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Abstract This manuscript presents an extension of the recently-developed high order complete scaled
boundary shape functions to model elasto-static problems in functionally graded materials. Both isotropic
and orthotropic functionally graded materials are modelled. The high order complete properties of the
shape functions are realized through the introduction of bubble-like functions derived from the equilib-
rium condition of a polygon subjected to body loads. The bubble functions preserve the displacement
compatibility between the elements in the mesh. The heterogeneity resulting from the material gradient
introduces additional terms in the polygon stiffness matrix that are integrated analytically. Few numerical
benchmarks were used to validate the developed formulation. The high order completeness property of
the bubble functions result in superior accuracy and convergence rates for generic elasto-static and frac-
ture problems involving functionally graded materials. Keywords: functionally graded materials; scaled
boundary finite element method; shape functions; Bubble functions; polygon elements; heterogeneous

1 Introduction

Functionally graded materials (FGM) belong to the family of composite materials in which its material
characteristics have been tailored to adapt to suit the environment and economic challenges in a specific
application. Their microstructure comprise of two or more material phases, which vary continuously over
a predefined volume. The continuously varying material properties eliminates sharp discontinuities at
the material interfaces, which often resulted in stress concentrations in layered composites that leads to
failure(Williamson et al, 1993). Owing to this characteristic, FGMs are particularly efficient at optimizing
the stress distribution in a structure making them suitable for lightweight applications that require
simultaneous resistance to high temperature and wear such as that found in the automotive, aerospace,
biomedical and micro-electrics industries (Koizumi, 1997).

The behaviour of FGMs under loads is more complicated than that in homogeneous materials. The
material gradients in FGMs affects the resulting stress distribution. Analytical solutions, although avail-
able e.g. (Kim and Paulino, 2002; Saddd, 2005), are limited to simple geometries, loading conditions
and material gradients. Computational analysis have the potential to be an effective alternative to ana-
lyze and design components manufactured by FGMs. In this respect, computational approaches that are
based on the finite element method (FEM), boundary element method (BEM), meshless methods and
scaled boundary finite element method (SBFEM) has been investigated to some extent.

The most straightforward approach to model the material gradient in the FEM is to assign the
appropriate material properties to each individual element (Enab, 2014) or a subdividion of elements in
the mesh (Bao and Wang, 1995). This approach is not particularly efficient because the mesh density
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has to be sufficiently fine to keep the discontinuous step-type variation in the material properties to a
minimum. An alternative approach that does not require any reformulation of the FEM was proposed by
Rosseau and Tippur (2000). In this approach, the spatial variation of the material properties are defined
as a function of temperature with zero thermal coefficient of expansion. An initial temperature gradient
that matches the material gradient of the FGM is then specified to the mesh so that the resulting material
gradients can be modelled. This approach can be adapted to commercial finite element softwares such as
ANSYS and ADINA. In ABAQUS, the material gradient can be modelled using user defined subroutines
such as UMAT e.g. (Berlo, 2009) or USDFLD e.g. (Martinez-Paneda and Gallego, 2015).

The approaches that require modifications the FEM formulation include the work of Santare and
Lambros (2000) and the isoparametric graded element of Kim and Paulino (2002). Both approaches
are equivalent and differs only in the manner in which the material gradient is incorporated into the
formulation. In the former, the material properties at the integration points are directly interpolated
from the material gradient. The latter uses the standard isoparametric finite element shape functions to
interpolate the material gradient from their nodal values during the integration of the element stiffness
matrix. The philosophy underlying the isoparametric graded formulation can also be adapted to polygonal
meshes by adopting the polygonal interpolants e.g. Wachspress (1975); Meyer et al (2002); Sukumar and
Tabarraei (2004). This was adopted by Vatanabe et al (2013) for topology optimization of functionally
graded piezoelectric composites. Hernik (2010) proposed a further modification to the isoparametric
graded formulation by interpolating the material gradient using special functions tailored to suit the
material variation.

The BEM posseses many characteristics that makes it an appealing choice to be used for engineering
analyses. It requires only the discretization of the boundary of the problem domain and therefore re-
duces the required spatial dimension of a generic problem by one compared with the FEM. This results
in significant reduction in the required number of degrees-of-freedom leading to huge savings in compu-
tational cost. Several computational problems in the BEM that impede its application is the availability
of a fundamental solution and the need to evaluate hypersingular integrals. Several approaches have
been proposed to circumvent these difficulties. These include formulating the BEM in conjunction with
a meshless scheme (Gao, 2002; Zhang et al, 2011; Yang et al, 2015), combining the BEM with analog
equations (Riveiro and Gallego, 2013) and improved integration methodologies (Sladek and Sladek, 1998;
Liu et al, 2015).

The application of the meshless method in computational mechanics became popular during the
mid-1990’s. Many variants of the meshless method have been introduced including for example, the
Element-Free Galerkin method (Belytschko et al, 1994), the Reproducing Kernel Particle method (Liu
et al, 1995) and the meshless local Petrov Galerkin method (Sladek et al, 2013). A detailed review of the
meshless method and its implementation aspects is documented by Nguyen et al (2008). Unlike the FEM
or the BEM, the meshless methods enable the solution of a generic boundary value problem without
the definition of a physical mesh. This significantly simplifies the preprocessing phase in numerical
simulations. The meshless methods have also been formulated for application in FGMs. Applications
reported in the literature include anisotropic FGMS (Sladek et al, 2005), piezoelectric FGMS (Sladek
et al, 2007), fracture (Sladek et al, 2008a,b), thermo-mechanical analysis of FGMs (Wang and Qin, 2008),
magneto-elastic FGMs (Sladek et al, 2010) and viscoelastic FGMs (Chen et al, 2015).

The SBFEM is a semi-analytical method that was developed by Song and Wolf (1997) and is well
known for its robustness in problems involving fracture e.g. (Goswami and Becker, 2012; Ooi et al, 2012;
Natarajan et al, 2014) and unbounded media (Song and Tao, 2010; Birk and Behnke, 2012). A SBFEM
formulation for FGMs was developed by Chiong et al (2014). The key step in this development is the
reformulation of the SBFEM in the form of shape functions valid for arbitrary sided star convex polygons.
The scaled boundary shape functions enable the modelling of general material heterogeneity and paved
the way for modelling material nonlinearity (Ooi et al, 2014; Behnke et al, 2014). The scaled boundary
shape functions possess linear completeness properties, which guarantees convergence in the limit when
the size of the element approaches zero (Chiong et al, 2014).

Ooi et al (2016) recently showed that the scaled boundary shape functions do not possess high
order completeness, which resulted in sub-optimal convergence in modal analyses and problems of the
Poisson type in homogeneous materials. A set of high order complete shape functions was then developed
by introducing bubble-like functions to the original SBFEM interpolants. The bubble functions are
derived from the scaled boundary formulation by incorporating body force modes using a generalized
coordinates (Song, 2006). Unlike the conventional bubble functions in the context of the FEM (Taylor
et al, 1976), those derived by Ooi et al (2016) naturally preserve the displacement compatibility between
adjacent polygons without any remedial techniques e.g. (Ibrahimbegovic and Wilson, 1991). Higher
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order interpolations can be conveniently formulated by simultaneously increasing the order of the one-
dimensional shape functions on the polygon boundary and the number of the body force modes. This
manuscript extends the high order complte SBFEM formulation with bubble functions developed by Ooi
et al (2016) for elasto-static analyses of FGMs.

This manuscript is organized as follows: In Section 2, the fundamentals of the SBFEM in in terms
of generalized coordinates (Song, 2006) are reviewed; leading to the derivation of the bubble-like shape
functions. Section 3 outlines the formulation of the stiffness matrix for a generic polygon applicable
to isotropic and orthotropic FGMs. A series of numerical benchmarks used to validate the developed
formulation is presented in Section 4. The accuracy of the developed formulation is compared with
available analytical solutions reported in the literature. Section 5 summarizes the major conclusions that
can be drawn from this manuscript.

