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Abstract

Rees matrix semigroups and max-plus algebras are well known in the literature and have
many useful applications. The present article introduces a novel construction defined by
the Rees matrix semigroups and max-plus algebras. This new construction turns out very
convenient for generating sets of centroids motivated by their applications in analysis of
data for the design of centroid-based classifiers and clusterers, as well as for the design
of multiple classifiers and clusterers combining several individual initial classifiers and
clusterers. Our article gives a complete description of all optimal sets of centroids for all
Rees matrix semigroups without any restrictions on the sandwich-matrices.

2010 Mathematics subject classification (Amer. Math. Soc.): Primary: 20M25, secondary:
62H30.
Keywords and phrases: Rees matrix semigroups, sets of centroids, classification and clus-
tering.

1. Introduction

Rees matrix semigroups and max-plus algebras have many useful appli-
cations and are well known, see [1] and [9]. The present paper introduces
a new construction combining Rees matrix semigroups and max-plus alge-
bras. This construction turns out very convenient for generating the sets of
centroids motivated by their applications in analysis of data for the design
of centroid-based classifiers or clusterers, as well as for the design of multiple
classifiers and clusterers combining several individual initial classifiers and
clusterers. In this paper we have managed to describe all optimal sets of
centroids in the general case of arbitrary Rees matrix semigroups without
any restrictions on the sandwich-matrices.

The paper is organised as follows. Necessary background information
is included in Section 2. An overview of applications of the Rees matrix
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constructions in classification and clustering for analysis of data is provided
in Section 3 as a motivation for research. The main result of this paper
is Theorem 4.1 in Section 4, which completely describes all optimal sets of
centroids. Proofs are given in Section 5.

2. Preliminaries

Let us begin with concise preliminaries on Rees matrix semigroups re-
quired for our main theorem. Rees matrix semigroups and associated notions
of completely 0-simple semigroups and Rees quotients are very well known
in semigroup theory and play crucial roles in describing the structure of
semigroups and in proofs, see [9]. For examples of recent results, let us also
refer to [4, 10, 11, 12].

Suppose that G is a group, I and A are nonempty sets, and e is the
identity of G. As usual, we denote by G° = G U {6} the group G with
zero 0 adjoined in a standard fashion. Let P = [py;] be a (A x I)-matrix
with entries py; € GO, for all A € A, i € I. The Rees matriz semigroup
MO(G; 1, A; P) over G with sandwich-matriz P consists of all triples (g;4, \),
where i € I, A € A, and g € G°, where all triples (6;4, \) are identified with
f, and where multiplication is defined by the rule

(91311, A1) (92392, A2) = (91Pr12925 115 A2). (1)
If G is a group, M = M°(G;I,A; P), and i € I, A € A, then we use
standard notation for the following sets
G ={(g:1,A) : g€ G ie I},
Gis ={(g:3,A) : g€ G,A€ A},
Gix=A{(g:9,A) : g€ G}.

Further, let S be a subset of the Rees matrix semigroup M°(G; I, A; P). The
following notation will be used. For any i, A € I, set

Six =SNGy,
S*)\ =5nN G*)\,
Six = SN Gis.

Also, for any subsets X C I, Y C A, we put

Sx« = Uijex Six,

Siy = Uxey S

We assume that Sy, = S,y = 0. Notice that 6 never belongs to any of these
sets above. For any subset X of T, we put X° = X U {6}.



The maz-plus algebra is the set R U {—oc} with two binary operations,
max and +. It is very important in the investigation of discrete event sys-
tems, see [1]. The max-plus algebra is also sometimes called the schedule
algebra, see [8]. Our main results remain valid in the more general case of
all idempotent semifields, and so we record them in this setting.

A semiring is a set F' with two binary operations, addition + and mul-
tiplication -, such that the following conditions are satisfied:

(1

(F,+) is a commutative semigroup with zero 0,

(S2) (F,-) is a semigroup,

(S3) multiplication distributes over addition,

)
)
)
(S4) zero 0 annihilates F, i.e.,,0-F =F-0=0.

