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Abstract

We have analysed rich, dynamic data about the behaviour of anaesthetists during
the management of a simulated critical incident in the operating theatre. We use
a paper based analysis and a partial implementation to further the development of
a computational cognitive model for disturbance management in anaesthesia. We
suggest that our data analysis pattern may be used for the analysis of behavioral
data describing cognitive and observable events in other complex dynamic domains.
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1 Introduction

Cognitive models are attempts to describe the cognitive processes which may
be performed by a human whilst engaged in a task [43]. To build a cognitive
model, it is important to gain insights from real-world data as real-world
examples expose the complexity of the domain [44]. The task setting we report
on comes from the complex and dynamic environment of an operating theatre
-a rich domain from which to gather complex behavioral data. Specifically,
we studied the decision making of an anaesthetist when a critical incident
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occurred – with a critical incident being an event under anaesthetic care which
has the potential to lead to an undesirable outcome if left to progress [38].
Interspersed with complex reasoning about possible causes of the incident,
bearing in mind that the disturbance may be due to multiple causes, actions
must be performed to keep the patient alive [11–13]. This situation has been
classified as disturbance management [47].

Descriptive, paper-based models of hypothesised cognitive processes are a
first step in building systematic explanations of observed behaviours, but
are limited in their power to capture the complexities of cognitive activity.
Researchers have explored more detailed models, implemented as computer
programs, where the program represents a runnable, inspectable model that
can be observed ‘in action’ e.g. [15,17,30,45].. The availability of mechanisti-
cally reproducible activity streams that relate to the mental phenomena being
explained in turn provides a means for testing the sufficiency of the explana-
tion [35,44]. Testing according to the behavioral outcome modelling approach
[44] commences with a gathering of behavioral data from human subjects, and
involves analysis of that data at appropriate levels of abstraction to determine
the extent to which the computational model can produce the same kinds of
decisions as do human subjects, under comparable conditions. This has also
been termed cognitive simulation [36]. Cognitive simulation can show the in-
teraction between data and processes and incorporate the potential to predict
the ordering of cognitive tasks that are involved.

Of course, computational models that attempt to explain invisible mental
processes of human cognitive activity can only do so in a highly hypothetical
way - rarely, if ever, will we have cognitive data that leads unambiguously to a
computational model. In other words, models are generally underconstrained
from data [44], even with all the methods of cognitive task analysis and verbal
protocol analysis available. Nevertheless, it is accepted that close study of
particular domain problems in the form of computational cognitive models can
aid progress towards the extremely challenging goal of understanding human
cognitive activity. For example, simulations have been shown to be useful
as tools to reveal the underlying cognitive functions involved in disturbance
management [48] and other problem solving tasks [15,30].

To facilitate the development of computational cognitive models, a variety of
cognitive architectures have been designed and used for model building [2,31,42].
Indeed the process of model building from data can also shed light on the de-
sign requirements for cognitive architectures, e.g., [33]. More recently there has
been interest in developing higher level abstractions for modelling cognitive
processes that in turn can be mapped to specific architectures [16]. Endeavours
to produce an abstract language for cognitive modelling have demonstrated
that there are important differences between the most prominent cognitive ar-
chitectures, but that much of the work involved in building specific cognitive
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models (e.g. structured task analysis to elicit human behavioral data) is the
same no matter which architecture is targeted [18].

The data on which our modelling is based came from a study where clinical
anaesthetists were observed in an exercise in which a software simulated pa-
tient was experiencing difficulty under anaesthetic. The problems simulated
needed to be solved within 2-3 minutes to avoid catastrophic results. Verbal
protocol data collected during these experiments, aligned with information on
the actions conducted by the clinician, provided us with the behaviour of clin-
icians during the disturbance management episode and provided insight into
their management of decision making. Data collection and early aspects of the
analysis are briefly explained in section 2 and in detail elsewhere [21,20,22,39].

A feature of the anaesthesia domain is that many patient state changes are
not able to be anticipated by the anaesthetist. Expert performance in anaes-
thesia involves parallel processing, multitasking and iteration through a cycle
of observation, decision, action and re-evaluation. The anaesthetist must per-
form dynamic decision making, relying not only on medical domain knowledge
but also on expert management of the cognitive demands presented by the
task [11–13].

It has been noted that cognitive demand and performance issues such as se-
lective attention and management of multiple goals are aspects of cognitive
processing that are not easily revealed by analysis of capturable human per-
formance data. Further, control knowledge which influences how and when the
subtasks in a model might be selected is not easily represented in a paper-based
analysis. It has been argued that these can be analysed through the evolution-
ary process of attempting to build and refine a computational model [32].

In this paper, we present a computational cognitive model STAM (Select and
Test Model with Action and Meta Skills) as a partial model of the tasks
involved in disturbance management in anaesthesia. This model has been de-
rived from our analysis of the domain specific behavioral data and our at-
tempts to initially align that data to the generic Select and Test (ST) model
of diagnostic reasoning proposed by Ramoni and colleagues [28].

Ramoni’s ST model provides an iterative cycle for tasks at the skill and rule
based level without directly showing more abstract knowledge level tasks. We
explain our analysis pattern and the techniques we have applied successfully as
part of this analysis. We propose that this analysis pattern is suited to similar
complex dynamic domains and we argue that there was significant benefit to
the development of our model by programming a partial computational model
to complement the paper based analysis.

As we demonstrate below, attempting to design and implement a computa-
tional model of complex decision mechanism in a dynamically changing con-
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text forces the designer to make explicit the knowledge and processing mech-
anisms in the model, particularly with respect to modelling management and
coordination. The importance of explicit modelling control structures has been
highlighted since the very earliest days of cognitive modelling [1] and has been
reinforced in both pragmatic and philosophical analyses, e.g. [27,33,34,49]).
For example:

“To exert executive control, an agent needs to be able to timely initiate,
suspend, cease and co-ordinate the execution of adequate intentions, atten-
tively monitor the proceeding execution of the proximal intentions as well
as the environmental changes, detect errors and conflicts, actively maintain
and sustain the execution of appropriate intentions, and inhibit intervening
or distracting processes.” [49]

Indeed, it has been argued that the most significant difference between AI
planning and cognitive modelling is in their treatment of control knowledge,
in particular control knowledge specific to a given domain [2]. Goal driven ar-
chitectures, such as Soar and ACT-R 4, are insensitive to supporting stimulus
driven or bottom-up changes [33], whereas many cognitive tasks of interest
(including the tasks essential for disturbance management in the domain of
anaesthesia) require the actor to exhibit sophisticated executive control. In
the evolution of the STAM model we describe below, it is perhaps unsurpris-
ing that it was necessary to insert features in the model to provide explicit
meta-level knowledge processing, but we believe that additional insight can
be obtained by understanding the general ‘control’ problem in the setting of
a particular, challenging, domain.

