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Abstract The article continues the study of the ‘regular’ arrangement of a collection of sets near a point
in their intersection. Such regular intersection or, in other words, transversality properties are crucial
for the validity of qualification conditions in optimization as well as subdifferential, normal cone and
coderivative calculus, and convergence analysis of computational algorithms. One of the main motiva-
tions for the development of the transversality theory of collections of sets comes from the convergence
analysis of alternating projections for solving feasibility problems. This article targets infinite dimensional
extensions of the intrinsic transversality property introduced recently by Drusvyatskiy, Ioffe and Lewis
as a sufficient condition for local linear convergence of alternating projections. Several characterizations
of this property are established involving new limiting objects defined for pairs of sets. Special attention
is given to the convex case.
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1 Introduction

This article continues the study of the ‘regular’ arrangement of a collection of sets near a point in their
intersection. Such regular intersection or, in other words, transversality properties are crucial for the
validity of qualification conditions in optimization as well as subdifferential, normal cone and coderivative
calculus, and convergence analysis of computational algorithms. This explains the growing interest of
researchers to investigating this class of properties and obtaining primal and dual necessary and/or
sufficient conditions in various settings (convex or nonconvex, finite or infinite dimensional, finite or
infinite collections); cf. Bauschke and Borwein [2,[3], Ngai and Théra [44], Ng and Yang [42], Bakan et
al. |1], Kruger et al. [22(24,[26{32], Chong Li et al. [35H37], Ng and Zhang [43], Lewis et al. [33}34], Zheng
et al. [4950], Bauschke et all [4,5], Hesse and Luke [14], Drusvyatskiy et al. [11], Noll and Rondepierre [45].
Note also the very well known connections (in fact, equivalences) between transversality properties of
collections of sets and the corresponding regularity properties of set-valued mappings. For example, the
properties of transversality and subtransversality of pairs of sets correspond in a sense to metric regularity
and metric subregularity of set-valued mappings, respectively (cf. [17.[18]22124.|27.128}31]).

Due to the wide variety of applications coming from different areas, some transversality properties
together with the corresponding necessary and/or sufficient conditions have been rediscovered many
times in different contexts and often under different names. The intrinsic transversality property studied
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in the current article was originally introduced in 2015 by Drusvyatskiy et al. as an important
sufficient condition for local linear convergence of alternating projections for solving finite dimensional
nonconvex feasibility problems. The new term has not been immediately accepted: in the property
is referred to as DIL-restricted regularity by the first letters of the names of the three authors. Another
(unnamed) transversality property has appeared in Theorem 4(ii)], also in the finite dimensional
setting, and has been used alongside intrinsic transversality (see Theorem 4(iii)]) as a dual space
sufficient condition for a much better known property called subtransversality. A more general and refined
infinite dimensional version of the property from Theorem 4(ii)] has been formulated in [27] and
proved to imply subtransversality in Asplund spaces. Its thorough analysis is continued in the current
article with several new limiting and other characterizations produced, and special attention given to
the convex case. It has come as a surprise that, when reduced to finite dimensional Euclidean spaces,
this property is equivalent (see Theorem |§| below) to intrinsic transversality as defined by Drusvyatskiy
et al. . Although the definition is different from the one in , here and in the name ‘intrinsic
transversality’ is adopted for this property in both finite and infinite dimensions.

The origins of the concept of regular arrangement of sets in space can be traced back to that of
transversality in differential geometry (see, for instance, ) Given smooth manifolds A and B in a
finite dimensional normed linear space with a point Z € AN B, their transversality can be characterized
in dual terms:

Na(¥) N Np(z) = {0}, (1)

where N4(Z) and Np(Z) are the normal spaces (i.e., orthogonal complements to the tangent spaces) to
A and B, respectively, at the point .

Since the pioneering work by Bauschke and Borwein in 1993, a strong motivation for the devel-
opment of the transversality theory of collections of sets has been coming from the convergence analysis
of alternating (or cyclic) projections for solving feasibility problems. Given two sets A and B, the feasi-
bility problem consists in finding a point in their intersection A N B. This is a very general model which
includes, in particular, solving systems of all sorts of equations and inequalities (algebraic, differential,
etc.).

Assuming for simplicity that A and B are closed sets in finite dimensions, alternating projections are
determined by a sequence (zj) alternating between the sets:

Topt1 € Pp(war), Xorg2 € Pa(wors1) (k=0,1,...),

with some initial point zo; see Fig. [Il Here P4 and Pp stand for the projection operators (see (7)) on

(a) Linear convergence (b) No linear convergence

Fig. 1 Alternating projections

the respective sets, corresponding to the Euclidean norm. Equivalently, one can talk about a sequence
(2) defined using the composition of projection operators:

Trt1 € PAPB(:L‘k) (k =0,1,.. )



This simple algorithm has a long history. It is often referred to as von Neumann method, although some
traces of this method can be found in the 19th century’s publications (see the comments in [45]).

Up until very recently, the method of alternating projections has been mostly studied in the convex
setting. If the sets A and B are convex, the projections are unique, and if AN B # @, the sequence always
converges to a point in AN B; see Bregman |7] and Gurin et al , Bauschke and Borwein . However,
as one can see from comparing the two illustration in Fig. [1, the type of convergence can be strongly
different. Fig. a) represents the case of linear convergence characterized by the inequalities

lzk — 2| < ac® (k=1,2,...),

where & € AN B is the limit of the sequence, & > 0 and ¢ €]0, 1] is the rate of convergence. In the
case represented in Fig. b), the above linear estimates do not hold, and the convergence obviously
slows down. It is easy to realize that the type of convergence and its rate are determined by the way the
sets intersect. For the linear convergence of alternating projections, the sets must intersect in a certain
regular way.

A systematic analysis of the convergence of alternating projections in the convex setting was done by
Bauschke and Borwein [2}3]. In particular, they demonstrated (see [2, Corollary 3.14]) that alternating
projections converge linearly with rate v/'1 — a2, provided that the pair {A, B} of sets with AN B # () is
linearly regular with rate o €]0,1[:

ad(x, AN B) < max {d(z, A),d(z,B)} forall uz. (2)

Clearly, this is the case in the example in Fig. a), while the pair of convex sets in Fig. b) is not
linearly regular. It has been shown very recently by Luke et al. that linear regularity of the pair of
convex sets with nonempty intersection is not only sufficient for the linear convergence of alternating
projections, but is also necessary. This last result together with the theory developed by Bauschke and
Borwein in the 1990s make the picture in the convex setting complete and positions the linear regularity
property as the core regularity property for a pair of convex sets with nonempty intersection.

The picture becomes much more complicated if the convexity assumption is dropped. First, one
can obviously talk only about local convergence and local (near a point in the intersection) regular-
ity /transversality properties. The local version of the linear regularity property — called in this
article subtransversality (see Definition [I[i)) — remains a necessary condition for certain types of local
linear convergence of alternating projections; cf.. This property has been thoroughly studied in .
On the other hand, a simple example in Fig. [2(b) shows that it is not sufficient to guarantee (any)
convergence of alternating projections. The pair of sets in this example satisfies even the global linear

(a) Convex case (b) Nonconvex case

Fig. 2 Subtransversality

regularity condition (2]). However, the set A is not convex, and the sequence determined by the alternat-
ing projections becomes stationary and is not going to converge to any point in AN B. At the same time,
many important applications naturally lead to feasibility problems for collections of nonconvex sets, and
alternating projections often demonstrate reasonably good convergence.



Lewis and Malick [34] and Lewis et al. [33] demonstrated recently in the Euclidean space setting
that the uniform version of the subtransversality property — called in this article transversality (see
Definition (ii)) — guarantees local linear convergence of alternating projections for, respectively, a pair
of smooth manifolds or a pair of arbitrary closed sets one of which is super-reqular at the reference
point. Next, Drusvyatskiy et al. |[11] showed that the super-regularity assumption can be dropped at the
expense of reduced (but still linear) convergence rate. The transversality property holds, for instance,
in the example in Fig. a). Thanks to [11}/33,[34], the transversality has become a candidate for the
position of the core regularity property for a pair of nonconvex sets with nonempty intersection from the
point of view of local convergence of alternating projections.

However, the picture in the nonconvex setting is far from being complete. The transversality is not
necessary for the local convergence of alternating projections even in the convex case. For example, it
always fails when the affine span of the union of the sets is not equal to the whole space, while alternating
projections can still converge linearly as is the case when the sets are convex with nonempty intersection
of their relative interiors. Another example is given in Fig. (a). Comparing this example with the one in
Fig. a) illustrates the difference between the transversality and subtransversality properties. In these
two examples, this difference does not affect the convergence of alternating projections. The role of the
transversality property in the convergence analysis of alternating projections in the nonconvex setting
has been further studied in Noll and Rondepierre [45], and Kruger et al. [28}32].

A quest has started for the weakest regularity property lying between transversality and subtransver-
sality and still being sufficient for the local linear convergence of alternating projections in the nonconvex
setting. We mention here the articles by Bauschke et al. |4l|5] utilizing restricted normal cones, Drusvy-
atskiy et al. [11] introducing and successfully employing intrinsic transversality, Noll and Rondepierre [45]
introducing a concept of separable intersection, with 0-separability being a weaker property than intrinsic
transversality and still implying the local linear convergence of alternating projections under the addi-
tional assumption that one of the sets is 0- Holder regular at the reference point with respect to the other.
In particular, Drusvyatskiy et al. have shown in [11, Proposition 3.2 and Theorems 6.1 and 6.2] that, for
a pair of closed sets with nonempty intersection, it holds

transversality == intrinsic transversality = subtransversality,

and intrinsic transversality ensures local linear convergence of alternating projections. This makes in-
trinsic transversality the main candidate for the role of the core regularity property from the point of
view of local convergence of alternating projections. It is also the main object of interest in the current
article.

All the considerations above are for the case when the pair of sets under consideration has nonempty
intersection. At the same time, the alternating projections used in the current article for illustrating the
transversality theory of collections of sets can be applied in situations when the intersection is empty, and
one can still talk about their ‘convergence’ to some collection of points solving an inconsistent feasibility
problem. This motivates expanding the transversality theory to the case of inconsistent feasibility. The
first attempt of this kind has been made recently by Luke et al. [38].

