
 

 
COPYRIGHT NOTICE 

 

 
 
 

 

FedUni ResearchOnline 
http://researchonline.federation.edu.au 
 

 
 
 

 

This is the submitted version of the following article: 
 

Kruger, A., Plubtieng, S., Seangwattana, T. (2016) Borwein-Preiss 
variational principle revisited. Journal of Mathematical Analysis and 
Applications, 435, 2, 1183-1193. 

 
Which has been published in final form at: 
http://doi.org/10.1016/j.jmaa.2015.11.009 

 

 
 
 

 

 
 

Copyright © 2015 Elsevier Ltd.  
 
 

  

  
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Federation ResearchOnline

https://core.ac.uk/display/213003556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.federation.edu.au/
http://doi.org/10.1016/j.comnet.2015.04.004


ar
X

iv
:1

50
8.

03
46

0v
1 

 [
m

at
h.

O
C

] 
 1

4 
A

ug
 2

01
5

Borwein–Preiss Variational Principle Revisited
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Abstract

In this article, we refine and slightly strengthen the metric space version of
the Borwein–Preiss variational principle due to Li, Shi, J. Math. Anal. Appl.

246, 308–319 (2000), clarify the assumptions and conclusions of their Theo-
rem 1 as well as Theorem 2.5.2 in Borwein, Zhu, Techniques of Variational

Analysis, Springer (2005) and streamline the proofs. Our main result, The-
orem 3 is formulated in the metric space setting. When reduced to Banach
spaces (Corollary 9), it extends and strengthens the smooth variational prin-
ciple established in Borwein, Preiss, Trans. Amer. Math. Soc. 303, 517-527
(1987) along several directions.

Keywords: Borwein-Preiss variational principle, smooth variational
principle, gauge-type function, perturbation

1. Introduction

The celebrated Ekeland variational principle [1] has been around for more
than four decades. It almost immediately became one of the main tools in
optimization theory and various branches of analysis. The number of publi-
cations containing “Ekeland variational principle” in their title has exceeded
200. Several other variational principles followed: due to Stegall [2], Borwein–
Preiss [3], Deville–Godefroy–Zizler [4] and others.
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Given an “almost minimal” point of a function, a variational principle
guaranties the existence of another point and a suitably perturbed function
for which this point is (strictly) minimal and provides estimates of the (gen-
eralized) distance between the points and also the size of the perturbation.
Typically variational principles assume the underlying space to be complete
metric (quasi-metric) or Banach and the function (sometimes vector- or set-
valued) to possess a kind of semicontinuity.

The principles differ mainly in terms of the class of perturbations they
allow. The perturbation guaranteed by the original Ekeland variational prin-
ciple (valid in general complete metric spaces) is nonsmooth even if the un-
derlying space is a smooth Banach space and the function is everywhere
Fréchet differentiable. In contrast, the Borwein–Preiss variational principle

(originally formulated in the Banach space setting) works with a special class
of perturbations determined by the norm; when the space is smooth (i.e., the
norm is Fréchet differentiable away from the origin), the perturbations are
smooth too. Because of that, the Borwein–Preiss variational principle is re-
ferred to in [3] as the smooth variational principle. It has found numerous
applications and paved the way for a number of other smooth principles
including the one due to Deville–Godefroy–Zizler [4].

The statement of the next theorem mostly follows that of [5, Theo-
rem 2.5.3].

Theorem 1 (Borwein–Preiss variational principle). Let (X, ‖·‖) be a Banach

space and function f : X → R ∪ {+∞} be lower semicontinuous. Suppose

that ǫ > 0, λ > 0 and p ≥ 1. If x0 ∈ X satisfies

f(x0) < inf
X

f + ǫ, (1)

then there exist a point x̄ ∈ X and sequences {xi}
∞
i=1 ⊂ X and {δi}

∞
i=0 ⊂

R+ \ {0} such that xi → x̄ as i → ∞,
∑∞

i=0 δi = 1, and

(i) ‖x̄− xi‖ ≤ λ (i = 0, 1, . . .);

(ii) f(x̄) +
ǫ

λp

∞
∑

i=0

δi‖x̄− xi‖
p ≤ f(x0);

(iii) f(x)+
ǫ

λp

∞
∑

i=0

δi‖x−xi‖
p > f(x̄)+

ǫ

λp

∞
∑

i=0

δi‖x̄−xi‖
p for all x ∈ X \{x̄}.

