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Abstract. The decomposition set-valued mapping in a Banach space E with
cones Ki, i = 1, . . . , n describes all decompositions of a given element on
addends, such that addend i belongs to the i-th cone. We examine the decom-
position mapping and its dual.

We study conditions that provide the additivity of the decomposition map-
ping. For this purpose we introduce and study the Riesz interpolation property
and lattice properties of spaces with respect to several preorders. The notion
of 2-vector lattice is introduced and studied. Theorems that establish the rela-
tionship between the Riesz interpolation property and lattice properties of the
dual spaces are given.

1. INTRODUCTION

1. The goal of this paper is to study general cone decomposition. Let us explain
the matter of the problem.

Consider n convex cones K1, . . . , Kn in a vector space E with n ≥ 2. It is
possible that some of these cones coincide. Let L =

∑n
i=1 Ki be the Minkowski

sum of these cones. A collection of elements xi ∈ Ki, i = 1, . . . , n is called the
decomposition of an element x ∈ L with respect to the collection of cones (Ki)n

i=1

if x = x1 + x2 + . . . + xn. We are mainly interested in the totality of all possible
decompositions for all vectors x ∈ L. In other words we shall study the set-valued
mapping σ defined on L by

σ(x) = {(x1, . . . , xn) :
n∑

i=1

xi = x, xi ∈ Ki, i = 1, . . . , n}.



The mapping σ is called the decomposition mapping with respect to cones K 1, . . . ,

Kn. We can describe this mapping in the following way. Consider the space En

and the operator of summation A : En → E defined by

A(x1, . . . , xn) =
n∑

i=1

xi.

Let K = K1 × . . .×Kn ⊂ En and let AK be the restriction of A to K . Then AK

is the linear operator defined on K and mapping onto L =
∑k

i=1 Ki. It is clear
that σ coincides with the set-valued mapping A−1

K inverse to AK .

2. Decomposition mapping arises in different fields of mathematics and its applica-
tions. The situation when all cones K1, . . . , Kn coincide was mainly investigated.
An important field of application of the decomposition mapping is mathematical
economics. Assume that we have an economy with n agents and m products.
Let E = R

m and K1, . . . , Kn coincide with the cone R
m
+ ⊂ R

m of vectors with
nonnegative coordinates. A vector x = (x1, . . . , xm) ∈ R

m
+ describes a certain

collection of products (xj is the quantity of the product j in this collection.) Having
vector x, agents need to distribute it between themselves, that is to find vectors
x1, . . . , xn ∈ R

m
+ such that

∑n
i=1 xi = x. The totality of all such distributions

coincides with the set σ(x). The decomposition mapping plays an important role in
the study of some models of economic equilibrium and economic dynamics (see [3]
for details). From an economical point of view it is interesting to consider efficient
decompositions of a given element x, that is, decompositions than are better (in a
certain sense) that the other decompositions of this element. A cone decomposition
theory based on efficiency has been developed by J.E. Martinez Legaz and A. Seeger
in [4].

3. We use methods of convex analysis for examination of the decomposition map-
ping. Let K1, . . . , Kn be convex cones in the space E and let σ be the corresponding
decomposition mapping. Then the graph

gr σ = {((x1, . . . , xn), y) ∈ En × E : y ∈ σ(x1, . . . , xn)}

is a convex cone, hence σ is a convex process (see [5]). In another terminology
(see [6, 2, 3]) σ is a superlinear set-valued mapping. The dual theory of superlinear
mappings is well developed. We give an explicit description of dual mapping to
the decomposition mapping and describe its properties. This approach allows us to
discover some interesting properties of the decomposition mapping itself.

4. An important question related to decomposition mapping is to find conditions
that guarantee its additivity. In the simplest case when all cones Ki coincide with



a cone K, this property is equivalent to the following: the space E with the or-
der relation generated by K possesses the Riesz interpolation property. It is of
interest to extend this result to the case of two or more cones. To this end, we
introduce a space and objects defined with respect to several cones which can be
viewed as generalizations of such classical notions as vector lattice, exact upper and
lower bounds, Riesz interpolation property and Riesz decomposition property, Dou-
ble Partition Lemma etc. On the whole, the problem on additive decomposition can
be solved in such spaces. We establish the relationship between Riesz interpolation
property with respect to several cones, and lattice properties of the dual space w.r.t.
the corresponding dual cones.

The lattices with respect to several cones are quite natural from the point of
view of applications to mathematical economics (see 2). Indeed, it is quite natural
to assume that each agent i is interested only in the products with the numbers
from a certain subset Ji of the set of indices {1, . . . , n}. This observation leads to
decomposition mapping with respect to a system of cones K1, . . . , Kn, where Ki is
a face of the cone R

m
+ . It can be shown that decomposition mapping with respect

to such systems is additive.

5. Next, we summarize the structure of the paper. Some definitions and results
related to superlinear mappings are given in Section 2. Decomposition mapping
and dual to decomposition mapping are described in Section 3. Properties of the
support function of the decomposition mapping are discussed in Section 4. Section 5
provides different characterizations of space with several cones that are equivalent to
the additivity of the decomposition mapping. Vector lattices with respect to several
pre-orders are examined in Section 6. Kantorovich- Riesz type theorems in spaces
with two cones are studied in Section 7.

2. SUPERLINEAR SET-VALUED MAPPINGS (CONVEX PROCESSES)

Let E1, E2 be Banach spaces. A set-valued mapping a : E1 → 2E2 is called a
convex process ([5]), if its graph gr a = {(x, y) ∈ E1 × E2 : y ∈ a(x)} is a cone
in E1 × E2 and (0, 0) ∈ gr ϕ.

Sometimes (see, for example, [2, 6, 3]) convex processes are called superlinear
set-valued mappings. It is more convenient for us to use this terminology. A
superlinear mapping a is called bounded if

‖a‖ := sup{‖y‖ : y ∈ a(x), x ∈ dom a, ‖x‖ ≤ 1} < +∞.

Here dom a = {x : a(x) �= ∅}.
Let E be a Banach space. A cone K ⊂ E is called locally compact if each

bounded subset of K is compact. The following result is well-known and can be
easily proved.



Theorem 2.1. Let a : E1 → 2E2 be a closed positively homogeneous mapping,
the cone K := dom a be locally compact and a(0) = {0}, then a is bounded.

Definition 2.1. The set-valued mapping a∗ : E ′
2 → E ′

1 is called dual to a
superlinear mapping a : E1 → 2E2 , if

a∗(g) = {f ∈ E ′
1 : [f, x] ≤ [g, y], ∀x ∈ dom a, y ∈ a(x)}.

It is well-known and easy to check that the dual mapping a∗ is superlinear for
an arbitrary mapping a. The following duality theorem holds:

Theorem 2.1. (see ([2, 6]) Let a be a superlinear mapping. Then the sublinear
function pg(x) = inf{[g, y] : y ∈ a(x)} is sublinear. If pg is lower semicontinuous
for all g ∈ E ′, then for all x ∈ dom a, g ∈ dom a∗ the following holds

sup{[f, x] : f ∈ a∗(g)} = inf{[g, y] : y ∈ a(x)}, and ∂pg(0) = a∗(g).

Here ∂p(x) is the subdifferential of a sublinear function p at a point x.

3. DECOMPOSITION MAPPING AND ITS DUAL

3.1. Decomposition Mapping

Let E be a Banach space and let En = E ×E . . .×E be the cartesian product
of its n copies. We assume that En is equipped with the sum-norm: if X =
(x1, . . . , xn) ∈ En then ‖X‖ =

∑n
i=1 ‖xi‖. By E′, (En)′ we will denote the dual

spaces to E and En, respectively. Note that (En)′ = (E ′)n. For f ∈ E′ we have
‖f‖ = sup‖x‖≤1 |f(x)|. If F = (f1, . . . , fn) ∈ (En)′ then ‖F‖ = maxi=1,...,n ‖fi‖.
In particular, if f1 = . . . = fn := f then ‖F‖ = ‖f‖.

In the space E let us consider a collection of convex closed cones K1, K2, . . . , Kn,
and in the space En consider their cartesian product K = K1 × K2 × · · · × Kn.
The dual cones to K1, K2, . . . , Kn and K will be denoted by K∗

1 , K∗
2 , . . . , K∗

n and
K∗, respectively. It is clear that K∗ = K∗

1 × K∗
2 × · · · × K∗

n. We also use the
following notation:

L = K1 + . . . + Kn.

It is well-known and easy to check that L∗ =
⋂n

i=1 K∗
i

Definition 3.1. A set-valued mapping σK1,...,Kn : E → 2En , defined by

σK1,...,Kn(x) :=
{ {X = (x1, . . . , xn) ∈ K :

∑n
i=1 xi = x} x ∈ L

∅ x /∈ L



is called decomposition mapping with respect to cones K 1, . . . , Kn, and the elements
of the set σK1,...,Kn are called the decompositions of x.

For the sake of simplicity we denote σK1,...,Kn by σ if it does not lead to
confusion. It is clear that dom σ = L :=

∑n
i=1 Ki. The decomposition mapping is

closed. Moreover, this mapping possesses a stronger property than the property to
be closed. Indeed, if Xk → X then xk

i → xi for all i and hence
∑k

i xk
i → ∑k

i xi.
Thus the following holds: if X k → X and Xk ∈ σ(xk) then there exists limxk = x

and X ∈ σ(x).

3.2. The Description of the Mapping σ∗

In this subsection we give an explicit description of the mapping σ∗ dual to the
decomposition mapping σK1,...,Kn ≡ σ. Let

(3.1) K = dom σ∗.

It follows from the superlinearity of σ∗ that the set K is a convex cone.
The following theorem allows one to get an explicit form of the mapping σ∗

dual to σ.

Theorem 3.1. The equality σ∗(G) =
⋂n

i=1(gi − K∗
i ) holds for all G =

(g1, . . . , gn) ∈ K.

Proof. Let f ∈ σ∗(G) (G ∈ K), then by the definition of σ∗ we have

(3.2) [f, x] ≤ [G, X ] ∀x ∈ dom σ, X ∈ σ(x).

