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Abstract

This paper presents a new algorithm for the control of a snake-like robot

with passive joints and active wheels. Each segment has four autonomously

driven and steered wheels. The algorithm approximates the ideal solution in

which all wheels on a segment have the same centre of curvature with wheel

speeds providing cooperative redundancy. Each hitch point joining segments

traverses the same path which is determined by an operator prescribing the
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path curvature and front hitch speed. The numerical algorithm developed in

this paper is simulation tested against a previously derived analytical solution

for a predetermined path. Further simulations are carried out to show the

effects of changing curvature and front hitch speed on hitch path, wheel angles

and wheel speeds for a one, two and three segment robot.

KEYWORDS: snake-like robot, control system, 4WD-4WS, cooperative redundancy.

1 Introduction

In [1] an autonomous 4WD4WS operating system was introduced and this system

was used in the design of a segmented gantry tractor in [2]. The design of the

segmented gantry tractor is that of a snake-like robot consisting of segments each

having four wheels controlled by the autonomous 4WD4WS operating system under

the constraint that each hitch point, joining the segments, must follow the same path

(see Figure 1). Snake-like robots of this type are called “passive bending joint and

active wheel type” [3] although these robots generally have 2 wheels per segment with

steering accomplished using only wheel speeds rather than wheel steering combined

with speeds. Similar snake-like robots would also be suitable for segmented vehicles

working in shaft mines, rescue robots carrying first aid supplies through small pas-

sages and other applications. With each segment having four wheels this snake-like
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robot should be more stable under a load than those with two wheels per segment.

In [4] the analytic solutions for wheel angles and speeds of the first segment

were determined for a gantry tractor traveling on a predetermined path through a

gate. The algorithm for determining wheel angles and speeds would apply to any

predetermined path which is given by spatial equations in a flat plane.

This paper gives a numerical algorithm to compute wheel angles and speeds

approximating the analytical solutions for a path which is determined in real-time by

an operator, either internal or external (for example [5]) to the robot. This involves

determining the path traveled by the leading hitch of the first segment given the

instantaneous input from the operator of curvature of the path, κ(t), and velocity of

the leading hitch-point, v(t), at time t. The instantaneous radius of curvature, 1
κ
, is

the radius of the circle best fitting the curved path locally to a given point. Negative

κ indicates a right turn, κ = 0 indicates no turn and κ > 0 indicates a left turn.

To determine the hitch path from these inputs, the algorithm of [6] was generalized

by removing the restrictions of constant speed and “clothoid” curves, but in doing

so, the property that arc length is proportional to time was lost, forcing the use of

numerical techniques at an earlier stage of the path determination.

Once the path has been determined, knowing the length of each segment allows

the position, on that path, of all hitch points to be found. There is then enough
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information to calculate wheel angles and speeds in a number of ways. For high

speed snake-like robots, issues of traction, yaw and scuffing would be significant and

calculating the centre of gravity of each segment then using a kinematic, dynamic

or hybrid system approach, perhaps with feedback [7, 8, 9, 10] could be more ap-

propriate. The literature of these systems tends to neglect calculating time or use

constant curvature path tracking, splines (for example [11]), or specific predeter-

mined maneuvers such as lane changing. The common constraint that the front to

rear, central axis be tangential to the path is also inappropriate for the snake-like

constraint that all hitch points follow the same path. Alternatively, in [12], sensors

have been proposed to enable a ‘platoon’ of vehicles to follow the same path.

Under the assumed conditions of a relatively slow moving robot on a relatively

flat surface with no slip and negligible scuffing the geometrical control system given

in [2] can be applied. This system simply calculates a common centre of curvature

(COC) for the four wheels and two hitch points of each segment and the wheel

speeds are given using ratios of radii from the COC. These wheel speeds provide

a cooperative redundancy of two steering systems, with the advantage that when

one system begins to fail it is backed up by the other system. A similar approach

was taken in [13] but only the relation between wheel angle and turning radius was

investigated there. The wheel angles and speeds can be given as functions of Rx and
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Ry, the scalar components of the vector from the centre of segment (COS) to the

COC, perpendicular and parallel to the inter-hitch axis of the segment [1]. Rx and

Ry are shown in Figure 1.

COC

COS

Ry

Rx

(x1, y1)

(x2, y2)(x4, y4)

path

(x3, y3)

fence

a

b

l

Figure 1: Dimensions, a, b and l, of the segments and components Rx and Ry of a

snake-like robot passing through a gateway.

Since the calculation of wheel angles and speed takes a finite processing time,

the proposed control system samples the operator’s values of curvature and speed

at a fixed time increment. The time increment must be sufficiently long to allow

the calculation of the wheel angles and speeds of each segment before the control

parameters are sampled again. The calculation of the path will involve the numerical

approximation of several integrals. Trapezoidal approximation is used to facilitate
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programmability and speed (similar to [14]). The simulation studies of Section 3

show that trapezoidal approximation is sufficiently accurate with a realizable time

increment.