Intrinsic transversality is defined in [11] in the Euclidean space setting using Fréchet normal cones.
Unlike intrinsic transversality, the conventional properties of transversality and subtransversality are de-
fined in the setting of an arbitrary normed linear space in purely primal space terms (see Definition .
However, in applications it is often more convenient to work with dual space conditions in terms of nor-
mal cones. In the case of transversality, its equivalent Fréchet normal cone characterizations in Asplund
spaces (or even in general Banach spaces if the sets are convex) are well known. These representations
and not the original primal space definitions were mainly used in [33,[34] when establishing local lin-
ear convergence of alternating projections for pairs of nonconvex sets in a finite dimensional space. For
subtransversality, no normal cone conditions have been known up until recently. The first condition of
this type was announced without proof in the Euclidean space setting in [28, Theorem 4(ii)]. A more
general and slightly improved Asplund space version of this result has been proved in [27]. Unlike the
case of transversality, the mentioned normal cone conditions characterizing subtransversality are only
sufficient. The subtransversality property, as is well known, lacks stability. This fact makes obtaining
general necessary and sufficient normal cone characterizations of this property highly unlikely. The two
sets of sufficient normal cone conditions of the subtransversality property, established in [27], are them-
selves important transversality /regularity properties of pairs of sets in general normed linear spaces (see



Definition [2| below) lying between transversality and subtransversality. In a finite dimensional Euclidean
space, the strongest of the two properties is equivalent (see Theorem |§| below) to intrinsic transversality
as defined by Drusvyatskiy et al. |[11]. Borrowing partially the terminology from [11], the two properties
are called here weak intrinsic transversality and intrinsic transversality.

In the current article which continues [27], the two versions of intrinsic transversality are studied in
detail mainly in the finite dimensional setting. First, spaces with arbitrary norms are considered, and
then the results are further specified for Euclidian spaces.

In Section [2| we recall the definitions of transversality and subtransversality properties of pairs of sets
in general normal linear spaces and provide their dual space normal cone necessary and sufficient or just
sufficient characterizations in Asplund spaces. If the sets are convex, the characterizations are formulated
in general Banach spaces. A slightly simpler version of the Asplund space dual sufficient condition of
subtransversality from [27] is given. Then the definitions of intrinsic transversality and weak intrinsic
transversality from [27] are reproduced and their relationships with the conventional subtransversality
property are formulated.

Sections [3] and [] are restricted to the finite dimensional situation. In Section [3] two new limiting
objects are introduced for pairs of sets: the cone of pairs of relative limiting normals and the cone
of pairs of restricted relative limiting normals. They allow one to formulate simple limiting criteria of
intrinsic transversality and in the convex case also subtransversality. The criteria are further simplified
if the Euclidian norm is used. In particular, it is shown that, if the sets are convex, the properties of
intrinsic transversality, weak intrinsic transversality and subtransversality are equivalent. In Section []
several more criteria of intrinsic transversality are presented. In particular, it is shown that the normed
linear space definition of intrinsic transversality adopted in this article, in the Euclidean space setting
reduces to the original definition of this property due to Drusvyatskiy et al. [11]. This justifies the name
‘intrinsic transversality’ used throughout this article.

The concluding Section [f] contains a collection of questions related to the content of the article, to
which the author does not know the answers.

Notation and preliminaries. Given a normed linear space X, its topological dual is denoted by X*, while
(-,+) denotes the bilinear form defining the pairing between the spaces. B and B* stand for the closed
unit balls in X and X*, respectively, while Bs(x) denotes the open ball with centre at z and radius
0 > 0. Given a set A in a normed linear space, its interior and boundary are denoted by int A and bd A,
respectively, while cone A denotes the cone generated by A: cone A := {ta | a € A,t > 0}. da(z) stands
for the distance from a point = to a set A. Given an o € Ry := RU {+00}, oy denotes its positive
part: ay := max{c,0}. We regularly use the convention that the supremum of the empty subset of R
equals 0. Regarding the infimum of the empty subset of R, we occasionally use different conventions
which are always explicitly specified in the text: depending on the context, the infimum can be assumed
equal either 1 or 2.

Dual characterizations of transversality and subtransversality properties involve dual space objects —
normal cones. For the detailed discussion of the objects introduced below, the readers are referred to the
standard references [211|41},48]. The terminology and notation adopted here mostly follow that in [21].

Given a subset A of a normed linear space X and a point Z € A, the Fréchet normal cone to A at
is defined as follows:

Na(z):=<2"€ X*| limsup MSO . (3)
asz,acA\(z}) lla—2|

It is a nonempty norm closed convex cone, often trivial (N4(Z) = {0}). Similarly, given a function
f: X >Ry :=RU{+o0} and a point T € dom f, the Fréchet subdifferential of f at T is defined as

0f(7) = {x € X* | liming L& =F@) = @he -5 20}. (4)

T—T, AT ||IZZ — If’”

It is a norm closed convex set, often empty.
If dim X < oo, the limiting normal cone to A at T can be useful:

N 4(z) := Limsup Na(a) := {m* = klirgo x| ) € Na(ag), ar € A, ap — ;E} (5)

a—T,a€A



If X is a Euclidian space and A is closed, the Fréchet normal cones in definition can be replaced by
the proximal ones:

N%(z) := cone (P (z) — ). (6)
Here P, is the projection mapping;:
Pao(z) :={a€ A| |z —al =da(x)}, zeX. (7)

If A is closed and convex, then Py 1s a singleton. It is easy to verify that N% () C N4 (Z), and N 4(Z) #
{0} if and only if Z € bd A. Unlike (3 and 1 the cone (j5) can be nonconvex.

If A is a convex set, then all three cones , and coincide and reduce to the normal cone in
the sense of convex analysis:

Ny(@)={z" e X" | (2",a—%) <0 forall ac A}.

Recall that a Banach space is Asplund if every continuous convex function on an open convex set
is Fréchet differentiable on some its dense subset [47], or equivalently, if the dual of each its separable
subspace is separable. We refer the reader to [6/41,/47] for discussions about and characterizations of
Asplund spaces. All reflexive, in particular, all finite dimensional Banach spaces are Asplund.

2 Transversality, subtransversality and intrinsic transversality

For brevity, in this article we consider the case of two nonempty sets A and B. The extension of the
definitions and characterizations of the properties to the case of any finite collection of n sets (n > 1)
is straightforward (cf. [22H24129,/31]). The sets are assumed to have a common point Z € AN B. The
notation {A, B} is used when referring to the pair of two sets A and B as a single object.

Transversality and subtransversality. We first briefly recall two standard regularity properties of a pair
of sets in a normed linear space, namely transversality and subtransversality (also known under other
names).

Definition 1 Suppose X is a normed linear space, A, B C X, and T € AN B.
(i) {A, B} is subtransversal at T if there exist numbers a €]0, 1[ and ¢ > 0 such that

ad(x, AN B) <max{d(z,A),d(x,B)} forall z¢cBsx). (8)

(ii) {A, B} is transversal at T if there exist numbers a €]0, 1] and § > 0 such that

ad(x,(A—z1) N (B —22)) <max{d(z,A—z1),d(xz,B—x2)}
for all z € Bs(Z), x1, 29 € B. (9)

The exact upper bound of all « €]0, 1] such that condition or condition @[) is satisfied for some § > 0
is denoted by str[A, B](z) or tr[A, B](Z), respectively, with the convention that the supremum of the
empty set equals 0.

The requirement that @ < 1 in both parts of Definition [I] imposes no restrictions on the property. It
is only needed in the case Z € int (AN B) (when conditions and @ are satisfied for some § > 0 with
any « > 0) to ensure that str[A, B](Z) and tr[A, B](Z) are always less than or equal to 1 and simplify the
subsequent quantitative estimates. It is easy to check that when z € bd (A N B), each of the conditions
(8) and @ implies o < 1. We are going to use similar requirements in other definitions throughout the
article.

The subtransversality (transversality) of {A, B} is equivalent to the condition str[A, B](Z) > 0
(tr[A, B](Z) > 0), and str[A, B](Z) (tr[A, B](Z)) provides a quantitative characterization of this property.

The metric property in part (i) of Definition 1| is a very well known regularity property that has
been around for more than 30 years under various names ((local) linear regularity, metric regularity,
linear coherence, metric inequality, and subtransversality); cf. |1H3.|9L/11,[14}|16H1820}[37.|44) 46} 48-50].
It has been used as the key assumption when establishing linear convergence of sequences generated



by alternating projection algorithms and a qualification condition for subdifferential and normal cone
calculus formulae. If the sets are convex, it is equivalent to the linear regularity property .

The property in part (i) of Definition |1 was referred to in [22-24] as strong metric inequality. If A
and B are closed convex sets and int A # (), it is equivalent to the conventional qualification condition:
int AN B # 0 (cf. [22) Proposition 14]).

There are other equivalent primal space definitions for each of the properties in Definition |1} cf.
[2224,129,131).

From comparing the properties in Definitions [I] one can see that the transversality of a pair of sets
corresponds to the subtransversality of all their small translations holding uniformly (cf. [11, p. 1638]).
The next inequality is straightforward:

tr[A, B](z) < str[A, B)(z).

We refer the reader to [27,/31] for more examples illustrating the relationship between the properties in
Definition [1l

Remark 1 1. The maximum of the distances in Definition [l| and some other representations in the sequel
corresponds to the maximum norm in R? employed in all these definitions and assertions. It can be
replaced everywhere by the sum norm (pretty common in this type of definitions in the literature) or any
other equivalent norm. All quantitative characterizations of the properties will remain valid (as long as
the same norm is used everywhere), although the exact values of str[A, B|(Z) and tr[A, B](Z) do depend
on the chosen norm and some estimates can change.

2. In some situations it can be convenient to use the reciprocals (str[A, B](Z))~! and (tr[4, B](z))~!
instead of str[A, B](Z) and tr[A, B](Z), respectively, when characterizing the corresponding properties.
Instead of checking whether the constant is nonzero when verifying the property, one would need to check
wether its reciprocal is finite. A

Transversality properties of pairs of sets are strongly connected with the corresponding regularity
properties of set-valued mappings. The properties in parts (i) and (ii) of Deﬁnition correspond, respec-
tively, to metric subregularity and metric reqularity of set-valued mappings (cf. [17,/1822/24L27128,131]),
which partially explains the terminology adopted in the current article. These regularity properties of
set-valued mappings lie at the core of the contemporary variational analysis. They have their roots in
classical analysis and are crucial for the study of stability of solutions to (generalized) equations and
various aspects of subdifferential calculus and optimization theory. For the state of the art of the regu-
larity theory of set-valued mappings and its numerous applications we refer the reader to the book by
Dontchev and Rockafellar |[10] and the comprehensive survey by Toffe [18}[19).

