Provided by Federation ResearchOnline

COPYRIGHT NOTICE Federat|on =.E=

UNIVERSITY*AUSTRALIA

FedUni ResearchOnline
http://researchonline.federation.edu.au

This is the author’s accepted version of the following publication:

Keogh, K., Sonenberg, L. (2015) Designing for planned emergence
in multi-agent systems., 10th International Conference on
Coordination, Organizations, Institutions and Norms in Agent
Systems, COIN 2014; p. 97-113.

The version displayed here may differ from the final published version.
The final publication is available at:
http://dx.doi.org/10.1007/978-3-319-25420-3 7

Copyright © 2015, Springer-Verlag Berlin Heidelberg

https://core.ac.uk/display/212999713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.federation.edu.au/
http://dx.doi.org/10.1007/978-3-319-25420-3_7

Designing for planned emergence in multi-agent
systems

Kathleen Keogh'? and Liz Sonenberg?

1 School of Engineering and Information Technology
Federation University Australia
P.O. Box 663 Ballarat. VIC 3353 Australia.
2 Department of Computing and Information Systems
The University of Melbourne, Australia

Abstract. We present an approach for designing organization-oriented
multi-agent systems (MASs) to allow improvisation at run time when
agents are not available to exactly match the original organizational de-
sign structure. Working with system components from an existing MAS
organizational meta-model, OJAzzIC, the approach sets out five stages
for the design process. We illustrate the design approach with an incident
response scenario implemented in the Blocks World for Teams (BW4T)
environment, and show how agents at runtime can improvise - for ex-
ample they can adopt tasks even if those tasks do not precisely match a
predefined role.

Keywords: Multi-Agent Systems, Coordination, Adaptation, Organizations

1 Introduction

People coordinating in dynamic environments can do so based on predefined
roles, but also can operate with a degree of flexibility that allows individual
improvisation to achieve shared tasks. Indeed, meso-level control has been shown
to improve coordination and provide structure and collective responsibility to
otherwise ad hoc teams of people [24]. Meso-level mediation and control has
also been argued to ensure that micro-level, operational decision making does
not interfere with or cause undesirable macro outcomes [20]. Similar multi-level
approaches have been used in the design of multi-agent systems (MASs) for some
time [6].

When designing and implementing a MAS, generally the process includes
adopting a conceptual framework, developing a platform independent design,
detailed design then implementation [23]. A more generic software engineering
approach involves following a process of adapting and reusing existing meta-
models to create an organizational model for agents (e.g. [1,22]). Our focus
is on organizational meta-models and approaches that provide organizational
structures and frameworks that can be instantiated with some flexibility - to
govern agents’ behaviour but still allow improvisation — i.e. a form of planned
emergence [20].

An organization-oriented MAS is one that is not considered primarily in
terms of individual agent mental states, but involves organizational concepts
such as roles, groups, tasks and interaction protocols, thus the focus is on what
relates the structure of an organization to the externally observable behavior
of its agents. The structure needs to be general enough to allow for context
based adaptation at run time but specific enough to constrain agent’s behaviour
where necessary. An organizational meta-model defines a representation of the
MAS organization, with the choice of meta-model driven by the domain require-
ments. Organization-aware agents then can prioritise goal selection based on
organizational information as well as individual goals [5,8]. Improvisation can
be thought of as allowing agents flexibility to ignore or adapt role descriptions
based on which agents are available. The conceptual framework requires us to
adopt models for goals, roles, organizations and the domain. Sterling and Taveter
refer to this as the conceptual viewpoint [23].

In this paper we address requirements drawn from complex, dynamic do-
mains such as emergency management, where flexibility and improvisation is re-
quired. Characteristics of such settings include interdependencies between tasks,
distributed coordination between members and adaptive, emergent behaviour.
Appropriate knowledge sharing between agents is important, as is behaving with
awareness of collective objectives, so that organizational goals can be as impor-
tant as individual goals. We have previously addressed these requirements in
the specification of an organizational MAS meta-model OJAzzIC [16,17]. The
meta-model specifies necessary components and relationships. In this paper we
outline a process for the design of such organization-oriented MASs. The need
for improvisation requires specific features and the contribution of this paper
is to highlight the issues to be considered at design time regarding the meta-
model and the way it is used to specify an organization that supported run-time
improvisation.

The OJAzzIC meta-model provides a conceptual framework that builds on
features from OperA+ [14], OMACS [7] and SharedPlans [11], and has been de-
signed for situations when agents cannot rely on pre-scripted plans or pre-defined
roles for coordinated behaviour, but must dynamically coordinate knowledge
and plans. To describe the systems design approach, we adapt O-MaSE [9],
an organisation-based multi-agent software engineering methodology. At design-
time, the system requirements are described using goals and tasks, agents are
defined in terms of capabilities and potential roles that could be enacted at
run-time. Organizations are defined based on domain related roles and responsi-
bilities. Agents are aware of the organizational structures and at run-time engage
in organizational reasoning to prioritise goal selection based on organizational
policies as well as individual goals.