The dimensions of the segments, the range of speeds and of curvatures will effect

the accuracy of the discrete, numerical calculations. If the path is too curved situ-

ations can develop where the rear hitch of a segment may equally well travel along

the path in a forward or backward direction. This is avoided by restricting κ < 2
l
,

with l the inter-hitch distance, so that the front and rear hitches cannot be at the

ends of a diameter of a circle.

A simulation is carried out to demonstrate the accuracy of the numerical algo-

rithm compared to an analytical solution, given in [4]. The analytical solution for a

prescribed path was calculated with no attempt to remove singularities caused by the

values of Rx or Ry approaching infinity under certain path conditions (for example,

a straight path). The numerical algorithm was encoded in a MATLAB program for

which it was necessary to algebraically modify the equations used in deriving the

wheel speeds and angles, to ensure that all values remain finite and no singularities

occur.

This paper concludes with several other simulations to validate the algorithm,

using variable curvature, speed and number of segments. At this stage, resources are
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not available for the construction of a snake-like robot with 4WD-4WS segments,

and hence, no experimental testing of the proposed control algorithm was possible.

2 Numerical algorithm for wheel angles and speeds

2.1 Calculating the path

If the curvature of a path κ is given as a function of arc length, s, then using

the Serret-Frenet equations for a planar path (one with no torsion) the path x(s)

can be calculated as a vector function of arc length by the standard method of

differential geometry [15]. Explicitly, the path is given by integrating the tangent

vector ẋ =
d

ds
x(s) = t(s) = cos(θ(s))i + sin(θ(s))j, for i and j the standard basis,

where θ is the angle the path’s tangent makes with the direction i, calculated as

θ(s) =

∫ s

0

κ(s) ds. Figure 2 illustrates the vector components in the construction

for calculating the path x(s).

For a real-time control system, it is preferable to work in the parameter of time

rather than arc length. The standard method can be modified, introducing approxi-

mation techniques to determine discrete points along the path, x(ti), as a function of

time increments, ti = i∆t, i = 0, 1, 2, 3, . . . , given its curvature κ(ti) and speed v(ti)

at discrete time intervals. This discretized version of a path will be used to calculate
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Figure 2: Vector construction for calculating the path x(s)

discretized wheel angles and speeds for the segments of the snake-like robot using

a method similar to that of [4]. The path of the front hitch will be given by the

discrete points denoted (x1(ti), y1(ti)).

Initial conditions are necessary to approximate the definite integrals. Assume

that initially t0 = 0, κ(t0) = 0, v1(t0) = v0 m/s for some constant v0, distance

traveled s1(t0) = 0, angle θ1(t0) = 0, so the hitch is moving in the i direction, and

position x1(t0) = 0 and y1(t0) = 0.

The area of a (vertical) trapezoid is the average height times the width. For any

i > 0, the i-th sample gives κ (ti) and v1 (ti) and the values s1(ti−1), θ1(ti−1), x1(ti−1)
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and y1(tt−1) have previously been calculated. Then

s1(ti) = s1(ti−1) +
1

2
(v1(ti) + v1(ti−1))(∆t)

θ1(ti) = θ1(ti−1) +
1

2
(κ(ti) + κ(ti−1))(s(ti)− s(ti−1))

x1(ti) = x1(ti−1) +
1

2
(v1(ti) cos (θ(ti)) + v1(ti−1) cos (θ(ti−1))) (∆t)

y1(ti) = y1(ti−1) +
1

2
(v1(ti) sin (θ(ti)) + v1(ti−1) sin (θ(ti−1))) (∆t)

can be calculated.

In this way, the discrete points (x1(ti), y1(ti)), 0 < i can be calculated in an

iterative manner which is suitable for encoding into a loop program for machine

calculation.

2.2 Calculation of the centre of curvature

Consider a snake-like robot with n segments. For simplicity of explication, assume

each segment has an inter-hitch length of l meters. The algorithm can be modified to

cater for segments of varying dimensions though setting up the initial conditions is

more intricate. The j-th hitch will have coordinates labeled (xj(t), yj(t)) with speed

vj(t), 1 ≤ j ≤ n+ 1.

All that is required to calculate the COC of the j-th segment is to determine

the intersection of the normals to the path at the points of the j-th and (j + 1)-th

hitches. This requires first finding the position of the (j + 1)-th hitch, which can be
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done inductively if we know the position of the j-th hitch. The induction starts at

the first hitch, the position of which was determined in Section 2.1.

2.2.1 Initial path conditions

Some initial conditions about the path are needed before the operator takes con-

trol. Assume that all segments are traveling straight at constant speed as the initial

condition for all hitches. This condition is chosen for restarting the algorithm since

errors in path calculation will increase constantly for straight sections and constant

speed unless reset to zero, and they will remain zero until the next change of speed

or curvature. Assume that ∆t is sufficiently small that it is an integer divisor of

l. It is necessary that the entire snake-like robot has traveled in a straight line at

a constant speed v0 for a distance of l so that the j-th hitch, j = 1, 2, . . . , n has

supplied a sequence of discrete path points for the (j + 1)-th hitch to traverse.