2 Scaled boundary finite element formulation with bubble functions

2.1 Geometry transformation

Any star-convex polygon can be modelled using the SBFEM. A generic polygon modelled by the SBFEM
is shown in Fig. 1a. The star convexity criterion necessitates the definition of a point inside a polygon
known as the scaling centre from which every point on the boundary of the polygon is visible from it.
A radial coordinate ξ is defined in the polygon where ξ = 0 at the scaling centre and ξ = 1 at the
polygon boundary. The edges of a polygon are discretized using one-dimensional finite elements. A local
coordinate system η similar to that in the FEM; with −1 ≤ η ≤ 1 is defined on each line element. Along
the line elements, standard finite element shape functions can be used to approximate the field variable.
The SBFEM can also be used to model discontinuities such as a crack or a notch. When modelling such
types of geometries, the polygon does not form a closed loop and the scaling centre is selected to be the
crack/notch tip. A generic polygon modelling a crack is shown in Fig. 1b.

With reference to the scaling centre, the Cartesian coordinates of a point in the polygon is

{

x(ξ, η)
y(ξ, η)

}

=ξ

{

xη

yη

}

(1)

where

{

xη

yη

}

=N(η)x0 (2)

In Eq. (2), N(η) is the shape function matrix. For a polygon with m nodes, N(η) is

N(η) =

[

N1(η) 0 N2(η) 0 . . . Nm(η) 0
0 N1(η) 0 N2(η) . . . 0 Nm(η)

]

(3)

and x0 is the vector of nodal coordinates

x0 =[x1 y1 x2 y2 . . . xm ym]T (4)

The coordinate transformation between the scaled boundary coordinates (ξ, η) and the Cartesian
coordinates (x, y) is performed similar to the FEM. The Jacobian matrix required for coordinate trans-
formation is (Song, 2006)

J(η) =

[

xη yη
xη,η yη,η

]

(5)

Using Eq. (5), the derivatives with respect to x and y is transformed to those with respect to ξ and η as











∂

∂x
∂

∂y











=
1

J

{

yη,η
−xη,η

}

∂

∂ξ
+

1

J
ξ−1

{

−yη
xη

}

∂

∂η
(6)
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where J is the determinant of the Jacobian matrix in Eq. (5). For a polygon, an infinitesimal area dΩ
and an infinitesimal line on the polygon boundary dΓ are expressed as (Song, 2006)

dΩ =Jξdξdη (7)

dΓ (ξ) =∆Γ ξdη (8)

where

∆Γ =
√

x2
η(η) + y2η(η) (9)

2.2 High-order complete scaled boundary shape functions

2.2.1 Static equilibrium condition within a polygon

A set of higher order complete shape functions that is valid for an arbitrary sided star-convex polygon
can be derived from the equilibrium conditions of the polygon (Ooi et al, 2016)

LTσ + p =0 (10)

where p is the body force intensity and the linear operator matrix L is defiend as (Song and Wolf, 1997)

L =b1(η)
∂

∂ξ
+ ξ−1b2(η)

∂

∂η
(11)

where

b1(η) =
1

J





yη,η 0
0 −xη,η

−xη,η yη,η



 (12)

b2(η) =
1

J





−yη 0
0 xη

xη −yη



 (13)

The stress vector σ = [σxx σyy τxy]
T is related to the strain vector ε = [εxx εyy γxy]

T by the
Hooke’s law

σ =Dε (14)

where D is the material constitutive matrix. The strain vector ǫ is related to the displacement vector by

ε =Lu (15)

where u = [u v]T is the displacement vector. For a point in a triangular sector bounded by the scaling
centre and a line element on the polygon boundary, the displacement vector is interpolated as

u(ξ, η) =N(η)u(ξ) (16)

u(ξ) are analytical displacement functions that are obtained from the equilibrium condition of a polygon.
Using Eq. (6), Eq. (16) and Eq. (15), the strain field can be expressed as

ε(ξ, η) =B1(η)
∂u(ξ)

∂ξ
+ ξ−1B2(η)u(ξ) (17)

where

B1(η) =b1(η)N(η) (18)

B2(η) =b2(η)N,η (η) (19)

Accordingly, the equilibrium equation can be expressed as

bT
1 (η)

∂σ(ξ, η)

∂ξ
+ ξ−1bT

2 (η)
∂σ(ξ, η)

∂η
+ p(ξ, η) =0 (20)
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where it is assumed that the body force intensity can be expressed in terms of scaled boundary coordinates
(ξ, η).

The Galerkin weighted-residual technique can then be applied to solve Eq. (20). A weight function
w(ξ, η) of the form

w(ξ, η) =N(η)w(ξ) (21)

is introduced. Multiplying Eq. (20) with w(ξ, η) and integrating over a triangular sector bounded by the
scaling centre and a line element on the polygon boundary results in

∫

Ω

w(ξ)TNT (η)bT
1 (η)σ(ξ, η),ξ dΩ +

∫

Ω

w(ξ)TNT (η)ξ−1bT
2 (η)σ(ξ, η),η dΩ . . .

+

∫

Ω

w(ξ)TNT (η)p(ξ, η)dΩ =0 (22)

The second term in Eq. (22) is considered. Using the identity (Song, 2006)

(Jb2(η)),η =− Jb1(η) (23)

results in

e =

∫ 1

0

wT (ξ)

(

T(ξ) −
∫ 1

−1

(

−BT
1 (η) +BT

2 (η)
)

D
(

B1(η)u(ξ),ξ +ξ−1B2(η)u(ξ)
)

Jdη

)

dξ (24)

where T(ξ) is the vector of nodal forces acting on the side-face of a the triangular sector at constant η.
For closed loop polygons and crack polygons with traction free surfaces such as that dealt with in this
manuscript, this term vanishes. Substituting this result into Eq. (22) and using Eq. (6) results in

∫ 1

0

wT (ξ)

(

E0ξu(ξ),ξξ +(E0 +ET
1 −E1)u(ξ),ξ −E2ξ

−1u(ξ) +

∫ 1

−1

NT (η)p(ξ, η)Jdη

)

ξdξ =0 (25)

where the coefficient matrices E0, E1 and E2 are

E0 =

∫ 1

−1

BT
1 (η)DB1(η)Jdη (26)

E1 =

∫ 1

−1

BT
2 (η)DB1(η)Jdη (27)

E2 =

∫ 1

−1

BT
2 (η)DB2(η)Jdη (28)

It is important to note here that the coefficient matrices Ei can be computed for each line element on the
polygon boundary and assembled element by element similar to to the standard finite element procedure
for assembly of the stiffness matrix.

Invoking the arbitrariness of the weight function, the equilibrium condition for a polygon can be
expressed as

E0ξ
2u(ξ),ξξ +(E0 +ET

1 −E1)ξu(ξ),ξ −E2u(ξ) + F(b) =0 (29)

where F(b) is the vector of nodal forces due to the body loads and can in general, be in polynomial form

F(b) =
∑

h=0

h
∑

k=0

ξj+2Phkahk (30)

For a typical term with h and k, the matrix Phk is

Phk =

∫ 1

−1

NT (η)fhk(η)Jdη (31)

Eq. (25) is known as the scaled boundary finite element equation in displacement in the literature.
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2.2.2 Solution of the scaled boundary finite element equation

The system of linear nonhomogeneous second-order ordinary differential equations in Eq. (25) is solved
by transforming it into a first-order ordinary differential equation with twice the number of unknowns
(Song, 2006). The variable

χ(ξ) =

{

u(ξ)
q(ξ)

}

(32)

is introduced. Here, q(ξ) is the vector of nodal force functions on a surface Γ (ξ) with constant ξ. It is
defined as(Song, 2006)

q(ξ) =E0ξu(ξ),ξ +ET
1 u(ξ) (33)

Using the definition of χ(ξ) in Eq. (32) together with Eq. (33) and Eq. (25) leads to

ξ

{

u(ξ)
q(ξ)

}

,ξ =− Z

{

u(ξ)
q(ξ)

}

−
{

0

F(b)

}

(34)

where the Hamiltonian matrix

Z =

[

E−1
0 ET

1 E−1
0

−E2 +E1E
−1
0 ET

1 −E1E
−1
0

]

