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Abstract

The interface between the concrete and the rock is usually considered the weak-
est link in concrete structures built in rock foundations. The fracture behaviour
at the concrete-rock interface is in�uenced by many factors e.g. the material
properties of the individual constituents, the fracture process zone at the in-
terface and the mode mixity ratio. This paper investigates the dependency of
the fracture behaviour of concrete-rock interfaces on the mode mixity ratio us-
ing experimental and numerical methods. The experimental program involves
four-point-shear of concrete-rock composite beams. It is designed to test a wide
range of mode mixity ratio. Using linear elastic fracture mechanics theory, the
fracture toughness and the fracture energy are �rst quanti�ed in terms of the
mode mixity ratio. The scaled boundary �nite element method, which is known
for its accuracy in modeling fracture, is used to compute the fracture toughness
and fracture energy. Next, the crack propagation process of the concrete-rock
composite beam is modeled using nonlinear fracture mechanics theory. The
scaled boundary �nite element method is coupled with interface elements to
model the fracture process zone, which is a characteristic of fracture in quasi-
brittle materials such as concrete and rock. A revised scaled boundary �nite
element method formulation using generalized coordinates is used to model the
cohesive tractions. The cohesive crack at the interface is assumed to propa-
gate when either the Mode 1 or the Mode 2 stress intensity factors change sign.
A simple remeshing algorithm is used to propagate the crack at the interface.
The numerical simulations are validated by the experimental measurements.
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The simulated crack propagation processes are described in terms of the mode
mixity ratio.

Keywords: interface fracture, concrete-rock, mode mixity, cohesive crack
model, scaled boundary polygons

1. Introduction

Many concrete structures such as concrete dams, gravity wharfs and un-
derground geological repositories for nuclear waste storage are built on rock
foundations. The physical properties of concrete and rock are well documented
in the literature e.g. [1, 2]. The behavior of the interface between the concrete
and the rock, which is generally considered as the weak link of the structure-
rock foundation system, however, is not a well understood phenomenon. In the
stability analysis of such structures, the assumption of perfect bonding at the
concrete-rock interface is usually employed, e.g., [3]. More realistic analyses re-
ported in the literature include the use of friction models to quantify the relative
movements between the dam foundation and the dam [4] and spring elements
that model the water uplift pressure at the concrete-rock interface [5]. These
analyses, however, do not account for the fracture behaviour at the interface.
A comprehensive analysis of the stability at the concrete-rock interface requires
an in-depth understanding of the behavior of the interfaces between the mortar
and the aggregates, which is intrinsic to the concrete and the rock.

Unlike homogeneous materials, the fracture behaviour of a bimaterial inter-
face crack depends on the mode mixity ratio [6]. This has been observed in
many experimental studies e.g. [7, 8, 9, 10, 11, 12, 13]. Lee and Buyukozturk
[7] reported the fracture toughness curves of the mortar-aggregate interfaces
in concrete using sandwiched specimens subjected to four-point-bending and
Brazilian disk tests. They observed a remarkable increase of interface frac-
ture toughness with shear loading relative to that of tensile loading. The same
authors also observed a similar behaviour in their experimental tests on high
strength concrete [8]. In the three-point bending tests on concrete-composite
specimens reported by Buyukozturk and Hearing [9], the magnitude of the in-
terface toughness was observed to depend on the mismatch of the elastic mod-
uli and fracture toughness of the aggregate and mortar. Tippur and Rosakis
[10], Tippur and Ramaswamy [11] reported the dependence of the interfacial
crack initiation toughness and the dynamic fracture behaviour on the crack tip
mode mixity parameter for a PMMA-Al bi-material system. Agrawal and Karls-
son [12] reported the dependency of the interfacial fracture toughness on the
mode mixity ratio for aluminium-vinyl ester specimens subjected to four-point
bending. Yang et al. [13] investigated the fracture toughness at the concrete-
rock interface using single-notched concrete-rock beams. They found that the
Mode 1 fracture toughness of the interface varied with the mode mixity ratio
and proposed a failure criterion for the concrete-rock interface that includes the
contributions of both Mode 1 and Mode 2 fracture toughness.
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The experimental studies aforementioned were performed with the objective
of quantifying the fracture toughness over a wide range of mode mixity. This
task is, however, very di�cult because the complexity of the stress distribution
at the bi-material interface. To achieve this objective, numerical methods are
usually used to interpret the experimental measurements e.g. [7, 12]. The
fracture toughness at the interface is computed using linear elastic fracture
mechanics theory [7, 8, 9, 10, 11, 12, 13] under the assumption that it is valid
for the loading and specimen sizes tested. The accurate modeling of the fracture
behaviour at bi-material interfaces, however, is a very challenging problem in
computational mechanics.

Unlike homogeneous materials, the variation of the normal and shear stresses
on the interface are coupled when the theory of linear elastic fracture mechanics
is used. The orders of singularity at the bi-material interface crack appear as
a pair of complex conjugates 0.5± iε. The polynomial shape functions used in
the standard �nite element method cannot e�ectively model the stress �eld in
the vicinity of the crack tip Shih and Asaro [14], Matos et al. [15] unless a very
�ne mesh is employed. To avoid local mesh re�nement at the crack tip, special
singular �nite elements e.g. Lin and Mar [16] or local enrichment functions e.g.
Sukumar et al. [17] that incorporate the asymptotic expansion at a bi-material
crack formulated by Williams [18] have to be used.

The assumption of linear elastic fracture mechanics in the numerical simula-
tions, however, is inadequate to capture the nonlinear strain softening behaviour
observed in the fracture of quasi-brittle material such as concrete and rock. This
nonlinearity arises from the development of a fracture process zone along the
crack surfaces where normal and shear stresses act through mechanisms such as
aggregate interlocking and surface friction. Therefore, a more realistic analysis
of the fracture at the concrete-rock interface requires the use of nonlinear frac-
ture mechanics. Similar to linear elastic fracture, the simulation of nonlinear
cohesive fracture with the standard �nite element method requires the use of
very �ne meshes in the vicinity of the cracks unless the formulation is augmented
by the asymptotic expansions for cohesive cracks e.g. Karihaloo and Xiao [19]
and Alberto and Valente [20].