Choose v0 to be an integer divisor of l
∆t

, so that all hitches will initially be

positioned on discrete path points without error. That is, qv0∆t = l for some integer

q. Then it is predetermined that the j-th hitch moves through the discrete points

(xj(ti), yj(ti)) = (−(j − 1)l + iv0∆t, 0), 0 ≤ i ≤ q with (−(j − 1)l + qv0∆t, 0) =

(−(j − 2)l, 0). For each hitch-point the associated speed is vj(t) = v0 and θj(t) = 0

for 0 ≤ i ≤ q. Thus, there will be a set of discrete path points of the j-th hitch for
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the (j + 1)-th hitch to follow for i > q and j > 1.

2.2.2 The operator takes control

For time intervals ti > q∆t, the position of each hitch is found inductively on j

starting with a knowledge of the position of the first hitch as calculated in Section

2.1. Consider the position of the j-th hitch, at time t = ti with i > q and assume that

the position of the (j − 1)-th hitch is known. Assume (xj(ti−1), yj(ti−1)) has been

previously calculated in terms of the position of the (j − 1)-th hitch at a previous

time, say (xj(ti−1), yj(ti−1)) = (xj−1(tk), yj−1(tk)), with k ≤ i− 1.

The inter-hitch length of the (j−1)-th segment is l, so, if we have just calculated

the point (xj−1(ti), yj−1(ti)) then we want to find the discrete point which is closest

to a length l from (xj−1(ti), yj−1(ti)) to be the point (xj(ti), yj(ti)). We know all the

discrete points for the (j− 1)-th hitch up until time ti. The lengths of some discrete

points from (xj−1(ti), yj−1(ti)) are shown in Figure 3.

The discrete path point chosen for the j-th hitch at time ti is the point (xj−1(t), yj−1(t))

that minimizes the value of
∣∣(xj−1(ti)− xj−1(t))2 + (yj−1(ti)− yj−1(t))2 − l2

∣∣. The

identity relies on the point closest away from (xj−1(ti), yj−1(ti)) having the square of

it’s length closest to the value l2. The absolute value of this difference will always be

positive so the point giving the minimum value will be the best approximation for
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(xj−1(ti), yj−1(ti))

(xj−1(tk), yj−1(tk))

(xj−1(tk+1), yj−1(tk+1))

length =
√
(xj−1(ti)− xj−1(tk))

2 + (yj−1(ti)yj−1(tk))
2

length =
√
(xj−1(ti)− xj−1(tk+1))

2 + (yj−1(ti)yj−1(tk+1))
2

path

Figure 3: The length of discrete points (xj−1(tk), yj−1(tk)) and (xj−1(tk+1), yj−1(tk+1))

from the point (xj−1(ti), yj−1(ti)).

the discrete location of the j-th hitch at time ti.

A calculation of this type for the point (xj−1(t), yj−1(t)) will be called a “Pythagorean

test”. Assuming that the vehicle is always going forward along the path, or is sta-

tionary, then it is necessary to Pythagorean test the point (xj(ti−1), yj(ti−1)) =

(xj−1(tk), yj−1(tk)) and the points in front of this until a minimum value for the

Pythagorean tests is found.

If the j-th hitch point (xj(ti), yj(ti)) is determined to be (xj−1(tm), yj−1(tm)) for

k ≤ m < i then also set θj(ti) = θj−1(tm).
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2.2.3 Calculating the COC for the j-th segment at the i-th time incre-

ment

The tangent vector to the path of the j-th hitch at time ti is given by vj(ti) cos (θj(ti)) i+

vj(ti) sin (θj(ti)) j and so a unit normal to the path, at the j-th hitch, is given by

sin (θj(ti)) i− cos (θj(ti)) j. A parametric equation of the line normal to the path at

the j-th hitch (at the front of the j-th segment), at time ti, is given, as a function of

the parameter gj,j, by

Nj,j(gj,j) = (xj(ti) + gj,j sin (θj(ti))) i + (yj(ti)− gj,j cos (θj(ti))) j (1)

This vector function traces out the position vector of the points on the normal line

for varying values of length gj,j from (xj(ti), yj(ti)), as shown in Figure 4.

Similarly, a parametric equation of the line normal to the path at the (j + 1)-th

hitch (at the rear of the j-th segment) is given by

Nj+1,j(gj+1,j) = (xj+1(ti) + gj+1,j sin (θj+1(ti))) i + (yj+1(ti)− gj+1,j cos (θj+1(ti))) j

(2)

Equations (1) and (2) can be solved simultaneously to find the values of gj,j and gj+1,j

making Nj,j(gj,j) = Nj+1,j(gj+1,j), where the two normal lines meet at the COC.