For every i = 1, 2, . . . , n, and any xi ∈ Ki put Xxi = (0, . . . , 0, xi, 0, . . . , 0) ∈
En. It is clear that Xxi ∈ σ(xi), and (3.2) implies that [f, xi] ≤ [G, Xxi] for all
xi ∈ Ki, i = 1, 2, . . . , n, or [f, xi] ≤ [gi, xi] for all xi ∈ Ki, i = 1, 2, . . . , n, i.e.
[f − gi, xi] ≤ 0 for all xi ∈ Ki, i = 1, 2, . . . , n. It follows from the definition
of the conjugate cone that f ∈ gi − K∗

i , i = 1, 2, . . . , n. This means that f ∈⋂n
i=1(gi − K∗

i ).
Conversely, let the last inclusion hold for an element f . Then gi−f ∈ K∗

i , i =
1, 2, . . . , n, hence for all xi ∈ Ki, i = 1, 2, . . . , n, we have [f, xi] ≤ [gi, xi].
Summing over i from 1 to n we get after simple calculations that

(3.3) [f,

n∑
i=1

xi] ≤
n∑

k=1

[gk, xk] for all xi ∈ Ki, i = 1, 2, . . . , n.

Let x∈E and X =(x1, . . . ,xn)∈σ(x). Then
∑n

i=1 xi = x. Applying (3.3) we get
[f, x] ≤ [G, X ] ∀x, X ∈ σ(x), which is equivalent to the inclusion f ∈ σ ∗(G).



3.3 Domain of the Mapping σ∗

It will be shown in this subsection that the cone K = dom σ ∗ is the sum of two
summands, one of which is described in the following assertion.

Proposition 3.1. The equality K∗ = (σ∗)−1(0) is valid. (Recall that K =
K1 × . . .× Kn.)

Proof. In the view of Theorem 3.1 we have that G ∈ (σ∗)−1(0) if and only if
0 ∈ ⋂n

i=1(gi − K∗
i ) which is equivalent gi ∈ K∗

i for all i.

Corollary 3.1. The inclusion K ∗ ⊂ K holds.

Consider the set

M = {X ∈ En :
n∑

i=1

xi = 0}.

Let M ∗ be the orthogonal to M subspace: M∗ = {G ∈ (En)∗ : [G, X ] =
0 ∀X ∈ M}. Consider also the diagonal D = {G = (g, g, . . . , g) : g ∈ E ′} of
the space (E ′)n. It is clear that D is w∗-closed in (En)′ = (E ′)n. In the sequel an
element (g, g, . . . , g) ∈ D will be denoted by g∧.

Proposition 3.2. The subspaces M ∗ and D of the dual space (E n)′ coincide.

Proof. Let G = g∧ ∈ D, then for every X ∈ M we have [G, X ] =∑n
i=1[g, xi] = [g,

∑n
i=1 xi] = 0, i.e. G ∈ M∗, and hence D ⊂ M∗. Now let

us prove the opposite inclusion. Suppose, there exists an element G ∈ (E ′)n such
that G ∈ M ∗ \ D. Since D is w∗-closed and convex we can apply the separation
theorem which implies the existence of X = (x̄i) ∈ En such that

(3.4)
[
G, X

]
> sup

g∈E′

[
g∧, X

]
= sup

g∈E′

∑
i

[g, x̄i] = sup
g∈E′

[
g,

∑
i

x̄i

]
.

The following cases are possible:

1. if X ∈ M , then the right-hand side of the last inequality is equal to zero, and
[G, X] > 0. On the other hand, [G, X] = 0, since G ∈ M ∗;

2. if X /∈ M , then
∑

i x̄i �= 0 hence supg∈E′[g∧, X] = +∞ and we have
[G, X] > +∞,

therefore the both cases lead us to a contradiction.

Proposition 3.3. For every g∧ ∈ M∗ the equality σ∗(g∧) = g − ⋂n
i=1 K∗

i is
valid.



Proof. Since the equality [g, x] = [g,
∑n

i=1 xi] =
∑n

i=1[g, xi] = [g∧, X ]
holds for all x ∈ dom σ, X = (x1, . . . , xn) ∈ σ(x) and every g ∈ E′, then g ∈
σ∗(g∧), ∀g ∈ E ′. From Theorem 3.1 it follows that σ∗(0) = −⋂n

i=1 K∗
i , then using

the superlinearity of the dual mapping σ∗ we obtain the relations σ∗(g∧) = σ∗(g∧+
0) ⊃ σ∗(g∧) + σ∗(0) ⊃ g − ⋂n

i=1 K∗
i . These inclusions imply that σ∗(g∧) �= ∅ for

every g∧ ∈ M∗. If f ∈ σ∗(g∧) then (see Theorem 3.1) g − f ∈ K∗
i , i = 1, . . . , n,

and hence f ∈ g − ⋂n
i=1 K∗

i .

Corollary 3.2. M ∗ ⊂ K.

Indeed, if G ∈ M∗ = D then there exists g such that G = g∧. Since σ∗(g∧) is
nonempty it follows that G ∈ dom σ∗ = K.

Corollary 3.3. If g∧ ∈ M∗, G ∈ K∗ then σ∗(g∧ + G) = g + σ∗(G).

Proof. As G ∈ K∗ then Corollary 3.1 yields σ∗(G) �= ∅. Since g ∈ σ∗(g∧) and
the mapping σ∗ is superlinear then σ∗(g∧+G) ⊃ σ∗(g∧)+σ∗(G) ⊃ g+σ∗(G). We
now prove the opposite inclusion. If f ∈ g + σ∗(G), then f − g ∈ ⋂n

i=1(gi −K∗
i ).

The last inclusion is equivalent to the following: f ∈ g + g i −K∗
i , i = 1, 2, . . . , n,

i.e. f ∈ ⋂n
i=1(g + gi − K∗

i ) = σ∗(g∧ + G).

The following theorem provides us with the explicit form of the effective domain
of the dual mapping σ∗.

Theorem 3.2. The cone K = dom σ∗ has the form K = K ∗ + M∗.

Proof. From Corollaries 3.1 and 3.2 it follows that K∗ ⊂ K and M∗ ⊂ K.
Since K is a convex cone, then K∗ + M∗ ⊂ K. Conversely, let an element G =
(g1, . . . , gn) ∈ K and let f ∈ σ∗(G) =

⋂n
i=1(gi − K∗

i ). Then f ∈ gi − K∗
i , i =

1, 2, . . . , n, hence

(3.5) gi ∈ f + K∗
i , i = 1, . . . , n.

Due to Proposition 3.2, an element f∧ = (f, f, . . . , f) belongs to M∗. Then it
follows from (3.5) that G ∈ f∧ + K∗ ⊂ M∗ + K∗.

3.4. Closedness of K for n = 2

The cone K is not necessarily closed. We describe conditions which guarantee
that K is closed only for n = 2. We need the following Lemma.

Lemma 3.1. Let n = 2. Then

K = {(h1, h2) : h1 − h2 ∈ K∗
1 − K∗

2}.



Proof. Let K0 = {(h1, h2) : h1−h2 ∈ K∗
1 −K∗

2}. First we show that K ⊂ K0.
Let (h1, h2) ∈ K. Since K = M∗ + K∗ = D + (K∗

1 × K∗
2) it follows that there

exist f ∈ E ′ and li ∈ K∗
i , i = 1, 2 such that h1 = f + l1, h2 = f + l2. We have

h1 − h2 = l1 − l2 ∈ K∗
1 −K∗

2 , hence (h1, h2) ∈ K0. We have proved that K ⊂ K0.
We now prove the opposite inclusion. Let (h1, h2) ∈ K0. Then there exist l1 ∈ K1

and l2 ∈ K2 such that h1 − h2 = l1 − l2. Let f := h1 − l1 = h2 − l2. Then
h1 =f + l1, h2 =f + l2, hence (h1, h2)=(f, f)+(l1, l2)∈D+(K∗

1 × K∗
2 ) = K.

Theorem 3.3. Let n = 2. Then the cone K is closed if and only if the cone
K∗

1 − K∗
2 is closed.

Proof. Let K∗
1−K∗

2 be closed. Let (hk
1, h

k
2) ∈ K, k = 1, . . . and let (hk

1, h
k
2) →

(h1, h2). It follows from Lemma ?? that hk
1−h2

k ∈ K∗
1−K∗

2 . Hence limk hk
1−h2

k =
h1 − h2 ∈ K∗

1 − K∗
2 . Applying again Lemma 3.1 we conclude that (h1, h2) ∈ K.

Now assume that K∗
1 − K∗

2 is not closed. Then we can find a sequence lk ∈
K∗

1−K∗
2 , such that there exists l := limk lk and l �∈ K∗

1−K∗
2 . Let gk

i ∈ K∗
i , i = 1, 2

be sequences such that limk gk
i = 0. Consider sequences hk

1 = gk
1 + lk and hk

2 = gk
2 ,

k = 1, . . .. Since gk
1 − gk

2 ∈ K∗
1 − K∗

2 , lk ∈ K∗
1 − K∗

2 and K∗
1 − K∗

2 is a cone it
follows that hk

1 − h2
k = gk

1 − gk
2 + lk ∈ K∗

1 − K∗
2 . Hence (hk

1, h
k
2) ∈ K0 = K. We

have (hk
1, h

2
k) → (l, 0). Since l−0 = l /∈ K∗

1 −K∗
2 it follows that (l, 0) /∈ K0 = K.

Hence K is not closed.

3.5. Dual to the decomposition mapping in the case when the cone L is normal

Recall the following well-known definition (see, for example, [7]): A cone
K ⊂ E is called normal if there exists m > 0 such that 0 ≤K x ≤K y implies
‖x‖ ≤ m‖y‖. It is well known that if K is a normal cone then K∗ is generating:
K∗ − K∗ = E ′ (see, for example, [7]).

Theorem 3.4. If the cones K1, K2, . . . , Kn in E are such that
∑n

i=1 Ki = L

is a normal cone, then
K∗ + M∗ = (En)′.

Proof. Take an arbitrary element G = (g1, . . . , gn) ∈ (En)′. Since L is normal,
then the conjugate cone L∗ is a generating cone. It is follows from this that each
finite subset of E ′ is bounded from below. In particular, for the set {g1, . . . , gn} ⊂
E ′ there exists an element h ∈ E ′ such that gi ≥L∗ h, i = 1, 2, . . . , n. In view of
L∗ =

⋂n
i=1 K∗

i we obtain gi − h ∈ K∗
i for all i = 1, . . . , n which is equivalent to

h ∈ ⋂n
i=1(gi − K∗

i ). In view of Theorem 3.1 we have h ∈ σ(G). Therefore for
every G = (g1, . . . , gn) ∈ (En)′ the set σ∗(G) �= ∅ and dom σ∗ := K = (En)′, but
K = K∗ + M∗, which completes the proof.



Proposition 3.4. If
∑n

i=1 Ki = L is a normal cone in E then the decom-
position mapping σ is bounded, that is, there exists a constant C > 0 such that
‖X‖ ≤ C‖x‖ for each x ∈ L and X ∈ σ(x).