This paper investigates fracture toughness at a concrete-rock interface, with
special emphasis on its relation with the mode mixity using both experimental
and numerical approaches. Composite beam specimens with a concrete-rock in-
terface are tested under four-point-shear loading conditions. The experimental
program is designed to enable a wide range of mode mixity ratio to be tested.
Numerical simulations are used to interpret the experimental results. The nu-
merical simulations consist of two parts. The �rst part attempts to quantify
the fracture toughness and the fracture energy of the concrete-rock interface
under the assumption of linear elastic fracture mechanics. This validity of this
assumption is supported by the almost linear structural response observed by
Lee and Buyukozturk [7] in aggregate-mortar interfaces before the ultimate load
bearing capacity has been reached. In the second part, the nonlinear fracture
behaviour of the concrete-rock interface is modeled. The measured experimen-
tal data are used to calibrate the parameters of the traction-separation curve of

3



the fracture process zone, which is characteristic of quasi-brittle materials such
as rock and concrete. The numerical simulations are then validated using the
experimental measurements.

To enable accurate interpretation and quanti�cation of the experimental
results, the numerical simulations are performed using the scaled boundary �nite
element method [21]. The scaled boundary �nite element method is a semi-
analytical technique with unique features that makes it particularly suitable to
simulate the fracture behaviour at bi-material interfaces:

1. The stress �eld around the crack tip, which includes the singular stresses
and higher order terms, is analytically represented in the scaled boundary
�nite element solutions [22]. Therefore, for numerical simulations within
the framework of linear elastic fracture mechanics, the stress intensity
factors can be accurately computed from their de�nitions. A �ne mesh
at the crack tip as in the �nite element method e.g. [23] is not required.
It does not require local enrichment functions at the crack tip such as in
the extended �nite element method e.g. [24]. This leads to an accurate
procedure to compute the interface toughness at stress concentrations in
material junctions.

2. The scaled boundary �nite element method can also be conveniently cou-
pled with interface elements to model cohesive fracture in quasi-brittle
materials [25]. When cohesive cracks are modeled, the asymptotic stress
�eld in the vicinity of the crack tip [19, 26] is also analytically represented
by the scaled boundary �nite element solution. This enables accurate
modeling of cohesive fracture problems without the need for local mesh
re�nement. In this paper, a revised scaled boundary formulation using
generalized coordinates to treat the cohesive tractions based on a similar
one developed by Song [27]. This approach is more robust and does not
require the arbitrary shifting of the exponents in the cohesive tractions
reported by Yang and Deeks [28].

3. The scaled boundary �nite element method can be formulated on polygons
of arbitrary number of sides, which makes mesh generation more �exible.
Additionally, it leads to simple remeshing algorithms when modeling crack
propagation [29].

This paper is organized as follows. In Section 2, the experimental program is
described in detail. Section 3 discusses the results that are measured from the
experiments. Section 4 describes the numerical method that is used to interpret
the experimental measurements. In Section 5, the interface fracture toughness
of the concrete-rock specimens are quanti�ed in terms of the mode mixity ratio.
In Section 6 the fracture behaviour at the concrete-rock interface is investi-
gated using nonlinear fracture mechanics. The parameters of the cohesive crack
model at the bi-material interface are calibrated from the experimentally mea-
sured load-deformation responses with the help of the numerical simulations.
The crack propagation process of the concrete-rock specimens are modeled to
validate the numerical approach. The major conclusions of this study are sum-
marized in Section 7.
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2. Experimental program

The experimental program was designed to investigate the fracture behavior
at the concrete-rock interface under a wide range of mode mixity ratio. A series
of concrete-rock composite beams with an interface crack as shown in Fig. 1
were tested under four-point shear on a universal material test rig. The exper-
iments were performed in the State Key Laboratory of Coastal and O�shore
Engineering in Dalian University of Technology.

rock concrete

interface

50 10050200200
40

Lc

P

60

40

40

preset crack

Figure 1: Four-point shear loading of concrete-rock specimens (unit: mm).

2.1. Design of specimens
The dimensions of the concrete-rock composite beams are 500mm×100mm×

100mm. The loading span is 400mm. The length of the preset crack at the ma-
terial interface is 40mm. A wide range of mode mixity ratio can be investigated
by varying the length of the rock section Lrock of the beam. In this experimen-
tal program, composite beams with Lrock ranging from 210mm�250mm were
tested. For each Lrock considered, four sets of specimens were fabricated.

The specimens were fabricated by �rst incising granite mass rocks to the ap-
propriate lengths Lrock. The cross sectional surfaces of the rock were roughened
by introducing grooves with an average width of 3mm using a saw as shown in
Fig. 2. This conforms to standard practice in engineering in which the concrete-
rock interface is treated to increase its surface roughness. It also accounts for
the in�uence of the surface roughness at the concrete-rock interface which af-
fects its fracture behavior. The surface roughness introduced by this process is
uniform throughout the cross-sections of all specimens.

The incised rocks are then placed inside molds where concrete mixtures were
cast on to them to the full length of the composite beams. The specimens were
taken out of the molds three days after casting and allowed to cure under room
temperature and humidity conditions for 28 days before testing.

2.2. Material properties
In order for the results of the experimental program to be of practical use in

the safety evaluation of concrete structures built on rock foundations, the mate-
rials (rock and concrete) commonly used for the construction of these structures
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Figure 2: Roughening of rock portion at the interface.

are selected. The Young's modulus E and the Poisson's ratio ν were determined
from a 1000kN hydraulic universal testing machine.

For the rock, sections of the prisms with dimensions 50mm×50mm×100mm
were incised from uniform granite mass rock. The measured material properties
of the rock are listed in Table 1.

The mixture proportions of the concrete are cement 1: water 0.5 : �ne ag-
gregates 1.13: coarse aggregates 2.28. The Young's modulus and Poisson's ratio
of concrete were measured from 150mm×150mm×300mm concrete prisms after
28 days of curing under room temperature. The measured material properties
are listed in Table 1.

Table 1: Measured material properties of concrete and rock.

