
 
 

COPYRIGHT NOTICE 
 
 
 
 
 

FedUni ResearchOnline 
https://researchonline.federation.edu.au 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 

Copyright © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. 

 
This is the peer-reviewed version of the following article: 

 
Choudhury, T., Wei, J., Barton, A., Kandra, H., Aziz, A. (2018) Exploring the 
application of artificial neural network in rural streamflow prediction – A 
feasibility study. 27th IEEE International Symposium on Industrial 
Electronics, ISIE 2018; Cairns, Australia; 13th-15th June 2018 Vol. 2018-
June, p. 753-758. 
 
Which has been published in final form at: 
https://doi.org/10.1109/ISIE.2018.8433644 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213000004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchonline.federation.edu.au/
https://doi.org/10.1109/ISIE.2018.8433644


Exploring the Application of Artificial Neural 

Network in Rural Streamflow Prediction – A 

Feasibility Study 

T. A. Choudhury 1*, Jackie Wei 2, Andrew Barton 3, Harpreet Kandra 4, Abdul Aziz 5 

School of Engineering and Information Technology 1,2,3,5 

Federation University Australia 

Victoria, Australia 

t.choudhury@federation.edu.au 1*, 

jackiewei@students.federation.edu.au 2, 

a.barton@federation.edu.au 3 

h.kandra@federation.edu.au 4 

GWM Water 5 

Horsham, Victoria, Australia 

abdul.aziz@gwmwater.org.au 5      

 

 

 

 
Abstract— — Streams and rivers play a critical role in the 

hydrologic cycle with their management being essential to 

maintaining a balance across social, economic and 

environmental outcomes. Accurate streamflow predictions can 

provide benefits in many different ways such as water 

allocation decision making, flood forecasting and 

environmental watering regimes. This is particularly 

important in regional areas of Australia where rivers can play 

a critical role in irrigated agriculture, recreation and social 

wellbeing, major floods and sustainable environments. There 

are several hydrological parameters that effect stream flows in 

rivers and a major challenge with any prediction methodology, 

is to understand these parameter interdependencies, 

correlations and their individual effects. A robust methodology 

is, thus, required for accurate prediction of streamflow under 

usually unique, waterway-specific conditions using available 

data. This research employs an approach based on Artificial 

Neural Network (ANN) to provide this robust methodology. 

Data from readily available sources has been selected to 

provide appropriate input and output parameters to train, 

validate and optimise the neural network. The optimisation 

steps of the methodology are discussed and the predicted 

outputs are compared and analysed with respect to the actual 

collected values.   

Keywords—artificial neural network, intelligent multi-

variable control, real time monitoring, streamflow prediction, 

hydrological circle, back propagation 

I.  INTRODUCTION 

Streamflow is a critical hydrological parameter for the 
planning and management of water resources. Indeed, an 
understanding of streamflow characteristics is central to 
water security. For much of Australia, the hydrological 
variability of rural streamflow is a key challenge with the 
statistical properties of streamflow data typically highly 
skewed, with historical data sets sometimes short and 
discontinuous [1]. The accurate prediction of streamflow can 
therefore be very difficult with limited data sets available 
from which to learn from. Furthermore, forecasts of 
streamflow are closely related to forecasts of weather which 
are notoriously difficult especially in the light of climate 

change. However, the potential benefits from accurate 
streamflow prediction is very significant with improved 
economic, social and environmental outcomes very clear. 
Examples include more precise irrigation agricultural 
practices, avoidance of water restrictions for towns and 
communities, greater certainty around environmental 
watering and waterway health, and more accurate 
information around the magnitude of floods and the 
movement of floods through riverine systems. . 

In hydrology, there are known to be several factors, 
ranging from both natural and human induced, that affect 
streamflow behaviour [2]. These parameters include, but not 
limited to, (i) precipitation from rainfall and snowmelt, (ii) 
evaporation, (iii) temperature, (iv) interaction between 
surface water and groundwater, (v) soil moisture content, (vi) 
humidity, and (vii) fire. While these factors have different 
levels of non-linear effects to streamflow, they are 
unpredictable in nature across the year. The task of 
streamflow prediction therefore becomes very difficult due 
to non-linearity as well as variability of the hydrologic and 
associated weather processes. 