It is also often assumed that every semiring satisfies the additional property

(S5) (F,-) has an identity element 1.

In this paper we consider more general semirings, which do not have to
satisfy (S5), since such more general terminology adds the convenience of
allowing us to consider more general subsets as subsemirings without as-
suming that all subsemirings contain the identity element. In analogy with
a similar situation in ring theory, we then call every semiring satisfying (S5)
a semiring with identity element. Both terminologies are essentially equiv-
alent, since it is always easy to adjoin an identity element in a standard
fashion to every semiring that does not have one. Originally, our investiga-
tion of semirings was motivated by the development of methods useful for
duality theory see [3, 6].

A semiring F' is said to be idempotent if x +x = x for all x € F. If
the set of nonzero elements of a semiring F' forms a group with respect to
multiplication, then F' is called a semifield.

Let F' be a semiring, and let S be a semigroup. The semigroup semiring
is denoted by F[S] and is defined as the set

F[S] = {ifisi

=1

fiEF,sieS,nEN}

where N stands for the set of all positive integers, and where addition and
multiplication are defined by the associative and distributive laws and the

rules
Y s+ > fis=Y (fs+ fl)s, (2)

seS seS ses
<Z rss> <Z r£t> = Z (rr})st. (3)
ses tesS s,tes



If S has a zero 6, then a contracted semigroup semiring is denoted by Fy[S]
and is defined as the quotient semiring of F'[S] modulo the ideal F'0. Notice
that if S has no zero, then S° stands for the semigroup S U {6} with zero 6
adjoined; and F'[S] is isomorphic to Fy[S°]. If S is a semigroup without zero,
then we also let Fp[S] = Fp[SY] = F[S]. Contracted semigroup semirings
enable us to formulate main results more concisely. We refer to [7, 13, 14,
15, 16, 17, 18, 19] for examples of results using these constructions and other
areas where they are used.

3. Motivation

The design of efficient classifiers and clusterers is very important in data
mining, see [20]. Rees matrix semigroups can be used in order to generate
convenient sets of centroids for centroid-based clusterers and to design com-
bined multiple clusterers capable of correcting the errors of individual initial
clusterers.

The clustering process begins with feature extraction and representation
of data in a standard vector space ", where n € N and where F can
be regarded as a semifield. Every centroid-based clusterer selects special
elements ci,...,c, in F™, called centroids (see, for example, [2]). For i =
1,...,k, each centroid ¢; defines its cluster N(c;) consisting of all vectors
v such that ¢; is the nearest centroid of v. Every vector is assigned to the
cluster of its nearest centroid.

On the other hand, multiple classifiers and clusterers are often used in
analysis of data to combine individual initial classifiers or clusterers (see, for
example, [5, 21]). A well-known method for the design of multiple cluster-
ers consists in designing several simpler initial or individual clusterers, and
then combining them into one multiple clustering scheme with several clus-
ters. This method is very effective, and is often recommended for various
applications, see [20], Section 7.5. The main advantage of using combined
multiple clusterers is in their ability to correct errors of individual clusterers
and produce correct clusterings despite individual clustering errors.

Denote the number of initial clusterers being combined by n. Every
clusterer outputs a symbol that indicates the cluster of the current instance.
Without loss of generality we may assume that all these outputs belong
to the same semifield F', because it is possible to extend the semifield and
replace it with a larger one whenever necessary. If o1, ..., 0, are the outputs
of the initial clusterers, then the sequence (o1,...,0,) is called a vector of
outputs of the initial clusterers. In order to define the multiple clusterer
and enable correction of errors of the initial clusterers, a set of centroids
C1,...,Ck is again selected in F™. For i = 1,... k, the cluster N(¢;) of the
centroid ¢; is again defined as the set of all observations with the vector
outputs of the initial clusterers having ¢; as its nearest centroid.