E (GPa) ν
Rock 18.1 0.323

Concrete 27.85 0.178

2.3. Four-point shear tests

A closed loop servo-controlled testing machine with a capacity of 100kN was
used for the four-point-shear tests. The ratio of loads on the two loading points
is 1:5. A calibrated 50kN load cell is used to measure the load. The loading-
point displacement is measured using a linear variable di�erential transformer.
The crack mouth opening displacement (CMOD) and the crack mouth sliding
displacement (CMSD) were measured using a clip gage. The experimental setup
for the four-point shear test is shown in Fig. 3. The beams were tested under
displacement control. The displacement at the loading point was used as the
control parameter and was increased monotonically throughout the test.
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Figure 3: Experiment setup for four point shear test.

Compared with the experimental program reported by Lee and Buyukozturk
[7, 8], which required both four-point bending and Brazillian disk tests to enable
mode mixity angles between 0◦ − 90◦ to be covered, a four-point-shear test
simpli�es the specimen preparation and testing process. The same set of molds
and loading apparatus can be used for all specimens. A wide range of mode
mixity can be generated by a simple change in Lrock. This reduces the time
required for specimen preparation.

Another unique feature of the four-point shear test is that the mode mixity
is only weakly dependent on the length of the preset crack [30]. Therefore, the
mode mixity angle of the beam remains almost constant throughout the crack
propagation process. The fracture process can therefore be quanti�ed in terms
of the initial mode mixity angles.

3. Experimental results

The outputs from the experimental program include the loading responses
of the specimens i.e. P −CMOD and P −CMSD curves and the maximum load
Pmax, and the failure modes of each specimen. In this section, the physically
observed failure modes and the general behaviour of the loading responses of
the specimens are described. Quanti�cation of the experimental results in terms
of the mode mixity of the specimens are presented together with the numerical
simulations in Sections 5-6.2.

3.1. Failure modes

During the experiments, three types of failure modes were observed: interface
cracking along the concrete-rock interface (I), interface cracking followed by
crack kinking into the rock (IR) and interface cracking followed by brittle failure
near the concrete support (IC).
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1. Interface failure along the concrete-rock interface (I). Fig. 4a shows an
example of this failure mode. This failure mode is generally observed in
specimens with low values of Lrock i.e. 210mm ≤ Lrock ≤ 225mm. In
these specimens, the eccentricity of the loading point and the interface is
relatively small. The bending moment at the concrete-rock interface is
positive and the tensile stress is much larger than the shear stress. There-
fore, the crack propagates in almost a straight line along the concrete-rock
interface up to failure. As the concrete-rock interface is the weakest link
in the composite beam, this failure mode is to be expected.

2. Interface cracking followed by crack kinking into the rock (IR). Fig. 4b
shows an example of this failure mode, which observed in specimens with
large values of Lrock i.e. Lrock ≥ 245mm. In these specimens, the bending
moment at the concrete-rock interface decreases. Therefore, the magni-
tude of the tensile stress is much smaller than the shear stress. The crack
propagation process is initially a straight line along the weak interface.
When the crack reaches the middle of the beam a secondary crack devel-
oped and kinked into the rock, which could possibly be a result of a large
shear stress at the crack tip. The primary crack continued to propagate
along the interface until failure.

3. Interface cracking followed by brittle failure near the concrete support (IC).
This failure mode is observed in specimens with 230mm ≤ Lrock ≤ 245mm.
Fig. 4c shows an example of this failure mode. In these specimens, the
crack propagated along the interface. As the interface crack approached
the top edge of the specimen, a secondary crack was observed to initiate
near the concrete support. This was then followed by sudden brittle failure
at the concrete support. This failure mode, which is commonly observed
in conventional four-point shear tests of homogeneous materials [31], was
observed in the experiments because the mechanical properties of concrete
and rock are relatively similar.

In general, specimens with lower magnitudes of Lrock fail due to crack prop-
agation along the concrete-rock interface. When Lrock is increased, the failure
modes IC and IR were observed more frequently. Table 2 shows the failure
modes and measured peak loads of all the specimens tested. The specimens
are named according to the their respective Lrock. For every Lrock, each of the
four specimens are numbered sequentially. For example, the second specimen
for a beam with Lrock = 215mm is named 215-2. The crack faces, as shown
in Figs. 5a and 5b, are rather smooth, which indicates that the concrete-rock
interface is a weak one.

3.2. Load and deformation
Fig. 6a shows the P − CMOD and P − CMSD curves for a specimen with

Lrock = 215mm. After the disturbance at the initial stage of loading, the mag-
nitudes of both the CMOD and CMSD increased with the load. The peak load
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Table 2: Measured peak load and failure mode of specimens.

Lrock(mm) Specimen Failure mode Pmax(kN)

210 210-2 I 8.97
210-3 I 9.89
210-4 I 14.1

215 215-1 I 12.71
215-2 I 16.06
215-3 I 14.26
215-4 I 16.16

220 220-1 I 17.71
220-2 I 8.26
220-3 I 12.47
220-4 I 12.31

225 225-2 I 12.31
225-3 I 6.43
225-4 I 18.15

230 230-3 I 15.36
230-4 IC 20.01

235 235-3 IC 26.41
235-4 I 21.17

240 240-2 IC 23.67
240-4 I 22.40

245 245-1 IC 31.09
245-2 IC 23.51
245-3 IR 25.81

250 250-1 IR 27.72
250-4 I 20.41
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(a) interface failure (I)

(b) interface cracking and kinking into rock (IR)

(c) interface cracking and brittle failure near concrete support (IC)

Figure 4: Observed failure modes in experimental program.

Pmax was 16.06kN for this specimen. After Pmax has been reached, the crack
started to propagate unstably until the specimen failed. The experiment was
not able to capture the load response after the peak load has been reached. This,
however, can be modeled using nonlinear fracture mechanics as will be shown in
the numerical simulations in Section 6.2. The P−CMOD and P−CMSD curves
of the other specimens tested in the experimental program show similar trends.
They di�er only in the magnitudes of the measured Pmax, CMOD, CMSD and
the slope during pre-peak response.

4. Numerical simulations

In this paper, numerical simulations are used to: (i) evaluate the fracture
toughness and determine its dependency on the mode mixity ratio; (ii) deter-
mine an empirical relation for the fracture energy of the concrete-rock interface;
and (iii) calibrate the cohesive crack model of the concrete of the concrete-rock
interface. The numerical simulations performed in this study consists of two
parts. In the �rst part, linear elastic fracture mechanics theory is used to com-
pute the fracture toughness and the fracture energy of the interface and quantify
their variation in terms of the mode mixity ratio. In the second part, nonlinear
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(a) rock (b) concrete

Figure 5: Crack surfaces at the interface.

