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Abstract 8 

The purpose of this paper is to provide a proper, practical and convenient drilling rate index (DRI) 9 

prediction model based on rock material properties. In order to obtain this purpose, 47 DRI tests were 10 

conducted in the laboratory. In addition, the relevant strength properties i.e. uniaxial compressive strength 11 

(UCS) and Brazilian tensile strength (BTS) were determined and selected as input parameters to predict 12 

DRI. Examined simple regression analysis showed that the relationships between the DRI and predictors 13 

are statistically meaningful but not good enough for DRI estimation in practice.  Moreover, multiple 14 

regression, artificial neural network (ANN) and hybrid genetic algorithm (GA)-ANN models were 15 

constructed to estimate DRI.  Several performance indices i.e. coefficient of determination (R2), root 16 

mean square error (RMSE) and variance account for (VAF) were used for evaluation of performance 17 

prediction the proposed methods. Based on these results and the use of simple ranking procedure, the best 18 

models were chosen.  It was found that the hybrid GA-ANN technique can performed better in predicting 19 

DRI compared to other developed models. This is because of the fact that the proposed hybrid model can 20 

update the biases and weights of the network connection to train by ANN.  21 

Keywords: Drilling rate index, Rock material properties, Artificial neural network, Hybrid model. 22 

 23 
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1. Introduction 24 

Drillability is defined as the resistance of rock to penetrate the rock mass by a drilling system. Drilling 25 

rate index (DRI) is one of the tool to evaluate drillability of rocks. The drilling rate index (DRI) was 26 

proposed by Selmer-Olsen and Lien (1960) in order to evaluate the drillability of rocks by percussive 27 

drilling. The influential factors on DRI can be categorized into two parts, i.e. controllable and 28 

uncontrollable parameters. Bit type and diameter, thrust, blow frequency, rotational speed and flushing 29 

are considered as controllable factors on DRI, while some other parameters, like geological conditions 30 

and rock properties are defined as uncontrollable parameters of DRI (Yarali and Kahraman 2011). 31 

Drilling has a direct and may be close relationship with the rock mass and material properties (Hoseinie et 32 

al. 2008). Strength of rock has a considerable impact on drilling thrust. Strength properties of rocks play 33 

an important role in design, safety and stability of any rock structures (Khandelwal and Ranjith, 2010; 34 

Khandelwal, 2013). Therefore, recognition the most effective parameters on DRI and subsequently proper 35 

DRI prediction would help designers to select the appropriate type of drilling system. 36 

Many studies have been conducted in order to demonstrate the effects of rock (mass and material) 37 

properties on DRI (e.g. Wijk 1989; Karpuz et al. 1990; Kahraman 1999; Kahraman et al. 2000; Kahraman 38 

et al. 2003; Hoseinie et al. 2009; Dahl et al. 2012; Yarali and Soyer 2013; Macias et al. 2014; Tripathy et 39 

al. 2015; Ataei et al. 2015). A penetration rate model was proposed using stepwise linear regression 40 

analysis in the study conducted by Selim and Bruce (1970). Schmidt (1972) related the penetration rate 41 

with tensile strength, density, Young’s modulus, Shore hardness, shear modulus, longitudinal wave 42 

velocity, compressive strength, Poisson’s ratio and shear wave velocity. A rating classification for DRI 43 

prediction was established in the study carried out by Hoseinie et al. (2008). They used six rock mass 44 

properties namely Mohs hardness, grain size, uniaxial compressive strength (UCS), joint filling, joint 45 

spacing and joint dipping to predict DRI. Yarali and Kahraman (2011) proposed new relations for 46 

predicting DRI by using brittleness values of 32 different rocks. Cheniany et al. (2012) developed linear 47 

and non-linear multiple regression to estimate specific rock mass drillability (SRMD) index. In their 48 
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models, UCS, quartz content, Schmidt hammer hardness value, joint dip, alteration and fragment size 49 

(d80) were considered as predictors. Single regression models were introduced by Yarali and Soyer 50 

(2013) in order to relate DRI with several properties of rocks including UCS, Brazilian tensile strength 51 