The design of multiple clusterers by combining individual binary clus-
terers is quite common in the literature. We refer to [18] and [20] for a list
of properties required of the sets of centroids. In particular, it is essential
to find sets of centroids with large weights and small numbers of generators.
The weight wt(v) of v € F™ is the number of nonzero components v. The
weight of a set C' C F™ is the minimum weight of a nonzero element in C.
For additional references and discussion of experimental research related to
these properties we refer the readers to [18], which handled constructions
with certain restrictions on the sandwich-matrices.

Suppose that S is a finite semigroup with n nonzero elements. Then
the additive semigroup of Fy[S] is isomorphic to F™ and we can introduce
multiplication in F™ by identifying it with Fy[S]. Accordingly, further we
consider sets of centroids as subsets generated in Fy[S]. Every set of elements
g1, .-, gk € Fo[S] generates the set of all sums of multiples of these elements

Clg1,---,9x) = (4)

mi my
= Z&,jglﬁ,j +o 4 Zek,jgkrk,j lijyrij € Fo[STU{1}
p i=1

The set C(g1,...,gx) is also often called an ideal generated by g1, ..., gk.

4. Main Results

Let S be a subsemigroup of a Rees matrix semigroup M°(G; I, A; P) over
a group G with sandwich-matrix P. Consider the sets

L:L(S):{/\EA

el

Six =0 or U Sapai € {0}
AEA

Sy =0 or UP,\z’Si* c {9}} and (5)
} : (6)

R:R(S):{z’el

Here pxiSix = {(prig; i, 1) = (g;4, 1) € Six}, and so py;Six C {0} means that
pxi = 0 or Si = 0. Likewise, Sixpxi = {(gpri;i, 1) = (g;4, 1) € Six}, and so
SiaPxi € {0} means that py; = 0 or S,y = 0.

Let us define the following numbers

My = |SR*OS*L|, (7)
M, = max{|Six N Ssr| : foralli¢ L}, (8)
Mp = max{|Six N Sg«| : forall A\ ¢ R}, 9)
Mg = max{|S;»| : foralli¢ L,\ ¢ R}. (10)



Denote by Gz the set of all elements r = ESESR*HS*L rss such that
0+#rs € Fforall se€ Sp.NSip. If [Mz| > 1, then it is easily seen that the
set G is nonempty and contains only nonzero elements.

Let G, be the set of all elements r = Zsesi*mS*L rss, such that 0 # ry € F
for all s € Sj N S, where ¢ runs over all elements of I \ L such that
|Six N Sir| = Myp. If [Mp| > 1, then the set Gy, is nonempty and contains
only nonzero elements.

Denote by Gr the set of all elements r = Zses*msm rsS, such that
0 # rs € F for all s € S,y N Sgs, where A runs over all elements of A\ R
such that [Syx N Sg«| = M. If |Mg| > 1, then the set Gi is nonempty and
contains only nonzero elements.

Let G be the set of all elements r = Esesﬂ rss, such that 0 # ry € F
for all s € S;), where i runs over all elements of 7\ L and A runs over all
elements of A\ R such that |S;y| = Mg. If |[Mg| > 1, then the set Gg is
nonempty and contains only nonzero elements.

Our main theorem completely describes all sets C(gi,...,gr) with the
largest weight in Fy[S]. Notice that the results of [18] did not use max-plus
algebras and involved a restriction on the sandwich-matrix of the underlying
Rees matrix semigroup. Examples show that is impossible to drop this
restriction from the results of [18]. Our new construction introduced in the
present article with the use of max-plus algebras turns out so convenient
that the main theorem of this paper completely describes all optimal sets of
centroids in the general case of arbitrary Rees matrix semigroups without
any restrictions on the sandwich-matrices.