When X is a smooth space and p > 1, the perturbation functions involved
in (ii) and (iii) of the above theorem are smooth.
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Among the known extensions of the Borwein–Preiss variational principle,
we mention the work by Li and Shi [6, Theorem 1], where the principle was
extended to metric spaces (of course at the expense of losing the smoothness)
by replacing ‖·‖p in (ii) and (iii) by a more general “gauge-type” function ρ :
X×X → R. They also strengthened Theorem 1 by showing the existence of x̄
and {xi}

∞
i=1 validating the appropriately adjusted conclusions of the theorem

for any sequence {δi}
∞
i=0 ⊂ R+ with δ0 > 0. This last advancement allowed

the authors to cover the Ekeland variational principle which corresponds to
setting δi = 0 for i = 1, 2, . . . The result by Li and Shi was later adapted in
Theorem 2.5.2 in the book by Borwein and Zhu [5].

Another important advancement was made by Loewen and Wang [7, The-
orem 2.2] who constructed in the Banach space setting a special class of
perturbations subsuming those used in Theorem 1 and established strong
minimality in the analogue of the condition (iii) above; cf. [7, Definition 2.1].
Bednarczuk and Zagrodny [8] extended recently the Borwein–Preiss varia-
tional principle to vector-valued functions.

In this article which follows the ideas of [3, 6, 5], we refine and slightly
strengthen the metric space version of the Borwein–Preiss variational princi-
ple due to Li and Shi [6], clarify the assumptions and conclusions of [6, The-
orem 1] and [5, Theorem 2.5.2] and streamline the proofs. When reduced
to Banach spaces (Corollary 9), our main result extends and strengthens
Theorem 1 along several directions.

1) The assumption p ≥ 1 for the power index in (ii) and (iii) is relaxed
to just p > 0. Of course, if p < 1, then the perturbation function involved in
(ii) and (iii) is not convex.

2) The strict inequality (1) is replaced by the corresponding nonstrict
one:

f(x0) ≤ inf
X

f + ǫ. (2)

Note that δ0 must satisfy

δ0 ≥ (f(x0)− inf
X

f)/ǫ (3)

(see Corollary 9). Hence, when f(x0) = infX f+ǫ, one has δ0 ≥ 1 and cannot
ensure the equality

∑∞
i=0 δi = 1.

3) Instead of assuming the existence of x̄, {xi}
∞
i=1 and {δi}

∞
i=0 with

∑∞
i=0 δi =

1 as in Theorem 1, we show that x̄ and {xi}
∞
i=1 exist for any sequence

{δi}
∞
i=0 ⊂ R+ (the fact first observed in [6]) with δ0 satisfying (3). The
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latter restriction still leaves one enough freedom to choose positive numbers
δi (i = 1, 2, . . .) such that

∑∞
i=0 δi < ∞, thus ensuring the convergence of the

series involved in the left-hand side of condition (iii). In the case of the strict
inequality (1), one can obviously satisfy that restriction with some δ0 < 1
and choose positive numbers δi (i = 1, 2, . . .) such that

∑∞
i=0 δi = 1.

4) Similarly to [6], conditions (ii) and (iii) in Theorem 1 are complemented
by a pair of conditions which correspond to the case when only finitely many
elements of the sequence δi (i = 0, 1, . . .) are nonzero. These conditions
strengthen the corresponding conditions in [6].

5) The case when the series
∑∞

i=0 δi is divergent is not excluded. We show
that the series involved in condition (ii) (and the right-hand side of condition
(iii)) is still convergent. However, the series in the left-hand side of condition
(iii) can be divergent for some x ∈ X .

6) The inequalities in (i) can be replaced by ‖x̄−x0‖ ≤ λ and ‖x̄−xi‖ ≤ ǫi
(i = 1, 2, . . .), where {ǫi}

∞
i=1 is an arbitrary sequence of positive numbers.

The rest of the article is subdivided into three sections. In the next
one, we present and prove our main result extending the Borwein–Preiss
variational principle in metric spaces. Section 3 contains some discussions of
the main result and provides several corollaries. In the final Section 4, we
identify developing a “smooth” regularity theory as a possible application of
the extended Borwein–Preiss variational principle.