Dual characterizations. The dual criterion for the transversality property in Definition ii) in Asplund
spaces is well known; see |22(24/29||31].

Theorem 1 Suppose X is Asplund, A,B C X are closed, and T € AN B. Then {A, B} is transversal
at T if and only if there exist numbers o €]0,1[ and & > 0 such that ||z§ + x5 > a for all a € ANBs(Z),
b € BNBs(Z), and all x5 € Na(a) and x5 € Np(b) satisfying ||z5|| + ||x3]] = 1. Moreover, the exact
upper bound of all such « equals tr[A, B](Z).

In finite dimensions, the above criterion admits convenient equivalent reformulations in terms of
limiting normals.

Corollary 1 Suppose dim X < oo, A, B C X are closed, and T € AN B. The following conditions are
equivalent:

(i) {A, B} is transversal at Z; o o
(i) there exists a number o €)0, 1] such that ||z5 + x5|| > « for allzy € N Ao(Z) and x5 € N p(Z) satisfying
lzill + 3l = 1;
(i) Na(z) N (~Np(x)) = {0}.

Moreover, the exact upper bound of all o in (i) equals tr[A, B](Z).



The property in part (iii) of Corollary [1}is a well known qualification condition/nonseparabilty prop-
erty that has been around for about 30 years under various names (basic qualification condition, normal
qualification condition, transversality, transversal intersection, regular intersection, linearly regular in-
tersection, and alliedness property); cf. [8|18/33134L40,/41.|46]. When A and B are smooth manifolds, it
coincides with .

The next two theorems established recently in [27] deal with the subtransversality property in Def-
inition (1) They provide, respectively, a dual sufficient condition for this property in Asplund spaces
and a necessary and sufficient dual criterion for convex sets in general Banach spaces. Not surprisingly,
the second statement is simpler.

Theorem 2 Suppose X is Asplund, A, B C X are closed, and & € ANB. Then {A, B} is subtransversal
at T if there exist numbers o €]0, 1] and 6 > 0 such that, for alla € (A\B)NBs(z), b € (B\A)NBs(Z) and

x € Bs(Z) with ||z — al|| = ||z — b]|, there exists an € > 0 such that ||z} + z3|| > « for all ' € ANB.(a),
b € BNB.(b), 2} € Be(a), 25 € B.(b), 2’ € Be(z) with ||z’ — 21| = ||2' — 4|, and 23,25 € X* satisfying
il + N5l =1, (2,2’ —2h) = [leflllla” — 2], (252" — a5) = [l [l2" — 25, (10)
d(z,Na(a')) <6, d(z3,Np(b')) <é. (11)

Moreover, str[A, B](Z) > a.

Theorem 3 Suppose X is a Banach space, A, B C X are closed and convez, and & € ANB. Then {A, B}
is subtransversal at T if and only if there exist numbers a €]0,1[ and 6 > 0 such that ||z + 23| > «
for alla € (A\ B)NBs(Z), b € (B\ A) NBs(Z), © € Bs(Z) with |z —a| = ||z —b||, and z7,x5 € X*
satisfying
21l + llz3ll =1, (z1,2 —a) = |z1llle —all, (23,2 —b) = [lz3|/[|z — b, (12)
d(x],Na(a)) <6, d(z3, Np(b)) <.

Moreover, the exact upper bound of all such « equals str[A, B|(Z).
Below we reformulate Theorem [2]in a slightly simpler way (one parameter less).

Theorem 4 Suppose X is Asplund, A, B C X are closed, and T € ANB. Then {A, B} is subtransversal
at T if there exist numbers o €]0, 1 and 6 > 0 such that, for alla € (A\B)NBs(Z), b € (B\A)NBs(Z) and
x € Bs(Z) with ||z — a|| = ||x — b|, there exists an € > 0 such that ||z} + z5|| > « for all ' € ANB.(a),
b € BNB.(b), | € B.(a), 4 € B.(b) with ||x — x| = ||z — 5], and zF,25 € X* satisfying and

il + 25l =1, (2l 2z —2h) = [lafllllz — 2], (25,2 — a5) = |25 ][]z — 25]|. (13)
Moreover, str[A, B](Z) > a.

The conditions in Theorem [2| obviously imply those in Theorem [4] In fact, the opposite implication
is also true, and Theorem {4 is a consequence of Theorem

Proof ( Theorem from T heorem@ Suppose the conditions of Theorem [4|are satisfied with some numbers
a €]0,1[and 6 > 0. Take any a € (A\B)NB;(Z), b € (B\A)NBs(Z) and = € Bs(Z) with ||z — a|| = ||z — b]|,
and choose an € > 0 in accordance with the conditions of Theorem |4 Next set ¢’ := ¢/2 and take any

a € ANB.(a), ¥ € BNB.(b), 2} € Bo(a), 2 € B (b), 2’ € B (x) with ||a' — )| = ||z’ — 4],
and z7, x5 € X* satisfying and (11). Then «f := 2] + =z — 2’ € B.(a), 2§ := 24 + 2 — 2’ € B.(b),
|z — 2| = ||l — «%]|, and conditions ([13)) are satisfied with =} and x4 in place of 2 and x%, respectively.
Hence, |27 + z3|| > «, i.e., the conditions of Theorem [2] are satisfied with the same numbers « €]0, 1]
and ¢ > 0, and {A, B} is subtransversal at Z with str[A, B](Z) > «. O
Remark 2 1. Tt is sufficient to check the conditions of Theorems only for 7 # 0 and x5 # 0. Indeed,
if one of the vectors ] and z} equals 0, then by the normalization condition ||z7| + ||z5]| = 1, the norm
of the other one equals 1, and consequently ||z} + z3|| = 1, i.e., such pairs zf, x5 do not impose any

restrictions on a.

2. Similarly to the classical condition , the (sub)transversality characterizations in Theorems
require that among all admissible (i.e., satisfying all the conditions of the theorems) pairs of nonzero
elements x7 and x5 there is no one with =7 and 3 oppositely directed.



3. The sum ||z7|| + ||z5|| in Theorems corresponds to the sum norm on R2, which is dual to the
maximum norm on R? used in Definition |1} It can be replaced by max{||z}|, [|=3]|} (cf. [46} (6.11)]) or
any other norm on R?. A

The proof of Theorems [2 and [3] given in [27] follows the sequence proposed in [25] when deducing
metric subregularity criteria for set-valued mappings and consists of a series of propositions providing
lower primal and dual estimates for the constant str[A4, B](Z) and, thus, sufficient conditions for the
subtransversality of the pair {4, B} at Z which can be of independent interest. In what follows, we will
use notations itr,,[A, B](Z) and str.[A, B](Z) for the supremum of all @ in Theorems[d] and [3] respectively,
with the convention that the supremum over the empty set equals 0. It is easy to check the following
explicit representations of the two constants:

itr,,[A, B](Z) :=1lim inf
pl0 a€(A\B)NB, (), be(B\A)NE, ()
z€B,(Z), [lz—all=|lz—b]|
lim inf lz7 + =5 (14)
! ’ ’ ’ 1 2 ?
i —a, ro—b, a’—=a, b'—b
a'€A, b EB, ||lz—z||=|lz—zb||
d(wi‘,fo(a')Kp, d(IE/,NB(b’)Kp; \|$TI|+|\Z§H:,1
(] ,z—ai)=|lz]ll lz—a |, (x5, z—z3)=[z5| |z—z5]|
str.[A, B](Z) := lim inf lx7 + 23], (15)
*—T, a—T, b—>T
a€A\B, be B\A, ||z—al|=|lz—b||
d(a},Na() =0, da3,N5(6)) =0, |2} |+l =1
(2], z—a)=|lz1]| |lz—all, {z3,2—b)=||z3|| ||zl

with the convention that the infimum over the empty set equals 1.

Intrinsic transversality. The two-limit definition as well as the corresponding dual space sufficient
characterization of subtransversality in Theorem [4]look complicated and difficult to verify. The following
one-limit modification of in terms of Fréchet normals can be useful:

itr[A, B](z) := aﬂi’h{)gi:?fm%i ll=T + 23], (16)
a€A\B, beB\A, z#£a, v#b
27 €ENa(a)\{0}, 23ENpB()\{0}, [|2] [ +]lz3]|=1
G C Kl B —
AT

llz—all z3,x—b)
—1
e

flz—oll

with the convention that the infimum over the empty set equals 1.
The relationships between the constants str[A, B](Z), str.[A, B](Z), itr[A4, B](Z) and itr,,[A, B](Z) are
collected in the next proposition.

Proposition 1 Suppose X is a Banach space, A, B C X are closed, and x € AN B.

(i) 0 <itr[A, B|(z) < itry[4, B](Z) < str.[A, B](z) < 1;
(il) of X is Asplund, then str[A, B|(Z) > itry[A, B](Z);
(iii) if dim X < oo, then

itr, [A, B](Z) = a_}jligri}ijrclfx_ME lz] + 23] (17)
4 A\B, be B\A, o—all=|lz—b]
a7 N (@) =0, (3, N5 (6) -0, a1 | +]25 =1
(2] ,x—a)=|lz] || |z—all, (x5,2—b)=|z5] ||x—bl|

with the convention that the infimum over the empty set equals 1;
(iv) if A and B are convez, then str[A, B](Z) = str.[A, B](Z);
(v) if dim X < oo, and A and B are convez, then itr,,[A, B](Z) = str.[A, B](Z) = str[A, B](Z).

Proof Part (i) follows immediately from the definitions. Parts (ii) and (iv) are consequences of Theorems[d]
and [3] respectively. Parts (iii) and (v) have been established in [27]. O



The property introduced in Theorem [2| (or equivalently, Theorem |4) as a sufficient dual space char-
acterization of subtransversality and corresponding to the condition itr,[A, B](Z) > 0 as well as the
stronger property corresponding to the condition itr[A, B](Z) > 0 are themselves important transversal-
ity properties of the pair {A, B} at Z. Borrowing partially the terminology from [11], these properties
are referred to in [27] as weak intrinsic transversality and intrinsic transversality, respectively.

