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Abstract

The conjugate duality, which states that infx∈X φ(x, 0) = maxv∈Y ′ −φ∗(0, v),
whenever a regularity condition on φ is satisfied, is a key result in convex anal-
ysis and optimization, where φ : X × Y → IR ∪ {+∞} is a convex function, X
and Y are Banach spaces, Y ′ is the continuous dual space of Y and φ∗ is the
Fenchel-Moreau conjugate of φ. In this paper, we establish a necessary and
sufficient condition for the stable conjugate duality,

inf
x∈X

{φ(x, 0) + x∗(x)} = max
v∈Y ′

{−φ∗(−x∗, v)}, ∀x∗ ∈ X ′,

and obtain a new global dual regularity condition, which is much more general
than the popularly known interior-point type conditions, for the conjugate
duality. As a consequence we present an epigraph closure condition which is
necessary and sufficient for a stable Fenchel-Rockafellar duality theorem. In
the case where one of the functions involved in the duality is a polyhedral
convex function, we also provide generalized interior-point conditions for the
epigraph closure condition. Moreover, we show that a stable Fenchel’s duality
for sublinear functions holds whenever a subdifferential sum formula for the
functions holds. As applications, we give general sufficient conditions for a
minimax theorem, a subdifferential composition formula and for duality results
of convex programming problems.

Keywords: conjugate duality, constraint qualifications, convex programming, poly-
hedral functions, sublinear functions.

AMS (2000) Subject Classification: 90C25, 49J52, 49J53, 49J35, 65K10.

∗The authors are grateful to Professor Wen Song for his comments on the preliminary version of
the paper.

†Engenharia de Sistemas e Computacao, COPPE-UFRJ CP 68511, Rio de Janeiro-RJ, CEP
21945-970, Brazil. E-mail: regi@cos.ufrj.br

‡School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia. E-mail:
jeya@maths.unsw.edu.au

§Department of Mathematics and Computer Science, Chongqing Normal University, Chongqing
400047, P. R. China; School of Mathematics, University of New South Wales, Sydney, NSW 2052,
Australia. E-mail: zhiyouwu@Maths.unsw.edu.au

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213000817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

A fundamental duality scheme for studying the convex minimization problem

min f(x), x ∈ X, (1.1)

where f : X → IR ∪ {+∞}, is by a representation function φ : X × Y → IR ∪ {+∞}
such that φ(x, 0) = f(x). In which case the dual problem associated to (1.1) is given
by

max−φ∗(0, v), v ∈ Y ′, (1.2)

where X and Y are Banach spaces with the duals X ′ and Y ′ respectively, and φ∗ is
the Fenchel-Moreau conjugate of φ. A conjugate duality states that

inf
x∈X

φ(x, 0) = max
v∈Y ′

−φ∗(0, v) (1.3)

whenever a regularity condition on φ is satisfied. In other words, under the regularity
condition, there is no duality gap and the dual problem has a solution. The conju-
gate duality, which is a key to the study of convex optimization, constrained best
approximation and interpolation (see [7, 8, 9]), enables, for instance, one to find the
optimal solution by solving the corresponding dual optimization problem. A central
question in convex analysis and optimization is to find a general regularity condition
for the conjugate duality. From the point of view of applications, it is vital to find
conditions on φ, which characterize the stable conjugate duality:

inf
x∈X

{φ(x, 0) + x∗(x)} = max
v∈Y ′

{−φ∗(−x∗, v)}, ∀x∗ ∈ X ′.

Various (primal) regularity conditions for the duality have been given in the liter-
ature (see [14, 20] and other reference therein). However, these regularity conditions
are either (global) interior-point type conditions [1, 16, 18] which frequently restrict
applications or are based on local conditions. In recent years, it has been shown
in [5, 6, 4] that Fenchel’s duality holds under a dual epigraph condition, which is
strictly weaker than the usual interior-point conditions [1, 12], and the bounded lin-
ear regularity condition [2], which have played important roles in convex analysis and
optimization.