Our basic notation is standard, cf. [9, 5, 10]. X stands for either a metric
or a Banach space. A metric or a norm in X are denoted by d(·, ·) or ‖ · ‖,
respectively. N denotes the set of all positive integers.

2. Extended Borwein–Preiss Variational Principle

In this section, we extend the metric space version of the Borwein–Preiss
variational principle due to Li and Shi [6] (cf. [5]) which subsumes also the
Ekeland variational principle.

The theorem below involves sequences indexed by i ∈ N. The set of all
indices is subdivided into two groups: with i < N and i ≥ N where N is an
‘integer’ which is allowed to be infinite: N ∈ N ∪ {+∞}. If N = +∞, then
the first subset of indices is infinite, while the second one is empty. This trick
allows us to treat the cases of a finite and infinite set of indices within the
same framework. Another convention in this section concerns summation
over an empty set of indices:

∑−1
k=0 ak = 0.
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Following [6, Theorem 1] and [5, Definition 2.5.1], we are going to employ
in the rest of the article the following concept of gauge-type function.

Definition 2. Let (X, d) be a metric space. We say that a continuous func-
tion ρ : X ×X → [0,∞] is a gauge-type function if

(i) ρ(x, x) = 0 for all x ∈ X,

(ii) for any ǫ > 0 there exists δ > 0 such that, for all y, z ∈ X , inequality
ρ(y, z) ≤ δ implies d(y, z) < ǫ.

Here comes the main result.

Theorem 3 (Extended Borwein–Preiss variational principle). Let X be a

complete metric space and a function f : X → R ∪ {+∞} be lower semicon-

tinuous. Suppose that ρ is a gauge-type function, ǫ > 0, {ǫi}
∞
i=1 and {δi}

∞
i=0

are sequences such that

• ǫi > 0 for all i ∈ N and ǫi ↓ 0 as i → ∞;

• δi > 0 for all i < N and δi = 0 for all i ≥ N , where N ∈ N ∪ {+∞}.

If x0 ∈ X satisfies (2), then there exist a point x̄ ∈ X and a sequence

{xi}
∞
i=1 ⊂ X such that xi → x̄ as i → ∞ and

(i) ρ(x̄, x0) ≤ ǫ/δ0;

(ii) ρ(x̄, xi) ≤ ǫi (i = 1, 2, . . .);

(iii) if N = +∞, then the series
∑∞

i=0 δiρ(x̄, xi) is convergent and

f(x̄) +

∞
∑

i=0

δiρ(x̄, xi) ≤ f(x0); (4)

otherwise the series
∑∞

i=N−1 ρ(xi+1, xi) is convergent and

f(x̄) +
N−2
∑

i=0

δiρ(x̄, xi)

+ δN−1 sup
n≥N−1

(

n−1
∑

i=N−1

ρ(xi+1, xi) + ρ(x̄, xn)

)

≤ f(x0); (5)
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(iv) if N = +∞, then

f(x)+

∞
∑

i=0

δiρ(x, xi) > f(x̄)+

∞
∑

i=0

δiρ(x̄, xi) for all x ∈ X \{x̄}; (6)

otherwise, for any x ∈ X \ {x̄}, there exists an m0 ≥ N such that, for

all m ≥ m0,

f(x) +
N−2
∑

i=0

δiρ(x, xi) + δN−1ρ(x, xm) > f(x̄)

+

N−2
∑

i=0

δiρ(x̄, xi) + δN−1 sup
n≥m

(

n−1
∑

i=m

ρ(xi+1, xi) + ρ(x̄, xn)

)

. (7)

Proof. (i) and (ii) We define sequences {xi} and {Si} inductively. Set

S0 := {x ∈ X | f(x) + δ0ρ(x, x0) ≤ f(x0)}. (8)

Obviously, x0 ∈ S0. Since the function x → f(x) + δ0ρ(x, x0) is lower semi-
continuous, subset S0 is closed. For any x ∈ S0, we have

ρ(x, x0) ≤
f(x0)− f(x)

δ0
≤

ǫ

δ0
. (9)

