. Objects that do not have dead
reckoning enabled need only have their current state
maintained.

4.4.4 Renderer
The Renderer is the component that creates the 3D
visualisation. It must be able to provide a useable and
visually appealing representation of the supplied data,
including optimisation for large-scale, high polygon-
count scenes. The Renderer must allow the user to
dynamically reposition the view cameras.

The Renderer ideally must provide support for as many
commonly used 3D model data formats as possible.
Numerous data formats are standard within the
simulation community, such as MultiGen’s OpenFlight,
Terrain Experts Incorporated’s TerraPage, and
SEDRIS. In order to increase the range of available 3D
models, other widely used data formats such as 3D
Studio Max, MD2, Wavefront and LightWave should
be supported.

4.4.5 User Interface
The User Interface provides a graphical control
mechanism for human interaction with the viewer. At
start-up, it will provide a graphical interface for
initiating communications between the SV3D viewer
and the simulation. Once the viewer is connected, the
interface will present users with tools that modify and
interact with the visualisation, allowing them to change
their viewing position, or obtain information about a
particular object.

The interface gives the user access to controls that
modify the camera position and orientation. It is
important that these controls be useful despite the
complications inherent with 3D navigation using 2D
input devices (as exposed in section 3.4.2 above). To
automate navigation to some degree, the User Interface
component will allow the user to constrain camera
movement in various ways, as is done in other
visualisation tools. This includes attaching the camera
to an object and following it, restricting altitude or
distance from an object, and a first-person view from an
object.

4.5 Implementation
The SV3D software will be developed using existing
tools and libraries where possible, and preferably with
open-source or free software. It will use Object
Oriented development processes to facilitate the

modularity of the framework. The system will make use
of platform-independent coding techniques and libraries
so that it will work on as many architectures as
possible. The resulting software will be released under
an open-source license and be freely available for
anyone to use and modify.

5. STATUS & FUTURE WORK
Development is currently taking place on a prototype
implementation of the SV3D viewer, following the
guidelines set out in this paper. Initially, the
development will focus on subsets of the grander
design. Later versions will include support for all the
features specified in the original design.

Whilst this prototype will be purely stealth, future
versions of NOVA and fedWS may allow interaction
between the client viewer and the simulation. This
would allow for interesting possibilities such as the
creation of a game using SV3D as the renderer and user
interface.

For more information on the current status of SV3D,
please visit the project website at
http://hsv.littlebluefrog.com.

6. CONCLUSION
There is a lack of generic visualisation tools for
distributed simulations. Whilst numerous 3D
visualisation systems exist, they are all restricted to
viewing a specific domain, predominantly military
scenarios.

This paper has described the requirements and
presented an outline of a generic 3D visualisation tool
for distributed simulations. It is designed so that any
simulation that models relevant situations may be
viewed without reprogramming an existing viewer or
the simulation itself.

REFERENCES
1. Advanced Interactive Systems (formerly Reality by

Design). (2001) “RBD Stealth Pro Product
Information.” Orlando, Florida [Online:
http://www.ais-sim.com/svs]

2. Air Force Research Lab / IFSB. (2003) “JView
Website.” [Online:
http://www.rl.af.mil/tech/programs/JVIEW/]

3. Batista, H.; Costa, V. & Pereira, J.M. (2001) “Games
of War and Peace: Large Scale Simulation over the
Internet.” Seventh International Conference on Virtual
Systems and Multimedia. Berkeley, USA [Online:
http://vasc.home.sapo.pt/]

4. Blocher, T.W. & VonPlinsky, M. (2002) “Information
Visualization in a Distributed Virtual Decision

Support Environment.” Proceedings of the 2002
Spring Simulation Interoperability Workshop.
[Online: http://www.sisostds.org] 02S-SIW-119

5. Bojanic, P. (2003) “The Joy of XUL” [Online:
http://www.mozilla.org/projects/xul/joy-of-xul.html]

6. Cheshire, S. (1996) “Latency and the Quest for
Interactivity.” Commissioned by Volpe Welty Asset
Management, LLC, for the Synchronous Person-to-
Person Interactive Computing Environments Meeting.
San Francisco. [Online:
http://www.simoncheshire.org]

7. Fraser, M.R. & Stratton, D. (2004) “A General
Purpose Visualisation Architecture for Distributed
Simulation.” Submitted to the 2004 SimTecT
Conference. Canberra.