In the execution model behind OJAzzIC, organizational reasoning at run-
time includes an agent committing to social policies to ensure that appropriate
knowledge sharing and coordinated behaviour occurs within the organization.
The social policies operate as a meso-level, place explicit obligations on the agent
within an organization regarding coordination of knowledge and plans, and also

allow the creation of adhocracies to facilitate coordination between emerging
collectives of cooperating agents [17]. Our implemented scenario, developed in
the Blocks World for Teams (BW4T) environment [15], demonstrates features
in OJAzzIC that facilitate improvisation at run time. In specifying a series of
issues to be addressed during the design phase, we highlight the need to identify
complexities of the requirements in a domain and consider these at design time
where possible.

In the next section, we provide a brief overview of the OJAzzIC meta-model
then introduce our design considerations. In Section 4 we elaborate on each
of the stages in the design process using an example system we built for an
incident response scenario. In Section 5, we reflect on our findings, follow this in
Section 6 with pointers to related work, then offer some concluding observations
in Section 7.

2 O0OJAzzIC overview

0OJAzzIC [16,17] provides a meta-model based on a layered specification. High
level modeling completed at design time provides flexibility and allows for impro-
visation at run time. The improvised behaviour is similar to that observed in a
jazz musician who follows a high level score then improvises to add detail during
a performance. This flexibility supports planned emergence, when agents dynam-
ically combine to form a complex system [20]. In OJAzzIC, meso-level policies
can be defined at design time and instantiated at run time to facilitate coordi-
nation by creating an ad hoc organization of agents (i.e. an adhocracy) [17]. An
adhocracy is temporarily formed to achieve coordination between agents with a
shared objective. Each organization provides a context for coordination. While
an organization exists, all members know who else is involved so that appro-
priate knowledge can be shared and so that individuals can mutually adjust
their own plans to fit in with others. Social policies in OJAzzIC explicitly define
behaviour for role adoption, selection of goal objectives and communication obli-
gations [17]. To provide flexibility, in addition to agents enacting a role, agents
may adopt tasks or be allocated based on capabilities [7,16]. Figures 1 and 2
show the design time models in OJAzzIC indicating how capabilities relate to
goals and roles. More details can be found in [16,17]. A distinctive feature in
OJAzzIC that addresses the requirement of planned emergence is one that al-
lows for responsibilities in a role to be split and shared by multiple individual
coordinating agents, without a centralized coordinator. In OJAzzIC, as shown
in Figures 1 and 2, agents may play roles and thus possess the appropriate role
based capabilities, but agents may possess capabilities apart from role alloca-
tions so, if permitted, agents can improvise at a micro level (operational level)
and ‘fill in” where there is a need even if they do not match the required role
description exactly.

requires Goal ot
objective Organization Structural
Hierarchy Capability Set
Capability Set umainsl - . 1%
contains contains requires -
p1® e
requires Capability
Task
Capability ’ L.*
g
Role
1.* | possesses uses is related to

Resource

Agent

allocates

dependancy
relationship
L]

comprises

Goal Tree

Shared Plan

(Plan Recipe Library)

—

Relationship
policies

Organizational
Role

Domain functional
Role

(current goal, tasks
and allocations)

Fig. 1. Goal Task Model in OJAzzIC re-

lated to capabilities Fig. 2. Role Model in OJAzzIC

3 Design considerations

3.1 Scenario

To highlight design considerations and illustrate our requirements and proposed
design approach, we use an incident response scenario used previously [13]. The
scenario involves multiple agencies involved in rescuing injured individuals from
a disaster area. Two agencies are involved: a medical agency (Medics) and a
law enforcement agency (Officers). Medics are responsible for the rescue of in-
jured parties and delivery to an ambulance; the objectives of the Officers include
clearing away fights that break out between Bystander agents and clearing By-
standers as delegated by Medic agents. Bystander agents are from two opposing
football teams and fights may break out that need to be resolved by separating
fans into different areas.

The system is implemented using BW4T [15] and agents using the GOAL
programming language [12]. Locations in the disaster scene are represented by
rooms in a blocks world environment. Each room may contain injured individ-
uals. Only one agent is permitted in a room at a time, so a Bystander agent
in a room must be cleared before a Medic agent can enter the room to rescue
an injured party. The domain is complex and dynamic enough to require con-
siderable flexibility and coordination in agent behaviour. The problem involves
first searching for injured participants, then coordinating the rescue. If there is
no agent available to adopt a role, multiple agents may be able to coordinate in
order to achieve the associated objective.

3.2 Design questions

Considering the desire for flexibility to improvise at run time, a number of issues
must be considered at design time regarding agent knowledge and awareness:

What type of adaptation is required in the system? Organizational adaptation
can involve structural adaptation of an existing organization as well as realloca-
tion of roles used within the organization. It may also involve a revision of tasks
chosen to achieve an objective. As a dynamic domain situation involves the pos-
sibility that agents may leave and enter the organization, the re-allocation of
agents to tasks is also important. If new organizations can be instantiated at
run-time, then at design time, if this can be anticipated, organizational policies
and triggers for creation can be determined. Organizational policies can also be
specified to guide dynamic coordination of knowledge and goal prioritisation.