For i = 0, 1, . . ., denote ji := min{i, N − 1}, i.e., ji is the largest integer
j ≤ i such that δj > 0. Let i ∈ N and suppose x0, . . . , xi−1 and S0, . . . , Si−1

have been defined. We choose xi ∈ Si−1 such that

f(xi) +

ji−1
∑

k=0

δkρ(xi, xk) ≤ inf
x∈Si−1

(

f(x) +

ji−1
∑

k=0

δkρ(x, xk)

)

+ δjiǫi (10)

and define

Si :=

{

x ∈ Si−1 | f(x) + δjiρ(x, xi)

+

ji−1
∑

k=0

δk(ρ(x, xk)− ρ(xi, xk)) ≤ f(xi)

}

. (11)
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Obviously, xi ∈ Si. Since the function x → f(x)+δjiρ(x, xi)+
∑ji−1

k=0 δkρ(x, xk)
is lower semicontinuous, subset Si is closed. For any x ∈ Si, we have

f(x)− f(xi) +

ji−1
∑

k=0

δk(ρ(x, xk)− ρ(xi, xk)) + δjiρ(x, xi) ≤ 0,

and consequently, making use of (10),

ρ(x, xi) ≤
1

δji

(

f(xi) +

ji−1
∑

k=0

δkρ(xi, xk)

−
(

f(x) +

ji−1
∑

k=0

δkρ(x, xk)
)

)

≤ ǫi. (12)

We can see that, for all i ∈ N, subsets Si are nonempty and closed, Si ⊂ Si−1,
and supx∈Si

ρ(x, xi) → 0 as i → ∞. Since ρ is a gauge-type function, we
also have supx∈Si

d(x, xi) → 0 and consequently, diam(Si) → 0. Since X is
complete, ∩∞

i=0Si contains exactly one point; let it be x̄. Hence, ρ(x̄, xi) → 0
and xi → x̄ as i → ∞. Thanks to (9) and (12), x̄ satisfies (i) and (ii).

Before proceeding to the proof of claim (iii), we prepare several building
blocks which are going to be used when proving claims (iii) and (iv).

Let integers m, n and i satisfy 0 ≤ m ≤ i ≤ n. Since xi+1 ∈ Si and
x̄ ∈ Sn, it follows from (8) (when i = 0) and (11) that

f(xi+1) +

ji−1
∑

k=0

δk(ρ(xi+1, xk)− ρ(xi, xk)) + δjiρ(xi+1, xi) ≤ f(xi), (13)

f(x̄) +

jn−1
∑

k=0

δk(ρ(x̄, xk)− ρ(xn, xk)) + δjnρ(x̄, xn) ≤ f(xn). (14)

We are going to add together inequalities (13) from i = m to i = n− 1 and
inequality (14). Depending on the value of N , three cases are possible.

If N > n, then ji = i and jn = n. Adding inequalities (13) from i = m
to i = n− 1, we obtain

f(xn) +
n−1
∑

k=0

δkρ(xn, xk)−
m−1
∑

k=0

δkρ(xm, xk) ≤ f(xm).

7



Adding the last inequality and inequality (14), we arrive at

f(x̄) +

n
∑

k=0

δkρ(x̄, xk)−

m−1
∑

k=0

δkρ(xm, xk) ≤ f(xm). (15)

If N ≤ m, then ji = N − 1 and jn = N − 1. Adding inequalities (13)
from i = m to i = n− 1, we obtain

f(xn) +

N−2
∑

k=0

δk(ρ(xn, xk)− ρ(xm, xk)) + δN−1

n−1
∑

k=m

ρ(xk+1, xk) ≤ f(xm).

Adding the last inequality and inequality (14), we arrive at

f(x̄) +

N−2
∑

k=0

δk(ρ(x̄, xk)− ρ(xm, xk))

+ δN−1

(

n−1
∑

k=m

ρ(xk+1, xk) + ρ(x̄, xn)

)

≤ f(xm). (16)

If m < N ≤ n, we add inequalities (13) separately from i = m to i = N−1
and from i = N to i = n− 1 and obtain, respectively,

f(xN) +

N−1
∑

k=0

δkρ(xN , xk)−

m−1
∑

k=0

δkρ(xm, xk) ≤ f(xm),

f(xn) +
N−2
∑

k=0

δk(ρ(xn, xk)− ρ(xN , xk)) + δN−1

n−1
∑

k=N

ρ(xk+1, xk) ≤ f(xN).