(BTS), point load strength, Schmidt rebound hardness and Shore scleroscope hardness. They showed that 52 

rock strength is the most effective parameter on DRI.  Moein et al. (2014) measured DRI values of 53 

carbonate rock in the laboratory and indicated good relationships for predicting DRI using the alteration 54 

index and specific energy.  55 

In the field of artificial intelligent systems, there were also several attempts by previous researchers in 56 

order to predict penetration rate. An artificial neural network (ANN) approach was selected and proposed 57 

for predicting penetration rate by Akin and Karpuz (2008).  They concluded that their developed approach 58 

can provide satisfactory results in estimating penetration rate. Arabjamaloei and Karimi Dehkordi (2012) 59 

utilized adaptive neuro-fuzzy inference system (ANFIS), ANN and statistical techniques in estimating 60 

penetration rate and concluded that ANN is the best model among all developed models. A penetration 61 

rate model based on ANFIS was proposed in the study conducted by Basarir et al. (2014). They 62 

successfully showed that ANFIS results are better than the results of statistical model. In the present 63 

study, several linear and non-linear models i.e. multiple regression analysis, ANN and hybrid genetic 64 

algorithm (GA)-ANN were applied and developed to predict the DRI values using strength properties of 65 

rocks.  66 

 67 

2. Method 68 

2.1 Artificial Neural Network  69 

In ANNs, which are function approximation tools, the process of information-transfer in the human brain 70 

is imitated. Generally, ANNs are applicable to cases in which there is very complex and nonlinear contact 71 

nature between input variable(s) or predictor(s) and output of the system (Garrett 1994; Jahed Armaghani 72 
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et al. 2015a). ANNs have been designed in many types, and the most commonly-used one is the 73 

multilayer feed-forward ANN that comprises multiple layers that are connected together by a number of 74 

hidden nodes (neurons) with different connection weights (Simpson 1990). For the achievement of a 75 

desirable outcome, ANNs should be trained by means of some learning algorithms. For training ANNs, 76 

the back-propagation (BP) algorithm is the most widely-used among other learning algorithms (Dreyfus 77 

2005; Hajihassani et al. 2014; Jahed Armaghani et al. 2015b). By using BP algorithm, system error 78 

between desired and predicted values can be minimized.  The output of each hidden node is determined 79 

subsequent to the application of a transfer function, which is mostly sigmoidal function, to the net input of 80 

the hidden node. A comparison is made between the desired output (targets) and the predicted one, and 81 

then the error is computed. If this error is bigger than mean square error (MSE) or root mean square error 82 

(RMSE) values, the network should be propagated back for adjusting the connection weights.  Figure 1 83 

shows structure of BP ANN algorithm with one hidden layer.  84 

 85 

Figure 1. Structure of BP ANN algorithm with one hidden layer (Saemi et al. 2007) 86 

 87 
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2.2 Genetic Algorithm 88 

Genetic algorithm (GA) which was developed by Holland (1975) is considered as an optimization 89 

technique. This algorithm mimics the natural selection mechanism and the biological species evolution. 90 

To advance, in each decision variable, objective function evaluation is needed by GA. This is because the 91 

stochastic-based technique of GA does not need any specific information for guiding the search 92 

(Chipperfield et al. 2006). 93 

Generally, in GA, there are populations of individuals that are known as candidate solutions; each 94 

individual gradually converges over time to an optimal solution.  Each candidate solution is denoted by a 95 

linear string that consists of chromosomes represented by 0s and 1s. Total solutions form the population 96 

size together with the optimization process of each iteration is known as a generation. In GA, for the 97 

creation of the next generation, three basic genetic operators i.e. reproduction, cross-over, and mutation 98 

should be applied. The first operator or reproduction is defined as a process through which the best 99 

chromosomes are selected according to their scaled values with considering the given criteria of fitness, 100 

and then the selected chromosomes are directly transferred to the next generation. Through the cross over 101 

operator, offspring or new individuals are produced through combining particular parts of individuals 102 

(parent). Recombination is done through several ways, including single-point cross over and two-point 103 

cross over.  Nevertheless, during the process of cross over, a random cross over point and two parents are 104 

chosen. The creation of the first offspring is through the combination of the left side genes of the first 105 

parent with the right side genes of the second parent. To form the second offspring, an inverse procedure 106 

is repeated (Momeni et al. 2014).  Mutation is defined as a process during which a random change occurs 107 

in elements of a chromosome.  108 

Several studies have been conducted to enhance the performance quality and generalisation capabilities of 109 

ANNs through the use of GA algorithm (e.g. Monjezi et al. 2012; Aghajanloo et al. 2013; Momeni et al. 110 

2014).  GA is known as stochastic search algorithm; as a result, it can be performed for adjusting the 111 
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biases and weights of the ANNs to increase the performance prediction of ANNs (Momeni et al. 2014). 112 

At a local minimum, by ANNs, there is normally more probability of convergence, while GA can find a 113 

global minimum.  So, a combination of GA and ANN model (GA-ANN model) utilizes the search 114 

properties of both algorithms to enhance the network power. In this model, first, GA finds global 115 

minimum in search space, and then ANN employs it to discover the best results. A hybrid GA-ANN 116 

algorithm is displayed in Figure 2.  117 

 118 

Figure 2. Combination of GA-ANN (Saemi et al. 2007) 119 

 120 

3. Laboratory Testing  121 

Rock mass samples were collected from different published literatures (Yarali and Kahraman, 2011; 122 