Definition 2 Suppose X is a normed linear space, A, B C X are closed, and T € AN B.

(i) {A, B} is weakly intrinsically transversal at Z if itr,,[A, B](Z) > 0, i.e., there exist numbers « €]0, 1|
and 0 > 0 such that, for all @ € (A\ B) NBs(Z), b € (B\ A) NBs(Z) and x € Bs(z) with ||z — a|| =
|lx — b||, one has ||« + z5|| > « for some € > 0 and all '’ € ANB.(a), ¥ € BNB.(b), 2} € B.(a),
x4 € B.(b) with ||z — || = ||z — z4||, and x7, 23 € X* satisfying conditions and (L3);

(ii) {A, B} is intrinsically transversal at z if itr[A, B](Z) > 0, i.e., there exist numbers o €]0,1[ and 6 > 0
such that ||z + 5| > afor all a € (A\ B)NBs(Z), b € (B\ A)NBs(Z), x € Bs(Z) with = # a, x # b,
1-6<le=adl <146 and 7 € Na(a) \ {0}, 23 € Np(b) \ {0} satisfying

(B
<$§,.’L‘ B b>
3l — bl|

Remark 3 1. The properties introduced in Definition 2| are less restrictive than the dual criterion of
transversality in Theorem

2. Unlike the transversality and subtransversality properties defined originally by the primal space
Definition [1] with the dual space characterizations (not always equivalent!) given by Theorems the
intrinsic transversality and weak intrinsic transversality properties are defined in Definition [2] directly in
dual space terms and do not have in general equivalent primal space representations. A

(21,2 —a)
1 l[[le = af

5[+ flz3 ]l = 1, >1-34, >1-46.

In view of Definition [2| Theorem [4| says that in Asplund spaces weak intrinsic transversality (and
consequently intrinsic transversality) implies subtransversality. Thanks to Proposition i) and (iii), and
Remark [3] we have the following relationships between the transversality properties in Asplund spaces.

Corollary 2 Suppose X is Asplund, A,B C X are closed, and T € AN B. Consider the following
conditions:

(i) {A, B} is transversal at T;

(ii) {A, B} is intrinsically transversal at T;
(i) {A, B} is weakly intrinsically transversal at Z;
(iv) {A, B} is subtransversal at T.

Then (1) = (ii) = (iii) = (iv). If dim X < oo, and A and B are convez, then (iii) < (iv).

3 Intrinsic transversality and relative limiting normals
From now on we assume that dim X < oo.

Intrinsic transversality in finite dimensions. Definition [2] introduces certain limiting processes (cf. defi-
nitions (14)), and and representation (L7)) and can lead naturally to employing certain limiting
normals to the sets under consideration. Observe that not all limiting normals are relevant for character-
izing the intrinsic transversality and weak intrinsic transversality properties of a pair of sets. Only those
normals to each of the sets can be of interest which take into account the relative location of the other
set. It makes sense considering pairs of normals approximately ‘directed’ towards the same point. This
observation motivates considering pairs of relative limiting normals.

Definition 3 Suppose A,B C X and T € AN B.

(i) A pair (z7,23) € X* x X* is called a pair of relative limiting normals to {A, B} at T if there exist
sequences (ax) C A\ B, (by) C B\ 4, (zx) C X and (z7,), (z3,) C X* such that x # ai, z # by
(k=1,2,...), a = T, by, = T, 1, — T, x5, — 27, x5, — x5, and

i, € Na(ar), x5, € Np(bg) (k=1,2,...),

* —b
(@3 26 = bk)

|z — axll 1 (T1h Tk — ak)
25, || 1% — Dl ’

M Tk 7 Ak
l|zr — bl Tl ek — axll ’
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with the convention that % = 1. The collections of all pairs of relative limiting normals to {4, B} at
z will be denoted by N 4 5(7).

(ii) A pair (a],z3) € X* x X* is called a pair of restricted relative limiting normals to {A, B} at T
if there exist sequences (ax) C A\ B, (by) C B\ A4, (zx) C X and (z},), (23,) C X* such that
|lzk — ak|l = lzx — bkl| (k=1,2,...), ax = T, by — T, z, — T, x5, — 2§, x5, — x5, and

d(x1y, Nalax)) =0, d(x3y, Np(br)) = 0,
(@i on — an) = [l low —arll, (@, 20 — be) = lozg | loe =0kl (B =1,2,...).

The collections of all pairs of restricted relative limiting normals to {A, B} at z will be denoted by
N (@)

Thus, N 4 () and N 5(Z) are formed by limits of certain sequences of pairs of Fréchet normals to
each of the sets ‘directed’ approx1mately towards the same point.

Remark 4 1. In Definition [3] one can always assume that [|27,]| = |||, |23,/ = [|=3], (k = 1,2,...).
Indeed, if e.g. 27 = 0, one can take z3, := 0 (k = 1,2,...); if ] # 0, then, without loss of generality,
x3, #0 (k=1,2,...), and one can substitute ], with (z7,)" := ”‘Ifllk‘l” x%. The same argument applies

to x5 and (x3;,).

2. Given a subset A C X, a point T € A, and a sequence (x) C X converging to Z, it could make
sense considering the set N 4(%; (z1)) of limiting normals to A at Z relative to (x}) defined as the set of
vectors * € X* such that there exist sequences (ay) C A and (z}) C X* such that ar, # x5 (k=1,2,...),
ar — %, xj, — x* as k — oo and

<xzvmk_ak>
2 € Na(ay) (k=1,2,..), ——ktkZ0k g
b€ Nalar) ( " Twrler = ax]

with the convention that =1.
This definition is an 1mportant ingredient of Deﬁmtlonl( above. If 2* € N 4(; (x1)) and (az) C A
is a sequence corresponding to z* in accordance with this definition, then one has (1’ ,x) = ||lz*|| for any

limiting point 2 of the sequence (m) Obviously, N 4(Z; (z)) is a cone in X*, and

Na(@; (zr)) € Na(2). (18)

Since dim X < oo, it is easy to check that the cone N 4(Z; (zx)) is closed. N 4(Z;(zx)) can be empty.
Indeed, if e.g., A = {Z} and zy = 7 (k = 1,2,...), then there is no sequence (aj) C A with a), # zy, and
consequently N 4(Z; (zx)) = 0. A

Proposition 2 Suppose A,B C X andz € AN B.

(i) Each of the sets N o p(T) and NG p(Z) is a closed cone in X* x X*, possibly empty. Moreover, if the
set contains a pair (¥3,z3), then, it also contains the pairs (tlml,tng) for allty > 0 and t2 > 0.
(i) NG (@) CNap@ € U Na(@(zr) x Np(@; (2r)) C Na(@) x Np(z).

(x)—T

Proof (i) We start with the ‘moreover’ assertion. If a pair (27, z3) belongs to either of the sets N 4 p(Z)
and NG p(z), and (ax) C A\ B, (by) C B\ A, (zx) C X and (27;), (x3;,) C X* are the corresponding
sequences from Definition [3] then it is straightforward from Definition [3| that, for any ¢; > 0 and ¢5 > 0,
the sequences (ag), (bg), (xx), (t127,) and (tox3,) also satisfy all the conditions in the corresponding
part of Deﬁmtlon Hence, the pair (t127, taz3) also belongs to the respective set N 4 5 (%) or NA 5(Z).
In particular, taking t; = to, we conclude that both the sets are cones.

If a sequence of pairs (};,23;) belongs to either of the sets N 4 p(Z) and N4 p(#) and the sequences
(x3%,) and (x3,) converge to z7 and x3, respectively, then, based on the corresponding sequences from
Definition [3] and using the standard ‘diagonal’ procedure, one can easily construct new sequences satis-
fying all the conditions in the corresponding part of Definition [3] and the sequences in X* converge to
x% and z3. Thus, the two cones making each of the sets N 4 p(Z) and Nf4 g (Z) are closed.

(ii) All the inclusions are direct consequences of Deﬁnltlonl 3| and the one in Remark 4| I2 The limiting
procedure employed in part (ii) of Deﬁnltlonlls more restrictive than the one in part (i). This observation
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implies the first inclusion. If (z},23) € N4 (%), then 2} € N 4(Z; (zx)) and x5 € N (Z; (1)) for some
sequence () C X converging to Z. Hence, the second inclusion. The last inclusion is a consequence of
the observation (L8)). O

The next example shows that the last two inclusions in Proposition (ii) can be strict.

Ezample 1 Let X = R? with the Euclidean norm, A = {(¢,0) | t > 0}, B = {(¢,t) | t > 0} and z = (0,0).

Set ap, = by :== T, T} := (—%,—%). We obviously have z; — T as k — oo, * := (—1,—1) € Na(Z) N
Np(Z),and z, —T = %x*, i.e., vector x* is parallel to z; — Z. Hence, all the conditions in the definition in
Remark 2 are satisfied for each of the sets A and B, and consequently, * € N 4(Z; (x1)) N N (Z; (x4)).
However, (z*,2*) ¢ N 4 () because it is not possible to satisfy the conditions in Definition (1) with
the pair (z*,2*) and any a # Z and by, # Z.

With 2% := (0,1) € Nao(Z) = Na(Z) and z} := (-1,0) € Np(z) = Np(z) it is not possible
to find a single sequence (zy) converging to Z to satisfy all the conditions in Definition i). Hence,
(eh,a8) ¢ U Na(@(a) x Nol@; (o). A

(a:k)%i

Thanks to Definition |3 definitions and admit simpler representations:

itr[A, BJ(z) = min [la] + x5, (19)
(27.23)EN 4 (%)
R

stre[A, B|(z) = min 2y + 23], (20)
(a7,05)eNS 5(2)
o3 1 +ll3 =1

with the convention that the minimum over the empty set equals 1.

Remark 5 1. Formulae and take into account that in finite dimensions the sets under both
minima are compact, and the minima of ||z} + z3|| over these sets are attained.

2. It is immediate from and that conditions under min there can be complemented by the
inequalities ] # 0 and x5 # 0. A

The following limiting criteria of intrinsic transversality in finite dimensions are straightforward.

Theorem 5 Suppose A, B C X are closed and & € AN B. The following conditions are equivalent:

(i) {A, B} is intrinsically transversal at Z; o
(ii) there exists a number v €]0, 1] such that ||z + z5| > « for all (xF,23) € N a,p(T) satisfying ||xT|| +
3]l = 1; _
(iii) {z* € X* | (2%, —2*) € Na,p(7)} C {0}.

