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OPTIMAL REES MATRIX CONSTRUCTIONS FOR
ANALYSIS OF DATA

A.V. KELAREV, J.L. YEARWOOD and LIFANG ZI

(October 2, 2011)

Abstract

Rees matrix semigroups and max-plus algebras are well known in the literature and have
many useful applications. The present article introduces a novel construction defined by
the Rees matrix semigroups and max-plus algebras. This new construction turns out very
convenient for generating sets of centroids motivated by their applications in analysis of
data for the design of centroid-based classifiers and clusterers, as well as for the design
of multiple classifiers and clusterers combining several individual initial classifiers and
clusterers. Our article gives a complete description of all optimal sets of centroids for all
Rees matrix semigroups without any restrictions on the sandwich-matrices.

2010 Mathematics subject classification (Amer. Math. Soc.): Primary: 20M25, secondary:
62H30.
Keywords and phrases: Rees matrix semigroups, sets of centroids, classification and clus-
tering.

1. Introduction

Rees matrix semigroups and max-plus algebras have many useful appli-
cations and are well known, see [1] and [9]. The present paper introduces
a new construction combining Rees matrix semigroups and max-plus alge-
bras. This construction turns out very convenient for generating the sets of
centroids motivated by their applications in analysis of data for the design
of centroid-based classifiers or clusterers, as well as for the design of multiple
classifiers and clusterers combining several individual initial classifiers and
clusterers. In this paper we have managed to describe all optimal sets of
centroids in the general case of arbitrary Rees matrix semigroups without
any restrictions on the sandwich-matrices.

The paper is organised as follows. Necessary background information
is included in Section 2. An overview of applications of the Rees matrix
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constructions in classification and clustering for analysis of data is provided
in Section 3 as a motivation for research. The main result of this paper
is Theorem 4.1 in Section 4, which completely describes all optimal sets of
centroids. Proofs are given in Section 5.

2. Preliminaries

Let us begin with concise preliminaries on Rees matrix semigroups re-
quired for our main theorem. Rees matrix semigroups and associated notions
of completely 0-simple semigroups and Rees quotients are very well known
in semigroup theory and play crucial roles in describing the structure of
semigroups and in proofs, see [9]. For examples of recent results, let us also
refer to [4, 10, 11, 12].

Suppose that G is a group, I and Λ are nonempty sets, and e is the
identity of G. As usual, we denote by G0 = G ∪ {θ} the group G with
zero θ adjoined in a standard fashion. Let P = [pλi] be a (Λ× I)-matrix
with entries pλi ∈ G0, for all λ ∈ Λ, i ∈ I. The Rees matrix semigroup
M0(G; I,Λ;P ) over G with sandwich-matrix P consists of all triples (g; i, λ),
where i ∈ I, λ ∈ Λ, and g ∈ G0, where all triples (θ; i, λ) are identified with
θ, and where multiplication is defined by the rule

(g1; i1, λ1)(g2; i2, λ2) = (g1pλ1i2g2; i1, λ2). (1)

If G is a group, M = M0(G; I,Λ;P ), and i ∈ I, λ ∈ Λ, then we use
standard notation for the following sets

G∗λ = {(g; i, λ) : g ∈ G, i ∈ I},
Gi∗ = {(g; i, λ) : g ∈ G,λ ∈ Λ},
Giλ = {(g; i, λ) : g ∈ G}.

Further, let S be a subset of the Rees matrix semigroup M0(G; I,Λ;P ). The
following notation will be used. For any i, λ ∈ I, set

Siλ = S ∩Giλ,
S∗λ = S ∩G∗λ,
Si∗ = S ∩Gi∗.

Also, for any subsets X ⊆ I, Y ⊆ Λ, we put

SX∗ = ∪i∈XSi∗,
S∗Y = ∪λ∈Y S∗λ.

We assume that S∅∗ = S∗∅ = ∅. Notice that θ never belongs to any of these
sets above. For any subset X of T , we put X0 = X ∪ {θ}.
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The max-plus algebra is the set R ∪ {−∞} with two binary operations,
max and +. It is very important in the investigation of discrete event sys-
tems, see [1]. The max-plus algebra is also sometimes called the schedule
algebra, see [8]. Our main results remain valid in the more general case of
all idempotent semifields, and so we record them in this setting.

A semiring is a set F with two binary operations, addition + and mul-
tiplication ·, such that the following conditions are satisfied:

(S1) (F,+) is a commutative semigroup with zero 0,

(S2) (F, ·) is a semigroup,

(S3) multiplication distributes over addition,

(S4) zero 0 annihilates F , i.e., 0 · F = F · 0 = 0.

