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Abstract

A microwave heat exchanger (MHE) is a device which converts microwave (MW) energy

into usable form of heat energy. The working principle of the MHE is based on a collective

effect of electromagnetic wave propagation, heat transfer and fluid flow, so the development

of an efficient device requires complicated experimentation with processes of different phys-

ical nature. A peculiar phenomenon making the design of MHE even more challenging is

thermal runaway, a nonlinear phenomenon in which a small increase in the input power

gives rise to a large increase in temperature. Such high temperature may result in ma-

terial damage through excessive thermal expansion, cracking, or melting. In this Thesis,

we report on an initial phase in the development of a computational model which may

help clarify complicated interaction between nonlinear phenomena that might be difficult

to comprehend and control experimentally.

We present a 2D multiphysics model mimicking operation of a layered MHE that simu-

lates the nonlinear interaction between MW, thermal, and fluid flow phenomena involved in

the operation of the MHE. The model is built for a triple layered (fluid-ceramic-fluid) MHE

and is capable of capturing the S- and SS-profiles of power response curve which determines

steady-state temperature solution as a function of incident power.

The model is implemented on the platform of the COMSOL Multiphysics modeling

software. We show that a MHE with particular thickness and dielectric properties of the

layers can operate efficiently by keeping temperatures during thermal runaway under con-

trol. Overall temperatures increase rapidly as soon as the local maximum temperature

reaches a critical value. This condition is held true both in absence and in presence of

fluid flow. It is demonstrated that the efficiency of the MHE dramatically increases when

thermal runaway is achieved. As the amount of heat energy, which is being transferred to

the fluid from the heated dielectric, increases, incident power required to achieve thermal

runaway also increases. It is also shown that, with appropriate length of the layered MHE,
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thermal runaway can be achieved at a lower power level. While the model developed in this

Thesis studies the basic operation of a three layered MHE, it can further be developed to

investigate optimum design parameters of the MHE of other structures so that maximum

thermal efficiency is achieved.
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Significance of This Work

Traditionally microwave (MW) heating has been utilized in many applications such as

processing of food products, microwave assisted chemistry, high temperature treatment

of materials, etc. Relatively new devices are Microwave Heat Exchangers (MHE) which

are used in solar thermal collectors, wireless energy transmissions, and microwave thermal

thrusters. Future applications include beamed energy harnessing where a satellite is used to

collect and convert solar energy into microwaves that will then be beamed to earth to help

contribute to the energy production, and beamed energy propulsion where electromagnetic

heating is utilized to create a thrust that can improve current rocket propulsion capabilities.

A common thread in these technologies is the conversion of electromagnetic energy into a

mechanically useful form.

Microwave heat exchnagers (MHE) allow conversion of MW energy into heat energy. In

this work, we have developed the first numerical model of an efficient triple layered MHE.

The model can help understand coupled interaction between multiple physical phenomena

involved in the operation of a MHE. Further, the model can help engineers to decide on

optimum design parameters so that maximum thermal efficiency is achieved.
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Chapter 1

Introduction

1.1 Background

A heat exchanger is a device used to transfer heat between a solid object and a fluid, or

between two or more fluids (Frass in [1], Bergman et al. in [2], Kays in [3]). Household

refrigerators, internal combustion engines used in cars, air conditioning systems, water

heaters, etc., are some examples of popular heat exchnagers. Functional requirement of a

heat exchanger depends on the application. An air conditioner efficiently extracts heat from

the surrounding to provide cooling effect whereas a water heater supplies heat in order to

heat the water. An electromagnetic heat exchanger converts electromagnetic (EM) energy

into heat energy. Thus the functional requirement of an EM heat exchanger is to provide a

mean of efficiently extracting heat energy from a material which is heated by EM waves.

Electromagnetic heating may occur due to two different sources (Metaxas in [4] and

Willert-Porada in [5]). Eddy currents are generated in an electrically conducting material

when in contact with alternating electric field. The eddy currents then flow through the

resistance of the material, and heat it by Ohmic heating. Induction heaters are an example

of such a heating. Microwave (MW) heating, also called as dielectric heating, occurs when

an alternating electric field propagates through a material which contains polar molecules

having an electric dipole moment. Since polar molecules have tendency to align themselves
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with the electric field, they rotate rapidly when oscillating electric field penetrates in such a

material. Temperature is a function of kinetic energy, and such rotation of dipoles increases

average kinetic energy of molecules which in turn heats up the material. Heat generation

during MW heating depends on the imaginary part of complex permittivity, also called

as the loss factor, of the material. If the permittivity of a material is complex then the

material is considered as a lossy material. When electric field propagates in a lossy ma-

terial, its amplitude decays due to EM losses in the material. For some materials such

as lossy ceramics, the imaginary part of the permittivity increases exponentially (Hill and

Jennings in [6]) with temperature, which creates a positive feedback loop between complex

permittivity and temperature. Such a positive feedback causes loss factor to increase even

further as temperature increases, and thus might lead to a large temperature increase called

as thermal runaway. Lossy ceramics that undergo thermal runaway can be either porous

or containing fluid channels to accommodate continuously flowing coolant extracting heat

from the lossy ceramic.

EM heat exchangers that operate in the range of microwave frequencies are called mi-

crowave heat exchangers (MHE). They are used in such applications such as solar thermal

collector (Jamar et al. in [7]), wireless energy transmissions (Jawdat et al. in [8]), and

microwave thermal thrusters (Parkin et al. in [9]), and others. Work is being done to use

a satellite to collect and convert solar energy into MW that is then beamed to Earth in

order to help contribute to energy production. From the other direction, energy generated

on Earth could be transmitted to satellites to add to the power being generated by solar

panels. In addition, beamed energy propulsion has also been proposed as a method of im-

proving current rocket propulsion capabilities (Landis in [10], Coopersmith and Davis in

[11]). One of the essential components in such applications is a MHE that can efficiently

convert microwave energy into usable form of heat energy.

The working principle of MHE is governed by the nonlinear coupling between elec-

tromagnetic wave propagation, internal energy conservation, and fluid flow mass and mo-

mentum conservation, and thus require particularly extensive experimental developments.
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Figure 1.1: (a) 3D simple parallel flow, and (b) 2D simple parallel flow heat exchanger.

Computational models may help clarify complicated interaction between nonlinear phenom-

ena which might be difficult to comprehend and control experimentally. This raises demand

on multiphysics models that are capable of adequately simulating all essential effects oc-

curring in MHEs. A numerical model of a MHE requires simultaneous solution to multiple

differential equations characterizing different physical phenomena, which in turn increases

number of degrees of freedom involved in the complete solution. Since the nonlinear event

of thermal runaway emerges due to the temperature dependent loss factor, spatial discre-

atizarion of the geometry must be able to capture decaying nature of the electric field along

with exponential growth of the local temperature. As a result, the size of the global ma-

trix becomes very large, i.e., a very large system of linear equations is needed to be solved

at every time step. Thus, multiphysics modeling becomes complicated and requires heavy

computational resources.

An example of generic heat exchangers found in practice are shown in Figure 1.1. In

such heat exchangers, fluid flow is incorporated in order to effectively extract heat energy

from the interfacing solid so as to achieve heating of the fluid or cooling of the heated solid.

3



Such an assembly of alternate fluid and solid layers can be considered as the structure of

a simple MHE where heating of the solid layers is achieved by impinging MW radiations.

As modeling of an MHE is computationally intensive, we take a simple three layered (fluid-

solid-fluid) laminate system mimicking a MHE as a paradigm to understand the operation

of MHE. Further, we consider parallel flow type of MHE to take advantage of symmetry of

the structure.

In order to make multiphysics model manageable, we reduce total number of degrees of

freedom by considering a 2D geometry. Size of the mesh elements used to discretize the

geometry is dependent on the wavelength of EM waves. At higher frequency, the wavelength

of EM waves becomes very small, and thus, a very small element size is required. In order

to reduce requirement of higher number of mesh elements, we set the operating frequency of

EM wave to be 2.45 GHz, i.e., one of the ISM frequencies widely used in microwave heating

processes.

The study of mechanisms involved in a MHE is also possible with analytical models

that simplify the system of coupled nonlinear governing equations into a solvable systems

of differential equations. Such models rely on many assumptions in terms of the geometry,

external operating conditions, material parameters, etc. Even though analytical models

allow us to understand physics involved in the operation of MHE at relative low or negligible

computational resources, they might not be able to reproduced a MHE which is exposed to

actual operating conditions; e.g., the model of Gaone et al. [12] is limited to 1D analysis. In

addition, since MHEs are still in developing stage, numerical models can help engineers to

decide on design parameters such that higher thermal efficiency would be achieved. With

these motivations in mind, this Thesis is focused on computational modeling of a 2D triple-

layered MHE.

1.2 Modeling Microwave Heating

In order to formulate corresponding models, we need to identify the governing equations

and describe the physical mechanisms through which energy is transferred from the EM
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wave to the moving fluid. When EM waves are incident on a lossy material, some of the

incident energy is reflected from the surface of the lossy material due to mismatch between

material properties, some energy is transmitted through the material, and remaining energy

is absorbed in the medium which gets converted into heat energy. We know that EM

heating occurs due to two different sources; ohmic heating due to leakage currents that are

produced due to time varying electric field, and dielectric heating due to rotating electric

dipole moments. We define effective electrical conductivity σeff such that it takes into

account heating due to both of the mechanisms. Electric energy that is absorbed by the

lossy material generates a volumetric heat energy source given as

Q =
1

2
σeff | ~E|2, (1.1)

where Q is EM power loss density, σeff is effective electrical conductivity of the medium,

and ~E is the electric field.