The remainder of this paper is structured as follows.

Section 2 provides some background to our work. The complexity of the chosen
domain is described. The method we adopted as part of our analysis pattern
is explained. We describe the process used to analyse, describe and visualise
our data (Event Maps, Event Matrices and Hypothesis Trees). Some findings
based on our data analysis are provided, more detailed examples and findings
can be found elsewhere [20,21].

In section 3 we outline a computational model, a partial implementation of the
STA cognitive model: Select and Test Model with Action incorporated. We
discuss the limitations in the STA cognitive model which were clearly evident
in the performance of the computational model. Based on the analysis of our
data and drawing from theory, we explain the limitations of STA model and
justify these changes by proposing the STAM model(Select and Test Model
with Action and Meta Skills).

In section 4, we discuss computational modelling as a tool for analysis to-
ward ‘realistic’ cognitive models. We comment on our suggested pattern for
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the analysis of complex dynamic, behavioral data and suggest it could be ap-
plied to other similar data. We mention the limits of the STAM model and
the difficulty in evaluating such models, however, we argue that our analy-
sis and computational modelling progressed us toward a cognitive model of
disturbance management in anaesthesia with a ‘good fit’.

2 Representing complexity

2.1 Introduction

In disturbance management in anaesthesia, complex decision-making inter-
spersed with actions for therapy and diagnosis provides us with rich temporal
data. In this section, we describe the complexity in our data, how the data
was collected and our novel methods for representation and initial analysis of
the data. We present the results of our analysis as summaries of strategies and
behaviour in the subjects.

2.2 Complexity in Anaesthesia

In the domain of anaesthesia, the patient’s state is constantly changing, not
only as a result of actions performed by and drugs introduced by the anaes-
thetist, but due to physiological changes in the patient’s condition. The pa-
tient is not a static system! Anaesthetic management is event driven, with se-
vere time constraints and involves risk and uncertainty [11–13]. The decision
maker must address patient disturbances that are short term consequences
of the problem whilst simultaneously diagnosing underlying ‘faults’. Features
such as: incomplete data availability; uncertainty; dynamically changing state;
time constraints; and multiple interleaved sub-tasks make management of such
a complex task a cognitively demanding process [5].

As the amount of data available about the unfolding situation is greater than
can be immediately managed, the anaesthetist must be selective in what data
to take notice of, and how often this monitoring is required [12]. Careful jug-
gling of multiple goals: administering therapy to keep the patient alive; and
performing diagnostic reasoning and diagnostic tests; is necessary in the suc-
cessful management and resolution of the problem. Meta cognitive skills in
supervisory control and resource management are important in the expertise
developed by the successful anaesthetist [12,13]. The strategies employed by
the anaesthetist to dynamically adapt their thought processes are significant
to their successful management of critical incidents which may occur [12].
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Indeed, it has been found that the meta-cognitive elements of disturbance
management are more significant for safe intraoperative patient management
than deep medical knowledge [11].

Gaining insight into the meta-knowledge used by decision makers was a focus
of the study reported here. This strategic knowledge was needed to help de-
scribe how the model could be applied as a predictive model. A limitation of
this study is that we did not gather any specific data representing the domain
knowledge of each anaesthetist. We have focused on the skills of coordination
and on management processes.

2.3 The experimental data

Earlier a number of patient simulation experiments were conducted and pre-
liminary analysis reported [39,40]. A Macintosh based patient simulator, (the
Poor Ventilation Simulator, PVS), was used to produce patient data represen-
tative of ventilation problem conditions which might occur soon after a patient
has been anaesthetised and a procedure known as endotracheal intubation has
occurred. The PVS simulator was created based on simple heuristics which
managed to capture the patterns of patient degeneration in these situations
quite credibly. Using the PVS simulator enabled the same incident to be pre-
sented to multiple subjects and it automatically recorded the anaesthetists’
actions whilst managing the problem. The incidents being simulated by PVS
involve difficulties with patient ventilation and present symptoms which may
have multiple explanations. The anaesthetist must simultaneously consider
multiple hypotheses and perform therapeutic actions to keep the patient alive.

Three converging data sources were used to obtain evidence of the subjects’
knowledge structures and decision steps whilst managing the problem: a com-
puter generated (PVS) record of actions taken and the clinical context in
which they occur; a verbalised record of the problem solving session; and a
verbalised record of a stimulated recall session immediately following the sim-
ulation exercise [39]. Using multiple sources of evidence provides a more com-
plete framework of knowledge and processes used during the problem solving
session [39]. In each run of the simulation, the anaesthetist was asked to man-
age ‘the patient’ whilst the simulation was driven by the experimental team.
The anaesthetist sat in front of the monitor giving directions for patient ‘ma-
nipulation’ (actions to be performed on the patient, for therapeutic reasons
and/or the purpose of generating further information e.g. listen to chest). Pa-
tient data that would ordinarily be available in the operating theatre by direct
observation of the patient or a display monitor, such as Blood Pressure, Oxy-
gen Saturation, Endtidal CO2, Ventilation, Skin Colour and ECG data was
continuously displayed on the PVS monitor. Data that was not continuously
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visible was only displayed on the PVS monitor in response to the anaesthetist’s
requests or instructions to act.

Data transcribed from the audio tape was organised into time segments align-
ing the think-aloud protocol with the retrospective protocol and the values
for visible patient data available from a log file. Further interpretations of the
data were produced identifying information referred to and any reasoning or
action which took place within each segment. The process of integrating each
data source is described in more detail elsewhere [39].