(35)

is of size 2N × 2N and N is the number of degrees-of-freedom in a polygon. The Hamiltonian matrix
also satisfies the identity (Song, 2006)

(J2nZ)
T =J2nZ (36)

where

J2n =

[

0 −I

I 0

]

(37)

and I is an identity matrix.
The Hamiltonian matrix Z can be decomposed into base vectors using the Schur decomposition. This

results in

ZV =VΛ (38)

where the Schur matrix Λ and V is a transformation matrix. The Schur matrix Λ is partitioned as (Song,
2006)

Λ =diag(Λn, Λz, Λp ) (39)

with

Λn =diag(Λ1, . . . ΛN−1 ) (40)

Λz =

[

ΛN 0

0 ΛN+1

]

(41)

Λp =diag(ΛN+2, . . . Λ2N ) (42)

The diagonal entries of Λ are equal to the real parts of the eigenvalues of Z. In particular Λn is the
diagonal block with negative eigenvalues, Λz is the diagonal block with zero eigenvalues and Λp is the
diagonal block with positive eigenvalues. The 2N diagonal blocks of Λ form N pairs of conjugate Λi and
Λı where the index of the block conjugate to the ith block is

ı =2N + 1− i (43)

The transformation matrix V has the form

V =[V1, . . . , VN−1, VN , VN+1, . . . V2N ] (44)
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It can also be partitioned as

V =

[

V(u)

V(q)

]

=

[

V
(u)
n V

(u)
p

V
(q)
n V

(q)
p

]

(45)

Each block Vi in Eq. (44) is J2n-orthogonal (Song, 2006) i.e.

VT
i J2nVj =− (VT

j J2nVi)
T =

{

Hi when j = ı
0 when j 6= ı

(46)

Pre-multiplying Eq. (38) with −VT
ı J2n and using Eq. (46) results in

−VT
ı J2nZVj =

{

HT
i when j = i

0 when j 6= i
(47)

The solution of Eq. (34) is expressed in terms of generalized coordinates W(ξ) as (Song, 2006)
{

u(ξ)
q(ξ)

}

=VW(ξ) (48)

The solution of u(ξ) depends on the the eigenvalues of the diagonal block matrices Λ in the Schur matrix.
For each of the the diagonal blocks Λi in Λ, substituting Eq. (48) into Eq. (34) pre-multiplied by

−VT
ı J2n and using the relations in Eq. (46) and Eq. (47) leads to

ξWi(ξ),ξ =−ΛiWi(ξ)− F
(w)
i (49)

For each block i, F(w) can be explicitly expressed as

F
(w)
i (ξ) =−H−T

i (V
(u)
ı )T

∑

h=0

h
∑

k=0

ξh+2(Phk)i(ahk)i (50)

Solving Eq. 49 results in

Wi(ξ) =ξ−Λici −W
(b)
i (ξ) (51)

where ci are the integration constants and for each of the diagonal block i, they are determined as

ci =

∫ 0

1

τΛi−IF
(w)
i (τ)dτ (52)

The first and second terms on the right-hand-side of Eq. (51) are the homogeneous solution and the
particular solution, respectively. The particular solution is

W
(b)
i (ξ) =− ξ−Λi

∫ ξ

1

τΛi−IF
(w)
i (ξ)dτ (53)

This solution is valid for any lower limit of the integral.
The particular solution is evaluated by substituting Eq. (50) into Eq. (52) and integrating analytically

resulting in

W
(b)
i (ξ) =(Λi + (h+ 2)I)−1H−T

i (V
(u)
ı )T

∑

h=0

h
∑

k=0

ξh+2(Phk)i(ahk)i (54)

Substituting Eq. (54) into Eq. (51) and then the resulting equation into Eq. (48), the analytical
displacement functions in Eq. (48) can be expressed as

u(ξ) =V(u)
n ξ−Λnc+Vbξ

Λba (55)

where

Vb =V(u)
[

W
(b)

00 W
(b)

10 W
(b)

11 W
(b)

20 W
(b)

21 W
(b)

22 . . .

]

(56)

a =
[

a00 a10 a11 a20 a21 a22 . . .
]T

(57)

Λb =diag (2, 3, 3, 4, 4, 4, . . .) (58)
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For each block i, W
(b)

hk in Eq. (59) is expressed as

(W
(b)

hk )i =(Λi + (h+ 2)I)−1H−T
i (V

(u)
ı )T (Phk)i (59)

The integration constants c are determined from the nodal displacements v0 = u(ξ = 1) as

c =
(

V(u)
n

)−1

(v0 −Vba) (60)

Substituting Eq. (60) into Eq. (55) and simplifying the equation results in

u(ξ) =V(u)
n ξ−Λn

(

V(u)
n

)−1

(v0 −Vba) +Vbξ
Λba (61)

or, in matrix form

u(ξ) =
[

V
(u)
n Vb

]

[

ξ−Λn

ξΛb

]

Tu0 (62)

where

T =

[
(

V
(u)
n

)−1 (

V
(u)
n

)−1

Vb

0 I

]

(63)

u0 =
[

v0 a
]T

(64)

By introducing the following notations

Ψu =
[

V
(u)
n Vb

]

(65)

S =

[

−Λn

Λb

]

(66)

the radial displacement functions u(ξ) can be further simplified as

u(ξ) =Ψuξ
STu0 (67)

2.2.3 Formulation of scaled boundary shape functions with bubble functions

The complete displacement field of a point lying in a sector covered by a line element on the polygon
boundary is obtained interpolating u(ξ) by N(η) as

u(ξ, η) =N(η)Ψuξ
STu0 (68)

where the shape functions are defined in the matrix product N(η)Ψuξ
ST. Using Eq. (65), Eq. (66) and

Eq. (63), the shape functions can be expressed as

N(η)Ψuξ
ST =

[

N(η)V
(u)
n ξ−Λn

(

V
(u)
n

)−1

N(η)

(

Vbξ
Λb −V

(u)
n ξ−Λn

(

V
(u)
n

)−1

Vb

)]

(69)

The product of the matrices in the first term on the right-hand-side of Eq. (69) is the standard scaled
boundary shape functions (Ooi et al, 2014). It is denoted as

Φ(ξ, η) =N(η)V(u)
n ξ−Λn

(

V(u)
n

)−1

(70)

The bubble functions Φ(b)(ξ, η) (Ooi et al, 2016) are defined in the second column in the of Eq. (69)

Φ(b)(ξ, η) =N(η)

(

Vbξ
Λb −V(u)

n ξ−Λn

(

V(u)
n

)−1

Vb

)

(71)

Φ(b)(ξ, η) is applicable to star convex polygons with an arbitrary number of sidesand it vanishes at the
boundary (ξ = 1). For a typical term defined by the indices h and k, the bubble function is

Φ
(b)
hk (ξ, η) =N(η)

(

ξh+2I−V(u)
n ξ−Λn

(

V(u)
n

)−1
)

V(u)W
(b)

hk (72)

The index h+ 2 represents the order of the bubble function and the index k corresponds to the specific

mode that Φ
(b)
hk (ξ, η) can represent.
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3 Polygon formulation for functionally graded materials

For problems in elasto-statics, the equilibrium condition of a domain Ω can be expressed using the
principal of virtual work as

∫

δεTσdΩ =

∫

Γ

δuT tdΓ +

∫

Ω

δuTbdΩ (73)

where σ is the stress field, ε is the strain field, b is the body force intensity and t is the surface traction.

3.1 Stiffness matrix

The stiffness matrix of a polygon Kpol is defined in the term on the left-hand-side of Eq. (73). The stress
σ is related to the strain by Hooke’s law in Eq. (14).

