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AN INDUCTION THEOREM AND NONLINEAR REGULARITY

MODELS∗

PHAN Q. KHANH† , ALEXANDER Y. KRUGER‡ , AND NGUYEN H. THAO§

Abstract. A general nonlinear regularity model for a set-valued mapping F : X×R+ ⇒ Y , where
X and Y are metric spaces, is considered using special iteration procedures, going back to Banach,
Schauder, Lusternik and Graves. Namely, we revise the induction theorem from Khanh, J. Math.

Anal. Appl., 118 (1986) and employ it to obtain basic estimates for studying regularity/openness
properties. We also show that it can serve as a substitution of the Ekeland variational principle
when establishing other regularity criteria. Then, we apply the induction theorem and the mentioned
estimates to establish criteria for both global and local versions of regularity/openness properties for
our model and demonstrate how the definitions and criteria translate into the conventional setting
of a set-valued mapping F : X ⇒ Y .
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1. Introduction. Regularity properties of set-valued mappings lie at the core
of variational analysis because of their importance for establishing stability of solu-
tions to generalized equations (initiated by Robinson [40, 41] in the 1970s), optimiza-
tion and variational problems, constraint qualifications, qualification conditions in
coderivative/subdifferential calculus and convergence rates of numerical algorithms;
cf. books and surveys [4, 5, 7, 15, 22, 23, 25, 30, 35, 38, 43] and the references therein.

Among the variety of known regularity properties, the most recognized and widely
used one is that of metric regularity; cf. [5, 6, 7, 15, 22, 30, 35, 37, 38, 43].

Recall that a set-valued mapping F : X ⇒ Y between metric spaces is (locally)
metrically regular at a point (x̄, ȳ) in its graph gphF := {(x, y) ∈ X × Y | y ∈ F (x)}
with modulus κ > 0 if

(1.1) d(x, F−1(y)) ≤ κd(y, F (x)) for all x near x̄, y near ȳ.

(Here F−1 : Y ⇒ X is the inverse mapping defined by F−1(y) = {x ∈ X | y ∈ F (x)}.)
The roots of this notion can be traced back to the classical Banach-Schauder open
mapping theorem and its subsequent generalization to nonlinear mappings known as
Lyusternik-Graves theorem, see the survey [22] by Ioffe.

Inequality (1.1) provides a linear error bound estimate of metric type for the
distance from x to the solution set of the generalized equation F (u) ∋ y corresponding
to the perturbed right-hand side y in a neighbourhood of the solution x̄ (corresponding
to the right-hand side ȳ). Metric regularity is known to be equivalent to two other
fundamental properties: the openness (or covering) at a linear rate and the Aubin
property (a kind of Lipschitz-like behaviour) of the inverse mapping; cf. [3, 8, 11, 13,
15, 22, 30, 31, 35, 37, 38, 43].

∗The research was supported by the Australian Research Council, project DP110102011 and the
National Foundation for Science and Technology Development (NAFOSTED) of Vietnam.

†Department of Mathematics, International University, Vietnam National University Hochiminh
City and Centre for Informatics and Applied Optimization, Faculty of Science and Technology,
Federation University Australia (pqkhanhus@gmail.com).

‡Centre for Informatics and Applied Optimization, Faculty of Science and Technology, Federation
University Australia (a.kruger@federation.edu.au).

§Centre for Informatics and Applied Optimization, Faculty of Science and Technology, Federation
University Australia (hieuthaonguyen@students.federation.edu.au).

1

http://arxiv.org/abs/1410.3032v1
https://www.researchgate.net/publication/225982823_Stability_and_regular_points_of_inequality_systems?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/222881847_Verifiable_necessary_and_sufficient_conditions_for_openness_and_regularity_of_set-valued_and_single-valued_maps?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/242097533_Lyusternik's_Theorem_and_the_Theory_of_Extrema?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/2809715_The_Radius_of_Metric_Regularity?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/243651560_Regularity_and_Stability_for_Convex_Multivalued_Functions?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/238877917_Stability_Theory_for_Systems_of_Inequalities_Part_II_Differentiable_Nonlinear_Systems?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/257479952_Nonlinear_regularity_models?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/231121635_Metric_regularity_and_subdifferential_calculus?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/231121635_Metric_regularity_and_subdifferential_calculus?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/231121635_Metric_regularity_and_subdifferential_calculus?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/231121635_Metric_regularity_and_subdifferential_calculus?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/265709015_A_unified_theory_for_metric_regularity_of_multifunctions?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/265709015_A_unified_theory_for_metric_regularity_of_multifunctions?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/226859148_On_regularity_concepts_in_variational_analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/265826167_Implicit_functions_and_solution_mappings_A_view_from_variational_analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/265826167_Implicit_functions_and_solution_mappings_A_view_from_variational_analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/265826167_Implicit_functions_and_solution_mappings_A_view_from_variational_analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/259461692_Variational_Analysis_and_generalized_differentiation_Vol_I_Basic_Theory_Vol_II_Applications?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/259461692_Variational_Analysis_and_generalized_differentiation_Vol_I_Basic_Theory_Vol_II_Applications?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/259461692_Variational_Analysis_and_generalized_differentiation_Vol_I_Basic_Theory_Vol_II_Applications?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/273297423_A_covering_theorem_for_set-valued_mappings?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/259493458_Nonsmooth_Equations_in_Optimization_-_Regularity_Calculus_Methods_and_Applications?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/259493458_Nonsmooth_Equations_in_Optimization_-_Regularity_Calculus_Methods_and_Applications?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/259493458_Nonsmooth_Equations_in_Optimization_-_Regularity_Calculus_Methods_and_Applications?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/266553275_Techniques_of_Variational_Analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/266553275_Techniques_of_Variational_Analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/259149094_Applied_Nonlinear_Analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==


2 PHAN Q. KHANH, ALEXANDER Y. KRUGER, NGUYEN H. THAO

Several characterizations of the metric regularity property have been established
in terms of various primal and dual space derivative-like objects: slopes, graphical
derivatives (Aubin criterion), subdifferentials and coderivatives ; cf. [4, 5, 15, 22, 30,
31, 34, 35, 36, 38, 43].

The development of the regularity theory in recent years has mostly consisted in
the relaxing or extension of the metric regularity property (1.1) (and the other two
equivalent properties) and its characterizations along the following three directions
(and their appropriate combinations).

1) Relaxing of property (1.1) by fixing one of the variables: either y = ȳ or
x = x̄ in it. In the first case, one arrives at the very important for applications
property of F known as metric subregularity (and respectively calmness of F−1);
cf. [1, 9, 14, 15, 19, 20, 22, 26, 33, 44], while fixing the other variable (and usually also
replacing d(y, F (x̄)) with d(y, ȳ)) leads to another type of relaxed regularity known
as metric semiregularity [32] (also referred to as metric hemiregularity in [2]).

2) Considering nonlocal versions of (1.1), when x and y are restricted to certain
subsets U ⊂ X and V ⊂ Y , not necessarily neighbourhoods of x̄ and ȳ, respectively,
or even a subset W ⊂ X × Y ; cf. [22, 23, 24, 25]. A nonlocal regularity (covering)
setting was already studied in [11].

3) Considering nonlinear versions of (1.1), when, instead of the constant modulus
κ, a certain functional modulus µ : R+ → R+ is used in (1.1), i.e., κd(y, F (x))
is replaced by µ(d(y, F (x))); cf. [8, 22, 25, 37]. This allows treating more subtle
regularity properties arising in applications when the conventional estimates fail. The
majority of researchers focus on the particular case of “power nonlinearities” when µ
is of the type µ(t) = λtk with k ≥ 1 [16, 17, 18, 25].

Starting with Ioffe [21], the majority of proofs of various sufficient regularity/open-
ness criteria are based on the application of the celebrated Ekeland variational prin-
ciple (Theorem 2.13); see [7, 15, 22, 35, 38, 43]. On the other hand, as observed by
Ioffe in [22], the original methods used by Banach, Schauder, Lyusternik and Graves
had employed special iteration procedures. This classical approach was very popular
in the 1980s – early 1990s [10, 11, 12, 27, 28, 29, 39, 42]. In particular, in the series of
three articles [27, 28, 29], several basic statements were established which generalized
many known by that time open mapping and closed graph theorems and theorems of
the Lusternik type and results on approximation and semicontinuity or their refine-
ments. We refer to [22] for a thorough discussion and comparison of the two main
techniques.