Evolution of temperature is given by the heat equation heat equation, which describes

energy conservation per unit volume given as

ρcp

(
∂T

∂t
+ ~u · ∇T

)
= ∇ · (K∇T ) +

1

2
σeff | ~E|2, (1.2)

where ρ is density of the material, cp is specific heat of the material, T is the temperature,

~u is the fluid velocity, and K is thermal conductivity of the material. The first term on

the left hand side represents energy absorbed by the material to increase its temperature,

second term on the left-hand side represents energy transferred by convection due to the

fluid flow, while the terms on the right-hand side represent the heat conduction, and the

power generated by the conversion of EM waves to thermal energy.

The nature of the fluid flow can be understood by the Navier-Stokes equations, that are

derived by applying conservation of mass and momentum to a differential control volume.
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Incompressible Navier-Stokes are given by

∇ · ~u = 0, (1.3)

∂~u

∂t
+ ~u · ∇~u = −∇P

ρ
+ ν∇2~u, (1.4)

where P is fluid pressure, and ν is kinematic viscosity. Equation (1.3) suggests that fluid

mass is conserved, and (1.4) suggests momentum conservation. In our modeling descriptions

below, we let ~u = ~0 and a constant P to represent a rigid solid dielectric medium.

The nature of electromagnetic waves is understood by Maxwell’s equations. Gauss’ law

is given as

∇ · ~D = 0,

∇ · (ε ~E) = 0,

(1.5)

where ~D = ε ~E is electric flux density, and ε is permittivity of the medium. In another

words, Gauss’s law suggests that the electric flux leaving a volume is proportional to the

charge inside. In our modeling considerations we assumes enclosed charge to be zero.

Gauss’ law of magnetism states that there is no magnetic monopole, and is formulated

as

∇ · ~B = 0,

∇ · (µ ~H) = 0,

(1.6)

where ~B = µ ~H is magnetic flux density, µ is permeability of the material, and ~H is magnetic

field.

Faraday’s law conveys that time varying electric field produces time varying magnetic

field, and is given as

∇× ~E = −jω ~B,

= −jωµ ~H
(1.7)
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where ω = 2πf is angular frequency of EM waves, f is frequency of EM waves.

Ampere’s law states that oscillating magnetic field produces time varying electric field,

and is given as

∇× ~H = ~J + jω ~D,

= σ ~E + jεω ~E.

(1.8)

where and ~J = σ ~E is surface current density. Propagation of electromagnetic waves in any

medium can understood by coupled interaction of (1.5), (1.6), (1.7), and (1.8). Taking curl

of (1.7) we get,

∇×∇× ~E = −jω∇× (µ ~H),

= −jω(∇µ× ~H + µ∇× ~H).

(1.9)

From (1.7), (1.8), and (1.9) we get

∇×∇× ~E = −jω
(
∇µ×

[
1

−jωµ
∇× ~E

]
+ µ[σ + jεω] ~E

)
,

∇(∇ · ~E)−∇2 ~E = ∇µ×
(

1

µ
∇× ~E

)
− jωµ[σ + jεω] ~E).

(1.10)

From Gauss’ law (1.5),

∇ · (ε ~E) = 0,

ε∇ · ~E +∇ε · ~E = 0,

∇ · ~E = −1

ε
(∇ε · ~E).

(1.11)

From (1.10) and (1.11), we get

−∇
(

1

ε
∇ε · ~E

)
−∇2 ~E = ∇µ×

(
1

µ
∇× ~E

)
− jωµ[σ + jεω] ~E. (1.12)

Permittivity and permeability of any material is defined as µ = µ′ − jµ′′ and ε =

ε′ − jε′′. The imaginary part of the permittivity, also called as loss factor, constitutes in
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electromagnetic losses due to rotating dipole moment. Similarly, magnetic losses are induced

due to the imaginary part of the permeability. Since in our modeling we assume that all the

materials do not undergo magnetic losses, which means that µ′′ = 0, and µ is characterized

by a real value of µ′. We also assume that µ′ is a constant, thus ∇µ = 0. Substituting these

approximations in (1.12), we get

∇
(

1

ε
∇ε · ~E

)
+∇2 ~E = jωµ′(σ + j[ε′ − jε′′]ω) ~E,

= jωµ′(σ + jε′ω + ε′′ω) ~E,

= −ω2µ′ε′
(

1− j
[
σ + ωε′′

ωε′

])
~E.

(1.13)

Since we call σeff = σ + ωε′′, (1.13) becomes

∇
(

1

ε
∇ε · ~E

)
+∇2 ~E + ω2µ′ε′

(
1− j

[σeff
ωε′

])
~E = 0. (1.14)

We also consider temperature dependent electrical conductivity electric field is also a func-

tion of temperature, and (1.14) becomes

∇
(

1

ε
∇ε · ~E(T )

)
+∇2 ~E(T ) + ω2µ′ε′

(
1− j

[
σeff (T )

ωε′

])
~E(T ) = 0. (1.15)

Since µ′ = µrµ0 and ε′ = εrε0, where ε0 and µ0 are the permittivity and permiabilty of the

free space, and c = 1√
µ0ε0

, where c is the speed of EM waves in free space. We can write

(1.15) as

∇
(

1

ε
∇ε · ~E(T )

)
+∇2 ~E(T ) + k20µr

(
εr − j

[
σeff (T )

ωε0

])
~E(T ) = 0, (1.16)

Where k0 = ω
c is wave number of the free space. Therefore, MW heating of the considered

medium is characterized by simultaneous solution of (1.2), (1.3), (1.4), and (1.16).

These governing equations can be solved when appropriate boundary conditions are ap-

plied. Volumetric heat generated during microwave heating is lost to the surrounding mainly

8



via two different modes; convective heat transfer and radiation heat transfer. Combined

modes of heat losses at the respective boundaries are formulated as

−K∂T

∂x
= h(T − TA) + ξσb(T

4 − T 4
A), (1.17)

where h is the heat transfer coefficient between surrounding and the respective boundary, ξ

is the emissivity coefficient of the surface, σb is the Stefan-Boltzmann Constant, and TA is

the ambient temperature. Whenever adiabatic conditions are maintained, i.e., when there

is no heat losses at the boundary, then (1.17) becomes

−K∂T

∂x
= 0. (1.18)

A fluid flow is usually driven by the pressure difference between two regions (or a fluid

with velocity u creates a pressure difference). When solving (1.4), we either need to specify

fluid pressure or fluid velocity at the inlet and the outlet of the channel. In our modeling

approaches in this thesis, whenever a fluid is in contact with solid surfaces, we assume no

slip boundary conditions (as we are assuming that the laminar boundary layer is already de-

veloped i.e. hydrodynamically fully developed fluid flow) at the interfaces. Mathematically

at no slip boundary, velocity of the fluid must be zero, i.e.,

~u = 0. (1.19)

Boundary conditions while solving the Maxwell’s equations (1.16) are derived by con-

sidering time dependent integral form of the Maxwell’s equation (Pozar in [13]). It can be

then deduced that normal components of ~D and ~B, and tangential component of ~E and ~H

are continuous across the dielectric interface. Mathematically speaking,

n̂ · ~D1 = n̂ · ~D2, (1.20)

n̂ · ~B1 = n̂ · ~B2, (1.21)
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n̂× ~E1 = n̂× ~E2, (1.22)

n̂ · ~H1 = n̂ · ~H2, (1.23)

where n is unit vector pointing outwards at the interface. Therefore, simultaneous solution

of governing equations when subjected to boundary conditions described above describes

the process of MW heating.

1.2.1 MW Heating of a Solid Medium

In this section, we discuss the literature on the modeling of microwave heating of solid lossy

medium. In the absence of fluid flow, ~u is zero, and MW heating is governed by (1.2) and

(1.16). The first mathematical model studying MW heating of a 1D lossy ceramic slab was

developed by Kriegsmann in [14]. While formulating this model, it was assumed that a very

thin slab ceramic slab undergoes an EM illumination. The lossy layer was also assumed

to be mostly insulated at the boundaries, and dominant mode of heat loss was through

radiation heat transfer at the boundaries. For approximating temperature and electric

field profiles, Kriegsmann in [14] assumed asymptotic expansions in term of convective heat

losses at the boundaries. Since it was assumed that the dielectric slab is very thin and the

convective heat loss at the boundaries is also small, spatial dependence of temperature and

electric fields were conveniently dropped out, and resultant governing equation became a

time dependent non linear ordinary differential equation (ODE), which is also referred as

the amplitude equation in this work. The steady-state solution of the amplitude equation

allowed the author to reconstruct incident power as a function of average steady state

temperature, which is given as

P =
v∗0 + γ[(v∗0 + 1)4 − 1]

f(v∗0)||u0||2
, (1.24)

where P is non dimensional form of incident power, v∗0 is non dimensional form of temper-

ature, γ is radiation equivalence of the Biot number, f(v∗0) is a non dimensional electrical

conductivity as a function of temperature, and u0 is non dimensional electric field.
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Figure 1.2: Power response curve for a very thin domain with the assumption of small
Biot number, and exponential electrical conductivity model; P is non dimensional form of
incident power, v∗0 is non dimensional form of temperature (Kriegsmann in [14]).