Adebayo et al, 2010; Ekincioglu et al, 2013) to fulfill the aim of this research.  123 

 124 

 125 

 126 

 127 
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3.1 Uniaxial compressive strength  128 

Determination of UCS involves the use of a NX size (54 mm diameter) cylindrical specimen with length 129 

to diameter ratio of 2.5 which is loaded axially as suggested by ISRM (1979). UCS can be calculated with 130 

the help of following formula:  131 

UCS = P / A          (1)         132 

where,  133 

P – Failure load, and 134 

A – Cross-sectional area of the cylindrical specimen 135 

 136 

3.2 Tensile strength  137 

Brazilian test is used in order to determine tensile strength in the laboratory. This test is conducted based 138 

on the fact that mostly rocks in biaxial stress fail in tension at their uniaxial tensile strength (Jaeger 1967). 139 

The test should be conducted in accordance with ISRM (1978) standard. Tensile strength can be 140 

calculated with the help of following formula:  141 

TS = 2.P / π.d.t                (2) 142 

Where,  143 

P = Failure load, and 144 

d = Diameter of the disc 145 

t = Thickness of the disc 146 

 147 

3.3 Drilling Rate Index (DRI) 148 

Drillability of rocks are examined on the basis of the DRI. The DRI is defined as a combination of the 149 

intact rock specimen brittleness value (S20) test which was proposed by Matern and Hjelmer (1943) and 150 

Sievers’ J-Value (SJ) miniature drill-test which was proposed by Sievers (1950). The SJ test is considered 151 

as an indirect measure of rock resistance to tool indentation (surface hardness); the brittleness value, S20, 152 

is an indirect measure of rock resistance to crack growth and crushing. 153 
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3.3.1 The Brittleness Test  154 

In this study, S20 values were measured by using the Swedish Stamp Test (see Figure. 3). The test is 155 

started by putting the rock aggregate in a mortar and then by using a 14 kg hammer, struck 20 times.  The 156 

mortar aggregate volume corresponds to that of a 0.5 kg aggregate with a density of 2.6 5 tons/m3 in the 157 

fraction 11.2 - 16.0 mm. S20 equals the percentage of undersized material that passes through a 11.2 mm 158 

mesh after the drop-test. S20 should be taken as a mean value of three or four parallel tests.  159 

 160 

 161 

Figure 3. Outline of the brittleness test (Dahl 2003) 162 

 163 

3.3.2 The Sievers’ J (SJ) miniature drill test 164 

The second DRI parameter which is the SJ value, can be obtained from a miniature drill test. After 200 165 

revolutions, in the rock sample, the hole depth is measured in 1/10 mm. A mean value of four - eight test 166 

holes should be used. Parallel to rock foliation, the SJ values are always measured for created holes. 167 

Outline of the Sievers’ J miniature drill test is shown in Figure 4.  168 
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 169 

Figure. 4. Outline of the Sievers’ J miniature drill test (Dahl 2003) 170 

 171 

3.3.4 Assessment of DRI 172 

After measuring S20 and SJ values, DRI can be determined by using the Figure 5. Based on this figure, 173 

DRI values can be determined using both brittleness and SJ values. Table 1 shows DRI classification 174 

rating for various categories.  175 

 176 

Figure. 5 The graph for determination of DRI using S20 and SJ (Bruland 1998) 177 
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Table 1 Classification of rocks considering DRI rating 178 

S. No. Category  DRI 

1 Extremely low   21 

2 Very low  28 

3 Low  37 

4 Medium  49 

5 High  65 

6 Very high  86 

7 Extremely high  114 

 179 

4. DRI Prediction  180 

In order to solve the engineering problem, simple regression equations are conducted in the first step. The 181 

used parameters and their categories and ranges are shown in Table 2. Based on this table, UCS and BTS 182 

were considered as model inputs in this study to predict DRI.  183 

Table 2 Basic statistical description of input and output parameters 184 

Parameter Unit Category Symbol Min Max Mean 

Uniaxial compressive strength MPa Input UCS 28.6 182.1 95.5 

Brazilian tensile strength  MPa Input BTS 2.57 17.07 8.68 

Driling rate index - Output DRI 22 86 55.26 

 185 

The simple regression analyses were performed between the DRI and predictor parameters i.e. UCS and 186 

BTS. The obtained results from simple regression analysis are not good enough to be utilized to solve the 187 

problem. Due to this reason, to obtain the better model for prediction of DRI, multiple regression 188 

analysis, ANN and hybrid GA-ANN techniques were also conducted using established dataset. The 189 

procedure of each modelling technique was described in the following sections.  190 

