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Abstract.  Visualisation is a fundamental aspect of many simulations, providing a layer of abstraction between raw 
data and an interested human. This layer allows the user to quickly and easily parse the data and comprehend its 
significance. The lack of any generic visualisation tools has seen the widespread use of visualisation applications 
designed specifically for individual simulation implementations. The effort required to develop such custom 
visualisations constrains the development of distributed simulation beyond relatively well-funded defence simulation 
purposes. A framework that provides generic visualisation capabilities to an arbitrary simulation can potentially relax 
that constraint. Arguably, the majority of current implementations of distributed simulations model real-world 
situations that take place in a three-dimensional space. Further, the interest currently shown in distributed simulation 
architectures by new industries such as video game producers demonstrates the growing demand for 3D visualisation. 
Therefore, a generic visualisation framework should provide a configurable 3D viewer. This paper describes a 
conceptual generic 3D visualisation tool that consumes the specialised data provided by a separate visualisation 
framework that is the subject of a related project.  

1. INTRODUCTION 
Visualisation is a vital part of many simulations. It is 
accepted that visualisation takes advantage of the 
highest bandwidth connection to the brain [15]. The 
ability to present potentially huge datasets in a visual 
form allows the user to quickly interpret and understand 
them, and make decisions. Many simulations model 
objects that exist in a 3-dimensional space. Being able 
to “enter” that 3D space and view and interact with the 
objects within it is an effective way to understand a 
simulation and obtain results. 

A review of existing 3D simulation visualisation tools 
showed that most are geared towards a single 
constrained domain. In the past, this was not a problem, 
since the majority of distributed simulations dealt with 
military scenarios that were each similar enough that 
non-generic tools could be easily adapted to 
accommodate any differences. 

With interest growing in the use of the High Level 
Architecture (HLA) in other domains, such as transport, 
medicine and entertainment [9, 13, 11], these restricted 
visualisation tools are no longer applicable without 
major programmatic modification. There exists, 
therefore, a need for a highly configurable, generic 
visualisation tool that can be easily adapted to provide 
useful 3D visualisation of a range of simulations. 

To address this need, this paper describes a conceptual 
system that provides generic 3D visualisation of 
distributed simulations. It first defines the functionality 
that must be included to achieve the aim, and then 

illustrates how this functionality will be brought 
together in an integrated design.  

2. 3D VISUALISATION AND VIEWERS 
Most simulation visualisation tools that include a 3D 
viewer component are expensive, commercial tools that 
require the use of a specific and immutable object 
model. Further, the majority of those are designed for 
use with military simulations alone. Some examples 
follow of systems containing such viewers. 

2.1 ModIOS 
General Dynamics’ ModIOS system includes a stealth 
3D viewer [8]. The 3D viewer is supported by an 
extensive framework that provides numerous tools 
expressly intended for controlling and monitoring a 
military scenario. 

To attain some degree of generality, it relies on the 
Real-time Platform Reference (RPR) FOM, an industry 
standard object model specification. The RPR-FOM is 
also intended and optimised for military simulations, 
however, and is thus usually unsuitable for business or 
medical simulations, for example. 

2.2 SVS Stealth 
Like ModIOS, Advanced Interactive Systems’ SVS 
Stealth 3D viewer is aimed at the military simulation 
industry [1]. It is highly customisable, and provides a 
slew of interactivity features, including camera attach 
modes and an “Individual Combatant” mode, in which 

  

mailto:jg.miller@ballarat.edu.au
mailto:d.stratton@ballarat.edu.au


the user navigates the scenario with the same 
constraints a foot soldier would experience. 

2.3 JView 
JView is a “3D and 2D, runtime configurable and 
platform independent visualisation program and API” 
[2]. Developed for the US Air Force, it aims to be a 
generic visualisation system that provides multiple 
views. Its extensibility is supplied by plug-in modules 
that can be written by programmers to handle new data 
types.  

2.4 Major problems with these viewers 
ModIOS and SVS Stealth, as well as numerous other 
visualisation tools, rely on the simulation conforming 
to—or at least being translatable into—a specific object 
model. This is fine when most simulations naturally 
correspond to this object model; however no universal 
standard has yet been developed that accounts for all 
possible objects used in any possible simulation. In 
order to visualise simulations outside this confined 
domain, a generic viewer must by some means support 
any relevant object model. 

