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Abstract

Background: Injuries are a leading cause of death and disability around the world. Injury incidence is often
associated with socio-economic and physical environmental factors. The application of geospatial methods
has been recognised as important to gain greater understanding of the complex nature of injury and the
associated diverse range of geographically-diverse risk factors. Therefore, the aim of this paper is to provide
an overview of geospatial methods applied in unintentional injury epidemiological studies.

Methods: Nine electronic databases were searched for papers published in 2000–2015, inclusive. Included
were papers reporting unintentional injuries using geospatial methods for one or more categories of
spatial epidemiological methods (mapping; clustering/cluster detection; and ecological analysis). Results
describe the included injury cause categories, types of data and details relating to the applied geospatial
methods.

Results: From over 6,000 articles, 67 studies met all inclusion criteria. The major categories of injury data
reported with geospatial methods were road traffic (n = 36), falls (n = 11), burns (n = 9), drowning (n = 4),
and others (n = 7). Grouped by categories, mapping was the most frequently used method, with 62 (93%)
studies applying this approach independently or in conjunction with other geospatial methods. Clustering/
cluster detection methods were less common, applied in 27 (40%) studies. Three studies (4%) applied
spatial regression methods (one study using a conditional autoregressive model and two studies using
geographically weighted regression) to examine the relationship between injury incidence (drowning,
road deaths) with aggregated data in relation to explanatory factors (socio-economic and environmental).

Conclusion: The number of studies using geospatial methods to investigate unintentional injuries has
increased over recent years. While the majority of studies have focused on road traffic injuries, other injury
cause categories, particularly falls and burns, have also demonstrated the application of these methods.
Geospatial investigations of injury have largely been limited to mapping of data to visualise spatial
structures. Use of more sophisticated approaches will help to understand a broader range of spatial risk
factors, which remain under-explored when using traditional epidemiological approaches.
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Review
Background
Injury is a leading preventable cause of death and disability
around the world (Peden et al. 2002). Previous epidemio-
logical studies have demonstrated that injury incidence is
often related to external socio-economic and physical envir-
onmental factors (Muller et al. 2005; Poulos et al. 2007).
Unlike many non-communicable health-related conditions,
the incidence of many injuries can also be directly linked to
specific places (e.g. body of water, road intersection, junc-
tions) (Dai et al. 2013; Lai et al. 2011; Zhang et al. 2015).
Therefore, to better understand injury causation, it is
important to account for the interplay between social and
environmental risk factors in relation to their geographic
(or spatial) distribution (Bell and Schuurman 2010). Geo-
graphic Information System (GIS) tools and geospatial ana-
lysis methods can be used to investigate these spatial risk
factors, which have been under-explored in traditional epi-
demiological studies (Beale et al. 2008; Ostfeld et al. 2005).
Geospatial methods have a long history of use in public

health, including for epidemiological research (Auchincloss
et al. 2012; Lawson 2001). Within this area, termed spatial
epidemiology, investigations can be characterised by three
broad categories of enquiry: (i) mapping; (ii) clustering/
cluster detection (hotspot analysis); and, (iii) ecological ana-
lysis (Elliott and Wartenberg 2004; Lawson 2001; Lawson
et al. 2016; Singh et al. 2015). These categories are interre-
lated, and may overlap in some cases, so they should not be
considered as distinct components (Elliot et al. 2000; Law-
son et al. 2016).

Category 1: mapping
Mapping has primarily been used to describe disease
incidence in a spatial context and subsequently, to for-
mulate aetiological hypotheses by identifying areas of
high-risk (Elliot et al. 2000; Lawson et al. 2000). The
choice of map depends largely on the spatial resolution
of the available data. In public health, this data tends to
be based on specific point features (e.g. residential ad-
dresses or coordinates of disease location) or aggregated
by areal features (e.g. state, county, local government
area or postcode.) To represent point data, a point map
is commonly used, in which each individual case is rep-
resented by a single point on a map relative to its geo-
graphic location (Waller and Gotway 2004). This is
useful when study aims include understanding how indi-
vidual cases are distributed across space. To represent
attribute information associated with individual cases,
other types of point maps can be used such as graduated
colour maps where a range of colours (e.g. blue to red)
indicate a progression of numeric values. Where areal
data is available, the choropleth map is commonly used,
in which different colour patterns are applied to regions
representing a class of values (Waller and Gotway 2004).