How complete and adaptable are roles specified during design? The system
requirements may be represented as a set of goals and a decomposition of goals
and related tasks to be completed. In many MAS organizational approaches,
the next step is to identify a set of organization/s and roles responsible for such
tasks. It is common for roles to be directly associated with objectives or goals
within an organizational MAS (e.g. [3,14,19]), so agents are associated with a
role to determine the activities the agent may adopt. We seek to enable agents to
dynamically adopt responsibility for tasks outside role-specific definitions where
appropriate to achieve system goals. We also seek to enable agents to form adhoc-
racies at run time in order to facilitate an awareness and context for coordinated
behaviour [16]. These requirements lead us to adopt the notion of representing
agents as individuals with particular capabilities and relationships separate from
role specific definitions. Agents may adopt or be assigned predefined roles, how-
ever roles can be split and agents may also be matched to potential tasks using
individual capabilities.

How much autonomy should be given to agents in terms of choosing tasks
outside of a role specification? For example, the task of clearing away bystanders
might be fulfilled by any agent type within the vicinity. However, rescuing an
injured agent and moving them to the ambulance might only be adopted by
an agent enacting the Medic role. If there is no specific ‘Medic in charge’, the
Medic agents may agree amongst themselves who is rescuing each injured agent.
Questions around leadership roles or domain specific roles and responsibilities
should be considered in the design. The system design can be configured with
flexibility where it is anticipated that agents may need to dynamically revise
objectives and agent allocations to roles or tasks.

Which potential adhocracies can be identified at design time? Adhocracies
emerge dynamically during a scenario and can cross existing organizational
boundaries. These organizations persist over some time to assist with coordina-
tion of particular objectives and to facilitate inter-organizational coordination.
The motivation to create an adhocracy is triggered by a need for coordinated
behaviour or knowledge sharing commitments. During design, anticipate situa-
tions when adhocracies may form and triggers for their creation. Create social
policies to define the triggers for creating and finalising adhocracies.

3.3 Designing an OJAzzIC based system

Based on our experience and considering the questions posed in section 3.2,
we adopt steps in the design process based on an adaptation on the O-MaSE
methodology. (For each step, the equivalent task in O-MaSE is shown in brack-
ets.) Tasks in O-MaSE map well to produce corresponding OJAzzIC components
and are consistent with our approach. Our approach is not linear, refinement and
review may result in repeating steps. In O-MaSE, goals are used to define the
objectives of the organization, whilst roles are used to define abstract positions
within the organization that can achieve a given goal or set of goals. In O-MaSE,
unlike OJAzzIC, there is no provision for splitting roles. Our approach differs
from others in separating the design of a problem solution into two distinct de-
sign components: the problem design represented as a set of goals and tasks
and the resources available described in terms of agent types and organizations.
By keeping these distinct, we aim for more flexibility at run time. We do not
presume a direct relationship between roles responsible for a goal and agents
available to adopt roles. If there is not a direct match between the goals and
the available agents’ roles, then adoption of goals can emerge at a lower level
based on agent capabilities and the capabilities required to achieve a task. We
have implemented a simple incident response system using this process in order
to clarify the design approach.

1. Define the Goal Model (O-MaSE:Model goals, Refine goals, Model domain, Model
plans, Model protocols)
— Create a high level goal decomposition of system objectives.
Break objectives into tasks that may be achieved by agents individually.
— Where possible identify multiple alternatives to achieving an objective.
— Identify dependencies between tasks and objectives, paying attention to re-
quirements of synchronisation - e.g. before(taskl,task2), concurrent(taskl,task2).
Identify autonomy and control associated with each objective or task. Identify
for each task or objective if it must be associated with any particular role.
2. Define the Organizational Model (O-MaSE:Model organizational interfaces, Model
roles)
— Identify long term organizations agents may belong to.
— Define default agent types and domain roles associated within each organiza-
tion.
— Identify any inter-agent relationships.
3. Define the Agent Capabilities Model (O-MaSE:Define roles, Model agent classes,
Model capabilities)
— List capabilities to be given to particular agent types.
— Identify capabilities required to achieve each task and thus required to fulfill
each domain role.
4. Define the Role Model (O-MaSE:Define role goals)
— Identify roles that agents of a particular type may be able to adopt within
each organization (domain roles and structural roles). e.g. Medic, Leader
— Identify responsibilities associated with roles within each organization. Map
organizational roles to objectives they are responsible for.
— Identify role relationships (e.g. dependency, authority, right to delegate etc.).

5. Establish Social Policies to be adopted within the run-time organizational contract
(O-MaSE:Define protocols, Model policies)
— role adoption responsibilities. e.g. Medic will prioritise locating injured then
rescuing injured
— knowledge sharing obligations. e.g. Medic will tell other Medics when an in-
jured agent has been located or a rescue has been completed
— organizational adhocracy creation triggers e.g. in rescue domain, if inter-agency
coordination is required, a new adhocracy will be created to ensure appropriate
communication and coordination occurs.
— obligations between agents to establish shared organizational plans for coor-
dinated tasks before goal actions are adopted.
In Section 4, we describe each stage in more detail using illustrations from our
case study.