Relative displacement (mm)

CMOD

CMSD

Figure 6: Typical load-displacement curves.
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fracture mechanics theory is used to model the strain softening behaviour at the
interface, which is a characteristic of fracture in quasi-brittle materials such as
concrete and rock.

To facilitate the modeling of such fracture problems, the scaled boundary
polygons developed by Ooi et al. [29, 25] is employed. This approach is partic-
ularly suited to model the both linear and nonlinear fracture at the bi-material
interfaces because:

1. The asymptotic expansion, which include the stress singularity and higher
order terms, in the vicinity of the crack is analytically represented in
its solutions. Therefore, within the framework of linear elastic fracture
mechanics, and nonlinear fracture mechanics, respectively, the singular
stress �eld in the vicinity of the crack tip and the fracture processes that
are characterized by nonlinear cohesive zones can be modeled accurately
without the need for local mesh re�nement.

2. Within the framework of nonlinear fracture mechanics, the process zone
can be easily incorporated into the scaled boundary polygons using cohe-
sive crack models and zero-thickness interface elements.

3. The computational domain can be �exibly meshed by polygons with arbi-
trary number of sides. This leads to simple remeshing algorithms to model
crack propagation.

The saled boundary polygon formulation is �rst presented for the case with
tractions acting on the side-faces of the crack. The revised formulation using
generalized coordinates developed by Song [27] is used. The special case of linear
elastic fracture mechanics where the crack faces are traction-free is presented in
Section 4.2. Its extension to model nonlinear cohesive fracture is presented in
Section 4.3.

4.1. Scaled boundary polygon formulation

The basic theory and formulations of the scaled boundary polygons relevant
to fracture are presented for the sake of completeness. Detailed formulations of
the method can be referred to in Song [27].

4.1.1. Geometric representation

The scaled boundary �nite element method [21] can be formulated on poly-
gons with arbitrary number of sides. The geometry of a polygon has to only
satisfy a so-called scaling requirement i.e. the entire boundary has to be visible
from a point inside the domain. This requirement can always be satis�ed by
subdividing a subdomain to smaller ones. Fig. 7a and Fig. 7b show the scaled
boundary coordinates of an arbitrary n-sided polygon and a polygon modeling
a bi-material crack, respectively.

In a normal polygon, the scaling centre O is chosen at the geometric cen-
ter. A radial coordinate ξ is de�ned in the polygon. ξ takes a value of 0 at
the scaling center and 1 at the polygon's boundary. The polygon boundary is
discretized with standard one-dimensional �nite elements. In each element, a
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Figure 7: Polygon representation of a crack.

local coordinate η that varies from −1 to +1 is de�ned as in the �nite element
method.

In the cracked polygon, the scaling center O is chosen at the crack tip. The
crack edges are formed by scaling the nodes A and B on the boundary and are
not discretized. Similarly, the material interface is also formed by scaling.

The global Cartesian coordinate for a point with scaled boundary coordinate
system (ξ, η) is expressed as{

x̂(ξ, η)
ŷ(ξ, η)

}
=ξN(η)

{
xb

yb

}
(1)

where

N(η) =

[
N1(η) 0 N2(η) 0 . . . 0 NM (η) 0

0 N1(η) 0 N2(η) . . . 0 NM (η)

]
(2)

is the shape function matrix withM number of nodes, xb and yb are the vector
of nodal coordinates of the element.

4.1.2. Displacement and stress interpolation

Along the radial direction, nodal displacement functions u(ξ) are introduced.
The displacement at any point in a polygon is expressed as

u(ξ, η) =N(η)u(ξ) (3)

The stress vector is

σ(ξ, η) =DB1(η)u(ξ),ξ + ξ−1DB2(η)u(ξ) (4)

where D is the elasticity constitutive matrix of the material. B1 and B2 are
the strain displacement matrices (see Wolf [21]).
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4.1.3. Scaled boundary formulation

Following the approach of Wolf [21] and applying the Galerkin's weighted
residual technique, the equilibrium condition in a polygon is given by the scaled
boundary �nite element equation in displacement

E0ξ
2u(ξ),ξξ + (E0 −E1 + ET

1 )ξu(ξ),ξ −E2u(ξ) + F(ξ) =0 (5)

In this equation, Ei, i = 0, 1, 2 are coe�cient matrices that depend only on the
geometry and material properties of an element sector in the polygon and F(ξ)
is the load vector that contains contribution from the cohesive forces acting on
the side-faces of a cracked polygon. F(ξ) can be expressed as a power function
in the radial coordinate ξ [32] as

F(ξ) =ξbFt (6)

with b = d+ 1.
The internal nodal forces along the radial lines are equal to

q(ξ) =E0ξu(ξ),ξ + ET
1 u(ξ) (7)

Eq. (5) is a system of linear nonhomogeneous second-order ordinary di�erential
equations for the displacement functions u(ξ). It can be transformed into a �rst
order ordinary di�erential equation with twice the number of unknowns [27] by
introducing the variable

X(ξ) =

{
u(ξ)
q(ξ)

}
(8)

so that Eq. (5) becomes

ξX(ξ),ξ =− ZX(ξ)−
{

0
F(ξ)

}
(9)

with the coe�cient matrix

Z =

[
E−10 ET

1 E−10

−E2 + E1E
−1
0 ET

1 −E1E
−1
0

]
(10)

The Hamiltonian matrix Z satis�es the identity [27]

(J2nZ)T =J2nZ (11)

where J2n is de�ned as

J2n =

[
0 −I
I 0

]
(12)

and I is an identity matrix.
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4.1.4. Solution for side-face tractions varying as power functions in ξ

A block diagonal Schur decomposition of Z in Eq. (10) results in the following
Schur matrix S and transformation matrix Ψ for a polygon [27]

ZΨ =ΨS (13)

with

S =diag

(
S1, . . . SN−1,

[
SN I
0 SN+1

]
, SN+2, . . . S2N

)
(14)

where SN = SN+1 = 0. The diagonal entries of S are equal to the real parts of
the eigenvalues of Z. The 2N diagonal blocks of S form N pairs of conjugate
Si and Sı where the index of the block conjugate to the ith block is