Other types of maps, such as classed symbol maps, are
less commonly used.
Most commonly, disease data is available as aggregated

summaries for areal features such as postcode, census
tract or counties (Beale et al. 2008). Statistical tech-
niques are then applied to estimate area level risks, and
those estimates are mapped to understand the spatial
distribution of risk. The most common summary mea-
sures of occurrence are frequency, incidence rates, stan-
dardised mortality ratio and relative risk (Beale et al.
2008). When counts or rates are large, their distributions
follow statistical assumptions inherent in linear models.
However, if the counts or rates are small, as is the case
in some areas, the application of appropriate smoothing
techniques are required to address the small number
problem (Waller and Gotway 2004).

Category 2: clustering/cluster detection
Clustering/cluster detection refers to the uncovering of
“unusual” aggregation of disease incidence (Fritz et al.
2013; Lawson 2001). These methods are applied to in-
vestigate how health outcome data relate spatially by
identifying: (i) the presence of any clusters, in which case
global (general, non-specific) methods are used; and, (ii)
the location of clusters in space, for which local (fo-
cused, specific) methods are used (Lawson 2001; Lawson
et al. 2016). Usually, global methods generate an
autocorrelation parameter that defines the nature of the
spatial pattern whereas local methods identify the
specific locations of clusters, also known as hotspots.
Many clustering/cluster detection methods have been
developed based on different statistical models specific
for point and/or areal features within the two broad cat-
egories of global and local (Fritz et al. 2013). Such
methods are underpinned by different statistical ap-
proaches, so each method could provide different clus-
tering/cluster results for the same set of data (Waller
and Gotway 2004).
A review that summarised the clustering/cluster detec-

tion methods most commonly applied in epidemiology
identified Diggle and Chetwynd’s bivariate K-function,
Mantel-Bailar’s test and the Potthoff-Whittinghill
method as the most preferred global methods and spatial
scan statistics as the most preferred local method
(Auchincloss et al. 2012). A more recent summary
reviewed cluster methods applied in epidemiology for
point data and identified that the K-function is the most
commonly used global method followed by methods
based on the nearest neighbour statistics such as nearest
neighbour index (NNI), nearest neighbour hierarchical
(NnH) and Cuzick Edwards test (Fritz et al. 2013). The
study also reported the most common local method to
be spatial scan statistics (Fritz et al. 2013). Other
methods have also been used in broader public health
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applications such as kernel density estimation, Moran’s
I, Local Indicator of Spatial Autocorrelation (LISA),
Getis Ord statistics, and Tango’s maximized excess
events test (Auchincloss et al. 2012; Fritz et al. 2013).
Each clustering/cluster detection method has its own
strengths and weaknesses and may not be appropriate to
all datasets because each dataset differs in spatial reso-
lution (point or areal), spatial coverage (area covered by
dataset) and spatial intensity (distribution of outcome of
interest) (Fritz et al. 2013; Waller and Gotway 2004).

Category 3: ecological analysis
Ecological analyses examine the spatial distribution of
disease incidence in relation to explanatory factors
(Lawson et al. 2016). These types of studies use spatial
statistical models to investigate the relationship between
exposures and disease at an aggregate level (Elliot et al.
2000; Lawson et al. 2016). Importantly, traditional statis-
tical models may not be appropriate for the analysis of
spatially dependent data because of their inability to ad-
dress or account for spatial autocorrelation and/or
spatial heterogeneity. Spatial regression models have
therefore been developed under both frequentist and
Bayesian approaches, with common methods used in
epidemiological studies being Conditional Autoregres-
sive Models (CAR), Geographically Weighted Regression
(GWR) and the Besag York and Molliè (BYM) approach
(Auchincloss et al. 2012; Chaney and Rojas-Guyler 2016;
Rezaeian et al. 2007). These methods differ in their
complexity of computation, approach towards capturing
spatial heterogeneity, and in how they quantify the uncer-
tainty associated with parameter estimates (Auchincloss
et al. 2012).

Aim of the review
While the principles of geospatial analysis have broad
relevance to injury epidemiology, their application to in-
jury data is still relatively novel (Bell and Schuurman
2010; Cusimano et al. 2007; Singh et al. 2015). One pos-
sible reason for this could be that geospatial analysis re-
quires spatially referenced health and determinant data
at a population level (Beale et al. 2008; Bell and Schuur-
man 2010). With widespread use of global positioning
system (or GPS) technologies over the past decade, these
data have become increasingly available and can now be
linked to injury data sets. In addition, wider accessibility
to GIS for the management, analysis and presentation of
spatial data has also increased in the last decade, with
capability now (at least partially) incorporated into
standard statistical software (e.g. STATA (StataCorp
2015)) or available through open source platforms (e.g.
QGIS (QGIS 2015), GeoDa (Anselin et al. 2006), SatScan
(Kulldorff et al. 1998), CrimeStat (Levine 2000)). Given
the increase in availability of both spatially-referenced

injury data and GIS software, it is timely to consider
how and when geospatial methods have been applied to
injury epidemiology studies.
A previous review summarised the history of GIS in

relation to injury prevention (Bell and Schuurman 2010),
but that review did not include details about the actual
geospatial methods used in the published literature.
Therefore, the aim of this study is to summarise the ap-
plication of geospatial methods to unintentional injury
as found in epidemiological studies published since
2000. The focus is on the type of analysis and/or data
representation approach used, rather than on the injury
incidence estimates per se. The intention is for these
new review findings to help inform future research
agendas in injury prevention.