It is also often assumed that every semiring satisfies the additional property

(S5) (F, ·) has an identity element 1.

In this paper we consider more general semirings, which do not have to
satisfy (S5), since such more general terminology adds the convenience of
allowing us to consider more general subsets as subsemirings without as-
suming that all subsemirings contain the identity element. In analogy with
a similar situation in ring theory, we then call every semiring satisfying (S5)
a semiring with identity element. Both terminologies are essentially equiv-
alent, since it is always easy to adjoin an identity element in a standard
fashion to every semiring that does not have one. Originally, our investiga-
tion of semirings was motivated by the development of methods useful for
duality theory see [3, 6].

A semiring F is said to be idempotent if x + x = x for all x ∈ F . If
the set of nonzero elements of a semiring F forms a group with respect to
multiplication, then F is called a semifield.

Let F be a semiring, and let S be a semigroup. The semigroup semiring
is denoted by F [S] and is defined as the set

F [S] =

{
n∑
i=1

fisi

∣∣∣∣∣ fi ∈ F, si ∈ S, n ∈ N

}

where N stands for the set of all positive integers, and where addition and
multiplication are defined by the associative and distributive laws and the
rules ∑

s∈S
fss+

∑
s∈S

f ′ss =
∑
s∈S

(fs + f ′s)s, (2)

(∑
s∈S

rss

)(∑
t∈S

r′tt

)
=
∑
s,t∈S

(rsr
′
t)st. (3)
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If S has a zero θ, then a contracted semigroup semiring is denoted by F0[S]
and is defined as the quotient semiring of F [S] modulo the ideal Fθ. Notice
that if S has no zero, then S0 stands for the semigroup S ∪ {θ} with zero θ
adjoined; and F [S] is isomorphic to F0[S0]. If S is a semigroup without zero,
then we also let F0[S] = F0[S0] ∼= F [S]. Contracted semigroup semirings
enable us to formulate main results more concisely. We refer to [7, 13, 14,
15, 16, 17, 18, 19] for examples of results using these constructions and other
areas where they are used.

3. Motivation

The design of efficient classifiers and clusterers is very important in data
mining, see [20]. Rees matrix semigroups can be used in order to generate
convenient sets of centroids for centroid-based clusterers and to design com-
bined multiple clusterers capable of correcting the errors of individual initial
clusterers.

The clustering process begins with feature extraction and representation
of data in a standard vector space Fn, where n ∈ N and where F can
be regarded as a semifield. Every centroid-based clusterer selects special
elements c1, . . . , ck in Fn, called centroids (see, for example, [2]). For i =
1, . . . , k, each centroid ci defines its cluster N(ci) consisting of all vectors
v such that ci is the nearest centroid of v. Every vector is assigned to the
cluster of its nearest centroid.

On the other hand, multiple classifiers and clusterers are often used in
analysis of data to combine individual initial classifiers or clusterers (see, for
example, [5, 21]). A well-known method for the design of multiple cluster-
ers consists in designing several simpler initial or individual clusterers, and
then combining them into one multiple clustering scheme with several clus-
ters. This method is very effective, and is often recommended for various
applications, see [20], Section 7.5. The main advantage of using combined
multiple clusterers is in their ability to correct errors of individual clusterers
and produce correct clusterings despite individual clustering errors.

Denote the number of initial clusterers being combined by n. Every
clusterer outputs a symbol that indicates the cluster of the current instance.
Without loss of generality we may assume that all these outputs belong
to the same semifield F , because it is possible to extend the semifield and
replace it with a larger one whenever necessary. If o1, . . . , on are the outputs
of the initial clusterers, then the sequence (o1, . . . , on) is called a vector of
outputs of the initial clusterers. In order to define the multiple clusterer
and enable correction of errors of the initial clusterers, a set of centroids
c1, . . . , ck is again selected in Fn. For i = 1, . . . , k, the cluster N(ci) of the
centroid ci is again defined as the set of all observations with the vector
outputs of the initial clusterers having ci as its nearest centroid.
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The design of multiple clusterers by combining individual binary clus-
terers is quite common in the literature. We refer to [18] and [20] for a list
of properties required of the sets of centroids. In particular, it is essential
to find sets of centroids with large weights and small numbers of generators.
The weight wt(v) of v ∈ Fn is the number of nonzero components v. The
weight of a set C ⊆ Fn is the minimum weight of a nonzero element in C.
For additional references and discussion of experimental research related to
these properties we refer the readers to [18], which handled constructions
with certain restrictions on the sandwich-matrices.