Proof. Since L is a normal cone it follows that there exists a constant m > 0
such that the inequalities x ≥L y ≥L 0 imply ‖x‖ ≥ m‖y‖. Let x ∈ L and
X = (x1, . . . , xn) ∈ σ(x). For each j = 1, . . . , n we have

∑
i�=j xi ∈

∑
i�=j Ki ⊂

L, hence x − xj ∈ L. We also have xj ∈ Kj ⊂ L. This means that x ≥L

xj ≥L 0, hence ‖x‖ ≥ m‖xj‖, j = 1, . . . , n. Since X =
∑n

j=1 ‖xj‖ we get
‖X‖ =

∑n
j=1 ‖xj‖ ≤ n

m‖x‖ = C‖x‖, where C = n/m.

4. A SUPPORT FUNCTION TO THE DECOMPOSITION MAPPING σ

In this section we will study the properties of the decomposition mapping
σK1,...,Kn ≡ σ, using the methods of subdifferential calculus.

For every G ∈ (En)′ consider the function pG : E → R̄ defined by

pG(x) = inf
X∈σ(x)

[G, X ] (x ∈ E).

(We assume that the infimum of the empty set is equal to +∞. We also assume
that +∞ + (−∞) = +∞.)

The function pG is called the support function to the decomposition mapping σ

corresponding to the linear function G. Let

qG(x) ≡ qG,K1,...,Kn(x) = sup

{
n∑

i=1

[gi, xi] :
n∑

i=1

xi = x : xi ∈ Ki, i = 1, . . . , n

}
.

Then
qG,K1,...,Kn(x) = −pG,−K1,...,−Kn(−x).

It follows from this equality that we do not need to specially study the function qG.

Proposition 4.1. The function pG is sublinear.

Proof. Let x, y ∈ dom σ. Then x + y ∈ dom σ also. Since the mapping σ is
superlinear, we have

pG(x + y) = inf
Z∈σ(x+y)

[G, Z] ≤ inf
Z∈σ(x)+σ(y)

[G, Z]

= inf
X∈σ(x),Y∈σ(y)

([G, X ] + [G, Y ])

= inf
X∈σ(x)

inf
Y ∈σ(y)

([G, X ] + [G, Y ])

= inf
X∈σ(x)

[G, X ] + inf
Y ∈σ(y)

[G, Y ] = pG(x) + pG(y).



If at least one of the elements x, y does not belong to dom σ then pG(x)+pG(y) =
+∞, so pG(x+ y) ≤ pG(x)+ pG(y) in this case as well. Thus p is subadditive. It
is easy to check that p is positively homogeneous.

Assume that pG(0) = −∞. Then for all x ∈ dom σ =
∑n

i=1 Ki we have
pG(x) = pG(x + 0) ≤ pG(x) + pG(0) = −∞ so it is important to describe G such
that pG(0) > −∞. For such G we have pG(0) = 0.

Proposition 4.2. The equality pG(0) = 0 holds if and only if G ∈ clK.

Proof. Since pG(0) = infX∈σ(0)[G, X ] it follows that pG(0) = 0 if and only
if [G, X ] ≥ 0 for all X ∈ σ(0). The set

σ(0) = {X = (x1, . . . , xn) :
∑

i

xi = 0, x1 ∈ K1, . . . , xn ∈ Kn}

coincides with the cone M ∩ K, hence pG(0) = 0 if and only if G ∈ (M ∩ K)∗.
However

(M ∩K)∗ = cl (M∗ + K∗) = cl (D + K∗) = clK.

Proposition 4.2. For every G ∈ K the equality dom σ = dom pG holds.

Proof. Since G ∈ K it follows that there exist f ∈ E ′ and li ∈ K∗
i such that

G = f∧ + (l1, . . . , ln). Let x ∈ dom σ =
∑n

i=1 Ki and X = (x1, . . . , xn) ∈ σ(x)
then

[G, X ] =
n∑

i=1

[f, xi] +
n∑

i=1

[li, xi] = [f, x] +
n∑

i=1

[li, xi].

Note that [li, xi] ≥ 0 for all i, therefore [G, X ] ≥ [f, x]. Hence

pG(x) = inf
X∈σ(x)

[G, X ] ≥ f(x) > −∞.

It is clear that pG(x) ≤ [G, X ] < +∞. We have proved that dom σ ⊂ dom pG. If
x �∈ ∑n

i=1 Ki = dom σ then pG(x) = +∞ (because the infimum over the empty
set is equal to zero). Hence domσ = dom pG.

5. THE ADDITIVITY OF THE DECOMPOSITION MAPPING

In this section we study conditions that provide the additivity of the decompo-
sition mapping σ. In order to give a description of these conditions we need to
extend many notions of the theory of ordered space for spaces that are equipped
with several preorders.



5.1. Riesz interpolation property in a space with two cones

Consider an ordered Banach space with the cone of positive elements K. Con-
sider now the family of cones K1, . . .Kn with an arbitrary n > 1 where Ki = K
for each i = 1, . . . , n. It can be shown that the decomposition mapping σK1,...,Kn is
additive if and only if the space (E, K) possesses the Riesz interpolation property.
(See Theorem 5.1, where a more general result is proved.) Our goal is to generalize
this result for the case of different cones K1, . . . , Kn. For this purpose we need to
generalize the notions of vector lattice and Riesz interpolation property for a space
with different cones. In the classical situation where a cone K can be repeated n
times with an arbitrary n we have different equivalent definitions of vector lattice.
One of them is given in terms of arbitrary finite sets and the other in terms of sets
that contain only two elements. If we have different cones K1, . . . , Kn then the
situation is different: we can consider the supremum and the infimum only finite
sets that contain exactly n elements with the given n. A similar remark can be made
with respect to the Riesz interpolation property, the Riesz decomposition property
and the double partition lemma.

We will start with the Riesz interpolation property.
Let pointed cones K1, . . . , Kn in a vector space E be given. Each of them

induces its own order relation ≥i (i = 1, . . . , n) on E . The space E with cones
K1, . . .Kn is denoted by E = (E; K1, . . . , Kn).

Remark 5.1. If the cones K1, . . . , Kn coincide and are equal to a cone K ,
we will use either notation (E, K1, . . .Kn) with Ki = K, i = 1, . . . , n or notation
(E, K) (if the latter is used, it is assumed that the number n is known).

For the sake of simplicity we consider the case n = 2. Then we will show how
the definitions and results obtained can be extended for an arbitrary n.

Definition 5.1. Consider a space (E; K1, K2) and let L = K1 + K2. We
say that the space (E; K1, K2) possesses the Riesz interpolation property if for for
every four elements x1, x2, y2, y2 ∈ E , satisfying the inequalities

(5.1) y1 ≥K1 x1, y2 ≥K2 x2, y1 ≥L x2, y2 ≥L x1,

there exists an ”intermediate” element c ∈ E such that

(5.2) y1 ≥K1 c ≥K1 x1, and y2 ≥K2 c ≥K2 x2,

We will also call this property ”the Riesz interpolation property in E with respect
to cones K1, K2”.



Remark 5.2. It follows from (5.2) that y1 ≥L c ≥L x2 and y2 ≥L c ≥L x1.
Indeed, if there exists an element c ∈ E such that

y1 ≥K1 c ≥K1 x1 and y2 ≥K2 c ≥K2 x2,

then c−x1 ∈ K1 ⊂ L, y2−c ∈ K2 ⊂ L. Since c−x2 ∈ K2 ⊂ L, y1−c ∈ K1 ⊂ L
then x2 ≤L c and y1 ≥L c.

Note that

K1 + K1 = K1, K2 + K2 = K2, K1 + K2 = L, K2 + K1 = L.

Hence (5.1) can be expressed in the form

yj − xi ∈ Ki + Kj, i, j = 1, 2.

We will use the definition of an interval 〈x, y〉H with respect to a cone H ⊂ E .
Recall that

〈x, y〉H = (x + H)
⋂

(y − H), (x, y ∈ E, y ≥H x).

We can express Definition 5.1 in terms of intervals: if x1, x2, y1, y2 are four elements
such that yj − xi ∈ Ki + Kj, i, j = 1, 2, then

(5.3) 〈x1, y1〉K1 ∩ 〈x2, y2〉K2 �= ∅.

It follows from (5.3) and Remark 5.2 that⋂
i,j=1,2

〈xi, yj〉Ki+Kj �= ∅.

Remark 5.3. To check the Riesz interpolation property with respect to the cones
K1, K2 in the space E = (E; K1, K2) it is sufficient to verify that an intermediate
element exists under the additional hypothesis: x1, x2 ∈ L. Indeed, assume that the
Riesz interpolation property holds for all four-tips x̃1, x̃2, ỹ1, ỹ2 such that ỹj − x̃i ∈
Ki +Kj and x̃1, x̃2 ∈ L. Let xi, yj ∈ E, i, j = 1, 2 and yj −xi ∈ Ki +Kj (i, j =
1, 2). Let z = x1+x2−y1. Consider four elements x̃1 = x1−z, x̃2 = x2−z, ỹ1 =
y1 − z, ỹ2 = y2 − z. We have

x̃1 := x1 − z = y1 − x2 ∈ L, x̃2 := x2 − z = y1 − x1 ∈ K1 ⊂ L.

Therefore the Riesz interpolation property holds for elements xi − z, yj − z (i, j =
1, 2) so an element c̃ exists such that

ỹ1 ≥K1 c̃ ≥K1 x̃1, and ỹ2 ≥K2 c̃ ≥K2 x̃2.



Let c = c̃ + z. Then

y1 ≥K1 c ≥K1 x1, and y2 ≥K2 c ≥K2 x2.

We have proved that the Riesz interpolation property holds in (E; K1, K2).

5.2. Riesz decomposition property and double partition lemma in a space with
two cones

Definition 5.2. We say that the space E = (E; K1, K2) possesses the Riesz
decomposition property if

〈x1 + x2, y1 + y2〉K1+K2 = 〈x1, y1〉K1 + 〈x2, y2〉K2

for all x1, y1 ∈ K1, x2, y2 ∈ K2 such that y1 ≥K1 x1, y2 ≥K2 x2.
Consider a space (E; K1, K2). Let x1, y1 ∈ K1, x2, y2 ∈ K2 and y1 ≥K1 x1,

y2 ≥K2 x2. Then it is easy to check that

(5.4) 〈x1 + x2, y1 + y2〉K1+K2 ⊃ 〈x1, y1〉K1 + 〈x2, y2〉K2.