The three problem scenarios simulated were: Oesophageal Intubation (tube
holding gases was intubated into oesophagus instead of trachea.); Kinked Tube
(tube is kinked disrupting flow of gases into patient.); and Anaphylaxis (a mas-
sive allergic response, in anaesthesia this is typically due to an intravenously
administered drug, which results in cardiovascular collapse, respiratory diffi-
culty and possibly cardiac arrest).

Seven subjects were given the simulation of the problem: Oesophageal Intu-
bation. The simulation experiment was based on the problem scenario of the
tube containing gases being accidentally inserted into the oesophagus instead
of the trachea. The data from the Oesophageal Intubation simulation was
analysed in detail and is the focus for the analysis described in this report.
The subjects’ experience as an Anaesthetist varied from 4 to 19 years.

2.4 An Analysis Pattern

The following major steps were involved in our analysis, in an iterative cycle
toward the development of our computational cognitive model.

Cognitive Decision and Action Categorisation Based on the verbal protocol
data, we categorised the actions and cognitive processes (eg. decisions, hy-
potheses) that may have occurred. We chose tasks based on the cycle of
reasoning proposed in Ramoni, Stefanelli, Magnani and Barosi’s [28] Select
and Test Model [22]. Each event identified in the data was categorised and
tabularised to show the trace over time of each event type occurring. The syn-
chronised raw data, was analysed in terms of potential cognitive tasks involved
from the Select and Test Model.

As part of this analysis, hypotheses identified as under consideration were
listed, along with actions performed and clinical data which was given atten-
tion. An example of this analysis is given elsewhere [20,21].

Hypothesis Trees: Visual Tools to highlight individual’s strategic behaviour.
Whilst attempting to define the process in more detail, toward the imple-
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mentation of a computational model, we have examined strategic patterns of
behaviour used by individuals. In separate publications [20,21] we have pro-
vided a detailed example showing how we built hypothesis trees representing
each subjects’ hypothesis generation during the scenario.

Event Matrices: Visual Tools to highlight reasoning versus action Time–Event
Matrices and Event Maps were constructed as a schematic representation of
the reasoning and events involved in each scenario. These were used to aid
the objective interpretation and analysis of the data. Time–Event Matrices as
tools for describing and presenting complex data representing thoughts and
activities, have been shown [41] to be visually helpful to aid comprehension and
to aid in the calculation of numeric scoring measures. Such metrics are helpful
when comparing the behaviour of two or more different individuals. Streufert
and Nogami use Time–Event Matrices to analyse planning behaviour [41].
Such planning information is not the focus of this study, however a modified
form of Event Matrices were a useful tool for describing and presenting the
data involving reasoning and actions [21].

Event Maps: Visual Tools to facilitate comparison between subjects Time–
Event Maps were developed as a valuable picture of each subject’s perfor-
mance. These enabled the researchers ‘at a glance’ to see the interaction be-
tween cognitive and actual activity that may have been involved for each sub-
ject [21]. They were also useful as a comparative tool between subjects. Using
this analysis tool, common strategies were identified in all subjects’ behaviour.
Also, differences between subjects, particularly with respect to control of the
selective attention to data was apparent.

Computational Model Development and Refinement The process of the devel-
opment of a model is an iterative cycle. Informed by the literature, and all
our previous analysis including the findings drawn from each of the previous
stages in our analysis pattern, our earlier model (STA model)[22] was refined
and extended. The STAM model explained later is our current proposal for a
cognitive model which may match the anaesthetists’ behaviour during distur-
bance management.

2.5 Describing the data

The raw data was dense and difficult to conceptualise. Event Matrices and
Event Maps were introduced to represent the reasoning and events involved
in each scenario. The data was easier to analyse and compare using these vi-
sual methods for presentation. We have discussed the creation of Event Maps
and Event Matrices in more detail elsewhere [21,20] . Based on our experience
with data in the domain of Anaesthesia, we found a natural connection be-
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tween the generic categorization of actions as initiative or respondent adopted
by Streufert and Nogami [41], and the concepts of reasoning-driven actions
and data-driven actions identified separately in our domain [39]. These cate-
gorizations gave rise to insights in highlighting how our subjects managed to
interleave reasoning with action.

Time event matrices and maps allow a visual representation connecting times
of observation with decision points and actions performed as a consequence
of the data attended to. Each unique action was represented at a different
height on the graph, as was each unique hypothesis. Actions are plotted below
the X-axis and Hypotheses above the X-axis. The visual plot showing action
and hypothesis consideration with time allows an immediate impression of the
relationship between actions and reasoning and how active each subject was
both mentally and ‘physically’.

For example, Subject 1, a registrar, with 4 years experience, engaged in a
problem scenario over 2 minutes and 52 seconds. During this time, 6 unique
diagnostic and 2 unique therapeutic actions were made and 7 hypotheses were
considered. Each of the actions were represented visually aligned with the
time on the Time Event matrix and Time Event Map. The hypothesis ‘Endo-
tracheal Tube problems - not in trachea’ was considered 47 seconds into the
scenario and reconsidered 1 minute later and then refined to the final (correct)
hypothesis ‘Oesophageal intubation’ at 2minutes 25seconds. The final action
as a consequence was to extubate the patient. The Event Matrix highlights
actions that follow as a consequence of or as if planned based on previous
information, by connecting lines. An example of such a relationship is the
mental task of abstraction following from the action of attending to new data.

The event maps depict clearly how long hypotheses were considered and vi-
sually show how active the subject was. Comparing the visual representations
of data from each subject was helpful toward the analysis and complemented
metrics collected. Hypotheses considered and the period of time they remained
under consideration was easily identified using unique colours for each hypoth-
esis in the event map plots. When hypotheses were maintained over a period of
time, the Event Map shows constant plateaus rather than sharp peaks above
the x-axis.

The number of actions performed and whether they were initiative driven
reasoning-based actions or actions in response to other information were used
to suggest more about each subject’s directionality of reasoning. The behav-
ioral trends and strategies of successful subjects differs from those of the un-
successful subjects.