 191 
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4.1 Simple Regression  192 

In order to examine the effect of input parameters, the simple regression analyses were constructed 193 

between the DRI and other mentioned parameters including UCS and BTS. Subsequently, new equations 194 

introduced for estimation of DRI.  In order to obtain equations with higher performance capacity, various 195 

simple regression analyses such as; linear, exponential, power and logarithmic were performed. The 196 

selected equations to predict DRI using UCS and BTS are presented in Equations 3 and 4, respectively.  197 

DRI = - 26.96 × ln (UCS) + 176.29  (R2 = 0.396)    (3) 198 

DRI = - 31.15 × ln (UCS) + 120.86  (R2 = 0.411)    (4) 199 

The reliability of the developed relationships was evaluated by comparing the obtained coefficient of 200 

determination (R2) values for each analysis.   As it can be seen in Equations 3 and 4, the logarithmic 201 

relationships give the best relatively results in estimating DRI among all utilized-equation types.  R2 202 

values of 0.396 and 0.411 were obtained for predicting DRI considering UCS and BTS data, respectively.  203 

The purposed relationships between the DRI and input parameters i.e. UCS and BTS are given in Figures 204 

6 and 7. The results indicated that the relations between the input parameters and DRI are meaningful but 205 

not good enough for estimation of the DRI in practice. These relationships indicated that maybe multi-206 

inputs are required to predict the DRI, so, various modelling techniques namely multiple regression 207 

analysis, ANN and GA-ANN were also constructed.  208 
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 209 

Figure 6. Relationship between measured DRI and UCS values 210 

 211 

Figure 7. Relationship between measured DRI and BTS values 212 

 213 

4.2 Multiple Regression  214 

The multiple regression (MR) technique aims at determining the values of parameters for a function that 215 

causes the function to best fit a provided set of data observations.  The function is a linear (straight-line) 216 
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equation in this technique.  In cases where more than one independent variable exists, MR is employed in 217 

order to achieve the best-fit equation.  MR can solve the engineering problems through performing a least 218 

squares fit.  By employing this techniques, some coefficients are suggested by means of the backslash 219 

operator (Khandelwal and Monjezi 2013).  The MR equation type is presented as follows (Jahed 220 

Armaghani et al. 2015c): 221 

𝑦𝑦 = 𝑎𝑎 +  𝑏𝑏1𝑥𝑥1 +  𝑏𝑏2𝑥𝑥2 +  𝑏𝑏3𝑥𝑥3 + ⋯+ 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛      (5) 222 

where,  223 

𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 are independent variables,  224 

𝑏𝑏1,𝑏𝑏2,𝑏𝑏3, … , 𝑏𝑏𝑛𝑛 are coefficients of independent variables, and   225 

y is output of the system. 226 

To predict DRI using MR technique, actual DRI values are considered to be the product of the 2 input 227 

parameters namely UCS and BTS.  As a first step of MR modelling, all data should be normalized 228 

considering the below equation: 229 

Xnorm = (X – Xmin) / (Xmax-Xmin)       (6) 230 

Where,  231 

Xnorm is the normalized value of the measured parameters,  232 

X, Xmin and Xmax are the measured, minimum and maximum values of the measured 233 

parameters, respectively.  234 

Afterwards, 5 datasets were chosen randomly to train and test for proposing MR models to evaluate the 235 

capability of the purposed model for estimation of the DRI as suggested by Zorlu et al. (2008), Yagiz et 236 

al. (2009).  In the literature, 20% (Swingler 1996) of whole datasets and also a range of 20%-30% 237 

(Nelson and Illingworth 1990) of whole datasets were recommended for testing of the system. Based on 238 

above discussion, 80% (38 datasets) of whole datasets (47 datasets) was chosen randomly for developing 239 
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the models, whereas the remained 20% (9 datasets) of data was assigned for testing. It should be noted 240 

that, an ANN code was used for the selection of the random data. Using the built datasets, five multiple 241 

input equations were developed as shown in Table 3. 242 

It is concluded that, the R2 values range from 0.391 to 0.451 for training and 0.325 to 0.760 for testing of 243 

the MR models. In these models, UCS and BTS were considered as inputs and then, the DRI was 244 

estimated as function of them. As a result, it is found that there is no salient difference among the 245 

developed models. More details regarding evaluation of the developed MR equations are given later. Note 246 

that, simple and MR regression analysis were performed using statistical software package of SPSS 247 

version 16 (SPSS 2007). 248 

Table 3 MR equations together with the coefficient of correlation for testing and training 249 

Dataset 
No. 