4 Incident Response Demonstration System

4.1 Define the goal model

Defining the goal model involves the following steps: Create a high level goal de-
composition of system objectives and where possible, break objectives into tasks
that may be achieved by agents individually. After decomposing objectives into a
Goal Tree, identify if multiple alternatives plans exist to achieving an objective;
Identify dependencies between tasks and objectives, paying attention to require-
ments of synchronisation; and Identify autonomy and control associated with
each objective or task. Identify for each task or objective if it must be associated
with any particular role. Based on the objectives and tasks, design plans and
action specifications for how to achieve these.

Clear blocking
/ bystanders
Ensure safety

\\‘- Locate fights
Clear fights

Resolve Disaster

Locate injured
Rescue injured on stretcher
T ||
Rescue injured
e, /

Rescue injured Rescue injured on stretcher

Rescue injured

Rescue injured alone
Fig. 3. Goal tree - incident response system

Figure 3 shows a goal decomposition tree for the incident response scenario.
A design decision should be made regarding autonomy and initiative: For each
task - can it be actioned by any agent with the necessary skills (capabilities) or

must it be adopted only by one specific type of agent or an agent fulfilling a
particular role? Our system may be configured to treat the task of removing
blocking bystanders as a task that is only allocated to Officers, either as part
of their role, or as a task delegated by request from a Medic, or as a task that
Medic agents may also adopt by initiative if they are available. In our system,
the feature allowing a Medic agent to clear bystanders using their initiative if
available to do so may be turned on or off.

For each objective (landmark), it should be possible to identify at least one
plan for how that objective can be achieved. The plan contains a list of states
that must be achieved toward the final objective and a list of tasks or goals that
will lead to successfully reaching the objective state.

For example, within our test system the plan for locating injured involves
checking all rooms for injured and at least locating one injured agent. The plan
definition is as follows:plan(injuredLocPlan, injuredLocatedLmk, [checkedRooms,
injuredLocated], injuredLocated Goal). The corresponding Landmark objective in-
juredLocatedLmk is defined as:

landmark(injuredLocated Lmk, [checked Rooms, injuredLocated],

[at(Ag, -),injured(Ag)]).

4.2 Define the organizational model

It is necessary to identify long term organizations agents may belong to and the
agent types associated with each organization. Also, it is important to consider
adhocracies that may form and anticipate these and incorporate these at design
time. Although this hasn’t been implemented in our test system at this stage,
the OJAzzIC model allows for the dynamic formation of adhocracies at run time.

In our demonstration run-time system, three organizational structures are
created at design time: medicOrg, officerOrg and combinedOrg. For each orga-
nization, a list of objectives, a list of member agents, a set of roles and plans are
identified. The organizational belief set is initialised to include the name of each
org. The syntax org(Org, Objlist, Memberlist, Rolelist, CurrPlanID, BeliefSet)
defines an organization. The specification of each org is as follows:

org(medicOrg, [injuredRescuedLmk], [medicl,medic2,medic3], [medic], [injuredRes-
cuePlan], [orgname(medicOrg)]).

org(officerOrg, [injuredLocatedLmk, blockingBystanderRemovedLmk, fight-
LocatedLmk, fightStoppedLmk], [officerl,officer2,officer3], [officer], [injured-
LocPlan,blockingBystanderRemovedPlan,fight LocatedPlan,fightStoppedPlan],
[orgname(OfficerOrg)]).

org(combinedOrg, [blockingBystanderRemovedLmk], [medicl, officerl],
[medic,officer], [blockingBystanderRemovedPlan], [orgname(combinedOrg)]).

Based on the initial goal decomposition, high level objectives are allocated
to particular organizations. For example, the overall goal objectives allocated to

the Medic organization are to rescue injured and transport injured to hospital
using ambulances. The Officers organization has responsibility for the ensure
safety objective. Within each organization agent types can be identified. These
types may have a set of associated related roles they are capable of enacting.
Do all agents have the same capabilities or are some more specialised? For each
agent type identified, what capabilities does that agent type have? The answer
to this design question may impact upon flexibility in the final system when
adapting to changes in agent availability. In our system, all Medic agents have
the capabilities required to locate injured and enact a basic rescue. Medic agents
also have the capability to remove blocking bystanders. We can also allocate to
particular Medic agents the capability to perform a rescue on stretcher. Based
on the capability set, the agents may be allocated to roles in the run time model
or allocated (or adopt) responsibility for specific tasks.

When basic organizations have been identified, the designer needs to think
about adhocracies that may form during a simulation. Adhocracies are organi-
zations that are created in order to facilitate coordination between agents across
organizational boundaries. For example, an Officer and two Medic agents need
to work together to clear a safe exit for a complex rescue in an area of the res-
cue zone where access is limited due to a room collapse?. This complex rescue
may require multiple coordinated activities and so an agreed plan for action
and communication between these agents is required. In such a case, forming an
adhocracy organizational structure is beneficial to ensure that agents are coor-
dinated. At design time, if such an adhocracy can be anticipated, then triggers
for the creation of an adhoc organization with members from both Medic and
Officer agents based on the anticipated particular domain situation can be spec-
ified. The combinedOrg is a relatively simple test adhocracy based on Medic
agent medicl and Officer agent officerl both being in an organization responsi-
ble for removing blocking bystanders. The presence of this organization means
that when these agents perform the task of removing blocking bystanders, they
will be obligated by social policies within the organization to keep each other
updated about progress on this task.