The plot of average steady state temperature versus power from (1.24) is called the power

response curve, also known as S-curve. It shows how steady-state temperature solution

varies with incident power. It is seen from Figure 1.2 that steady-state temperature is a

multivalued function of the incident power. Depending on initial conditions (temperature),

multiple steady-states are possible.

Extensions of this approach have been used in microwave-enhanced chemical vapor in-

filtration applications (Tilley and Kriegsmann in [15]) and in the microwave heating of

laminate materials (Kriegsmann and Tilley in [16], Pelesko and Kriegsmann in [17]). All

of the previous mathematical models imply that temperatures during thermal runaway are

very high and difficult to control, and usually results in material damage due to mechanical

failures, such as through thermal expansion or melting.

Very recently, a model for a triple layer laminate structure (Figure 1.3), developed by

Gaone et al. in [12]. This work suggested that when an electric field resonance is achieved

in the lossy layer, power response curve acquires another middle branch and becomes an

SS-curve. Gaone et al. in [12] showed that when plane polarized waves are symmetrically

and normally incident on the laminate, conditions analogous to Bragg interference occur

for a fixed loss factor in the middle layer. For the loss factor depending on temperature, a
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Figure 1.3: Three-layer laminate subjected to symmetric electromagnetic heating: regions
1 and 5 are free space, layers 2 and 4 are lossless dielectrics, layer 3 is a lossy dielectric
(Gaone et al. in [12]).

new stable steady-state solution corresponding to resonance conditions, whose equilibrium

temperature is significantly elevated, but prevents the occurrence of high temperatures

during thermal runaway. SS curves are shown in Figure 1.4; we see that temperature during

thermal runaway in lossy material may be within controllable range. Gaone et al. in [12] also

suggested that a resonance of electric field, necessary to produce SS-curve, occurs when the

width of the outer layers is an odd multiple of quarter wavelengths, l(γ−1) = (2m−1)λ2/4,

and the width of the lossy layer is an odd multiple of half wavelengths, l = (2n − 1)λ3/2,

for m,n = 1, 2, 3, ....

Numerical modeling of microwave heating of a solid medium has been carried out by

Clemens et al. in [18]. This study was focused on finding out the effect of electric field

distribution, frequency, sample size, and dielectric properties on temperature distribution.

Finite difference time domain (FDTD) method was used to solve Maxwell’s equations, and

heat transport equations were solved by implicit finite difference method. It was concluded

that strong heating can be achieved when electric field resonance is achieved. An FDTD

model developed by Yakovlev et al. in [19] was capable of capturing the effect of thermal

runway in Zirconia. The objective of this work was to predict the behavior of high tempera-
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Figure 1.4: SS-shaped power response curve for triple a layered laminate structure with
different Biot numbers developed by Gaone et al. in [12].

ture microwave processing of ceramics so as to optimize process parameters before working

on the experimental development of new processes. This study demonstrated that heating

rate and temperature patterns strongly depend on whether the system is fed at resonance,

and the time at which runaway occurs was also predicted by the model.

In Chapter 2 of the thesis, we extend the approach of Gaone et al. in [12]. We validate a

2D numerical model of a triple layer laminate undergoing MW with the model of Gaone et

al. in [12]. The latter model assumed a very thin triple layer laminate system and did not

consider spatial dependence of electric field and temperature. However, numerical model in

Chapter 2 overcomes this drawback by considering spatial dependence.

1.2.2 MW Heating of a Fluid Medium

In this section, we discuss numerical models for MW heating of a fluid medium reported in

the literature. When MW heating of a Newtonian incompressible fluid medium is considered

equations (1.2), (1.3), (1.4), and (1.16) are solved simultaneously in order to study the

heating process. However, the governing equations are not directly solvable mathematically

due to highly complicated nonlinear coupling, the system of equations can be effectively

solved numerically.

A numerical model of MW heating of a static lossy fluid was developed by Ratanade-

cho et al. in [20]. The numerical technique of finite control volume method was used to
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solve the system of equations. It was concluded that dielectric loss factor has an effect on

temperature distribution. The model of Ratanadecho et al. in [20] considered temperature

dependent dielectric properties of the water and saline water. Initially, heat generation was

calculated by assuming uniform properties at the initial temperature. The electromagnetic

calculation was performed until a sufficient period, typically 30,000 time steps, is reached,

and RMS value of the electric field at each spatial point was obtained. The microwave

power absorption at each point was calculated and used to determine temperature. Elec-

tromagnetic properties were recalculated at this temperature and used in next iteration.

All these steps were repeated until required heating time is reached.

The numerical simulation of forced convection through a rectangular duct subjected to

microwave heating was studied by Zhu et al. in [21]. In this model, Maxwell’s equations

were solved using the FDTD method and transient temperature and flow patterns were

simulated using the finite volume method. This numerical model assumed the flow to

be non-Newtonian, and also assumed temperature dependent dielectric properties. Forced

convection in a rectangular applicator tube which is placed inside a single mode resonating

cavity was simulated. Flow in the applicator tube was assumed hydrodynamically fully

developed. This work was aimed to determine uniformity of heat generation in the fluid,

and find out its relation with dielectric properties, and loss tangent. This model considered

MW heating of the fluid in a resonating cavity, and also showed that size of the cavity and

incident power levels also have an effect on temperature profiles.

Numerical models of continuous flow microwave heating system modeled with ANSYS

Multiphysics are developed by Sabilov et al. in [22], Salvi et al. in [23], and Salvi et al. in

[24]. Since these models considered Newtonian and incompressible fluid flow, FLOTRAN

CFD module in ANSYS was used to solve (1.2),(1.3) and (1.4), and high frequency elec-

tromagnetic module was used to solve (1.16). These models did not consider temperature

dependent dielectric losses. One of objectives of these models was to understand MW heat-

ing of a fluid medium itself, and also to find out effects of material properties and operating

conditions on heating mechanisms. These model showed capability of ANSYS Multiphysics
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in modeling microwave heating of continuous fluid medium. In addition, COMSOL Multi-

physics was used to model continuously flowing water by Salvi et al. in [25] and by Muley

and Bolder in [26]. Both of these models considered temperature dependent thermal as well

as dielectric properties.

All of the models discussed in this section were mainly focused on modeling MW heating

of a fluid medium itself. Since the end applications of these models were to replicate appli-

cations in food and chemical processing, they were not aimed to understand heat transfer

between MW heated solid and flowing fluid phenomenon necessary for heat extraction. In

addition, no model captured the phenomenon of thermal runaway in a solid lossy medium

when fluid flow is also present. 2D models of MHE developed in this thesis do not con-

sider a lossy fluid, and hence MW heating the fluid was not considered. However, models

reported in the literature demonstrate the capability of commercial software packages to

model microwave heating.

1.3 Comparison of Commercial Numerical Packages

Use of commercial software in modeling microwave heating of a lossy fluid as well as solid

medium has also been a popular choice. QuickWave has been found to be one of the

most efficient packages when it comes to microwave heating of a solid medium. However,

Quickwave lacks capability of simulating microwave heating of fluid flow, and hence cannot

simulate the full problem that describe a MHE. Yakovlev in [27] and [28] suggested that

whenever fluid flow is incorporated along with MW heating, COMSOL Multiphysics and

ANSYS Multiphysics have been found applicable.

A critical comparison of capabilities of COMSOL Multiphyisics and ANSYS Multi-

physics in modeling MW heating of continuous flowing was carried out by Salvi et al. in

[29]. ANSYS uses different mesh elements for different physics, whereas COMSOL uses the

same mesh elements for different physics. Salvi et al. in [29] and Demjanenko et al. in [30]

reported that the issue of element mismatch during multiphysics coupling was prevalent,

and appears to be a potential source of rounding errors. COMSOL provided a flexible model
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setup, whereas ANSYS required coupling incompatible elements to transfer load between

electromagnetic, fluid flow, and heat transport modules.

In addition, we carried out studies on comparison of COMSOL and ANSYS for solving

canonical problems in heat transfer, fluid mechanics, and electromagnetics phenomena.

We first solved canonical problems using software packages, and then compared its results

with theoretical results. Since the QuickWave can model electromagnetic phenomenon very

accurately, we referred to a solution produced by QuickWave at a very fine discretization as

the benchmark solution, and results from EM analysis were compared with this benchmark

solution. The details of these studies are placed in Appendix, and only important results

and conclusions directly relevant to the topic are included in the main body of the Thesis.

We found that COMSOL had advantages over ANSYS as it allows coupling between same

mesh elements. Therefore, we use COMSOL Multiphysics, a finite element method (FEM)

based software for further analysis.

1.4 Motivation and Scope of This Work

The rate at which MW energy is absorbed by a lossy material is dependent on the loss factor.

For many practical materials, it is dependent on temperature and increases exponentially

with temperature. Such nonlinearity leads to a positive feedback loop causing thermal

runaway. The theoretical description of thermal runaway was given for a single dielectric

slab (Kriegsmann in [14]) and a three-layer geometry (Pelesko and Kriegsmann in [17]), in

terms of a non-dimensional ratio of thermal losses to MW power, called the power response

curve. It shows how the steady-state temperature of the material depends on the MW

power. The multi-valued profile of this curve (see Figure 1.4 (a)) implies that a system can

reach different steady-state temperatures when initial temperatures are different.