The purpose of this paper is to establish a necessary and sufficient condition for
the stable conjugate duality and derive new global dual regularity conditions, which
are much more general than the popularly known interior-point type conditions, for
conjugate duality results. We also present an epigraph closure condition that is nec-
essary and sufficient for a stable Fenchel-Rockafellar duality theorem. In the case
where one of the functions involved in the duality is a polyhedral convex function,
we provide generalized interior-point conditions for the epigraph closure condition.
Moreover, we show that a stable Fenchel duality for sublinear functions holds when-
ever a subdifferential sum formula for the functions holds. As applications, we give
general sufficient conditions for a minimax theorem, a subdifferential composition for-
mula and for duality results of convex programming problems involving polyhedral
constraints.
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2 Preliminaries: Epigraphs of Conjugate Functions

We begin by fixing some definitions and notations. We assume throughout that X
and Y are Banach spaces. The continuous dual space of X will be denoted by X ′ and
will be endowed with the weak* topology. For the set D ⊂ X the closure of D will
be denoted clD . If a set A ⊂ X ′, the expression clA will stand for the weak* closure.
The indicator function δD is defined as δD(x) = 0 if x ∈ D and δD(x) = +∞ if
x /∈ D. The support function σD is defined by σD(u) = supx∈D u(x). The normal
cone of D is given by ND(x) := {v ∈ X ′ : σD(v) = v(x)} = {v ∈ X ′ : v(y − x) ≤
0,∀y ∈ D} when x ∈ D, and ND(x) := ∅ when x 6∈ D. Let f : X → IR ∪ {+∞} be
a proper lower semi-continuous convex function. Then, the conjugate function of
f, f ∗ : X ′ → IR ∪ {+∞}, is defined by

f ∗(v) = sup{v(x)− f(x) | x ∈ dom f}

where the domain of f , dom f , is given by dom f = {x ∈ X | f(x) < +∞}. The
epigraph of f, Epi f , is defined by

Epi f = {(x, r) ∈ X × IR | x ∈ dom f, f(x) ≤ r}.

The subdifferential of f , ∂f : X ⇒ X
′
is defined as

∂f(x) = {v ∈ X ′ | f(y) ≥ f(x) + v(y − x), ∀ y ∈ X}.

Note also that ∂δD = ND. If f : X → IR ∪ {+∞} is a proper lower semi-continuous
sublinear function, i.e., f is convex and positively homogeneous (f(0) = 0, and
f(λx) = λf(x),∀x ∈ X,∀λ ∈ (0,∞)), then ∂f(0) is non-empty and for each x ∈
dom f,

∂f(x) = {v ∈ ∂f(0) | v(x) = f(x)} .

Applying the well-known Moreau-Rockafellar Theorem (see e.g. [18, Theorem
3.2]) we obtain the conclusion in the lemma below.

Lemma 2.1 [18] Let X be a Banach space. Let f, g : X → IR∪{+∞} be proper lower
semi-continuous convex functions such that dom f ∩ dom g 6= ∅. Then Epi (f + g)∗ =
cl (Epi f ∗ + Epi g∗).

If both f and g are proper lower semi-continuous and sublinear functions then it
easily follows from Lemma 2.1 that

∂(f + g)(0) = cl (∂f (0) + ∂g(0)),

For the details see [20].

3 Stable Conjugate Duality

In this section we establish characterizations of the conjugate duality and derive a
global dual condition for conjugate duality. We begin by establishing a necessary and
sufficient condition for the conjugate duality.
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Proposition 3.1 Let φ : X×Y → IR∪{+∞} be a proper and lower semi-continuous
convex function. Let α := infx∈X φ(x, 0) be finite. Then the following statements are
equivalent.

(i) infx∈X φ(x, 0) = maxv∈Y ′ −φ∗(0, v).

(ii) (0, 0,−α) ∈ Epi φ∗ + ({0} × Y ′ × IR+) .

Proof. [(i) =⇒ (ii)] By assumption (i), there exists v ∈ Y ′ such that −φ∗(0, v) =
α ∈ IR. Since (0, v, φ∗(0, v)) ∈ Epi φ∗ and (0,−v, 0) ∈ {0} × Y ′ × IR+ we can write

(0, 0,−α) = (0, 0, φ∗(0, v)) = (0, v, φ∗(0, v)) + (0,−v, 0) ∈ Epi φ∗ + ({0} × Y ′ × IR+) .

[(ii) =⇒ (i)] From (ii), there exist (u, v, δ) ∈ Epi φ∗, w ∈ Y ′ and ε ∈ IR+ such that

(0, 0,−α) = (u, v, δ) + (0, w, ε) = (u, v + w, δ + ε).