Methods
The publication search was guided by the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Additional file 1)
(Moher et al. 2009). As the aim was to summarise
the geospatial analysis methods reported in each
study, some items of the PRISMA statement were not
applicable (e.g. there was no formal assessment of risk
of bias), nor was a quality assessment of the reviewed
studies undertaken given the focus was on the
adopted analysis methods only.

Search strategy
The focus of the review was restricted to unintentional
injury studies given the strong link between the occur-
rence of such events and a specific single geographic lo-
cation (e.g. a road intersection, body of water). A
comprehensive list of MeSH terms and free text key-
words relating to geospatial methods and unintentional
injury incidence were used to develop a search strategy
(Additional file 2). Nine electronic databases were
searched: Medline, Academic Search Complete, CINAHL
Complete, Engineering Source, GeoRef, Health Source:
Nursing/Academic Edition, PsycINFO, SPORT Discus
with Full Text, Web of Science.

Study selection and eligibility
Standardised inclusion and exclusion criteria were for-
mulated (Additional file 2) and independently applied by
two authors to scan the title and abstract of all search
results. Any publication deemed potentially eligible was
included for full text review.
Full text review determined if studies investigated un-

intentional injuries using geospatial methods to address
one or more of the following aims:

a) To describe the geographical/spatial variation of
injury incidence;
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b) To test for clustering or to identify clusters;
c) To address aetiological questions (provide aetiologic

cues about the relationship between the spatial
distribution of injury incidence and explanatory
factors at the aggregate level).

There was a large number of studies initially included
that were subsequently identified as not reporting injury
data. In particular, there were a large number of road
transport studies that reported data in terms of crashes,
collisions or accidents rather than reporting the fre-
quency or rate of the injuries sustained during such
events (Blazquez and Celis 2013; Zhang et al. 2015).
Only studies where injuries were clearly identifiable were
retained (as opposed to those with a focus on potential
injury-causing events). Original peer-review studies,
published in 2000 to 2015, were included.
Studies that investigated intentional injuries, such as

suicides or violence, were not included. We have excluded
studies focused on assessing spatial access to trauma
centres because our aim is to summarise methods used
for epidemiological investigation rather than those associ-
ated with healthcare resource planning.

Data extraction
Descriptive data from each study was extracted by the
first author (Additional file 3). Where information was
unclear or inconsistent, it was discussed with co-authors
until agreement was reached on an outcome. The ex-
tracted data and definition of terms sought from each
study were:

a) First author and year of publication: to identify
specific studies and to assess the use of geospatial
methods over time.

b) Injury causes: to categorise each study as being
focussed on one or more of the following external
cause categories—road traffic, falls, drowning,
burns, poisoning, natural disasters, and others
(including combined causes).

c) Data coverage: to identify the source of the data and
its geographic location.

d) Name of the GIS package used to analyse the
spatial data.

e) Study classification: Studies were classified into
one or more of the three broad categories of
spatial epidemiological approaches, and relevant
details of the methods applied in each category
were extracted.

1) Mapping studies: To be classified in this category,
studies had to report one or more maps
representing raw injury data or results derived
from statistical models applied to that injury
data for descriptive purposes. The information

extracted from each paper included data relevant
to the type of map (e.g. point, choropleth,
classed symbol), the summary measure considered
(e.g. incidence rates, standardised mortality ratio)
and any smoothing technique (e.g. empirical Bayes
method, BYM) applied.

2) Clustering/cluster detection studies: To be included
in this category, studies had to apply one or more
methods to the injury data to test for clustering
(as a measure of spatial autocorrelation or spatial
heterogeneity or spatial dependency) or to identify
clusters (also known as hotspots). Information
regarding each method in terms of its spatial
resolution (point or areal), and approach
(global or local) were extracted.

3) Ecological studies: To be classified in this category,
studies had to apply one or more spatial regression
methods to address aetiological questions with
the question clearly stated in the study objective.
The applied method, as well as the dependent and
type of explanatory variables used in the analysis,
were extracted.