In this article, we demonstrate that the approach based on iteration procedures
still possesses potential. In particular, we show that the Induction theorem [27, The-
orem 1] (see Lemma 2.1 in the current article), which was used as the main tool when
proving the other results in [27], implies also all the main results in the subsequent
articles [28, 29]. It can serve as a substitution of the Ekeland variational principle
when establishing other regularity criteria. Furthermore, the latter classical result
can also be established as a consequence of the Induction theorem.

We consider a general regularity model for a set-valued mapping F : X×R+ ⇒ Y ,
where X and Y are metric spaces. The conventional setting of a set-valued mapping
F : X ⇒ Y between metric spaces can be imbedded into it by defining a set-valued
mapping F : X × R+ ⇒ Y by the equality F(x, t) := B(F (x), t). To define an
analogue of metric regularity in this general setting, the distance d(y, F (x)) in the
image space in the right-hand side of (1.1) is replaced by the “distance-like” quantity

(1.2) δ(y, F, x) := inf{t > 0 | y ∈ F (x, t)}.
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This allows one to define also a natural analogue of the covering property (But not
the Aubin property!) and establish equivalence of both properties and some sufficient
criteria.

Motivated by Ioffe [25], we investigate general nonlocal nonlinear regularity mod-
els.

The structure of the article is as follows. In the next section, we give a short
proof of a revised version of the Induction theorem [27, Theorem 1] and then apply it
to establish several basic regularity estimates for a set-valued mapping F : X×R+ ⇒

Y at a fixed point (x, t, y) ∈ gphF . As a consequence, we obtain the two main
theorems from [29]. Next we discuss the relationship between the Induction theorem
and the Ekeland variational principle. As another consequence of the aforementioned
regularity estimates, we deduce several ‘at a point’ sufficient criteria for the regularity
of F in terms of quantity (1.2).

Section 3 is devoted to nonlinear regularity on a set (and the corresponding open-
ness property) being a direct analogue of metric regularity in the conventional setting.
We refrain from using the term “metric” because quantity (1.2) is not a distance in
the image space.

In Section 4, we demonstrate how the definitions and criteria from Section 3
translate into the conventional setting of a set-valued mapping F : X ⇒ Y taking the
natural metric form.

The final Section 5 contain some concluding remarks and a list of things to be
done hopefully in not-so-distant future.

Our basic notation is standard; cf. [15, 35, 43]. X and Y are metric spaces. Metrics
in all spaces are denoted by the same symbol d(·, ·). If x and C are a point and a
subset of a metric space, then d(x,C) := infc∈C d(x, c) is the point-to-set distance
from x to C, while C denotes the closure of C. B(x, r) and B(x, r) stand for the open
and closed balls of radius r > 0 centered at x, respectively. We use the convention
that B(x, 0) = {x}.

2. Regularity at a point.

2.1. Basic estimates. The next lemma is a revised version of the Induction
theorem [27, Theorem 1] and contains the core arguments used in the main results
of [27, 28, 29]. For simplicity, it is formulated for mappings between metric spaces.
(Most of the results in [27, 28, 29] were established in the more general setting of
quasimetric spaces.)

Recall that a set-valued mapping F : X ⇒ Y between metric spaces is called
outer semicontinuous [43] at x̄ ∈ X if

Lim sup
x→x̄

F (x) := {y ∈ Y | lim inf
x→x̄

d(y, F (x)) = 0} ⊂ F (x̄).

Lemma 2.1. Let X be a complete metric space, Φ : R+ ⇒ X, t > 0 and
x ∈ Φ(t). Suppose that Φ is outer semicontinuous at 0 and there are sequences of
positive numbers (an) and (bn) such that

∞
∑

n=0

bn < ∞,(2.1)

a0 = t and an ↓ 0 as n → ∞,(2.2)

d(u,Φ(an+1)) < bn for all u ∈ Φ(an) ∩ Un (n = 0, 1, . . . ),(2.3)
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where U0 := {x}, Un := B(x,
∑n−1

i=0 bi) (n = 1, 2, . . . ). Then, d(x,Φ(0)) <
∑∞

n=0 bn.
Proof. Putting x0 := x ∈ Φ(a0) ∩ U0 and using (2.3) repeatedly, we obtain a

sequence (xn) satisfying xn ∈ Φ(an) and

d(xn, xn+1) < bn (n = 0, 1, . . . ).

The above inequalities together with (2.1) imply that (xn) is a Cauchy sequence and,
as X is complete, converges to some point z ∈ X . Note that

d(z, x) ≤
∞
∑

n=0

d(xn, xn+1) <

∞
∑

n=0

bi.

Thanks to the outer semicontinuity of Φ at 0 and (2.2), we have z ∈ Φ(0). Hence,
d(x,Φ(0)) <

∑∞

n=0 bn.
Remark 2.2. 1. With obvious changes, the proof of Lemma 2.1 remains valid

if instead of the outer semicontinuity of Φ and completeness of X one assumes that
gphΦ is complete (in the product topology). In fact, it is sufficient to assume that
gphΦ ∩ (R+ ×B(x,

∑∞

n=0 bi)) is complete.
2. In some applications, a “restricted” version of Lemma 2.1 can be useful. Given

a subset U of X and a point x ∈ Φ(t) ∩ U , condition (2.3) can be replaced with the
following “restricted” one:

d(u,Φ(an+1) ∩ U) < bn for all u ∈ Φ(an) ∩ Un (n = 0, 1, . . . ),

where U0 := {x}, Un := U ∩B(x,
∑n−1

i=0 bi) (n = 1, 2, . . . ).
3. The conclusion of Lemma 2.1 can be equivalently rewritten as

Φ(0) ∩B

(

x,

∞
∑

n=0

bn

)

6= ∅.

From now on, we consider a set-valued mapping F : X × R+ ⇒ Y , where X and
Y are metric spaces, X is complete. Given a t ∈ R+, we denote Ft := F (·, t) : X ⇒ Y .

The next two theorems contain the core arguments of [29, Theorems 3 and 4],
respectively.

Theorem 2.3. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping
τ 7→ Φ(τ) := F−1

τ (y) on R+ is outer semicontinuous at 0 and there are sequences
of positive numbers (bn) and (cn) and a function m : (0,∞) → (0,∞) such that
condition (2.1) holds true and

m(τ) ↓ 0 as τ ↓ 0 and cn ↓ 0 as n → ∞,(2.4)

d(x, F−1
m(c1)

(y)) < b0,(2.5)

d(u, F−1
m(cn+1)

(y)) < bn for all u ∈ F−1
m(cn)

(y) ∩B(x,
n−1
∑

i=0

bi) (n = 1, 2, . . . ).(2.6)

Then, d(x, F−1
0 (y)) <

∑∞

n=0 bn.
Proof. Set a0 := t, an := m(cn) (n = 1, 2, . . . ). Conditions (2.4), (2.5) and (2.6)

imply (2.2) and (2.3). By Lemma 2.1, there exists a z ∈ B(x,
∑∞

n=0 bn) such that
y ∈ F (z, 0), i.e., z ∈ F−1

0 (y).
Remark 2.4. 1. Instead of (2.4), it is sufficient to assume in Theorem 2.3 that

m(cn) ↓ 0 as n → ∞.
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2. The conclusion of Theorem 2.3 can be equivalently rewritten as

y ∈ F

(

B

(

x,

∞
∑

n=0

bn

)

, 0

)

.

Given a function b : R+ → R+, we define, for each t ∈ R+, b
0(t) := t, bn(t) :=

b(bn−1(t)) (n = 1, 2, . . . ).
Theorem 2.5. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping

τ 7→ Φ(τ) := F−1
τ (y) on R+ is outer semicontinuous at 0 and there are functions

b,m, µ : (0,∞) → (0,∞) such that

(2.7) m(τ) ↓ 0 ⇒ τ ↓ 0

and, for each τ > 0 with µ(τ) ≤ µ(t),

µ(τ) ≥ m(τ) + µ(b(τ)),(2.8)

d(u, F−1
b(τ)(y)) < m(τ) for all u ∈ F−1

τ (y) ∩B(x, µ(t) − µ(τ)).(2.9)

Then, d(x, F−1
0 (y)) < µ(t).

Proof. Set an := bn(t), bn := m(an) = m(bn(t)) (n = 0, 1, . . . ). Adding inequali-
ties (2.8) corresponding to τ = t, b(t), b2(t), . . . , we obtain

µ(t) ≥
∞
∑

n=0

m (bn(t)) =

∞
∑

n=0

bn.