Moreover, the exact upper bound of all o in (ii) equals itr[A, B](Z).

Proof The equivalence of (i) and (ii) as well as the ‘moreover’ estimate are immediate from comparing
Definitions [2[(ii) and [3(i). o
If (i) does not hold, i.e., itr[4, B](Z) = 0, then there exits a pair (z},z3) € N4 p(Z) such that

llzill + [lz3]| = 1 and [|2] + 23|| = 0; this violates (iii). Conversely, if (iii) is violated, i.e., there exists
an z* # 0 such that (z*,—2*) € N4 p(Z), then the pair (z7,23) € Nap(Z) with z7 = ey and
x5 = 72@2“ satisfies ||z7|| + ||z3]| = 1 and ||z} + z5|| = 0, which yields itr[A, B](Z) = 0, i.e., (i) does not
hold. O

Theorem 6 Suppose A,B C X are closed and convex, and T € AN B. The following conditions are
equivalent:

(i) {A, B} is subtransversal at T; o
(ii) there exists a number o €]0,1[ such that ||z7 + x3|| > o for all (x7,23) € NG 5() satisfying ||z7]| +
5] = 1;

(iii) {z* € X*| (¢, —2*) € N (x)} C {0}.
Moreover, the exact upper bound of all a in (i) equals str[A, B](Z) = str.[A, B](Z).

12



Intrinsic transversality in Fuclidean spaces. From now on we assume that X is equipped with the Eu-
clidean norm. We will identify X* with X, use (-,-) to denote the scalar product, and write v1, va,...
instead of x7, x3,... We start with formulating several technical lemmas which are used in the proofs of
the results in this section. They are consequences of the geometry of Euclidean space and are likely to
be well known. As the author has not been able to find proper references, short proofs are provided for
completeness.

Lemma 1 Let (u) and (vg) be sequences in a Euclidean space. The following two conditions are equiv-
alent:

(i) (uk, vx) — [lug lox]| = 0;
(i) flvell wr = llukl| vi — 0.

Proof Observe that

2
[ vkl s = llurll o)™ = 2C0wkll lvel)? = 2 lugl] lor ] (e, vr)
=2 [Jul lvell (el vl = (ur, vi)-

The equivalence of the two conditions follows. O

Lemma 2 Let (ug) and (vy) be sequences of nonzero vectors in a Euclidean space. If both (HZ—:O and

Uk +VE
[k +vk |l

(HZ—:”) converge to a (unit) vector u, then the sequence ( ) also converges to u.

Proof Let

Uk —u and U—k—>u.
[Jull vkl

Then uy, + v # 0 for all sufficiently large k, because otherwise the first condition above yields

Vg U

Joell [kl

-

which contradicts the second condition. Thus,

uy, vi_ v u(1+ uvkn)
/0 /SRR 7 il 74 7 fall) _
k—oo ||Up + v k—oo || _ug v vkl k—o0 [og | ’
e - ’ Tunl T TouT Taxl lull (1 + fragn

Lemma 3 Let u and v be nonzero vectors in a Fuclidean space. Then

The idea of the proof below originates in the proof of |29, Proposition 5].

lu+ v >1‘ u v

[l +[lol] — 2

[
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Proof Let u,v € X \ {0}.

2 2 2
( [[u+ o] ) _ Ml Jof” + 2, v)

Tl + o] (el + Tol)?
L (o2 + = 1)) +2 G, 0)
(el + [[0])2
S (el = ll)? + 4 g,
‘2(” (Tl + To])? )
1 (u, v) +<||u||—||v||>2+(4—%) (u,0)
2\ M Tull el (Tl = To])2
1 (o) (lull = o2 = Ll ¢y o)
=3 (1 T Tl (full + o]
) (el =l o)
‘2<”||u|||v|+(|u||+|v||> (1 Tl ||v|>>
1 (u,0) \ _ 1 u v \Y_Iffu oo |f
—2(”nunnvn)‘4(2+2<|u||’||v>> 4‘||u|+||v|| |
The proof is completed. O

To simplify the comparison of various conditions in the rest of the article, we first reformulate Defi-
nition (3| using the Euclidean space notation stipulated above.

Definition 4 Suppose X is a Euclidean space, A, B C X, and £ € AN B.

(i) A pair (v1,v2) € X x X is called a pair of relative limiting normals to {A, B} at z, i.e. (v1,v2) €
N 4 (%), if and only if there exist sequences (ay) C A\ B, (by) C B\ 4, (z1), (v1x), (var) C X such
that xx # ag, T # by (k =1,2,.. .), ar — T, by > T, xp — T, HJ;::Z:” — 1, v1p — v1, Vo — VU2 as
k — oo, and

) (Vik, Tk — ak) (vak, Tk — D)

v1k€NA(ak), ngENB(bk) (k=1,2,... s R T
vl [|zx — ax| [varel [|zk — bl

— 1, (21)

with the convention that % =1,
(ii) A pair (vi,v2) € X x X is called a pair of restricted relative limiting normals to {A, B} at 7, i.e.,
(v1,v2) € NG (&), if and only if there exist sequences (ar) C A\ B, (by) C B\ A, (zk), (v1k), (var) C

X such that ||xk —agll = llzx = bkl| (k=1,2,...), ax = T, by, = T, T — T, U1 — U1, U2 — V2 as
k — oo, and

d(’l)lk, NA(ak)) — 0, d(’l}gk, NB(bk)) — 0, (22)

(Ui, 2 — ag) = loigll [|og — axll, (v, 2k — br) = lJvag |l o — 0l (K =1,2,...). (23)

In the Euclidean setting, Definition i) admits several equivalent formulations.

Proposition 3 Suppose X is a Euclidean space, A,B C X, and & € AN B.

(i) The last two conditions in in Definition (z) are equivalent, respectively, to the following two:

- —b
Tk Qg H’Ulk,” N v1, Tk k
ok — a|

(ii) Conditions in Definition [f)(i) can be replaced by conditions and (23).

— ||U2k || — V2.
T — ey 102
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Proof (i) The equivalence is a consequence of Lemmaemployed either with uy = Ili’;:g’; 0 and v, = vy,

: zi—b
or with u; = ”I’;_b:“

(ii) Let sequences (ax), (by), (z), (vix) and (voy) satisfy all the conditions in Definition [di). Set

and vy = vag.

. S A V. . W)
|2k — ak|l |2k — bl
Then
(Vig> o — ak) = lvigll loe — arll, (Vo xr — bk) = [Vl [|ox — brll -

Thanks to Lemma it follows from the last two conditions in that v’l — Uik — 0 and vé g — U2k — 0
as k — oo; hence, v}, — v1, vy, — vg, and conditions and are satisfied with v}, and vj, in
place of v1; and vo, respectively.

Conversely, let sequences (ag), (bg), (zk), (v1x) and (var) satisfy conditions and (23). Then, for
any k, there exist v}, € Na(ax) and v}, € Np(by) such that

1 1
lor, = vikll < d(vik, Nalar)) + 2. llvgg = var]] < d(var, Np (i) + 7

and consequently, v} &~ UL, ”ék — v, and (with the convention that % =1)

(Vi ok —ar) o (Vg TR —ag)
koo 01, Nl lew — arll — w00 lorkll ok —arll —

(Vo Tk —br) . (Vog, Tk —br)
koo [l [l — brll — k=oo [Joak|l lzx — bel

hence, the conditions in Definition i) are satisfied with v}  and U’Zk in place of v1; and vy, respectively.
(]

Remark 6 1. Thanks to Remarkl and Proposition (i)7 the last two conditions in in Definition (1)
can be replaced, respectively, by conditions

T — bk
|2k — bkl

L — Qg

- lva]] = va.
|2k — akl

1]l = v1,

When vy # 0 (vg # 0), one can write

_ A
Tk =k U1 (xk k_)UQ).
lor —akl flosll - \llzw =0l ozl
2. A replacement similar to the one in Proposition (ii) is possible for the relative limiting normals

discussed in Remark 2: v € N A(Z; (z)) if and only if there exist sequences (ay) C A and (vy) C X
such that ar # xp (k=1,2,...), ax = T, vy — v and

d(vk7NA(ak)) —>07 (vk,mk—ak> = H’Ukll H.Tk—(lkH (k:1,2,)
A
Next we show that in the Euclidian space setting the cone N 4 p(Z) of pairs of relative limiting
normals can be replaced, when checking intrinsic transversality in accordance with Theorem [5] by the

cone NG () of pairs of restricted relative limiting normals.

Proposition 4 Suppose X is a Euclidean space, A,B C X, 2 € AN B and v # 0. Then (v,—v) €
N a,5(%) if and only if (v, —v) € NG p(T).
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Proof The ‘if’ part follows immediately from the first inclusion in Proposition ii). Conversely, let
(v,—v) € N4 p(Z) and (ag), (bg), (zk), (vig) and (veg) be the corresponding sequences as in Defini-
tion [3{i) and such that vi; — v and vy — —v. Using Lemma [1] it is not difficult to check that

T — Qf v T, — b v

or —arll (o]

C [l — el ol

Passing to subsequences if necessary, we can assume that either ||z — ag| > ||xx — bg|| or ||zr — ak|| <
|lzx — bg|| for all & = 1,2,.... Without loss of generality, it is sufficient to consider the first case only.
For any k, choose a ) €]0,1] such that the point z} := ai + ti(xr — ax) satisfies ||z}, — arll = ||z}, — bx]|-
This is always possible thanks to the continuity of the norm. Then ) — %, and we have

Th — ag kSN (24)
2, —all  llzk —axll  lloll”
and either zj =z, or
x?c — Xk . A — Tk v
2 — 2kl llak — o [0’
and consequently, by Lemma [2]
) — by, T —xL +x, — by v
56 —b = 5€ — —b = T (25)
lof = bl [z — 2k + 2% — bl [[v]]

It follows from and that

l —
» L
(Vik, T}, — ax)

(—vo, ), — by) 1
lvikllllz), — akll

-1, +—F—" .
" lloakllllzg, — bl

Thus, sequences (ax), (bx), (z}), (vik) and (vax) satisfy all the conditions in Definition (ii). Hence,
(v, —v) € N§ p(Z). O

Since N 5(Z) C Na,p(z) (Proposition ii)), the next corollary strengthens Theorem (in the
Euclidean space setting).