Developed Relationship 
Training 

R2 

Testing 

R2 

1 DRI =  −0.342 × UCS − 0.451 × BTS + 0.845 0.403 0.714 

2 DRI =  −0.638 × UCS − 0.315 × BTS + 0.927 0.451 0.325 

3 DRI =  −0.370 × UCS − 0.447 × BTS + 0.892 0.391 0.501 

4 DRI =  −0.391 × UCS − 0.493 × BTS + 0.898 0.430 0.344 

5 DRI =  −0.406 × UCS − 0.447 × BTS +0.879 0.398 0.760 

 250 

 251 

4.3 ANN Modelling 252 

In the ANN modeling, the same datasets utilized in the multiple regression part were performed. As 253 

mentioned by Kanellopoulas and Wilkinson (1997) and Hush (1989), ANN ability is directly related to its 254 

architecture.  So, to design a desirable ANN model, determining the optimal architecture is needed.  As a 255 

well-known fact, architecture of an ANN model is defined as the number of hidden layer or layers and the 256 

number of neuron or neurons in each hidden layer.  Based on several scholars (e.g. Hecht-Nielsen 1987; 257 
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Hornik et al. 1989), hidden layer equal to 1 can approximate any complicated function.  Then, hidden 258 

layer = 1 was chosen to construct the ANN networks. Additionally, Table 4 presents some of the available 259 

proposed equations for determining the number of neuron(s) together with their references.  According to 260 

this table and considering Ni = 2 and No = 1, a range of 1-5 should be utilized in the hidden layer.  261 

Table 4 The proposed number of neuron for hidden layer (Sonmez et al. 2006) 262 

Heuristic Reference 

≤ 2 × Ni + 1 Hecht-Nielsen (1987), Caudill (1988) 

(Ni + N0)/2 Ripley (1993) 
 

2 +  𝑁𝑁0  ×  𝑁𝑁𝑖𝑖 + 0.5 𝑁𝑁0  × �𝑁𝑁02 + 𝑁𝑁𝑖𝑖� − 3
𝑁𝑁𝑖𝑖 + 𝑁𝑁0

 Paola (1994) 

2Ni /3 Wang (1994) 

�𝑁𝑁𝑖𝑖  × 𝑁𝑁0 Masters (1994) 

2Ni Kaastra and Boyd (1996) 
Kannellopoulas and Wilkinson (1997) 

        Ni : number of input neuron, N0: number of output neuron. 263 

To determine the optimum number of neurons in the hidden layer, various ANN networks were modelled 264 

using one hidden layer and number of hidden neurons in the range of 1 to 5.  The relevant results in terms 265 

of R2 and RMSE can be seen in Tables 5 and 6, respectively.  According to these tables, considering 266 

average R2 and RMSE values of both training and testing datasets, model No. 3 with hidden neurons of 3 267 

outperforms the other ANN models. Therefore, 3 was selected as number of hidden neuron in 268 

constructing ANN models in this study. Levenberg–Marquardt (LM) learning algorithm was used in 269 

constructing ANN models. The efficiency of the LM algorithm in comparison with the other conventional 270 

gradient descent techniques has been highlighted in the study conducted by Hagan and Menhaj (1994). 271 

ANN results of model No. 3 (all five iterations) were considered as the best ANN results for predicting 272 

DRI. More explanations regarding the selecting the best ANN network are given later.  273 

 274 

 275 

 276 
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Table 5 R2 values of the constructed ANN models to predict DRI for selecting the optimum number of 277 

hidden node 278 

Model 
No. 

Nodes 
in 

hidden 
layers 

Obtained Results of Network  

Run 1  Run 2  Run 3  Run 4  Run 5  Average 

R2  R2  R2  R2  R2  R2 

Train
ing 

Testi
ng  Train

ing 
Testin

g  Train
ing 

Testin
g  Train

ing 
Testi

ng  Train
ing 

Testi
ng 

 Train
ing 

Testin
g 

1 1 0.773 0.298  0.812 0.183  0.769 0.429  0.814 0.337  0.787 0.404  0.791 0.330 

2 2 0.801 0.348  0.823 0.581  0.826 0.654  0.830 0.638  0.839 0.674  0.824 0.579 

3 3 0.855 0.824  0.827 0.839  0.835 0.838  0.819 0.807  0.859 0.821  0.839 0.826 

4 4 0.841 0.811  0.837 0.821  0.801 0.792  0.822 0.81  0.833 0.832  0.827 0.813 

5 5 0.845 0.834  0.811 0.838  0.817 0.820  0.829 0.815  0.842 0.809  0.829 0.823 

 279 

Table 6 RMSE values of the constructed ANN models to predict DRI for selecting the optimum number 280 

of hidden node 281 

Model 
No. 