Suppose that S is a finite semigroup with n nonzero elements. Then
the additive semigroup of F0[S] is isomorphic to Fn and we can introduce
multiplication in Fn by identifying it with F0[S]. Accordingly, further we
consider sets of centroids as subsets generated in F0[S]. Every set of elements
g1, . . . , gk ∈ F0[S] generates the set of all sums of multiples of these elements

C(g1, . . . , gk) = (4)

=


m1∑
j=1

`1,jg1r1,j + · · ·+
mk∑
j=1

`k,jgkrk,j

∣∣∣∣∣∣ `i,j , ri,j ∈ F0[S] ∪ {1}

 .

The set C(g1, . . . , gk) is also often called an ideal generated by g1, . . . , gk.

4. Main Results

Let S be a subsemigroup of a Rees matrix semigroup M0(G; I,Λ;P ) over
a group G with sandwich-matrix P . Consider the sets

L = L(S) =

{
λ ∈ Λ

∣∣∣∣∣ S∗λ = ∅ or
⋃
i∈I

pλiSi∗ ⊆ {θ}

}
and (5)

R = R(S) =

{
i ∈ I

∣∣∣∣∣ Si∗ = ∅ or
⋃
λ∈Λ

S∗λpλi ⊆ {θ}

}
. (6)

Here pλiSi∗ = {(pλig; i, µ) : (g; i, µ) ∈ Si∗}, and so pλiSi∗ ⊆ {θ} means that
pλi = θ or Si∗ = ∅. Likewise, S∗λpλi = {(gpλi; i, µ) : (g; i, µ) ∈ Si∗}, and so
S∗λpλi ⊆ {θ} means that pλi = θ or S∗λ = ∅.

Let us define the following numbers

MZ = |SR∗ ∩ S∗L|, (7)

ML = max{|Si∗ ∩ S∗L| : for all i /∈ L}, (8)

MR = max{|S∗λ ∩ SR∗| : for all λ /∈ R}, (9)

MG = max{|Siλ| : for all i /∈ L, λ /∈ R}. (10)

5



Denote by GZ the set of all elements r =
∑

s∈SR∗∩S∗L rss such that
0 6= rs ∈ F for all s ∈ SR∗ ∩ S∗L. If |MZ | ≥ 1, then it is easily seen that the
set GZ is nonempty and contains only nonzero elements.

Let GL be the set of all elements r =
∑

s∈Si∗∩S∗L rss, such that 0 6= rs ∈ F
for all s ∈ Si∗ ∩ S∗L, where i runs over all elements of I \ L such that
|Si∗ ∩ S∗L| = ML. If |ML| ≥ 1, then the set GL is nonempty and contains
only nonzero elements.

Denote by GR the set of all elements r =
∑

s∈S∗λ∩SR∗ rss, such that
0 6= rs ∈ F for all s ∈ S∗λ ∩ SR∗, where λ runs over all elements of Λ \ R
such that |S∗λ ∩ SR∗| = MR. If |MR| ≥ 1, then the set GR is nonempty and
contains only nonzero elements.

Let GG be the set of all elements r =
∑

s∈Siλ rss, such that 0 6= rs ∈ F
for all s ∈ Siλ, where i runs over all elements of I \ L and λ runs over all
elements of Λ \ R such that |Siλ| = MG. If |MG| ≥ 1, then the set GG is
nonempty and contains only nonzero elements.

Our main theorem completely describes all sets C(g1, . . . , gk) with the
largest weight in F0[S]. Notice that the results of [18] did not use max-plus
algebras and involved a restriction on the sandwich-matrix of the underlying
Rees matrix semigroup. Examples show that is impossible to drop this
restriction from the results of [18]. Our new construction introduced in the
present article with the use of max-plus algebras turns out so convenient
that the main theorem of this paper completely describes all optimal sets of
centroids in the general case of arbitrary Rees matrix semigroups without
any restrictions on the sandwich-matrices.