For functionally graded materials, the material constitutive matrix D is a function of the space (x, y).
For isotropic materials

D(x, y) =































E(x, y)

1− ν(x, y)





1 ν(x, y) 0
ν(x, y) 1 0

0 0 1− ν(x, y)



 ; for plane stress

E(x, y)

(1 + ν(x, y))(1 − 2ν(x, y))





1− ν(x, y) ν(x, y) 0
ν(x, y) 1− ν(x, y) 0

0 0 1− 2ν(x, y)



 ; for plane strain

(74)

where E(x, y) is the Young’s modulus and ν(x, y) is the Poisson’s ratio. For orthotropic materials

D(x, y) =













































El(x,y)
1−νlt(x,y)νtl(x,y)

νlt(x,y)Et(x,y)
1−νlt(x,y)νtl(x,y)

0
νtl(x,y)El(x,y)

1−νlt(x,y)νtl(x,y)
Et(x,y)

1−νlt(x,y)νtl(x,y)
0

0 0 Glt(x, y)






; for plane stress







(1−νlt(x,y))El(x,y)
(1+νlt(x,y))(1−2νlt(x,y))

νlt(x,y)Et(x,y)
(1+νlt(x,y))(1−2νlt(x,y))

0
νlt(x,y)Et(x,y)

(1+νlt(x,y))(1−2νlt(x,y))
(1−νlt(x,y))Et(x,y)

(1+νlt(x,y))(1−2νlt(x,y))
0

0 0 Glt(x,y)
(1+νlt(x,y))(1−2νlt(x,y))






; for plane strain

(75)

where El(x, y) is the Young’s modulus in the longitudinal direction, Et(x, y) is the Young’s modulus in
the transverse direction Glt(x, y) is the shear modulus; and νlt(x, y) and νtl(x, y) are the Poisson’s ratio.

The material constitutive matrix is first expressed in terms of the scaled boundary coordinates (ξ, η).
The variation of the material properties E(x, y), ν(x, y), El(x, y), etc., over the two-dimensional space
(x, y) is assumed to be a polynomial function of the generic form

φ(x, y) =φ0 + φ1x+ φ2y + φ3x
2 + φ4xy + φ5y

2 + . . . (76)

where φ can be substituted with the material parameters E(x, y), ν(x, y), El(x, y), etc. The constants φi

can be obtained from a least squares fit in each polygon for a known material gradient. Using the scaled
boundary transformation equation in Eq. (1), φ(x, y) can be expressed in scaled boundary coordinates
(ξ, η) as

φ(ξ, η) =φ0 + φ1ξxη + φ2ξyη + φ3ξ
2x2

η + φ4ξ
2xηyη + φ5ξ

2y2η + . . . (77)

Collecting similar terms, φ(ξ, η) can be expressed as

φ(ξ, η) =φ0 + (φ1xη + φ2yη)ξ + (φ3x
2
η + φ4xηyη + φ5y

2
η)ξ

2 + . . .

=
∑

r=0

r
∑

s=0

ξrϕrs(η) (78)

This representation allows the material constitutive matrix to be expressed as

D(ξ, η) =
∑

r=0

r
∑

s=0

ξrDrs(η) (79)
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The strain field ε is first expressed in terms of scaled boundary coordinates (ξ, η). Using Eq. (17) and
Eq. (68) results in

ε(ξ, η) =Ψ ε(η)ξ
S−ITu0 (80)

where the strain mode Ψ ε(η) is expressed as

Ψ ε(η) =B1(η)ΨuS+B2(η)Ψu (81)

Substituting Eq. (80) into the left-hand-side of Eq. (73) and using the Hooke’s law with D defined
by Eq. (79) results in

∫

Ω

δεTσdΩ =δuT
0 T

T

∫

Ω

ξS
T−IΨT

ε (η)

(

∑

r=0

r
∑

s=0

ξrDrs(η)

)

Ψ ε(η)ξ
S−IdΩTu0 (82)

The stiffness matrix is defined in the above equation by

Kpol =TT

∫

Ω

ξS
T−IΨT

ǫ (η)

(

∑

r=0

r
∑

s=0

ξrDrs(η)

)

Ψ ǫ(η)ξ
S−IdΩ (83)

Substituting Eq. (7) for dΩ, Kpol can be further expressed as

Kpol =TT
∑

r=0

∫ 1

0

ξS
T+(r−1)IY(r)(η)ξSdξT (84)

where for each term r, the matrix Y(r)(η) is

Y(r)(η) =

r
∑

s=0

∫ 1

−1

ΨT
ǫ (η)Drs(η)Ψ ǫ(η)J(η)dη (85)

Y(r)(η) can be integrated numerically using standard gaussian quadrature.
The stiffness matrix is evaluated as the sum of each term r. Defining the matrix

X(r) =

∫ 1

0

ξS
T+(r−1)IY(r)ξSdξ (86)

for each term r enables the stiffness matrix to be expressed as

Kpol =
∑

r=0

TTX(r)T (87)

The matrixX(r) is determined by integrating Eq. (86) by parts. This results in the Lyapunov equation

(S+ 0.5rI)TX(r) +X(r)(S+ 0.5rI) =Y(r) (88)

X(r) is the solution of the Lyapunov equation in Eq. (88).

3.2 Polygon load vector

The polygon load vector Fpol is defined in the external work component on the right-hand-side of Eq. (73)

Wext =

∫

Ω

δuTbdΩ +

∫

Γ

δuT tdΓ (89)

Substituting for dΩ and dΓ with Eq. (7) and Eq. (8), respectively and substituting for u(ξ, η) using
Eq. (68)

Wext =δuT
0

(

TT

∫ 1

0

ξS+I

∫ 1

−1

ΨT
uN(η)bJdηdξ + TT ξS+I

∫ 1

−1

ΨT
uN(η)t(η)∆Γ dη

∣

∣

∣

∣

ξ=1

)

(90)
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The load vector due to the body forces Fbod and the load vector due to the surface traction Ftra are
defined in Eq. (90) by

Fbod =TT

∫ 1

0

ξS+I

∫ 1

−1

ΨT
uN(η)bJdηdξ (91)

Ftra = TT ξS+I

∫ 1

−1

ΨT
uN(η)t(η)∆Γ dη

∣

∣

∣

∣

ξ=1

(92)

The distributed load vector due to surface tractions is evaluated only on the polygon boundar (ξ = 1)
resulting in

Ftra =TTΨT
u

∫ 1

−1

NT (η)t(η)∆Γ dη (93)

In Eq. (93), note that

TTΨT
u =

[

I

0

]

(94)

Therefore, only the integral on the boundary contribute to the distributed load. This integral can be
evaluated using standard Gaussian quadrature.

The body load distribution b in Eq. (91) is assumed to be in the form of a power function in scaled
boundary coordinates (ξ, η)

b(ξ, η) =
∑

j=0

b(j)(η)ξj (95)

Substituting Eq. (95) into Eq. (91) results in

Fbod =TT

∫ 1

0

ξS
T+IΨT

u

∫ 1

−1

NT (η)





∑

j=0

b(j)(η)ξj



 dηdξ (96)

For a typical term with index j, the body force vector is F
(j)
bod is

F
(j)
bod =TT

∫ 1

0

ξS
T+(j+1)IΨT

u

∫ 1

−1

NT (η)b(j)(η)dηdξ (97)

Integrating analytically results in

F
(j)
bod =TT (S

T
+ (j + 2)I)−1ΨT

u

∫ 1

−1

NT (η)b(j)(η)dη (98)

Considering all the terms, the total body force vector can be expressed as

Fbod =
∑

j=0

(

TT (S
T
+ (j + 2)I)−1ΨT

u

∫ 1

−1

NT (η)b(j)(η)dη

)

(99)

The total load vector in a polygon is therefore

Fpol =Fbod + Ftra (100)
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4 Numerical examples

In this section, several numerical benchmarks are used to validate the developed formulation. Where
applicable, the computed results are compared with those obtained using the analytical solution, the
isoparametric graded finite element (Kim and Paulino, 2002) and the original SBFEM formulation for
FGMs (Chiong et al, 2014).