Nodes 
in 

hidden 
layers 

Obtained Results of Network 

Run 1  Run 2  Run 3  Run 4  Run 5  Average 

RMSE  RMSE  RMSE  RMSE  RMSE  RMSE 

Train
ing 

Testi
ng  Train

ing 
Testin

g  Train
ing 

Testin
g  Train

ing 
Testi

ng  Train
ing 

Testi
ng 

 Train Test 

1 1 0.135 0.319  0.137 0.274  0.155 0.251  0.149 0.231  0.132 0.244  0.142 0.264 

2 2 0.134 0.460  0.148 0.252  0.146 0.226  0.140 0.211  0.144 0.144  0.142 0.259 

3 3 0.157 0.106  0.157 0.090  0.130 0.122  0.144 0.108  0.106 0.088  0.139 0.103 

4 4 0.162 0.111  0.172 0.096  0.122 0.134  0.139 0.129  0.145 0.110  0.148 0.116 

5 5 0.160 0.092  0.170 0.103  0.133 0.125  0.141 0.131  0.128 0.134  0.146 0.117 

 282 

4.4 GA-ANN Modelling 283 

As mentioned before, GA can efficiently improve the ANN performance and remove its limitations (e.g. 284 

Lee et al. 1991; Majdi and Beiki 2010; Rashidian and Hassanlourad 2013).  The most frequently-cited 285 

advantage of GAs is the capability of these algorithms in escaping from being trapped in a local optimum 286 

(Chambers 2010). Chambers (2010) showed that with the use of a GA or at least a hybrid GA, an 287 

appropriate objective function can be freely selected. It can be concluded that the network connection 288 
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weights and biases are optimized with GA instead of random generation. The hybrid GA-based ANN 289 

model can be referred to (Hagan and Menhaj 1994) for more details. 290 

To propose hybrid GA-ANN model for DRI prediction, the most influential GA parameters should be 291 

designed. To do this, several parametric investigations were carried out to find optimum GA parameters. 292 

In the hybrid GA-ANN model, the mutation probability was set to 25% of the population size; whereas 293 

the percentage of recombination was fixed at 9% and value of 1% was applied as utilized by Momeni et 294 

al. (2014).  The single point cross-over was used with 70%possibility.  Numerous selection methods have 295 

been proposed in the literatures regarding cross-over operation; however, the tournament selection 296 

method was employed to generate two offspring from two parents (Momeni et al. 2014).  It should be 297 

mentioned that the mutation probability and cross-over possibility were determined using trial-and-error 298 

method. 299 

Finding the best population size is the next step of the hybrid GA-ANN.  In this regard, several GA-ANN 300 

models were built with population sizes in range of 25 to 600 as shown in Table 7. In these models, the 301 

suggested ANN architecture and maximum generation of 100 were utilized. In the Table 7, the R2 and 302 

RMSE values were tabulated for training and testing datasets of each model.  Generally, increment in 303 

population size causes the increase in R2 values and decrease in RMSE values.  Since selection of the best 304 

model is too difficult, a simple ranking method proposed by Zorlu et al. (2008) was performed to obtain 305 

the optimum population size.  Based on this method, each performance index was ordered in its class and 306 

the best performance index was assigned the highest rating.  As an example, R2 values of 0.426, 0.437, 307 

0.425, 0.386, 0.420, 0.372, 0.443, 0.480, 0.661, 0.753, 0.842, 0.921, 0.927 and 0.931 were obtained for 308 

training datasets of models 1 to 14, respectively. Hence, their ratings were assigned as 5, 6, 4, 1, 3, 2, 7, 8, 309 

9, 10, 11, 12, 13 and 14, respectively.  This procedure was repeated for results of RMSE as well.  After 310 

this process, the obtained ratings of performance indices for training and testing datasets were summed up 311 

in each model as shown in the last column of Table 7 (total rank).   Based on obtained total rank values, 312 
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model No. 12 can provide higher performance capacity compared to other models. Therefore, population 313 

size of 500 was chosen in modeling of GA-ANN technique. 314 

Table 7 Effects of population size on network performance 315 

Model 
No. 

Population  
Size 

Network Result Ranking 
Total 
Rank Train  Test Train  Test 

R2 RMSE  R2 RMSE R2 RMSE  R2 RMSE 

1 25 0.426 0.200  0.223 0.217 5 5  1 2 13 

2 50 0.437 0.194  0.561 0.181 6 7  6 4 23 

3 75 0.425 0.182  0.341 0.253 4 8  2 1 15 

4 100 0.386 0.195  0.486 0.213 1 6  4 3 14 

5 150 0.420 0.201  0.506 0.175 3 4  5 5 17 

6 200 0.372 0.207  0.658 0.153 2 2  9 7 20 

7 250 0.443 0.203  0.456 0.158 7 3  3 6 19 

8 300 0.480 0.182  0.632 0.147 8 8  8 9 33 

9 350 0.661 0.171  0.592 0.152 9 9  7 8 33 

10 400 0.753 0.154  0.778 0.137 10 10  10 11 41 

11 450 0.842 0.148  0.851 0.131 11 11  11 13 46 

12 500 0.921 0.139  0.932 0.122 12 13  14 14 53 

13 550 0.927 0.140  0.921 0.135 13 12  13 12 50 

14 600 0.931 0.138  0.913 0.144 14 14  12 10 50 

 316 

Determination of maximum number of generation (Gmax) is the next step of GA-ANN modelling 317 