Hence, (2.1) is satisfied and bn ↓ 0 as n → ∞. Condition (2.2) is satisfied thanks to
(2.7). Condition (2.9) with τ = an takes the following form:

(2.10) d(u,Φ(an+1)) < bn for all u ∈ Φ(an) ∩B(x, µ(t) − µ(an)).

For any n > 0, adding inequalities (2.8) corresponding to τ = t, b(t), . . . , bn−1(t), we
obtain

µ(t) ≥
n−1
∑

i=0

bi + µ(an).

Hence, µ(an) ≤ µ(t) and condition (2.10) implies (2.3). By Lemma 2.1, there exists
a z ∈ B(x, µ(t)) such that y ∈ F (z, 0).

Recall that a family Σ of balls in X is called a complete system [11, Definition 1.1]
if, for any B(x, r) ∈ Σ, one has B(x′, r′) ∈ Σ provided that x′ ∈ X , r′ > 0 and
d(x, x′) + r′ ≤ r. For a subset M of X , Σ(M) denotes a complete system of balls
B(x, r) in X with B(x, r) ⊂ M . Obviously the family of all balls in X forms a
complete system.

Corollary 2.6. Let M ⊂ X and Σ(M) be a complete system, t > 0 and
(x, t, y) ∈ gphF . Suppose that the mapping τ 7→ F−1

τ (y) on R+ is outer semicontin-
uous at 0 and there are functions b,m, µ : (0,∞) → (0,∞) such that B(x, µ(t)) ∈
Σ(M), condition (2.7) is satisfied and, for each τ > 0 with µ(τ) ≤ µ(t), condition
(2.8) holds true and

(2.11) d(u, F−1
b(τ)(y)) < m(τ) for all u ∈ F−1

τ (y) ∩ {x′ | B(x′, µ(τ)) ∈ Σ(M)}.
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Then, d(x, F−1
0 (y)) < µ(t).

Proof. Since B(x, µ(t)) ∈ Σ(M), it follows that B(x, µ(t) − µ(τ)) ⊂ {x′ |
B(x′, µ(τ)) ∈ Σ(M)}. The conclusion follows from Theorem 2.5.

Key estimates (2.9) and (2.11) in Theorem 2.5 and Corollary 2.6 are for the orig-
inal space X . In some situations, one can use for that purpose also similar estimates
in the image space Y .

Corollary 2.7. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping τ 7→
F−1
τ (y) on R+ is outer semicontinuous at 0 and there are functions b,m, µ : (0,∞) →

(0,∞) such that condition (2.7) is satisfied and, for each τ > 0 with µ(τ) ≤ µ(t),
condition (2.8) holds true and

F−1
0 (B(y, τ)) ⊂ F−1

τ (y),(2.12)

d (y, F0(B(u,m(τ)))) < b(τ) for all u ∈ F−1
τ (y) ∩B(x, µ(t) − µ(τ)).(2.13)

Then, d(x, F−1
0 (y)) < µ(t).

Proof. Observe that conditions (2.12) and (2.13) imply (2.9). Indeed, if u ∈
F−1
τ (y) ∩ B(x, µ(t) − µ(τ)), then, by (2.13), there exists a z ∈ B(u,m(τ)) such that

d(y, F0(z)) < b(τ), or equivalently, z ∈ F−1
0 (B(y, b(τ))). It follows from (2.12) that

z ∈ F−1
b(τ)(y). Hence, d(u, F

−1
b(τ)(y)) < m(τ). The conclusion follows from Theorem 2.5.

Remark 2.8. 1. Instead of (2.7), it is sufficient to assume in Theorem 2.5 and
Corollaries 2.6 and 2.7 that bn(t) ↓ 0 as n → ∞.

The last condition is satisfied, e.g., when b(t) = λt with λ ∈ (0, 1).
2. If condition (2.8) holds true for all τ > 0 with µ(τ) ≤ µ(t), then µ(τ) ≥

∑∞

n=0 m (bn(τ)). On the other hand, if the last condition holds true as equality (for
all τ > 0 with µ(τ) ≤ µ(t)), then condition (2.8) is satisfied (as equality). Hence,
condition (2.8) in Theorem 2.5 and Corollaries 2.6 and 2.7 can be replaced by the
following definition of the smallest function µ satisfying (2.8):

(2.14) µ(τ) :=

∞
∑

n=0

m (bn(τ)) ,

thus producing the strongest conclusion.
3. It is sufficient to assume in Theorem 2.5 and Corollaries 2.6 and 2.7 that con-

ditions (2.8), (2.9), (2.11), (2.12) and (2.13) are satisfied only for τ = t, b(t), b2(t), . . .
In particular, if this sequence is monotone (as in the typical example mentioned in
part 1 above or, thanks to (2.8) when µ is nondecreasing), then the conclusions of all
the statements remain true when conditions (2.8), (2.9), (2.11), (2.12) and (2.13) are
satisfied for all τ ∈ (0, t].

4. Thanks to part 3, instead of conditions (2.9), (2.11) and (2.13), one can require
that, for each n = 0, 1, . . . , the following conditions hold true, respectively:

d(u, F−1
bn+1(t)(y)) < m(bn(t)) for all u ∈ F−1

bn(t)(y)

∩B(x, µ(t) − µ(bn(t))),(2.15)

d(u, F−1
bn+1(t)(y)) < m(bn(t)) for all u ∈ F−1

bn(t)(y)

∩ {x′ | B(x′, µ(bn(t))) ∈ Σ(M)},

d (y, F0(B(u,m(bn(t))))) < bn+1(t) for all u ∈ F−1
bn(t)(y)

∩B(x, µ(t) − µ(bn(t))).(2.16)
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If µ is given by (2.14), then conditions (2.15) and (2.16) can be equivalently rewritten
as follows:

d(u, F−1
bn+1(t)(y)) < m(bn(t)) for all u ∈ F−1

bn(t)(y) ∩B(x,

n−1
∑

i=0

bi(t)),

d (y, F0(B(u,m(bn(t))))) < bn+1(t) for all u ∈ F−1
bn(t)(y) ∩B(x,

n−1
∑

i=0

bi(t)).

5. The conclusions of Theorem 2.5 and Corollaries 2.6 and 2.7 can be equivalently
rewritten as y ∈ F (B(x, µ(t)), 0).

The next two theorems are the (slightly improved) original results of [29, Theo-
rems 3 and 4] reformulated in the setting of metric spaces and adopting the terminol-
ogy and notation of the current article. These theorems, which follow immediately
from Theorems 2.3 and 2.5, respectively, imply all the other results of [27, 28, 29] as
well as many open mapping and closed graph theorems and theorems of the Lusternik
type and results on approximation and semicontinuity or their refinements; cf. the
references in [27, 28, 29].

Theorem 2.9. Let t > 0 and (x, t) ∈ domF . Suppose that, for each y ∈ Y ,

(2.17) F−1
0 (y) = Lim sup

t↓0
F−1
t (y)

and there are positive numbers ρ, s and bn (n = 1, 2, . . . ), such that

(2.18)

∞
∑

n=1

bn + s ≤ ρ.

Suppose also that, for each y ∈ F (x, t), there are numbers cn > 0 (n = 1, 2, . . . ) and
a function m : (0,∞) → (0,∞) satisfying (2.4) and

d(u, F−1
m(c1)

(y)) < s for all u ∈ F−1
t (y) ∩B(x, ρ− s),(2.19)

d(u, F−1
m(cn+1)

(y)) < bn for all u ∈ F−1
m(cn)

(y) ∩B(x, ρ− bn) (n = 1, 2, . . . )(2.20)

Then, F (x, t) ⊂ F (B(x, ρ), 0).

Proof. Set b0 := s and take any y ∈ F (x, t). It follows from (2.17) that the
mapping τ 7→ F−1

τ (y) on R+ is outer semicontinuous at 0. Condition (2.18) obviously

implies (2.1). Observe that
∑n−1

i=0 bi ≤ ρ −
∑∞

i=n bi < ρ − bn (n = 0, 1, . . . ) Hence,
conditions (2.19) and (2.20) imply (2.5) and (2.6), respectively. By Theorem 2.3,
y ∈ F (B(x, ρ), 0).