In view of (5.4), the Riesz decomposition property is equivalent to the following:

〈x1 + x2, y1 + y2〉K1+K2 ⊂ 〈x1, y1〉K1 + 〈x2, y2〉K2.

This means that each element z such that

x1 + x2 ≤K1+K2 z ≤K1+K2 y1 + y2

can be represented as the sum z = z1 + z2 with

x1 ≤K1 z1 ≤K1 y1 and x2 ≤K2 z2 ≤K2 y2.

Remark 5.4. It is easy to check that the Riesz decomposition property with
respect to cones K1, K2 is equivalent to the fact that the equality

〈0, x + y〉K1+K2 = 〈0, x〉K1 + 〈0, y〉K2

holds for all x ∈ K1, y ∈ K2.

Consider a space (E; K1, K2) with two cones K1 and K2. Consider two arbi-
trary elements y1, z1 ∈ K1 and two arbitrary elements y2, z2 ∈ K2. Let

(5.5) x1 = y1 + z1, x2 = y2 + z2 and y = y1 + y2, z = z1 + z2.



and x = x1 + x2. Then x1 ∈ K1, x2 ∈ K2 and x ∈ L. We can also represent x

as the sum of two elements from L: x = y + z. We say that the double partition
lemma holds in the space E = (E; K1, K2), if the reverse assertion holds: if for an
element x ∈ L the following equalities hold:

x = x1 + x2, where x1 ∈ K1, x2 ∈ K2

and
x = y + z, where y, z ∈ L,

then elements y1, z1 ∈ K1, y2, z2 ∈ K2 exist such that each xi (i = 1, 2) can be
represented in the form xi = yi + zi and also y = y1 + y2 and z = z1 + z2.

Remark 5.5. Let K1 = K2 := K. Then the Riesz interpolation property
holds in the space (E; K1, K2) if the ordered space possesses the ”classical” Riesz
interpolation property. The same conclusion can be made with respect to the Riesz
decomposition property and the double partition lemma.

5.3. Additivity of the decomposition mapping

The decomposition mapping σK1,K2 = σ : E → 2E2 with respect to cones K1

and K2 in the space E = (E; K1, K2) is expressed in the following way:

σ(x) = {X = (x1, x2) ∈ K1 × K2 : x1 + x2 = x} (x ∈ E).

Recall that domσ = L := K1 + K2. We are interested in conditions that guarantee
the additivity of the decomposition mapping. The following theorem claims that all
above definitions are equivalent and that each of them is equivalent to the required
additivity.

Theorem 5.1. The followings statements are equivalent:

(1) The space E = (E; K1, K2) possesses the Riesz interpolation property;

(2) The space E = (E; K1, K2) possesses the Riesz decomposition property;

(3) The double partition Lemma takes place in the space E = (E; K 1, K2);

(4) The decomposition mapping σK1,K2 = σ : E → 2E2 is additive, i.e. if
x, y ∈ L then σ(x + y) = σ(x) + σ(y). (Here L = K1 + K2.)

Proof. 1 =⇒ 2. In view of Remark 5.4 it is enough to show that

〈0, x1 + x2〉K1+K2 = 〈0, x1〉K1 + 〈0, x2〉K2.



Let x1 ∈ K1, x2 ∈ K2 and y ∈ L and let x1 + x2 ≥L y. We can express these
conditions in the following way:

y ≥K1 y − x1, x2 ≥K2 0, y ≥L 0, x2 ≥L y − x1.

Let us apply the Riesz interpolation property to these inequalities, and find an
intermediate element, i.e. an element c ∈ E such that

(5.6) y ≥K1 c ≥K1 y − x1, x2 ≥K2 c ≥K2 0.

Let y1 = y − c and y2 = c. Then (5.6) yields

y1 ∈ K1, y2 ∈ K2, x1 ≥K1 y1, x2 ≥K2 y2.

We have also y = y1 + y2, i.e. y1 and y2 form the required decomposition and

y1 ∈ 〈0, x1〉K1, y2 ∈ 〈0, x2〉K2.

2 =⇒ 3. Let an element x ∈ E be such that x = x1+x2, where x1 ∈ K1, x2 ∈ K2

and x = y + z, where y, z ∈ L. Then x1 + x2 ≥L y ≥L 0. By the Riesz
decomposition property elements y1 ∈ K1, y2 ∈ K2 exist such that

x1 ≥K1 y1, x2 ≥K2 y2, y = y1 + y2.

Let z1 = x1 − y1, z2 = x2 − y2. We have z1 ∈ K1, z2 ∈ K2, x1 = y1 + z1, x2 =
y2 + z2 and

z1 + z2 = x1 + x2 − (y1 + y2) = x − y = z.

Therefore the elements y1, y2, z1, z2 are as desired.

3 =⇒ 4. Let y, z ∈ L. Since the decomposition mapping σ is superlinear, then
σ(y + z) ⊃ σ(y) + σ(z). Let us prove the opposite inclusion. Let X = (x1, x2) ∈
σ(y + z), then by the definition of the mapping σ we have

x1 ∈ K1, x2 ∈ K2 and x1 + x2 = y + z.

In view of the double partition Lemma there exist elements y1, z1 ∈ K1, y2, z2 ∈
K2, such that every xi (i = 1, 2) can be represented in the form x1 = y1 +z1, x2 =
y2 + z2 and y = y1 + y2, z = z1 + z2. It means that

Y = (y1, y2) ∈ σ(y), Z = (z1, z2) ∈ σ(z)

and X = Y + Z, i.e. X ∈ σ(y) + σ(z).
4 =⇒ 3. It can be proved by an argument similar to that in the proof of 3 =⇒ 4.



3 =⇒ 1. Let elements a1, a2, b1, b2 ∈ E satisfy the inequalities

b1 ≥K1 a1, b1 ≥L a2, b2 ≥K2 a2, b2 ≥L a1.

Let u1 = b1 −a1 ∈ K1, u2 = b2−a2 ∈ K2, v1 = b2−a1 ∈ L, v2 = b1−a2 ∈ L.
Then u1 +u2 = v1 + v2. From the double partition Lemma it follows that elements
y1, z1 ∈ K1 and y2, z2 ∈ K2 exist such that

u1 = y1+z1 ∈ K1, u2 = y2+z2 ∈ K2 and v1 = y1+y2 ∈ L, v2 = z1+z2 ∈ L.

The element c = a1 +y1 is an intermediate between ai and bj (i, j = 1, 2). Indeed,
u1 = b1 − a1 ≥K1 y1 yields b1 ≥K1 a1 + y1 ≥K1 a1,and v1 = b2 − a1 ≥L y1

implies that b2 ≥L a1 +y1 ≥L a1. Since the equality v1 = y1 +y2 yields b2−y2 =
a1 + b1, then from u2 = b2 − a2 ≥L y2 and u1 = b1 − a1 ≥L y1 we obtain
b1 ≥L a1 +y1 = b2−y2 ≥L a2. Finally, the inequality u2 = b2 −a2 ≥K2 y2 yields
b2 ≥K2 b2 − y2 = a1 + y1 ≥K2 a2.

5.4. Examples

First we will give an example of cones such that the decomposition mapping σ
is nonadditive.

Example 5.1. Let the following cones be given in the space E = R
2: the

positive orthant and the ray passing through the point T = (−1, 1) ∈ R
2 , i.e.

K1 = {X = (u, v) ∈ R
2 : u ≥ 0, v ≥ 0}

K2 = {X = (u, v) ∈ R
2 : u = −λ, v = λ, λ ≥ 0}.

Let x = (1, 0) ∈ K1, y = (−1, 1) ∈ K2, then z := x + y = (0, 1). An easy
calculation shows that

σ(x) = {(x, 0)}, σ(y) = {(0, y)}.
σ(z) = {Z = ((α, 1− α), (−α, α)) : α ∈ [0, 1]}.

σ(x) + σ(y) = {(x, 0) + (0, y)} = {(1, 0) + (−1, 1)} = {(0, 1)}
= {(α, 1− α), (−α, α)) : α = 0)}.

Thus σ(z) �= σ(x) + σ(y).
Let K1 be a cone and K2 be a subcone of K1. Recall, that K2 is called a face

of K1, if the inclusions x, y ∈ K1 and x + y ∈ K2 imply x, y ∈ K2.

Theorem 5.2. Let the double partition Lemma take place in the space E =
(E, K1) and let a cone K2 be a face of the cone K1. Then the double partition
Lemma is valid in the space E = (E; K1, K2).



Proof. Let z1 + z2 = x + y, where x, y ∈ K1 + K2, z1 ∈ K1, z2 ∈ K2.
Since the double partition Lemma takes place in the space E = (E; K1), then there
exist elements x1, x2, y1, y2 ∈ K1 such that z1 = x1 + y1, z2 = x2 + y2, x =
x1 + x2, y = y1 + y2. As x2, y2 ∈ K1, z2 = x2 + y2 ∈ K2 and the cone K2 is
a face of the cone K1, then x2, y2 ∈ K2, i.e. the double partition Lemma holds in
the space E = (E; K1; K2) with respect to the cones K1 and K2.

Theorem 5.3. Let the space E = (E; H) possess the Riesz interpolation
property, and let cones K1, K2 be faces of the cone H . Then the space E =
(E; K1, K2) possesses the Riesz interpolation property.

Proof. Let L = K1 + K2 and elements x1, x2, y1, y2 ∈ E satisfy the following
relations:

y1 ≥K1 x1, y1 ≥L x2, y2 ≥K2 x2, y2 ≥L x1.

Since K1, K2, L ⊂ H then yi ≥H xj , i, j = 1, 2. As the space E = (E; H)
possesses the Riesz interpolation property, then there exists an element c ∈ E such
that

yi ≥H c ≥H xj, i, j = 1, 2,

i.e.
y1 − c ∈ H, y2 − c ∈ H, c − x1 ∈ H, c − x2 ∈ H.

It follows from the inequality y1 ≥K1 x1 that y1−x1 = (y1−c)+(c−x1) ∈ K1. In
the same manner the inequality y2 ≥K2 x2 implies y2−x2 = (y2−c)+(c−x2) ∈ K2.

As K1, K2 are faces of the cone H , we have y1 − c, c − x1 ∈ K1, y2 − c, c −
x2 ∈ K2, i.e. y1 ≥K1 c ≥K1 x1, y2 ≥K2 c ≥K2 x2. Therefore, the space
E = (E; K1, K2) possesses the Riesz interpolation property.