ı =2N + 1− i (15)

The transformation matrix Ψ is

Ψ =[ Ψ1, . . . , ΨN−1, ΨN , ΨN+1, . . . Ψ2N ] (16)

and is J2n-orthogonal [27]

ΨT
i J2nΨj =− (ΨT

j J2nΨi)
T =

{
Hi when j = ı
0 when j 6= ı

(17)

Pre-multiplying Eq. (13) with −ΨT
ı J2n and using Eq. (17) results in

−ΨT
ı J2nZΨj =

{
HT
i when j = i

0 when j 6= i
(18)

The unknown functions X(ξ) are decomposed with the transformation ma-
trix Ψ as base functions [27]

X(ξ) =ΨW(ξ) (19)

where W(ξ) are the generalized coordinate functions. The base functions Ψ can

be partitioned into two row blocks with equal size Ψ(u) and Ψ(q) and further
into four square matrices of size n× n as

Ψ =

[
Ψ(u)

Ψ(q)

]
=

[
Ψ(u)

n Ψ(u)
p

Ψ(q)
n Ψ(q)

p

]
(20)

Using Eqs. (19) and (20), the radial displacement functions u(ξ) and the
nodal internal forces q(ξ) can be expressed as

u(ξ) =Ψ(u)W(ξ) (21)

q(ξ) =Ψ(q)W(ξ) (22)

15



For the diagonal blocks with real parts of eigenvalues satisfying λ(Si) 6= 0,
substituting Eq. (19) into Eq. (9) pre-multiplied by −ΨT

ı J2n and using Eqs. (17)
and (18) leads to [27]

ξWi(ξ),ξ =− SiWi(ξ)− F
(w)
i (ξ) (23)

When the cohesive tractions are expressed in the form of power functions as in

Eq. (6), the term F
(w)
i (ξ) can be expressed as

F
(w)
i (ξ) =−H−Ti (Ψ

(u)
ı )TFtξ

b = F
(w)

i ξb (24)

The solution of Eq. (23) is

Wi(ξ) =ξ−Si

(
ci −

ˆ ξ

1

τ−Si−IF
(w)
i (ξ)dτ

)
(25)

For bounded domains i.e. polygons satisfying 0 ≤ ξ ≤ 1, the condition for
the �niteness of the displacement functions u(ξ) and internal nodal forces q(ξ)
requires that W(ξ = 0) remain �nite. For the diagonal blocks with positive
real parts of eigenvalues i.e. the last N − 1 diagonal blocks in Eq. (14), this
condition is satis�ed by setting the terms in brackets in Eq. (25) to zero. This
determines the integration constants ci as

ci =

ˆ 0

1

τ−Si−IF
(w)
i (τ)dτ when Re(λ(Si)) > 0 (26)

Substituting Eq. (24) into Eq. (26) and integrating analytically results in the
particular solution [27]

Wi(ξ) =W
(p)
i (ξ) = −(Si + bI)−1F

(w)

i ξb when Re(λ(Si)) > 0 (27)

For the diagonal blocks with negative real parts of eigenvalues i.e. the �rst
N −1 diagonal blocks in S, Eq. (25) satis�es the condition of �niteness at ξ = 0
for any ci. It is split into two parts consisting of a homogeneous and a particular
solution as

Wi(ξ) =ξ−Sici + W
(p)
i (ξ) (28)

The particular solution is obtained by substituting Eq. (24) into Eq. (25) and
integrating analytically in ξ, resulting in

W
(p)
i (ξ) =− (Si + bI)−1F

(w)

i ξb when Re(λ(Si)) < 0

For the diagonal blocks with zero eigenvalues in Eq. (14), the solution for
W(ξ) is obtained following a similar procedure as for the diagonal blocks satis-
fying λ(Si) 6= 0, which leads to [27]

WN (ξ) =cN + W
(p)
N (ξ) when SN = SN+1 = 0 (29)

WN+1(ξ) =W
(p)
N+1(ξ) when SN = SN+1 = 0 (30)
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The particular solutions are obtained by substituting Eq. (24) into Eq. (25) and
then integrating analytically with respect to ξ, resulting in

W
(p)
N (ξ) =− b−1

(
F

(w)

N − b−1F(w)

N+1

)
ξb when SN = SN+1 = 0 (31)

W
(p)
N+1(ξ) =− b−1F(w)

N+1ξ
b when SN = SN+1 = 0 (32)

Eqs. (27)-(32) can be used to evaluate the particular solutions when b is
su�ciently disjoint from λ(−Si). When b is close to or equal to λ(−Si), a
stable approach to evaluate the particular solution is obtained by augmenting
Eq. (23) as [27]

ξ

{
Wi(ξ)
ξb

}
,ξ

=

[
−Si F

(w)

i

0 b

]{
Wi(ξ)
ξb

}
(33)

The particular solution W
(p)
i (ξ) is obtained by evaluating the matrix function

ξ

 −Si F
(w)

i

0 b


=

[
ξ−Si W

(p)
i (ξ)

0 ξb

]
(34)

4.1.5. Sti�ness matrix and equivalent nodal force vector

Once the particular solutions have been determined, the displacement func-
tions u(ξ) and internal nodal forces q(ξ) can be written in terms of the gener-
alized coordinates as

u(ξ) =Ψ(u)
n ξ−Sc + Ψ(u)W(p)(ξ) (35)

q(ξ) =Ψ(q)
n ξ−Sc + Ψ(q)W(p)(ξ) (36)

The integration constants c depend on the boundary conditions at ξ = 1. The
solutions at ξ = 1 can be written as

u(ξ = 1) =Ψ(u)
n ξ−S

(
c + W(p)

n (ξ = 1)
)

+ Ψ(u)
p W(p)

p (ξ = 1) (37)

q(ξ = 1) =Ψ(q)
n ξ−S

(
c + W(p)

n (ξ = 1)
)

+ Ψ(q)
p W(p)

p (ξ = 1) (38)

using the partition of Ψ in Eq. (20). Substituting Eq. (37) into Eq. (38) results
in

q(ξ = 1) =Ku(ξ = 1)−RF (39)

where K is the sti�ness matrix

K =Ψ(q)
n

(
Ψ(u)

n

)−1
(40)

and RF is the nodal load vector due to the side-face traction

RF =−
(
Ψ(q)

n −KΨ(u)
p

)
W(p)

p (ξ = 1) (41)
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The integration constants ci can be evaluated using Eq. (35) once u(ξ = 1) has
been determined.