Then u = 0, v = −w and δ + ε + α = 0. Now, by Fenchel’s inequality, for each x ∈ X
and v′ ∈ Y ′, φ(x, 0) + φ∗(0, v′) ≥ 0. Using this for v′ := v we get

infx∈X φ(x, 0) ≥ −φ∗(0, v)
≥ −δ
= ε + α
≥ α = infx∈X φ(x, 0).

Thus, infx∈X φ(x, 0) = maxy′∈Y ′ −φ∗(0, y′) = −φ∗(0, v), and hence (i) holds. 2

We now establish a necessary and sufficient condition for the stable conjugate
duality.

Theorem 3.1 (Stable Conjugate Duality) Let φ : X × Y → IR ∪ {+∞} be a
proper and lower semi-continuous convex function. Suppose that α := infx∈X{φ(x, 0)} <
+∞. Then the following statements are equivalent.

(i) infx∈X{φ(x, 0) + x∗(x)} = maxv∈Y ′{−φ∗(−x∗, v)}, ∀x∗ ∈ X ′.

(ii) Epi φ∗ + ({0} × Y ′ × IR+) is weak∗ closed.

Proof. [(i) =⇒ (ii)]. Let M = {(x, y) ∈ X × Y | y = 0}. Then, Epi δ∗M = {0} ×
Y ′ × IR+. Since α = infx∈X φ(x, 0) < +∞ we have that dom φ ∩M 6= ∅. So we can
apply Lemma 2.1 to write

cl (Epi φ∗ + {0} × Y′ × IR+) = cl (Epi φ∗ + Epi δM
∗) = Epi (φ + δM )∗.

Fix now an element (x∗, y∗, r) ∈ cl (Epi φ∗ + {0} × Y′ × IR+). By the above equality
we have that (φ + δM)∗(x∗, y∗) ≤ r. So,

r ≥ (φ + δM)∗(x∗, y∗) ≥ − inf
x∈X

{φ(x, 0)− x∗(x)}.

By assumption (i) we get
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inf
x∈X

{φ(x, 0)− x∗(x)} = max
v∈Y ′

{−φ∗(x∗, v)}.

Hence,
r ≥ (φ + δM)∗(x∗, y∗) ≥ φ∗(x∗, v),

for some v ∈ Y ′. This implies that (x∗, v, r) ∈ Epi φ∗. Therefore, (x∗, y∗, r) =
(x∗, v, r) + (0, y∗ − v, 0) ∈ Epi φ∗ + {0} × Y′ × IR+ and (ii) holds. [(ii) =⇒ (i)]. Note
that the assumption α = infx∈X φ(x, 0) < +∞ yields α(x∗) := infx∈X φ(x, 0)+x∗(x) <
+∞ for all x∗ ∈ X ′. If x∗ ∈ X ′ is such that α(x∗) = −∞, then Fenchel-Young
inequality yields the equality in (i) for this choice of x∗. Now assume that x∗ ∈ X ′ is
such that α(x∗) > −∞, so our basic assumption yields α(x∗) ∈ IR. We can write

α(x∗) = inf
x∈X

φ(x, 0) + x∗(x) = −(φ + δM)∗(−x∗, 0) ∈ IR. (3.4)

Note also that α(0) = infx∈X φ(x, 0) < +∞ and hence M ∩ dom φ 6= ∅, which gives

(−x∗, 0,−α(x∗)) ∈ Epi (φ + δM )∗ = cl (Epi φ∗ + {0} × Y ′ × IR+)
= Epi φ∗ + {0} × Y ′ × IR+,

where we used (3.4) in the inclusion, Lemma 2.1 in the first equality and assumption
(ii) in the last one. The above inclusion implies that (−x∗, 0,−α(x∗)) = (u, v, γ) +
(0, w, r), with φ∗(u, v) ≤ γ and r ≥ 0. Therefore,

α(x∗) = −γ − r ≤ −γ ≤ −φ∗(−x∗, v) ≤ max
z∈Y ′

−φ∗(−x∗, z) ≤ α(x∗),

where we used Fenchel-Young inequality in the last inequality. The above expression
yields the equality in condition (i) for this choice of x∗. 2

It is worth noting that Theorem 3.1 gives a necessary and sufficient condition for
the equality

φ(· , 0)∗(−x∗) = min
v∈Y ′

φ∗(x∗, v), ∀x∗ ∈ X ′,

which is equivalent to the equality (i) of Theorem 3.1. For numerous sufficient con-
ditions for this equality, see Theorem 2.7.1 and Corollary 2.7.3 of [20].