The definitions and results presented above can be easily extended to the case
where the number of cones is greater than two. We will consider this only for the
Riesz decomposition property. This property in the space E = (E; K1, . . . , Kn)
can be expressed in the following form: if xi ∈ Ki (i = 1, . . . , n) then

〈0, x1 + x2 + · · ·+ xn〉K1+K2+···+Kn = 〈0, x1〉K1 + 〈0, x2〉K2 + · · ·+ 〈0, xn〉Kn.

Lemma 5.1. Let the Riesz decomposition property hold for the space (E; K 1,
. . . , Kn−1). Let K(1) = K1+ . . .+Kn−1 and let the Riesz decomposition property
hold for the space (E, K (1), Kn). Then this property also holds for the space
(E; K1, . . . , Kn).

Proof. We have for an arbitrary xi ∈ Ki i = 1, . . . , n − 1:

〈0, x1+x2+· · ·+ xn−1〉K1+K2+···+Kn−1=〈0, x1〉K1+〈0, x2〉K2+· · ·+〈0, xn−1〉Kn−1



and we also have for y ∈ K(1) and xn ∈ Kn:

〈0, y + xn〉K(1)+Kn
= 〈0, y〉K(1) + 〈0, xn〉Kn .

Let y = x1 + x2 + · · ·+ xn−1 ∈ K(1). SinceK(1) + Kn = K1 + . . .+ Kn−1 + Kn

it follows that 〈0, y + xn〉K(1)+Kn
= 〈0, x1 + x2 + · · ·+ xn〉K1+K2+···+Kn and

〈0, y〉K(1) + 〈0, xn〉Kn = 〈0, x1 + x2 + · · ·+ xn−1〉K1+K2+···+Kn−1 + 〈0, xn〉Kn

= 〈0, x1〉K1 + 〈0, x2〉K2 + · · ·+ 〈0, xn−1〉Kn−1 + 〈0, xn〉Kn .

Thus the result follows.
Using this lemma and induction we can easily extend all results that known for

the Riesz decomposition property for the case of two cones, to the case of n cones.
Definition of the Riesz interpolation property can be extended to the case of n-cones
in a similar manner. We can also define in a similar way what it means for the
double partition lemma to hold with respect to n cones and define the additivity of
the decomposition mapping in this situation. Using induction it is easy to extend
all results that were proved in this section for the case of two cones to the case of
n cones.

6. A VECTOR LATTICE WITH RESPECT TO SEVERAL PREORDERS

6.1. Supremum and infimum in a space with two cones

Let cones K1, . . . , Kn be given in a vector space E . Let us introduce a pre-order
≥Ki , i = 1, . . . , n on E by means of the cone Ki. As usual we denote this space
by E = (E; K1, . . . , Kn). Let us introduce the notions of supremum and infimum
in the space E = (E; K1, . . . , Kn). We will need these notions only for sets of n

elements so we give a corresponding definitions only for such subsets of E . Let
(x1, . . . , xn) ⊂ E = (E; K1, . . . , Kn).

Definition 6.1. An element u ∈ E = (E; K1, . . . , Kn) is called an infimum of
the set {x1, . . . , xn} with respect to K1, . . . , Kn, if

(i) xi ≥Ki u for every i = 1, 2, . . . , n;

(ii) if an element z ∈ E is such that xi ≥Ki z for every i = 1, 2, . . . , n, then
u ≥Ki z, i = 1, 2, . . . , n.

We will denote an element with properties (i) and (ii) by u = Inf{x1, . . . , xn}.

A supremum is defined in a similar way.

Definition 6.2. An element v ∈ E = (E; K1, . . . , Kn) is called a supremum
of the set {x1, . . . , xn} with respect to K1, . . . , Kn, if



(i) v ≥Ki xi for every i = 1, 2, . . . , n;

(ii) if an element z ∈ E is such that z ≥Ki xi for every i = 1, 2, . . . , n, then
z ≥Ki v, i = 1, 2, . . . , n.

We will denote an element with properties (i) and (ii) by v = Sup{x1, . . . , xn}.

Lemma 6.1. If all K1, . . . , Kn coincide, then the definitions of Inf and Sup
coincide with the definitions of ordinary inf and sup for n elements.

Let us study the properties of these new objects.

Proposition 6.1. Let

(6.1) (
n⋂

i=1

Ki) ∩ (−
n⋂

i=1

Ki) = {0}.

Then each set {x1, . . . , xn} cannot have more than one infimum and supremum
with respect to (K1, . . . , Kn).

Proof. Assume that elements u and u ′ �= u are infimums of a set x1, . . . , xn

with respect to K1, . . . , Kn. Since xi ≥Ki u for every i and u′ = Inf (x1, . . . , xn)
we conclude that u′ ≥Ki u for all i. Hence u′ − u ∈ Ki for all i. This means
that u′ − u ∈ ⋂

i=1,...,n Ki. The same argument shows that u − u′ ∈ ⋂
i=1,...,n Ki,

i.e. u′ −u ∈ −⋂
i=1,...,n Ki. Since (

⋂n
i=1 Ki)∩ (−⋂

Ki)n
i=1 = {0} it follows that

u = u′. The same argument shows that a set (x1, . . . , xn) cannot have more than
one supremum with respect to (K1, . . . , Kn).

It is easy to find an example that shows that if condition (6.1) does not hold
then a set of n elements can have more than one infimum.

In the rest of the paper we always assume that we consider infimum and supre-
mum only with respect to a system (K1, . . . , Kn) of cones such that (6.1) holds.
We will now present some simple properties of the infimum and supremum.

Proposition 6.2. Let xi, yi ∈ E = (E; K1, . . . , Kn), i = 1, 2, . . . , n and
let there exist Inf {xi} and Sup{xi}, Inf {yi} and Sup{yi} with respect to cones
K1, . . . , Kn. Then the following assertions are valid:

(1) Sup{xi} ≥Kl
Inf {xi}, (l = 1, 2, . . . , n);

(2) there exist elements Sup{−xi} and Inf {−xi} and Inf {xi} = −Sup{−xi},
Sup{xi} = −Inf {−xi};

(3) for every z ∈ E there exist Sup{xi + z} and Inf {xi + z} and Inf {xi}+ z =
Inf {xi + z}, Sup{xi} + z = Sup{xi + z};



(4) for every λ > 0 there exist elements Inf {λxi} and Sup{λxi} and λInf {xi} =
Inf {λxi}, λSup{xi} = Sup{λxi};

(5) for every λ ≤ 0 there exist Sup{λxi} and Inf {λxi} and λInf {xi} = Sup{λxi},
λSup{xi} = Inf {λxi};

(6) if xi ≥Ki yi, i = 1, 2, . . . , n, then Inf{xi} ≥Kl
Inf{yi}, l = 1, 2, . . . , n,

Sup{xi} ≥Kl
Sup{yi}, l = 1, 2, . . . , n.

We omit the simple proof of this proposition.
In general, the operation Inf and Sup do not commute in the sense that Inf(x1, x2)

is not necessarily equal to Inf(x2, x1) and Sup(x1, x2) is not necessarily equal to
Sup(x2, x1). An example can be found in Proposition 6.6.

The operation Inf and Sup with respect to a system of cones can be useful for
the description of some objects. We now present an interesting example. Consider
a space (E, K1) where E = R

n and K1 = R
n
+. Let x ∈ R

n
++ = intRn

+. Consider
the conic segment 〈0, x〉K1 . This is a parallelepiped with 2n vertices. One of these
vertices is zero and one more of the vertices is x. We cannot describe other vertices
of 〈0, x〉 in terms of the order relation generated by the cone K1.

We will now show that Inf operation allows, by choosing appropriate cones to
”catch” other vertices of the parallelepiped 〈0, x〉. Moreover for each of the vertices
xj there exists a cone Hj such that xj = Inf (x, 0) with respect to the pair of cones
(K1, Hj).

Let E = R
n be the Euclidian space and K1 = R

n
+ be the positive orthant.

Let x = (x1, . . . , xn) ∈ E be an element with positive coordinates: xi > 0, i =
1, 2, . . . , n). Then the set

〈0, x〉K1 = {y ∈ R
n : x ≥K1 y ≥K1 0}

is an n-dimensional parallelepiped.
Let k = 2n be the number of vertices of 〈0, x〉K1 and let xj = (x1

j , . . . , x
n
j )

(j = 1, 2, . . . , k) be these vertices. Let us introduce the index sets I = {1, 2, . . . , n}
and let Ij = {i ∈ I : xi

j = 0}, j = 1, 2, . . . , k. Observe, that if i /∈ Ij then
xi = xi

j (j ∈ I). Consider the cone:

Hj = {(y1, . . . , yn) ∈ R
n : yi ∈ R+, i ∈ Ij}.

The following assertion holds:

Proposition 6.3. The vertex xj (j = 1, . . . , k) of the parallelepiped 〈0, x〉K1

can be calculated as Inf {x; 0} in the space (E; K1, Hj) j = 1, . . . , k.

Proof. Since xj = (x1
j , . . . , x

n
j ) ∈ 〈0, x〉K1 (j = 1, 2, . . . , k) it follows that

x ≥K1 xj, j = 1, 2, . . . , k. From the construction of the set Ij and the cone Hj it
is easy to see that −xj ∈ Hj , i.e. 0 ≥Hj xj .



Now let an element z = (z1, . . . , zn) ∈ E be such that x ≥K1 z, 0 ≥Hj z.

Then xi ≥ zi, i ∈ I and zi ∈ −R+, i ∈ Ij . Since xi = xi
j for i /∈ Ij and

xi
j ≥ 0 (i ∈ I) then xi

j ≥ zi (i ∈ N ), i.e. xj ≥K1 z. As xi
j − zi ≥ 0 (i ∈ Ij),

then xj − z = (xj − z, xj − z, . . . , xj − z) ∈ Hj. Thus we have proved that
xj ≥K1 z, xj ≥Hj z. This means that xj = Inf{x; 0} (with respect to the pair of
cones K1, Hj).

In the following, unless otherwise indicated, we will consider the case where
the number of cones is equal to two.

Let cones K1 and K2 be given in a space E . We say that a pair of cones K1

and K2 generates a space E , if E = K1−K2. It is clear that E = K1−K2 if and
only if E = K2 − K1. A set Ω ⊂ E = (E; K1, K2) is called bounded from above
(below) if an element u ∈ E exists such that u ≥Ki x (x ≥Ki u, respectively),
i = 1, 2 for all x ∈ Ω.

Observe that the following simple proposition holds.