4.3 Define the agent capabilities model

For each agent type, we list the capabilities they possess. The capabilities can
be used to match agents to tasks in the system. The capabilities can also be
associated with roles that are responsible for particular objectives as shown in
Figure 1.

The agent capabilities model provides knowledge to enable organization-
aware reasoning in terms of goal selection. In our example, Medic agents have
capabilities to locate injured, rescue injured and remove blocking bystanders.
Officer agents have capabilities to find fights, clear fights and remove blocking
bystanders. In addition to the domain capabilities, organization aware agents

3 room collapse is not implemented in the current system

have reasoning abilities to consider the organizational objectives when choos-
ing to adopt a goal. An agent will first consider adopting an active landmark
objective if it is an organizational objective and the agent is in a role that is re-
sponsible for that particular objective. Second, the agent will consider adopting
an active landmark from within an active scene in which the agent is involved
(no organizations involved). Third, the agent will consider adopting an objec-
tive if the agent is capable of fulfilling all tasks in an objective (apart from role
allocations). Fourth, the agent will consider adopting a task that is part of a
current objective if the agent is capable of achieving that task. When an agent
has a list of considered objectives, the agent will select a goal to adopt based
on a prioritisation of these objectives. For example, the Officer agent will priori-
tise locating fights over stopping fights and lastly removing blocking bystanders.
These priorities, decided at design time, are specified by the order of rules in the
program module or by explicitly defining priorities as policies.

4.4 Define the role model

The role model describes roles and responsibilities (objectives) associated with
each role within the organization. A role has an associated capability set that
defines the capabilitie(s) required in an agent to fulfill that role. Figure 2 shows
the role model in OJAzzIC and how it relates to the capabilities. An agent may
adopt or be allocated a role. In our system, for example, a medic role is defined
as follows:

role(medic, [injuredLocated Lmk, injured Rescued Lmk,

blocking Bystander Removed Lmk, rescueOnStretcher Lmk]).

This specifies that the medic role is responsible for the named objectives.
When specifying the role model, it is necessary to identify roles that agents
may be able to adopt within each organization. These may include domain roles
such as Medic or Officer and structural roles e.g. Leader. For each role, iden-
tify the responsibilities that should be associated with that role in terms of
which objectives that role is responsible for achieving. In the above example, the
medic role is responsible for four landmark objectives: injuredLocatedLmk, in-
juredRescuedLmk, blockingBystanderRemovedLmk and rescueOnStretcherLmk.
Following the definition of roles, then role relationships can be identified (e.g.
dependency, authority, right to delegate etc.). For example, Medic agents can
delegate to Officer agents to clear blocking bystanders as there is a hierarchical
dependency between the Medic and the Officer, defined as follows:
dependency(medic, officer, [blockingBystanderRemovedLmk], hierarchical).

4.5 Establish social policies

At this stage, we establish social policies to be adopted within the organizational
contract. We are focused on social policies to facilitate coordination between

cooperating agents. We are not concerned with defining sanctions to impose on
non-compliant agents although clearly in a broader open application, defining
such consequences may be essential to controlling an agent society. In OJAzzIC
agents are aware of the policies at an internal agent-level. The types of social
policies to consider include [17]:
— role adoption responsibilities. e.g. Medic will prioritise locating injured then
rescuing injured
— knowledge sharing obligations. e.g. Medic will tell other Medics when an
injured agent has been located or a rescue has been completed
— organizational adhocracy creation triggers e.g. in rescue domain, if inter-
agency coordination is required, a new adhocracy will be created to ensure
appropriate communication and coordination occurs.
— obligations between agents to establish shared organizational plans for coor-
dinated tasks before goal actions are adopted.
Social policies also make explicit the priorities to aid agents in their reasoning,
selection and adoption of goals. Priorities for goal adoption eg. Medic agents low
priority to remove blocking bystanders; priorities for role adoption e.g. Medic
agents can be allocated the Medic Role; and priorities for communication - e.g.
within an organization, inform all others of task progress.

The follow social coordination policies are directly implemented in our test
incident response system:

— An agent A can delegate a task to agent B in order to achieve an objective
if the agent A is playing a role with authority to delegate to role that B is
enacting.

— If an agent A completes a task which another agent B is dependent upon,
then agent A should tell agent B the task is completed.

— If agent A and agent B share an objective and agent A completes the objec-
tive, then agent A should tell agent B it has been completed.

— If agent A and agent B are both involved in the same scene, then when an
objective in that scene is completed, then the agent, A should inform other
agents in the scene, B that it has been completed.

— If agent A and agent B are both members of an organization O, then when
an objective for that organization is completed, then the agent, A should
inform other agents in the scene, B that it has been completed.