Theorem 4.1. Let C = C(g1, . . . , gk) be a centroid set with the largest
weight in F0[S], where F is an idempotent semifield, T = M0(G; I,Λ;P ) is
a Rees matrix semigroup over a group G with sandwich-matrix P , and S is
a finite subsemigroup of T . Then the following conditions are satisfied:

(i) wt(C) = max{MZ ,ML,MR,MG};

(ii) C contains an element of weight wt(C) belonging to the union of GZ ,
GL, GR and GG;

(iii) wt(C(r)) = wt(r) = MZ , for all r ∈ GZ ;

(iv) wt(C(r)) = wt(r) = ML, for all r ∈ GL;

(v) wt(C(r)) = wt(r) = MR, for all r ∈ GR;

(vi) wt(C(r)) = wt(r) = MG, for all r ∈ GG.

5. Proofs

For completeness and convenience of the readers, we begin with a few
easy and useful lemmas.
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Lemma 5.1. Let F be an idempotent semiring, and let x1, . . . , xn ∈ F .
Then

x1 + · · ·+ xn = 0⇐⇒ x1 = · · · = xn = 0. (11)

Proof. Suppose that x1 + · · · + xn = 0. Then the laws of addition
and multiplication in the definition of an idempotent semiring imply that
xi = xi + 0 = xi + (x1 + · · · + xn) = x1 + · · · + xn = 0, for all i = 1, . . . , n.
This completes the proof, since the reversed implication is clear.

Every semiring satisfying (11) is said to be zerosumfree. Thus, Lemma 5.1
tells us that all idempotent semirings are zerosumfree.

Lemma 5.2. Let F be an idempotent semiring, S a semigroup with zero
θ, and let x1, . . . , xn ∈ F , s1, . . . , sn ∈ S. Then

0 =
n∑
i=1

xisi ∈ F0[S]⇐⇒ xi = 0 for all si 6= θ. (12)

Proof. Let us assume that 0 =
∑n

i=1 xisi ∈ F0[S]. Combining the
like terms, we see that

∑n
i=1 xisi =

∑
s∈S

(∑
si=s

xi
)
s. Hence, fixing any

θ 6= s ∈ S, we get
∑

si=s
xi = 0. Lemma 5.1 shows that xi = 0 for all si = s.

It follows that xi = 0 for all si 6= θ, as required. This completes the proof,
since the reversed implication is clear.

For x =
∑

s∈S rss ∈ F0[S], the set supp (x) = {s ∈ S : rs 6= 0} is called
the support of x. Evidently, wt(x) = | supp (x)|.

Lemma 5.3. Let F be an idempotent semiring, S a semigroup, and let
x, y ∈ F0[S]. Then supp (x+ y) = supp (x) ∪ supp (y).

Proof follows from (2) and Lemma 5.1.

Let S be a semigroup with zero θ. The left annihilator of S is the set

Ann `(S) = {x ∈ S : xS = θ}, (13)

and the right annihilator of S is the set

Ann r(S) = {x ∈ S : Sx = θ}. (14)

Lemma 5.4. Let T = M0(G; I,Λ;P ) be a Rees matrix semigroup over a
group G with sandwich-matrix P , and let S be a subsemigroup of T . Then

Ann r(S) = SR∗ ∪ {θ}, (15)

Ann `(S) = S∗L ∪ {θ}. (16)
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Proof. We are going to prove only equality (15), since the proof of (16)
is dual. Clearly, θ belongs to both sides of equality (15). Besides, (1) and (6)
imply that Ann r(S) ⊇ SR∗. To prove the reversed inclusion, let us suppose
to the contrary that Ann r(S) is not contained in SR∗.

Then we can choose i ∈ I \ R and pick x = (g; i, µ) ∈ Ann r(S), where
g ∈ G, µ ∈ Λ. Since x ∈ S, we get Si∗ 6⊆ θ. Therefore (6) shows that
S∗λpλi 6⊆ θ for some λ ∈ Λ. Hence there exist h ∈ G and j ∈ I such that
(h; j, λ)x = (hpλig; j, µ) 6= θ. This contradicts the choice of x in Ann r(S)
and completes our proof.

For any semiring F , the left annihilator of F is the set

Ann `(F ) = {x ∈ F : xF = 0}, (17)

and the right annihilator of F is the set

Ann r(F ) = {x ∈ F : Fx = 0}. (18)

Lemma 5.5. Let F be an idempotent semifield, and let S be a semigroup
with zero θ. Then

Ann r(F0[S]) = F0[ Ann r(S)], (19)

Ann `(F0[S]) = F0[ Ann `(S)]. (20)

Proof. Take any two elements x =
∑n

i=1 xisi and y =
∑m

j=1 yjtj in
F0[S], where 0 6= xi ∈ F for all i = 1, . . . , n, and 0 6= yj ∈ F for all
j = 1, . . . ,m. The product xiyj is nonzero for any i, j, because F is a
semifield. Therefore Lemma 5.2 shows that

xy = 0⇐⇒ sitj = θ for all i, j. (21)

Equalities (19) and (20) follow from equivalence (21).