In this preliminary study, Artificial Neural Network 
(ANN) is proposed to model the hydrological process and 
predict the streamflow. ANN is a non-linear predictive data 
modelling tool that works by learning the process dynamics 
to establish correlations between outputs and selected input 
parameters. The generalisation ability of ANN allows the 
developed model to predict values for any input conditions 
within limits of the training boundaries. ANN further 
provides a flexible approach to streamflow prediction. 
Conventional regression and statistical methods requires 
accurate geometric series of data for the models to predict – 
which might not be available in rural conditions. 

ANN has been successfully applied in similarly complex 
problems and across a wide range of water engineering 
applications in the past. Some of these applications include: 
(i) flood and river flow forecasting [3, 4], (ii) modelling 
rating curves [5], (iii) predicting sewerage capture efficiency 
[6]. Several authors, previously, have studied the use of 



ANN in streamflow forecasting [7-10]. However, there has 
been no study available on the use of ANN to predict 
streamflow in Australian rural river systems – the geography 
of which makes the modelling challenging.  

To test the feasibility of ANN in this study as an 
appropriate methodology for streamflow prediction, input 
variables have been limited to just two parameters being 
daily total rainfall and current river height (or daily 
maximum water level depth). These two parameters have 
been chosen on the a-priori assumption that they are 
dominant predictors and contributors to estimating future 
streamflow for rural catchments [2, 11]. Future work will 
refine this approach and look to broaden the selection of 
input parameters. 

To study the viability of the application of ANN in 
streamflow forecasting under such conditions, the research 
deliberately: (i) selects a highly variable streamflow site and 
(ii) simplifies the method in only using the minimum number 
of input variables to produce reliable and useful results. 

II. SIMULATION MODEL 

A. Database Collection and Processing 

Data collection is a critical step in the development of an 
ANN model as the reliability and robustness of the model 
depends directly on the quality and accuracy of the collected 
data. For the purpose of training, optimising and testing the 
proposed ANN model, a database (DB) that consisted of the 
daily total rainfall and daily maximum water level depth as 
the input parameters (or predictors) was prepared. The daily 
total discharge was used as the output parameter (or 
predictand) in DB. The daily total discharge is a direct 
indicator of the streamflow.  

The streamflow site selected for data collection was the 
Genoa River, and for reasons of having a reasonable length 
and continuous set of historical data. The Genoa River starts 
in southern New South Wales (NSW) and flows southwards 
into Victoria where it joins the Wallagaraugh River (which 
also starts in NSW). Both rivers flow into Mallacoota Inlet 
before entering Bass Strait at Mallacoota [12]. The 
catchment has an area of 126 square kilometres with adjacent 
land used by the local council, cattle grazing as well as 
different environment activities. The Genoa River is 
unregulated without any major water storage or major 
diversions, with local consumption relying on natural flows 
or small structures such as weirs for their water supply [13]. 

The streamflow and related data were collected from the 
Department of Environment, Land, Water and Planning 
(DWELP) under the State Government of Victoria [14]. The 
data collected also consists of daily recorded data obtained 
from the Bureau of Meteorology (BoM) [15]. The data range 
lies from 1993 to 2016, with a total data set of 7,652.  

Before further use the database (DB) was normalised 
using (1) [16]. This linear transformation ensures that all 
process parameters are treated equally by the ANN and, thus, 
avoids calculation error relating to different parameter 
magnitudes. 
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X

X X

−

=

−
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In (1), XNORM represents the normalised input parameter 
value and X the actual parameter value. XMAX and XMIN are 
the maximum and minimum values contained within the 
dataset.  

The maximum and minimum of each input and output 
variables are given in Table I. These value limits also 
represent the extent to which the network will be trained and 
can be tested for performance. 

TABLE I.  PARAMETER PHYSICAL LIMITS 

Variable Lower Limit Higher Limit 

Daily Total Rainfall (mm) 0.00 185.80 

Daily Maximum Water Level 

Depth (m) 
0.06 2.78 

Daily Total Discharge (ML/d) 0.00 19,899.62 

 

B. Defining ANN Model 

The ANN consists of a mathematical model of a group of 
interconnected artificial neurons and is used as a non-linear 
statistical data modelling tool. ANN can be implemented to 
model complex and non-linear process relationships between 
the input and output parameters, particularly where there are 
process variability, fluctuations and with little known prior 
information.  