In the analyses that follow, the number of required body force modes required for the bubble functions
Φ(b)(ξ, η) for a specific order of shape function Φ(ξ, η), is determined from the princples advocated by
(Ooi et al, 2016). For second order shape functions O(η) = 2, only a single body force mode is necessary.
Higher order shape functions with O(η) = 3, O(η) = 4 and O(η) = 5 require 3, 6 and 10 body force

modes in Φ(b)(ξ, η), respectively.
The order of the least squares fit required to determine the constants φi in Eq. (76) is determined by

the order of the shape functions used to discretize the polygon boundary. For the simulations reported
in this manuscript, the order of the least squares fit required to compute the constants φi is equal to
the order of shape functions O(η) used to discretize the polygon boundary. For problems where the
gradient is a function of only one of the Cartesian axes, x or y, the material properties are sampled at
the integration points at ξ = 1. For problems where the gradient is a function both x and y, the material
properties are sampled at the integration points at ξ = 1 and ξ = 0.5.

4.1 Functionally graded plate under different loading conditions

The functionally graded plate of infinite length (L → ∞) under plane stress conditions shown in Fig. 2a
is considered. The width of the plate is W . Two loading cases are considered: (i) tension loading as is
shown in Fig. 2b and; (ii) bending loading as is shown in Fig. 2c.

To simulate the infinite length of the plate, the computational domain is constructed with L
W

= 4.
Two types of meshes are considered: (i) regular N × 4N quadrilateral mesh; and (ii) arbitrary sided
polygon mesh. Fig. 3 shows the generic meshes used in the simulations. Unless otherwise stated, N is
chosen to be N = 3 and N = 9 for regular quadrilateral meshes. The polygon meshes are generated from
a Delaunay triangulated mesh following the approach of Ooi et al (2012). The mesh density is controlled
by the size of the triangular element mesh htri. For this simulation, htri was chosen to be htri = 4.5 and
htri = 1.125.

The analytical solution of the plate under different types of loading conditions (tensile, bending and
fixed gripped) for exponential and linear material variation were reported by Kim and Paulino (2002).
These solutions will be used to as a reference to validate the developed formulation.

4.1.1 Isotropic functionally graded plate

The case of an isotropic functionally graded plate subjected to tensile loading is examined first. Two
types of material gradient are considered: (i) material gradient perpendicular to the loading direction
and; (ii) material gradient parallel to the loading direction. For the case where the material gradient
is perpendicular to the loading direction, two types of material gradients are investigated; exponential
and linear. For the material gradient that varies exponentially, the Poisson’s ratio is constant and the
Young’s modulus E varies exponentially as

E(x) =E(0)e
x
W

ln

(

E(W )
E(0)

)

(101)

For the case of linear material variation, the Poisson’s ratio ν is constant and

E(x) =E0 +
E(W )− E(0)

W
x (102)

In both types of material gradients, the simulations are carried out with E0 = E(0) = 1; E(W ) = 8 and
W = 9.

The simulations are performed using original SBFEM formulation, the SBFEM formulation with
bubble functions, the isoparametric graded finite element formulation of Kim and Paulino (2002). The
computed nodal displacements of each respective formulation are compared with the analytical solution.
Quadratic (second order) shape functions are used for all formulations.
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Fig. 4a -4d show the error in the nodal displacements computed from the regular quadrilateral meshes
and polygonal meshes for the case of exponential material gradient. For the case of linear material
gradient, the error in the computed nodal displacements are shown in Fig. 5a - Fig. 5d. For these cases
(loading and material gradient), the accuracy of all the formulations (isoparametric graded, SBFEM and
SBFEM with bubble functions) are comparable and very close to the analytical solution.

The case where the material gradient is parallel to the loading direction is considered next. In this
case, the Poisson’s ratio ν = 0.0 and is constant over the domain. The Young’s modulus varies according
to

E(y) =(1 + y)n (103)

Two cases are modelled: n = 1 and n = 2. The comparison of the accuracy of the computed nodal
displacements with the analytical solutions for the case of n = 1 are shown in Fig. 6a - Fig. 6d. For the
case of n = 2, the error in the computed nodal displacements are shown in Fig. 7a - Fig. 7d . For these
cases, the accuracy of the SBFEM with bubble functions and the graded finite element formulation of
Kim and Paulino (2002) are comparable when quadratic shape functions are used. Higher accuracy can
be achieved by increasing the order of the bubble functions used.

A distinction in the solution accuracy can be observed when comparing the performance of the original
SBFEM for cases where the material gradient is perpendicular; and parallel to the loading direction. In
the former case, the accuracy of the SBFEM is comparable with the SBFEM with bubble functions. In
the latter, the SBFEM with bubble functions show superior accuracy. This observation can be attributed
to the nature of the analytical solution and also the high order completeness characteristic of the shape
functions in the original SBFEM formulation. For the case where the material gradient is perpendicular
to the direction of the load, the analytical displacement field is a polynomial function. It is quadratic in u
and linear in v (Kim and Paulino, 2002). The SBFEM shape functions Φ(ξ, η) are capable of reproducing
all the terms in a linear polynomial unconditionally and all the terms in a quadratic polynomial under
certain conditions. In the case where the material gradient is parallel to the direction of loading, the
analyitical solution is a logarithmic function for n = 1 and a rational function for n = 2. The addition
of the bubble functions Φ(b)(ξ, η) renders the SBFEM formulation to be high order complete (Ooi et al,
2016)and possess higher approximation capability. Therefore, its accuracy is superior compared with the
SBFEM formulation without bubble functions.

The case of a isotropic functionally graded plate subjected to bending loading is now examined. The
bending load σb(x) in Fig. 2c is distributed as

σb(x) =1− 2

9
x (104)

The Young’s modulus E(x) is assumed to vary exponentially according to Eq. (101) and the Poisson’s
ratio is assumed to be a constant i.e., ν(x) = 0.3. The error in the computed horizontal and vertical
displacements computed using various element formulations are show in Fig. 8a - Fig. 8b in the case of
quadrilateral meshes and Fig. 8c - Fig. 8d for polygonal meshes. For this particular case, just as in the
case of uniform tensile load with material gradient perpendicular to the loading direction, the accuracy
of the SBFEM formulation, the SBFEM formulation with bubble functions and the isoparametric graded
elements are comparable and very close to the analytical solution.

4.1.2 Orthotropic functionally graded plate

The case of a functionally graded plate with orthotropic material properties subjected to tensile load σt is
now considered. The material gradients are perpendicular to the loading direction and vary exponentially
with x following

El(x) =El(0)e
x
W

ln

(

El(W )
El(0)

)

(105)

Et(x) =Et(0)e
x
W

ln

(

Et(W )
Et(0)

)

(106)

Glt(x) =Glt(0)e
x
W

ln

(

Glt(W )
Glt(0)

)

(107)

νlt(x) =0.3 (108)

The simulations are carried out with material parameters El(0) = 1; Et(0) = 0.1 and Glt(0) = 0.5 . The
error in the computed nodal displacements using the SBFEM formulation, the SBFEM formulation with
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bubble functions and the isoparametric graded elements are shown in Fig. 9a - Fig. 9d. For the quadri-
lateral meshes, the accuracy of all the three formulations (SBFEM, SBFEM with bubble functions and
isoparametric graded) are comparable. They are very close to the analytical solution. For the polygonal
meshes, the SBFEM formulation with bubble functions is more accurate. This may be attributed its the
high order completeness property, which improves the approximation capability of the shape functions.

4.2 Rate of convergence for Poisson problem

A square domain Ω ∈ [0, 1]2 is considered the Lame constants µ(x) and λ(x) are assumed to vary
according to

λ(x) =
E(x)ν

(1 + ν)(1 + 2ν)
(109)

µ(x) =
E(x)

2(1 + ν)
(110)

where the Young’s modulus E(x) is defined as in Eq. (101) with E0 = 1 and the Poisson’s ratio ν is
constant. The equilibrium condition of the domain subjected to body loads bx and by is described by the
Navier equations of elasticity

(λ(x) + µ(x))

(

∂2u

∂x2
+

∂2v

∂x∂y

)

+ µ(x)

(

∂2u

∂x2
+

∂2u

∂y2

)

+
∂λ(x)

∂x

(

∂u

∂x
+

∂v

∂y

)

+ 2
∂µ(x)

∂x

∂u

∂x
+ bx =0

(111)

(λ(x) + µ(x))

(

∂2v

∂y2
+

∂2u

∂x∂y

)

+ µ(x)

(

∂2v

∂y2
+

∂2v

∂x2

)

+
∂µ(x)

∂x

(

∂u

∂y
+

∂v

∂x

)

+ by =0

(112)

The domain is discretized using two approaches: (i) N ×N structured quadrilateral meshes and (ii)
arbitrary sided polygon meshes. The quadrilateral meshes are generated using N = 2, N = 4, N = 8
and N = 16. For the polygon meshes, the generic size of a polygon is determined by the parameter htri .
The polygon meshes are generated using htri = 1/M . The values of N used are M = 4, M = 8, M = 16
and M = 32.