The values of |gj,j(ti)| and |gj+1,j(ti)| will also give the distance of the COC from

the j-th and (j + 1)-th hitches respectively since unit normal vectors were used in
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(xj(ti), yj(ti))

(xj+1(ti), yj+1(ti))

COC

sin θj(ti)i− cos θj(ti)j
xj(ti)i+ yj(ti)j+ gjj (sin θj(ti)i− cos θj(ti)j)

xj+1(ti)i+ yj+1(ti)j+ gj+1,j (sin θj+1(ti)i− cos θj+1(ti)j)

(0, 0)

length = gj+1,j

normal line
to path

normal line
to path

xj(ti)i+ yj(ti)j

path

length = gjj

Figure 4: Defining the lines Nj,j(gj,j) and Nj,j(gj+1,j) as functions of length from the

j-th and (j + 1)-th hitch points.

the parametric equations for the normal lines (see Figure 4). Consequently, if vj(ti)

is the speed of the j-th hitch at time t = ti then
|gj,j(ti)|
|gj+1,j(ti)|

=
vj(ti)

vj+1(ti)
allowing the

calculation of (noting the sign of gj,j(ti) and gj+1,j(ti) must be the same so absolute

values are unnecessary)

vj+1(ti) =
gj+1,j(ti)vj(ti)

gj,j(ti)
(3)

which is the speed of the (j+ 1)-th hitch. Since the speed of the first hitch is known,

all hitch speeds can be calculated inductively.

It is intuitively clear that the values of gj,j(ti) and gj+1,j(ti) will become infinite as
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the two normal lines approach parallel. In order to avoid these undefined solutions

the subsequent calculations will be manipulated using the fact that, since κ(t) <

l
2
, the COC can never be located at a hitch point and consequently, the values

Gj+1,j(ti) =
1

gj+1,j(ti)
and Gj,j(ti) = 1

gj,j(ti)
are always finite.

2.3 Overcoming singularities in the control of wheel speeds

and angles

The wheel angles and speeds for each module, at time ti, are calculated during the

time increment ∆t. All quantities used in the calculations are evaluated for time ti

so, to simplify notation, the reference to time is suppressed. During Section 2.3, at

time ti, denote hitch points as (xj, yj), angles θj, hitch speeds vj and the parameter

associating the (j + 1)-th hitch to the COC of the j-th segment by Gj+1,j.

Solving Nj,j(gj,j) = Nj+1,j(gj+1,j) leads to

Gj+1,j =
− sin (θj+1 − θj)

(sin (θj)) (yj+1 − yj) + (cos (θj)) (xj+1 − xj)
(4)

and

Gj,j =
− sin (θj+1 − θj)

(sin (θj+1)) (yj+1 − yj) + (cos (θj+1)) (xj+1 − xj)
(5)

As stated, these are both finite quantities. This can be seen since, for the denom-

inator to equal 0 would require tan(θj+1) =
− (xj+1 − xj)

(yj+1 − yj)
, which states that the
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tangent to the path at the (j + 1)-th hitch is perpendicular to the inter-hitch axis of

the j-th segment which violates the κ(t) < l
2

restriction.

The planar coordinates of the COC of the j-th segment are multiplied by Gj+1,j

to get scaled coordinates:

(Cj,1, Cj,2) = (Gj+1,j(xj+1) + sin θj+1, Gj+1,j(yj+1)− cos θj+1)

The coordinates of the COS of the j-th segment are also multiplied by Gj+1,j to get

scaled coordinates:

(Mj,1,Mj,2) =

(
Gj+1,j

2
(xj+1 + xj),

Gj+1,j

2
(yj+1 + yj)

)

Then the vector from the j-th segment’s COS to its COC, multiplied by Gj+1,j,

is Rj = (Cj,1 − Mj,1)i + (Cj,2 − Mj,2)j. A vector parallel to the axis of the j-th

segment from the (j+ 1)-th hitch to the j-th hitch is Lj = (xj −xj+1)i+ (yj − yj+1)j

and consequently a vector perpendicular to this axis (suitably oriented) is Pj =

(yj − yj+1)i− (xj − xj+1)j.

Resolving Rj into its components in the directions of Lj and Pj by the standard

‘dot’ product method gives the desired Rx and Ry multiplied by a factor of Gj+1,j,

which we denote

Tj,x =
(Cj,1 −Mj,1)(yj − yj+1)− (Cj,2 −Mj,2)(xj − xj+1)√

(xj − xj+1)2 + (yj − yj+1)2
(6)

Tj,y =
(Cj,1 −Mj,1)(xj − xj+1) + (Cj,2 −Mj,2)(yj − yj+1)√

(xj − xj+1)2 + (yj − yj+1)2
(7)
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The wheel angles of a segment are calculated by trigonometry in [1] and, account-

ing for the multiplicative factor of Gj+1,j, are given, for the j-th segment at time ti,

in Table 1. Positive wheel angles are clockwise for the front and anticlockwise for

the rear wheels.

Wheel speeds are calculated using the fact that the ratio of wheel hub distance,

from the COC, to hitch distance, from the COC, is equal to the ratio of the trans-

lational hub speed to hitch speed, since both wheel and hitch are revolving around

the same centre of curvature. For the j-th segment, the speed of the j-th hitch, at

time ti, was determined using equation (3) as vj =
Gj−1,j−1vj−1

Gj,j−1

, and the length of

the front hitch from the COC is |gj,j| =

∣∣∣∣
1

Gj,j

∣∣∣∣. The length of the wheel hub from

the COC is calculated by trigonometry in [1] and consequently, accounting for the

multiplicative factor of Gj+1,j(ti), wheel speeds for the j-th segment, at time ti, are

given with the corresponding wheel angle in Table 1.