Theorem 2.10. Let M ⊂ X and Σ(M) be a complete system. Let a function
b : (0,∞) → (0,∞) be given. Suppose that, for each y ∈ Y , condition (2.17) holds true
and there exists a function m : (0,∞) → (0,∞) satisfying condition (2.7) and, for all
τ ∈ (0,∞) and x ∈ X with (x, t, y) ∈ gphF and B(x, µ(τ)) ∈ Σ(M), conditions (2.11)
and (2.14) are satisfied. Then, for any (x, t, y) ∈ gphF with t > 0 and B(x, µ(t)) ∈
Σ(M), one has y ∈ F (B(x, µ(t)), 0).

Proof. Take any (x, t, y) ∈ gphF with t > 0 and B(x, µ(t)) ∈ Σ(M) and
a function m satisfying the assumptions of the theorem. Condition (2.17) obvi-
ously implies that the mapping τ 7→ F−1

τ (y) on R+ is outer semicontinuous at 0.

https://www.researchgate.net/publication/243009391_An_induction_theorem_and_general_open_mapping_theorems?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/243009391_An_induction_theorem_and_general_open_mapping_theorems?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/243009828_An_open_mapping_theorem_for_families_of_multifunctions?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/243009828_An_open_mapping_theorem_for_families_of_multifunctions?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/243010125_On_general_open_mapping_theorems?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
https://www.researchgate.net/publication/243010125_On_general_open_mapping_theorems?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
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Thanks to Remark 2.8.2, all the assumptions of Corollary 2.6 are satisfied. Hence,
y ∈ F (B(x, µ(t)), 0).

Remark 2.11. Comparing the statements of Theorem 2.10 and [29, Theorem 4],
one can notice that the latter one looks stronger: it is formulated without assumption
(2.7) and with the stronger conclusion F (x, t) ⊂ F (B(x, µ(t)), 0). However assump-
tion (2.7) is implicitly used in the proof of [29, Theorem 4] and the conclusion is
established for a fixed y ∈ F (x, t) satisfying B(x, µ(t)) ∈ Σ(M). (Observe that func-
tion m in Theorem 2.10 and consequently function µ defined by (2.14) depend on the
choice of y ∈ F (x, t).)

Unlike the setting of the current article, in [29] mapping F was assumed to be
defined not on X × R+, but on X × [0, t0] where t0 is a given positive number. This
difference can be easily eliminated by setting F (x, t) := ∅ when t > t0 and making
appropriate minor changes in the statements.

2.2. Lemma 2.1 and Ekeland variational principle. Lemma 2.1 which lies
at the core of the proofs of Theorems 2.3 and 2.5 can serve as a substitution of the
Ekeland variational principle which is a traditional tool when establishing regularity
criteria. This is demonstrated by the proof of the following theorem.

Theorem 2.12. Let t > 0 and (x, t, y) ∈ gphF . Suppose that the mapping
τ 7→ F−1

τ (y) is outer semicontinuous on [0, t) and there is a continuous nondecreasing
function µ : [0, t] → R+ satisfying µ(τ) = 0 if and only if τ = 0 and, for each
pair (u, τ) ∈ F−1(y) with τ ∈ (0, t] and d(x, u) ≤ µ(t) − µ(τ), there exists a pair
(u′, τ ′) ∈ F−1(y) such that u′ 6= u and

(2.21) µ(τ ′) ≤ µ(τ)− d(u′, u).

Then, d(x, F−1
0 (y)) ≤ µ(t).

Proof. Set a0 := t, x0 := x and define a sequence {(xn, an)} by induction. For any
n = 0, 1, . . . , let a pair (xn, an) ∈ F−1(y) with an ∈ [0, t] and d(x, xn) ≤ µ(t)− µ(an)
be given. If an = 0, set an+1 := 0 and xn+1 := xn. Otherwise, define

(2.22) cn := inf{µ(τ) | (u, τ) ∈ F−1(y), µ(τ) ≤ µ(an)− d(u, xn)}.

By the assumptions of the theorem, 0 ≤ cn < µ(an), and one can choose a pair
(xn+1, an+1) ∈ F−1(y) such that xn+1 6= xn and

µ(an+1) ≤ µ(an)− d(xn, xn+1),(2.23)

cn ≤ µ(an+1) <
µ(an) + cn

2
< µ(an).(2.24)

It also follows from (2.23) that

d(x, xn+1) ≤ d(x, xn) + d(xn, xn+1) ≤ µ(t)− µ(an+1).

If an = 0 for some n > 0, then, by (2.23),

d(x, F−1
0 (y)) ≤ d(x, xn) ≤

n−1
∑

j=0

d(xj , xj+1) ≤ µ(t).

Now assume that an > 0 for all n = 0, 1, . . . . Then, {an} is a decreasing sequence
of positive numbers which converges to some a ≥ 0. We are going to show that a = 0.

https://www.researchgate.net/publication/243010125_On_general_open_mapping_theorems?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
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Suppose that a > 0 and denote ân := an − a. Obviously, ân > 0 and ân ↓ 0. By
(2.23),

∞
∑

n=0

d(xn, xn+1) ≤ µ(t)− µ(a).

Fix an ε > 0 and choose numbers bn > d(xn, xn+1) such that
∑∞

n=0 bn < µ(t)−µ(a)+
ε. Set Φ(ân) := {xn}, Φ(τ) := ∅ for any τ ∈ (0,∞) \ {â0, â1, . . . }, and let Φ(0) be
the set of all cluster points of {xn}. Then, x ∈ Φ(â0), Φ is outer semicontinuous at 0
and d(Φ(ân),Φ(ân+1)) < bn. It follows from Lemma 2.1 that there exists a z ∈ Φ(0)
satisfying d(x, z) < µ(t)− µ(a) + ε. By the outer semicontinuity of Φ, y ∈ F (z, a).

Since a > 0, by the assumptions of the theorem, there exists a pair (u, τ) ∈ F−1(y)
such that u 6= z and

(2.25) µ(τ) ≤ µ(a)− d(u, z).

Then, µ(τ) < µ(a). Observe from (2.24) that

2µ(an+1)− µ(an) < cn < µ(an).

Hence, {cn} converges to µ(a) and consequently µ(τ) < cn when n is large enough.
By definition (2.22), this yields

(2.26) µ(τ) > µ(an)− d(u, xn).

At the same time,

d(xn, z) ≤
∞
∑

j=n

d(xj , xj+1) ≤ µ(an)− µ(a).

This combined with (2.25) gives

µ(τ) ≤ µ(an)− d(u, xn)

which is in obvious contradiction with (2.26). Hence, a = 0, z ∈ F−1
0 (y), d(x, z) <

µ(t) + ε, and, as ε is arbitrary, d(x, F−1
0 (y)) ≤ µ(t).

The proof of Theorem 2.12 given above uses standard arguments typical for tra-
ditional proofs of the Ekeland variational principle; cf. e.g. [7]. We next show that
the latter classical result can also be established as a consequence of Lemma 2.1.

Theorem 2.13 (Ekeland variational principle). Let X be a complete metric space
and f : X → R ∪ {+∞} be lower semicontinuous and bounded from below. Suppose
ε > 0, λ > 0 and x ∈ X satisfies

f(x) < inf
X

f + ε.

Then, there exists a z ∈ X such that

(i) d(z, x) < λ,
(ii) f(z) ≤ f(x),
(iii) f(u) + (ε/λ)d(u, z) ≥ f(z) for all u ∈ X.

https://www.researchgate.net/publication/266553275_Techniques_of_Variational_Analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
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Proof. Denote x0 := x. For n = 0, 1, . . . , set

(2.27) an := sup
u∈X

{

f(xn)− f(u)−
ε

λ
d(u, xn)

}

.

Obviously, 0 ≤ an < ∞. Choose an xn+1 such that

(2.28) f(xn)− f(xn+1)−
ε

λ
d(xn+1, xn) ≥

an
2
.

Then, for n = 0, 1, . . . ,

f(xn+1) ≤ f(xn), d(xn+1, xn) ≤
λ

ε
(f(xn)− f(xn+1))

and the inequalities are strict if an > 0. It follows that

f(xn) ≤ f(x) and d(xn, x) ≤
λ

ε
(f(x)− f(xn)) < λ.