Corollary 3.1 (Generalized Conjugate Duality) Let φ : X×Y → IR∪{+∞} be
a proper and lower semi-continuous convex function such that α := infx∈X φ(x, 0) <
+∞. If Epi φ∗ + ({0} × Y ′ × IR+) is weak∗ closed then

inf
x∈X

φ(x, 0) = max
v∈Y ′

−φ∗(0, v).

Proof. The conclusion follows from Theorem 3.1 by taking x∗ = 0. 2

Let us see how the epigraph closure condition in the conjugate duality results
can be expressed in the particular case where φ is described in terms of the sum of
two convex functions. Define the continuous linear projection map, PX′×IR : X ′ ×
Y ′ × IR →X ′ × IR, by PX′×IR(u, v, r) = (u, r). The inverse of the projection map is
denoted by P−1

X′×IR. Recall that for a continuous linear map A : X → Y the adjoint
operator of A, denoted by A?, is the unique linear application from Y ′ to X ′ with
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the property (A?v)(x) = v(Ax) for all v ∈ Y ′, x ∈ X. Associated to the linear
mapping A, we consider the mapping A? × I : Y ′ × IR → X ′ × IR defined as (A? ×
I)(w,α) = (A?w,α). Note that the image of Epi g∗ through this application is (A? ×
I)(Epi g∗) = {(A?w, α)|(w, α) ∈ Epi g∗} = {(A?w, α)|g∗(w) ≤ α}. Let (Epi g∗)A :=
(A? × I)(Epi g∗).

Lemma 3.1 Let X and Y be Banach spaces and take f : X → IR ∪ {+∞} and
g : Y → IR ∪ {+∞} two proper functions. Let A : X → Y be a continuous linear
mapping. If φ : X × Y → IR ∪ {+∞} is given by φ(x, y) := f(x) + g(Ax + y), then

Epi φ∗ + ({0} × Y ′ × IR+) = P−1
X′×IR(Epi f ∗ + (Epi g∗)A)

Proof. Call E := P−1
X′×IR(Epi f ∗ + (Epi g∗)A) and F := Epi φ∗ + ({0} × Y ′ × IR+).

Let (u, v, r) ∈ E . Then, (u, r) ∈ Epi f ∗ + (Epi g∗)A. So, there exist (u1, r1) ∈ Epi f ∗

and (u2, r2) ∈ Epi g∗ such that

(u, r) = (u1 + A∗u2, r1 + r2).

Since φ∗(u1, u2) = f ∗(u1−A∗u2)+g∗(u2), φ∗(u1+A∗u2, u2) = f ∗(u1)+g∗(u2) ≤ r1+r2,
and so, (u1 + A∗u2, u2, r1 + r2) ∈ Epiφ∗. Hence,

(u, v, r) = (u1 + A∗u2, u2, r1 + r2) + (0, v − u2, 0) ∈ F ;

thus, E ⊂ F.
Conversely, let (u, v, r) ∈ F. Then, (u, v, r) = (u1, u2, r1)+(0, v, r2), where φ∗(u1, u2) =

f ∗(u1−A∗u2)+g∗(u2) ≤ r1, v ∈ Y ′ and r2 ∈ IR+. So, (u1−A∗u2,r1−g∗(u2)) ∈ Epi f ∗

and (u2, g
∗(u2) + r2) ∈ Epi g∗. Hence,

(u, r) = (u1−A∗u2+A∗u2, r1−g∗(u2) + g∗(u2) + r2) ∈ (Epi f∗+(Epi g∗)A);

thus, F ⊂ E. 2

Note that if φ(x, y) := f(x) + g(x + y), then

Epi φ∗ + ({0} × Y ′ × IR+) = P−1
X′×IR(Epi f ∗ + Epi g∗).

Remark 3.1 Let C ⊂ X ′ × IR be an arbitrary set. Then it is easy to check that the
set P−1

X′×IR(C) can be identified with C × Y ′. Therefore, C is weak∗ closed if and only
if P−1

X′×IR(C) is weak∗ closed.