Corollary 3 Suppose X is a Euclidean space, A, B C X are closed, and T € AN B. The following
conditions are equivalent:

(i) {A, B} is intrinsically transversal at Z; o
(ii) there exists a number o €]0, 1] such that [[v1 + val| > a for all (vi,v2) € NG 5(Z) satisfying |[v1]l +
[oa]l = 1; _
(i) {ve X |(v,—v) € N§ 5(z)} c {0}.

Moreover, the exact upper bound of all « in (ii) equals str.[A, B](Z).

Comparing Corollary [3| with Theorem |§| and taking into account Proposition (iii), we arrive at the
following equivalences of the three transversality properties for closed convex sets in Euclidian spaces.

Corollary 4 Suppose X is a Euclidean space, A, B C X are closed and convex, and T € AN B. The
following conditions are equivalent:

(i) {A, B} is intrinsically transversal at Z;
(ii) {A, B} is weakly intrinsically transversal at T;
(iii) {A, B} is subtransversal at T.

Remark 7 Transversality is in general stronger than all the properties above, even in the convex setting.

It is well known that in Euclidean spaces Fréchet normals and subdifferentials can be approximated
by proximal ones; see e.g. [48] Exercise 6.18 and Corollary 8.47]. As a result, in many statements proximal
normals can replace Fréchet ones. This is true, in particular, when characterising intrinsic transversality.
The next proposition is a proximal version of Definition i).
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Proposition 5 Suppose X is a Buclidean space, A, B C X are closed, and & € AN B. Then (v1,v2) €
N 4. 5(Z) if and only if there exist sequences (ax) C A\ B, (bg) C B\ A, (zx), (vik), (v2x) C X such that
T # Ak, Tk 7 by (k‘ =1,2,.. .), ar — T, by > T, x1, — T, ﬂllii:tg:ll\‘
and

— 1, v — 1, Vo —> V2 as k — oo,

(Vik, Tk — ak) (vor, T — b)

€ N®(ag), vop € NE(bg) (k=1,2,...), ,
v € Nalaw), vz € Np(br) ( S TomlTor—aell % Tooel Tax = o]

— 1, (26)

with the convention that % =1.

Proof Since the proximal normal cone is always a subset of the Fréchet normal cone, the ‘if’ part is
trivial.

Conversely, let (vy,v3) € N;LB(@). If vy = 0, for any ar — T, one can take viy = 0 € N%(a)
(k = 1,2...). Let v; # 0 and sequences (zy), (ax) and (vir) with vy, # 0 satisfy the conditions
in Definition i) with v; and vy, in place of 7 and x7;, respectively. For each kK = 1,2..., since
v1k € Na(ag), there exists a § > 0 such that

1
(Vik, @ — ag) S ||v1k|| la —ag| forall ae€ ANBs(ag). (27)

Take a t;, > 0 such that

(0 1 _
tx < min {2, s — axll, 2d(ak,B)} [ (28)
set @} = aj + tyvig, and choose an aj, € Pa(x}). Then
|z}, — ar|l = tr viell < l|zx — axll
lay, — arll* = llat — agl® = o, — axll® +2 (2}, — ar, af, — ax) < 2ty (Vi af, — a), (29)
llaj, — axll < 2ty vkl <4, (30)

d(ay, B) > d(ag, B) — ||a}, — ax|| > d(ax, B) — 2t ||v1x| > 0.
We have a), € A\ B, z}, — &, a), — & as k — oo. It follows from 7 and that

la, — axll < 55 orell = o Nk — el
and consequently,

|l = all < 2, —axll,

1
ok~ il 2 llok — ] = lai — acl > (1= 57 ) e = anll >0
1
o = bl < o = axl + e~ < (1 g ) o = .
1
o = il > llow = axl = lai = axl| > (1= 57 ) o = ]
Hence,
ol el el
k—oo ||:Z?k — ak” T koo Hx;c — akH k—o0 ||£Zik — ak||
Set
/ !/
/ Tk — A
= T o)
L P
We abviously have v, € N%(af) \ {0}, [yl = el
. . ) —d] T, — ay .
lim v}, = 1 —k kg = —h o] = hm vk = 0,
) F N A i
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(Vg Tk — a},) Ty, —ag, T —ay)

koo ol llow — ai [l koo 2, — aj |l flaw — aj|

() — ar, Tp — ag)
koo [[a), — ag| ||z — a

— lim <U1k7xk 7ak>

— e = 1.
koo [lik [ |k — axl|

Thus the sequences (a},), and (v},) satisfy the conditions in the proposition. Similarly, given a v, and
sequences (zy), (by) and (vay) satisfying the conditions in Definition [3[i), one can construct sequences
(0}.), and (vh,,) satisfying the conditions in the proposition. This concludes the proof. O

Remark 8 1. In Proposition [f] one can always assume that [[vig| = [Jv1], [[var] = [Jv2]l, (k = 1,2,...);
cf. Remark [411.

2. For the set N 4(; (xx)) of limiting normals to A at Z relative to (z) defined in Remarkl2 similarly
to Proposition [5, one can show that v € N 4(Z; (x1)) if and only if there exist sequences (aj) C A and
(vk) C X such that

_ Vg, T, — Ak
ag #x, vk € Ni(ar) (k=1,2,...), ap,—=Z, v — 0, M%l,

with the convention that % =1. A

The next statement is a proximal version of Definition [2{ii). It is a consequence of Theorem [f| and
Proposition

Theorem 7 Suppose X is a FEuclidean space, A,B C X are closed, and T € AN B. Then {A, B} is
intrinsically transversal at T if and only if there exist numbers a €]0, 1] and p > 0 such that ||v1 + ve|| > «

for alla € (A\ B)NBs(z), b € (B\ A) NB;s(2), z € Bs(7) withw # a, v #b, 1 -6 < 2= < 143,
and all vi € N (a), va € NL(b) satisfying

(vy,x — b)
[[v2][llz — o]l

(v1, 2 — a)

lorl] + flozll = 1, T—=r—"
" ez = all

>1_p? >1_[)7

with the convention that % = 1. Moreover, the exact upper bound of all such a equals itr[A, B](Z).

4 More characterizations of intrinsic transversality in Euclidian spaces

In Euclidian spaces one can go further than restricting the set of relative limiting normals when computing
the dual space intrinsic transversality constant (19) to only nonzero ones as observed in Remark 2: it
is sufficient to consider only unit normals.

Proposition 6 Suppose X is a Fuclidean space, A, B C X are closed, and T € AN B. Then

1
itr[A, B () = min o + s, (31)
e a2
v1||=||V2 1

with the convention that the minimum over the empty set equals 2

Proof 1f there is no pair (Ul, v9) € N4 p(Z) with v1 # 0 and v # 0, then both Sides in (31]) equal 1.
Given any (v1,v2) € N a,p(Z) with [[v1]| = [Jve]| = 1, we have (%, %) € Na,p(Z) and |4 ||+]| % = 1.

2772
Hence, by (19)),
) B 1
itr[A, B](z) < 5 lvr + vel|,
and consequently,

itr[A, B](z) < min [log + vel|.

(v1,v2)EN A B
lvall=[lv2ll= 1

DN | =
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On the other hand, notice that, when evaluating the minimum in , it is sufficient to consider only
(v1,v2) € N4 p(Z) with vy # 0 and vy # 0. Given any (vi,v2) € N (%) with v1 # 0, va # 0 and
[loill + |lv2l = 1, we define wy = oy and wy = p2p. Then (w1,w3) € N4 g(Z), [[wi] = [Jwz]| =1, and
by Lemma [3]

1
[v1 + val| > 3 w1 + wall .

Hence,
1 .
5 min w1 + wal| < Jlvg + v2l|,
(w1, w2)EN 4, B(T)
lwill=[lwz =1
and consequently, by ,
1 . . _
= min [lwy + wal| < itr[A, B](Z).
2 (wy,w2)EN 4 5 (%)
lwil|=[lw2 =1
The proof is completed. a

Alongside itr[A, B](Z), several other constants can be used for characterizing intrinsic transversality
in Euclidean spaces:

itr[A, B)(z) = max v — v, (32)
(v1,v2)EN 4,5(7)
loal|=llvzll=1
itry[A, B)(z) = — min (v1,v2), (33)
(vi,v2)EN 4,5(Z)
[loal|=llvz =1
itI‘g[A, B](J_?) = i Hllll d((’U, —U)7NA,B(ZE)), (34)

with the Euclidean distance in X x X used in and the conventions that in and the maximum
and minimum over the empty set equal 0 and 1, respectively, and the distance to the empty set in
equals the distance to the origin, i.e., v/2.

The expression (v1,vs2) in can be interpreted as the cosine of the angle between the vectors vq
and vy. Taking the minimum means minimizing the cosine or, equivalently, maximizing the angle, forcing
the vectors to go in opposite directions, potentially making the angle obtuse (or even equal —7). In this
case, itra[A, B](Z) > 0. However, in general, unlike itr[4, B](Z), itr1[A, B](Z) and itr3[A, B](Z), constant
itr[A, B](Z) can be negative.

The relationships between each of the constants , and and the original dual space
constant itr[A, B](Z) (14) (cf. its equivalent representations in and (31))) are given in the next
proposition. They follow from the geometry of Euclidean space.

Proposition 7 Suppose X is a Euclidean space, A, B C X are closed, and T € AN B. Then
1
(itr[A, B](7))* + 7 (itra[4, B|(7))* =1, (35)
itra[A, B](Z) + 2(itr[A, B)(2))? = 1. (36)

If either N 4,5(T) contains a pair (v1,v2) € X x X of nonzero positively independent vectors (none of
the vectors is a positive multiple of the other), or N 4, p(Z) = {(0,0)} or N4 p(z) =0, then

itrs[A, B](7) = V2itr[A, B](7); (37)

otherwise itrs[A, B](Z) = itr[A, B|(z) = 1.
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Proof If there is no pair (vl,vz) € N4 p(%) with v; # 0 and vy # 0, then, in accordance with the
conventlons made, itr[A, B](z) = 1 ( see ([B1)), itr1[A, B](z) = 0, itra[A, B](Z) = —1; so equalities
and (36) hold true. If either N 5(Z) = {(0,0)} or N4 B( ) = 0, then itr3[A, B](Z) = v/2 and equality
. holds true.