5 Observations

We implemented our scenario with organizationally aware Officer and Medic
agents, and also built a comparison implementation using unaware Medic and
Officer agents with the capabilities of a Medic and Officer respectively, but no
organizational reasoning, awareness or capabilities. The latter agents could be co-
ordinated by using an external coordinator, an organizational middleware agent,
to allocate objectives to these agents. Our observations are primarily based on
the performance of the organizationally aware agents. Following the design ap-
proach and considering which requirements can be given flexibility helped the

run time system to behave with that flexibility. Agents could show initiative to
adopt tasks outside role allocation. Agents engaged in knowledge sharing within
each organization so that coordinated behaviour occurred.

In the following discussion, we focus on the objective: rescuing an injured
agent, to highlight the knowledge sharing benefits gained by our organizationally
aware agents. The organizational instance defines which other agents to share
with. Unsurprisingly, the organizationally aware agents share information that
enables them to be more coordinated in their behaviour than a more basic agent.
In the unaware system, with no coordinated knowledge sharing, each basic medic
agent, when allocated the rescue task has to first individually search the potential
locations and identify where the injured agents are, before planning a rescue.
However, in the organization-aware agent system, as soon as any medic agent
locates an injured agent, this knowlege is shared with all other medic agents by
sending a message to each. This allows the organization-aware medic agents to
focus on the rescue task sooner. Further analysis is required as our test system
is expanded to focus on agents coordinating their actions to collaborate and
achieve a shared goal (when a role is split or when the goal requires multiple
agents working together). We are currently working to implement the shared
rescue task where 2 medic agents perform a complex rescue using a virtual
stretcher. In this case, the 2 collaborating agents create commitments to each
other to form the agreement on a shared plan to work together with the stretcher
rescue. Once they have both adopted this goal, they will remain committed to
each other until the objective is reached.

When rescuing, the medic agent creates a specific goal to rescue a particular
agent based on current beliefs as to the location of that injured agent. When
an injured agent is delivered to the ambulance, the environment changes and all
agents are able to perceive that change and update their beliefs. When a medic
agent no longer believes that a particular agent is injured, any active goal to
rescue that agent is dropped. When allocated the rescue objective, organization-
aware Medic agents, due to their social policy for sharing beliefs send a message
to all other medic agents when the rescue of a particular injured agent has
been completed. In this case, with access to beliefs about rescued agents, the
organization-aware agent can choose to adopt goals to rescue injured agents only
if they have not already been rescued. This avoids the creation of redundant
goals. Table 1 shows a sample of messages sent and received by medic agent,
medic3 during a run of the system. medic3 shares relevant beliefs with medicl
and medic2 because they are in an organization: medicOrg. Medicl and medic2 in
turn update their own beliefs when informed by medic3. Social policies describe
these obligations.

6 Related work

Within the field of agent oriented software engineering, there have been pro-
posals for structures and concepts in general meta-models that could be used
as components to design and build MAS [22]. Some have attempted to create
generic meta-models for MAS that could be adapted to particular situations,

messages beliefs
sent(medicl,rescued(23)) clearingRoom(’DropZone’)
sent(medic2,rescued(23)) occupiedclearRoom(’DropZone’)
received (medic2,rescued(23))|rescued(23)
received(medicl,rescued(23))|injuredRescued(23)
sent(medicl,rescued(22)) informed(rescued(23))
sent(medic2,rescued(22)) rescued(22)
received(medic2,rescued(22))|informed(rescued(22)), at(’DropZone’)
Table 1. Selection of messages and beliefs from medic3

for example, FAML [3]. These approaches are helpful to provide process and
perhaps automate the design and implementation of systems. However, being
generic, these meta-models do not address specific details or requirements such
as adaptability and flexibility. Agiiero and colleagues propose an organizational
meta-model that could be used to create an organizational model, however the
inner specifics of the organizational structure are left to a lower level of spec-
ification [1]. In our work, we use OJAzzIC as a meta-model that defines the
organizational structure and behavioural policies used to instantiate MAS orga-
nizations. OJAzzIC is not a generic meta-model, but a meta-model with specific
features that allow for flexibility in task allocation and improvisation of roles.
A number of methodologies for agent-oriented MAS design have been pro-
posed. A good overview is provided in [23]. We draw attention particularly to
organization centered approaches: OperA+ [14] and OMACS [7]. Determining
an appropriate organizational MAS design for any given scenario is an open
research problem, with some taking an empirical approach [10] and others defin-
ing generic meta-models by combining existing models e.g. JaCaMo [4] and
FAML [3]. FAML does not attempt to address the specific requirements of adapt-
ability and flexibility. Flexibility in terms of role adoption is addressed within
OperA by including capabilities in role specifications and using a gate-keeper
agent to allocate roles dynamically [2]. In this case, the gate-keeper agent selects
an agent to play a role based on the agent matching the required capabilities. If
an agent does not possess all the required capabilities, the role is not assigned.
Similarly, OMACS achieves flexibility enabling goals and agent roles to be linked
by matching capabilities dynamically. In OJAzzIC, an individual agent or set of
agents may possess the capabilities to achieve a task or objective without nec-
essarily being allocated directly to a role. We take the approach that agents do
not need to be formally allocated to all roles, particularly when an unexpected
situation emerges requiring an individual agent to improvise. We are not alone
in specifying individual agent types to describe the system requirements [18].
Within an organizational model, social relationships are defined using ab-
stractions such as roles, interactions, norms and policies. In models such as
OperA+ and OMACS, the organizational model defines a set of roles that achieve
the system goals. OperA+ represents multi-organizational interactions in two di-
mensions: specification (the organizational structure defined in terms of roles)
and enactment (agents enacting roles). In FAML, there is a distinction made
between design-time specification of organizations and run-time instantiation