Adding the last two inequalities and inequality (14) together, we arrive at

f(x̄) +
N−2
∑

k=0

δkρ(x̄, xk)−
m−1
∑

k=0

δkρ(xm, xk)

+ δN−1

(

n−1
∑

k=N−1

ρ(xk+1, xk) + ρ(x̄, xn)

)

≤ f(xm). (17)

(iii) When N = +∞, we set m = 0 in the inequality (15):

f(x̄) +
n
∑

k=0

δkρ(x̄, xk) ≤ f(x0).
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This inequality must hold for all n ∈ N. Hence, the series
∑∞

k=0 δkρ(x̄, xk) is
convergent and condition (4) holds true.

When N < +∞, we set m = 0 and take n = N − 1 in the inequality (15)
and any n ≥ N in the inequality (17):

f(x̄) +
N−1
∑

k=0

δkρ(x̄, xk) ≤ f(x0),

f(x̄) +
N−2
∑

k=0

δkρ(x̄, xk) + δN−1

(

n−1
∑

i=N−1

ρ(xi+1, xi) + ρ(x̄, xn)

)

≤ f(x0).

Since ρ(x̄, xn) → 0 as n → ∞, it follows from the last inequality that the
series

∑∞
i=N−1 ρ(xi+1, xi) is convergent. Combining the two inequalities pro-

duces estimate (5).
(iv) For any x 6= x̄, there exists an m0 ∈ N such that x /∈ Sm for all

m ≥ m0. By (11), this means that

f(x) +

jm−1
∑

k=0

δk(ρ(x, xk)− ρ(xm, xk)) + δjmρ(x, xm) > f(xm). (18)

Depending on the value of N , we consider two cases.
If N = +∞, then jm = m. Since the series

∑∞
k=0 δkρ(x̄, xk) is convergent,

we can pass in (15) to the limit as n → ∞ to obtain

f(x̄) +
∞
∑

k=0

δkρ(x̄, xk) ≤ f(xm) +
m−1
∑

k=0

δkρ(xm, xk).

Subtracting the last inequality from (18), we arrive at

f(x) +

m
∑

k=0

δkρ(x, xk) > f(x̄) +

∞
∑

k=0

δkρ(x̄, xk).

Condition (6) follows immediately.
If N < ∞, we can take m0 ≥ N . Then jm = N − 1 and it follows from

(16) that

f(x̄) +

N−2
∑

k=0

δk(ρ(x̄, xk)− ρ(xm, xk))

+ δN−1 sup
n≥m

(

n−1
∑

k=m

ρ(xk+1, xk) + ρ(x̄, xn)

)

≤ f(xm).

9



Subtracting the last inequality from (18), we arrive at (7).

3. Comments and Corollaries

In this section, we discuss the main result proved in Section 2 and formu-
late a series of remarks and several corollaries.

Remark 4. 1. The series
∑∞

i=0 δiρ(x, xi) in (6) does not have to be convergent
for all x ∈ X \ {x̄}.

2. If N < ∞, in the proof of part (iv) of Theorem 3 one can also consider
the case m0 < N . Then, for m0 ≤ m < N , one has jm = m and it follows
from (17) that

f(x̄) +

N−2
∑

k=0

δkρ(x̄, xk)−

m−1
∑

k=0

δkρ(xm, xk)

+ δN−1 sup
n≥N

(

n−1
∑

k=N−1

ρ(xk+1, xk) + ρ(x̄, xn)

)

≤ f(xm).

Subtracting the last inequality from (18), one arrives at

f(x) +
m
∑

i=0

δiρ(x, xi) > f(x̄)

+

N−2
∑

i=0

δiρ(x̄, xi) + δN−1 sup
n≥N

(

n−1
∑

k=N−1

ρ(xk+1, xk) + ρ(x̄, xn)

)

. (19)

This estimate compliments (7).
3. Instead of ǫ-minimality in the sense of (2), it is sufficient to assume in

Theorem 3 a weaker form of ǫ-minimality: f(x) ≥ f(x0) − ǫ for all x ∈ X
such that f(x) + δ0ρ(x, x0) > f(x0).