Analysis of extracted data
Studies were grouped by injury cause categories,
publication year and geospatial analysis approach/es.
Summaries of the extracted data were tabulated and
summarised in text.

Results
From more than 6,000 publications identified, 67 studies
met all criteria for inclusion (Fig. 1).

Fig. 1 Flowchart of selection process for studies that applied geospatial
methods to investigate unintentional injuries
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The majority of studies were concerned with road traf-
fic injuries (n = 36) (Chakravarthy et al. 2010; Cinnamon
et al. 2011; DiMaggio 2015; Dissanayake et al. 2009;
Durkin et al. 2005; Eksler and Lassarre 2008; Eksler
et al. 2008; Erdogan 2009; Haynes et al. 2005; Haynes et
al. 2008; Hijar et al. 2003; Hosking et al. 2013; Hu
et al. 2008; Huff et al. 2012; Jones et al. 2008; La Torre
et al. 2007; Lassarre and Thomas 2005; Lateef 2011;
Lawrence et al. 2015; Mohan et al. 2015; Morency and
Cloutier 2006; Nagata et al. 2011; Nunes and Nascimento
2012; Nunn and Newby 2015; Paulozzi 2006; Poulos et al.
2012; Razzak et al. 2011; Schuurman et al. 2009; Silva
et al. 2011; Slaughter et al. 2014; Spoerri et al. 2011; Statter
et al. 2011; Sukhai et al. 2009; Unni et al. 2012; Weiner
and Tepas 2009; Yan-Hong et al. 2006). Other studies
considered falls (n = 11) (Bamzar and Ceccato 2015; Chan
et al. 2012; de Pina et al. 2008; Dey et al. 2010; Lai et al.
2009a; Lai et al. 2009b; Lai et al. 2011; Morency et al.
2012; Towne et al. 2015; Turner et al. 2009; Yiannakoulias
et al. 2003), burns (n = 9) (Edelman et al. 2010; Fouillet
et al. 2006; Goltsman et al. 2014; Harlan et al. 2013; Heng
et al. 2015; Mian et al. 2014; Niekerk et al. 2006; Stylianou
et al. 2015; Williams et al. 2003), drowning (n = 4) (Dai
et al. 2013; Maples and Tiefenbacher 2009; Sharif et al.
2012; Shenoi et al. 2015), occupational (n = 2) (Breslin
et al. 2007; Forst et al. 2015), aviation-related (n = 2) (Gra-
bowski et al. 2002a, 2002b), poisoning (n = 1) (Nkhoma
et al. 2004), natural disaster (n = 1) (Peek-Asa et al. 2000)
and dog-bite (n = 1) (Raghavan et al. 2014).

Adopted geospatial analysis approaches
Mapping was the most common approach applied to the
geospatial data, being reported in 93% (n = 62) of the in-
cluded publications. Clustering or clustering detection
methods were used in 40% (n = 27) and spatial regres-
sion methods for ecological analysis were applied in only
4% (n = 3) of studies. As Table 1 shows, some studies
used >1 approach, so the percentage of studies using

each approach does not sum to 100%. The majority of
studies (n = 46, 67%) reported only one analysis ap-
proach, most commonly mapping, but 18 (27%) used
two approaches and three (4%) studies reported all
approaches.
The year of publication for the included studies,

overall and by combination of categories, is pre-
sented in Fig. 2. There was an overall trend towards
increased use of geospatial methods, especially clus-
tering, since 2008, demonstrated by the increasing
number of studies that applied both mapping and
clustering/cluster detection methods.

Mapping studies
Of the 62 studies identified as using mapping (Table 2),
the injury cause categories most frequently investigated
were road crashes (n = 33), falls (n = 10), burns (n = 9),
drowning (n = 4), occupational (n = 2), aviation-related
(n = 2), dog-bite (n = 1) and natural disaster (n = 1). Of
the mapping studies, 15 studies presented dot maps of
specific injury locations, 50 studies presented summary
measures of aggregated data in choropleth (n = 47) and
classed symbol (n = 3) maps. Three of the included
studies presented two types of maps (dot and choro-
pleth) so the sum of this group is not equal to the
total number of studies (n = 65 types of maps, n = 62
studies). The choropleth and classed symbol maps
represented different types of summary measures: in-
cidence rate (n = 27), relative risk (n = 10), frequency
(n = 8), and standardised mortality ratios (n = 6). One
study mapped more than one summary measure,
namely, incidence rate and relative risk (Williams
et al. 2003), so again, the sum by summary measures
(n = 48) does not equal the total number of studies
(n = 47) presented choropleth maps.
Table 2 summarises the types of maps and summary