The successful subjects performed a smaller range of possible actions dur-
ing the fault disturbance episode than successful subjects. Successful subjects
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performed between 5 and 10 unique actions, a behaviour similar to that of
experts: high breadth of functioning (number of unique actions) is not a strat-
egy associated with expertise. It is claimed that experts selectively perform
fewer actions than novices, choosing actions which will help to differentiate
between hypotheses under consideration [3]. Unsuccessful subjects, performed
comparatively more actions: between 10 and 13 unique actions.

The two unsuccessful subjects (subjects 2 and 3) performed more initiative
(reasoning driven) actions than the successful subjects. By definition, these
actions must be based on their reasoning rather than in response to informa-
tion provided (one could suggest these might be (backward) reasoning based
on current hypotheses, guess work or theorising from first principles). It could
be suggested that the successful subjects, by comparison, were more efficient.
They performed fewer actions to provided the necessary information to help
isolate/eliminate hypotheses. This is consistent with findings in other studies
that accurate diagnoses are associated with pure forward reasoning backed up
by backward reasoning only to explain unrelated data in terms of the hypoth-
esis [14,24–26].

In summary, the Event Maps and the Time–Event Matrices served to provide
a useful picture of the behaviour of subjects which allowed for a quick visual
comparison between subjects. Interestingly, the Event Maps that represent
behavioral data for the two subjects who were unsuccessful at diagnosing the
problem appear to have different characteristics to Event Maps describing the
other subjects. The Event Maps show that these subjects performed more
initiative actions (quite probably due to backward reasoning) which increased
the workload for these subjects.

2.6 Patterns of hypothesis generation

Table 1 provides information regarding hypotheses considered by each subject.
These were generated based on both the think-aloud and retrospective proto-
cols. If a hypothesis was considered (referred to) on more than one occasion,
it was counted on both occasions for the second column, (HR: total number of
Hypotheses (Re)considered) but only counted once in column one (UH: count
of Unique Hypotheses).

Unsuccessful subjects did not generate as many initial hypotheses. They con-
tinued to generate new hypotheses to test rather than attempting to elimi-
nate from a larger initial set. Subject 2 failed to generate a number of initial
hypotheses from which to eliminate and refine. This subject kept eliminat-
ing hypotheses and generating alternate (previously unconsidered, though re-
lated) hypotheses, similar to the behaviour of intermediate novices in other
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Subject UH HR

subject 1 7 9

subject 4 4 6

subject 5 5 5

subject 6 6 10

subject 7 1 1

subject 2 6 9

subject 3 11 15

Table 1
Number of unique hypotheses(UH) and total hypotheses(HR) considered by each
subject

studies [3,26]. Subject 3 suffered from a lack of new data on which to base rea-
soning and new hypotheses. This subject engaged in more hypothesis driven
(backward) reasoning rather than reasoning based on data.

Hypotheses considered by successful subjects as the scenario unfolds are gen-
erally more connected to previous hypotheses, as refinements or reconsidered
hypotheses, than hypotheses generated by unsuccessful subjects. The success-
ful subjects tended to initially identify more appropriate general hypotheses
which were subsequently refined or eliminated. These general hypotheses could
be compared with the notion of facets described as capturing a group of find-
ings as one concept that is recalled [4,9]. This is consistent with the possibility
that these subjects were using long term memory retrieval structures to en-
hance their processing of information[10]. The unsuccessful subjects seemed
to backtrack and reconsider previously eliminated hypotheses more.

Our observations are consistent with the findings of Arocha with respect to
the directionality of reasoning used by practitioners at different levels of ex-
pertise [3]. In our study, successful subjects seemed to be following strategy
patterns associated with expertise. For example, the successful subjects at-
tempted to constrain the problem space rather than expand it which is a
strategy used by experts [26]. Successful subjects engaged in forward reason-
ing and generated more initial hypotheses which were narrowed, refined or
eliminated. The successful subjects did not seem to generate new totally un-
related hypotheses later in the scenario, though they did reconsider previously
eliminated hypotheses in the light of new data.
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3 Modelling disturbance management in anaesthesia

3.1 Introduction

In this section, we describe our analysis and modelling in detail. Our initial
model, STA Model was an adaptation of ST Model [28] to include action
but it did not directly incorporate strategic control knowledge and was not
capable of progress. We discuss the performance of our computational model
of the STA model and describe our new proposed model, Select and Test with
Action and Meta skills (STAM).

3.2 A Computational Model : STA Model

Ramoni et. al. [28] suggested that their Select and Test Model (STModel) can
be applied to describe the medical reasoning tasks of diagnosis, therapeutic
planning and patient monitoring. Patel, Groen, Ramoni and Kaufman [26]
have exercised the STModel with data. Data from subjects with varying levels
of expertise have been examined in terms of the STModel [3] indicating that
the cycle was not followed in the same way by subjects at different levels
of expertise, but that experts’ data matched it well. Joseph also found that
expert behaviour during diagnostic reasoning seemed to be consistent with
the behaviour suggested by the STModel [19].

Ramoni et. al [28] claimed that the STModel cycle described not only diagnosis
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but also cycles of therapy planning and monitoring. They defined diagnostic
reasoning as providing ‘an explanation of the current situation in the patient.’
Therapy planning and monitoring were executed following a previous under-
standing of the patient’s situation (i.e. following a diagnosis). The therapeutic
planning task they described was that of choosing an appropriate therapy,
however, it did not involve performing that therapy.

The STModel does not incorporate action into its cycle of selection and testing.
It focuses on reasoning separate from any action, implying that any action oc-
curs only as a result of a final diagnosis/therapy plan. The patient monitoring
task described involves continuous cycling between deduction and induction
steps given a prior diagnosis or therapy plan and as a result, previous diagnosis
and therapy planning tends to be confirmed or questioned. A new, separate
cycle of diagnosis or therapy planning can then follow this cycle.