4. Looking at the statement of Theorem 3, it is easy to notice that consid-
ering a gauge-type function ρ and a sequence of positive numbers {δi}

∞
i=0 can

be replaced by that of a sequence of gauge-type functions {ρi}
∞
i=0 such that,

for i = 1, 2, . . ., function ρi is a multiple of ρ0. The latter assumption can be
relaxed or dropped at the expense of weakening or dropping the estimates in
part (ii) of the concluding part of Theorem 3.

Moreover, one can modify the proof employing in it a sequence of func-
tions {ρi}

∞
i=0 which do not have to possess the second property in Definition 2,

10



as long as they ensure that the resulting sets Si (cf. (11)) are closed and form
a decreasing sequence with their diameters going to zero. This way one can
establish additional properties of the sequence {xi}

∞
i=1 and its limiting point

x̄. An interesting example of such a sequence in a Banach space setting
was considered by Loewen and Wang [7] who proved a strong variant of the
Borwein–Preiss variational principle (with x̄ being a strong minimizer of the
corresponding perturbed function; cf. [7, Definition 2.1]).

5. Setting ǫi := ǫ/(2iδ0) (i = 1, 2, . . .), one can make the estimates in (ii)
look as in [6, Theorem 1] and [5, Theorem 2.5.2].

6. Given a positive number λ, we can rewrite the conclusion of Theorem 3
in a more conventional form with δ0 = 1, ρ(x̄, x0) ≤ λ instead of (i) and
conditions (4) and (6) replaced, respectively, with the following ones:

f(x̄) +
ǫ

λ

∞
∑

i=0

δiρ(x̄, xi) ≤ f(x0), (4′)

f(x) +
ǫ

λ

∞
∑

i=0

δiρ(x, xi) > f(x̄) +
ǫ

λ

∞
∑

i=0

δiρ(x̄, xi) for all x ∈ X \ {x̄} (6′)

and similar amendments in conditions (5), (7) and (19).

The next corollary gives some direct consequences of conditions (5) and
(7) in Theorem 3.

Corollary 5. Suppose all the assumptions of Theorem 3 are satisfied, and

N < ∞. Then

f(x̄) +
N−1
∑

i=0

δiρ(x̄, xi) ≤ f(x0), (20)

f(x̄) +
N−2
∑

i=0

δiρ(x̄, xi) + δN−1

∞
∑

i=N−1

ρ(xi+1, xi) ≤ f(x0), (21)

11



and, for any x ∈ X \ {x̄}, there exists an m0 ≥ N such that, for all m ≥ m0,

f(x) +
N−2
∑

i=0

δiρ(x, xi) + δN−1ρ(x, xm)

> f(x̄) +

N−2
∑

i=0

δiρ(x̄, xi) + δN−1ρ(x̄, xm), (22)

f(x) +

N−2
∑

i=0

δiρ(x, xi) + δN−1ρ(x, xm)

> f(x̄) +
N−2
∑

i=0

δiρ(x̄, xi) + δN−1

∞
∑

i=m

ρ(xi+1, xi), (23)

and consequently,

f(x) +

N−2
∑

i=0

δiρ(x, xi) + δN−1ρ(x, x̄)

≥ f(x̄) +
N−2
∑

i=0

δiρ(x̄, xi) for all x ∈ X, (24)

where x̄ and {xi}
∞
i=1 are a point and a sequence guaranteed by Theorem 3.

Proof. Conditions (20) and (21) correspond, respectively, to setting n = N−1
and letting n → ∞ under the sup in condition (5). Similarly, conditions (22)
and (23) correspond, respectively, to setting n = m and letting n → ∞ under
the sup in condition (7). Condition (24) is obviously true when x = x̄. When
x 6= x̄, it results from passing to the limit as m → ∞ in any of the conditions
(22) and (23) thanks to the continuity of ρ.

Remark 6. 1. Conditions (20) and (21) are in general independent. Con-
ditions (22) and (23) are independent too. Conditions (20) and (22) were
formulated in [6]. Thanks to Corollary 5, Theorem 3 strengthens [6, Theo-
rem 1].