Both the functions for wheel angle and wheel speeds are given in terms of the

values of Gj,j, Gj+1,j, Tj,x and Tj,y. Each of these values, and hence the wheel angles

and speeds, are completely determined from the two input variables of κ and v. As

a result, the wheel angles and speeds given in Table 1, that ensure all hitch points

remain on the path of the front hitch, are determined as functions of the operator’s

prescribed values of κ(ti) and v(ti).
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Wheel Wheel angle Wheel speed

Right Front arctan

(
bGj+1,j − 2Tj,y
2Tj,x − aGj+1,j

)
vjGj,j

2Gj+1,j

√
(bGj+1,j − 2Tj,y)

2 + (2Tj,x − aGj+1,j)
2

Left Front arctan

(
bGj+1,j − 2Tj,y
2Tj,x + aGj+1,j

)
vjGj,j

2Gj+1,j

√
(bGj+1,j − 2Tj,y)

2 + (2Tj,x + aGj+1,j)
2

Right Rear arctan

(
bGj+1,j + 2Tj,y
2Tj,x − aGj+1,j

)
vjGj,j

2Gj+1,j

√
(bGj+1,j + 2Tj,y)

2 + (2Tj,x − aGj+1,j)
2

Left Rear arctan

(
bGj+1,j + 2Tj,y
2Tj,x + aGj+1,j

)
vjGj,j

2Gj+1,j

√
(bGj+1,j + 2Tj,y)

2 + (2Tj,x + aGj+1,j)
2

Table 1: Wheel angles and speeds of the j-th segment at time ti

The fact that Gj,j and Gj+1,j have the same sign has again been used to remove

the need for absolute values to be taken. Wheel speed is given as the translational

speed of the hub in units of distance per second. For a wheel of radius r units of

distance, the rotational speed of any of the wheels in radians per second is given by

dividing the translational speed by r.

The value of Gj+1,j can be zero, however, as discussed for equations (4) and (5),

under the restriction κ(t) < l
2
, the ratio

Gj,j

Gj+1,j

=
(sin (θj)) (yj+1 − yj) + (cos (θj)) (xj+1 − xj)

(sin (θj+1)) (yj+1 − yj) + (cos (θj+1)) (xj+1 − xj)

has no singularities so that no singularities occur when calculating wheel speeds.
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3 Simulations and discussion

In order to validate the developed control algorithm, simulation studies were car-

ried out for various operating conditions. The numerical algorithm is coded into a

MATLAB program which, for each value of ti = i∆t, samples values of κ(ti) and

v1(ti) from external files, simulating the sampling of the operator’s input. That is,

the operator is also a simulation given as functions for κ(t) and v(t), external to

the main algorithm program. The program then calculates the hitch points and the

segment wheel angles and speeds for ti before sampling the values from the external

files for κ(ti+1) and v1(ti+1) and recalculating the segment wheel angles and speeds

for ti+1. The loop continues for counting numbers i up to a predetermined value.

3.1 Accuracy testing of the numerical algorithm

To test the accuracy of the numerical algorithm the current calculations of wheel

speeds and angles will be compared, using simulation, with those calculated for a

predetermined path in [4]. The analytic solutions in [4] are for a single segment with

the segment dimensions shown in Figure 1 of a = 0.5 m, b = 0.5 m and l = 1 m.

The operator’s parameters for the test simulation are a constant hitch speed v1 = 1
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m/s and curvature,

κ(t) =





0 0 < t ≤ 1

−1 1 ≤ t ≤ 1 + π/2

1 1 + π/2 ≤ t ≤ 1 + π

0 1 + π ≤ t ≤ 3 + π

(8)

This gives the path of a scaled model of a gantry tractor, with 5 m long segments,

passing through a gate, with wheel speeds around 18 km/h, using straight paths and

circular arcs as shown in Figure 1. The assumption of no slip should remain valid in

such a case given hard ground and good wheel traction, since there is a co-operative

redundancy between the steering systems of wheel angle and wheel speed. Different

conditions such as muddy ground would not satisfy the non-slip assumption.

The accuracy of the algorithm depends on the value of ∆t. Decreasing ∆t in-

creases the number of discrete points along the path. Since, with smaller ∆t the

discrete points are closer together, there will be less error in the choice of a discrete

point approximating the true length of the module. However, ∆t must be sufficiently

large to allow for the calculation of wheel speeds and angles before the next sam-

pling occurs in the recursive process. The most natural choice for a value of ∆t is the

smallest value with sufficient margin of error to allow certainty of the calculation.

The MATLAB simulation was run 10 times (on a desktop PC using Windows XP
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operating system, 512 MB RAM, processor speed 2593 MHz) with each of the ∆t

values shown in Table 2. The results indicate that choosing ∆t = 0.001 seconds will

give a suitable balance of calculating speed and accuracy. We will use ∆t = 0.001 s

for all simulations of Section 3.1. In the simulation graphs, the horizontal scale is in

increments of 0.001 s. For example, 4142 increments of 0.001 s represents a time of

4.142 s, which is the closest time increment to t = 1 + π seconds.