A convergence study is carried out for both mesh types; quadrilaterals and polygons. The results
obtained from the SBFEM formulation with bubble functions are compared with the original SBFEM
formulation developed for functionally graded materials (Chiong et al, 2014). The L2−norm of the relative
error in the displacements is monitored. The norm is defined according to Talischi and Paulino (2014);
Talischi et al (2015) as

||uh − u||2 =

√

∫

Ω

(uh − u)T (uh − u)dΩ (113)

where uh is the computed displacement vector and u is the analytical displacement vector. Eq. (113)
can be integrated numerically.

The case of a polynomial displacement field of the form

u(x, y) = v(x, y) =x2y2(1− x)(1 − y) (114)

is considered first. The body force intensities for this problem are derived from Eq. (111) and Eq. (112)
and the material gradient. Fig. 11a and Fig. 11b compare the convergence of the formulations for the
quadrilateral and the polygonal meshes, respectively. A similar trend is observed for both types of meshes
considered. The addition of the bubble functions improves both the accuracy and the convergence rate
of the SBFEM. For the regular quadrilateral mesh with quadratic shape functions (O(η) = 2), the
convergence rate for the SBFEM is 1.065 compared with 1.617 when the bubble functions are used. The
convergence rate for the bubble functions can be increased further when higher order shape functions
are used. For the third and fourth order shape functions, O(η) = 3 and O(η) = 4, the convergence rates
are 2.091 and 2.225, respectively. When the polygonal meshes are used, the convergence rate is 1.038 for
the SBFEM with quadratic shape functions compared with 1.607 when bubble functions are used. The
convergence rates are 2.107 and 2.236 when the third and fourth order shape functions are used.
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The case of a trigonometric displacement field of the form

u(x, y) = v(x, y) =xy(1 − x)(1 − y)sin(3πx)cos(2πy) (115)

is considered next. The convergence study is repeated using the same meshes used in the case of a
polynomial displacement field. The results elucidating the performances of the SBFEM and the use of
bubble functions are shown in Fig. 12. Similar to the case where a polynomial displacement field is
considered, the inclusion of bubble functions demonstrate increased convergence rates. For the regular
quadrilateral mesh, comparing shape functions of O(η) = 2, the convergence rate is 0.9911 with the
original SBFEM and this improves to 1.571 when the bubble functions are used. For the high order
bubble functions, the convergence rates are 2.152 when the shape functions are of order O(η) = 3 and
2.614 when the shape functions are of order O(η) = 4. For the polygonal meshes, the convergence rates
with shape functions of order O(η) = 2 are 1.157 and 1.707 for the original SBFEM formulation and
the SBFEM formulation with bubble functions, respectively. The convergence rates are further improved
when higher order shape functions are used. For shape functions of order O(η) = 3 and O(η) = 4, the
convergence rates are 2.355 and 2.637, respectively. Unlike the case where the displacement field is a
pure polynomial expression, the accuracy of the coarse meshes using higher order shape functions is
lower compared with a fine mesh using a lower order shape function with the same number of degrees-
of-freedom. However, the accuracy rapidly increases with increase in mesh density and this is reflected
by the high convergence rates associated with the high order shape functions.

Just like the displacements, the strains ǫ = [ǫxx ǫyy γxy] can be computed accurately within the
domain Ω when the bubble functions are incorporated into the SBFEM formulation. Fig. 13 shows the
contour plots of the error in the computed strain components for the regular quadrilateral and arbitrary
polygonal meshes using bubble functions of the order O(η) = 3. It can be identified from the Fig. 13
that the strain components can be accurately reproduced within the domain.

4.3 Infinite functionally graded plate with a circular hole

The infinite functionally graded plate with a circular hole subjected to uniform bi-axial tension T is con-
sidered. due to symmetric conditions, only quarter of the plate is modelled. The geometry and boundary
conditions pertinent to the plate are shown in Fig. 14a. The Poisson’s ratio ν = 0.25 and is constant
over the entire plate. The Young’s modulus is graded radially according to

E(r) =E0

( r

a

)n

(116)

where

r =
√

x2 + y2 (117)

The analytical solution for this problem derived by Saddd (2005) from a hollow cylindrical domain
subjected to uniform internal and external pressure was validated using the FEM by Berlo (2009).
This problem will be used as another numerical benchmark to validate the SBFEM formulation with
bubble functions. Two polygonal meshes shown in Fig. 14b and Fig. 14c are considered. The coarse mesh
comprise of 89 polygons. The fine mesh has 217 polygons.

The elastic analysis was carried out with the following material and geometric parameters; E0 = 1,
a = 1, b = 20. The effects of the material gradient on the stress distribution is investigated for two values
of n; n = 0.2 and n = −0.2. Plane stress conditions are assumed. Shape functions of order O(η) = 2 and
O(η) = 3 are used in the analyses. For the O(η) = 2 shape functions, the mesh has 498 nodes in the
coarse mesh and 1186 nodes in the fine mesh. For the O(η) = 3 shape functions, the mesh has 791 nodes
in the course mesh and 1887 nodes in the fine mesh.

Fig. 15a and Fig. 15b compares the distribution of the normalized circumferential stress σθθ/T with
respect to the normalized distance r/a obtained from the developed formulation with the available
analytical solution. It is evident from Fig. 15a and Fig. 15b that the developed method can reproduce
the correct stress distribution with sufficient accuracy in both coarse and fine meshes irrespective of the
order of the shape functions used. Table 1 compares the predicted maximum cirumferential stress for
the different material gradients considered using the second and third order shape functions. It can be
clearly identified in Table 1 that the predicted stresses are very close to the analytical solution. The error
in the SBFEM solutions were less than 0.5%.
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Table 1: Comparison of predicted maximum circumferential stress in the infinite functionally graded
plate with a circular hole problem.

σθθ/T

O(η) = 2 O(η) = 3 Analytical

n = 0.2
coarse 1.5430 1.5477

1.5473
fine 1.5465 1.5550

n = −0.2
coarse 2.5344 2.5613

2.5482
fine 2.5423 2.5560

Fig. 16a and Fig. 16b show the contour plot of the normalized circumferential stress σθθ/T for the case
where n = 0.2 and n = −0.2. The radial distribution of σθθ/T , which is characteristic to the analytical
solution is clearly evident from the contour plots in the vicinity of the hole.

4.4 Stress intensity factors in a functionally graded medium subjected to body load

A functionally graded region defined by Ω ∈ [−5, 5]2 with a central crack of length a = 1 shown in
Fig. 17 is considered. The boundary of the plate is constrained from motion in all directions. The plate
is subjected to a body load intensity of the form

{

bx
by

}

=

{

0
y

}

× 105 (118)

The Young’s modulus of the plate is graded according to

E(y) =(−4y + 40)× 109 (119)

The Poisson’s ratio ν = 0.3 and is assumed to be constant. Plane strain conditions are assumed. The
stress intensity factors of the crack in the plate are computed considering crack angles θ = 0◦, θ = 30◦

and θ = 60◦.
The plate is discretised using arbitrary sided polygons. The mesh density is characterized by a param-

eter h, representing approximately the average circumscribed radii of the polygons in the mesh. Fig. 18
shows two typical meshes that are used to discretize the plate for the case where θ = 0◦. The convergence
behaviour of the SBFEM formulation with bubble functions is investigated by: (i) increasing the mesh
density by reducing the parameter h and; (ii) increasing the order of the shape functions used in the
polygons. The computed stress intensity factors are compared with those obtained from the SBFEM
formulation without bubble functions.