2. In accordance with Theorem 3 and Corollary 5, x̄ is a point of minimum
of the sum f + g, where the perturbation function g is defined for x ∈ X
either as g(x) :=

∑∞
i=0 δiρ(x, xi) if N = +∞ or as g(x) :=

∑N−2
i=0 δiρ(x, xi) +

δN−1ρ(x, x̄) otherwise. When N = +∞, the minimum is strict. Thanks
to the next proposition, if function ρ possesses the triangle inequality, the
minimum is strict also when N < +∞.
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Recall that a function ρ : X ×X → R possesses the triangle inequality if
ρ(x1, x3) ≤ ρ(x1, x2) + ρ(x2, x3) for all x1, x2, x3 ∈ X .

Proposition 7. Along with conditions (20)–(22), consider the following one:

f(x) +
N−2
∑

i=0

δiρ(x, xi) + δN−1ρ(x, x̄) > f(x̄) +
N−2
∑

i=0

δiρ(x̄, xi). (25)

If function ρ possesses the triangle inequality, then (21) ⇒ (20) and (23) ⇒
(22) ⇒ (25).

Proof. For any m,n ∈ N with m < n, we have

ρ(x̄, xm) ≤ ρ(x̄, xn) +
n−1
∑

i=m

ρ(xi+1, xi),

and consequently, passing to the limit as n → ∞,

ρ(x̄, xm) ≤

∞
∑

i=m

ρ(xi+1, xi).

Hence, (21)⇒ (20) and (23) ⇒ (22). Condition (25) follows from (22) thanks
to the inequality ρ(x, xm) ≤ ρ(x, x̄) + ρ(x̄, xm).

Corollary 8. Suppose all the assumptions of Theorem 3 are satisfied, N <
+∞, and function ρ possesses the triangle inequality. Then condition (25)
holds true for all x ∈ X \ {x̄}.

Proof. The statement is a consequence of Corollary 5 thanks to Proposition 7.

The next two statements are consequences of Theorem 3 when N = +∞
and N = 1, respectively, and ρ is of a special form. The first one corresponds
to the case N = +∞, X a Banach space and ρ(x1, x2) := ‖x1 − x2‖

p where
p > 0.

Corollary 9. Let (X, ‖ · ‖) be a Banach space and function f : X → R ∪
{+∞} be lower semicontinuous. Suppose that λ, p, ǫ, ǫi (i = 1, 2, . . .), δi
(i = 0, 1, . . .) are positive numbers and ǫi ↓ 0 as i → ∞. If x0 ∈ X and δ0
satisfy conditions (2) and (3), then there exist a point x̄ ∈ X and a sequence

{xi}
∞
i=1 ⊂ X such that xi → x̄ as i → ∞ and
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(i) ‖x̄− x0‖ ≤ λ;
(ii) ‖x̄− xi‖ ≤ ǫi (i = 1, 2, . . .);

(iii) f(x̄) +
ǫ

λp

∞
∑

i=0

δi‖x̄− xi‖
p ≤ f(x0);

(iv) f(x)+
ǫ

λp

∞
∑

i=0

δi‖x−xi‖
p > f(x̄)+

ǫ

λp

∞
∑

i=0

δi‖x̄−xi‖
p for all x ∈ X \{x̄}.

Proof. Set ρ(x1, x2) := ‖x1 − x2‖
p, x1, x2 ∈ X . It is easy to check that ρ is

a gauge-type function. Set ǫ′ := ǫδ0, ǫ
′
i := ǫpi (i = 1, 2, . . .), δ′i := (ǫ/λp)δi

(i = 0, 1, . . .). Then f(x0) ≤ infX f + ǫ′, ǫ′i ↓ 0 as i → ∞ and ǫ′/δ′0 = λp. The
conclusion follows from Theorem 3 with ǫ′, ǫ′i and δ′i in place of ǫ, ǫi and δi,
respectively.

Condition (iv) means that x̄ is a point of strict minimum of the function
x 7→ f(x) + (ǫ/λp)g(x), where g(x) :=

∑∞
i=0 δi‖x − xi‖

p. If X is Fréchet
smooth, p > 1, and

∑∞
i=0 δi < ∞, then g is defined on the whole of X and

is everywhere Fréchet differentiable, i.e., we have an example of a smooth
variational principle of Borwein–Preiss type.

Remark 10. 1. Apart from (3), no other restrictions are imposed on the
positive numbers δi, i = 0, 1, . . .