Theorem 3.2 (Stable Fenchel-Rockafellar Duality) Let A : X → Y be a con-
tinuous linear mapping. Let f : X → IR ∪ {+∞} and g : Y → IR ∪ {+∞} be proper
and lower semi-continuous convex functions such that A(dom f) ∩ dom g 6= ∅. Then
the following statements are equivalent:

(i) infx∈X {f(x) + g(Ax) + x∗(x)} = maxv∈X′ {−f ∗(A∗v − x∗)− g∗(−v)} ,∀x∗ ∈
X ′.

(ii) Epi f ∗ + (Epi g∗)A is weak∗ closed.
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Proof. Define φ : X × Y → IR ∪ {+∞} by φ(x, y) := f(x) + g(Ax + y) for each
(x, y) ∈ X × Y . Then, φ∗(u, v) = f ∗(u−A?v) + g∗(v). So that condition (i) becomes

inf
x∈X

φ(x, 0) + x∗(x) = max
v∈Y ′

{−φ∗(−x∗,−v)} ∀x∗ ∈ X ′. (3.5)

Since A(dom f) ∩ dom g 6= ∅, there exists y0 ∈ dom g such that y0 = Ax0 with x0 ∈
dom f . Hence, infx∈X φ(x, 0) ≤ f(x0)+g(Ax0) < +∞. So we can apply Theorem 3.1,
and conclude that (3.5) is equivalent to the weak∗ closedness of Epi φ∗+{0}×Y ′× IR+.
Now the result follows from Lemma 3.1 and Remark 3.1. 2

Observe that, in the case where X = Y and A = I, Theorem 3.2 shows that
Epi f ∗ + Epi g∗ is weak∗ closed if and only if

(f + g)∗(x∗) = min{f ∗(u) + g∗(v) | u + v = x∗}, ∀x∗ ∈ X ′,

whenever dom f ∩ dom g 6= ∅. For related results, see [5, 12, 19].

Corollary 3.2 (Stable Duality for Convex Programs) Let A : X → Y be
a continuous linear mapping, f : X → IR ∪ {+∞} be a proper and lower semi-
continuous convex function. Let C ⊂ dom f be a closed convex set, b ∈ Y and let
K ⊂ Y be a closed convex cone. Assume that A(C)∩ (K + b) 6= ∅. Then the following
statements are equivalent.

(i) inf
x∈C

Ax−b∈K

{f(x) + x∗(x)} = max
v∈K0

−(f + δC)∗(A∗v − x∗) + v(b), ∀x∗ ∈ X ′

(ii) Epi (f + δC )∗ + (Epi δ∗b+K )A is weak∗ closed,

where K0 = {v ∈ Y ′ | v(y) ≤ 0, ∀y ∈ K} is the polar cone of K.
Proof. By Theorem 3.2, applied to the functions f + δC and g := δb+K , we readily

see the equivalence between (i) and (ii). 2

Corollary 3.3 (Generalized Fenchel-Rockafellar Duality) Let A : X → Y be
a continuous linear mapping. Let f : X → IR ∪ {+∞} and g : Y → IR ∪ {+∞} be
proper and lower semi-continuous convex functions such that A(dom f)∩ dom g 6= ∅.
If the set Epi f ∗ + (Epi g∗)A is weak∗ closed, then

inf
x∈X

{f(x) + g(Ax)} = max
v∈Y ′

{−f ∗(A?v)− g∗(−v)} . (3.6)

Proof. The conclusion follows from Theorem 3.2 by taking x∗ = 0. 2

When the functions f and g are sublinear, we have that stable Fenchel duality is
equivalent to the subdifferential sum formula.

Corollary 3.4 (Subdifferential Sum Formula)Let f, g : X → IR ∪ {+∞} be
proper lower semi-continuous sublinear functions with dom f ∩ dom g 6= ∅. Then the
following statements are equivalent:

(i) infx∈X {f(x) + g(x) + x∗(x)} = maxv∈X′ {−f ∗(v − x∗)− g∗(−v)} ,∀x∗ ∈ X ′.

(ii) ∂(f + g)(x) = ∂f(x) + ∂g(x), ∀x ∈ dom f ∩ dom g.
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(iii) Epi f ∗ + Epi g∗ is weak∗ closed.