measures within the included studies. Most studies
presented multiple maps as figures within the manu-
script, representing the different variables under in-
vestigation. In thirteen studies, different smoothing
techniques were applied to address small number
problem. Methods used were an empirical Bayes
model (n = 5) (de Pina et al. 2008; Erdogan 2009;
Lassarre and Thomas 2005; Silva et al. 2011;
Yiannakoulias et al. 2003), Bayesian model (n = 4)
(Eksler and Lassarre 2008; Eksler et al. 2008; Turner
et al. 2009; Williams et al. 2003), BYM (n = 3)
(DiMaggio 2015; Heng et al. 2015; Poulos et al. 2012)
and Poisson regression model (n = 1) (Spoerri et al.
2011). The most commonly used empirical Bayes
method (Clayton and Kaldor 1987) determines the
extent of smoothing from the underlying structure of data
including the crude standardised mortality ratio, its preci-
sion and the underlying relative risk distribution. In

Table 1 Number of studies (n = 67) across the three categories:
mapping, clustering/cluster detection and ecological analysis

Spatial epidemiological approach categories Total
studiesMapping Clustering/cluster

detection
Ecological
analysis

Mapping only √ - - 41

Cluster only - √ - 5

Mapping/cluster √ √ - 18

All categories √ √ √ 3

67a

Total approachesa 62 27 3 92a

aThe total number of approaches (n = 92) is not equal to the total number of
studies (n = 67) because some studies applied multiple approaches
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contrast, the BYM approach (Besag et al. 1991) takes into
account both spatial effects (spatial dependency) and het-
erogeneous effects (spatial independence) to estimate
smoothed rates.

Clustering/cluster detection studies
Table 3 summarises the characteristics of the clustering
(global) or cluster detection (local) methods that were
applied in 27 studies. Overall, the injury cause categories
investigated were road traffic accidents (n = 15), falls
(n = 6), burns (n = 2), drowning (n = 2), occupational
(n = 1) and poisoning (n = 1). In total, eight different
clustering/cluster detection methods were used, with
13 studies using >1 method. Four methods (NNI,
NnH, Moran’s I, Geary’s c) were applied to test for cluster-
ing and four methods (Kernel Density Estimation (KDE),
spatial scan statistics, LISA and Getis Ord statistics) were
applied to identify clusters or hotspots.
The most frequently used hotspot analysis method for

point data (n = 10 studies) was KDE (considered to be a
cluster detection method because of its ability to provide
evidence of hotspots) which is mostly used for explora-
tory analysis of hotspots through a density map. The
strength of KDE is that it provides evidence of hotspots
in the visual form but the results of KDE methods are
largely dependent on the bandwidth (search radius) par-
ameter settings. (Fritz et al. 2013) This method was most
commonly used in road traffic injuries (n = 7) followed

Fig. 2 Application of geospatial analysis methods to unintentional injury data since 2000 (n = 67 studies)

Table 2 Number of studies presenting injury maps and the
type of measure represented (n = 62 studies)

Type of map

Dot Choropleth Classed symbol

Injury cause categories

Road traffic (n = 33) 10 24 1

Falls (n = 10) 3 6 1

Burns (n = 9) - 8 1

Drowning (n = 4) 1 3 -

Occupational (n = 2) - 2 -

Aviation-related (n = 2) - 2 -

Natural disasters (n = 1) 1 1 -

Dog-bite (n = 1) - 1 -

Total number of studiesa 15 47 3

Summary measures

Incidence rates - 27 -

Relative risk - 10 -

Standardised mortality ratio - 6 -

Frequency or count 15 5 3

Total number of studiesb 15 48 3
aSome studies reported more than one type of map, so the sum is not equal
to n = 62. bOne study reported choropleth maps with two summary measures,
so the sum is not equal to n = 47
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by falls (n = 2) and drowning (n = 1). A commonly used
clustering method for point data was NnH (n = 4), which
determines clusters as standard deviational ellipses based
on model parameters such as the specified threshold dis-
tance and minimum number of points to be included.
The most commonly applied method for aggregated

data to test for spatial autocorrelation (n = 13 studies)
was Moran’s I (Moran 1950) for which a value >1 indi-
cates presence of spatial autocorrelation. Widely applied
hotspot analysis methods for aggregated data, namely
the LISA and Getis Ord statistics, were applied in four
and five studies respectively (Chaney and Rojas-Guyler
2016; Jerrett et al. 2010). Spatial scan statistics, the most
common method in broader epidemiological studies
(Auchincloss et al. 2012), was applied in four studies with
rarer injury events such as poisoning, occupational or
work-related injuries. The strength of spatial scan statistics
includes their ability to adjust for confounding variables,
population densities and more importantly multiple test-
ing (Auchincloss et al. 2012; Kulldorff 1997).