2. Condition (2) does not exclude the equality case: f(x0) = infX f + ǫ.
In the latter case, condition (3) is equivalent to δ0 ≥ 1. This still allows one
to chose positive numbers δi, i = 1, 2, . . ., such that

∑∞
i=0 δi < ∞ if necessary.

When the inequality (2) is strict, then one can choose δ0 < 1 and positive
numbers δi, i = 1, 2, . . ., such that

∑∞
i=0 δi = 1.

The next statement is the Ekeland variational principle. It corresponds
to N = 1 and ρ being a distance function.

Corollary 11. Let (X, d) be a complete metric space and function f : X →
R ∪ {+∞} be lower semicontinuous. Suppose λ > 0 and ǫ > 0. If x0 ∈ X
satisfies (2), then there exists a point x̄ ∈ X such that

(i) d(x̄, x0) ≤ λ;

(ii) f(x̄) +
ǫ

λ
d(x̄, x0) ≤ f(x0);

(iii) f(x) +
ǫ

λ
d(x, x̄) > f(x̄) for all x ∈ X \ {x̄}.

Proof. Set ρ := d, N = 1, δ0 := ǫ/λ, ǫi := ǫ/2i and δi := 0 (i = 1, 2, . . .).
Then ǫi ↓ 0 as i → ∞ and ǫ/δ0 = λ. The conclusion follows from Theorem 3
and Corollary 8.
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4. “Smooth” Regularity Theory

One can try to use the estimates in Theorem 3 for developing a “smooth”
regularity theory similar to the conventional theory based on the application
of the Ekeland variational principle (cf. [11, 12, 10]) and usually using certain
slopes to formulate primal space criteria (cf. [11, 12, 13, 14]). The first step
towards the development of such a theory would be defining appropriate
“smooth” slopes.

To illustrate the idea, we consider briefly the case N = +∞. Let a
function f : X → R∪ {+∞}, a gauge-type function ρ : X ×X → [0,∞] and
a sequence {δi}

∞
i=0 ⊂ R+ \ {0} with δ0 = 1 be given.

For a sequence {xi}
∞
i=0 ⊂ X , define

g{xi}(u) :=

∞
∑

i=0

δiρ(u, xi), u ∈ X.

Next, for an x ∈ X with f(x) < ∞ and a sequence {xi}
∞
i=0 ⊂ X convergent

to x with g{xi}(x) < ∞, the slope of f at (x, {xi}) can be defined as follows:

|∇f |(x, {xi}) := lim sup
u→x

g{xi}(u)6=g{xi}(x)

[f(x)− f(u)]+
g{xi}(u)− g{xi}(x)

. (26)

Similarly to the conventional slope, this quantity characterizes the maximal
‘rate of descent’ of f at x (with respect to g{xi}).

Theorem 3 implies the existence of a point x̄ ∈ X near the given point
x0 and a sequence {xi}

∞
i=1 ⊂ X convergent to x̄ such that |∇f |(x̄, {xi}) is

small. Moreover, it provides quantitative estimates for |∇f |(x̄, {xi}) and the
‘distance’ (in terms of ρ) from x̄ to x0. More specifically, in the framework
of Remark 4.6, one has ρ(x̄, x0) ≤ λ and |∇f |(x̄, {xi}) ≤ ǫ/λ.

Furthermore, since (6) (and (6′)) is a global condition, it could make sense
to incorporate along with the slope (26) a nonlocal analogue of (26) as well
as their strict (outer) extensions along the lines of [13, 14]. In the Banach
space setting and with ρ appropriately defined (cf. Corollary 9), one can
try to define a dual space counterpart of (26) and formulate subdifferential
consequences of Theorem 3 exploiting the original idea of Borwein and Preiss
[3].

This type of conditions should be useful when developing “smooth” cri-
teria of error bounds and metric (Hölder) (sub-)regularity along the lines of
[13, 14].
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The case N < ∞ is also of interest and can be handled in a similar way.
The appropriate definitions of slopes can be derived from condition (7) (or
its ‘m-free’ consequence (24)).

This topic goes beyond the scope of the current article and is left for
future research. Extending Theorem 3 and its corollaries to vector-valued
functions seems to be another interesting direction of future research.
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