8. General Dynamics. (2003) “ModIOS System
Overview.” [Online: http://www.gd-
decisionsystems.com/modios/]

9. Klein, U.; Schulze, T.; Strassburger, S. & Menzler,
H.-P. (1998) “Distributed Traffic Simulation based on
the High Level Architecture.” Proceedings of the
1998 Fall Simulation Interoperability Workshop.
Orlando, Florida. [Online: http://www.sisostds.org]
98F-SIW-016

10. Li, T.-Y. & Ting, H.-K. (2000) “An Intelligent User
Interface with Motion Planning for 3D Navigation.”
Proceedings of the IEEE Virtual Reality 2000.
[Online:
http://citeseer.nj.nec.com/li00intelligent.html]

11. Loughran, J. (1999) “Simulation Across the Spectrum:
The Island of Entertainment Simulations.” SISO
News. Volume 1 Issue 4. [Online:
http://www.sisostds.org/webletter/siso/iss_18/art_133.
htm]

12. Miller, D.D.; Janett, A.; Salemann, L.; Farsai, S.;
Miller, E.Y. & Birkel, P.A. (2001) “An Environmental
Data Model for 3D Models,” Proceedings of the 2001
Fall Simulation Interoperability Workshop. Orlando,
Florida. [Online: http://www.sisostds.org] 01S-SIW-
071

13. Murphy, S.; Coolahan, J.; Lutz, R.; Saunders, R.;
Kovalchik, J. & Feldman, A. (2003) “Human
Physiology Simulation Integration Using the HLA:
ExerFed1516.” Proceedings of the 2003 Spring
Simulation Interoperability Workshop. [Online:
http://www.sisostds.org] 03S-SIW-092

14. Pokorny, T. (2002) “Dynamic Web Access to Active
HLA Simulations.” Honours Thesis. University of
Ballarat: Australia.

15. van Dam, A.; Forsberg, A.S.; Laidlaw, D.H.; LaViola
Jr, J.J. & Simpson, R.M. (2000) “Immersive VR for
Scientific Visualisation: A Progress Report.” IEEE
Computer Graphics and Applications.
November/December. 26-52.

http://hsv.littlebluefrog.com/
http://www.ais-sim.com/svs
http://www.rl.af.mil/tech/programs/JVIEW/
http://vasc.home.sapo.pt/
http://www.sisostds.org/
http://www.mozilla.org/projects/xul/joy-of-xul.html
http://www.simoncheshire.org/
http://www.gd-decisionsystems.com/modios/
http://www.gd-decisionsystems.com/modios/
http://www.sisostds.org/
http://citeseer.nj.nec.com/li00intelligent.html
http://www.sisostds.org/webletter/siso/iss_18/art_133.htm
http://www.sisostds.org/webletter/siso/iss_18/art_133.htm
http://www.sisostds.org/
http://www.sisostds.org/

	Author retained copyright cover page
	miller_semantic
	INTRODUCTION
	3D VISUALISATION AND VIEWERS
	ModIOS
	SVS Stealth
	JView
	Major problems with these viewers

	CONSIDERATIONS
	Simulation Objects
	Object-to-model mapping
	Network Latency
	Articulated and Animated Models
	Environments
	Configuration
	Interface
	Dynamic functionality
	Navigation and depth perception

	DESIGN OF SV3D
	NOVA
	Configuration
	Configuring NOVA
	Configuring SV3D
	Use-case scenario
	The SV3D Architecture
	Engine
	Data Relay
	Data Store
	Renderer
	User Interface
	Implementation

	STATUS & FUTURE WORK
	CONCLUSION
	REFERENCES