The complete solution for the displacements is obtained by substituting
Eq. (35) into Eq. (3). This leads to

u(ξ, η) =N(η)
(
Ψ(u)

n ξ−Sc + Ψ(u)W(p)(ξ)
)

(42)

The stresses σ(ξ, η) are obtained by substituting Eq. (35) into Eq. (4) resulting
in

σ(ξ, η) =
N∑
i=1

Ψσi
(η)ξ−Si−Ici

+
2N∑
i=1

ξ−1
(
Ψσi

(η)W
(p)
i (ξ)−DB1(η)Ψ

(u)
i F

(w)

i (ξ)
)

(43)

where Ψσi
(η) =

[
Ψσxxi(η) Ψσyyi(η) Ψτxyi(η)

]T
is the stress mode.

4.2. Linear elastic fracture mechanics with scaled boundary polygons

Within the framework of linear elastic fracture mechanics, the displacement
and stress �elds for a crack with traction-free surfaces i.e. F(ξ) = 0 are given

by Eqs. 42 and (43) with W
(p)
i (ξ) = 0 and F

(w)

i (ξ) = 0. The sti�ness matrix
is still given by Eq. (40) and the nodal load vector due to side face traction is
RF = 0.

When a crack is modeled by a polygon as shown in Fig. 7b some of the real
parts of the eigenvalues of the diagonal blocks in S satisfy −1 < Re(λ(S)) < 0.
From Eq. (43), it can be identi�ed that as ξ → 0, the stress �eld σ(ξ, η) is
dominated by the diagonal blocks in S with −1 < Re(λ(S)) < 0 and leads to
a stress singularity. Grouping all the diagonal blocks that satisfy the preceding
condition as S(s), the corresponding displacement modes in Ψ(u)

n as Ψ(s) and
integration constants as c(s), the singular stress �eld is expressed as

σ(s)(ξ, η) =Ψ(s)
σ (η)ξ−S

(s)−Ic(s) (44)

With this inception, the stress intensity factors can be computed directly
from their de�nitions. For bi-material cracks, the diagonal block S(s) has a pair
of complex conjugate eigenvalues 0.5 ± iε where ε is the oscillatory index that
depends on the material properties

ε =
1

2π
ln

(
κ1/µ1 + 1/µ2

κ2/µ2 + 1/µ1

)
(45)

where µi is the shear modulus and

κi =

{
3− 4νi for plane strain

(3− νi)/(1 + νi) for plane stress
(46)
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The subscript i = 1, 2 denotes the individual material properties of the interface.
When the crack is aligned to the Cartesian coordinate axes as shown in

Fig. 7b, the stress intensity factors are de�ned as [22]

{
K1

K2

}
=
√

2πr̂

 cos

(
−ε ln

r̂

L

)
sin

(
−ε ln

r̂

L

)
− sin

(
−ε ln

r̂

L

)
cos

(
−ε ln

r̂

L

)

{

σ
(s)
yy (r̂, θ = 0)

τ
(s)
xy (r̂, θ = 0)

}

(47)

where L is a characteristic length and r̂ is the radial coordinate.
Substituting the yy and xy singular stress components into the de�nition

Eq. (47) evaluated at ξ = 1 results in

{
K1

K2

}
=
√

2πlOA

 cos

(
−ε ln

lOA

L

)
sin

(
−ε ln

lOA

L

)
− sin

(
−ε ln

lOA

L

)
cos

(
−ε ln

lOA

L

)

{

Ψ(s)
yy (η(θ = 0)c(s)

Ψ(s)
xy (η(θ = 0)c(s)

}

(48)

where lOA is the distance from the crack tip to the polygon boundary shown in
Fig. 9a.

4.3. Nonlinear cohesive fracture modeling at the concrete-rock interface with
scaled boundary polygons

4.3.1. Cohesive crack model

Along the concrete-rock interface, the fracture is quasi-brittle in nature and
is characterised by a fracture process zone in which stress transfer between
the concrete and rock surfaces can take place through friction and aggregate
interlocking. The fracture process zone along the concrete-rock interface can
be modeled by the cohesive crack model, e.g. Barenblatt [33], Dugdale [34],
Hillerborg et al. [35]. The cohesive crack model assumes that the fracture process
zone can be approximated by consitutive relations that relate the normal and
shear cohesive tractions with the relative displacement of the crack faces. This
enables the stress transfer across the crack surfaces to be modeled.

The constitutive relations at the process zone are softening functions relat-
ing the cohesive tractions to the relative displacement of the crack surfaces.
Simpli�ed models that assume linear or bilinear softening have been proposed
in the literature e.g. Petersson [36]. Fig. 8a and Fig. 8b shows the bilinear and
linear decaying models for the normal and shear cohesive tractions that is used
in this study.

In Fig. 8, t
(u)
n and t

(u)
s are the ultimate tensile and shear strengths of the

interface and wnc and wsc are the maximum crack opening and sliding displace-
ments beyond which no normal or shear traction exist. The area under the
curves in Fig. 8a and Fig. 8b are the Mode 1 and Mode 2 fracture energies
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Figure 8: Traction-crack separation law for interface element

Gf1 and Gf2 of the interface crack. wn0 and ws0 are initial thresholds that are
introduced to ameliorate the near in�nite initial sti�ness that may cause di�-
culties in numerical simulations when wn and ws are small. At a point along
the process zone, the normal and shear cohesive tractions tn and ts are related
to the relative opening and sliding displacements on the crack faces wn and ws

by {
ts
tn

}
=

[
ks 0
0 kn

]{
ws

wn

}
(49)

where kn and ks are the secant sti�ness of the softening functions. In Eq. (49),
it has been assumed that there is no interaction between tn and ts. This as-
sumption is made in this study because a well-de�ned traction-crack separation
law for a concrete/rock interface is not available in literature.