ANN takes a connectionist approach to computation 
where the strength of each connection between the neurons is 
represented by the term ‘weight’ [17]. These weights form 
the basis to process generalisation and evaluation of input 
and output parameter relationships. This can be achieved by 
proper optimisation of the weight matrix, and is achieved 
through a training process. The process of tuning the weight 
matrix is called a paradigm. The most powerful paradigm is 
the back-propagation paradigm, which is widely used and 
also employed for this study [18]. 

The back-propagation paradigm used in this research is 
the Levenberg-Marquardt (LM) algorithm [19]. Standard 
back-propagation algorithms are: (i) very slow, (ii) require a 
lot of off-line training, and (iii) suffer from temporal 
instability as they tend to get stuck to the local minima [20]. 
Given a network of not more than few hundred weights 
(which complies with the current model), the LM algorithm 
proves to be more efficient in comparison to the conjugate 
gradient and variable learning rate types algorithms [19]. 

Further to overcome the complex non-linear relationship 
between the output streamflow (daily total discharge) and 
input hydrological parameters, this research utilises a simple 
neural network model based on multi-layer perception 
(MLP). 

The MLP ANN architecture consists of three main 
components: (i) input layer (daily total rainfall and daily 



maximum water level depth), (ii) output layer (daily total 
discharge), and (iii) hidden layer. 

The number of neurons required in the ANN model to 
describe each physical parameter within the process it is 
trying to model, is dependent on the parameter nature. A real 
valued parameter can be represented by only one neuron, 
while a parameter representing classifications requires x 
neurons to describe 2x categories [21]. All the hydrological 
input and output parameters (listed in sub-section A) are real 
valued and are, thus, described by one neuron each.  

The hidden layer within ANN structure contributes most 
in establishing the process generalisation and parameter 
correlations. The number of hidden layers and number of 
neurons in each hidden layer is determined from the network 
optimisation process. The ANN architecture used in this 
research is presented in Fig.1. 

 

Fig. 1. The artificial neural network (ANN) architecture 

C. ANN Model Development 

ANN model development process involves training, 
testing and optimisation steps and uses a constructed 
database (DB). The process of network optimisation 
determines the number of hidden layers; number of neurons 
in each hidden layer in conjunction with the optimisation of 
the weight population to produce the lowest error 
performance function. All the ANN simulations in this study 
were performed with MATLAB [22]. 

To begin with, an assumption is made on the number of 
hidden layers, the number of neurons in each hidden layer 
and the initial weight population. The network response of 
the stream flow (total daily discharge) value was then 
computed and compared with the actual values to obtain the 
error performance function. Based on the comparisons, the 
network weight matrix is re-computed and optimised further. 
This process of network training is run for a number of 
iterations or epochs. 

The model is then trained for a sufficient amount of time 
so as to optimise the network and generalise the process 
underpinning the input and output parameters. The network 
will fail to learn the function if the number of epochs is set 
too low; but if it is set too high, the network tends to 
memorise the training data instead of generalising the 
function (over-fitting). The maximum number of epoch set in 
this study is 1000 with the log-sigmoid as the transfer 
function in all layers. 

For the network training, optimisation and testing, the 
database DB is divided into three sets: (i) 60% of the data for 
network training (DB-TRN), (ii) 20% of the data for network 
validation (DB-VAL), and (iii) 20% for network testing 
(DB-TST). The three basic steps to ANN model 
development are briefly described below. 

(i) Training step: trains the network using the training set 
to obtain the optimised weight matrix producing minimum 
error between the predicted and actual output values. 

(ii) Validation step: tests the trained network with the 
validation set to prevent network over-fitting. 

(iii) Test step: simulate the trained network with a test 
data set which has previously been unseen to the network. If 
the residual error between the predicted and actual output 
parameter is computed to be equivalent to the training step, it 
can be concluded that proper generalisation is achieved and 
the networks are ready to predict intermediate conditions.  