models. This is similar to OJAzzIC. The social models in OperA+ and JaCaMo
are similar to our social contract. OperA+ does not suit our requirements be-
cause it needs agents available at run time with an exact match to be able to
enact the organizational roles, so flexibility relies on careful specification of the
organization at design time defining alternative atomic or composite roles. Ja-
CaMo is also built on an assumption that roles can be predefined at design time,
although it makes explicit the possibility that a number of potential schemes
can be defined with high level guidelines for instance stating the number of roles
required. This enables some flexibility at run time, although still requires that
agents who are able to enact the required roles are available.

Norms, rights and rules can be defined to constrain agent behaviour within
roles, (e.g. OperA+) or policies can be defined at design time with associated
commitments enacted at run time (e.g. OJAzzIC, O-MaSE). In FAML, the de-
sign time organization has associated policies defined for it. OJAzzIC social
policies are consistent with the organizational policies in FAML except that in
FAML policies are agent-external design time classes, whilst in OJAzzIC agents
are aware of the policies at an internal agent-level. In OJAzzIC, organizations
are run time entities created based on organizational definitions. Policies can
be defined for a particular organization at design time, then are adopted in
the organization in a run time contract of commitments between agents in the
organization.

7 Conclusion

The previously introduced organizational MAS meta-model OJAzzIC specifies
components and relationships intended to support the development of adaptive
organisation-oriented MASs. In this paper we outlined a process for the design
of such MASs. We proposed a number of questions to be considered during the
design stage, in particular, we suggested explicitly considering flexibility, coor-
dination, adaptability, autonomy and adhocracies that could be created. The
process of making explicit choices about elements of the system that can be
specified at design time was helpful in clarifying the requirements of the system
overall. In particular, in trying to identify where flexibility and potential emer-
gence can be anticipated and planned at design time, we can create a framework
for run time instantiation of organizations. Each organization provides a context
for agents regarding knowledge sharing and coordination. Additionally, we have
found it possible within the described meta-model to achieve flexibility in terms
of agents adopting tasks outside predefined roles. The organizational reasoning
model when identifying potential goals to consider includes goals that the agent
is capable of as well as goals the agent is responsible for due to role enactment.
We did not focus on dynamic coalition formation or optimisation of coordination
algorithms for the dynamic formation of MAS (e.g. [21]). However such work is
relevant and could inform the automatic creation of adhocracies in response to
dynamic and complex situations. Rather, here we focus on the organizational
meta-model and processes to be considered in designing MAS with agents that
embody appropriate awareness of the organizational structure. We address issues

around the knowledge sharing and coordination related knowledge that agents
require in order to successfully coordinate behaviour.

Our approach shows promise for building MASs capable of flexible run time
behaviour and we plan to conduct further trials to assess how organization-aware
agents cope with other challenges: for example if an agent leaves the system,
tasks are potentially unallocated creating a setting where remaining agents make
a run time decision to adopt unallocated tasks. In future, we also intend to
support implementation of policies that enable agents to achieve appropriate
coordination by creating adhocracies at run time.

Our design approach addresses the requirements of flexibility and improvisa-
tion. At design time to enable run-time adaptation, macro level roles and tasks
that achieve system objectives are to be specified. At run time, adhocracy for-
mation and instantiation of policies guide the sharing of knowledge and plans
between organization-aware agents in a particular context. This moves us closer
to the aim of facilitating planned emergence within agent organizations.

Acknowledgments We thank the anonymous reviewers and those who have
given feedback on the presentation — all of which helped improve this paper.

References

1. J. Agiiero, M. Rebollo, C. Carrascosa, and V. Julidn. Developing virtual orga-
nizations using MDD. In Proceedings of Workshop on Agreement Technologies
(WAT2009), pages 130-141, 2009.

2. H. Aldewereld, V. Dignum, C. M. Jonker, and M. B. van Riemsdijk. Agreeing on
role adoption in open organisations. KI-Kiinstliche Intelligenz, 26(1):37-45, 2012.

3. G. Beydoun, G. Low, B. Henderson-Sellers, J. J. H. Mouratidis, Gomez-Sanz,
J. Pavén, and C. Gonzalez-Perez. FAML: A generic metamodel for MAS develop-
ment. IEEE Transactions on Software Engineering, 35(6):841-863, Nov. 2009.

4. O. Boissier, R. Bordini, J. Hiibner, and A. Ricci. Unravelling multi-agent-oriented
programming. In O. Shehory and A. Sturm, editors, Agent-Oriented Software
Engineering, Heidelberg, 2014. Springer-Verlag.