Proposition 6.4.
(1) If for each x ∈ E the two-element subset {0, x} is bounded from below then

a pair of cones K1 and −K2 generates the space E .
(2) If for each x ∈ E the subset {0, x} is bounded from above then a pair of

cones K1, K2 generates the space E .

Proof. We prove only the first part of proposition. Let x ∈ E . If the two-
element set {x, 0} is bounded from below, then there exists u ∈ E such that x ≥K1

u, 0 ≥K2 u, i.e. x−u ∈ K1, u ∈ −K2. Then the element x can be represented
in the form x = (x−u)+u ∈ K1 +K2 = K1− (−K2) and since x is an arbitrary
element, we obtain E = K1 − (−K2).

Proposition 6.5. Assume that the cone H := K1∩K2 is generating. Then for
each x, y ∈ E the set {x, y} is bounded from above and from below.

Proof. Let x, y ∈ E . Since E = H − H it follows that there exists x1, y1 ∈
H, x2, y2 ∈ H such that x = x1 − x2, y = y1 − y2. This means that x ≤H

x1, y ≤H y1. We have x ≤H x1 ≤H x1 + y1 and y ≤H y1 ≤H x1 + y1. Since
K1 ⊃ H , K2 ⊃ H it follows that x ≤K1 x1 + y1, y ≤K2 x1 + y1. Thus {x, y}
is bounded from above. A similar argument shows that this set is bounded from
below.

6.2. 2-Vector lattices

Definition 6.3. A space E = (E; K1, K2) is called a 2-lower (upper) vector
semi-lattice, if for any two elements x1, x2 ∈ E there exists Inf{x1, x2} (Sup{x1, x2},
respectively) in the space E = (E; K1, K2).



Definition 6.4. A space E = (E; K1, K2) is called a 2-vector lattice, if for
any two elements x1, x2 ∈⊂ E there exist Inf{x1, x2} and Sup{x1, x2} in the space
E = (E; K1, K2).

We will now present some examples of a 2-vector lattice.

Proposition 6.6. Let (S, Σ, µ) be a measure space and E = Lp(S, Σ, µ)
with 1 ≤ p ≤ +∞. Assume that E is equipped with the natural order relation
(x ≥ y ⇐⇒ x(s) ≥ y(s) a.e.). Let K1 be the cone of nonnegative on S functions
x ∈ E . Let B ∈ Σ and K2 = {x ∈ E : x(s) ≥ 0, s ∈ B} be the cone of
nonnegative on B functions. Then

(1) the space (E, K1, K2) is a 2-vector lattice; if x, y ∈ E then Sup (x, y) = v

and Inf(x, y) = u, where

(6.2) v(s) =
{

sup(x(s), y(s)) s ∈ B

x(s) s ∈ S \B;

(6.3) u(s) =
{

inf(x(s), y(s)) s ∈ B
x(s) s ∈ S \ B.

(2) the space (E, K2, K1) is a 2-vector lattice; if x, y ∈ E then Sup (x, y) = v ′

and Inf(x, y) = u′, where

(6.4) v′(s) =
{

sup(x(s), y(s)) s ∈ B
y(s) s ∈ S \ B;

(6.5) u′(s) =
{

inf(x(s), y(s)) s ∈ B
y(s) s ∈ S \ B.

Proof. (1) Let x, y ∈ E . We will prove that v defined by (6.2) coincides with
Sup (x, y) in (E, K1, K2). First we will show that v ≥K1 x. Indeed, v(s) ≥ x(s)
for s ∈ B and v(s) = x(s) for s ∈ S \ B, hence v ≥K1 x. Since v(s) ≥ y(s) for
s ∈ B, it follows that v ≥K2 y. Now let z ≥K1 x and z ≥K2 y. Then z(s) ≥ x(s)
for all s ∈ S and z(s) ≥ y(s) for s ∈ B, hence z ≥K1 v and z ≥K2 y.

The same argument shows that the function u defined by (6.3) is equal to
Inf (x, y) in (E, K1, K2).

(2) Let x, y ∈ E and let v ′ be defined by (6.4). Then v′(s) ≥ x(s) for s ∈ B
and v′(s) ≥ y(s) for all s ∈ S, hence v′ ≥K2 x and v′ ≥K1 y. It is easy to
check that (z ≥K2 x, z ≥K1 y) =⇒ (z ≥K2 v′, z ≥K1), so v′ = Sup (x, y) in
(E, K2, K1). The same argument shows that u′ = Inf (x, y) in (E, K2, K1).



Proposition 6.7. Let (S, Σ, µ) be a measure space and E = Lp(S, Σ, µ) with
1 ≤ p ≤ +∞. Let B1 ∈ Σ and B2 = S \ B1. Consider the cones

K1 = {x ∈ E : x(s) ≥ 0, s ∈ B1}, K2 = {x ∈ E : x(s) ≥ 0, s ∈ B2}.

Then (E; K1, K2) is 2 vector lattice and for each x, y ∈ E we have

Sup (x, y) = Inf (x, y) =

{
x(s) s ∈ B1

y(s) s ∈ B2.

Proof. The proof follows immediately from the definitions of Sup and Inf .

It follows from Proposition 6.7 that in 2- vector lattices the equality Inf (x, y) =
Sup (x, y) can be valid for x �= y. Of course this is impossible in classical lattices.

Theorem 6.1. Let E = (E; K1, K2) be a 2-vector lattice. Then for any
x1, x2 ∈ E the equalities

x1 + x2 = Inf {x1; x2} + Sup {x2; x1} = Inf {x2; x1} + Sup {x1; x2}

hold.

Proof. Let x1, x2 ∈ E , then Item 3. of Theorem 6.2 yields

Sup {x2; x1} − x1 − x2 = Sup {x2 − x1 − x2; x1 − x1 − x2} = Sup {−x1;−x2}.

Item 2. of the same theorem implies that

Sup {−x1;−x2} = −Inf {x1; x2}.

Hence, x1 + x2 = Inf {x1; x2} + Sup {x2; x1}.
Similarly, since Sup {x1; x2} − x2 − x1 = Sup {x1 − x2 − x1; x2 − x2 −

x1} = Sup {−x2;−x1} and Sup {−x2;−x1} = −Inf {x2; x1} then x1 + x2 =
Inf {x2; x1}+ Sup {x1; x2}.

Let a space E = (E; K1, K2) be a 2-vector lattice.

Definition 6.5. The elements

x′
+ = Sup{0; x}, x′

− = −Inf{x; 0}

are called the positive and the negative parts of an element x ∈ E = (E; K 1, K2)
with respect to a pair of cones (K1, K2).



It follows from the definition of Sup and Inf that x′
+ ≥K1 0 and −x′− ≤K2 0,

hence x′
+ ∈ K1 and x′− ∈ K2.

Definition 6.6. The elements

x′′
+ = Sup{x; 0} ∈ K2, x′′

− = −Inf{0; x} ∈ K1

are called the positive and the negative parts of an element x ∈ E = (E; K 1, K2)
with respect to a pair of cones (K2, K1).

Put
|x|′ = x′

+ + x′
−, |x|′′ = x′′

+ + x′′
−.

We have |x|′ ∈ L, |x|′′ ∈ L, where L = K1 + K2.

6.3. Modulus in 2-vector lattices

Definition 6.7. The quantity

|x| =
|x|′ + |x|′′

2

is called the modulus of an element x ∈ E = (E; K1, K2) in a 2-vector lattice.

Example 6.1. Let (S, Σ, µ) be a measure space and let E = Lp(S, Σ, µ).
Consider the space (E, K1, K2) where K1 = {x ∈ E : x(s) ≥ 0, a.e s ∈ S},
K2 = {x ∈ E : x(s) ≥ 0 : x(s) ≥ 0, a.e. s ∈ B}, where B ∈ Σ. Let u ∈ E . Then

|u|(s) =
{ |u(s)| s ∈ B

0 s /∈ B.

This equality easily follows from Proposition 6.6.

Example 6.2. Let E = Lp(S, Σ, µ), B1 ∈ Σ, B2 = S \ Σ, K1 = {x ∈ E :
x(s) ≥ 0, s ∈ B1}, K2 = {x ∈ E : x(s) ≥ 0, s ∈ B2}. Applying Proposition
6.7, we can obtain that |x| = 0 for all x ∈ E .

Now let us study the properties of the modulus.

Theorem 6.2. Let E = (E; K1, K2) be a 2-vector lattice, and let x, y ∈ E .
Then

1. x = x′
+ − x′− = x′′

+ − x′′−;

2. |x|′ = Sup{−x; x}, |x|′′ = Sup{x;−x},



(6.7)
|x| = Sup{0; x}+ Sup {0;−x}

= Sup {x; 0}+ Sup {−x; 0} and |x| ≥Ki 0, i = 1, 2;

3. | − x| = |x|.
If at least one of the cones K1, K2 is a pointed cone then

4. Inf{x′−; x′
+} = 0, Inf{x′′−; x′′

+} = 0;

5. |x|′ = Sup{x′−; x′
+}, |x|′′ = Sup{x′′

+; x′′−},
If both K1 and K2 are pointed then

6. |x| = 0 if and only if x = 0;

Proof.

1. By substituting x2 = 0 in (6.6), we obtain the required result.

2. Taking into account Item 1. of the current theorem and Item 2. of Theorem
6.2 we have

|x|′ = x′
+ + x′

− = (x′
+ − x′

−) + (x′
− + x′

−) = x + 2x′
− =

= x − Inf{2x; 0} = x + Sup{−2x; 0} = Sup{−x; x}.
Similarly

|x|′′ = x′′
+ + x′′

− = (x′′
+ − x′′

−) + (x′′
− + x′′

−) = x + 2x′′
− =

= x − Inf{0; 2x} = x + Sup{0;−2x} = Sup{x;−x}.
Thus

|x| =
|x|′+|x|′′

2
=

Sup{−x; x}+Sup{x;−x}
2

=
(Sup{−x; x}+x)+(−x+Sup{x;−x})

2
=

Sup{0; 2x}+Sup{0;−2x}
2

= Sup{0; x}+Sup{0;−x}≥K1 0,

and

|x| =
(Sup{−x; x} − x) + (x + Sup{x;−x})

2

=
Sup{−2x; 0}+ Sup{2x; 0}

2
= Sup{−x; 0}+ Sup{x; 0} ≥K2 0.