For the test and validation step, the weight population 
and other network parameters are kept static as the network 
is being tested and validated with the input data and checked 
for prediction and network performance. 

Correlation coefficient (R) and Mean Absolute Error 
(MAE) are selected as the model’s performance measuring 
functions. The correlation coefficient, R, values on the test 
set provides an understanding of how well the trained 
network’s response, to the unseen inputs, fits with the 
respective collected daily total discharge (streamflow) value. 
Larger R values represents better fit indicating stronger 
model performance in generalising the process dynamics. 
The MAE generated by the network on the test set provides a 
measure of the “generalisation error” of the trained network 
models. The lower this error value, better is the network’s 
ability to generalise process and predict streamflow with 
sufficient accuracy under unknown conditions. 

The performance of a trained network is sensitive to the 
size of the hidden layers. To find the optimal number of 
hidden layers to overcome the non-linearity associated with 
the hydrological process considered in this study, the number 
of hidden layers were varied from one to three. In each case, 
the number of neurons in each layer were also varied to find 
the optimal number of neurons under each condition.  

For one hidden layer, the number of hidden layer neurons 
were varied from one to twenty (1 to 20) with increments of 
one neuron each time. For two hidden layers, the number of 
hidden layer neurons were varied from two and one to 
twenty and nineteen neurons, respectively, in each hidden 
layer (2-1 to 20-19) with increments of one neuron in each 
layer. For three hidden layers, the number of neurons were 
varied from 20-19-18 to 3-2-1 with increments of one neuron 
in each layer. The network trainings were repeated ten times. 
In each case, and the network generating maximum 
correlation coefficient, R, value on DB-TST, was stored and 
saved. 

 



III. RESULTS ANALYSIS AND DISCUSSION 

A summary of the network performance, in terms of R-
value and generalisation error (MAE), for the networks with 
one, two and three hidden layers are presented in Table II. 
The standard deviation of the network performances, over 
different number of hidden layer neurons, are also presented 
in the table.  

TABLE II.  PERFORMANCE COMPARISON OF ANN MODELS WITH 

DIFFERENT HIDDEN LAYERS 

  

Maximum 

Correlation 

Coefficient 

(R) 

Standard 

Deviation 

- R 

Minimum 

Mean 

Absolute 

Error 

(MAE) 

Standard 

Deviation 

– MAE 

1 

Hidden 

Layer 

Training 

Set 
0.9952 0.0271 0.0033 0.0028 

Test  

Set 
0.9968 0.0276 0.0034 0.0029 

2 

Hidden 
Layer 

Training 

Set 
0.9872 0.0147 0.0063 0.0021 

Test  
Set 

0.9907 0.0109 0.0064 0.0022 

3 

Hidden 
Layer 

Training 

Set 
0.9971 0.0027 0.0021 0.0011 

Test  

Set 
0.9981 0.0017 0.0021 0.0011 

 

The maximum R-value and the minimum generalisation 
error on both the training and test dataset was generated by 
the ANN model with three hidden layers. On the test dataset 
(DB-TST), the standard deviations of R-values of all the 
networks with three hidden layers was found to be 84% 
lower in comparison to that of the network with two hidden 
layers and 94% lower in comparison to the network with one 
hidden layer. On the training dataset (DB-TRN), the standard 
deviations of R-values of all the networks with three hidden 
layers was found to be 82% lower to that of the network with 
two hidden layers and 90% lower to that of the network with 
one hidden layer. Similar trend was found with the standard 
deviation of the generalisation error produced by ANN 
models with three hidden layers in comparison to the ANN 
models with two and one hidden layers.  

The lowest standard deviation of the performance 
parameters (R and MAE) of the ANN models with three 
hidden layers indicates greater stability and robustness of the 
developed ANN models. Although higher number of hidden 
layers increased the complexity of the network models, it 
was found to be necessary for ANN to generalise the process 
and learn the underlying relationship between the input and 
output hydrological parameter relationship. For further 
analysis, the ANN network models with three hidden layer 
were, thus, chosen. 