Based on our initial paper-based data analysis, we modified STModel to pro-
duce STA Model STModel with action [22]. Figure 2 shows our STA Model,
the Select and Test model with Action. STA Model included action for therapy
and diagnostic evaluation. It included an explicit loop for requesting particu-
lar data as part of the diagnostic selection phase (the left section of the cycle
leading from observed data at the bottom to diagnostic hypotheses at the top).
STAM model, shown in Figure 3a, is built upon STA Model with extensions
to show meta level procedural knowledge.
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On paper, the behaviour of subjects in our study matched the STA Model well.
Each subject’s behaviour for a time segment was tabulated into categories:
observed data, abstracted data, hypotheses, diagnostic test and expected data.
The mental tasks of abstraction and abduction were indicated in keeping with
the model cycle and where the data suggested that they occur. The analysis of
each subject’s behaviour in terms of the STA Model was examined particularly
noting deviations from the STA Model. In general, based on this paper based
analysis, each subject performed similar tasks and in a similar order to those
suggested by the STA Model. The synchronised raw data, was further analysed
in terms of potential cognitive tasks involved from the Select and Test Model.
Further details regarding this analysis are provided elsewhere [20].

3.2.1 An implementation of STA

As a descriptive tool to model our data, based on a general examination of
data, STA Model appeared to provide a good basis for the cognitive tasks
involved in diagnostic reasoning in this domain. To explore further the ‘fit’ of
the model we built a (partial) computational model using Soar [31] We have
outlined elsewhere a task level description of a Soar computational model of
the diagnostic reasoning of anaesthetists based on STA Model [22]. We imple-
mented two communicating Soar agents – the patient and the diagnoser. To
partially implement the diagnoser agent, 120 production rules were written,
using 11 problem spaces (diagnosis, do-abstraction, monitor-patient, abduc-
tion, induction, anaesthetic-abduction, deduction, perform-therapy, structure-
diagnostic-space, select-diagnostic-test, perform-diagnostic-test) correspond-
ing to the top down tasks in STA model.

The diagnoser agent is described in more detail in [20], and the patient was
built using the same design as the simulated patient used in data collec-
tion [39]. This state machine was designed by an expert anaesthetist to repre-
sent a realistic picture of the patient’s state given the problem condition being
modeled and the actions of the diagnoser. The patient agent regularly sends
updates to the diagnoser agent describing immediately visible patient data
such as pulse, blood pressure, oxygen saturation, ventilation and skin colour.
Additional patient information may be sent to the diagnoser agent in response
to a particular request (e.g. Auscultate the left lung, Increase oxygen). Each
agent contains a separate knowledge base. The patient model comprises simple
heuristic knowledge and attributes that mimic a real patient.

The diagnoser agent has its own internal model of the patient which is updated
to represent its current knowledge of the patient’s status. Communication
between agents is achieved with programmed links in the C programming
language enabling a loop of dynamic feedback to the diagnoser agent.
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Communication links from the patient to the diagnoser are set up so that
the information is made available immediately to the diagnoser on the diag-
noser’s input link, but until the diagnoser chooses to accept such data it is
not reflected in the diagnoser’s own patient model. This design was chosen to
mirror the deliberate processing of an anaesthetist in deciding to watch for
particular data, ignoring some data, and sometimes noticing other data. The
bottom up observation tasks are represented in our design decision to make
the information immediately accessible on the diagnoser’s input link. This ap-
proach of combining bottom-up processing with a top down design has been
successfully adopted in similar work [33].

The implemented computational model did not support resource management
or supervisory control. When the system was faced with a choice, i.e. when
more than one task was proposed as acceptable, it didn’t have built in domain
knowledge to suggest how to proceed. There were very limited process rules
that allowed some progress (outlined below) but not sufficient knowledge to
successfully juggle and choose between simultaneous competing tasks. Our
system was able to read in the initial patient input values and perform some
basic abstraction of this data in readiness for the abduction task to generate
hypotheses. The new input values which then became available fired competing
tasks to attend to the new input, rather than proceed with the cognitive task
of abduction. Typically, the system kept attending to new data and didn’t
progress further to other cognitive tasks such as abstraction and abduction
based on the patient state. Limited knowledge was incorporated with a rule
that suggested the diagnoser prefer abstraction over monitoring tasks when
some monitoring had already been performed. When some data had been
attended to, this meta-knowledge was needed to aid decisions to revise the
data as well as how to decide when to perform diagnostic reasoning tasks.

The system was provided with some domain specific meta-knowledge. When
new input was available, it could be ignored if it was within provided threshold
values for acceptability. For example, for the clinical cue, Blood Pressure (BP),
a delta value 5 was provided to say that when data fluctuations occur that
were less than or equal to 5, it was not necessary to perform further abstraction
to re-classify the new value. In addition, there were search control rules which
provided a limited ability to choose between different monitoring tasks and
among abstraction tasks. Without these rules, the system reached an impasse
due to tied operators almost immediately, as it didn’t know which monitoring
task to perform first. Also, priority settings were explicitly incorporated into
the system to enable limited decision-making between competing attention
tasks based on these priority settings. These values were hard-coded and no
meta-knowledge was incorporated to enable dynamic changes to these priority
settings. The priority settings were based on our observations of the data col-
lected and how often our anaesthetists referred to the different data available.
For example, BP deserves more attention than ETC02 levels. This knowledge
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was provided by giving BP priority 2 and ETC02 priority 1. A search control
rule provided meta-knowledge: prefer operators with higher priority. For ex-
ample, in the do-abstraction problem space, when proposals existed to think
about two different clinical cues, priority was given to cues which were identi-
fied as having higher priority, otherwise both proposed operators were treated
with equal preference.

The implicit control provided in the STA Model cycle limits the ordering
and selection of tasks to some extent – e.g. abstraction cannot be proposed
until (some) patient monitoring has been performed; abduction cannot be per-
formed until abstraction on (some) data has been performed etc. This control
was implemented using the patient-condition attribute as a trigger. However,
ordering of the tasks according to the top down STA Model cycle was not
sufficient to use as a generator of appropriate behaviour sequences. Executive
control of goals is needed for deliberate action [27]. As noted during the analy-
sis, there were some acceptable deviations from the STA model which occurred
in our human performance data. Heuristics to describe such strategic knowl-
edge were needed before it could be claimed that the model could be used to
predict performance. The performance of our computational model confirmed
that implementing more domain specific meta-knowledge in a separate meta-
level problem space was necessary to enable the system to progress efficiently
and intelligently. Drawing from our data and from literature we make some
suggestions toward how this meta-knowledge could be structured in the next
section.