Let S be a subsemigroup of a Rees matrix semigroup M0(G; I,Λ;P ). It
is clear that S0

R∗ = SR∗ ∪ {θ} and S0
∗L = S∗L ∪ {θ} are subsemigroups of S.

Lemma 5.6. Let F be an idempotent semiring, and let S be a sub-
semigroup of a Rees matrix semigroup M0(G; I,Λ;P ) over a group G with
sandwich-matrix P . Then

Ann r(F0[S]) = F0[S0
R∗], (22)

Ann `(F0[S]) = F0[S0
∗L]. (23)

Proof follows from Lemmas 5.4 and 5.5.

Proof of Theorem 4.1. If S does not contain θ, then we can replace S
with S0 = S ∪ {θ} in the statement of the theorem. This will not change
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the sets L, R and numbers MZ , ML, MR and MG. Therefore, further we
assume that S contains θ.

Let us first prove condition (iii). Take any element r ∈ GZ . By definition,
we know that r =

∑
s∈SR∗∩S∗L rss, where 0 6= rs ∈ F for all s ∈ SR∗ ∩ S∗L.

Hence wt(r) = MZ . It follows from equality (22) of Lemma 5.6 that r ∈
Ann r(F0[S]). Equality (23) demonstrates that r ∈ Ann `(F0[S]). Since F
is a semifield, it follows that C(r) coincides with the subsemiring

{cr : c ∈ N}

generated by r in F0[S]. All elements of this set have the same weights
equal to the weight of r. Hence wt(C(r)) = wt(r) in this case, and so
condition (iii) holds.

Next, we are going to prove condition (iv). Choose any element r ∈ GL.
There exist i ∈ I \L such that r =

∑
s∈Si∗∩S∗L rss, where 0 6= rs ∈ F for all

s ∈ Si∗ ∩ S∗L, and |Si∗ ∩ S∗L| = ML. Therefore wt(r) = ML.

To prove that wt(C(r)) = wt(r), let us pick any element x in C(r). We
claim that wt(x) ≥ wt(r).

By (4), we get x =
∑k

j=1 ajrbj , for some aj , bj ∈ F0[S]1 ∪ {1}. Since
every nonzero element of F0[S] is equal to the sum of some elements from
the set

FS = {fs : 0 6= f ∈ F, θ 6= s ∈ S},

the distributive law allows us to assume that aj , bj ∈ FS ∪ {1}. We may
assume that all summands ajrbj are nonzero.

Suppose that bj 6= 1 for some j. Since supp (r) ⊆ S∗L, equality 16 in
Lemma 5.4 shows that rbj = 0, and so ajrbj = 0. Therefore, further we may
assume that bj = 1 for all j = 1, . . . , k.

In view of Lemma 5.3 it remains to verify that wt(ajr) ≥ wt(r), for all
j = 1, . . . , k.

Consider a product ajr, where aj ∈ FS, i.e. aj = fs for f ∈ F , s ∈ S.
Since F is a semifield, we get wt(fsr) = wt(sr). We can write s = (g; j′, µ)
for some j′ ∈ I and µ ∈ Λ. Since sr 6= 0, it follows that pµi 6= θ. Hence
it follows from (1) that supp (sr) = Sj′∗ ∩ S∗L. Therefore | supp (sr)| =
|Sj′∗ ∩ S∗L| = |Si∗ ∩ S∗L| = supp (r).

Thus wt(ajr) ≥ wt(r), and so wt(x) ≥ wt(r) by Lemma 5.3. It follows
that wt(C(r)) = wt(r), which means that condition (iv) holds.

The proof of condition (v) is dual to that of condition (iv) and we omit
it.

Let us now prove condition (vi). Take any element r ∈ GG. There exist
i ∈ I \L and λ ∈ Λ\R such that r =

∑
s∈Siλ rss and |Siλ| = MG. Therefore

supp (r) = |MG|. It remains to prove that wt(C(r)) = wt(r). To this end let
us pick any element x in C(r). By (4), it can be written as x =

∑k
j=1 ajrbj ,

for some aj , bj ∈ F0[S]∪{1}, where the distributive law allows us to assume

9



that aj , bj ∈ FS ∪ {1}, and where we may assume that all summands ajrbj
are nonzero.