Proof. [(i)=⇒ (ii)]. This implication is well known and holds for arbitrary proper
convex and lower semicontinuous functions, see for instance Theorem 2.1 of [13].
[(ii)=⇒ (iii)]. If (ii) holds then ∂(f + g)(0) = ∂f(0) + ∂g(0). Since f and g are
proper lower semi-continuous sublinear functions, ∂(f + g)(0) = cl (∂f (0) + ∂g(0)).
So, cl (∂f (0) + ∂g(0)) = ∂f(0) + ∂g(0); thus, ∂f(0) + ∂g(0) is weak∗closed. Hence,

Epi f ∗ + Epi g∗ = ∂f(0)× IR+ + ∂g(0)× IR+ = (∂f(0) + ∂g(0))× IR+

is weak∗closed. [(iii)=⇒ (i)]. This follows from Theorem 3.2, where X = Y and
A = I. 2

Corollary 3.5 (Subdifferential Composition Formula) Let f : X → IR ∪
{+∞} and g : Y → IR∪{+∞} be proper and lower semi-continuous convex functions
such that A(dom f) ∩ dom g 6= ∅. Let A : X → Y be a continuous linear mapping. If
the set Epi f ∗ + (Epi g∗)A is weak∗ closed then for each x0 ∈ X,

∂(f + (g ◦ A))(x0) = ∂f(x0) + A∗∂g(Ax0).

Proof. Let v ∈ ∂(f +(g ◦A))(x0). Then, for each x ∈ X, (f + g ◦A)(x)− (f +(g ◦
A))(x0) ≥ v(x − x0), and so, it follows from Corollary 3.3 that there exits y0 ∈ Y ′

such that

(f − v)(x0) + (g ◦ A)(x0) = inf{(f − v)(x) + g(Ax) | x ∈ X}
= −(f − v)∗(A∗y0)− g∗(−y0).

Now, it is easy to show that A∗y0 ∈ ∂(f − v)(x0) = ∂f(x0) − {v}, and −y0 ∈
∂g(Ax0). Indeed, the above equality yields

−(f − v)(x0)− (g ◦ A)(x0) = (f − v)∗(A∗y0) + g∗(−y0)
≥ [(A∗y0)(x)− (f − v)(x)] + [(−y0)(y)− g(y)] ,

For all x ∈ X and y ∈ Y . Taking y = Ax0, we see that A∗y0 ∈ ∂(f−v)(x0) = ∂f(x0)−
{v}, and choosing x = x0, we obtain −y0 ∈ ∂g(Ax0). Thus, v ∈ ∂f(x0)+A∗∂g(Ax0).
Hence, ∂(f + (g ◦A))(x0) ⊂ ∂f(x0) + A∗∂g(Ax0). The required equality now follows
as the reverse inclusion easily holds. 2

We now show how a stable minimax theorem can be derived from the stable
Fenchel-Rockafellar conjugate duality theorem. For related general stable minimax
theorems see [10, 11] and other references therein.

Corollary 3.6 (Stable Minimax Theorem) Let A : X → Y be a continuous
linear mapping. Let C and D be closed convex subsets of X and Y ′ respectively.
Suppose that A(C)∩dom σD 6= ∅. Then the set Epi σC +A∗(D)× IR+ is weak∗ closed
if and only if

inf
x∈C

sup
v∈D

v(Ax) + x∗(x) = max
v∈D

inf
x∈C

v(Ax) + x∗(x), ∀x∗ ∈ X ′.
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Proof. Let f = δC and g = δ∗D = σD in Theorem 3.2. Then A(dom f) ∩ dom g =
A(C)∩ dom σD 6= ∅, and it is easy to check that ( Epi δD)A = A?(D)× IR+. Now, it
follows from Theorem 3.2 that Epi σC + A∗(D)× IR+ is weak∗ closed if and only if

infx∈X{δC(x) + σD(Ax) + x∗(x)} = maxu∈Y ′{−σC (A?u − x ∗ )− δD(−u)},

which is equivalent to the equalities

infx∈C supv∈D v(Ax) + x∗(x) = max−u∈D{−σC (A?u − x ∗)}
= max−u∈D infx∈C [x∗(x) + (A?(−u))(x)]
= maxv∈D infx∈C(x∗ + A?v)(x)
= maxv∈D infx∈C v(Ax) + x∗(x).