Temperatures at thermal runaway are usually very high and difficult to control, and

usually damage the material itself. As a mathematical model developed by Gaone et al. in

[12] for a triple-layer laminate shows, for particular values of the layer width and complex

permittivity, the S-curve acquires another (third) stable branch and becomes the SS-curve
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(a) (b)

Figure 1.5: (a) Generic S-curve (Kriegsmann in [14]) and (b) SS-curve (Gaone et al. in [12])
for non-dimensional power

(Gaone et al. in [12]). A generic SS-curve is shown in Figure 1.5 (b). This suggests a

possibility of a new technique of keeping thermal runaway under control and efficiently

converting electromagnetic energy into other usable forms of heat. Such lossy media can be

either porous materials or materials with channels to accommodate fluid flow for absorbing

heat.

Thermal runaway has been studied experimentally (Wu in [31], Chandran et al. in [32])

and numerically (Yakovlev et al. in [19]). However, numerical models reproducing power

response curve have not been reported. In the present thesis we address this drawback in

chapter 2. We develop a multiphysics model capturing the behavior of a power response

curve for the three-layered structure imitating one of the MHE’s basic setups. We validate

this model with the 1D mathematical model developed by Gaone et al. [12]. Due to

differences in underlying assumptions implied by both the models, disparities in results

were observed. As a part of validation, we also numerically verify the disparities.

After validating the model, we extend the approach in Chapter 3 by incorporating

fluid flow in order to accommodate heat extraction. We show that high thermal efficiency

is achieved when thermal runaway is occurred. In Chapter 4 of the Thesis, we discuss

important insights that were gained through the computational modeling in this work, and

also discuss how our findings can help design an efficient MHE.
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Chapter 2

Effects of External Energy Loss on

the Power Response Curve of a

Lossy Triple-layer System Without

Fluid Flow

We consider a 2D, triple-layered structure as shown in Fig. 2.1. This setup may be seen

as a model of a MHE with absorbing (ceramic) layer surrounded by pure dielectric fluid

channels. In this Chapter, we assume that there is no fluid flow in the lossless layers 2 and

4. We first check the validity of the numerical model through a comparison of its output

with the results from a related 1D mathematical model. Once the validation is done, the

effects of heat transfer with fluid flow in regions 2 and 4 of this system is investigated in

Chapter 3.

We have plane waves incident from both sides with the assumption that the incoming

waves are polarized along the Y-direction and traveling in the X-direction. Time average

power density of the incident plane wave is given by

Pav = E2
0/2η, (2.1)
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Figure 2.1: Geometry of the three layered system subjected to electromagnetic heating
(symmetric about AA′). Medium 1 and 5 are free space, layer 2 and 4 are lossless, layer 3
is a lossy dielectric.

where E0 is amplitude of the incident electric field, and η is characteristic impedance of

free space. In order to achieve electric field resonance necessary to produce the SS-curve,

we need to satisfy following conditions (Gaone et al. in [12])

l1 =
n1λ2

4
, and l2 =

n2λ3
2

,

where n1 and n2 can be any odd number, i.e., 1, 2, 3, ..., λ2 and λ3 are wavelength in region

2 and 3, respectively. With different combinations of n, we can observe different resonating

modes of electric field. We consider three different electric field modes, and corresponding

dimension used in this model are as shown in Table 2.1.
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n1 l1 [mm] n2 l2 [mm]

Mode 1 3 10.89 1 23.65

Mode 2 5 18.15 3 70.95

Mode 3 7 25.41 5 118.27

Table 2.1: Layer widths necessary to produce SS-curve (according to resonance conditions
by Gaone et al. in [12]).

2.1 Governing Equations

We construct a numerical model in COMSOL Multiphysics capable of solving a coupled

system involving Helmholtz’s and heat equations. We introduce non-dimensional variable

Ẽ = ~E/E0, where ~E and Ẽ are dimensional and non-dimensional forms of the electric field,

respectively. These equations are given by

∇2Ẽi + k20(ε′ri − j
σi(Ti)

ωε0
)Ẽi = 0, (2.2)

∂Ti
∂t

= α∇2Ti +
Qi
ρjcpi

, (2.3)

Qi = σi(Ti)|E0Ẽi|2, (2.4)

where i represents the region of solution, k0 = ω
c is wavenumber of free space, ω is angular

frequency, c is speed of EM wave in free space, ε0 is permittivity of free space, ε′r is relative

permittivity, T is temperature, σ(T ) is temperature dependent electrical conductivity, α is

thermal diffusivity, Q is electromagnetic power loss density, ρcp is volumetric heat capacity.

We solve (2.2) for i = 1, ...5, (2.3) for i = 2, 3, 4, and (2.4) for i = 3.

2.2 Boundary Conditions

As region 1 is free space, for x < 0,

Ẽ1(x) = ejk0x + τe−jk0x, (2.5)
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where Ẽ1 is electric field in region 1, τ is the reflection coefficient between regions 1 and 2.

At the boundary between regions 1 and 2 i.e at x = 0, we have C0 and C1 continuity of the

electric field; that yields

Ẽ1(0) = Ẽ2(0),

∂Ẽ1(0)

∂x
=
∂Ẽ2(0)

∂x
,

(2.6)

where Ẽ2 is electric field in region 2. From (2.5) and (2.6), we can say that

Ẽ1(0) = 1 + τ = Ẽ2(0), (2.7)

and

∂Ẽ1(0)

∂x
= jk0(1− τ) =

∂Ẽ2(0)

∂x
. (2.8)

Combining (2.7) and (2.8) and eliminating reflection coefficient τ we get

∂Ẽ2

∂x
+ jk0Ẽ2 = 2jk0 at (x = 0, y). (2.9)

We maintain C0 and C1 continuity of the electric field at the interfaces between regions.

Which means that

Ẽ2(l1) = Ẽ3(l1),

∂Ẽ2(l1)

∂x
=
∂Ẽ3(l1)

∂x
.

(2.10)

Since a symmetry condition is assumed at AA′, we have,

∂Ẽ3

∂x
= 0 at (x = l1 +

l2
2
, y). (2.11)

As we want to maintain a uniform electric field in the Y-direction, we apply

∂Ẽi
∂y

= 0 at (x, y = 0) and (x, y = L). (2.12)
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Medium εr σeff (T )[S/m] K [W/mK] ρcp [J/m3K]

1, 5 1 0 - -

2, 4 71 0 0.6 435

3 6.69 0.001e[
T−300
100 ] 0.6 435

Table 2.2: Material properties of triple-layered laminate system.

Similarly for heat equation, we set

−K2
∂T2
∂x

= h[T2 − TA] at (x = 0, y), (2.13)

where K2 is thermal conductivity of region 2, T2 temperature in region 2, TA = 300K is

ambient temperature, and h is heat transfer coefficient at the respective boundary.

∂T3
∂x

= 0 at (x = l1 +
l2
2
, y), (2.14)

In order to achieve uniform temperature in the y direction, we set

∂Ti
∂y

= 0 at (x, y = 0) and (x, y = L). (2.15)

We also assume perfect thermal contact between the interfacing boundaries, so we can

conveniently maintain C0 and C1 continuity. Therefore at the interfacing boundary C0 and

C1 continuity is maintained at the interfaces between regions. That means

T2(l1) = T3(l1),

∂T2(l1)

∂x
=
∂T3(l1)

∂x
,

(2.16)

We also define the Biot number as Bi = hl2
km

, where km is the thermal conductivity of region

3. Initially, we assume Bi = 0.5, i.e., h = 12.68 W
m2K

. In later simulations, we vary the Bi

and graphically show the effect of spatially dependent temperature profiles.
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2.3 Assumptions

Material properties used in computations below are chosen as shown in Table 2.2. In

particular, volumetric heat capacity is considered to be small to ensure that thermal runaway

occurs at lower power levels and considerably reduce computational cost of sweeping over

the large power range. Temperature dependency of thermal parameters is not considered in

this model, but left for future developments. εr and µr are also assumed to be temperature

independent. All the materials used are assumed non-magnetic (µr = 1). In addition, only

the middle layer (material 3) absorbs MW energy, and the outer layers (materials 1, 2, 4,

and 5) are considered lossless.

2.4 Solver and Convergence Criteria

Selection of a solver in COMSOL Multiphysics strongly depends on degree of non-linearity.

Helmholtz’s and heat equations are coupled with each other via temperature dependent non-

linear electrical conductivity, which typically increases exponentially with the temperatures

(Hill and Jennings in [6]) for many dielectric materials. Depending on initial guess, while

solving non-linear steady state problems, COMSOL’s default nonlinear steady state Newton-

Raphson solver can fail to converge to desired solution [33]. As temperature is a multi-valued

function, initial guess is uncertain, therefore, we use an implicit backward differentiation

formula (BDF) based time dependent solver that discretizes time steps with backward

differentiation formulas with order of accuracy varying from one (also know as the backward

Euler method) to five. and steady state is assumed to be reached when absolute difference

between average temperatures at previous and current time step falls below 10−6.

BDF methods have been used for a long time and they are known for their stability.

For solving nonlinear problems effectively, we use the default adaptive backward difference

time stepping algorithm. Depending on temporal gradients of the fields, it automatically

adjusts time step taken by the solver. The larger the gradients, the smaller the time step

is. Since the time required for EM wave propagation is small compared to time required
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for heat transfer and fluid flow, Helmholtz’s equations are solved in frequency domain, and

the time stepping algorithm is utilized when solving heat equations.