3.3 STAM: Incorporating Action and Meta level skills

Based on our analysis and existing literature regarding dynamic disturbance
management and decision making in complex domains, we proposed STAM,
the Select and Test model with Action and Meta level skills, shown in figures 3a
and 3b and explained in more detail in [20].

STAM includes some of the major tasks that could be involved during the
management of a critical incident in a complex domain such as anaesthesia.
The STAM model we propose is based on the top-down goal driven tasks in
the STA model (Figure 2): abstraction, abduction, induction, deduction, diag-
nostic testing, therapeutic action, patient observation and patient model up-
dating. Additional cognitive management tasks in STAM are proposed as: pri-
ority management, supervisory control, multi-tasking resource management,
and automatic tasks for data perception. The shaded areas and annotations
in Figure 3a indicate the components distinguishing the STA model from the
STAM model.
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The distinction between perceived data and data that has been attended to
as shown in Figure 3b was made to remain realistic to human behaviour.
Automatic environmental perception data is available in a buffer, then when
this data has been attended to, it changes ‘state’ to flag that it has been
attended to. This approach has also been used by Schoelles and Gray [33].

The STAM model includes meta-level tasks such as supervisory control and
resource management that have been shown to be crucial in the anaesthesia
domain [11,12]. The STAM model also includes action integrated into the
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cycle of decision making.

Figure 3a shows the cycle of top down diagnostic tasks beginning at the bottom
with new data, through abstraction of data to form more general classifications
and findings, abduction of possible hypotheses and or therapies that may be
needed, then selection of tests chosen to eliminate hypotheses from those under
consideration followed by deduction to generate an expected outcome for these
tests. The expected result is compared with the actual outcome, leading to
induction task which may lead to elimination or confirmation of a hypothesis.
This cycle is inherited from both the STModel and STA Model.

The STAM Model differs from the earlier models on which it is based. It in-
cludes the meta control tasks: Multitasking resource management, priorities
management, and supervisory control. Based on Rasmussen’s taxonomy of
decision making tasks [29], these would be the highest level abstract knowl-
edge cognitive skills. Rule based tasks which are based on previous experience
and relationships between situations and procedural responses to that state,
include diagnostic reasoning tasks and monitoring tasks. We have identified
conscious situation awareness tasks and actions as deliberate tasks based on
decisions to attend to or search for available data. Automatic, low level cog-
nitive tasks in this domain relate to the automatic observation tasks which
could be described as bottom-up tasks. The STAM model distinguishes be-
tween the patient state and the reasoner’s current contextual model of the
patient’s state. The reasoner’s model of the patient is only updated following
a deliberate decision to attend to new patient data as highlighted in Figure 3b.

The difference between STAM model and STA model is the addition of the
higher level cognitive tasks responsible for management and coordination. The
flow of control between new data, abstraction and abduction is not prescribed
as merely following these rule based tasks in a cyclic manner, but is now
managed by these meta-control tasks. Following the process of updating the
current patient model, instead of the flow of control moving automatically to
abstraction, the meta-level Supervisory Control knowledge decides what to
do next. The Multitasking resource management task can interrupt reasoning
when needed. The changing priorities are managed in an explicit abstract
knowledge level task.

Strategic meta-level knowledge is very significant in this domain [11,12]. We
have found our data to be consistent with other studies which suggest that
success is related to pure forward reasoning strategies [14,24–26]. Based on our
analysis, complemented by theory, we have identified a number of strategies
which could be associated with success. The process of building a (partial)
computational model to test our cognitive model proved a powerful method
of analysis.
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As previously outlined, the preliminary implementation of STA Model was
based on problem spaces derived to correspond to each of the main cognitive
tasks in the STA Model. The implementation had no explicit supervisory con-
trol level. Meta-level tasks for resource management and allocation of atten-
tion were not explicitly incorporated into the design. The cyclic nature of the
STA Model allows for some implicit control in terms of the repeated iteration
cycling through the main cognitive tasks: abstraction, abduction, deduction
and induction. This control was implemented based on trigger conditions that
must be present in order to propose a task in the diagnosis problem space.

The data analysis conducted suggested that STA model is feasible as a descrip-
tive model. In other words, the data analysis performed shows that behaviour
can be categorised to fit this model. However, the program based on this model
was not capable of successful progression past the observation and monitoring
tasks. Due to the continuous presence of new data describing the changing
patient state, the program would focus on new data as it arrived without
progressing on to problem recognition and decision making tasks. This sup-
ports claims by other researchers regarding the behaviour and management of
complex and dynamic tasks [5,12]. Additional explicit meta-control tasks are
essential in order to decide enough monitoring has been done and to move on
to ‘thinking’ about this data. Such strategic meta reasoning knowledge may
bring STAM closer to being a predictive model of performance in this domain.
Preliminary work in this direction can be found in [20].

4 Conclusion

Computational modelling of complex human decision making is a step towards
the goal of building systems that can provide intelligent decision support to
human operators. This paper has reported a descriptive and computational
study drawing on rich data on human decision making in a complex and de-
manding setting. Whilst domain knowledge is clearly required and domain
expertise has been shown to affect the efficiency of a practitioner during di-
agnostic reasoning [19], considerable management expertise is also required.
It has been shown that meta-level cognitive tasks that enable a person to be
adaptive and flexible in prioritising their actions and to coordinate juggling
attention and resources between competing tasks are a major component of
the ‘expertise’ required for success e.g. [6,12]. In our domain the behaviour of
an expert managing a disturbance or crisis of complexity, involves therapeutic
actions interspersed with diagnostic reasoning and action over a short time
period.

Modelling the decision making in such situations involved first analysing the
behaviour of experts engaged in successful disturbance management. Then
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suggesting a descriptive model of this behaviour and ultimately a predictive
dynamic model that could simulate some of the expert behaviour. Such com-
putational modelling provides us with an analysis process for mapping people’s
cognitive behaviour whilst performing complex tasks. We have not attempted
to model the anaesthetist’s knowledge (see, e.g., [46] for attempts to model
knowledge in this domain). The cognitive activity engaged to successfully man-
age and perform decision making in complex environments is not easily deter-
mined. Building a computational model, which can be run, ‘watched in action’
and then compared with real data provides us with valuable insights into the
processes which may occur. The analysis pattern we adopted can arguably
be applied to other forms of complex management tasks in domains where
diagnostic reasoning must be interspersed/competing with actions. We have
attempted to computationally model some of the processing [48]. This has
progressed the development of a cognitive model of processing in this domain.