2

4 Duality and Polyhedral Convex Functions

This section studies the case in which one of the convex functions is a polyhedral
convex function, i.e., a function which has as epigraph a polyhedral convex set. Recall
that, for f, g : IRn → IR ∪ {+∞} convex and lower-semicontinuous functions, the
classical Fenchel’s Duality Theorem [17, Theorem 31.1] states that one has

inf
x∈X

{f(x) + g(x)} = max
v∈X′

{−f ∗(v)− g∗(−v)} , (4.7)

when ri(dom f) ∩ ri(dom g) 6= ∅. However, if one of these functions, say g, is poly-
hedral, the latter condition can be weakened to ri(dom f) ∩ dom g 6= ∅. Moreover,
when both functions are polyhedral, then the relative interiors can be replaced by
the domains of the functions. This fundamental result has been recently extended to
arbitrary Banach spaces in [16, Theorem 3.3], where the concept of relative interior
has been replaced by the strong quasi relative interior (see [14, 15, 20]), which is
denoted by sqri(C), and defined as

sqri (C) = {x ∈ C | cone(C − x) is a closed subspace} .

Note that if the set C is contained in a finite dimensional space, then ri(C) =
sqri(C).

In the case in which both functions f and g are lower semi-continuous polyhedral
convex functions on IRn, then it is well known that both sets Epi f ∗ and Epi g∗ are
closed polyhedrons, and their sum Epi f ∗ + Epi g∗, being also a polyhedral, is also
closed.

We now show that, when g is polyhedral, our closure condition holds whenever
sqri(dom f)∩dom g 6= ∅. This condition is used in [16, Theorem 3.3], which is stated
below.

Theorem 4.1 Let f : X → IR ∪ {+∞} and g : Y → IR ∪ {+∞} be convex proper
and lower semicontinuous functions, and let A : X → Y be a linear and continuous
operator. Suppose that sqri(A(dom f)) ∩ dom g 6= ∅ and that g is polyhedral. Then

inf
x∈X

{f(x) + g(Ax)} = max
v∈X′

{−f ∗(A?v)− g∗(−v)} . (4.8)
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Theorem 4.2 Let f : X → IR ∪ {+∞} and g : Y → IR ∪ {+∞} be convex proper
and lower semicontinuous functions, and let A : X → Y be a linear and continuous
operator. Suppose that g is polyhedral and that dom g ∩ sqri(A(dom f)) 6= ∅. Then
Epi f ∗ + (Epi g∗)A is weak∗ closed.

Proof. Let x∗ ∈ X ′ and define f̂(x) := f(x) + x∗(x). Then, f̂ is also a proper
convex function and dom f̂ = dom f , so that we still have dom g∩sqri(A(dom f̂)) 6= ∅.
Moreover, for each v ∈ X ′, f̂ ∗(v) = f ∗(v− x∗). By Theorem 4.1, we know that if g is
polyhedral and dom g ∩ sqri(A(dom f̂)) 6= ∅, then

inf
x∈X

(f̂(x) + g(Ax)) = max
v∈X∗

(−f̂ ∗(A?v)− g∗(−v)).

Re-writing the expression above we get

inf
x∈X

(f(x) + g(Ax) + x∗(x)) = max
v∈X∗

(−f ∗(A?v − x∗)− g∗(−v)).

Having shown the above equality for arbitrary x∗ ∈ X ′, Theorem 3.2 applies and we
can conclude that Epi f ∗ + (Epi g∗)A is weak∗ closed. 2

A corollary of the above result is an application to convex programs with polyhe-
dral constraints.

Corollary 4.1 (Duality for Convex Programs with Polyhedral Constraints)
Let A : X → Y be a continuous linear mapping, f : X → IR∪{+∞} be a proper and
lower semi-continuous convex function. Let C be a closed convex subset of dom f ,
b ∈ Y and let K ⊂ Y be a polyhedral cone. Assume that A(C) ∩ (K + b) 6= ∅. Under
one of the following conditions:

(i) Y = IRn and ri(A(C)) ∩ (b + K) 6= ∅,

(ii) sqri(A(C)) ∩ (b + K) 6= ∅,

(iii) Epi (f + δC )∗ + (Epi δ∗b+K )A is weak∗ closed,

one has

inf {f(x) | x ∈ C, Ax− b ∈ K} = max
{
−(f + δC)∗(A∗v) + v(b) | v ∈ K0

}
. (4.9)

Proof. By Corollary 3.2, we have that condition (iii) above implies (4.9), which is
condition (i) of Corollary 3.2 for the choice x∗ = 0. Using now Theorem 4.2 applied to
the functions f + δC and g := δb+K , we have that both (ii) and its finite dimensional
version (i) are stronger than (iii). 2
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