2.5 Meshing

The geometry is discretized using triangular elements, whose maximum size Si is given by

the Nyquist criterion (Sadiku in [34]):

Si <
λi
2

=
c

2f
√
µ′riε

′
ri

,

where λi is wavelength of the EM wave in corresponding region i. In other words, we need

at lest two elements per wavelength. This criteria might be true while solving coupled

Helmholtz and heat equations with temperature independent electrical conductivity. In

our case, electrical conductivity increases exponentially with temperature. It means that

skin depth is also decreasing with temperature. Therefore, at higher temperature we must

resolve the spatial domain in such a way that we take into account diminishing nature of

electric field. Therefore, we need to use mesh size comparable to skin depth of the material.

2.6 Computational Results

We now solve the model that is described in previous sections, and visualize spatially de-

pendent steady state temperature profiles.

2.6.1 Critical Temperature

Figure 2.2 shows steady state spatially dependent temperature profiles generated by the

numerical model. When incident power is 4,088 W/m2, we see that maximum temperature

is 416.1 K. As soon as the incident power is increased to 4, 089 W/m2, we see a big jump

in the temperature due to thermal runaway, see Figure 2.2 (b). Thus, we see that thermal

runaway is triggered when maximum temperature reaches a critical temperature of 416.11
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Figure 2.2: Steady state temperature profiles along X-direction when incident power density
is 4088 W/m2 (a), and 4089 W/m2 (b); initial temperature is 300 K.

K. The critical temperature is in accordance with the mathematical model of Gaone et al.

in [12]; 416.5 K this confirms the functionality of the COMSOL model.

2.6.2 Comparison of Power Response Curve With Mathematical Model

Figure.2.3 shows the comparison of the power responses generated by the COMSOL model

and the mathematical model of Gaone et al. [12]. Since the latter produces steady state

average temperature as a multi-valued (depending on initial conditions) function of incident

power, average temperature values are plotted against incident power when different initial

conditions are maintained. The mathematical model (Gaone et al. in [12]) shows stable

steady states as a solid line (branch AG and HM) and unstable states as a dashed line

(branch GH). The transition between the lower (branch AG) and upper branch (branch

HM) do not occur at the same power level. This hysteresis is confirmed by the COMSOL

model (branch AC and branch FE) through increasing power with an initial temperature

at 300 K (path ABCDE) and then by decreasing power with an initial temperature of

750 K (path EDFBA). Like our COMSOL model, the mathematical model (Gaone et al.

in [12]) assumes uniform heating in the Y direction, but it applies asymptotics to a thin
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Figure 2.3: Comparison of low power regions of power response curves in the considered
structure. Temperatures at points C, G, F, and H are 413.5 K, 416.5 K, 574.6 K, and 606.6
K respectively.

domain resulting in a time dependent ordinary differential equation of average temperature

uniform in the X-direction. In contrast to this, the COMSOL model rigorously computes

the temperature variation along the X-axis.

In order to investigate the reason behind differences seen in power response curves

produced by the COMSOL and mathematical models, we apply the conservation of energy

principle to the system at steady state, and find that

∫ l2

0

1

2
|E2

0Ẽ3(T3)|2σ3(T3)dx = 2h(T̃2 − TA), (2.17)

where T̃2 is surface temperature at X = −l1, T3(x) is temperature profile in region 3, and

l1 and l2 are the widths of layers 2 and 3, respectively. For the COMSOL model, from (2.1)

and (2.17), the input power density can be written as

P1 =
2h(T̃2 − TA)

η
∫ l2
0 |Ẽ3(T3(x))|2σ3(T3(x))dx

. (2.18)

Similarly, for the mathematical model, (2.1) and (2.17) can be simplified in terms of input
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Observed power
density [W/m2]

Observed
(P2 − P1) [W/m2]

Calculated
(P2 − P1) [W/m2]

Point C P1= 4088
1548 1548.55

Point G P2= 5636
Point F P1= 3152

1199 1200.41
Point H P2= 4351

Table 2.3: Comparison of critical transition powers.

power density as

P2 =
2h(T̄s − TA)

η|Ẽ3(T̄s)|2σ3(T̄s)l2
, (2.19)

where T̄s is average steady state temperature in the model (Gaone et al. in [12]). From

(2.18) and (2.19), we can say that

P2 − P1 =
2h(T̄s − T̃2)− P2P

∗

P̄1
, (2.20)

where

P̄1 = η

∫ l2

0
|Ẽ3(T3(x))|2σ3(T3(x))dx,

P̄2 = η|Ẽ3(T̄s)|2σ3(T̄s)l2,

and

P ∗ = P̄2 − P̄1.

Numerical evaluation of (2.20) at the corresponding transition points on the SS-curve shown

in Fig. 2.3 is given in Table 2.3.

2.6.3 Effect of the Biot Number on the Power Response Curve

From the COMSOL model, we observe that thermal runaway is triggered by maximum

temperatures in the lossy layer. Global temperatures increase rapidly as soon as the local

maximum temperature reaches a critical temperature. Effect of spatial dependence of elec-

tric field and temperature can be understood from (2.20). We see that as we increase the

Biot number by increasing h, (T̄s − T̃2) also increases, which then increases differences in
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Figure 2.4: Comparison of the SS curves produced by the COMSOL and mathematical
model (Gaone et al. in [12]) with (a) Bi = 0.5, (b) Bi = 0.25, (c) Bi = 0.125, and (d) Bi =
0.0625.

power response curves. Figure. 2.4 shows the comparison of SS-curves for different values of

the Biot number. At smaller Biot number, external surfaces will behave like a thermal insu-

lator, which makes temperature profile nearly uniform in the X-direction. Therefore, as we

decrease the Biot number, differences in the power response curves given by the COMSOL

and mathematical models keep on decreasing. On the other hand, when the Biot number

is large, spatial temperature variation becomes important, therefore, differences in power

responses increase. It is observed that for increasing values of the Biot number, critical

transition power also increases, but transition temperature remains the same.
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Figure 2.5: Electric field profiles for resonance (a) mode 1, (b) mode 2, and (c) mode 3 of
electric field occurred in the lossy layer.

2.6.4 Effect of Resonance Modes on the Power Response Curve

As we are symmetrically irradiating the triple layered laminate structure with plane po-

larized microwaves, we can expect to observe standing wave pattern of the electric field.

With the resonance criteria mentioned earlier, we see larger strength of the electric field

in the lossy layer (in region 3). Spatially dependent electric field patterns corresponding

to resonance modes given in Table 2.1 are visualized in Figure 2.5. We see that total EM

energy losses in the ceramic layer are also increasing as we consider higher resonating modes

of electric field.

Effect of considering spatially dependent temperature can also be understood from Fig-
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Figure 2.6: Power response curve corresponding to resonance (a) mode 1, (b) mode 2, and
(c) mode 3 of electric field occurred in the lossy layer.

ure 2.6. Since we increase l1 and l2 according to the resonance criteria in order to achieve

different resonating modes of the electric field, disparities in power response curves produced

by COMSOL and mathematical models increases as we consider higher modes of operation.

2.7 Summary

We describe here a 2D numerical model which can solve non linear coupled Helmholtz and

heat equations in a triple layered laminate. The model captures the S- and SS-profiles of

the power response curve by considering spatial dependence of the temperature. This study
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validates the 2D numerical model with the related 1D mathematical model. Differences

seen in the results produced by both the models are attributed to underlying assumptions

made by respective models. Thermal runaway, a non linear phenomenon where overall tem-

peratures increase rapidly with a small increase in incident power, triggers when maximum

temperature in the system reaches a critical value. External operating conditions, such as

Biot number do not affect the critical temperature, but critical incident power increases

with Biot number.
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Chapter 3

Model of a Lossy Triple-Layered

System With Fluid Flow

Since the validation of the numerical model without fluid flow is done in Chapter 2, in order

to understand heat extraction from a MW heated ceramic, we now incorporate fluid flow

along with symmetric MW heating of the lossy layer. We describe a 2D numerical model

which solves coupled Helmholtz, continuity, momentum, and energy equations. We extend

the approach of Chapter 2 by introducing a hydrodynamically fully developed Poiseuille flow

in fluid carrying channels. A triple layer geometry mimicking a layered MHE is considered

in the model. The scenario considered in this modeling approach is shown in Figure 3.1.

Middle layer (region 3) is the lossy layer with temperature dependent loss factor, and region

2 and region 4 accommodate hydrodynamically fully developed Poiseuille flow.

As we assume that the incoming field is a plane wave, time average of the incident power

density can be given by Poynting vector as

Pav =
E2

0

2η
, (3.1)

where E0 is an amplitude of the incident electric field, η is the characteristic impedance

of free space. Dimensions of the triple layer geometry are chosen according to resonance
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Figure 3.1: Geometry of the three layerd system subjected to electromagnetic heating
(symmetric about AA′). Medium 1 and 5 are free space, layer 2 and 4 are lossless, layer 3
is a lossy dielectric; fully developed Poiseuille flow is introduced in region 2 and 4.

criteria given by Gaone et al. in [12].

l1 =
3λ2
4
, and l2 =

λ3
2
,

where λ2 and λ3 are wavelength in region 2 and 3, respectively. As the operating frequency

in this model is 2.45 GHz, l1 = 10.89 mm and l2 = 23.65 mm. Initially we assume length of

the fluid channel to be L = 200 mm, but later we vary the length of the fluid channel and

visualize steady-state temperature solution.