Ecological studies
Three studies applied spatial regression methods to
address aetiological questions. Spatial autoregressive
models based on CAR (n = 1) and GWR (n = 2) frequen-
tist approaches were applied to investigate social and en-
vironmental factors associated with road traffic mortality
(Erdogan 2009) and drownings (Dai et al. 2013; Shenoi
et al. 2015). One of the drowning studies (Shenoi et al.
2015) applied a CAR spatial regression model to

estimate the influence of sociodemographic and environ-
mental variables (e.g. ethnicity, number of pools by sin-
gle family and multi-family buildings) on the number of
childhood swimming pool submersions. Similarly, GWR
was applied in another study (Dai et al. 2013) to investi-
gate the influence of social and physical characteristics
(e.g. housing density, number of pools, open water bod-
ies, median income) and drowning densities. The road
traffic mortality study (Erdogan 2009) applied GWR to
investigate relationships between neighbourhood charac-
teristics (e.g. length of roads, number of different types
of vehicles) and death rates. The common rationale be-
hind the use of spatial regression methods is to minimise
the effect of spatial autocorrelation, as was illustrated by
the included studies. A particular advantage of the GWR
approach is that it is a local regression technique that al-
lows aetiological relationships to vary from location to
location, making it easier to interpret the results (Bruns-
don et al. 1998).

Discussion
Geospatial methods are valuable for understanding in-
jury outcomes because they can be used to recognise
patterns of occurrence, identify priority areas for pre-
vention measures and provide more accurate model-
ling of clustered data that is inherently correlated
(Cromley and McLafferty 2011; Ostfeld et al. 2005).
While the benefits of geospatial methods have been
widely known in broader public health applications
for disease surveillance and data exploration in a

Table 3 Applied cluster detection methods according to spatial resolution and global/local estimation (n = 27 studies)

Method Spatial
resolution

Global/
local

Total
studiesa

Injury category
(number of studies)

References

Kernel density
estimation

point local 10 Road traffic (n = 7)
Falls (n = 2)
Drowning(n = 1)

(Cinnamon et al. 2011; Dai et al. 2013; Lai et al. 2009b; Lai et al. 2011;
Lawrence et al. 2015; Morency and Cloutier 2006; Nagata et al. 2011;
Schuurman et al. 2009; Slaughter et al. 2014; Weiner and Tepas 2009)

Nearest neighbour
hierarchical

point global 4 Falls (n = 3)
Drowning (n = 1)

(Lai et al. 2009a; Lai et al. 2009b; Lai et al. 2011; Shenoi et al. 2015)

Nearest neighbour
index

point global 1 Road traffic (n = 1) (Nunn and Newby 2015)

Spatial scan statistics point or
areal

local 4 Falls (n = 2)
Occupational (n = 1)
Poisoning(n = 1)

(Dey et al. 2010; Forst et al. 2015; Nkhoma et al. 2004; Yiannakoulias
et al. 2003)

Moran’s I areal global 13 Road traffic (n = 8)
Falls (n = 1)
Burns (n = 2)
Drowning (n = 1)
Occupational (n = 1)

(de Pina et al. 2008; Erdogan 2009; Forst et al. 2015; Goltsman et al. 2014;
Heng et al. 2015; Jones et al. 2008; Lassarre and Thomas 2005; Lawrence
et al. 2015; Nunes and Nascimento 2012; Nunn and Newby 2015; Poulos
et al. 2012; Shenoi et al. 2015; Silva et al. 2011)

Geary’s c areal global 2 Road traffic (n = 2) (Erdogan 2009; Lassarre and Thomas 2005)

Local indicators of
spatial association

areal local 5 Road traffic (n = 3)
Drowning (n = 1)
Falls (n = 1)

(Dai et al. 2013; de Pina et al. 2008; Erdogan 2009; Nunes and
Nascimento 2012; Nunn and Newby 2015)

Getis Ord statistics areal local 4 Road traffic (n = 3)
Burn (n = 1)