∆t

(seconds)

mean

(seconds)

standard deviation

(seconds)

mean

relative to ∆t

0.01 0.000219 0.000044 0.02 ∆t

0.001 0.000659 0.0000004 0.66 ∆t

0.0005 0.001229 0.0000002 2.46 ∆t

Table 2: CPU time per program loop for simulation with different ∆t

There are two sources of error in the algorithm; error by approximating the

integrals to calculate the discrete path points and error in selecting a discrete path

point to represent the position of the rear hitch point.

The accuracy of determining the discrete path points using the numerical algo-

rithm is shown in Figure 5. The error shown is the distance of the discrete point

away from where the hitch should be in the analytical solution of [4]. The mean
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Figure 5: Distance between numerical path point and actual path point with ∆t =

0.001

path error is 1.4× 10−3 m with standard deviation 1.3× 10−3 m, for this particular

simulation. The rate of change of the error is not smooth at the discontinuous points

in the function for κ, as would be expected. The continuing increase in error, after

t = 1 +π, when the hitch should return to a straight line in the direction i, is due to

the fact that θ(ti) does not return exactly to zero before becoming constant whilst

κ = 0, after t = 1 + π. This has a small effect in the calculation of y1(ti) since sin θ

has a slope close to 1 near zero. The effect on x1(ti) is negligible since cos θ has a

slope close to 0 near zero. This highlights the need to restart the algorithm when

the front hitch is in a straight path but this would require a directional sensor to

determine the true value of θ.
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Figure 6: Error in distance between front and rear hitches with ∆t = 0.001

The accuracy of determining the position of the rear hitch as a discrete point

compared to the position determined analytically in continuous time is demonstrated

in Figure 6 which graphs the difference between inter-hitch distance determined

numerically and the true value of 1. We see a maximum error of 5 × 10−4 m, as

expected. The mean inter-hitch error is −3.2 × 10−5 m with standard deviation

2.0× 10−4 m, for this particular simulation. The “jittery” effect in which we observe

‘vertical sections’ on the error plot occurs due to sudden changes in the sign of the

error. These sudden changes correspond to a change in choice from the (i − n)-th

to the (i − (n ± 1))-th discrete point with n ∈ {100, 99, 98}. For instance, when

traveling along the initial straight section the rear hitch will be at discrete point

(x2(ti), y2(ti)) = (x1(ti−100), y1(ti−100)) one metre behind the front hitch. However,
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as the front hitch enters the first curve, the discrete point (x1(ti−100), y1(ti−100))

slowly becomes smaller than the length of the module, l = 1 metre, resulting in

an increasing, negative error until suddenly, at one particular time increment, the

discrete point (x1(ti−101), y1(ti−101)) is Pythagorean tested to be the closest discrete

point to being 1 metre from the front hitch and is selected as the position for the

rear hitch, now with positive error. We observe no “jitter” when both front and rear

hitch are on the same straight section or curved section where the constant equal

curvature of the path at front and rear hitch creates a “steady state”.

Figure 7 compares front hitch path, wheel angles and speeds calculated analyt-

ically with those of the numerical solution, with all four wheel angles or speeds on

one graph for each solution. In each legend RF denotes the right front wheel values,

LF denotes the left front, RR the right rear and LR the left rear wheel values. We

observe from the plots for wheel angles the expected symmetry of diagonally opposed

wheels for time in opposite directions. The negative values for the angle of the rear

wheels just after the front hitch reaches the first circular arc (at t=1 s) are due to the

fact that the hitch point is behind the rear hubs which must move to their right as

the front hitch moves around the circular arc to the right. No symmetry of forward

and reverse direction occurs for wheel speeds since it is a condition that the front

hitch has constant speed along the path whereas the rear hitch has a variable speed.
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Figure 7: Comparison of numerical and analytical calculations. The left column

shows the analytical front hitch path, wheel angles and wheel speeds. The right

column shows the numerical front hitch path, wheel angles and wheel speeds.
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The slowing of inner wheels and speeding up of outer wheels occurs as expected

around the circular arcs. The steady states, between transitions, show left and right

side wheels having the same constant values for both angles and speeds, as expected

when in these states.

To visualize the error, the difference of analytical and numerical values of wheel

angles and speeds are plotted for each wheel in Figure 8. Combining all wheels

the calculated mean angle error is 4.9 × 10−5 degrees with a standard deviation of

1.6×10−4 degrees. Similarly, the mean speed error is −1.8×10−5 m/s with a standard

deviation of 9.3× 10−5 m/s. Again there is a “jittery” effect with sudden changes in

the sign of the error. This follows from the change in error of the position of the rear

hitch which is an essential component in the calculation of wheel speeds and errors.

Again we see no jitter when the module is in a “steady state” condition.

3.2 Simulation study with a three segment robot

The average errors for both wheel angles and speeds are relatively small, as are the

standard deviations, so we can conclude that the numerical algorithm gives an accu-

rate approximation of wheel angles and speeds over the entire maneuver. Satisfied

that the numerical algorithm was sufficiently accurate it was used to calculate wheel

angles and speeds of the second and third segments. The algorithm defines the front
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Figure 8: Wheel angle errors for individual wheels with ∆t = 0.001 in upper four

graphs and speed errors in lower four graphs
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hitch of the second module to be at exactly the same discrete point as the rear hitch

of the first module, so in theory there is no need for a “hitch pin” joining the modules.