If, for some n, an = 0, then z := xn satisfies the conclusions of the theorem. Suppose
that an > 0 for all n = 0, 1, . . . . Then, bn := λ

ε
(f(xn)− f(xn+1)) > 0. Set Φ(an) :=

{xn}, Φ(τ) := ∅ for any τ ∈ (0,∞)\{a0, a1, . . . } and Φ(0) := Lim sup τ↓0Φ(τ). Hence,
Φ is outer semicontinuous at 0, x ∈ Φ(a0),

∑∞

n=0 bn < λ and d(Φ(an),Φ(an+1)) < bn.
Besides, it follows from (2.27) that

(2.29) f(xn)− f(u)−
ε

λ
d(u, xn) ≤ an for all u ∈ X.

Subtracting (2.28) from the last inequality and using the triangle inequality, we con-
clude that

f(xn+1)− f(u)−
ε

λ
d(u, xn+1) ≤

an
2

for all u ∈ X,

i.e., an+1 ≤ an/2 and consequently an ↓ 0 as n → ∞. It follows from Lemma 2.1
that there exists a z ∈ Φ(0) satisfying (i). By the definition of Φ(0) and (2.29), we
conclude that conditions (ii) and (iii) are satisfied too.

Remark 2.14. Lemma 2.1 was used in the proof of Theorem 2.13 where one would
normally use the convergence of a Cauchy sequence. Similarly, the Ekeland variational
principle can replace the Cauchy sequence argument in the proof of Lemma 2.1. In
fact, both Lemma 2.1 and Theorem 2.13 are in a sense equivalent to the completeness
of X.

2.3. Regularity. Theorems 2.3, 2.5 and 2.12 and Corollaries 2.6 and 2.7 were
formulated for a fixed point (x, t, y) ∈ gphF . The next step is to “set variable t free”
and formulate criteria in terms of (fixed) x and y only.

The next assertion establishes a regularity estimate in terms of the “distance-like”
quantity δ(y, F, x) defined by (1.2). It is an immediate consequence of Theorem 2.3.

Theorem 2.15. Let (x, y) ∈ X × Y and µ : R+ → R+ be an upper semi-
continuous nondecreasing function. Suppose that the mapping τ 7→ F−1

τ (y) on R+

is outer semicontinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with
(x, t, y) ∈ gphF , there are sequences of positive numbers (bn) and (cn) and a function
m : (0,∞) → (0,∞) such that conditions (2.4)–(2.6) hold true and

(2.30)

∞
∑

n=0

bn ≤ µ(t).
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Then, d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Proof. It is sufficient to notice that, for any t ∈ (0, γ) with (x, t, y) ∈ gphF ,
condition (2.30) implies (2.1) and, by Theorem 2.3, d(x, F−1

0 (y)) < µ(t). Taking the
infimum in the right-hand side of the above inequality over all t > 0 with (x, t, y) ∈
gphF and making use of the monotonicity of µ, we arrive at the claimed conclusion.

The next several assertions are consequences of Theorems 2.5 and 2.12 and Corol-
laries 2.6 and 2.7, respectively, thanks to the same arguments as those used in the
proof of Theorem 2.15.

Theorem 2.16. Let (x, y) ∈ X × Y and µ : R+ → R+ be an upper semi-
continuous nondecreasing function. Suppose that the mapping τ 7→ F−1

τ (y) on R+

is outer semicontinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with
(x, t, y) ∈ gphF , there are functions b,m : (0,∞) → (0,∞) such that condition (2.7)
is satisfied and, for each τ > 0 with µ(τ) ≤ µ(t), conditions (2.8) and (2.9) hold true.
Then, d(x, F−1

0 (y)) ≤ µ(δ(y, F, x)).

Corollary 2.17. Let M ⊂ X and Σ(M) be a complete system, (x, y) ∈ X × Y
and µ : R+ → R+ be an upper semicontinuous nondecreasing function. Suppose that
the mapping τ 7→ F−1

τ (y) on R+ is outer semicontinuous at 0 and, for some γ >
δ(y, F, x) and any t ∈ (0, γ) with (x, t, y) ∈ gphF , one has B(x, µ(t)) ∈ Σ(M), there
are functions b,m : (0,∞) → (0,∞) such that condition (2.7) is satisfied and, for each
τ > 0, conditions (2.8) and (2.11) hold true. Then, d(x, F−1

0 (y)) ≤ µ(δ(y, F, x)).

Corollary 2.18. Let (x, y) ∈ X × Y and µ : R+ → R+ be an upper semi-
continuous nondecreasing function. Suppose that the mapping τ 7→ F−1

τ (y) on R+

is outer semicontinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with
(x, t, y) ∈ gphF , there are functions b,m : (0,∞) → (0,∞) such that condition (2.7)
is satisfied and, for each τ > 0 with µ(τ) ≤ µ(t), conditions (2.8), (2.12) and (2.13)
hold true. Then, d(x, F−1

0 (y)) ≤ µ(δ(y, F, x)).

Remark 2.19. Most of the comments in Remarks 2.4 and 2.8 are applicable to
Theorems 2.15 and 2.16 and Corollaries 2.17 and 2.18.

Theorem 2.20. Let (x, y) ∈ X×Y , µ : R+ → R+ be a continuous nondecreasing
function and µ(τ) = 0 if and only if τ = 0. Suppose that the mapping τ 7→ F−1

τ (y)
is outer semicontinuous on [0, δ(y, F, x)] and, for each pair (u, τ) ∈ F−1(y) with τ ∈
(0, δ(y, F, x)] and d(x, u) ≤ µ(δ(y, F, x)) − µ(δ(y, F, u)), there exists a pair (u′, τ ′) ∈
F−1(y) such that u′ 6= u and condition (2.21) is satisfied. Then, d(x, F−1

0 (y)) ≤
µ(δ(y, F, x)).

Proof. If δ(y, F, x) = ∞, then the conclusion holds true trivially. Otherwise,
the outer semicontinuity of τ 7→ F−1

τ (y) ensures that y ∈ F (x, δ(y, F, x)), and the
conclusion follows from Theorem 2.12 for t = δ(y, F, x).

Remark 2.21. The conclusion of Theorems 2.15, 2.16 and 2.20 and Corollar-
ies 2.17 and 2.18 reminds the inequality in the definition of the metric regularity
property for a set-valued mapping F : X ⇒ Y between metric spaces; cf. [15]. The
difference is in the right-hand side, where δ(y, F, x) stands in place of d(y, F (x)). The
relationship between the two settings will be explored in Section 4.

The conclusion of Theorems 2.15, 2.16 and 2.20 and Corollaries 2.17 and 2.18 can
be reformulated equivalently in a “covering-like” form.

Proposition 2.22. Consider the following conditions:

(i) d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)),

(ii) y ∈ F (B(x, t), 0) for any t > µ(δ(y, F, x)),
(iii) y ∈ F (B(x, µ(δ(y, F, x))), 0).

https://www.researchgate.net/publication/265826167_Implicit_functions_and_solution_mappings_A_view_from_variational_analysis?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
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Then, (iii) ⇒ (ii) ⇔ (i).
Proof. (iii) ⇒ (ii) is obvious.
(i) ⇒ (ii). By (i), for any t > µ(δ(y, F, x)), there exists a z ∈ F−1

0 (y) such that
d(x, z) < t and consequently y ∈ F (z, 0) ⊂ F (B(x, t), 0).

(ii) ⇒ (i). y ∈ F (B(x, t), 0) and t > 0 if and only if d(x, F−1
0 (y)) < t. If the last

inequality holds for all t > µ(δ(y, F, x)), then d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)).

Remark 2.23. Proposition 2.22 is true without the assumption of the completeness
of X.

3. Regularity on a set. In this section, we continue exploring regularity prop-
erties for a set-valued mapping F : X × R+ ⇒ Y , where X and Y are metric spaces.
Given a subset W ⊂ X × Y and an upper semicontinuous nondecreasing function
µ : [0,+∞] → [0,+∞], we use the statements derived in Section 2 to characterize
regularity of F on W with functional modulus µ.

Definition 3.1.
(i) F is regular on W with functional modulus µ if

d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)) for all (x, y) ∈ W.

(ii) F is open on W with functional modulus µ if

y ∈ F (B(x, t), 0) for all (x, y) ∈ W and t > µ(δ(y, F, x)).

The above properties differ from the conventional metric regularity defined for
set-valued mappings between metric spaces (cf. [15]) and its nonlinear extensions
(cf. [25]). The relationship between the two settings will be discussed in Section 4.

The next proposition is a consequence of Proposition 2.22 thanks to Remark 2.23.
Proposition 3.2. The two properties in Definition 3.1 are equivalent.
Remark 3.3. It follows from Proposition 2.22 that the properties in Definition 3.1

are implied by the following stronger version of openness:

y ∈ F (B(x, µ(δ(y, F, x))), 0) for all (x, y) ∈ W.