When the bubble functions are used, the procedure to compute the stress intensity factors do not
differ significantly from that of the SBFEM without bubble functions. In this manuscript, the stress
intensity factors are computed using the solutions of the displacements. This approach is adapted from
Chiong et al (2014). The stress intensity factors are evaluated as

{

KI

KII

}

=
Gtip

κtip + 1

√

2π

r0

{

u
(s)
θA − u

(s)
θB

u
(s)
rA − u

(s)
rB

}

(120)

where r0 is the crack length measured from the crack tip to the crack mouth in the crack polygon, Gtip

is the shear modulus at the crack tip, κtip is evaluated as

κtip =

{

3− 4νtip plane strain
(3− 4νtip)/(1 + 4νtip) plane stress

(121)

with νtip representing the Poisson’s ratio at the crack tip. The nodal displacement vectors in radial

coordinates, [u
(s)
θA u

(s)
rA] and [u

(s)
θB u

(s)
rB] ,are computed from Eq. (55) considering only the displacement

modes corresponding to the diagonal block in S with eigenvalues λ satisfying −1 ≤ λ ≤ 0. This diagonal
block leads to singular stresses when ξ → 0. Since the eigenvalues due to the body force modes in Λb

always satisfy λ(Λb) > 0, the second term in Eq. (55) does not contribute to the stress intensity factors.
The 2×2 diagonal block that leads to singular stresses when ξ → 0, S(s), is therefore, defined only in Λn.
The Cartesian nodal displacment vector that lead to singular stresses as ξ → 0, u(s), is then computed
as

u(s) =V(s)
n c(s) (122)
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where V
(s)
n is an N × 2 matrix corresponding to the diagonal block S(s) and c(s) are the integration

constants corresponding to S(s). The nodal displacements at A and B can be extracted from u(s) and
can be transformed into polar coordinates using standard procedures to used in Eq. (120).

The convergence of the stress intensity factors with increasing mesh density is first discussed. The
stress intensity factors are normalized by as Knorm

I = KI/
√
πa×10−6 and Knorm

II = KII/
√
πa×10−6. In

this investigation, third order shape functions are used. Tables 2a-c show the normalized stress intensity
factors for θ = 0◦, θ = 30◦ and θ = 60◦. The results in Tablea 2a-c indicate that the normailsed stress
intensity factors computed with the bubble functions converge more rapidly compared with the stress
intensity factors computed with the SBFEM alone. This applies to all the crack angles that are considered.
The stress intensity factors computed with the SBFEM appear to be converging towards the value of the
stress intensity factors computed with the bubble functions when h = 0.25. This observation indicates
that the bubble functions improve the accuracy of the SBFEM for fracture problems in the presence of
body loads. The increased in accuracy gained is through the more accurate integration constants that
include contributions from the bubble functions.

Table 2: Convergence of stress intensity factors with increasing mesh density.

Normalised Stress Intensity Factors

K
(left)
I

K
(right)
I

K
(left)
II

K
(right)
II

SBFEM Bubble SBFEM Bubble SBFEM Bubble SBFEM Bubble
h = 4.0 0.416097 0.425907 0.416097 0.4259077 0.000000 0.000000 0.000000 0.000000
h = 2.0 0.422745 0.426054 0.422055 0.425899 0.000000 0.000000 0.000000 0.000000
h = 1.0 0.423979 0.425987 0.423961 0.425984 0.000000 0.000000 0.000000 0.000000
h = 0.5 0.425467 0.425967 0.425467 0.425967 0.000000 0.000000 0.000000 0.000000
h = 0.25 0.425846 0.425956 0.425848 0.425957 0.000000 0.000000 0.000000 0.000000

(a) θ = 0◦

Normalised Stress Intensity Factors

K
(left)
I

K
(right)
I

K
(left)
II

K
(right)
II

SBFEM Bubble SBFEM Bubble SBFEM Bubble SBFEM Bubble
h = 4.0 0.332919 0.349165 0.333688 0.349672 0.121431 0.135232 0.1085839 0.115211
h = 2.0 0.342895 0.349084 0.342071 0.349809 0.130654 0.135430 0.1126616 0.115042
h = 1.0 0.347102 0.348888 0.347657 0.350242 0.133981 0.135474 0.1140066 0.114715
h = 0.5 0.348195 0.348518 0.349948 0.350621 0.134989 0.135434 0.1145941 0.114728
h = 0.25 0.348263 0.348304 0.350639 0.350841 0.135279 0.135423 0.1147059 0.114713

(b) θ = 30◦

Normalised Stress Intensity Factors

K
(left)
I

K
(right)
I

K
(left)
II

K
(right)
II

SBFEM Bubble SBFEM Bubble SBFEM Bubble SBFEM Bubble
h = 4.0 0.196399 0.202457 0.195213 0.202988 0.125180 0.126968 0.112403 0.115019
h = 2.0 0.203170 0.203685 0.200631 0.203755 0.127451 0.127046 0.113468 0.114908
h = 1.0 0.204743 0.203648 0.202405 0.203924 0.127300 0.127166 0.113809 0.114913
h = 0.5 0.203109 0.203161 0.203983 0.204390 0.126393 0.126616 0.114967 0.115331
h = 0.25 0.202992 0.202984 0.204435 0.204597 0.126384 0.126375 0.115466 0.115582

(c) θ = 60◦

Next, the convergence of the computed stress intensity factors with increasing order of shape functions
is discussed. For each crack angle θ considered, the polygon mesh with h = 0.5 is used. The convergence
of the computed stress intensity factors is monitored as the order of the shape functions O(η) is increased.
Tablea 3a-c show the computed normalized stress intensity factors. It is interesting to note here that for
the SBFEM formulation, the normalized stress intensity factors is nearly constant and does not improve
with when the order of the shape functions is increased. On the other hand, when the bubble functions
are used, the computed stress intensity factors gradually improve when the order of the shape functions
is increased. The values of the stress intensity factors approaches that obtained when h = 0.25 shown
in Tables 2a-c. This highlights the importance of the application of the bubble functions in problems
involving body loads.
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Table 3: Convergence of stress intensity factors with increasing order of shape functions.

(a) θ = 0◦

Normalised Stress Intensity Factors

K
(left)
I

K
(right)
I

K
(left)
II

K
(right)
II

SBFEM Bubble SBFEM Bubble SBFEM Bubble SBFEM Bubble
O(η) = 2 0.405983 0.406093 0.385176 0.385154 0.000000 0.000000 0.000000 0.000000
O(η) = 3 0.405945 0.405977 0.385128 0.385692 0.000000 0.000000 0.000000 0.000000
O(η) = 4 0.405943 0.405958 0.385126 0.385705 0.000000 0.000000 0.000000 0.000000
O(η) = 5 0.405943 0.405797 0.385127 0.385899 0.000000 0.000000 0.000000 0.000000
O(η) = 6 0.405943 0.405787 0.385127 0.385908 0.000000 0.000000 0.000000 0.000000
O(η) = 7 0.405943 0.405706 0.385127 0.386004 0.000000 0.000000 0.000000 0.000000
O(η) = 2 0.405943 0.405702 0.385127 0.386008 0.000000 0.000000 0.000000 0.000000

(b) θ = 30◦

Normalised Stress Intensity Factors

K
(left)
I

K
(right)
I

K
(left)
II

K
(right)
II

SBFEM Bubble SBFEM Bubble SBFEM Bubble SBFEM Bubble
O(η) = 2 0.348227 0.348623 0.349988 0.350238 0.135006 0.135425 0.114608 0.114628
O(η) = 3 0.348195 0.348518 0.349948 0.350621 0.134989 0.135434 0.114594 0.114728
O(η) = 4 0.348193 0.348497 0.349946 0.350639 0.134988 0.135490 0.114593 0.114667
O(η) = 5 0.348193 0.348380 0.349947 0.350761 0.134988 0.135459 0.114593 0.114685
O(η) = 6 0.348193 0.348366 0.349947 0.350775 0.134988 0.135474 0.114593 0.114669
O(η) = 7 0.348193 0.348310 0.349947 0.350833 0.134988 0.135453 0.114593 0.114683
O(η) = 2 0.348193 0.348301 0.349947 0.350842 0.134988 0.135461 0.114593 0.114674