In an experiment the error due to discetization of the path will cause some forces

on a real “hitch pin” but since the errors are low these forces would have negligible

effect on the assumption of no wheel slip.

The κ of equation (8) is slightly modified by extending the last period of zero

curvature to be κ(t) = 0, 1 + π ≤ t ≤ 4 + π. This extends the last straight section

of the path, which is otherwise identical to that in row 1, column 2 of Figure 7, by

one metre, ensuring all modules finish the simulation on a straight section of path.

Using this modified κ and constant front-hitch speed v1 = 1 m/s, the wheel angles

and speeds for the first three segments are calculated in a single loop of the MATLAB

program. The additional calculation for the second and third segments increases the

calculation time per loop. For 10 runs with ∆t = 0.002 s the average CPU time

per loop was 1.14× 10−3 = 0.57∆t. Figure 9 shows the results for wheel angles and

speeds of the first segment in the first row, the second segment in the second row

and the third segment in the third row.

Because the average wheel speeds stay relatively close to 1 m/s the periods of

angle transition appear identical for each segment, although translated due to the

later time subsequent segments enter the transition states. As expected, all wheels
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Figure 9: Wheel angles and speeds for the first segment in row 1, the second segment

in row 2 and the third in row 3
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show a change of speed as soon as the front hitch reaches the first circular arc and,

because the later segments are traveling on a straight path, all their wheel speeds

are the same until angle transition occurs. All wheels of each segment also have the

same value of 1 m/s when the segment is half way through the transition between

circular arcs.

3.3 Further simulation with one segment

Two further simulations were carried out for one segment with ∆t = 0.001 s. The

left column of Figure 10 shows the hitch path, wheel angles and speeds, using κ

similar to that given in equation (8),

κ(t) =





0 0 < t ≤ 2

−1 2 ≤ t ≤ 2 + π/2

1 2 + π/2 ≤ t ≤ 2 + π

0 2 + π ≤ t ≤ 3 + π

(9)

but varying velocity linearly as a function of time, v(t) = 0.2 + 0.3(t). The initial

time interval that the front hitch is moving in a straight line in equation (9) has been

extended so that, with the reduced speeds, it still moves forward through the length

of one segment in a straight line, thereby prescribing a complete set of points for the

second hitch to follow. A similar approach will allow for a standing start.
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Figure 10: Further simulation showing path, wheel angle and wheel speed with

varying speed in the left column and varying curvature in the right column
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The shape of the graphs are as expected. The average speed for the first straight

section is 0.5 m/s so the straight path of the front hitch is 1 m long. Over the next

π
2

s the average speed is 1.0 m/s so a quarter right circle is covered. The average

speed for the next π
2

s is 1.5 m/s so 3
8

of a left circular arc is covered and the average

speed for the last 1 s is 1.9 m/s so a 1.9 m straight section finishes the path. The

graph of wheel angles shows a time distorted replica of the wheel angles in Figure

7, with transitions occurring increasingly quickly and steady states being extended

as speed increases. The graph of wheel speeds shows a time sheared replica of the

wheel speeds in Figure 7, with transitions occurring increasingly quickly and steady

states being replaced by linearly increasing sections which are extending in duration

as speed increases.

The right column shows hitch path, wheel angles and speeds with constant speed

v1(t) = 1 m/s and a linearly increasing curvature κ(t) = 0.4(t) for 1 < t ≤ 1 + π and

κ(t) = 0 otherwise.

The shape of the graphs are as expected. The front hitch path shows a straight

section of 1 m covered in the first second followed by a clothoid left turn over the

next π s completed with a 2 m straight section covered over the last 2 s. The wheel

angles show a similarity to the first transition of Figure 7 but instead of a steady state

following the initial transition, the angles continue to become increasingly negative,

32



indicating an increasingly curved left turn until a sharp return to the final transition

similar to that shown in Figure 7 as the curvature function discontinuously returns

to 0. The wheel speeds also show a similarity to the first transition of Figure 7

but instead of a steady state following the initial transition, the speeds of all wheels

start to decrease as the curvature of the path increases (hence radius of curvature

decreases) followed by a sharp return to a final transition similar to that shown in

Figure 7 as the curvature function discontinuously returns to 0.

3.4 Simulation with two segments and variable speed and

curvature

Up to this point the simulations have used simple combinations of prescribed cur-

vature and velocity for the first hitch point so that the resulting plots can be easily

interpreted as evidence the algorithm is working correctly. In this section we simulate

the more complex system of a sinusoidally varying curvature (see equation (10)), a

velocity that has a parabolic section decreasing from 1 m/s to 0.5 m/s and then in-

creasing to 1 m/s again (see equation (11)) and two segments of the snake-like robot.

Ten simulation runs using ∆t = 0.001 gave an average CPU time of 0.00047 = 0.47∆t

(on a laptop with Windows XP operating system, 2.96 GB RAM, processor speed

2.53 GHz) so that the sampling time far exceeds the calculation time.
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Figure 11: Two segment simulation with varying speed and curvature. The left

column shows the first segment’s front hitch path, wheel angles and wheel speeds.