For any vy,vy € X, one has

o1+ vall? = [ l| + lloal® +2 (1, v2), (38)
o+ wall® + flor = wall* =2 (o | + lea)l?) (39)
From , and , we obtain
1 1
(A, B|@)* =1- 7  max for—v|* =1 J(iri[A, B)@)
(v1,02)EN 4,5 (%) 4
[lvil|=[lv2]|=1

which proves . Similarly, from , and 7

2(itr[A, B](z))? = 1 + min (v1,v9) = 1 —itry[A, B](%),
oS ies”
V1 ||[=]||V2 =1

which proves (36

(36)
Definition (34)) can be rewritten as follows:

(itrs[A, B(2))? = min (Ilo = wal1? + flo -+ v2]?) (40)

lv]|=1, (v1,v2)EN A, B(Z)

with the convention that the minimum over the empty set equals v/2. We next prove equality in
the nontrivial case when NA B(T) contains a pair (vl, v2) of nonzero vectors with none of them being a
positive multiple of the other. Let the minimum in (40 be attained at some v € X with |[v]] = 1 and
(v1,v2) € Na .B(Z). Then v, and —v, are the prOJectlons of v on the rays R; and Ry determined by vy
and —vy, respectively. In general, one of the rays or both can be trivial. However, in the the nontrivial
case, we can restrict ourselves to the pairs (vy,vs) described above. Thus, v1 # v, the ray Ry and Rs
are nontrivial and do not go in opposite directions. It also follows from that v must lie in the plane
determined by the ray Ry and Ry in such a way that (v,v1) > 0 and (v,v2) < 0. Since v; and —vy are
the projections of v on the rays Ry and Rs, we have

(v,01) = [on]?, = (v,02) = [|va]?, (41)
and with ||v|| = 1 the expression under the min in takes the following form:
lo = ol + o+ val|* = 2 = (v,01) + (v,02) = 2 = (v, 01 —va). (42)

Since v minimizes this expression over the unit sphere, we have

lvr — v2|
Hence, in view of ,
lvr = val| = (v, 01 — v2) = [Joa]|* + [Joa?,
o1 +v2)1* = 2 (loa]I* + [val1?) = [lor = va2ll* = ([loall* + llv2ll?) (2 = [lor — va]) -
It follows now from that

|1 + va |

JREEL L U 44
T B+ Tl (44)

lo = o1 + [lo +val|* = 2 = [lor — o] =

In view of and , we also have

2 2
[oi]]” (1 = [lor — vall) = (v1,v2),  [Jvell” (1 = [lvo1 — v2l|) = (v1,v2) .
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The last two equalities imply that either ||vy|| = |lv2]|, or [[v; —ve|| = 1 and (vy,vs) = 0, i.e., the rays

R; and Ry are orthogonal. In the last case, any pair v; € Ry, v € Ra, with ||[u; — v2|| = 1 minimizes
expression (the minimum equals 1), and we choose v; and vy such that [|v]| = [Jve| = % Thus, in

both cases |Jv1|| = |lv2]|, and it follows from that

1
2 2
[ —v]|” + [l + vz =§||vi+v’2||2» (45)

where vl = and vh = HvzH Obviously, (vi,v5) € Na p(Z), |[v;] = ||[v4] = 1, and it follows from
{0), () and B that

(itrs 4, B)(@))* = Ilv — v |2 + o+ val? > 2(itr{4, B)(2))>. (46)

Conversely, let the minimum in (31 be attained at some (v},v5) € Na p(Z) with |[v]] = [Jvb] =
Choose a unit vector v such that (v,v] — v4) = ||[v] — v}]|, and let v; and —vs be the projections of v on
the rays determined by v{ and —v}, respectively. We are in a situation as above and, using (45 again,
we obtain

A(itr[A, B)(2))? = vy + v3l* = 2([lv — vi|* + [lo +v2]|*) > 2(itrs[A, B](7))*. (47)

Combining and proves (37)).

Now we consider the case when one of the components of N 4 5(Z) is trivial while the other one is
not. Let, e.g., N a,5(%) = C x {0}, where C is a nontrivial (C' # ) and C' # {0}) cone in X. Then by ({40),
itr3[A, B](Z) > 1, and, given any ¢ € C with ||9]] = 1, one can take v = ¥ to get itrs[A4, B](Z) < ||9]| = 1.
Hence, itr3[A, B](Z) = 1. In this case itr[A, B](Z) = 1 by convention.

Finally we consider the remaining case when N 4 5(Z) = R x R where R is a ray in X determined by
a unit vector v. By definition ,

(itr3[A, B](7))? = HIrll‘ln1 (*(v, R) + d*(—v, R)) .
For any v, one of the distances in the above expression is attained at the origin and equals 1. Hence,
itr3[A, B](Z) > 1. On the other hand, with v = ¥ we have itr3[A, B](Z) < d(—9, R) = 1, and consequently,
itr3[A, B](z) = 1. In this case, by (31)), itr[A, B](Z) = % || + 9| = 1. O

Remark 9 The only property of N 4 p(Z) used in the proof of Proposition is the one in Proposition i).
The proof is applicable in other situations, e.g., when establishing similar relationships between the dual
space constants characterizing the transversality property introduced in Definition |1 I(u (cf. [28}129]). One
only needs to replace N4 5(Z) in the above proof with N 4(Z) x Ng(Z) where NA(’) and Np(Z) are
conventional limiting normal cones (cf. definition ) at T to the sets A and B, respectively. A

Thanks to Propositions [6] and [7] the limiting criteria of intrinsic transversality in Theorem [5] can be
complemented in the Euclidean space setting by several more criteria collected in the next theorem.

Theorem 8 Suppose X is a Fuclidean space, A,B C X are closed, and T € AN B. The following
conditions are equivalent:

(i) {A, B} is intrinsically transversal at Z;

(ii) there exists a number o €]0,1[ such that ||v1 +va|| > a for all (vi,va) € Nap(ZT) with ||v1]] =
llva]| = 1; the exact upper bound of all such « equals 2itr[A, B)(Z);

(ili) itrq[A4, B](Z) < 2
j.e., there exists a number o < 2 such that ||v; — va| < a for all (v1,v2) € Na g(Z) with |Jvi| =
llvz|| = 1; the exact lower bound of all such a equals itry[A, B](Z);

(iv) itro[A, B](Z) < 1
j.e., there exists a number o < 1 such that {(vi,v2) > —a for all (vi,v2) € Na p(Z) with ||v1| =
llva]| = 1; the exact lower bound of all such « equals itra[A, B](Z);

(v) ites[A, Bl(@) > 0,
.e., there exists a number o €]0, 1] such that d ((v,—v),Na p(Z)) > a for all v € X with |jv]| = 1;
the exact upper bound of all such « equals itrs[A, B](Z).
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Remark 10 1. Instead of the constant itra[A, B](Z), defined by (33), one can employ in Theorem [§(iv)
its modification:

itry[A, B|(Z) := — min (v, v2).
(v1,v2)EN a,B(Z)
llo1[I<1, [Jvz2][<1

It is easy to check that itry[A, B](Z) = (itra[A, B](Z)),. Hence, the last constant is always nonnegative,
and itra[A, B](Z) < 1 if and only if itry[A, B](Z) < 1

2. In view of Definition i) and Proposition [5| the intrinsic transversality constants admit equivalent
sequential representations in terms of Fréchet (or proximal) normals to A and B computed at points
near Z. For instance,

. _ 1 .
itr[A, B](z) = 3 aﬁjhgiglf;_}i [lvr + w2, (48)
a€A\B, be B\ A, a%x, b,
viENA(a), v2ENE(b), ||vi||=]lvz2||=1
fo—al ;4 (vj.x—a) (vg.2-b)
Te=o 71 To—er L Ta—sr !
itro[A, B|(Z) = — [1_>§cli£ri>ig;clfac_>3Tc (v1,v2), (49)
a€A\B, beB\A, atx, bz
v1€ENA(a), v2ENE(b), ||vi[[=[lvz2]|=1

lz—all (v1,z2—a) (vg,z—b)
—1 —1 —1
[ER P flz—all IERT]

with the convention that the infimum over the empty set in and equals 2 and 1, respectively.
Each of the criteria of intrinsic transversality in Theorem [8 can be rewritten equivalently in terms of
Fréchet (or proximal) normals to A and B computed at points near Z.

3. Thanks to Lemma |1} one can write down several more equivalent representations. For instance,

. _ 1 .
itr(4, B](@) = 5 oo mminf o1+ vl
a€A\B, béB\A: a#z,b#tx
v1EN4(a), v2ENE (D), [|[v1]|=(lv2]|=1

it =1 pemay — v =0, fEmpy —v2—0
1 L. T —a )
== lim inf
2 a—T, b=, T |z — a|| ‘x — bH
a€A\B,be B\ A, a#x, b#x
UlENA(a)a'UQENB(b)s [lv1[[=]lvz2]=1
el =1 emey —v1—0, pE=py—v2—0
1 — —b
= - lim inf r—a z (50)
2 a—T, b, 1T |z — all |
a€A\B,be B\ A, a#z, b;ﬁm, ‘l“;*g”—n
d(p5=a7-Na(a)) =0, d(15=57.N5 (b)) =0
. _ L (x —a,z —b)
tra|A, B = — 1 f _ 51
itrzl 4, B)(@) a3, bords 523 Iz —all o — b (51

a€A\B,beB\A, aw, bz, {24 —1
d(r=ay Na(a)) =0, d( 2= bu’NB(b))

with the convention that the infimum over the empty set in and equals 2 and 1, respectively. A

b—a
lla — bl

a—2>b
l|a — bl

— U1 — V2

8l
S~—

Another pair of constants originated in [11] can be of interest:
—~ b— -b
itri[A, B)(z) := liminf max{d <“, NA(a)) .d <“, NB(b)>}
a—T,b—T ||a—b|| ||a—b||
a€A\B,beB\A
lim inf max{ ‘ }, (52)
a—T,b—T
a€A\B,beB\A
'UleNA(a),’UQENB(b)
b— -b
itra[A, B]( lim sup [min{<a, v1> , < a ,v2>}] ) (53)
a—T,b—7x Ha_bH ||a_bH +
a€A\B,beB\A
v1E€NA(a),v2ENE(b), [lv1[l=|lv2]l=1
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with the convention that the infimum and supremum over the empty set equal 1 and 0, respectively.
Thanks to this convention, it always holds 0 < itrq[4, B](Z) < 1 and 0 < itrs [A, B](z) < 1.
Remark 11 1. Points a € A\ B and b € B\ A with either N4(a) = {0} or Np(b) = {0} can be excluded
from definition because at such points either d (ﬁ, Ny(a))=1lord (” bH,NB(b)> =1.
2. Fréchet normal cones in representations , , , (51), (52) and ( can be replaced by
A

proximal or limiting ones.