JView is designed for its ability to display multiple 
views in different formats, rather than for generality in 
object model specification. To support different 
simulations or models, a programmer must write plug-
ins. This approach requires that simulation designers 
must also be programmers. Such a situation cannot be 
guaranteed, especially given the effort to introduce 
distributed simulation into fields where users are more 
accustomed to visual, drag-and-drop style design. The 
generic viewer must therefore also provide its support 
of different object models by means of configuration 
files that can be manipulated within a visual designer. 

3. CONSIDERATIONS 
Numerous issues must be considered in the creation of a 
generic 3D visualisation system. In this investigation, 
four major factors are identified: the viewer must 

1. display the objects that are simulated in a 3D 
space; 

2. depict an environment around the simulation 
objects; 

3. use configuration files to specify both the objects 
and environment, rather than through 
reprogramming; and,  

4. provide an interface that enables users to obtain 
useful information from the visualisation. 

3.1 Simulation Objects 
The main function of a simulation visualisation tool is 
to display the objects within the simulation in such a 
way that they impart useful information to the user. 
This involves portraying the object with a relevant and 

accurate 3D model. When displaying the simulation 
objects, most existing visualisation tools include 
enhancements that enable users to track object paths 
and view detailed information on their current state. 

3.1.1 Object-to-model mapping 
Since—at least in the case of the HLA—all simulation 
objects are explicitly specified in the Federation Object 
Model (FOM), objects can generally be mapped to 3D 
models directly from the FED file (which defines the 
FOM). As will be shown in section 3.3 below, support 
for dynamic acquisition of models is a technique that 
could help to reduce the amount of manual 
configuration that simulation designers are required to 
perform.  

3.1.2 Network Latency 
Real-time 3D visualisation requires at least 24 frames 
per second for the animation to be perceived as smooth 
[6]. Since there may be latencies in data transfer over a 
network from a simulation to the viewer, it is unlikely 
that this ideal can be upheld without some system that 
accounts for any lapses. One method of overcoming this 
is called dead reckoning [3]. 

Dead reckoning involves predicting the possible future 
location of an object, and using that prediction in lieu of 
actual data. Once the actual location has been 
discovered, the visualisation can be updated to reflect 
any difference. If the object is immediately relocated, 
however, it creates a jumpy and stuttered visualisation, 
thus defeating the purpose of the dead reckoning. An 
alternative is to employ a technique called linear 
convergence, whereby once actual data is received the 
object is gradually brought back into line with its actual 
position. The degree of positioning error created by 
dead reckoning is greater the less predictable the 
movement of the object. For certain simulations, any 
errors in the visualisation may negatively influence 
conclusions. In other cases, though, it is more useful for 
the user to experience smooth animation [6]. 

3.1.3 Articulated and Animated Models 
A simulation may have two objects that in a 3D 
representation must be somehow joined together. For 
instance, a tank object with a turret direction attribute 
should be displayed with a turret that can rotate 
independently. Here the attributes may either be 
mapped to different components of a single model, or to 
two separate models that are “welded” together by the 
viewer. When “welded”, the relative position and 
distance between the two models would be maintained. 

Additionally, certain objects might perform actions that 
should transform their model, or even change their 
representation completely. This change may be either 
permanent or temporary. For instance, a simulated tank 
may fire its cannon. This action should be represented 
in the visualisation in a visible and obvious fashion: in 
this case, with a bright flash from the barrel. 

  



3.2 Environments 
The major obstacle faced when designing a generic 3D 
visualisation tool is not displaying the objects within a 
federation; rather, the environment in which the objects 
exist that is outside the bounds of the simulation poses 
the greatest challenge. For many existing simulations, a 
representation of terrain and sky will suffice; indeed, 
this would cater for most military, transport and gaming 
simulations. To create a truly generic system, however, 
other potential environments must be considered. For 
example, a simulation set in outer space, whilst still a 
real world environment, has many different 
visualisation requirements. Even more exotic 
environments can be imagined for medical simulations 
that might study anything from cellular-level 
interactions, to human physiology as a whole [13]. At 
the other end of the spectrum, simulations such as 
mechanical testing may need no more environment than 
a black void. 

3.3 Configuration 
To uphold the aim of generality, the viewer will require 
relatively extensive configuration for each simulation it 
must visualise. However, the benefits of this approach 
are that: a) programming skills are not required to adapt 
the viewer to new simulations; and b) much of the 
configuration can be automated within a visual 
designer.  