In order to incorporate the cohesive crack model into the scaled boundary
polygons (as will be described in Section (4.3.4)), it is convenient to express the
normal and shear cohesive tractions tn and ts as power functions in terms of the
normalized distance from the crack tip to a point on the fracture process zone,
ξ, as

tn(ξ) =t(u)n

m∑
j=1

ejξ
tj (50)

ts(ξ) =t(u)s

m∑
j=1

gjξ
tj (51)

with exponents tj = j − 1, j = 1, 2, ..., m and coe�cients ej and gj .

4.3.2. Interface elements

The cohesive crack model can be implemented using interface elements e.g.
Goodman et al. [37], Gerstle and Xie [38]. These elements connect pairs of
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Figure 9: Shadow domain procedure.

nodes on the crack faces. Both normal and shear cohesive tractions can be
incorporated. The relationship between the element sti�ness matrix KIE in
local coordinate system is expressed as

KIE =
A

2

Ng∑
i=1

MT
i kiMiwi (52)

where A is the crack surface area, Ng is the number of Gaussian integration
points, ki is the secant modulus in Eq. (49) and Mi is the shape function matrix.
The interface elements can be coupled with the scaled boundary polygons using
the shadow domain procedure [25, 28] as will be explained in Section 4.3.

4.3.3. Shadow domain procedure

When cohesive fracture problems are modeled with the scaled boundary
�nite element method, the cohesive forces that act on the crack faces appear
the scaled boundary �nite element method equation in displacement (Eq. (5)) as
the nonhomogeneous term F(ξ). The distribution of F(ξ) is nonlinear because
it depends on the relative displacement of the crack faces. In order to use
the scaled boundary polygons to model such problems, a two-step approach is
adopted.

In the �rst step, the homogeneous solution of Eq. (5) with F(ξ) = 0 is
considered. The cracked polygon is partitioned into two normal polygons as
shown in Fig. 9. This mesh is called the shadow domain [28, 25]. The shadow
domain discretizes the crack faces and allows the scaled boundary polygons to
be coupled to interface elements along the crack path. A nonlinear fracture
analysis is then performed using the shadow domain. The interface elements
capture the distribution of the cohesive traction at the crack faces tn and ts
during the load step.

Although the shadow domain can determine the distribution of tn and ts
at the crack faces, accurate information on the asymptotic stress �eld in the
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vicinity of the crack, which is necessary for the evaluation of the stability of
a cohesive crack is not readily available. This information is determined from
the cracked polygon. The distribution of the cohesive tractions tn and ts are
extracted from the interface elements in the shadow domain to determine the
nonhomogeneous term F(ξ). The stress �eld in the vicinity of the crack is then
determined considering the nonhomogeneous term F(ξ). The resulting stress
�eld is used to determine the stability of the cohesive crack.

4.3.4. Stress �eld at cohesive crack tip

When tn and ts are expressed as power functions as in Eqs. (50) and (51),
the stress �eld in the cracked polygon σ(ξ, η) can be computed using Eq. (43)
for each j- term by superposition after F(ξ) has been determined.

To evaluate F(ξ), the coe�cients ei and gi in Eqs. (50) and (51) are �rst
computed from the known tractions at the Ng Gaussian integration points on
the interface elements, the crack tip and the crack mouth of the cracked polygon.
Multiplying Eqs. (50) and (51) with the crack surface area A, the nodal side-face
load vector resulting from normal and shear cohesive tractions can be formulated
respectively as

Ftn(ξ) =

 m∑
j=1

ejξ
tj

Ftn (53)

Fts(ξ) =

 m∑
j=1

gjξ
tj

Fts (54)

where Ftnand Fts are expressed in global Cartesian coordinates as

Ftn =At(u)n

[
− sinα cosα 0 0 . . . 0 0 sinα − cosα

]T
(55)

Fts =At(u)n

[
− cosα sinα 0 0 . . . 0 0 cosα − sinα

]T
(56)

and α is the crack angle shown in Fig. 9. Note that only the entries correspond-
ing to the nodes on the crack faces are non-zero.

Using Eqs. (6), (53) and (54), the nonhomogeneous term F(ξ) in Eq. (5) can
be written as

F(ξ) =

 m∑
j=1

ejξ
tj+1

Ftn +

(
m∑
k=1

gkξ
tk

)
Fts (57)

where each j or k term has the same form as F(ξ) in Eq. (6).
Once F(ξ) is known, the complete displacement and stress �elds is obtained

by simply following the procedures outlined in Sections 4.1.4 and 4.1.5.
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4.3.5. Stability of cohesive crack

Research on the stability of bi-material interface cracks with cohesive trac-
tion subjected to mixed-mode loading is scarce. A universal criterion to deter-
mine its stability has not been agreed on. In this paper, it is proposed that
the bi-material interface crack will propagate when the stress intensity factors
evaluated by Eq. (48) satisfy the following condition:

K1 = 0 or K2 = 0 (58)

This criterion is similar to enforcing the zero-K condition [39, 24] i.e. the stress
at the crack has to be �nite (i.e. there is no stress singularity).

Both K1 and K2 has to be considered for bi-material interface cracks be-
cause the magnitudes of the tensile and shear cohesive tractions are of the same
order. This is in contrast to a homogeneous crack in which its stability can be
su�ciently determined by considering K1 only.

4.4. Crack propagation modeling

The simple remeshing algorithm shown in Fig. 10 is used to model crack
propagation. Remeshing can be carried out by simply splitting the cracked
polygon into two and updating the location of the crack tip in the mesh. This
algorithm is described in detail using the mesh shown in Fig. 10a as an example.
In this �gure, the cracked polygon is de�ned by the vertices 1-2-3-4-5-6-7-8-9
surrounding the crack tip O.

When the crack propagation criterion is met, the crack is assumed to prop-
agate along the interface. The crack propagation length is assumed to be ap-
proximately the size of one polygon, i.e., the crack tip moves from the current
position to the scaling center of the next polygon along the interface. Remeshing
is carried out according to the following steps:

1. Split the current crack polygon into two normal polygons (Fig. 10b). The
current crack tip is split into two vertices 15 and 16 Fig 10b. The inter-
section of the edge at the crack front with the interface, i.e., vertex 5, is
split into vertices 17 and 18. This splits the crack polygon into two new
polygons de�ned by vertices 9-16-18-6-7-8 and 1-2-3-4-17-15 with scaling
centres O3 and O4, respectively.