procedure. To recognize the effect of Gmax on the network’s performance, one more parametric study was 318 

conducted. The number of generation was set to be 500 in order to determine the optimum number of 319 

generation. To do this, 14 models presented in Table 7 were constructed again using the mentioned 320 

maximum generation number (500). Figure 8 shows the importance of the number of generation to the 321 

network performance for predicting DRI. As displayed in this figure, there is no changes in the network 322 

performance (RMSE) after generation number = 300. Hence, the optimum number of generation was set 323 

to be 300 in design of GA-ANN models. It is worth mentioning that in determining number of generation, 324 

the other mentioned network parameters were kept constant. 325 
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 326 

Figure 8. The effect of the number of generation on the network performance 327 

In the final step of hybrid GA-ANN modelling, by using three different factors namely the suggested 328 

ANN structure (2 × 3 × 1), 5 randomly selected datasets, and determined GA parameters, five hybrid 329 

models were constructed. Evaluation of the obtained results of the hybrid models together with its 330 

discussion will be given later.  331 

 332 

5. Evaluation of the Results  333 

In this study, several techniques i.e. multiple regression, ANN and GA-ANN were applied and proposed 334 

for DRI prediction. Here, all 47 datasets were randomly selected to 5 datasets (to training and testing 335 

purposes) for developing the linear and non-linear models. For evaluation of  the prediction performance, 336 

several performance indices including R2, amount of variance account for (VAF) and RMSE were 337 

considered and computed: 338 
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R2 = 1 −  ∑ (𝑦𝑦−y′)2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦−ỹ)2𝑁𝑁
𝑖𝑖=1

         (7) 339 

VAF = [1- var (y−y′)
var (y)

 ] × 100        (8) 340 

RMSE = �1
N
∑  (y − y′)2N
i=1         (9) 341 

Where,  342 

y, y′ and ỹ are the measured, predicted and mean of the y values respectively,  343 

N is the total number of data and  344 

P is the number of predictors.  345 

Results of the mentioned indices for training and testing datasets are tabulated in Table 8. As shown in 346 

this table, selecting the best model for DRI estimation is not easy. To overcome this difficulty, as 347 

mentioned before, a simple ranking procedure developed by Zorlu et al. (2008) was used. A ranking value 348 

was computed and assigned for each training and testing dataset separately (see Table 8). The obtained 349 

total rank results for the developed models are shown in Table 9. Based on Table 9, model No. 4 350 

exhibited the best performance of DRI prediction for MR technique, while models No. 5 and 1 yielded the 351 

best results of ANN and GA-ANN techniques, respectively. Therefore, the hybrid GA-ANN models can 352 

provide higher prediction performances in predicting DRI compared to other developed models (ANN 353 

and MR). The selected MR equation (model No. 4) is shown as follows: 354 

DRI =  −0.391 × UCS− 0.493 × BTS + 0.898      (10) 355 

 356 

 357 

 358 

 359 
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Table 8 The obtained performance indices for treaining antesting and their ranges for proposed models 360 

Method Model R2 RMSE VAF Rating for 
R2 

Rating for 
RMSE 

Rating for 
VAF Rank value 

MR 

Training 1 0.403 0.201 40.304 3 4 3 10 
Training 2 0.451 0.205 45.051 5 2 5 12 
Training 3 0.391 0.202 39.065 1 3 1 5 
Training 4 0.430 0.199 43.028 4 5 4 13 
Training 5 0.398 0.221 39.750 2 1 2 5 

        
Testing 1 0.714 0.204 45.537 4 1 3 8 
Testing 2 0.325 0.185 0.539 1 3 1 5 
Testing 3 0.501 0.195 48.802 3 2 4 9 
Testing 4 0.344 0.150 34.134 2 4 2 8 
Testing 5 0.760 0.093 71.843 5 5 5 15 

        

ANN 

Training 1 0.855 0.157 85.466 4 2 4 10 
Training 2 0.827 0.157 82.576 2 2 2 6 
Training 3 0.835 0.130 83.419 3 4 3 10 
Training 4 0.819 0.144 81.438 1 3 1 5 
Training 5 0.859 0.106 85.934 5 5 5 15 