We have developed the STAM model and suggested some domain specific
strategies that would apply to an implementation of STAM model in the
anaesthesia domain. The STAM model is less reliant on an implicit predictive
cycle of tasks than Ramoni’s ST model, and relies on meta-level knowledge
to manage and control which tasks are performed according to a contextual
internal model of situated awareness. Although we do not attempt to provide a
complete detailed architecture we gained insight as to the types of components
needed to generate appropriate behaviours.

Our work has illustrated how on-paper analysis can be inadequate to test a
model as a predictive performance model. The search for strategic knowledge
can be aided with paper analysis, but the testing of such knowledge can be
done best via implementation and running of a computational model.

Evaluation of computational models is far from straightforward. It is nec-
essary to keep separate, implementation details and the theoretic cognitive
model [7,8,37] and there are many confounding factors in the search for what
Sun and Ling have termed the source of power in a cognitive model [44]. It
is suggested to test different versions of a computation model by varying pa-
rameters to see their effect [44]. In our case, significant further work is needed
to implement the proposed control knowledge in our computational model.
Following this it would be possible to experiment with changing difference
strategic knowledge and to compare the model performance with individual
human performance. Of course, even at that point the question would remain
about the robustness of the explanation supported by such data alignment.
As Krebs frames it: “are results obtained from experiments that are essen-
tially performed on data structures, equivalent to results from ‘real’ exper-
iments?” [23]. As Sun and Ling observe, “there is always a many-to-many
mapping between computational models and the cognitive phenomena to be
modelled, so the development and application of fundamental, abstract cri-
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teria in analysing and comparing models are essential [44]”. In terms of the
success criteria they propose, our work is limited to basic goodness-of-fit. But
we see a contribution being made by our close analysis of human behavioral
data towards a computational cognitive model, in a domain that is highly
complex and dynamic.

5 Acknowledgements

The authors would like to acknowledge the extensive contributions of John
Zelcer and Jeannette Lawrence, and the support of the Australian Research
Council, to early work in the collection and early analysis of the raw data
used in this study. We also thank the anonymous reviewers of this journal for
helpful comments.

References

[1] Newell. A. You can’t play twenty questions with nature and win. In
W. G. Chase, editor, Visual information processing, pages 283–308. New York:
Academic Press, 1973.

[2] R.S. Amant, S.P. McBride, and F.E. Ritter. An AI planning perspective on
abstraction in ACT-R modeling: Toward an hlbr language manifesto. In ACT-
R Workshop proceedings 2006. 2006.

[3] J F Arocha, V L Patel, and Y C Patel. Hypothesis generation and the
coordination of theory and evidence in novice diagnostic reasoning. Medical
Decision Making, 13(3):198–211, 1993.

[4] Jose F. Arocha, Dongwen Wang, and Vimla L. Patel. Identifying reasoning
strategies in medical decision making:a methodological guide. Journal of
Biomedical Informatics, 38:154171, 2005.

[5] L Bainbridge. The change in concepts needed to account for human behavior in
complex dynamic tasks. IEEE Transactions on Systems, Man and Cybernetics,
27:351–359, 1997.

[6] L Bainbridge, T M J Lenior, and R W van der Schaaf. Cognitive processes in
complex tasks: introduction and discussion. Ergonomics, 36:1273–1279, 1993.

[7] G Barosi, L Magnani, and M Stefanelli. Medical diagnostic reasoning:
epistemological modeling as a strategy for design of computer-based
consultation programs. Theoretical Medicine, 14:43–55, 1993.

[8] R Cooper, J Fox, J Farringdon, and T Shallice. A systematic methodology for
cognitive modelling. Artificial Intelligence, 85:3–44, 1996.

21



[9] Evans DA and Gadd CS. Managing coherence and context in medical problem-
solving discourse. In Evans DA and Patel VL, editors, Cognitive science in
medicine: biomedical modeling, page 21155. Cambridge, MA: MIT Press, 1989.

[10] K A Ericsson and P G Polson. An experimental analysis of the mechanisms
of a memory skill. Journal of Experimental Psychology:Learning, Memory, and
Cognition, 14(2):305–316, 1988.

[11] D M Gaba. Dynamic decision making in anesthesiology: Cognitive models and
training approaches. In D A Evans and V L Patel, editors, Advanced Models of
Cognition for Medical Training and Practice, pages 123–148. Springer Verlag,
1992.

[12] D M Gaba, K J Fish, and S K Howard. Crisis Management in Anesthesiology.
Churchill Livingston, 1994.

[13] D M Gaba and S K Howard. Situation awareness in anaesthesiology. Human
Factors, 37:20–31, 1995.

[14] G J Groen and V L Patel. The relationship between comprehension and
reasoning in medical expertise. In M Chi, R Glaser, and M Farr, editors, The
nature of expertise, pages 287–310. Lawrence Erlbaum Associates, 1988.

[15] T R Johnson, J Krems, and N K Amra. A computational model of human
abductive skill and its acquisition. In Proceedings of the Sixteenth Annual
Conference of the Cognitive Science Society. Lawrence Erlbaum Associates,
1994.

[16] Crossman J.A. Lebiere C Jones, R.M. and B.J. Best. An abstract language for
cognitive modeling. In Proceedings of 7th ICCM, Italy 2006. 2006.

[17] G Jones, F E Ritter, and D J Wood. Using a cognitive architecture to examine
what develops. Psychological Science, 11:1–8, 2000.

[18] R Jones and R Wray. Comparative analysis of frameworks for knowledge-
intensive agents. AI Magazine, 27(2), 2006.

[19] G-M Joseph and V L Patel. Domain knowledge and hypothesis generation in
diagnostic reasoning. Medical Decision Making, 10(1):31–46, 1990.