Proposition 8 Suppose X is a Euclidean space, A, B C X are closed, and T € AN B. Then
(i) (itr1[A, B](2))? + (itr2[4, B](7))? = 1,

(ii) i itr[A, B](z) < % then itr1[A, B)(z) < 2itr[A, B](z)\/1 — (itr[A, B](2))?2;

(iii) itr1[A, B](Z) = 0 if and only if itr[A, B](Z) =

Proof (i) If there are no points a € A\ B and b € B\ A in a neighbourhood of z with N%(a) # {0}
and N7 (b) # {0}, then itr1[A, B](£) = 1 and itry[A, B](Z) = 0 in view of the conventions made and
Remark [T} hence, equality (i) holds.

Let a€ A\ Band b€ B\ A, v € Ni(a), va € N5(b), and |Jv1|| = [lva]| = 1. Denote

b—a
U= — (54)
16— al
and set ap = (v1,u) and ag := — (v, u). If ay > 0, then d(u, Ryivy) = /1 — a?; otherwise d(u, Ryvq) =

1. Hence, in both cases it holds d*(u, Ryv1) + (aq)% = 1. Similarly, d*(—u, Riv2) 4 (a2)% = 1. Equality
(i) follows from the definitions.
(ii) Let itr[A, B](Zz) <y < % and choose a 7’ > 0 and an ¢ > 0 such that itr[A, B](Z) < 7' < v and

29 /1= (V)2 +¢ < 29/1 - 2, (55)

which is possible because the function 4" — +'y/1 — (7/)? is increasing on [0, %] By the second repre-
sentation in (50)), there exist points a € (A \ B) NB.(z), b € (B\ A) NB.(z), z € B.(z), v1 € N(a),

vs € Nj(b) such that a # 2, b # 2, 1—e < J=tl < 1e, o] = [Jval| = 1, ua = v1]] <&, [Juz — vs]| <&,
and [Jug + ua|| < 27/, where
r—a r—0b
uy = . U = . (56)
lz —al llz — ]|

Employing the notations and , set
o= (ug,uz), o= (u,u), o= —(up,u), (57)
Bi=llur +usll, fr=n/l1-af, Bai=4/1-0a3. (58)
The relationship between the numbers a and f is straightforward:
B*=2(1+a). (59)

Let %A, 2A; and %A, stand for the angles between u; and wus, w and u;, and us and —u, respectively
(measured counterclockwise). Then 2 + 24y + s = 7, sin?A; > 0, sinAs > 0, and

cos A = —cos(A; + As) = — cos Ay cos Ay + sin Aq sin As.
Hence,
o =cosA > —cosAq cosWAs = —aja. (60)

By assumption, § < 2y < v/2. It follows from that o < 0 (i.e. angle 2 is obtuse), and consequently,
a1 >0 and ag > 0. Since ay <1 and ag <1 (see ), we have ayas < & := min{ay, @z}, and in view

of , —& < a. Using again, we have

0<pu:=1-a<

%2 <2(y) < 1. (61)
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In view of and and taking into account that the function p — /(2 — p) is increasing on [0, 1],
it holds

B i=max{B1, B2} = V1 — &% = /u(2 - p) <2¢//1- (/). (62)

Set 01 = aqui, U3 = agug, U1 := aiuy and Uy = asug, and notice that 0 € N%(a), 02 € NE(b),

i1 — ul| = /1 — a? and ||z + u|| = /1 — 3. Hence, in view of and (55)),
max{[|o1 — ul|, |o2 +ul|} < B+ <291 = (V)2 +¢e <291 -2

It follows from the definitions and that i/t}l[A, B](Z) < 2v4/1 — ~2. Letting v | itr[4, B](Z), we
arrive at the claimed inequality. .

(iii) If itr[A, B](Z) = 0, then itr1[A, B](Z) = 0 in view of part (ii). Let itr1[A4, B](Z) = 0. By the
definition (52)), for any & > 0, there exist points a € (A\ B)NB.(z), b € (B\ A)NB.(z), vy € N’ (a) and
vy € N (b) such that |Ju — v1]| < € and |lu + v2|| < € where u is given by (54). Without loss of generality,

we can assume that ||vi|| = |lvz]] = 1. Set © := (a +b)/2. Then = # a, x # b, ||z —a| = ||z — b, and
employing the notations (56), vy = u and up = —u. Hence, |ju; —v1]| < £ and [lup — va|| < €, and it
follows from the first representation in that itr[A, B](z) = 0. O

Remark 12 For the expression in the right-hand side of the inequality in Proposition ii)7 we have the
following estimates:

0 < 2itr[A, B](%)/1 — (itr[A, B](2))2 < 1

as long as 0 < itr[A, B](Z) < 1. It equals 0 if and only if either itr[A, B](Z) = 0 or itr[A4, B](z) = 1. It
= . A
V2

<
equals 1 if and only if itr[A, B](Z) = -

Thanks to Proposition |8 the criteria of intrinsic transversality in Theorems [5| and [8| can be comple-
mented by several more characterisations collected in the next theorem.

Theorem 9 Suppose X is a Fuclidean space, A,B C X are closed, and T € AN B. The following
conditions are equivalent:

(i) {A, B} is intrinsically transversal at Z;
(ii) itr1[A, B](z) > 0,
i.e., there exist numbers o €]0,1[ and § > 0 such that

mm{dQﬁ_Z,AMWO,dQQ_Z,Nﬂ®>}>a

foralla € (A\ B)NB;s(Z), b € (B\ A) NBs(T), or equivalently,
there exist numbers o €]0,1[ and § > 0 such that

o b>a

foralla € (A\ B)NBs(Z), be (B\ A)NBs(Z), and all v1 € Na(a) and v2 € Np(b);
the exact upper bound of all such o equals i/t;l[A, B|(z).

(iii) itra[A, B)(z) < 1,
i.e., there exist numbers o €]0,1[ and § > 0 such that

mm{<b—a v> <a—b ; >}<a
la—0]"""/ " \la—b]

for alla € (A\ B)NBs(z), b € (B\ A) NBs(Z), and all vi € Na(a) and vg € Np(b) with ||vi] =
[v2]l = 1;

b—a ;
T — V1
lla— 0|

a—2b
|a — b

— Uy

b

the ezact lower bound of all such o equals itra[A, B)(Z).
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Remark 13 1. Conditions N (a) # {0} and Np(b) # {0} can be added in Theorem [J](i) (cf. Remark [T1]).

2. Thanks to Theorem |§| and taking into account Remark 2, Definition ii) of intrinsic transver-
sality formulated in a general normed linear space, in the Euclidean space setting reduces to the original
definition of this property introduced recently by Drusvyatskiy et al. [11] (see [11, Definition 3.1 and
formula (3.1)] and |45, formula (5)]).

3. The six constants providing quantitative characterisations of the intrinsic transversality property
of {A, B} at T make two distinct groups: 1) itr[A, B|(Z), itri[A, B](Z), itra[4, B](Z), itr3[A, B](Z) and
2) i/t\rl[A,B](j), itro [A, B](Z). Within each group, the constants can be easily converted from one into
another thanks to Proposition and Proposition i). The constants belonging to different groups are not
convertible. We only have a one-sided estimate in Proposition ii) complemented by the fact in Propo-
sition (iii) that constants itr[A, B](Z) and itr;[A, B](Z) can equal zero only simultaneously. Fortunately
the last fact is sufficient for detecting intrinsic transversality qualitatively.

4. Compared to itr1[A, B](Z), the definition of itr[A, B](Z) contains an additional parameter: =
which in a sense determines the “directions” of the normal vectors 7 and x3. This explains why the
constants belonging to different groups are not convertible (see the previous remark) and seems to be an
advantage of the definition when characterizing the intrinsic transversality property quantitatively
as it eliminates normal vectors which are irrelevant from the point of view of intrinsic transversality. A

The next theorem provides a list of equivalent criteria of subtransversality of a pair of convex sets
which follow from Theorems [§ and [J]in view of Corollary

Theorem 10 Suppose A, B C X are closed and convezx, and & € AN B. Then {A, B} is subtransversal
at  if and only if one of the conditions (i))~(v) in Theorem[§ or (ii)—(iii) in Theorem[d is satisfied.

5 Conclusions and future work

A connection has been established between the two seemingly different normal cone transversality prop-
erties of pairs of nonconvex sets: the one introduced in Kruger et al [28] as a sufficient condition of
subtransversality in Asplund spaces and the finite dimensional Euclidean space intrinsic transversality
property introduced in Drusvyatskiy et al. [11] as a sufficient condition for local linear convergence of
alternating projections for solving feasibility problems. It is shown that in Euclidean spaces the proper-
ties are equivalent. Several characterizations of this property are established. Two new limiting objects
are used in the finite dimensional characterizations: the cone of pairs of relative limiting normals and the
cone of pairs of restricted relative limiting normals. They possess certain similarity with the conventional
limiting normal cones, but unlike the latter one are defined for pairs of sets. Special attention is given
to the convex case.

The following questions need to be answered and have been identified for future research. The readers
are welcome to contribute.

1) Does the dual characterization in Theorem {4 reduce to that in Theorem [3| when the sets are convex?

2) Can Proposition v) be extended to general Banach spaces?

3) The relationship between intrinsic transversality and weak intrinsic transversality should be further
investigated. Are they different in general? in finite dimensions? in Euclidean spaces?

4) When do the sets defined in the two parts of Definition [3| coincide?

5) An analogue of Theorem 5| for weak intrinsic transversality should be formulated.

6) It is not important for estimating intrinsic transversality, but it would be good to add the case

itr[A, B](z) > % to Proposition [§] for completeness.

Acknowledgements The author thanks Nguyen Hieu Thao for many constructive comments and suggestions regarding
several definitions and statements in the article, and the referees for the careful reading of the manuscript and constructive
comments and suggestions.
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