THEOREM 4.1. Let C = C(¢1,-..,9k) be a centroid set with the largest
weight in Fy[S], where F is an idempotent semifield, T = M°(G; I, A; P) is
a Rees matriz semigroup over a group G with sandwich-matriz P, and S is
a finite subsemigroup of T'. Then the following conditions are satisfied:

(1) Wt(C) = ma‘X{MZa ML7 MR7 MG};

(ii) C contains an element of weight wt(C) belonging to the union of Gz,

Gr, 9r and Gg;
(iii) wt(C(r)) = wt(r) = My, for all 7 € Gy;
(iv) wt(C(r)) = wt(r) = My, for all r € Gr;
(v) wt(C(r)) = wt(r) = Mg, for all r € Gg;
(vi) wt(C(r)) = wt(r) = Mg, for all v € G

5. Proofs

For completeness and convenience of the readers, we begin with a few
easy and useful lemmas.



LEMMA 5.1. Let F' be an idempotent semiring, and let x1,...,xy, € F.
Then
rn+- -+, =0z =---=2x2,=0. (11)

PROOF. Suppose that 1 + --- + x, = 0. Then the laws of addition
and multiplication in the definition of an idempotent semiring imply that
rvi=z;+0=z;+ @1+ - +z,) =21+ -+2x,=0,foralli=1,... n.
This completes the proof, since the reversed implication is clear. ]

Every semiring satisfying (11) is said to be zerosumfree. Thus, Lemma 5.1
tells us that all idempotent semirings are zerosumfree.

LEMMA 5.2. Let F' be an idempotent semiring, S a semigroup with zero
0, and let x1,..., 2, € F, s1,...,5, € S. Then

0= Z:ﬂisi € Fy[S] < z; =0 for all s; # 0. (12)
i=1

PROOF. Let us assume that 0 = Y. | 2;5; € Fy[S]. Combining the
like terms, we see that > 7" | xis; = > g (ZSFS z;) s. Hence, fixing any
0#s€S, weget y . _ x;=0. Lemma 5.1 shows that z; = 0 for all 5; = s.
It follows that x; = 0 for all s; # 6, as required. This completes the proof,
since the reversed implication is clear. O

For x =) _g7ss € Fy[S], the set supp (z) = {s € S : ry # 0} is called
the support of x. Evidently, wt(z) = |supp (z)|.

LEMMA 5.3. Let F' be an idempotent semiring, S a semigroup, and let
x,y € Fy[S]. Then supp (z + y) = supp () U supp (y).

PRrOOF follows from (2) and Lemma 5.1. O
Let S be a semigroup with zero 6. The left annihilator of S is the set
Ann(S)={x €S : x5 =0}, (13)
and the right annihilator of S is the set
Ann,(S)={ze S : Sx=0}. (14)

LEMMA 5.4. Let T = M°(G; I, A; P) be a Rees matrixz semigroup over a
group G with sandwich-matriz P, and let S be a subsemigroup of T. Then

Ann . (S) = Sgr. U {6}, (15)
Anng(S) :S*LU{Q}. (16)



PRrROOF. We are going to prove only equality (15), since the proof of (16)
is dual. Clearly, 6 belongs to both sides of equality (15). Besides, (1) and (6)
imply that Ann,.(S) 2 Sg.«. To prove the reversed inclusion, let us suppose
to the contrary that Ann,(S) is not contained in Sg..

Then we can choose i € I \ R and pick z = (g;4, ) € Ann,(S), where
g € G, u € A Since r € S, we get S € 6. Therefore (6) shows that
SiaPxi £ 6 for some A € A. Hence there exist h € G and j € I such that
(h; 3, \)x = (hpxig; j, ) # 0. This contradicts the choice of z in Ann,.(.5)
and completes our proof. ]

For any semiring F', the left annihilator of F is the set
Anny(F)={z € F : zF =0}, (17)
and the right annihilator of F is the set
Amn,(F)={z e F : Fx =0}. (18)

LEMMA 5.5. Let F' be an idempotent semifield, and let S be a semigroup
with zero . Then

Ann, (Fy[S]) = Fo[Ann (S5)], (19)

Ann ,(Fy[S]) = Fo[ Ann (9)]. (20)

PROOF. Take any two elements z = > 71" | a;s; and y = >, y;t; in
Fy[S], where 0 # x; € F for all ¢ = 1,...,n, and 0 # y; € F for all

j = 1,...,m. The product z;y; is nonzero for any i,j, because F is a
semifield. Therefore Lemma 5.2 shows that

zy =0 <= s;t; =0 for all 4, j. (21)
Equalities (19) and (20) follow from equivalence (21). O

Let S be a subsemigroup of a Rees matrix semigroup M°(G; I, A; P). Tt
is clear that S%, = Spg, U {0} and S?; = S, U {6} are subsemigroups of S.