3. It is obvious.

4. Let u = Inf{x′
+; x′−}. Since x′

+ ≥K1 0, x′− ≥K2 0, then u ≥Ki 0, i = 1, 2.
Let z1 = x′

+ − u, z2 = x′− − u. It follows from the definition of Inf that
z1 ≥K1 0 and z2 ≥K2 0. Item 1. of the current Theorem yields x = z1 − z2,
and therefore z1 ≥K2 x. Since also z1 ≥K1 0 we have z1 ≥Ki Sup{0; x} =
x′

+, i = 1, 2.
The latter inequality implies that u = x ′

+ − z1 ∈ −Ki, i = 1, 2. Since at
least one of the cones K1 and K2 is pointed it follows that u = 0.
The second equality can be deduced by similar reasoning.

5. Theorem 6.1 and Item 4. of the current theorem yield

|x|′ = x′
+ + x′

− = Sup{x′
−; x′

+} + Inf{x′
+; x′

−} = Sup{x′
−; x′

+},
|x|′′ = x′′

+ + x′′
− = Sup{x′′

+; x′′
−} + Inf{x′′

+; x′′
−} = Sup{x′′

+; x′′
−}.

6. Let |x| = 0. Applying (6.7) we have Sup{x; 0}+ Sup{−x; 0} = 0, therefore
Inf (x, 0) = −Sup{−x; 0} = Sup{x; 0}. We have

x ≥K1 Inf{x; 0} = Sup{x; 0} ≥K1 x.

Since K1 is a pointed cone, then x = Inf{x; 0} = Sup{x; 0}. It follows from
this that x ≤K2 0 and x ≥K2 0. Since K2 is a pointed cone, we have x = 0.
The proof of assertion x = 0 =⇒ |x| = 0 is trivial.

Proposition 6.8. Consider a space (E, K1, K2) such that the cone H =
K1 ∩ K2 is a generating cone. Assume that for each h 1, h2 ∈ H there exists
Inf (h1, h2) and Sup (h1, h2) in the space of (E, K1, K2). Then (E, K1, K2) is a
2-vector lattice.

Proof. Let x, y ∈ E . Since H is a generating cone, then the set {x, y} ⊂ (E, H)
is bounded from below, i.e. there exists an element z ∈ E such that x, y ≥H z.
This means that x− z ∈ H, y − z ∈ H so there exists u = Inf (x− z, y− z) in the
space (E, K1, K2) . The result follows now from Theorem 6.2, Item 3. A similar
argument shows that there exists Sup (x, y).

Now we consider Inf and Sup in a 2-vector lattice E = (E; K1, K2) as operators
acting from the space E2 to the space E .

We need the following definitions. Let G be a vector space. An operator
A : G → (E, K1, K2) is called sublinear if A is positively homogeneous (A(λx) =
λA(x) for all x ∈ G and λ > 0) and subadditive: for each x1, x2 ∈ G it holds:

A(x1 + x2) ≤Ki A(x1) + A(x2), i = 1, 2.



An operator A : G → (E, K1, K2) is called superlinear if A is positively homoge-
neous and superadditive: if for each x1, x2 ∈ G it holds:

A(x1 + x2) ≥Ki A(x1) + A(x2), i = 1, 2.

Theorem 6.3. Consider operators P : E 2 → E and Q : E2 → E , where

P (X) = Inf{x1; x2}, Q(X) = Sup{x1; x2}, where X = (x1, x2) ∈ E2.

Then P is a superlinear operator and Q is a sublinear one.

Proof. We will only prove that P is superlinear. Since P is positively homo-
geneous (see Theorem 6.2, Item 4.), we need only to prove that P is superadditive.
We will start with P . Let X 1 = (x1

1, x
1
2) ∈ E2, X2 = (x2

1, x
2
2) ∈ E2. Then

P (X1) = Inf{x1
1; x

1
2}, P (X2) = Inf{x2

1; x
2
2},

P (X1 + X2) = Inf{x1
1 + x2

1; x
1
2 + x2

2}.
By the definition of Inf we have

x1
1 ≥K1 P (X1), x1

2 ≥K2 P (X1), x2
1 ≥K1 P (X2), x2

2 ≥K2 P (X2).

Therefore x2
1 + x2

1 ≥K1 P (X1) + P (X2), x1
2 + x2

2 ≥K2 P (X1) + P (X2). Then

Inf{x1
1 + x2

1; x
1
2 + x2

2} ≥Ki P (X1) + P (X2), i = 1, 2,

or P (X1 + X2) ≥Ki P (X1) + P (X2), i = 1, 2.

The following theorem states that x′
+, x′−, x′′

+, x′′− are sublinear projections.
First, we will prove the following lemma.

Lemma 6.1. Let E = (E; K1, K2) be a 2-vector lattice with the pointed cones
K1 and K2. Then for every x ∈ E the relations

Sup{0; Sup{0; x}} = Sup{0; x}, Sup{Sup{x; 0}; 0} = Sup{x; 0}
and

Inf{0; Inf{0; x}} = Inf{0; x}, Inf{Inf{x; 0}; 0} = Inf{x; 0}
are valid.

Proof. We will prove only the first equality. Other assertions can be proved
by similar reasoning. Let U = Sup{0; x} and V = Sup{0; U}. We have U ≥ 0K1,

U ≥K2 U , hence U ≥Ki Sup (0, U) = V , i = 1, 2. Conversely, V ≥K1 0, V ≥K2



U yield V ≥Ki Sup{0; U} ≥K2 U . Since K2 is a pointed cone then U ≥K2 V and
V ≥K2 U imply U = V .

An operator A : E → E is called a projector if A2 = A.

Theorem 6.4. Let a space E = (E; K1, K2) be a 2-vector lattice. Assume
that the cones K1 and K2 are pointed. Consider the operators T ′

+, T ′−, T ′′
+, T ′′−

defined on E by

T ′
+(x) = x′

+, T ′
−(x) = x′

−, T ′′
+(x) = x′′

+, T ′′
−(x) = x′′

−.

Then these operators, acting from E to E are sublinear projectors, besides T ′
+(E) ⊂

K1, T ′′−(E) ⊂ K2 and T ′−(E) ⊂ K1, T
′′
+(E) ⊂ K2.

Proof. Let x ∈ E = (E; K1, K2). Let

T ′
+(x) = x′

+, T ′
−(x) = x′

−, T ′′
+(x) = x′′

+, T ′′
−(x) = x′′

−.

Consider the vectors Yx = (x, 0) ∈ E2, Zx = (0, x) ∈ E2. Then

T ′
+(x) = Q(Zx), T ′

−(x) = −P (Yx), T ′′
+(x) = Q(Yx), T ′′

−(x) = −P (Zx),

where the operators P and Q are the same as in Theorem 6.3. Then Theorem 6.3
implies the sublinearity of T ′

+, T ′−, T ′′
+, T ′′−.

The definitions of x′
+, x′−, x′′

+, x′′− yield

T ′
+(x), T ′′

−(x) ∈ K1 and T ′
−(x), T ′′

+(x) ∈ K2

for all x ∈ E .
Finally, let us show that (T ′

+)2 = T ′
+, (T ′−)2 = T ′−, (T ′′

+)2 = T ′′
+, (T ′′−)2 = T ′′−.

It can easily be obtained by means of Lemma 6.1:

(T ′
+)2(x) = T ′

+(T ′
+(x)) = T ′

+(x′
+) = Sup{0; Sup{0; x}} = Sup{0; x} = T ′

+(x),

where x ∈ E . By acting analogously with T′−, T ′′
+, T ′′− the required assertion can be

proved.

7. KANTOROVICH-RIESZ TYPE THEOREMS

Let E = (E; K1, K2) be a space with two cones K1, K2. Consider the space
E ′ = (E ′; K∗

1 , K∗
1) with the cones K∗

1 , K∗
2, where E ′ is the dual space to E and K ∗

i

are the conjugate cones to Ki (i = 1, 2). We consider the relation between the Riesz



interpolation property in E = (E; K1, K2) and the property of E′ = (E ′; K∗
1, K

∗
1)

to be a 2-vector lattice. As above, let

σ ≡ σK1,K2(x) = {X = (x1, x2) ∈ K1 × K2 : x1 + x2 = x} (x ∈ K1 + K2),

be the decomposition mapping with respect to the cones K1, K2 and let

pG(x) = inf
Y ∈σK1,K2

(x)
[G, Y ] (x ∈ E, G ∈ dom σ∗)

be the support function of σ corresponding to a linear function G (pG was defined
and studied in Section 4). First, we will prove the following assertion.

Proposition 7.1. Let cones K1, K2 be given in the space E and let L =
K1 + K2. If the decomposition mapping σ ≡ σK1,K2 : E → 2E2 is additive on the
cone L, then pG is a positive additive on L function for every G ∈ K ∗ = K∗

1×K∗
2 .

Proof. Let G ∈ K∗ and x, y ∈ L. Since σ is additive, then σ(x + y) =
σ(x) + σ(y). Thus,

pG(x + y) = inf
Z∈σ(x+y)

[G, Z] = inf
Z∈σ(x)+σ(y)

[G, Z]

= inf
Z′∈σ(x), Z′′∈σ(y)

[G, Z ′ + Z ′′] = inf
Z′∈σ(x)

[G, Z ′] + inf
Z′′∈σ(y)

[G, Z ′′]

= pG(x) + pG(y).

We proved that pG is additive on L. Now let us show that pG (G ∈ K∗) is positive
on the cone L, i.e. if x ∈ L then pG(x) ≥ 0. Indeed, it follows from the fact that
σ(x) ⊂ K = K1 × K2 and G ∈ K∗ = K∗

1 × K∗
2 .

We also need the following assertion.

Proposition 7.2. Assume that the cone L = K1 + K2 from Proposition 7.1 is
generating and closed. Consider a function l G define on E by

(7.1) lG(x) = pG(x1)− pG(x2), x = x1 − x2, x1, x2 ∈ L.

Then lG is well defined and lG ∈ E ′.

Proof. First we show that lG is well-defined. Let x = x1 − x2 = y1 − y2.
Since x1 + y2 = y1 + x2 and pG is additive it follows that pG(x1) + pG(y2) =
pG(y1) + pG(x2), therefore pG(x1)− pG(y2) = pG(y1)− pG(y2). This means that
the number lG(x) does not depend on the presentation of x as the difference of two
elements from L. It is clear that lG is an additive function. Since pG is sublinear it



follows that pG is positive homogeneous. Let x = x1 − x2. Then −x = x2 − x1,
hence lG(−x) = pG(x2)− pG(x1) = −lG(x). Thus pG is homogeneous. Since the
cone L is generating and closed it follows that each positive on L linear function
is continuous, hence lG ∈ E ′.

Let

(7.2) qG(x) = sup
Y ∈σK1,K2

(x)
[G, Y ] (x ∈ E, G ∈ dom σ∗).