        
Testing 1 0.824 0.106 82.316 3 3 3 9 
Testing 2 0.839 0.090 83.882 5 4 5 14 
Testing 3 0.838 0.122 82.773 4 1 4 9 
Testing 4 0.807 0.108 77.351 1 2 1 4 
Testing 5 0.821 0.088 82.061 2 5 2 9 

        

GA-ANN 

Training 1 0.933 0.071 93.066 3 4 4 11 
Training 2 0.926 0.111 92.090 2 2 2 6 
Training 3 0.948 0.066 94.772 5 5 5 15 
Training 4 0.937 0.076 93.046 4 3 3 10 
Training 5 0.921 0.119 91.909 1 1 1 3 

        
Testing 1 0.940 0.077 94.037 3 3 4 10 
Testing 2 0.945 0.058 94.457 4 4 5 13 
Testing 3 0.935 0.090 92.341 2 2 1 5 
Testing 4 0.929 0.053 92.845 1 5 2 8 
Testing 5 0.946 0.098 93.636 5 1 3 9 

        
 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 
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Table 9 Obtained total rank results for the developed models 371 

Method Model Total rank 

MR 

1 18 
2 17 
3 14 
4 21 
5 20 
  

ANN 

1 19 
2 20 
3 19 
4 9 
5 24 
  

GA-ANN 

1 21 
2 19 
3 20 
4 18 
5 12 
  

 372 

The graphs of predicted DRI using the MR, ANN and GA-ANN techniques against the measured DRI for 373 

training and testing datasets are shown in Figures 9 to 11, respectively. Based on the presented figures, 374 

the GA-ANN model can perform better in estimating DRI compared to other proposed models. Based on 375 

these figures, the R2 equal to 0.940 for testing dataset suggests the superiority of the hybrid GA-ANN 376 

model, while these values are 0.821 and 0.344 for ANN and MR models, respectively. This shows the 377 

capability of the hybrid GA-ANN technique to predict DRI. 378 
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 379 

Figure 9. Predicted DRI values by MR model against the Measured DRI  380 

 381 

Figure 10. Predicted DRI values by ANN model against the Measured DRI  382 
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 383 

Figure 11. Predicted DRI values by GA-ANN model against the Measured DRI  384 

6. Sensitivity Analysis 385 

In this study, sensitivity analysis was performed to investigate the impacts of each input parameter on the 386 

output(s) using the cosine amplitude method (Yang and Zang 1997). All data pairs were utilized to 387 

construct a data array X as follows: 388 

𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑛𝑛}        (11) 389 

Variable xi in array X is a length vector of m as: 390 

𝑥𝑥𝑖𝑖 = {𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3, … , 𝑥𝑥𝑖𝑖𝑖𝑖}        (12) 391 

The strength of the relationship �𝑟𝑟𝑖𝑖𝑖𝑖� between datasets 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖 can be expressed as follows:  392 

rij =
∑ xikxjkm
k=1

�∑ x2ik ∑ x2ikm
k=1

m
k=1

         (12) 393 
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Figure 12 displays the strengths of the relationships between the input variables and output (DRI).  The 394 

results show that among UCS and BTS, BTS is the most effective factor on the DRI. 395 

 396 

Figure 12. The effect of input parameters on the DRI 397 

7. Conclusions  398 

In this study, an attempt has been made to predict DRI by using strength properties of rock. To achieve 399 

this aim, DRI tests were conducted in the laboratory. In order to estimate DRI, two strength properties of 400 

rock namely UCS and BTS were chosen as model inputs. Based on simple regression models, the 401 

relationship between the DRI and input variables are acceptable and meaningful. Since each mentioned 402 

parameter has good relationship with the DRI, multiple regression, ANN and GA-ANN models were also 403 

generated to achieve the best accurate result.  404 

In order to develop multiple-input models, the established datasets were divided into training and testing 405 

parts as suggested in the literature. Further, five different dataset for training and testing were established 406 

randomly to obtain the best models for each modeling technique. Developed models are compared to each 407 

other for choosing the best model among them. For selecting the best model, obtained R2 and total rank 408 
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for each model were computed and compared. As considering the testing datasets, the prediction 409 

performance of the GA-ANN model (R2 = 0.940) is higher than that of the ANN model (R2 = 0.821) and 410 

MR (R2 = 0.344). Also, on taking into considering the training datasets, similar results were also obtained 411 

(R2 = 0.430; 0.859; 0.933, respectively). It was found that the hybrid GA-ANN technique shows the best 412 

result compared to other models.  Additionally, results of sensitivity analysis showed that the effect of 413 

BTS on DRI is slightly higher than the effect of UCS.  414 
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