5. D. Corkill, E. Durfee, V. Lesser, H. Zafar, and C. Zhang. Organizationally Adept
Agents. In 12th International Workshop on Coordination, Organization, Institu-
tions and Norms in Agent Systems (COINQAAMAS 2011), pages 15-30, Taipei,
Taiwan, May 2011.

6. D. D. Corkill and V. R. Lesser. The use of meta-level control for coordination in
a distributed problem solving network. In A. Bundy, editor, Proceedings of the
8th International Joint Conference on Artificial Intelligence. August 1983, pages
748-756. William Kaufmann, 1983.

7. S. A. DeLoach. OMACS: a framework for adaptive, complex systems. In
V. Dignum, editor, Multi-Agent Systems: Semantics and Dynamics of Organiza-
tional Models. IGI Global: Hershey, PA. ISBN: 1-60566-256-9, 2009.

8. S. A. DeLoach. O-MaSE: An extensible methodology for multi-agent systems. In
O. Shehory and A. Sturm, editors, Agent-Oriented Software Engineering, Heidel-
berg, 2014. Springer-Verlag.

9. S. A. DeLoach and G.-O. J. Carlos. O-MaSE: A customizable approach to designing
and building complex, adaptive multiagent systems. International Journal Agent
Oriented Software Engineering, 4(3), 2010.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

M. R. Franco and J. S. Sichman. Comparing and evaluating organizational mod-
els: A multi-agent programming contest case study. In Pre-proceedings The 17th
International Workshop on Coordination, Organisations, Institutions and Norms,
AAMAS, 2014.

B. Grosz and S. Kraus. The evolution of SharedPlans. In M. Wooldridge and
A. Rao, editors, Foundations of Rational Agency, volume 14 of Applied Logic Series,
pages 227-262. Springer Netherlands, 1999.

K. Hendriks and J. Dix. GOAL: A multi-agent programming language applied
to an exploration game. In O. Shehory and A. Sturm, editors, Agent-Oriented
Software Engineering, Heidelberg, 2014. Springer-Verlag.

A. Jensen, H. Alderwereld, and V. Dignum. Dimensions of organizational coordi-
nation. In K. Hindriks, M. de Weerdt, B. van Riemsdijk, and M. Warnier, editors,
Proc. of the 25th Benelux Conf. on Artificial Intelligence, pages 80-87, 2013.

J. Jiang, V. Dignum, and Y.-H. Tan. An agent based inter-organizational collab-
oration framework: OperA+. In Proceedings of Web Intelligence/IAT Workshops,
pages 21-24, 2011.

M. Johnson, C. Jonker, B. van Riemsdijk, P. J. Feltovich, and J. Bradshaw. Joint
activity testbed: Blocks world for teams (BWA4T). In H.Aldewereld et al., editors,
LNAI, ESAW 2009, volume 5881, pages 254-256. Springer-Verlag, 2009.

K. Keogh and E. Sonenberg. Adaptive coordination in distributed and dynamic
agent organizations. In S. Cranefield, M. Birna van Riemsdijk, J. Vdzquez-Salceda,
and P. Noriega, editors, Coordination, Organizations, Institutions, and Norms in
Agent System VII, LNAI volume 7254, pages 38-57. Springer-Verlag, 2012.

K. Keogh and E. Sonenberg. Coordination using social policies in dynamic agent
organizations. In T. Balke, F. Dignum, M. Riemsdijk, and A. Chopra, editors,
Coordination, Organizations, Institutions, and Norms in Agent System IX, LNAI,
volume 8386, pages 1-20. Springer, 2014.

T. Miller, B. Lu, L. Sterling, G. Beydoun, and K. Taveter. Requirements elici-
tation and specification using the agent paradigm: The case study of an aircraft
turnaround simulator. IEEE Trans. Software Eng., 40(10):1007-1024, 2014.

J. Odell, M. Nodine, and R. Levy. A metamodel for agents, roles and groups.
In Proceedings of Agent-Oriented Software Engineering (AOSE) V, volume 3382,
pages 78-92. Springer, 2005.

J. Pitt, A. Bourazeri, A. Nowak, M. Roszczynska-Kurasinska, A. Rychwalska, I. Ro-
driguez Santiago, M. Lopez Sanchez, M. Florea, and M. Sanduleac. Transforming
big data into collective awareness. Computer, 46(6):40-45, June 2013.

S. Ramchurn, A. Farinelli, K. Macarthur, and N. Jennings. Decentralized coordi-
nation in RoboCup Rescue. The Computer Journal, 2010.

V. Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam, and
S. Gaglio. The metamodel: a starting point for design processes construction. Inter-
national Journal of Software Engineering and Knowledge Engineering, 20(04):575—
608, 2010.

L. Sterling and K. Taveter. The Art of Agent-Oriented Modeling. MIT Press, 2009.
M. A. Valentine and A. C. Edmondson. Team scaffolds: How meso-level struc-
tures support role-based coordination in temporary groups, 2014. Working Paper,
Harvard Business School.

	FedUni Template - Springer
	FinalSubmissionKEOGHSONENBERG_COINJune2015