The criteria of regularity in the next theorem are direct consequences of Theo-
rems 2.15 and 2.16 and Corollary 2.18.

Theorem 3.4. Suppose that, for any (x, y) ∈ W , the mapping τ 7→ F−1
τ (y) on

R+ is outer semicontinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with
(x, t, y) ∈ gphF , one of the following sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m :
(0,∞) → (0,∞) such that conditions (2.4)–(2.6) and (2.30) hold true,

(ii) there are functions b,m : (0,∞) → (0,∞) such that condition (2.7) is satisfied
and, for any τ > 0 with µ(τ) ≤ µ(t), conditions (2.8) and (2.9) hold true,

(iii) there are functions b,m : (0,∞) → (0,∞) such that condition (2.7) is satisfied
and, for any τ > 0 with µ(τ) ≤ µ(t), conditions (2.8), (2.12) and (2.13) hold
true.

Then, F is regular on W with functional modulus µ.
In the next statement, pY : X × Y → Y denotes the canonical projection on Y :

for any (x, y) ∈ X × Y , pY (x, y) = y. Given a pair (x, y) ∈ W , denote

Ux,y := {u ∈ X | δ(y, F, u) > 0, µ(δ(y, F, u)) + d(u, x) ≤ µ(δ(y, F, x))}.

https://www.researchgate.net/publication/257479952_Nonlinear_regularity_models?el=1_x_8&enrichId=rgreq-f6ae447e-b64a-4624-b70b-cdb0658e2817&enrichSource=Y292ZXJQYWdlOzI2Njg1NjQ5MjtBUzoxNjQ0NzQ3MzI0MjUyMjBAMTQxNjIyNTI0MDc2MA==
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Theorem 3.5. Let µ be continuous, µ(τ) = 0 if and only if τ = 0. Suppose that
F−1 is closed-valued on pY (W ) and, for any (x, y) ∈ W and u ∈ Ux,y, there exists a
point u′ 6= u such that

(3.1) µ(δ(y, F, u′)) ≤ µ(δ(y, F, u))− d(u, u′).

Then, F is regular on W with functional modulus µ.
Proof. Fix an arbitrary (x, y) ∈ W . We need to show that d(x, F−1

0 (y)) ≤
µ(δ(y, F, x)).

If there exists a point u such that δ(y, F, u) = 0 and d(x, u) ≤ µ(δ(y, F, x)) (in
particular, if δ(y, F, x) = 0), then, by the closedness of F−1(y), u ∈ F−1

0 (y), and the
inequality holds trivially.

Suppose that δ(y, F, u) > 0 for any u ∈ X such that d(x, u) ≤ µ(δ(y, F, x)). Take
any u ∈ X such that d(x, u) ≤ µ(δ(y, F, x)) − µ(δ(y, F, u)) and any τ ∈ (0, δ(y, F, x)]
such that (u, τ) ∈ F−1(y). Then, τ ≥ δ(y, F, u) > 0 and, by the assumption, there
exists a point u′ 6= u satisfying (3.1). Setting τ ′ = δ(y, F, u′), we get (u′, τ ′) ∈ F−1(y)
and condition (2.21) is satisfied:

µ(τ ′) = µ(δ(y, F, u′)) ≤ µ(δ(y, F, u))− d(u, u′) ≤ µ(τ) − d(u, u′).

The mapping τ 7→ F−1
τ (y) is outer semicontinuous on [0, δ(y, F, x)] thanks to the

closedness of F−1(y). The required inequality follows from Theorem 2.20.
Following [25], one can define seemingly more general ν-versions of the properties

in Definition 3.1, determined by a function ν : W → (0,∞].
Definition 3.6.
(i) F is ν-regular on W with functional modulus µ if

d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)) for all (x, y) ∈ W with µ(δ(y, F, x)) < ν(x, y).

(ii) F is ν-open on W with functional modulus µ if

y ∈ F (B(x, t), 0) for all (x, y) ∈ W and t ∈ (µ(δ(y, F, x)), ν(x, y)).

Remark 3.7. Each of the properties in Definition 3.1 is a particular case of the
corresponding one in Definition 3.6 with any function ν : W → (0,∞] satisfying
µ(δ(y, F, x)) < ν(x, y) for all (x, y) ∈ W with µ(δ(y, F, x)) < +∞, e.g., one can take
ν ≡ +∞. At the same time, each of the properties in Definition 3.6 can be considered
as a particular case of the corresponding one in Definition 3.1 with the set W replaced
by W ′ := {(x, y) ∈ W | µ(δ(y, F, x)) < ν(x, y)}.

Proposition 3.8. The two properties in Definition 3.6 are equivalent.
We next formulate the corresponding criteria for ν-regularity. The next theorem

is an immediate consequence of Theorem 3.4 thanks to Remark 3.7 and the simple
observation that, if µ(δ(y, F, x)) < ν(x, y), then, thanks to the upper semicontinuity
of µ, it is possible to choose a γ > δ(y, F, x) such that µ(γ) < ν(x, y).

Theorem 3.9. Suppose that, for any (x, y) ∈ W , the mapping τ 7→ F−1
τ (y)

on R+ is outer semicontinuous at 0 and, for any t > 0 with (x, t, y) ∈ gphF and
µ(t) < ν(x, y), one of the three sets of conditions in Theorem 3.4 is satisfied. Then,
F is ν-regular on W with functional modulus µ.

Theorem 3.10. Let µ be continuous, µ(τ) = 0 if and only if τ = 0 and ν :
⋃

(x,y)∈W (Ux,y×{y}) → (0,∞) be Lipschitz continuous with modulus not greater than

1 in x for any y ∈ pY (W ). Suppose that F−1 takes closed values on pY (W ) and, for
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any (x, y) ∈ W and u ∈ Ux,y with µ(δ(y, F, u)) < ν(u, y), there exists a point u′ 6= u
such that condition (3.1) holds true. Then, F is ν-regular on W with functional
modulus µ.

Proof. Define W ′ := {(x, y) ∈ W | µ(δ(y, F, x)) < ν(x, y)} and take any (x, y) ∈
W ′ and u ∈ Ux,y. Then, taking into account the Lipschitz continuity of ν, we have:

µ(δ(y, F, u)) ≤ µ(δ(y, F, x)) − d(x, u) < ν(x, y) − d(x, u) ≤ ν(u, y).

Hence, there exists a point u′ 6= u such that (3.1) holds true. By Theorem 3.5, F is
regular on W ′ and, thanks to Remark 3.7, ν-regular on W with functional modulus
µ.

Remark 3.11. Properties in Definitions 3.1 and 3.6 depend on the choice of the
set W and (in the case of Definitions 3.6) function ν. Changing these parameters
may lead to the change of the regularity modulus or even kill regularity at all; cf. [25,
Example 1].

The next definition introduces the local versions of the properties in Definition 3.1
related to a fixed point (x̄, ȳ) ∈ gphF0.

Definition 3.12.

(i) F is regular at (x̄, ȳ) with functional modulus µ if there exist neighbourhoods
U of x̄ and V of ȳ such that

d(x, F−1
0 (y)) ≤ µ(δ(y, F, x)) for all x ∈ U, y ∈ V.

(ii) F is open at (x̄, ȳ) with functional modulus µ if there exist neighbourhoods U
of x̄ and V of ȳ such that

y ∈ F (B(x, t), 0) for all x ∈ U, y ∈ V and t > µ(δ(y, F, x)).

The properties in Definition 3.12 are obviously equivalent to the corresponding
ones in Definition 3.1 with W := U ×V . The next three statements are consequences
of Proposition 3.2 and Theorems 3.4 and 3.5, respectively.

Proposition 3.13. The two properties in Definition 3.12 are equivalent.

Theorem 3.14. Suppose that there exist neighbourhoods U of x̄ and V of ȳ
such that, for any x ∈ U and y ∈ V , the mapping τ 7→ F−1

τ (y) on R+ is outer
semicontinuous at 0 and, for some γ > δ(y, F, x) and any t ∈ (0, γ) with (x, t, y) ∈
gphF , one of the three sets of conditions in Theorem 3.4 is satisfied. Then, F is
regular at (x̄, ȳ) with functional modulus µ.