3.1 Assumptions

Material properties used in this model are chosen as shown in Table 3.1. The convective

heat transfer between the heated ceramic and fluid flow is dependent on volumetric heat

capacity. In order to ensure that thermal runaway occurs at lower power levels so as to
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Medium εr σeff (T ) [S/m] α [m2/s] ρcp [J/m3K] ν [m2/s]

1, 5 1 0 - - -

2, 4 71 0 0.00137 435 0.0096

3 6.69 0.001e[
T−300
100 ] 0.00137 435 -

Table 3.1: Material properties considered for the model with fluid flow

save computational cost, we assume the volumetric heat capacity of the fluid is very small.

We this assumption, heat energy extracted by the would also be small. If the volumetric

heat capacity is increased, critical powers would also increase due to increased convection

between fluid and the heated ceramic, thus in turn would lead to increased computational

cost of sweeping over large power levels. We assume that the fluid is incompressible in

nature, and does not undergo phase change phenomenon. Temperature dependent thermal

and fluid properties are not considered in this model. εr and µr are also assumed to be

temperature independent.

3.2 Governing Equations

We now construct a 2D COMSOL model capable of solving a coupled system involving

Helmholtz, momentum, continuity, and energy equations. These equations are given by

∇2Ei + k20

(
ε′ri − j

σi(Ti)

ωε0

)
Ei = 0, (3.2)

ρicpi
∂Ti
∂t

+ ~ui · ∇Ti = Ki∇2Ti +
1

2
σi(Ti)|Ei|2, (3.3)

∂ ~ui
∂t

+ ~ui · ∇ui = −∇Pi
ρi

+ νi∇2 ~ui, (3.4)

∇ · ~ui = 0, (3.5)

where i represents the region of solution, E is the electric field, k0 = ω
c is the wavenumber of

free space, ω is angular frequency, c is the speed of EM wave in free space, ε0 is permittivity

of free space, ε′r is relative permittivity, T is temperature, σ(T ) is temperature dependent

electrical conductivity, K is thermal conductivity, ρcp is volumetric heat capacity. ~ui is
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zero for region 3 and non zero for region 2 and 4. We solve (3.2) for i = 1, 2, ...5, (3.3) for

i = 2, 3, 4, and (3.4) and (3.5) for i = 2, 4.

3.3 Boundary Conditions

As we solve the Helmholtz equation in the same triple layered geometry as in Chapter 2, the

boundary conditions used to solve the equation are the same as simplified in Chapter 2. We

first simplify the model by applying symmetry boundary condition at AA′ as discussed in

Chapter 2, and then apply boundary conditions as shown below. At the left most boundary

we assume heat losses through convection, which is given by

−K2
∂T2
∂x

= h[T2 − TA] at (x = 0, y), (3.6)

where K2 is thermal conductivity of region 2, T2 temperature in region 2, TA = 300K is

ambient temperature, and h is heat transfer coefficient at the respective boundary. At the

axis of symmetry, we have

∂T3
∂x

= 0 at (x = l1 +
l2
2
, y). (3.7)

At the top and bottom boundary of region 3, we have

∂T3
∂y

= 0 at (x, y = 0) and (x, y = L). (3.8)

We also assume perfect thermal contact between the interfacing boundaries, so we can

conveniently maintain C0 and C1 continuity. That means

T2(l1) = T3(l1),

∂T2(l1)

∂x
=
∂T3(l1)

∂x
,

(3.9)
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At the inlet in region 2, we have

Pin = 0.5 Pa, and Tin = 300K at (x, y = 0). (3.10)

Similarly at the outlet in region 2, we have

Pout = 0 Pa, and
∂T2
∂y

= 0 at (x, y = L). (3.11)

Finally, no slip boundary conditions are applied at the external boundaries of channel 2 and

4 as given as

~u2 = 0 at (x = 0, y) and (x = l2, y). (3.12)

3.4 Meshing and Convergence Criteria

Meshing and convergence criteria is the same as we discussed in Chapter 2. But in fluid

carrying channel, more elements are concentrated at the interfaces between fluid and lossy

layer so as to capture the growth of the thermal boundary.

3.5 Computational Results

3.5.1 Thermal Runaway

Since we have hydrodynamically fully developed fluid flow in the y-direction, heat is being

extracted by the fluid from the lossy ceramic because of which temperature is no longer

uniform in the y-direction causing a non uniform heating. From Figure 3.2, we observe

that even with a hydrodynamically fully developed Poiseuille flow, thermal runaway occurs

when local maximum temperature reaches a critical value. The difference between the

model with and without fluid flow is the convective heat transfer between lossy solid and

fluid. Since we assume small volumetric heat capacity and Reynolds number, amount of

36



(a) (b)

(c) (d)

Figure 3.2: Steady-state temperature profiles for different incident powers; (a) Pav = 4,200
W/m2, (b) Pav = 4,250 W/m2, (c) Pav = 4,300 W/m2, and (d) Pav = 4,350 W/m2; initial
temperature is 300 K; L= 0.2 m.

heat energy convected away by the fluid is also very small, but the input power at which

thermal runaway occur is increased as compared to the critical power for the case with no
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(a) (b)

Figure 3.3: Steady state temperature profiles when incident power was 3,750 W/m2 with
initial temperature (a) 300 K and (b) 800 K.

fluid flow (Chapter 2). From Figure 3.2 (d), we see that efficiency of heat exchange between

the fluid and the lossy ceramic increases with thermal runaway as compared to non thermal

runaway cases.

3.5.2 Multiple Steady States

Figure 3.3 shows two steady state temperature profiles when input power density is kept

constant and initial temperature is changed. It is evident that heat energy convected by

fluid in Figure 3.3 (b) is much higher. From this result we can expect to see a multi-valued

power response curve even for the case with the fluid flow. Whenever multiple steady states

are possible, we see different steady state temperatures. From Figure 3.3, we see that for

the same input power, we see higher thermal efficiency if initial temperature is different.
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(a) (b)

(c) (d)

Figure 3.4: Steady-state temperature profiles for different lengths of the channel; (a) L=0.15
m, (b) L=0.20, (c) L=0.25 m, and (d) L=0.30 m; incident power density 4,200 W/m2.

3.5.3 Effect of Length of the Channel

The steady state temperature patterns in Figure 3.4 show that the maximum temperature

Tmax increases as the length of the channel is increased. When Tmax reaches a critical

value, we observe a large increase in temperature due to thermal runaway. This suggests

that high thermal efficiency can be obtained by choosing appropriate length of the channel.

As steady-state temperature profiles depend on operating conditions, geometry and material
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parameters, the presented model can help determine optimum design parameters of high-

efficient triple-layered MHEs.

3.6 Summary

We have developed a 2D numerical model which captures the operation of a triple layered

MHE. Even though fluid flow is considered, thermal runaway still initiates when maximum

temperature reaches a critical value. We showed that efficiency of a MHE increases when

thermal runaway is achieved in the lossy layer. The power at which thermal runaway occurs

not only depends on the material parameters, but also on the operating conditions such as

geometry, inlet temperature and pressure, external heat transfer coefficient. The developed

2D model can help engineers to develop MHE by choosing optimum design parameters so

that thermal runaway is achieved.
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Chapter 4

Conclusions

Thermal runaway is a nonlinear phenomenon in which overall temperature increases rapidly

with a small increase in incident power. Generally, temperatures during thermal runaway

are very high and difficult to control. Such high temperatures, practically instantly, may

damage the material itself. However, when appropriate resonance conditions are main-

tained, temperatures reached during thermal runaway can be maintained within control-

lable range. This fact motivates us to look at thermal runaway phenomenon as a potential

opportunity of efficiently harnessing microwave energy.

In this study, we have found that thermal runaway is triggered by maximum tempera-

tures in the system. Global temperatures increase dramatically as soon as the maximum

temperature reaches a critical value. This contention holds true even when fluid flow is

incorporated to extract heat generated during thermal runaway. As the amount of heat en-

ergy, which is being transferred to fluid from the heated ceramic, increases, incident power

required to achieve thermal runaway also increases. On the other hand, we have found

that, with appropriate length of the layered microwave heat exchanger, thermal runaway

can still be achieved, but at a lower power level. Since we considered a fluid with a very

small volumetric heat capacity and Reynolds number, heat energy extracted by the fluid

through convective heat transfer is also very small, therefore we do not see significant rise

in critical power when we introduce fluid flow. However, when volumetric heat capacity and
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effective Reynolds number are high, convection heat transfer between the heated ceramic

and the fluid would be dominant, and thus in turn would increase input power required to

instigate thermal runaway. Clearly, there exits a trade off between using fluids with high

volumetric capacity and geometry of the layered structure.

The numerical model developed in this work captures the basic operation of a layered

microwave heat exchanger. We have discussed how thermal runaway can be achieved by

increasing the length of fluid carrying channels. The model can further be extended to find

out effects of material properties, geometrical parameters, and external operating condition

such as frequency of the microwaves, heat transfer coefficient, etc. The critical power level

at which thermal runaway occurs not only depends on the material parameters, but also

on operating conditions such as geometry, inlet temperature and pressure, external heat

transfer coefficient. The developed 2D model can help engineers to design microwave heat

exchangers by choosing optimum design parameters so that thermal runaway could be

achieved.

We have shown that the efficiency of a MHE increases as thermal runaway is instigated

in the lossy layer. When designing an efficient triple layered MHE with actual coolant such

as water, we might expect to see a very high critical power, as the volumetric heat capacity

of the water is very high. In that case we might need a very long fluid channel. Another

important parameter affecting the heat transfer between the heated ceramic and the fluid

is the inlet temperature of the fluid. As we increase the inlet temperature of the fluid,

amount of heat transferred to the fluid would decrease. We also show that when external

heat transfer coefficient increases i.e. convective heat losses to the surrounding increases,

critical temperature remains the same but critical power increases proportionally.
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[20] P. Ratanadecho, K. Aoki, and M. Akahori, “A numerical and experimental investiga-

tion of the modeling of microwave heating for liquid layers using a rectangular wave

44



guide (effects of natural convection and dielectric properties),” Applied Mathematical

Modelling, vol. 26, no. 3, pp. 449–472, 2002.