Any configuration effort will be focussed on three 
things: translating simulation object types to types 
suitable for visualisation, mapping simulation objects to 
models, and specifying the nature of the 3D 
environment. As discussed in section 4.1 below, 
reference [7] details a system that obtains data from a 
distributed simulation, and translates it into a form that 
is specific to a visualisation tool. 

The requirement for simulation designers to pre-
configure object-to-model mapping could be lifted by 
using automatic model acquisition. Work such as that 
discussed in [12] has investigated the categorisation of 
3D models using detailed meta-data. This work 
expanded upon the Environmental Data Coding 
Specification (EDCS) that formed part of the DMSO’s 
SEDRIS project. Although this work focussed on 
objects that are present in the real world, similar 
standards for other types of 3D models may be 
developed in the future. Given this meta-data, the 
viewer could automatically access a central database of 
uniquely identified models when a new object is 
encountered, and download the associated files. 

3.4 Interface 
The user interface is the most important aspect of the 
viewer, since it is this component that facilitates the 
user’s access to the visualised data. The primary 
purpose of the visualisation tool is to allow the user to 
comprehend and understand the relationships within a 
large dataset. The design for the user interface must 

therefore support the user in this process. Numerous 
techniques exist that assist in providing a useful and 
accessible interface to users. 

3.4.1 Dynamic functionality 
Since interactivity requirements may change depending 
upon the type of simulation visualised, the interface 
functionality may also need to change. For example, the 
ability to track an object’s movement might be useful in 
a large-scale military simulation, but may not be needed 
in a smaller-scale medical model. In such a case, 
removing access to the tracking functionality for users 
of the medical simulation would reduce screen clutter 
and improve useability. 

Various methods for defining user interfaces have been 
devised. One such system is called Extensible User 
Interface Language (XUL) [5]. This technology, based 
upon the Extensible Modelling Language (XML), 
allows developers to define a user interface in a non-
platform-specific manner. Work is currently taking 
place on a runtime environment for XUL applications; 
however this outcome is still some time away. Since 
XUL uses simple formatted text files for interface 
specification, its adoption would allow simulation 
designers to easily redefine existing interfaces or design 
new ones. 

3.4.2 Navigation and depth perception 
Navigation through a 3-dimensional space should come 
easily given that humans exist naturally in such a world; 
however using 2D input devices makes for challenging 
navigation [10]. The common human-computer 
interface (HCI) devices—the mouse and keyboard—are 
not well suited to 3D navigation, since they were 
designed for 2-dimensional interaction. Whilst research 
has been conducted that examines alternative HCI 
technologies, such as gloves and VR headsets, as of yet 
none has come into common, widespread use. 
Furthermore, such hardware is expensive, restricting its 
use to well-funded projects. The viewer must therefore 
use techniques to improve user control given the limited 
available input functionality. 

The output generated on a monitor is often referred to 
as 2.5D [4], since the image only gives the impression 
of 3D space. This means that users cannot use their 
brain’s depth perception abilities—it is like viewing the 
world with one eye closed. Many existing tools include 
support for true 3D via special hardware, such as 
stereoscopic glasses. These allow users to view 
computer-generated 3D spaces with the benefit of true 
depth perception. Provision of the ability to interface 
with these devices is important, from red-and-blue 
stereoscopic glasses, to high-tech headsets. 

4. DESIGN OF SV3D 
To fulfil these requirements, a visualisation system 
dubbed Simulation Viewer 3D (SV3D) has been 
designed. The SV3D system will provide the 

  



4.2.2 Configuring SV3D visualisation functionality that existing 3D viewers 
present, whilst being able to display relevant data from 
any simulation.  

SV3D will use XML files to configure its operation and 
interaction. These can be edited manually, allowing full 
control over the visualisation, but this process is 
potentially time-consuming, so it is planned that SV3D 
will have an inline scene composer. This will facilitate 
rapid design practices, such as combining pre-existing 
elements visually to create a new environment. This 
allows simulation designers to ignore menial tasks that 
can be handled automatically. 

The SV3D viewer is based upon an existing framework 
that allows it to access simulations. The system will 
initially be a stealth viewer—able only to view 
simulations, not manipulate them—but it is designed 
such that it will be easy to integrate interactive features 
when the necessary infrastructure becomes available. 