LEMMA 5.6. Let F' be an idempotent semiring, and let S be a sub-
semigroup of a Rees matriz semigroup M°(G; I, A; P) over a group G with
sandwich-matriz P. Then

AnnT(FO[S]) :FO[S%*L (22)
Ann ((Fy[S]) = Fo[S2,). (23)
PRrROOF follows from Lemmas 5.4 and 5.5. O

PROOF of Theorem 4.1. If S does not contain #, then we can replace S
with S® = S U {#} in the statement of the theorem. This will not change



the sets L, R and numbers My, My, Mg and Mg. Therefore, further we
assume that S contains 6.

Let us first prove condition (iii). Take any element r € G. By definition,
we know that r = ZSESR*OS*L rss, where 0 # rg € F for all s € Sg, N S,
Hence wt(r) = Mz. It follows from equality (22) of Lemma 5.6 that r €
Ann ,(Ep[S]). Equality (23) demonstrates that » € Anny(Fp[S]). Since F
is a semifield, it follows that C(r) coincides with the subsemiring

{er : ce N}

generated by r in Fy[S]. All elements of this set have the same weights
equal to the weight of r. Hence wt(C(r)) = wt(r) in this case, and so
condition (iii) holds.

Next, we are going to prove condition (iv). Choose any element r € Gy..
There exist 7 € I\ L such that r =3 ¢ g 758, where 0 # r; € F for all
s € Six N Sir, and |S; N Syr| = Mp. Therefore wt(r) = M.

To prove that wt(C(r)) = wt(r), let us pick any element x in C'(r). We
claim that wt(x) > wt(r).

By (4), we get x = E?:l ajrbj, for some aj,b; € Fy[S]' U {1}. Since
every nonzero element of Fy[S] is equal to the sum of some elements from
the set

FS={fs : 0£fcF0+secS8}

the distributive law allows us to assume that a;,b; € FISU {1}. We may
assume that all summands a;rb; are nonzero.

Suppose that b; # 1 for some j. Since supp () C Sir, equality 16 in
Lemma 5.4 shows that rb; = 0, and so a;rb; = 0. Therefore, further we may
assume that b; =1 forall j =1,... k.

In view of Lemma 5.3 it remains to verify that wt(a;r) > wt(r), for all
j=1,....k

Consider a product a;r, where a; € F'S, ie. aj = fsfor f € F,s¢eS.
Since F is a semifield, we get wt(fsr) = wt(sr). We can write s = (g; 5/, i)
for some j* € I and p € A. Since sr # 0, it follows that p,; # 6. Hence
it follows from (1) that supp (sr) = Sj, N Sir. Therefore |supp (sr)| =
|Sjrs N Ssr| = [Six N Sir| = supp (7).

Thus wt(ajr) > wt(r), and so wt(z) > wt(r) by Lemma 5.3. It follows
that wt(C(r)) = wt(r), which means that condition (iv) holds.

The proof of condition (v) is dual to that of condition (iv) and we omit
it.

Let us now prove condition (vi). Take any element r € Gg. There exist
i€ I\Land A € A\ Rsuch that r =} s 7ssand [S;\| = M¢. Therefore
supp (r) = |Mg|. It remains to prove that wt(C(r)) = wt(r). To this end let
us pick any element z in C(r). By (4), it can be written as x = Z?:l a;rbj,
for some aj,b; € Fy[S]U {1}, where the distributive law allows us to assume



that a;,b; € FSU {1}, and where we may assume that all summands a;rb;
are nonzero.