The correlation coefficient and generalisation error 
variations of all the trained ANN models with three hidden 
layers on the DB-TRN are presented in Fig. 2 and Fig. 3, 
respectively. The R-value in Fig. 2 is seen to rise and 
stabilise with the increase in hidden layer neurons. The trend 
is repeated in Fig. 3, with the generalisation error dropping 
and keeping relatively steady with the increase in hidden 
layer neurons. The maximum R-value of 0.9981 and 

minimum MAE value of 0.0021 was observed for the ANN 
model with 7-6-5 hidden layer neurons. The average R-value 
of the all the networks was computed to be 0.9968 with the 
average generalisation error of 0.0028. 

 

Fig. 2. Correlation coefficient (R) variations of different ANN models 

with three hidden layers on the training dataset (DB-TRN). 

 

Fig. 3. Generalisation error variations of different ANN models with three 

hidden layers on the training dataset (DB-TRN). 

The correlation coefficient and generalisation error 
variations of all the trained ANN models with three hidden 
layers on DB-TST are presented in Fig. 4 and Fig. 5, 
respectively. As evident, the trend in performance parameter 
variations of the ANN models on DB-TST was similar to 
that of the models on DB-TRN (Fig. 2 and Fig. 3). This 
presents robustness of successful network training. The 
maximum R-value of 0.9981 and minimum generalisation 
error value of 0.0021 was found out for the network with 7-
6-5 hidden layer neurons. The ANN model with 7-6-5 was 
therefore selected for further analysis and is referred to as 
NET. 

The selected ANN model (NET) is used to simulate the 
entire dataset (DB) to view the overall performance of the 
model in predicting the streamflow (daily total discharge) 
under varying input conditions. The plot of the predicted 
values with the corresponding actual values (from DB) and 
relative error is presented in Fig. 6. The trend presented by 
the predicted streamflow was in strong alignment with the 
actual streamflow variations from DB. The magnitude of the 
average relative error of the predicted values with respect to 



the actual values was 0.04%. The NET’s performance on DB 
aligns with the training and testing performance presented in 
Fig. 2 to Fig. 5. 

 

Fig. 4. Correlation coefficient (R) variations of different ANN models 

with three hidden layers on the test dataset (DB-TST). 

 

Fig. 5. Generalisation error variations of different ANN models with three 

hidden layers on the test dataset (DB-TST). 

 

Fig. 6. Performance of selected ANN model (NET) on DB. 

The accumulated streamflow (daily total discharge) value 
over the entire range of DB is presented in Fig. 7. The Figure 

presents a comparison of the actual and predicted cumulative 
data over time indicating total storage. The deviations 
between the plots are useful in determining any systemic 
under or over prediction by the ANN model. The plot of 
predicted streamflow (simulated output) is shown to be very 
close the actual streamflow data. The result further 
demonstrates the feasibility of application of ANN as a 
prediction tool. 

 

Fig. 7. A comparison of actual and predicted cumulative streamflow. 

An application of this work, for example, would be 
during times of flood where a key monitoring station has lost 
communications or been damaged, and the ANN model is 
able to reliably predict expected peak flow rates. This offers 
redundancy during times of emergency and provides 
assurances to decision makers.  

IV. CONCLUSION 

Accurate streamflow predictions would provide many 
benefits such as improved water allocation decision making, 
more timely flood forecasting and environmental watering 
regimes. This paper presents the preliminary study of an 
ANN model developed to predict streamflow in rural 
Australian water catchments.  

An Artificial Neural Network (ANN) model has been 
developed to predict streamflow using the Levenberg-
Marquardt back-propagation algorithm and using steps of 
training, testing, validation and optimisation. After 
comparison of network performance with different hidden 
layers and neuron numbers, the ANN model, NET, with the 
most favourable correlation coefficient and mean absolute 
error was selected. The selected network, NET, showed 
strong performance in predicting the streamflow (the daily 
total discharge) under varying input conditions by learning 
the underlying relationships between the hydrological 
parameters presented. Results further provide applicability of 
ANN technique under availability of limited number of input 
parameters – rainfall and water level.  

Future work will explore the use of additional input 
parameters such as soil moisture and relative humidity, and 
focus on particular forecast windows. Seasonal to sub-
seasonal (S2S; approximately two months to two weeks) will 
be a particular focus for this work with applications being 



extended towards flood forecasting, improved water 
allocation and water resource system operations. 
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