It is likely that most object-to-model mapping will be 
conducted at design time, with appropriate models 
selected manually by the designer. As mentioned in 
section 3.3 above, however, efforts to design a 
framework for a 3D model acquisition system have 
been made. In SV3D, model acquisition is expected to 
occur at three times: 1) during the design process, 
where FOM data can be used to establish model 
requirements; 2) when a simulation is first viewed on a 
client machine and model files have not been supplied 
by the simulation designer; and, 3) a federation that 
supports some form of FOM agility may allow new 
object types to be merged dynamically. In each case, 
until a suitable model can be obtained, a temporary 
avatar such as a simple box will be displayed. 
Unfortunately, automatic model acquisition is not yet 
viable given the lack of a well-stocked, publicly 
accessible database. SV3D is designed such that this 
functionality will be easy to incorporate at a later date. 

4.1 NOVA 
The Nova Open Visualisation Architecture (NOVA)1 
framework provides generic visualisation data to clients 
[7]. It uses a highly configurable system that is able to 
convert simulation data into a form that is useful for 
specific visualisation systems. 

NOVA accesses distributed simulations using software 
called fedWS2 [14]. FedWS is designed to provide 
read-only access to a private HLA Federation through a 
web service interface. Rather than adding a new viewer 
federate for every client, it becomes highly scalable by 
allowing multiple remote clients to access the federation 
via a single static proxy federate.  

Because fedWS makes its data available by means of a 
web service, a bottleneck may exist where bandwidth is 
limited over an Internet connection. NOVA attempts to 
compensate for this by creating its own object store that 
caches federation data. The cache reduces the amount 
of traffic that must pass between it and the simulation 
by drawing upon the stored data when providing 
updates to clients. 

4.3 Use-case scenario 
As an example, say a simulation designer was working 
with a simulation of race cars driving around a track. In 
this simple scenario, each car has direction and speed 
attributes, and races on a flat, oval shaped track. The 
designer’s first step is to set up fedWS and NOVA so 
that simulation data is transformed into relevant data for 
SV3D. Next, they locate appropriate 3D models to 
represent the cars, and then, through the configuration 
files, map these models to objects or attributes. They 
would then create the track by integrating 3D primitives 
(e.g. cubes or spheres) with custom models using 
SV3D’s inline scene composer. For this example, this 
involves creating the track surface with primitive 
planes, and adding pre-existing tree models and a sky. 
Once this is completed, execution of the simulation 
could begin. SV3D displays the car models on the track 
(accurately thanks to NOVA’s transformation pipe), 
and moves them as their simulated position changes. If 
the designer specifies dead reckoning, SV3D would 
predict the next location of each car depending upon its 
previous actions. As the simulation runs, the viewer 
position can be moved around to get different angles on 
the action. 

The SV3D viewer will use NOVA and fedWS to relay 
simulation data from the distributed simulation, and to 
convert the data into a form that is relevant and 
understandable. 

4.2 Configuration 
SV3D will need configuration by simulation designers 
to work with different simulations. The extent to which 
this must take place depends on the degree of 
outlandishness of the object model. As will be shown, 
various techniques are used to avoid unnecessary steps 
in the definition and design of a visualisation. 

4.2.1 Configuring NOVA 
NOVA allows visualisation tool designers to specify the 
simulation inputs required, and any data transformation 
that must take place for simulation data to become 
understandable to the viewer. The NOVA framework 
uses a transformation pipe system that performs any 
translations of simulation data by means of user-
definable methods. These methods may, for example, 
perform unit conversion, offsetting or scaling of data.  4.4 The SV3D Architecture 

SV3D will be constructed with a modular approach, as 
shown in Figure 1: below, allowing for individual                                                            

1 For more information, see http://hsv.littlebluefrog.com/ 
2 For more information, see http://fedws.littlebluefrog.com/ 
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components to be easy to replace as old technologies 
become outdated or new functionality is required.  

Figure 1: The SV3D architecture. 

4.4.1 Engine 
The Engine is the central organiser. It is responsible for 
processing incoming data, obtaining necessary support 
files such as 3D models or terrain from databases, and 
coordinating data flow amongst the other components. 
The Engine also intercepts data between the Data Store 
and Renderer, and performs any further transformations 
required, such as dead reckoning. 