[21] J. Zhu, A. V. Kuznetsov, and K. P. Sandeep, “Numerical simulation of forced convec-

tion in a duct subjected to microwave heating,” Heat and Mass transfer, vol. 43, no. 3,

pp. 255–264, 2007.

[22] C. M. Sabliov, D. A. Salvi, and D. Boldor, “High frequency electromagnetism, heat

transfer and fluid flow coupling in ANSYS multiphysics,” Journal of Microwave Power

and Electromagnetic Energy, vol. 41, no. 4, pp. 5–17, 2006.

[23] D. A. Salvi, D. Boldor, C. M. Sabliov, and K. A. Rusch, “Numerical and experimental

analysis of continuous microwave heating of ballast water as preventive treatment for

introduction of invasive species.” Journal of Marine Environmental Engineering, vol. 9,

no. 1, 2007.

[24] D. Salvi, J. Ortego, C. Arauz, C. Sabliov, and D. Boldor, “Experimental study of the

effect of dielectric and physical properties on temperature distribution in fluids during

continuous flow microwave heating,” Journal of Food Engineering, vol. 93, no. 2, pp.

149–157, 2009.

[25] D. Salvi, D. Boldor, G. Aita, and C. Sabliov, “COMSOL Multiphysics model for con-

tinuous flow microwave heating of liquids,” Journal of Food Engineering, vol. 104, no. 3,

pp. 422–429, 2011.

[26] P. D. Muley and D. Boldor, “Multiphysics numerical modeling of the continuous flow

microwave-assisted transesterification process,” Journal of Microwave Power and Elec-

tromagnetic Energy, vol. 46, no. 3, pp. 139–162, 2012.

[27] V. V. Yakovlev, “Commercial EM codes suitable for modeling of microwave heating -

a comparative review,” in Scientific Computing in Electrical Engineering. Springer

Verlag, 2001, pp. 87–95.

45



[28] V. V. Yakovlev, “Examination of contemporary electromagnetic software capable of

modeling problems of microwave heating,” in Advances in Microwave and Radio Fre-

quency Processing, M. Willert-Porada, Ed. Springer Verlag, 2006, pp. 178–190.

[29] D. Salvi, D. Boldor, J. Ortego, G. Aita, and C. Sabliov, “Numerical modeling of

continuous flow microwave heating: a critical comparison of COMSOL and ANSYS,”

Journal of Microwave Power and Electromagnetic Energy, vol. 44, no. 4, pp. 187–197,

2010.

[30] S. Demjanenko, K. Nowak, R. Northrup, S. Bogachev, E. M. Kiley, D. Bouvard, S. L.

Weekes, and V. V. Yakovlev, “Interpolation algorithms for interfacing FDTD and FEM

meshes in multiphysics modeling of microwave sintering,” in Proc. 12th Seminar “Com-

puter Modeling in Microwave Engineering and Applications - Advances in Modeling of

Microwave Sintering” (Grenoble, France, March 2010), pp. 62–64.

[31] X. Wu, “Experimental and Theoretical Study of Microwave Heating of Thermal Run-

away Materials,” Ph.D. dissertation, Virginia Polytechnic Institute, 2002.

[32] M. Chandran, V. Bogdan Neculaes, D. Brisco, S. Katz, J. Schoonover, and L. Cretegny,

“Experimental and numerical studies of microwave power redistribution during thermal

runaway,” Journal of Applied Physics, vol. 114, no. 20, p. 204904, 2013.

[33] “Solving nonlinear static finite element problems,” https://www.comsol.com/blogs/

solving-nonlinear-static-finite-element-problems, published online: 11-19-2013.

[34] M. N. Sadiku, Numerical Techniques in Electromagnetics with MATLAB. CRC Press,

2011.

46

https://www.comsol.com/blogs/solving-nonlinear-static-finite-element-problems
https://www.comsol.com/blogs/solving-nonlinear-static-finite-element-problems


Appendix A

Procedure of Development of the

COMSOL model

1. Open COMSOL Multiphysics 5.3

2. In the New window, click Model Wizard.

3. In the Model Wizard window, click 2D

4. In the Select Physics tree, select Fluid Flow-Single Phase Flow-Laminar Flow

5. Click Add.

6. In the Select Physics tree, select ∆u Mathematics-Classical PDEs-Helmholtz

Equation.

7. Click Add.

8. In the Select Physics tree, select Heat Transfer in Solids.

9. Click Add.

10. In the Study Selection, select Empty Study.

11. Once in the COMSOL environment save the model by selecting File-Save as.

47



12. Include Global Parameters by clicking Home-Parameters.

13. Define parameters as shown below Table A.1.

Table A.1: Parameters used in the model

14. Define global Average operator that computes average of any quantity in domain

1 and 2. We will use this operator later for defining the stop condition.

15. Right click on the Geometry, click on Rectangle; in Size and Shape section, set

Width=t3/2 and Height= h2; in Position section, set x: t2 and y: -h2/2.

16. Right click on the Geometry, click on Rectangle; in Size and Shape section, set

Width=t2 and Height= h2; in Position section, set x: 0 and y: -h2/2.

17. Click Build All Objects; geometry should look like Figure A.1.

18. Right click on Materials, select blank material, set desired thermal material proper-

ties.

19. Right click on Laminar Flow physics, include Inlet and Outlet boundary condi-

tions; set desired inlet and outlet pressure if the flow is pressure driven.

48



Figure A.1: Geometry of the COMSOL model

20. Right click on Helmholtz Equation physics, apply respective boundary conditions

discussed in Chapter 2 and Chapter 3 by choosing appropriate Flux conditions.

21. Right click on Heat Transfer physics, choose domain 1 as Fluid.

22. Add volumetric heat source as discussed in Chapter 2.

23. Again by clicking right click, apply respective thermal boundary conditions discussed

in Chapter 2 and Chapter 3.

24. Right click on the Helmholtz Equation environment, add another Helmholtz

Equation equation for domain 2. Now we should have two different (for domain

1 and domain 2) Helmholtz equation that can be modified as per material properties

of respective domain.

25. In the Helmholtz Equation for domain 1, select c = 1, f = 0, and a = −(k2)
2.
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26. Similarly in Helmholtz Equation for domain 2, select c = 1, f = 0, and a =

−(k3)
2(1−j ∗nu∗exp(3∗ (T −TA)/TA)) for domain 2. This term should be modified

as per the electrical conductivity model.

27. Now add boundary conditions as discussed in Chapter 2 and 3.

28. Add triangular mesh according to the criteria given in Chapter 2 and 3.

29. In order to store value of temperature at previous time step we use Domain ODEs

and DAEs physics. Set f= u3-nojac(T), da=0, ea=0.

30. Right click on study node, select study step- time dependent- frequency tran-

sient.

31. Make sure that adaptive time stepping is on, and follows BDF method of order 4.

32. In Study- solver configuration- right click on time dependent solver-, select

previous solution, and add variable u3; that we defined in Domain ODEs and

DAEs.

33. Finally add stop condition by right clicking on time dependent solver, and set

stopping condition as abs(comp1.aveop1(comp1.u3) − comp1.aveop1(comp1.T )) <=

1e− 6[K] and stop if True.

34. Model is now run the simulation and possessor desired results.

50



Appendix B

Comparison of COMSOL and

ANSYS

B.1 Heat Conduction in a Composite Slab

The considered test scenario consists of a composite slab consists of one layer of brick

500 mm thick and two layers of insulation. Inner layer of insulation is 100 mm thick

and outer layer is 60 mm. Thermal superconductive of brick, inner, and outer layer are

15 W/mK, 0.12 W/mK, and 0.082 W/mK respectively. The brick side is exposed to gases

at 800 0C and outer insulation is exposed to ambient air at 30 800 0C. Brick side and air

side heat transfer coefficients are 300 W/m2K, and 150 W/m2K. Find the heat transfer

through the slab.