We claim that wt(xz) > wt(r). Keeping in mind Lemma 5.3, it suffices
to verify that wt(a;rb;) > wt(r), for all j =1,... k.

Suppose that a; = fo(ga;ta, Aa) and b; = fi(gp; ip, Ap) for some g4, gp €
G, ig,ipy € I, Mgy € A) and f,, f, € F. Since supp(r) C S;\» and
ajrb; # 0, it follows from (1) that py, i, pxri, 7 0. Therefore (1) implies
that |supp (a;rb;)| = |supp (1), because

supp (a;jrb;) = (ga; tas Aa) SUPP (1) (9b; ib, Xo).-

Thus wt(ajrb;) = wt(r) in this case.

The cases where a; = 1 or b; = 1 are similar, and are even simpler. In
these cases it follows too that wt(a;rb;) = wt(r). Thus, Lemma 5.3 shows
that wt(C(r)) = wt(r), as required. This means that condition (vi) holds.

Now we are going to prove condition (ii). Choose a nonzero element r
of minimal weight in C' and consider several possible cases.

Case 5.1. r € Ann,(Fp[S]) N Ann,(Fp[S]). By Lemma 5.6, we get
r € Fo[(Sr« N Si1)?], and so supp (r) € Sk« N Syr. It follows from the
maximality of wt(C') and condition (iii), which we have already proved
above, that |supp(r)] = Mz. Therefore supp (r) = Sg« N S.r; whence
r € Gz. Since wt(r) = wt(C'), this means that condition (ii) holds in this
case.

Case 5.2. r € Ann,(Fy[S]) \ Ann,(Fp[S]). Equality (19) of Lemma 5.5
shows that supp(r) € Ann,(S). Hence there exists b € S such that
bsupp (r) # 6. We can write it down as b = (gp; i, Ap), for some g, € G,
i, € I, \p, € A. Here i, ¢ R, because of equality (15) of Lemma 5.4. It
follows from (1) that supp (br) C Sj,«. Since r € Ann,(Fp[S]) = Sz, we
get supp (br) C Sj,« N Sir.

Condition (iv) proved above shows that Fy[S] contains a set C(g1, - . ., gn)
of weight Mp,. Since My > [S;,« N Sir|, the maximality of the weight of C
ensures that every nonzero element in C has weight at least M. It follows
that wt(br) = My = |Si,« N Sir| and supp (br) = S;,« N Sir. This means
that br € Gr.

Since r has minimal weight in C and 0 # br € C, we get wt(br) =
wt(r) = wt(C'). Thus, condition (ii) holds in this case, too.

Case 5.3. r € Ann,(Fp[S])\ Ann¢(Fp[S]). The proof in this case is dual
to the one in Case 2, and so we omit it.

Case 5.4. r ¢ Ann,(Fp[S]) U Ann(Fp[S]). Lemma 5.5 shows that
r ¢ Fo[Ann,(S)] U Fy[ Ann,(S)]. Hence there exists a,b € S such that
asupp (1), supp (r)b # 0. Hence (1) shows that asupp (r)b # 6. Since r has
minimum weight in C and 0 # arb € C, we get wt(arb) = wt(r) = wt(C).
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Consider the representations a = (gg;iq,\a) and b = (gp;ip, \p), where
Ga, 9 € G, iq,0p € I, Ag, Ay € A. By (1), we see that supp (arb) C S;,»,;
whence supp (arb) < Mg in view of the maximality of M. Condition (vi)
proved above tells us that Fy[S] contains a set of the form C(gi, ..., g,) with
weight Mq. By the maximality of wt(C), we get wt(arb) > Mg. Hence
wt(arb) = Mq. Therefore arb € G, which means that condition (ii) holds
in this case, too.
Clearly, condition (ii) implies that

Wt(C) < max{MZ, ML, MR, Mg}.

On the other hand, the maximality of wt(C') and conditions (iii), (iv), (v),
(vi) show that wt(C) > Mz, M1, Mg, M. Therefore condition (i) is satis-
fied. This completes our proof. ]
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