(Erdogan 2009; Goltsman et al. 2014; Slaughter et al. 2014;
Statter et al. 2011)

atotal number of studies by injury category is not equal to (n = 27) because some studies applied more than one method in a single study
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spatial context (Auchincloss et al. 2012; Martinez
et al. 2016; Rezaeian et al. 2007), this review shows
that their use in the context of investigating uninten-
tional injuries has been far less common.
Road traffic injuries were the most common category

of injury causes investigated through geospatial methods.
A possible reason for this could be the long-standing
and well-managed injury surveillance systems for road
traffic injuries that routinely collect data on the precise
location of injury (e.g. specific road intersections). In
addition, because there is a well-recognised and significant
public health burden from these injuries, especially for
fatal cases, they have long been a high priority for injury
data systems development and prevention (Ameratunga
et al. 2006). Outside of road traffic injuries, the use of
geospatial methods has been more limited, mainly used in
research of falls, burns and drowning injuries. This might
be because of low counts of these injuries in a spatial con-
text. There were some injury cause categories that were
notable for their absence in the published spatial epidemi-
ology injury studies, including injuries associated with
sport and recreation, an area that could be expanded
through future research.
Over the past 15 years, there appears to have been an

increasing application of geospatial methods for investi-
gating unintentional injuries, demonstrated by the grow-
ing number of published studies using these methods,
particularly since 2008. This is likely due to recent ad-
vancements in geospatial methods and the development
of GIS, which has now made it possible to capture, store,
manipulate, analyse, manage and present all types of
spatial or geographical data (Fotheringham and Rogerson
2013). It may also reflect the increased availability of rou-
tinely collected injury and determinant data that includes
a spatial reference, as is now common from government
and private organisations.
This review has demonstrated that mapping has been

by far the most common spatial analysis approach
adopted in injury epidemiological studies. Maps offer the
advantage of presenting a clear visual representation of
data showing regional or spatial variation in burden or
injury risk (Martinez et al. 2016). Maps of standardised
mortality ratios, relative risks or other similar statistical
measures presented in the reviewed literature are useful
for describing the spatial pattern of injury risk. However,
basic mapping approaches may misrepresent spatial
patterns because estimated standardised mortality ratios
or other similar statistical measures do not take into ac-
count varying population sizes resulting in apparently
large standardised mortality ratios in areas with small
populations (Clayton and Kaldor 1987; Lawson et al.
2000). To some extent, this problem can be addressed
by applying smoothing models to the risk estimates that
take the overall distribution of rates into account

(Rezaeian et al. 2007). Widely accepted models such as
the empirical Bayes (Clayton and Kaldor 1987) and BYM
(Besag et al. 1991) methods, were applied in very few of
the included studies that involved small geographic areas
with few cases (de Pina et al. 2008; DiMaggio 2015;
Heng et al. 2015; Lassarre and Thomas 2005; Silva et al.
2011; Yiannakoulias et al. 2003).
It is fundamentally important that injury epidemio-

logical studies begin to define spatial patterns statisti-
cally to determine whether observed clustering patterns
occur by chance, or if there are statistically significant
clusters that require further investigation (Pfeiffer et al.
2008). Many clustering/cluster detection methods have
been developed over the past two decades based on dif-
ferent statistical approaches such as distance based,
nearest neighbour, and scanning local rates for point and
aggregated data (Auchincloss et al. 2012; Fritz et al.
2013). Our review identified that, in the context of unin-
tentional injury research, very few clustering methods
have been applied. Nonetheless, it is evident that the ap-
plication of these methods has increased over the last
eight years, mostly for road traffic injuries, but also falls
and drowning. The statistical method regarded as having
the best statistical power Tango’s maximized excess
events tests (Pfeiffer et al. 2008) has yet to be applied in
the context of unintentional injuries. Compared to their
application in broader public health studies, other
methods such as K-functions and spatial scan statistics
were also not common in injury studies.
There were differences apparent in the choice of

geospatial methods for clustering/cluster detection in
unintentional injury studies when compared to broader
public health research, suggesting that unintentional in-
juries might be different in terms of their spatial con-
texts and, hence, need to be treated differently. It is
beyond the scope of this particular review to assess this
more formally, but it is certainly worthy of future re-
search attention. There are no established guidelines to
suggest which method is most appropriate for what type
of injury data. Largely, it appears the choice of method
is dependent on what has been readily integrated into
common GIS packages. Each clustering/cluster detection
method will produce a different result for the same data-
set and that result will also vary based on parameter set-
tings (Fritz et al. 2013). This means that identifying the
appropriate method along with parameter settings for a
particular dataset is challenging and requires multiple
testing. Further research in this area would be a valuable
contribution.
Health outcome data routinely collected by private