Theorem 3.15. Let µ be continuous, µ(τ) = 0 if and only if τ = 0. Suppose
that there exist neighbourhoods U of x̄ and V of ȳ such that F−1 takes closed values
on V and, for any x ∈ U , y ∈ V , and u ∈ Ux,y, there exists a point u′ 6= u such that
condition (3.1) is satisfied. Then, F is regular at (x̄, ȳ) with functional modulus µ.

4. Conventional setting. In this section, we consider the standard in varia-
tional analysis setting of a set-valued mapping F : X ⇒ Y between metric spaces.
Such a mapping can be imbedded into the more general setting explored in the pre-
vious sections by defining a set-valued mapping F : X × R+ ⇒ Y as follows (cf. [22,
p. 508]: for any x ∈ X and t ≥ 0,

(4.1) F(x, t) := B(F (x), t) =

{

{y ∈ Y | d(y, F (x)) < t} if t > 0,

F (x) if t = 0.
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(Recall the convention: B(y, 0) = {y}.) We are going to consider also mappings
F : X ⇒ Y and F : X ×R+ ⇒ Y , whose values are the closures of the corresponding
values of F and F , respectively: F (x) := F (x) and

(4.2) F(x, t) := B(F (x), t) =

{

{y ∈ Y | d(y, F (x)) ≤ t} if t > 0,

F (x) if t = 0.

The next proposition summarizes several simple facts with regard to the relation-
ship between F , F and F .

Proposition 4.1.
(i) F0(x) = F (x), F0(x) = F (x) for all x ∈ X.
(ii) δ(y,F , x) = δ(y,F , x) = d(y, F (x)) for all x ∈ X and y ∈ Y .
(iii) F−1

0 (B(y, t)) = F−1(B(y, t)) = F−1
t (y) for all y ∈ Y and t ≥ 0.

(iv) F−1(B(y, t)) = F−1(B(y, t)) ⊂ F−1
t (y) for all y ∈ Y and t ≥ 0.

(v) If F−1 is closed at y, then the mappings τ 7→ F−1
τ (y) and τ 7→ F−1

τ (y) on
R+ are outer semicontinuous at 0.

(vi) For any y ∈ Y and τ > 0, F and F satisfy condition (2.12).
(vii) If F is upper semicontinuous, i.e., for any x ∈ X and ε > 0, there exists a

δ > 0 such that F (u) ⊂ B(F (x), ε) for all u ∈ B(x, δ), then F−1 is closed-
valued. In particular, for any y ∈ Y , the mapping τ 7→ F−1

τ (y) is outer
semicontinuous on R+.

Proof. (i) The equalities make part of definitions (4.1) and (4.2).
(ii) By (1.2), (4.1) and (4.2),

δ(y,F , x) = inf{t > 0 | d(y, F (x)) < t} = d(y, F (x)),

δ(y,F , x) = inf{t > 0 | d(y, F (x)) ≤ t} = d(y, F (x)).

(iii) If t = 0, then F−1
0 (y) = F−1(y) and both equalities hold true automatically

for all y ∈ Y . If t > 0, then

x ∈ F−1
t (y) ⇔ d(y, F (x)) < t ⇔ F (x) ∩B(y, t) 6= ∅ ⇔ x ∈ F−1(B(y, t)).

Hence, F−1
t (y) = F−1(B(y, t)). The other equality is satisfied because F−1

0 (v) =
F−1(v) for all v ∈ B(y, t).

(iv) If t = 0, then F−1
0 (y) = F−1

0 (B(y, 0)) = F−1(y) for all y ∈ Y . If t > 0, then

x ∈ F−1(B(y, t)) ⇔ F (x) ∩B(y, t) 6= ∅ ⇒ d(y, F (x)) ≤ t ⇔ x ∈ F−1
t (y).

Hence, F−1(B(y, t)) ⊂ F−1
t (y). The claimed equality is satisfied because F−1

0 (v) =
F−1(v) for all v ∈ B(y, t).

(v) If xn → z and tn ↓ 0 with d(y, F (xn)) < tn (n = 1, 2, . . . ), then, for any n,
there exists a yn ∈ F (xn) such that d(y, yn) < tn. Hence, yn → y as n → ∞. Since
F−1 is closed at y, we have z ∈ F−1(y) and consequently y ∈ F (z) = F(z, 0).

Similarly, if xn → z and tn ↓ 0 with d(y, F (xn)) ≤ tn (n = 1, 2, . . . ), then, for
any n, there exists a yn ∈ F (xn) such that d(y, yn) < 2tn. Hence, yn → y as n → ∞.
Since F−1 is closed at y, we have z ∈ F−1(y) and consequently y ∈ F (z) ⊂ F(z, 0).

(vi) follows from (iii) and (iv).
(vii) If y ∈ Y , xn → z and tn → τ with d(y, F (xn)) ≤ tn (n = 1, 2, . . . ), then,

since F is upper semicontinuous,

d(y, F (z)) ≤ lim inf
n→∞

d(y, F (xn)) ≤ lim
n→∞

tn = τ,
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that is, y ∈ F(z, τ).
Thanks to parts (i) and (ii) of Proposition 4.1, the definitions of regularity and

openness properties explored in the previous sections in the current setting can be
expressed in metric terms. In the next definition, which corresponds to a group
of definitions from Section 3, µ : [0,+∞] → [0,+∞] is an upper semicontinuous
nondecreasing function playing the role of a modulus of the corresponding property.

Definition 4.2.
(i) Given a set W ⊂ X×Y , mapping F is metrically regular on W with functional

modulus µ if

(4.3) d(x, F−1(y)) ≤ µ(d(y, F (x))) for all (x, y) ∈ W.

(ii) Given a set W ⊂ X × Y , mapping F is open on W with functional modulus
µ if

y ∈ F (B(x, t)) for all (x, y) ∈ W and t > µ(d(y, F (x))).

(iii) Given a set W ⊂ X × Y and a function ν : W → (0,∞], mapping F is
metrically ν-regular on W with functional modulus µ if

d(x, F−1(y)) ≤ µ(d(y, F (x))) for all (x, y) ∈ W

with µ(d(y, F (x))) < ν(x, y).(4.4)

(iv) Given a set W ⊂ X×Y and a function ν : W → (0,∞], mapping F is ν-open
on W with functional modulus µ if

y ∈ F (B(x, t)) for all (x, y) ∈ W and t ∈ (µ(d(y, F (x))), ν(x, y)).

(v) F is metrically regular at a point (x̄, ȳ) ∈ gphF with functional modulus µ if
there exist neighbourhoods U of x̄ and V of ȳ such that

(4.5) d(x, F−1(y)) ≤ µ(d(y, F (x))) for all x ∈ U, y ∈ V.

(vi) F is open at (x̄, ȳ) ∈ gphF with functional modulus µ if there exist neigh-
bourhoods U of x̄ and V of ȳ such that

(4.6) y ∈ F (B(x, t)) for all x ∈ U, y ∈ V and t > µ(d(y, F (x))).

Remark 4.3. If µ is strictly increasing, then condition (4.6) can be rewritten
equivalently in a more conventional “openness-like” form (cf. [25]):

B(F (x), µ−1(t)) ∩ V ⊂ F (B(x, t)) for all x ∈ U and t > 0.

In the case W = U ×V , similar simplifications can be made also in parts (ii) and (iv)
of the above definition.

In the linear case, the metric regularity and openness/covering properties in the
above definition are very well known in both local and global settings (cf., e.g., [15,
22, 35, 43] including regularity on a set [22, 23]. The nonlinear setting in the above
definition follows Ioffe [25] where the properties in parts (iii) and (iv), were mostly
investigated in the particular case W = U × V where U ⊂ X and V ⊂ Y and the
function ν depends only on x.

Observe that condition (4.3) in Definition 4.2 is equivalent to

d(x, F−1(y)) ≤ µ(d(y, y′)) for all (x, y) ∈ W and y′ ∈ F (x).
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In its turn, condition y′ ∈ F (x) is equivalent to x ∈ F−1(y′). This and similar
observations regarding conditions (4.4) and (4.5) allow us to rewrite these conditions,
respectively, as follows:

d(x, F−1(y2)) ≤ µ(d(y1, y2)) for all y1, y2 ∈ Y, x ∈ F−1(y1) with (x, y2) ∈ W,

d(x, F−1(y2)) ≤ µ(d(y1, y2)) for all y1, y2 ∈ Y, x ∈ F−1(y1)

with (x, y2) ∈ W, µ(d(y1, y2)) < ν(x, y2),

d(x, F−1(y2)) ≤ µ(d(y1, y2)) for all y1 ∈ Y, y2 ∈ V, x ∈ F−1(y1) ∩ U.