4.4.2 Data Relay 
The Data Relay module is responsible for obtaining the 
simulation data from a provider, which will in this case 
be the NOVA framework. This module is passive, 
simply exposing an interface and shipping data to the 
Engine module and into the Data Store. 

Separating this component allows for the support of 
different communication methods. For example, one 
version may support an XML-based transfer such as the 
Simple Object Access Protocol (SOAP), another may 
implement a proprietary TCP protocol, and another yet 
may use UDP for high-speed, unreliable transport. 
Furthermore, the ability to replace the Data Relay lends 
the system data source independence. Were it the case 
that NOVA was deemed unsuitable for a particular 
situation, a new Data Relay module could be written 
that interfaced with a different data provider. It is also 
possible that a Data Relay implementation could draw 
its data from multiple sources. If, for instance, by 
changing the User Interface module to include a 2D 
map view, the Data Relay module could also be 
modified to accept data from another NOVA view 
server that supplied specific map data. These 
modification techniques would require programming 

skills, however, and are thus not intended for regular 
use by designers. 

Data Relay

NOVASimulation

Data StoreEngine

Renderer

User
Interface

SV3D

4.4.3 Data Store 
The Data Store's primary function is to keep track of the 
current state of objects, but it also provides a limited 
caching service that supports the dead reckoning 
functions. This involves storing at least the previous 
update’s object state. Objects that do not have dead 
reckoning enabled need only have their current state 
maintained.  

4.4.4 Renderer 
The Renderer is the component that creates the 3D 
visualisation. It must be able to provide a useable and 
visually appealing representation of the supplied data, 
including optimisation for large-scale, high polygon-
count scenes. The Renderer must allow the user to 
dynamically reposition the view cameras. 

The Renderer ideally must provide support for as many 
commonly used 3D model data formats as possible. 
Numerous data formats are standard within the 
simulation community, such as MultiGen’s OpenFlight, 
Terrain Experts Incorporated’s TerraPage, and 
SEDRIS. In order to increase the range of available 3D 
models, other widely used data formats such as 3D 
Studio Max, MD2, Wavefront and LightWave should 
be supported. 

4.4.5 User Interface 
The User Interface provides a graphical control 
mechanism for human interaction with the viewer. At 
start-up, it will provide a graphical interface for 
initiating communications between the SV3D viewer 
and the simulation. Once the viewer is connected, the 
interface will present users with tools that modify and 
interact with the visualisation, allowing them to change 
their viewing position, or obtain information about a 
particular object. 

The interface gives the user access to controls that 
modify the camera position and orientation. It is 
important that these controls be useful despite the 
complications inherent with 3D navigation using 2D 
input devices (as exposed in section 3.4.2 above). To 
automate navigation to some degree, the User Interface 
component will allow the user to constrain camera 
movement in various ways, as is done in other 
visualisation tools. This includes attaching the camera 
to an object and following it, restricting altitude or 
distance from an object, and a first-person view from an 
object. 

4.5 Implementation 
The SV3D software will be developed using existing 
tools and libraries where possible, and preferably with 
open-source or free software. It will use Object 
Oriented development processes to facilitate the 

  



  

modularity of the framework. The system will make use 
of platform-independent coding techniques and libraries 
so that it will work on as many architectures as 
possible. The resulting software will be released under 
an open-source license and be freely available for 
anyone to use and modify. 

5. STATUS & FUTURE WORK 
Development is currently taking place on a prototype 
implementation of the SV3D viewer, following the 
guidelines set out in this paper. Initially, the 
development will focus on subsets of the grander 
design. Later versions will include support for all the 
features specified in the original design.  

Whilst this prototype will be purely stealth, future 
versions of NOVA and fedWS may allow interaction 
between the client viewer and the simulation. This 
would allow for interesting possibilities such as the 
creation of a game using SV3D as the renderer and user 
interface.  

For more information on the current status of SV3D, 
please visit the project website at 
http://hsv.littlebluefrog.com. 

6. CONCLUSION 
There is a lack of generic visualisation tools for 
distributed simulations. Whilst numerous 3D 
visualisation systems exist, they are all restricted to 
viewing a specific domain, predominantly military 
scenarios.  

This paper has described the requirements and 
presented an outline of a generic 3D visualisation tool 
for distributed simulations. It is designed so that any 
simulation that models relevant situations may be 
viewed without reprogramming an existing viewer or 
the simulation itself. 
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