The right column shows the second segment’s front hitch path (rear hitch path of

first segment), wheel angles and wheel speeds.
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κ(t) =





0 0 < t ≤ 1

2 sin (3(t− 1)) 1 ≤ t ≤ 3
2
π + 1

0 3
2
π + 1 ≤ t ≤ 9

(10)

v(t) =





1 0 < t ≤ 1

2
25
x2 − 14

25
x+ 37

25
1 ≤ t ≤ 6

1 6 ≤ t ≤ 9

(11)

The hitch path of the first and second hitch as well as the wheel angles and speeds

of the two modules are plotted in Figure 11. With such a complex set of conditions

interpretation of the results is more difficult. Reassurance that the algorithm is

producing the correct outputs is offered by the following set of observations. Firstly

the first and second hitch points follow the same path with the second starting and

finishing 1 m in a straight line behind the first. This is because κ(t) was chosen to

start and finish with straight sections of zero curvature. There is an expected lag

between the wheel angles of front and rear wheels with the second segment showing

a near identical pattern with a slight time dilation in places (such as the section

between 3 and 5 second) when the velocity is slowing. There is a noticeable overall

slowing of wheels as the front hitch velocity is decreased which then speed back up

as the v(t) returns to a value of 1 m/s. As expected although v(t) returns to 1 m/s

at t = 6 s, the wheels do not all return to a speed of 1 m/s until their angles are all
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zero and the segment is again traveling in a straight line.

4 Conclusion

A new algorithm has been developed to accurately control the wheel angles and

speeds of 4WD4WS robots with the added prescription that reference points at front

and rear traverse the same path. The accuracy has been tested by simulation com-

pared to an analytical solution and also by achieving the expected results of further

simulations with simple modifications of the control parameters. If the reference

points at front and rear are hitching points of a segmented vehicle then the control

system is applicable to a snake-like robot. Furthermore, if some segments are physi-

cally removed, because the hitch points are passive, the algorithm provides a control

system for a series of path following robots (compare to [16]).

Modifications of this control algorithm, such as position of the reference points

traversing a single path, will also be applicable to truck-trailer systems with au-

tonomous steered and driven wheels (compare to [17]). The symmetry of a snake-like

robot driven forward from the front hitch or in reverse from the rear hitch means

the algorithm is also applicable to reversing truck-trailer systems with autonomous

steered and driven wheels (compare to [18, 19]).

36



References

[1] I. J. Spark and M. Yousef Ibrahim. Integrated mechatronics solution to maxi-

mize tractability and efficiency of wheeled vehicles. In Bruno Siciliano, editor,

IEEE/ASME International Conference on Advanced Intelligent Mechatronics,

pages 320 – 325, Como, Italy, July, 2001.

[2] I. J. Spark and M. Yousef Ibrahim. Manoeuvrable gantry tractor comprising a

chorus line of synchronised modules. IEEE International Symposium on Indus-

trial Electronics, pages 2208 – 2213, 2007.

[3] S. Hirose and H. Yamada. Snake-like robots: Machine design of biologically

inspired robots. IEEE Robotics & Automation Magazine, 16(1):88 – 98, 2009.

[4] A. Percy, I. J. Spark, and M. Yousef Ibrahim. On-line determination of wheel

angles and speeds for manouverable gantry tractor comprising a “chorus line”

of synchronised maodules. In IEEE-ICIT’09 International Conference on In-

dustrial Technology, pages 320 – 325, Churchill, Australia, February, 2009.

[5] E. Slawiñski, V. Mut, and J. F. Postigo. Teleoperation of mobile robots with

time-varying delay. Robotica, 24:673 – 681, 2006.

37



[6] B. Klassen and K. Paap. GMD-SNAKE2: A snake-like robot driven by wheels

and a method for motion control. In Proceedings of the IEEE Conference on

Robotics and Automation, pages 3014 – 3019, Detroit, Michigan, USA, 1999.

[7] G. Campion, G. Bastin, and B. D’Andrea-Novel. Structural properties and

classification of kinematic and dynamic models of wheeled mobile robots. IEEE

Transactions on robotics and automation, 12(1):47 – 61, 1996.

[8] Q. Han and L. Dai. A non-linear dynamic approach to the motion of four-

wheel-steering vehicles under various operation conditions. In Proceedings of the

Institute of Mechanical Engineers, Part D: Journal of automobile engineering,

volume 222, pages 535 – 549, 2008.

[9] H. Itoh, A. Oida, and M. Yamazaki. Numerical solution of a 4WD-4WS tractor

turning in a rice field. Journal of terramechanics, 36:91 – 115, 1999.

[10] Shou-Tao Peng. On one approach to constraining the combined wheel slip in

the autonomous control of a 4WS4WD vehicle. IEEE Transactions on control

systems technology, 15(1):168 – 175, 2006.

[11] I. Waheed and R. Fotouhi. Trajectory and temporal planning of a wheeled

mobile robot on an uneven surface. Robotica, 27:481 – 489, 2009.

38
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