Thanks to these observations, one can complement the regularity and openness
properties in Definition 4.2 with the corresponding Hölder-like (Aubin in the linear
case) properties.

In the definition below, µ : [0,+∞] → [0,+∞] is again an upper semicontinuous
nondecreasing function.

Definition 4.4.
(i) Given a set W ⊂ X×Y , mapping F is Hölder on W with functional modulus

µ if

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1, x2 ∈ X, y ∈ F (x1) with (x2, y) ∈ W.

(ii) Given a set W ⊂ X × Y and a function ν : W → (0,∞], mapping F is
ν-Hölder on W with functional modulus µ if

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1, x2 ∈ X, y ∈ F (x1)

with (x2, y) ∈ W, µ(d(x1, x2)) < ν(x2, y).

(iii) F is Hölder at a point (x̄, ȳ) ∈ gphF with functional modulus µ if there exist
neighbourhoods U of x̄ and V of ȳ such that

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1, x2 ∈ U, y ∈ F (x1) ∩ V.(4.7)

Thanks to Propositions 3.2, 3.8, 3.13 and the discussion before Definition 4.4, we
have the following list of equivalences.

Theorem 4.5. Suppose µ : [0,+∞] → [0,+∞] is an upper semicontinuous
increasing function.

(i) Given a set W ⊂ X×Y , properties (i) and (ii) in Definition 4.2 are equivalent
to F−1 being Hölder on

(4.8) W ′ := {(y, x) ∈ Y ×X | (x, y) ∈ W}

with functional modulus µ.
(ii) Given a set W ⊂ X × Y , properties (iii) and (iv) in Definition 4.2 are

equivalent to F−1 being ν′-Hölder on (4.8) with functional modulus µ, where
ν′ : W ′ → (0,∞] is defined by equality ν′(y, x) = ν(x, y).

(iii) Given a point (x̄, ȳ) ∈ gphF , properties (v) and (vi) in Definition 4.2 are
equivalent to F−1 being Hölder at (ȳ, x̄) with functional modulus µ.

Remark 4.6. Most of the equivalences in Theorem 4.5 hold true with function
µ nondecreasing. The assumption that µ is strictly increasing is only needed in part
(iii). In fact, it follows from the discussion before Definition 4.4, that properties (v)
and (vi) in Definition 4.2 are equivalent to a stronger version of the Hölder property



18 PHAN Q. KHANH, ALEXANDER Y. KRUGER, NGUYEN H. THAO

of F−1 which correspond to replacing condition (4.7) in Definition 4.4 by the following
one:

d(y, F (x2)) ≤ µ(d(x1, x2)) for all x1 ∈ X, x2 ∈ U, y ∈ F (x1) ∩ V.

If µ is strictly increasing, then the two versions are equivalent.
We next formulate several regularity criteria in the conventional setting of a map-

ping F : X ⇒ Y between metric spaces. All of them are consequences of the corre-
sponding statements in Section 3 thanks to the relationships in Proposition 4.1. From
now on, we assume that X is complete.

Theorem 4.7. Given a set W ⊂ X × Y , suppose that, for any (x, y) ∈ W , F−1

is closed at y and, for some γ > d(y, F (x)) and any t ∈ (0, γ), one of the following
sets of conditions is satisfied:

(i) there are sequences of positive numbers (bn) and (cn) and a function m :
(0,∞) → (0,∞) such that conditions (2.4) and (2.30) hold true and

d
(

x, F−1(B(y,m(c1)))
)

<b0,

d
(

u, F−1(B(y,m(cn+1)))
)

<bn

for all u ∈ F−1(B(y,m(cn))) ∩B(x,

n−1
∑

i=0

bi) (n = 1, 2, . . . ),

(ii) there are functions b,m : (0,∞) → (0,∞) such that condition (2.7) is satisfied
and, for any τ > 0 with µ(τ) ≤ µ(t), condition (2.8) holds true and

d
(

u, F−1(B(y, b(τ)))
)

< m(τ) for all u ∈ F−1(B(y, τ)) ∩B(x, µ(t) − µ(τ)),

(iii) there are functions b,m : (0,∞) → (0,∞) such that condition (2.7) is satisfied
and, for any τ > 0 with µ(τ) ≤ µ(t), condition (2.8) holds true and

d (y, F (B(u,m(τ)))) < b(τ) for all u ∈ F−1(B(y, τ)) ∩B(x, µ(t) − µ(τ)).

Then, F is metrically regular on W with functional modulus µ.
Theorem 4.8. Let µ be continuous, µ(τ) = 0 if and only if τ = 0. Given a set

W ⊂ X × Y , suppose that F is upper semicontinuous and, for any (x, y) ∈ W and
u ∈ X such that d(y, F (u)) > 0 and µ(d(y, F (u))) + d(u, x) ≤ µ(d(y, F (x))), there
exists a point u′ 6= u such that

µ(d(y, F (u′))) ≤ µ(d(y, F (u)))− d(u, u′).

Then, F is metrically regular on W with functional modulus µ.
Proof. By Theorem 3.5 and Proposition 4.1(i), (ii) and (vii), set-valued mapping

F is regular on W with functional modulus µ. Since F is upper semicontinuous, it
is closed-valued and consequently making use of Proposition 4.1(i) again, we have for
any y ∈ Y that F−1

0 (y) = F−1(y) = F−1(y). Hence, the regularity of F is equivalent
to the metric regularity of F .

5. Concluding remarks. This article considers a general regularity model for
a set-valued mapping F : X × R+ ⇒ Y , where X and Y are metric spaces. We
demonstrate that the classical approach going back to Banach, Schauder, Lyusternik
and Graves and based on iteration procedures still possesses potential. In particular,
we show that the Induction theorem [27, Theorem 1], which was used as the main
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tool when proving the other results in [27], implies also all the main results in the
subsequent articles [28, 29] and can serve as a substitution of the Ekeland variational
principle when establishing other regularity criteria. Furthermore, the latter classical
result can also be established as a consequence of the Induction theorem.

This research prompts a list of questions and problems which should be taken
care of.

1) “On a set” nonlinear regularity, considered in Section 3 and interpreted there
as a direct analogue of metric regularity in the conventional setting, is in fact a general
model which covers also relaxed versions of regularity like sub- and semi-regularity.

2) The particular case of “power nonlinearities”, i.e., the case when functional
modulus µ is of the type µ(t) = λtk with k ≥ 1, should be treated explicitly.

3) Theorem 2.12 illustrates the usage of the Induction theorem as a substitution
for the Ekeland variational principle when establishing regularity criteria like Theo-
rem 4.8. In the last theorem which is an (indirect) consequence of Theorem 2.12, the
mapping is assumed upper semicontinuous. This assumption can be relaxed with the
help of a slightly more advanced version of Theorem 2.12.
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[5] D. Azé, A unified theory for metric regularity of multifunctions, J. Convex Anal., 13 (2006),

pp. 225–252.
[6] J. M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl., 48

(1986), pp. 9–52.
[7] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Springer, New York, 2005.
[8] J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for openness

and regularity for set-valued and single-valued maps, J. Math. Anal. Appl., 134 (1988),
pp. 441–459.

[9] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons Inc., New York,
1983.

[10] R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions, Appl.
Math. Optim., 21 (1990), pp. 265–287.

[11] A. V. Dmitruk and A. A. Milyutin and N. P. Osmolovsky, Lyusternik’s theorem and the

theory of extrema, Russian Math. Surveys, 35 (1980), pp. 11–51.
[12] A. L. Dontchev, The Graves theorem revisited, J. Convex Anal., 3 (1996), pp. 45–53.
[13] A. L. Dontchev and A. S. Lewis and R. T. Rockafellar, The radius of metric regularity,

Trans. Amer. Math. Soc., 355 (2003), pp. 493–517.
[14] A. L. Dontchev and R. T. Rockafellar, Regularity and conditioning of solution mappings

in variational analysis, Set-Valued Anal., 12 (2004), pp. 79–109.
[15] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings. A View

from Variational Analysis, Springer, Dordrecht, 2009.
[16] H. Frankowska, An open mapping principle for set-valued maps, J. Math. Anal. Appl., 127

(1987), pp. 172–180.
[17] H. Frankowska, High order inverse function theorems, Ann. Inst. H. Poincaré Anal. Non
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