[20] K Keogh. A computational model of disturbance management in anaesthesia.
Masters Thesis, Department of Computer Science, The University of Melbourne,
2002.

[21] K Keogh and E A Sonenberg. Analysis and visualisation of complex bahavioural
data: A case study of disturbance management in anaesthesia. In Proceedings of
the HF2002 Human Factors Conference. Swinburne University of Technology,
2002.

[22] K Keogh, E A Sonenberg, and J A Lawrence. Towards a computational model of
disturbance management in anaesthesia. In Proceedings of the Eighth Australian
Joint Conference of Artificial Intelligence. World Scientific Publishing, 1995.

22



[23] P R Krebs. Smoke without fire: What do virtual experiments in cognitive
science really tell us? In International Conference on Cognitive Science, 2004.

[24] V L Patel and G J Groen. Solution strategies in medical reasoning. Cognitive
Science, 10:91–116, 1986.

[25] V L Patel, G J Groen, and J F Arocha. Medical expertise as a function of task
difficulty. Memory and Cognition, 18(4):394–406, 1990.

[26] V L Patel, G J Groen, M F Ramoni, and D R Kaufman. Machine depth versus
psychological depth: A lack of equivalence. In E Keravnou, editor, Deep models
for Medical Knowlege Engineering, pages 249–272. Elsevier, 1992.

[27] A Qusaibaty and N Howard. Intentional cognitive models with volition.
Technical report, Center for Advanced Defense Studies, Directorate of Research,
Center for Advanced Defense Studies, Washington DC, 2006.

[28] M Ramoni, M Stefanelli, L Magnani, and G Barosi. An epistemological
framework for medical knowledge based systems. IEEE transactions on systems,
man and cybernetics, 22(6):1361–1375, 1992.

[29] J Rassmussen. Skills, rules, and knowledge; signals, signs, and symbols,
and other distinction in human performance models. IEEE Transactions on
Systems, Man and Cybernetics, SMC-13:257–266, 1983.

[30] M M Recker. Explorations in the parameter space of a model fit to individual
subjects’ strategies. Technical Report ER-MR 93-03, Georgia Institute of
Technology, Atlanta, Georgia, 1993.

[31] P S Rosenbloom, J E Laird, and A Newell. The Soar Papers: Research on
Integrated Intelligence, volume 1 & 2. MIT Press, Cambridge, Massachusetts,
1993.

[32] E M Roth, D D Woods, and Jr H E Pople. Cognitive simulation as a tool for
cognitive task analysis. Ergonomics, 35:1163–1198, 1992.

[33] M J Schoelles and W D Gray. Top-down versus bottom-up control of cognition
in a task switching paradigm. In D. Doerner F. Detje and H. Schaub, editors,
Proceedings of the Fifth International Conference on Cognitive Modeling, pages
295–296. Bamberg, Germany: Universitats-Verlag Bamberg, 2003.

[34] M. J. Schoelles, H. Neth, C. W. Myers, and W. D. Gray. Steps towards
integrated models of cognitive systems: A levels-of-analysis approach to
comparing human performance to model predictions in a complex task
environment. In Proceedings of the 28th Annual Conference of the Cognitive
Science Society, pages 756–761, 2006.

[35] C.D. Schunn and W.D. Gray. Editorial. introduction to the special issue on
computational cognitive modeling. Cognitive Systems Research, 3, 2002.

[36] H A Simon. The Sciences of the Artificial. MIT Press, 1969.

23



[37] T Simon and G Halford. Computational models and cognitive change. In
T Simon and G Halford, editors, Developing Cognitive Competence: New
Approaches to Process Modelling, chapter 1. Lawrence Erlbaum Associates,
1995.

[38] Howard SK, Gaba DM, Fish KJ, and Sarnquist FH Yang G. Anesthesia crisis
resource management training: teaching anesthesiologists to handle critical
incidents. Aviation, Space, and Environmental Medicine, 63(9):763–770, 1992.

[39] E A Sonenberg, J A Lawrence, and J Zelcer. Modelling disturbance management
in anaesthesia: a preliminary report. Artificial Intelligence in Medicine, 4:447–
61, 1992.

[40] E A Sonenberg, J A Lawrence, and J Zelcer. Keeping the patient asleep
and alive: Investigating specialists’ disturbance management in anaesthesia.
In Proceedings of the Second Australian Cognitive Science Conference, pages
136–138, The University of Melbourne, February 1993.

[41] S Streufert and G Y Nogami. Analysis and assessment of planning: The view
from complexity theory. In S L Friedman and E K Scholnick, editors, The
Developmental Psychology of Planning: Why, How, and When Do We Plan?,
pages 157–182. Lawrence Erlbaum Associates, 1997.

[42] R Sun. The clarion cognitive architecture: Extending cognitive modeling to
social simulation. In R Sun, editor, Cognition and Multi-agent Interactions:
from Cognitive Modeling to Social Simulation. Cambridge University Press,
2005.

[43] R Sun, L A Coward, and M J Zenzen. On levels of cognitive modeling.
Philosophical Psychology, 2005.

[44] R Sun and C Ling. Computational cognitive modeling, the source of power,
and other related issues. AI Magazine, 19(2):113–120, 1997.

[45] R Sun, X Zhang, and R Matthews. Modeling meta-cognition in a cognitive
architecture. In Proceedings of the 27th Annual Conference of the Cognitive
Science Society, 2005.

[46] A ten Teije and E Rotterdam. Diagnostic reasoning with anaesthesia knowledge.
Systems analysis, modelling, simulation : Journal of mathematical modelling
and simulation in systems analysis, 33:327–345, 1998.

[47] D D Woods, L Johannsen, and S S Potter. Human interaction with intelligent
systems: An overview and bibliography. ACM SIGART Bulletin, 2(5):39–50,
1991.

[48] D D Woods and E M Roth. Symbolic AI computer simulations as tools
for investigating the dynamics of joint cognitive systems. In J-M Hoc, P C
Cacciabue, and E Hollnagel, editors, Expertise and Technology Cognition and
Human-Computer Cooperation, pages 75–92. Lawrence Erlbaum Associates,
1995.

[49] J Zhu. Understanding volition. Philosophical Psychology, 17(2):247–273, 2004.

24