(c) θ = 60◦

Normalised Stress Intensity Factors

K
(left)
I

K
(right)
I

K
(left)
II

K
(right)
II

SBFEM Bubble SBFEM Bubble SBFEM Bubble SBFEM Bubble
O(η) = 2 0.203124 0.203253 0.204004 0.204143 0.126401 0.126713 0.114976 0.115119
O(η) = 3 0.203109 0.203161 0.203983 0.204390 0.126393 0.126616 0.114967 0.115331
O(η) = 4 0.203108 0.203160 0.203983 0.204388 0.126392 0.126614 0.114966 0.115332
O(η) = 5 0.203108 0.203058 0.203982 0.204507 0.126392 0.126487 0.114966 0.115465
O(η) = 6 0.203108 0.203048 0.203982 0.204520 0.126392 0.126497 0.114966 0.115453
O(η) = 7 0.203107 0.203005 0.203982 0.204570 0.126392 0.126407 0.114966 0.115548
O(η) = 2 0.203107 0.202991 0.203982 0.204587 0.126392 0.126419 0.114966 0.115534

5 Conclusions

The SBFEM formulation, which adopts high order complete bubble-like shape functions (Ooi et al, 2016)
has been further developed for elasto-static analyses in FGMs. The same set of shape functions valid for
homogeneous materials can be used. The heterogeneity resulting from the material gradient introduces
additional terms in the polygon stiffness matrix that can be integrated analytically.

The developed formulation was successfully validated using four numerical benchmarks. It was found
that:

1. The SBFEM formulation with bubble functions can reproduce the analytical solutions for all the
numerical benchmarks considered. The accuracy of the solutions can be improved by either increasing
the mesh density or by increasing the order of the one-dimensional shape functions used to discretize
the polygon boundary.

2. Compared with the original SBFEM formulation, incorporating the bubble functions resulted in
superior accuracy for problems where the analytical solution were not in polynomial forms. This was
particularly evident in the case of isotropic FGMs where the material gradient was parallel to the
direction of the load and in the case of orthotropic FGMs. The bubble functions also significantly
improved the accuracy and convergence rate of the SBFEM for problems of the Poisson type.

3. For cracked bodies subjected to body loads, the bubble functions improved the accuracy of the
computed stress intensity factors compared with using SBFEM alone. Increasing the order of the
bubble functions improves the accuracy further. When the SBFEM is used without bubble functions,
improvements in accuracy of the computed stress intensity factors can only be achieved by increasing
the mesh density.
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4. The superior accuracy and convergence rate gained by introducing the bubble functions is attributed
their high order completeness properties, which increased the interpolating capacity of the shape
functions.
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Fig. 1: A generic polygon modelled by SBFEM: (a) normal polygon; (b) crack polygon.
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Fig. 2: A functionally graded plate subjected to various loading conditions: (a) geometry; (b) tensile
loading and; (c) bending load.
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(a) (b)

Fig. 3: Typical meshes used for functionally graded plate problem: (a) regular quadrilateral and; (b)
arbitrary sided polygons.
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Fig. 4: Percentage of error in computed nodal displacements at y = 9 for the isotropic functionally
graded plate under tensile loading with exponential material gradient perpendicular to loading direction:
(a) 3× 12 regular quadrilateral mesh; (b) 9× 36 regular quadrilateral mesh; (c) htri = 4.5 polygon mesh
and; (d) htri = 1.125 polygon mesh.
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Fig. 5: Percentage of error in computed nodal displacements at y = 9 for the isotropic functionally graded
plate under tensile loading with linear material gradient perpendicular to loading direction: (a) 3 × 12
regular quadrilateral mesh; (b) 9× 36 regular quadrilateral mesh; (c) htri = 4.5 polygon mesh and; (d)
htri = 1.125 polygon mesh.
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Fig. 6: Percentage of error in computed nodal displacements at y = 36 for the isotropic functionally
graded plate under tensile loading with material gradient n = 1 parallel to loading direction: (a) 3× 12
regular quadrilateral mesh; (b) 9× 36 regular quadrilateral mesh; (c) htri = 4.5 polygon mesh and; (d)
htri = 1.125 polygon mesh.
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Fig. 7: Percentage of error in computed nodal displacements at y = 36 for the isotropic functionally
graded plate under tensile loading with with material gradient n = 2 parallel to loading direction: (a)
3 × 12 regular quadrilateral mesh; (b) 9 × 36 regular quadrilateral mesh; (c) htri = 4.5 polygon mesh
and; (d) htri = 1.125 polygon mesh.



28 E. T. Ooi∗, C. Song† and S. Natarajan‡

0 2 4 6 8
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

x

%
 e
rr
o
r

 

 

error in v: isoparametric graded

error in v: SBFEM

error in v: bubble function

error in u: isoparmetric graded

error in u: SBFEM

error in u: bubble function

(a)

0 2 4 6 8
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

x

%
 e
rr
o
r

 

 

error in v: isoparametric graded

error in v: SBFEM

error in v: bubble function

error in u: isoparmetric graded

error in u: SBFEM

error in u: bubble function

(b)

0 2 4 6 8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

%
 e
rr
o
r

 

 

error in v: SBFEM

error in v: bubble function

error in u: SBFEM

error in u: bubble function

(c)

0 2 4 6 8
−12

−10

−8

−6

−4

−2

0

2

4
x 10

−3

x

%
 e
rr
o
r

 

 

error in v: SBFEM

error in v: bubble function

error in u: SBFEM

error in u: bubble function

(d)

Fig. 8: Percentage of error in computed nodal displacements at y = 9 for the isotropic functionally
graded plate under bending load with exponential material gradient perpendicular to loading direction:
(a) 3× 12 regular quadrilateral mesh; (b) 9× 36 regular quadrilateral mesh; (c) htri = 4.5 polygon mesh
and; (d) htri = 1.125 polygon mesh.
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Fig. 9: Percentage of error in computed nodal displacements at y = 9 for the orthotropic functionally
graded plate under tensile load with exponential material gradient perpendicular to loading direction:
(a) 3× 12 regular quadrilateral mesh; (b) 9× 36 regular quadrilateral mesh; (c) htri = 4.5 polygon mesh
and; (d) htri = 1.125 polygon mesh.
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(a) (b)

Fig. 10: Typical meshes used for Poisson problem: (a) regular quadrilateral and; (b) arbitrary sided
polygons.
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Fig. 11: Convergence plot for Poisson problem subjected to a polynmial displacement field: (a) regular
quadrilateral mesh and (b) polygon mesh.
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Fig. 12: Convergence plot for Poisson problem subjected to a trigonometric displacement field: (a) regular
quadrilateral mesh and (b) polygon mesh.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13: Contour plot of strain ǫ = [ǫxx ǫyy γxy] and associated errors for Poisson problem with a
trigonomeric displacement field obtained from a regular quadrilateral mesh N = 16 and polygon mesh
with M = 16 using SBFEM with bubble functions of order O(η) = 3: (a) ǫxx−plot analytical; (b) error in
ǫxx - quadrilateral; (c) error in ǫyy−polygon; (d) ǫyy−plot analytical; (e) error in ǫyy - quadrilateral; (f)
error in ǫyy−polygon; (g) γxy−plot analytical; (h) error in γxy - quadrilateral; (i) error in γxy−polygon.
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Fig. 14: Isotropic functionally graded plate with a circular hole subjected to biaxial tension: (a) quarter
model of the plate with geometry and boundary conditions; (b) coarse polygon mesh and; (c) fine polygon
mesh.
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Fig. 15: Distribution of σθθ/T with respect to distance r/a at y = 0 for the functionally graded plate
with a hole: (a) coarse mesh and; (b) fine mesh.
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(a) (b)

Fig. 16: Contour plot of σθθ/T for the functionally graded plate with a hole: (a) n = 0.2; and (b)
n = −0.2.
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Fig. 17: Functionally graded medium with an internal crack.
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(a) h = 4.0 (b) h = 1.0

Fig. 18: Typical polygon meshes of functionally graded plate with a central crack.