and government agencies is often only available as ag-
gregated summaries for well-defined geographic areas.
In such cases, spatial inferences can be made at the
aggregated level in relation to socio-economic and
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environmental risk factors for clues to aetiology (Beale
et al. 2008). The increasing availability of routinely col-
lected injury data in the form of aggregated summaries
lends itself to potential opportunities for ecological stud-
ies (Beale et al. 2008). Statistical challenges for this type
of analysis include taking into account variability and
potential error in rates, due to unequal population distri-
butions and spatial autocorrelation (Elliot et al. 2000).
The included studies that applied spatial regression tech-
niques demonstrated how these methods can help to ad-
dress statistical challenges associated with aggregated
data by geographical regions (Dai et al. 2013; Erdogan
2009; Shenoi et al. 2015). These studies also analysed a
diverse range of factors (e.g. neighbourhood, environ-
mental characteristics) which may not be possible to as-
sess at an individual level.
Geospatial methods play an important role in under-

standing the influence of complex social environments
on injury outcomes that will help to develop population
level injury prevention strategies (Bell and Schuurman
2010). In addition, they can help to identify which popu-
lations/sub-groups are consistently at greater (or lower)
risk to inform the targeting of prevention efforts in those
areas. This review has demonstrated that there is a
move towards the use of more sophisticated geospa-
tial methods from more traditional perspectives with
the increasing availability in health and determinant
data and also advances in GIS and other technologies.
Continued advancement in this area would be well
served by a detailed review of the quality of the geo-
spatial methods currently adopted in injury epidemio-
logical studies.

Limitations of this review
A large number of the considered studies in the initial
data selection phase investigated crash, collision or acci-
dent data without referring specifically to any injury in-
cidence data. Some of these studies also appeared to
have used the terms crash/collision/accident and injury
interchangeably. This made it challenging to identify the
studies that investigated injury data specifically. To ad-
dress this, decisions to exclude a study were made only
after agreement by two authors to help reduce the po-
tential of excluding a publication in error.
In the reviewed literature, different terms were used to

describe the application of geospatial methods in epi-
demiological studies (e.g. spatial epidemiology, spatial
analysis, geographical variation, mapping, and geograph-
ical epidemiology). There is a possibility that some rele-
vant keywords (eg. space-time) were missed in the
search strategy because of the multidisciplinary nature
of this area and the use of many colloquial words by
those who work in the area. Moreover, it is possible that
searching of other databases, such as the transport

research international documentation, may have identi-
fied some additional relevant papers. However, given the
extensive study selection process the studies identified
are likely to be a highly representative sample of papers
published in this area. If papers were missed, they are
most likely from the category 1 studies (i.e. mapping of
descriptive data), with no clear methodology indicating
application of spatial methods. There is less likelihood
that a study from category 2 or 3 (cluster or ecological
methods) will have been missed, as authors of those
studies would likely use the more familiar terminology
in formal publications. Therefore, the major findings are
unlikely to be influenced by any missed publications.
It should be noted that although we have categorised

the studies into three distinct categories of spatial
epidemiological approaches, this was to simplify the
presentation of these results and understanding by a
non-technical audience. In reality, these categories occur
more along a continuous process rather than as discrete
steps (Colantonio et al. 2011; Elliott and Wartenberg
2004; Lawson et al. 2016). Many studies used multiple
categories and methods and the boundaries between
them were not always clear. For example, the most com-
prehensive studies began by mapping raw data, further
explored the data using one or more cluster detection
methods and then applied one or more spatial regression
methods to understand the relationship with predictor
variables (Dai et al. 2013; Shenoi et al. 2015).
The aim of this review has been to provide an over-

view of the types of geospatial methods applied to unin-
tentional injury epidemiological studies. This study does
not provide detail of the analytical processes or steps in-
volved in cluster detection or the spatial regression
methods identified. The interested reader is advised to
consult key references for specific methods that have
been presented throughout the paper (including (Anselin
1995; Brunsdon et al. 1998; Fritz et al. 2013; Getis and
Ord 1992; Kulldorff 1997; Marshall 1991).

Conclusions
This review has demonstrated that the application of
geospatial methods to investigations of unintentional
injuries has increased over recent years, but is still
relatively uncommon. The majority of studies applying
geospatial methods have focused on road traffic injur-
ies. However, other injury cause categories, particu-
larly falls and burns, have also started to make use of
geospatial methods in recent years. Mapping was the
most commonly used approach for visual display of
injury incidence rates. Where applied, cluster detec-
tion methods have identified statistically significant
spatial dependency within the injury data under inves-
tigation. In such cases, the use of spatial regression
techniques are needed to minimise the effect of
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spatial autocorrelation. Geospatial methods are rapidly
emerging as an accessible tool for injury researchers
to better understand complex injury aetiology but to
date, few authors have made use of their full potential
in the major injury cause categories.
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