We claim that wt(x) ≥ wt(r). Keeping in mind Lemma 5.3, it suffices
to verify that wt(ajrbj) ≥ wt(r), for all j = 1, . . . , k.

Suppose that aj = fa(ga; ia, λa) and bj = fb(gb; ib, λb) for some ga, gb ∈
G, ia, ib ∈ I, λa, λb ∈ Λ) and fa, fb ∈ F . Since supp (r) ⊆ Siλ and
ajrbj 6= 0, it follows from (1) that pλai, pλib 6= θ. Therefore (1) implies
that | supp (ajrbj)| = | supp (r)|, because

supp (ajrbj) = (ga; ia, λa) supp (r)(gb; ib, λb).

Thus wt(ajrbj) = wt(r) in this case.

The cases where aj = 1 or bj = 1 are similar, and are even simpler. In
these cases it follows too that wt(ajrbj) = wt(r). Thus, Lemma 5.3 shows
that wt(C(r)) = wt(r), as required. This means that condition (vi) holds.

Now we are going to prove condition (ii). Choose a nonzero element r
of minimal weight in C and consider several possible cases.

Case 5.1. r ∈ Ann `(F0[S]) ∩ Ann r(F0[S]). By Lemma 5.6, we get
r ∈ F0[(SR∗ ∩ S∗L)0], and so supp (r) ⊆ SR∗ ∩ S∗L. It follows from the
maximality of wt(C) and condition (iii), which we have already proved
above, that | supp (r)| = MZ . Therefore supp (r) = SR∗ ∩ S∗L; whence
r ∈ GZ . Since wt(r) = wt(C), this means that condition (ii) holds in this
case.

Case 5.2. r ∈ Ann `(F0[S]) \ Ann r(F0[S]). Equality (19) of Lemma 5.5
shows that supp (r) 6⊆ Ann r(S). Hence there exists b ∈ S such that
b supp (r) 6= θ. We can write it down as b = (gb; ib, λb), for some gb ∈ G,
ib ∈ I, λb ∈ Λ. Here ib 6∈ R, because of equality (15) of Lemma 5.4. It
follows from (1) that supp (br) ⊆ Sib∗. Since r ∈ Ann `(F0[S]) = S∗L, we
get supp (br) ⊆ Sib∗ ∩ S∗L.

Condition (iv) proved above shows that F0[S] contains a set C(g1, . . . , gn)
of weight ML. Since ML ≥ |Sib∗ ∩ S∗L|, the maximality of the weight of C
ensures that every nonzero element in C has weight at least ML. It follows
that wt(br) = ML = |Sib∗ ∩ S∗L| and supp (br) = Sib∗ ∩ S∗L. This means
that br ∈ GL.

Since r has minimal weight in C and 0 6= br ∈ C, we get wt(br) =
wt(r) = wt(C). Thus, condition (ii) holds in this case, too.

Case 5.3. r ∈ Ann r(F0[S]) \ Ann `(F0[S]). The proof in this case is dual
to the one in Case 2, and so we omit it.

Case 5.4. r /∈ Ann r(F0[S]) ∪ Ann `(F0[S]). Lemma 5.5 shows that
r /∈ F0[ Ann r(S)] ∪ F0[ Ann `(S)]. Hence there exists a, b ∈ S such that
a supp (r), supp (r)b 6= θ. Hence (1) shows that a supp (r)b 6= θ. Since r has
minimum weight in C and 0 6= arb ∈ C, we get wt(arb) = wt(r) = wt(C).
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Consider the representations a = (ga; ia, λa) and b = (gb; ib, λb), where
ga, gb ∈ G, ia, ib ∈ I, λa, λb ∈ Λ. By (1), we see that supp (arb) ⊆ Siaλb ;
whence supp (arb) ≤ MG in view of the maximality of MG. Condition (vi)
proved above tells us that F0[S] contains a set of the form C(g1, . . . , gn) with
weight MG. By the maximality of wt(C), we get wt(arb) ≥ MG. Hence
wt(arb) = MG. Therefore arb ∈ GG, which means that condition (ii) holds
in this case, too.

Clearly, condition (ii) implies that

wt(C) ≤ max{MZ ,ML,MR,MG}.

On the other hand, the maximality of wt(C) and conditions (iii), (iv), (v),
(vi) show that wt(C) ≥ MZ ,ML,MR,MG. Therefore condition (i) is satis-
fied. This completes our proof.
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