Solution

The above problem is based on 1-D heat transfer, so we can solve the problem by analytical

calculations. According to resistance analogy for 1D conduction problem, we can say that

medium 1, 2, 3 are in series combination. Therefore, total heat flux through this combination

is

q̇x =
T1 − T2∑3

0Rthi
(B.1)
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9

𝑇1 = 800°𝐶

ℎ1 = 300
𝑊

𝑚2𝐾

𝑇2 = 30°𝐶

ℎ2 = 150
𝑊

𝑚2𝐾

Material
Length
(L, m)

Thermal
conductivity 

(
𝑾

𝒎𝑲
)

1 0.5 15

2 0.10 0.12

3 0.06 0.082

Assumptions:
• Steady state
• Constant material properties
• Perfect thermal contact

Ts1 Temperature of the surface which is exposed to hot air

Ts2 Temperature at the contact between material 1 and 2

Ts3 Temperature at the contact between material 2 and 3

Ts4 Temperature of the surface which is exposed to cold air

Figure B.1: Geometry of the composit system subjected to 1D heating.

where q̇x is total heat flow rate through this combination, and Rthi is thermal resistance

offered by the medium. Total thermal resistance of the system is

Rthi =

(
1

h1A

)
+

(
L1

K1A

)
+

(
L2

K2A

)
+

(
L3

K3A

)
+

(
1

h2A

)
, (B.2)

where h1 is heat transfer coefficient on the left hand side boundary, A is cross sectional

area K1, K2, and K3 are thermal conductivity of the respective medium, and h2 is heat

transfer coefficient on the right hand side boundary. Assuming A = 1 m2, we get Rth =

1.6083 (K/W ). Now,

q̇x =
(800− 30)

Rth
= 478.74 W/m2. (B.3)

By applying energy balance to the system, we can say that heat flux coming in by convection

is equal to flux conducted by the composite wall. Thus we compute Ts1 = 798.4041 0C,

Ts2 = 782.446 0C, Ts3 = 383.492 0C, and Ts4 = 33.1912 0C.
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Temperature Analytical results ANSYS results COMSOL results

Ts1 798.401 0C 798.40 0C 798.40 0C

Ts2 782.446 0C 782.45 0C 782.45 0C

Ts3 383.492 0C 383.45 0C 383.49 0C

Ts4 33.1912 0C 33.192 0C 33.192 0C

Table B.1: Comparison of results

Conclusion

Table B.1 shows the comparison of numerical and theoretical results. We see results pro-

duced by both ANSYS and COMSOL matches with the theoretical results. Both ANSYS

Mechanical APDL and COMSOL use Finite Element Method where solution is predicted

by assuming linear combinations of shape functions. Since theoretical temperature profile

in this 1D conduction problem is a linear function, and as we use linear shape functions

in both the packages, FEM can reproduce temperature linear temperature profiles very

accurately, as shown in Table B.1.
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Figure B.2: Geometry considered for modeling laminar fluid flow in a circular pipe.

B.2 Laminar Flow in a Pipe

Consider fluid flowing through a circular pipe of constant radius as illustrated in Figure

B.2. The pipe diameter D = 0.2 m and length L = 3 m. Consider the inlet velocity to

be constant over the cross-section and equal to 1 m/s. The pressure at the pipe outlet is

1 atm. Take density ρ = 1 kg/m3 and coefficient of viscosity µ = 0.002 kg/ms. Determine

velocity and pressure profile at the outlet.

Solution

Above problem can be solved by assuming the structure to be axisymmetric i.e., we consider

the circumferential component of velocity to be zero (uφ = 0) in cylindrical coordinate

system. Since it is not possible to solve the momentum equations theoretically within

developing regions, we assume that the flow is hydrodynamically fully developed (i.e.ur = 0).

Mass conservation equations for this geometry are

ur = 0, (B.4)

and

dux
dx

= 0, (B.5)

where ur is the radial component of the fluid velocity, and ux is the axial component of the

fluid velocity. From momentum equation in radial direction,

∂P

∂r
= 0, (B.6)
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From (B.5) we conclude say that the axial component of the fluid velocity in fully developed

region is changing only in the radial direction, and is constant in the axial direction. From

(B.6) we can conclude that the fluid pressure is changing only in the axial direction and not

in the radial direction. Finally, the momentum equation in axial direction becomes

µ

[
1

r

d

dr

(
r
du

dr

)]
=
dP

dx
, (B.7)

Left hand side of the (B.7) is a function or r, while right hand side is function of x. Therefore,

we can say that

µ

[
1

r

d

dr

(
r
du

dr

)]
=
dP

dx
= const. (B.8)

Integrating above equation twice, we get

u(r) =
r2

4µ

(
dp

dx

)
+ C1r + C2 (B.9)

Since we have axisymmetric condition at r = 0, and no slip conditions at r = r0, we have

two boundary conditions along r which are given as

du

dr
= 0, at r = 0, (B.10)

and

ur = 0, at r = r0. (B.11)

Applying above boundary conditions in (B.9), and solving for C1 and C2, we get

u(r) = − r
2
0

4µ

(
dP

dx

)[
1− r2

r20

]
. (B.12)

Since we do not know pressure gradient along the axial direction, we redefine dp
dx in terms

of the mean velocity given as

um =
1

r2

∫ r

0
u(r)dr, (B.13)
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Figure B.3: Comparison of velocity profiles produces by COMSOL and ANSYS Fluent with
theoretical solution.

where um is the mean velocity. From (B.12) and (B.13), we get

um = − r
2
0

8µ

(
dP

dx

)
. (B.14)

Therefore, final velocity profile for this problem is

u(r) = 2um

[
1− r2

r20

]
. (B.15)

Substituting given values, and also solving for pressure profile we get

u(r) = 200(0.01− r2), (B.16)

and

P (x) = 1.6(3− x). (B.17)

Comparison with computational results

Figure B.3 shows the comparison of the plot of velocity profile at outlet of the pipe. With

the same number of elements, i.e., 4000 elements, COMSOL and ANSYS Fluent showed
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Figure B.4: Comparison of pressure profiles produces by COMSOL and ANSYS Fluent with
theoretical solution.

different results. Similarly, Figure B.4 shows the comparison of the axial pressure profiles.

Differences seen in the results can be attributed to numerical techniques used by both the

software packages. ANSYS Fluent uses Finite Volume Method (FVM), whereas COMSOL

uses Finite Element Method (FEM). We can see that COMSOL needs denser mesh to

achieve an accuracy as good as ANSYS Fluent.
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Appendix C

Comparison of COMSOL and

QuickWave

This section of Appendix is focused on electromagnetic module in COMSOL Multiphysics.

We comparred results from COMSOL with QuickWave modeling software. COMSOL is

a Finite Element Analysis based software whereas QuickWave is a Finite Difference Time

Domain based package. Initially patterns of electric field, and electromagnetic power loss

were compared to check whether the both packages were producing similar field patterns.

In later part, scattering parameters and resonant frequencies were compared. Finally, point

to point power loss values (W/m3) from both COMSOL and QuickWave were compared

and root mean squared error was calculated.

Problem statement

For this comparison we consider a 3D model of resonating microwave (MW) cavity as

shown in Figure C.1. The geometry consists of a waveguide, a resonating cavity, and a

Zirconia dielectric medium. Boundaries of waveguide and cavity were assumed to be Perfect

Electrical Conductor (PEC). MW power is fed to the the resonator through a rectangular

waveguide, which was excited at the input port. Dimensions of the waveguide were chosen

such that dominant mode of electric field is TE10. Since a PEC boundary reflects incident
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Figure C.1: Geometry of the resonating microwave cavity.

Relative Permittivity εr 1

Relative Permeability µr 1

Electrical conductivity σ 0 S/m

Table C.1: Material properties of free space

Relative Permittivity εr 6.69

Relative Permeability µr 1

Electrical conductivity σ 0.0258 S/m

Specific heat capacity Cp 0.217 J/gC

Density ρ 2.848 g/cm3

Thermal conductivity K 0.00198 W/cm.C

Table C.2: Material properties of Zirconia

power at the boundary, MW only absorbed in the lossy dielectric medium. Input power is

assumed to be 1000 W, and operating frequency of the MW is 2.45 GHz. Material properties

used in this simulation are given in Table C.1 and in Table C.2.
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Max Element Size No of elements

Run 1 24 mm 2,245

Run 2 12 mm 18,598

Run 3 6 mm 159,596

Run 4 4 mm 549,713

Table C.3: Mesh refinements in COMSOL model

Max Cell Size (in X, Y, Z direction) No of cells

Run 1 5 mm 28,600

Run 2 4 mm 57,788

Run 3 3 mm 124,394

Run 4 2 mm 419,802

Run 5 1.5 mm 983,016

Run 6 1 mm 3,194,400

Table C.4: Mesh refinement settings used in the QuickWave model

Meshing

As COMSOL is based on Finite Element Analysis, we divide the geometry into Elements,

whereas in QuickWave, we divide the geometry in Cells. Discretizing elements for this study

were chosen as quadratic and cubic tetrahedron, and cells were of cuboidal shape.

Mesh refinements

We resolve the model with finer and finer meshes, and comparred the change in results

between these different meshes. This comparison was done by evaluating the scattering

parameter (S11) and the resonant frequency, and power loss in the dielectric medium.

Comparison of S11 parameter

As the geometry is a single port microwave circuit, we can only get S11 parameter. S11

parameter (reflection parameter) is the measure of how much power is leaving the port and

getting reflected back to the same port. At the resonant frequency, value of S11 parameter

is found to be minimum. Even by comparing results at the finest mesh setting (convergent

model) in both software we could not get the same values of the resonant frequency and
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Run
Resonant Frequency S11

QuickWave COMSOL QuickWave COMSOL

Run 1 2.431 2.456 0.176634 0.253973

Run 2 2.493 2.455 0.185388 0.231285

Run 3 2.444 2.454 0.204850 0.224546

Run 4 2.45 2.454 0.213295 0.222425

Run 5 2.452 NA 0.221429 NA

Run 6 2.453 NA 0.219123 NA

Table C.5: Comparison of S- parameters and resonant frequency given by COMSOL and
QuickWave models.

S11 parameter.

Summary

Here, we compared results from COMSOL software package with QuickWave software pack-

age in modeling resonating MW cavity. Comparison was based on field patterns, S11 pa-

rameters and the resonant frequency. We find that results produced by both the packages

are in a close agreement therefore we conclude that COMSOL is capable of simulating EM

phenomenon. Since QuickWave is a FDTD based software, it takes very little time to com-

plete the solution. However, COMSOL model take a long time, however, the use of this

software package is imperative in the study undertaken in the present Thesis.
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