The links between qG and pG were discussed at the beginning of Section 4. Assume
that the mapping σ is additive. Then the function qG is additive. Assume that the
cone L is generating and closed. Then the function

(7.3) mG(x) = qG(x1) − qG(x2), x = x1 − x2

is well defined. This function is a linear continuous function defined on E . These
results can be proved in the same manner as the corresponding results for the function
pG.

Proposition 7.3. Let a be a superlinear mapping defined on a cone L ⊂ E 1

and mapping into E2 with weakly compact images. Let for all g ∈ E ′
2 the function

pg defined by pg(x) = supy∈a(x)[g, y] be linear. Then a is an additive mapping:
a(x1 + x2) = a(x1) + a(x2) for all x1, x2 ∈ L.

Proof. Assume, on the contrary, that there exist vectors x1, x2 ∈ L such
that a(x1 + x2) �= a(x1) + a(x2). Since a is superlinear we have a(x1 + x2) ⊃
a(x1) + a(x2). Hence there exists y ∈ a(x1 + x2) such that y /∈ a(x1) + a(x2).
The set a(x1) + a(x2) is convex and weakly closed. Then there exists g ∈ E′ such
that

[g, y] > sup{[g, z] : z ∈ a(x1) + a(x2)}
= sup{[g, z] : z ∈ a(x1)} + sup{[g, z] : z ∈ a(x2)‖}
= pg(x1) + pg(x2).

It follows from this that

pg(x1 + x2) = sup{[g, z] : z ∈ a(x1 + x2)} ≥ [g, y] > pg(x1) + pg(x2).

This contradicts the linearity of pg.

The following statement is a version of L. V. Kantorovich-F. Riesz Theorem
(see, for example, [7, 8]) for spaces with two cones.



Theorem 7.1. Let E be a Banach ordered space with the closed cones K1, K2

and let the cone L = K1+K2 be closed and normal. If the space E = (E; K1, K2)
possesses the Riesz interpolation property with respect to the cones K 1, K2 then the
dual space E ′ = (E ′; K∗

1 , K∗
2) is a 2-vector lattice with respect to the conjugate

cones K∗
1 , K∗

2.

Proof. Since L = K1 +K2 it follows that L∗ = K∗
1 ∩K∗

2 . Since L is normal it
follows that L∗ is a generating cone. In view of Proposition 3.4 it is enough to show
that Inf (g1, g2) and Sup (g1, g2) exist for elements G = (g1, g2) with g1, g2 ∈ L∗.
We will prove only the existence of Inf (x1, x2). The existence of Sup (x1, x2) can
be proved by a similar argument.

Theorem 5.1 shows that the Riesz interpolation property with respect to the
cones K1, K2 in the space E = (E; K1, K2) is equivalent to the additivity of the
decomposition mapping, so applying Proposition 7.2 we conclude that the function
lG defined by (7.1) is a positive linear continuous function.

We will prove that lG = Inf{g1; g2} ∈ E ′ = (E ′; K∗
1 , K∗

2). Evidently for all
x1 ∈ K1, x2 ∈ K2 the following inequalities hold:

lG(x1) = pG(x1) ≤ g1(x1), lG(x2) = pG(x2) ≤ g2(x2).

By the definition of the conjugate cone we obtain lG ≤K∗
1

g1, lG ≤K∗
2

g2.
Let an element h ∈ E ′ be such that h ≤K∗

1
g1, h ≤K∗

2
g2. Let x ∈ L

and elements x1 ∈ K1 and x2 ∈ K2 be such that x = x1 + x2. (In other
words, (x1, x2) ∈ σK1,K2)(x).) Since x1 ∈ K1 and x2 ∈ K2 we have [h, x1] ≤
[g1, x1], [h, x2] ≤ [g2, x2]. Hence

[h, x] ≤ [g1, x1] + [g2, x2] for all (x1, x2) ∈ σK1,K2(x).

This yields

[h, x] ≤ inf
(x1,x2)∈σK1,K2

(x)
{[g1, x1] + [g2, x2]} = pG(x) = lG(x) (x ∈ L).

Therefore [h, x] ≤ [lG, x] (x ∈ L), that is h ≤L∗ lG. Since L∗ = K∗
1

⋂
K∗

2

it follows that h ≤K∗
1

f, h ≤K∗
2

f. This means that lG is the infimum of the
elements g1, g2 with respect to the cones K∗

1 , K∗
2. We have proved that for each

g1, g2 ∈ L∗ the infimum with respect to K ∗
1 , K∗

2 exists. The existence of Sup (g1, g2)
can be proved by the same argument using functions qG defined by (7.2) instead of
pG and functions mG defined by (7.3) instead of lG.

It is interesting to find conditions that guarantee that the inverse to the statement
in Theorem 7.1 holds. We will demonstrate that this statement is valid if E is a
reflexive space. Actually we will prove the following stronger result.



Theorem 7.2. Let E = (E; K1, K2) be a reflexive Banach space with cones
K1 and K2. Assume that the cone L = K1 + K2 is closed, normal and gener-
ating. Assume that the space (E ′; K∗

1 , K∗
2) is a 2-vector lower semilattice. Then

(E, K1, K2) possesses the Riesz interpolation property.

We need the following assertion.

Lemma 7.1. Let the the space E be reflexive and let the cone L =
∑n

i=1 Ki

be normal. Then the function pG is lower semicontinuous for all G ∈ K.

Proof. Since the cone L is normal it follows that (see Theorem 3.4) K = (En)′

and (see Proposition 3.4) the mapping σ is bounded. Let x ∈ L and let r be a
number such that ‖x‖ < r. Let B = {x′ ∈ E : ‖x′‖ ≤ r}. Then the set σ(B) is
contained in the ball B1 = {X ∈ En : ‖X‖ ≤ r‖σ‖}. The set B × B1 is weakly
compact and the mapping σ is weakly closed. Hence this mapping is weakly upper
semicontinuous on B. We will now show that the function pG is weakly lower
semicontinuous at x. Indeed, let

λ < pG(x) = inf
X∈σ(x)

G(X).

Consider the set A = {Y ∈ En : [G, Y ] > λ}. Then the set σ(x) is contained in the
open set A. Since σ is weakly upper semicontinuous then there exists a weak neigh-
borhood V of x such that σ(V ) ⊂ A. If y ∈ V then pG(y) = infY ∈σ(y)[G, Y ] ≥ λ.
Hence pG is weakly lower semicontinuous. Since pG is convex, this function is
also strongly lower continuous.

We now turn to the proof of Theorem 7.2.

Proof. For the sake of definiteness we assume that (E ′; K∗
1 , K∗

2) is a 2-vector
lower semilattice. We will check that the decomposition mapping σ ≡ σK1,K2 is
additive, this implies the Riesz interpolation property. We will show that for all
G = (g1, g2) ∈ (E ′)2 the support function pG of the decomposition mapping σ ≡
σK1,K2 coincides with the restriction of a certain linear function on L. Recall that
pG is sublinear and (see Theorem 7.1) is lower semicontinuous for all G ∈ (E2)′.

Let U = {h ∈ E ′ : h ≤K∗
1

g1, h ≤K∗
2

g2}. We have [h, x1] ≤ [g1, x1], ([h, x2]
≤ [g2, x2]) for each h ∈ U , x ∈ L and X = (x1, x2) ∈ σ(x). Therefore

[h, x] = [h, x1] + [h, x2] ≤ inf
X=(x1,x2)∈σ(x)

([g1, x1] + [g2, x2]) = pG(x).

We have demonstrated that h ∈ ∂pG, so U ⊂ ∂pG.
Now let h ∈ ∂pG and let x1 ∈ K1. Then

[h, x1] ≤ pG(x1) = inf
X=(x′

1,x′
2)∈σ(x1)

[g1, x
′
1] + [g2, x

′
2] ≤ [g1, x1] + [g2, 0] = [g1, x1].



Thus h ≤K∗
1

g1. In the same manner we can show that h ≤K∗
2

g2. It follows from
this that ∂pG ⊂ U . We have proved that ∂pG = U . Let hG = Inf (g1, g2). Then
hg ∈ U and hG ≥K∗

1
h, hG ≥K∗

2
h for all h ∈ U . Since pG is lower semicontinuous

we have
pG(x) = sup

h∈∂pG

[h, x] = sup
h∈U

[h, x].

Since hG ≥K∗
i

h for all h ∈ U we have that hG(xi) ≥ h(xi) for all h ∈ U and
xi ∈ Ki, (i = 1, 2) hence pG(x1) = suph∈U [h, x1] = [hG, x1], x ∈ K1 and

pG(x2) = sup
h∈U

[h, x2] = [hG, x2], x ∈ K2.

Now let x ∈ L and X = (x1, x2) ∈ σ(x). Since pG is sublinear and hG ∈ ∂pG we
have

[hG, x] ≤ pG(x) ≤ pG(x1) + pG(x2) = [hG, x1] + [hG, x2] = [hG, x].

Thus pG(x) = [hG, x] for all x ∈ L. Hence we can consider pG as the restriction
of a function hG ∈ E ′ to the cone L.

Applying Proposition ?? we conclude that the decomposition mapping is bounded,
therefore sets σ(x) are bounded for all x ∈ K . Since the space E is reflexive it
follows that these sets are weakly compact. We now can apply Proposition ?? that
show that σ is an additive mapping.

A similar result can be proved for 2-vector upper semilattices.

Theorem 7.3. Let E = (E; K1, K2) be a reflexive Banach space with cones
K1 and K2. Assume that the cone L = K1 + K2 is closed, normal and gener-
ating. Assume that the space (E ′; K∗

1, K
∗
2) is a 2-vector upper semilattice. Then

(E, K1, K2) possesses the Riesz interpolation property.

The proof is similar to that of Theorem 7.2. We need to consider the superlinear
function qG, where gG(x) = supX=(x1,x2)∈σ(x)([g1, x1] + [g2, x2] and repeat the
proof of Theorem 7.2 with obvious changes.

Corollary 7.1. Let E = (E; K1, K2) be a reflexive Banach space with cones
K1 and K2. Assume that the cone L = K1 +K2 is closed, normal and generating.
If the space (E ′; K∗

1 , K∗
2) is either a 2-vector lower semilattice or 2-vector upper

semilattice then this space is a vector lattice.

Indeed, applying either Theorem 7.2 or Theorem 7.3 we conclude that (E; K1, K2)
possesses Riesz interpolation property. Combining this with Theorem 7.1 we obtain
the desired result.
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