2. Generation of new crack polygon (Fig. 10c). The two polygons at the
crack front, with scaling centers O1 and O2 respectively, are merged into
one polygon. The scaling center is located at the new crack tip O′. The
original edge 5-12 is deleted. Two new side faces, O′− 17 and O′− 18, are
generated.

3. Insertion of interface elements (Fig. 10d). Interface elements are inserted
between the newly-formed crack faces, i.e., 16-18, 15-17, O′ − 17 and
O′−18 after its shadow domain is generated. For each pair of edges along
the crack path, one interface element is inserted. In each interface element,
the fracture process zone of the concrete-rock interface is modelled by the
cohesive crack model and coupled to the scaled boundary �nite element
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Figure 10: Remeshing during crack propagation

method through the shadow domain procedure depicted in Sections 4.3.1
and 4.3.3, respectively.

For crack propagation along a bi-material interface, the number of polygons
remains unchanged. Only three additional vertices are generated during the
remeshing process. The remeshing procedure is therefore very simple and straight
forward. If the crack kinks into either material 1 or material 2, with the propa-
gation angle determined, the procedure proposed by Ooi et al. [29], for example,
can be employed after some augmentation.

5. Evaluation of mode mixity, fracture toughness and fracture energy

The dependency of the fracture toughness, K1c and K2c and the fracture
energy, Γ of the concrete-rock interface with the mode-mixity ψ is investigated
in this section. The scaled boundary polygons are used to compute K1c, K2c,
Γ and ψ from the experimentally measured peak loads under the assumption of
linear elastic fracture mechanics.

5.1. Quanti�cation of composite beams according to mode mixity

To facilitate the discussion on the interface fracture behaviour of concrete
and rock with respect to the mode-mixity, it is useful to �rst quantify the
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Figure 11: Composite beam discretized by scaled Boundary polygons (Lrock = 210mm).

composite beam specimens according to their mode mixity angles ψ. The mode
mixity angle is de�ned as

ψ = arctan (K2/K1) (59)

The mode mixity angle are evaluated using the scaled boundary polygons
under the assumption of linear elastic fracture mechanics. The composite beam
is discretized using polygon meshes. Fig. 11 shows the polygon mesh of the
specimen with Lrock = 210mm. The mesh has 268 polygons and 677 nodes.
The polygon meshes of the other specimens have similar number of polygons
and nodes. The material properties of concrete and rock follow from that listed
in Table 1. Plane strain conditions are assumed. The boundary conditions follow
from that in Fig. 1. The stress intensity factors K1 and K2 are evaluated from
Eq. (48). The characteristic length L was assumed to be 40mm i.e. the length
of the preset crack. The mode mixity angle were computed using Eq. (59).

The mode mixity angles ψ of the composite beams are reported in the third
column in Table 3. Specimens with high magnitudes of ψ are said to be shear
dominated. It is clear from Table 3 that the mode mixity angle covered the
range from near pure shearing to near pure opening. It needs to be empha-
sized that the current experiment setup only covers the case of negative shear
stress. However, since the material mismatch between concrete and rock is not
prominent, symmetry with respect to the shear component can be assumed with
negligible in�uence.

5.2. Interface fracture toughness

The interface fracture toughnessK1c andK2c were evaluated from the exper-
imentally measured peak loads Pmax and Eq. (48) using the scaled boundary
polygons. The polygon meshes used to compute ψ in Section 5.1 were used.
Both K1c and K2c were computed under the assumption that the theory linear
elastic fracture mechanics holds [8].

Table 3 lists the fracture toughness of all the specimens tested in the experi-
ment. The variation of K1c and K2c with the mode mixity angle ψ is plotted in
Fig. 12a. It is apparent from Fig. 12a that the magnitudes of K1c decreases as
the magnitude of ψ increases. On the other hand K2c increases as the magni-
tude of ψ increases. For the shear dominant specimens, K2c did not increase to
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Table 3: Mode mixity, fracture toughness and energy release rates of composite beams.

Specimen Lrock ψ K1c K2c Gc

(mm) (deg) (MPa
√

m) (MPa
√

m) (N/m)
210-2 210 -8.5 0.51 -0.08 11.25
210-3 0.56 -0.08 13.66
210-4 0.80 -0.12 27.77
215-1 215 -12.5 0.67 -0.15 19.77
215-2 0.84 -0.19 31.52
215-3 0.75 -0.17 24.89
215-4 0.85 -0.19 31.99
220-1 220 -17.1 0.85 -0.26 33.35
220-2 0.40 -0.12 7.25
220-3 0.60 -0.18 16.53
220-4 0.59 -0.18 16.11
225-2 225 -22.6 0.52 -0.22 13.50
225-3 0.27 -0.11 3.69
225-4 0.77 -0.32 29.35
230-3 230 -29.4 0.55 -0.31 16.97
230-4 0.72 -0.41 28.81
235-3 235 -38.1 0.76 -0.60 39.21
235-4 0.61 -0.48 25.19
240-2 240 -49.5 0.49 -0.58 24.40
240-4 0.47 -0.55 21.85
245-1 245 -64.5 0.39 -0.81 34.16
245-3 0.29 -0.61 19.53
245-4 0.32 -0.67 23.54
250-1 250 -82.4 0.10 -0.77 25.16
250-4 0.08 -0.56 13.64
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Figure 12: Interfacial fracture toughness.

a signi�cantly large value. This can be explained by the failure modes IR and
IC that are usually observed in these specimens during the experiment. The
kinking of the crack into the rock or the development of a secondary crack near
the concrete support suggests that there is a relatively stronger resistance along
the interface. The measured Pmax is therefore lower than it would had been if
the crack had propagated along the interface. The predicted K2c is therefore,
lower than the case where the crack propagates along the interface. The relation
between K1c and K2c are plotted in Fig 12b. The scattered data points roughly
formed a quarter of a circle.

It is worth mentioning that for cases of small mode mixity angles, the points
for K1c seemed to be equally scattered between K1c = 0.5 ∼ 0.8MPa

√
m. It

indicates that for magnitudes of ψ, its in�uence on the critical stress intensity
factors is negligible. Therefore, the critical stress intensity factors are nearly
constant.

5.3. Interface fracture energy

The fracture energy Γ characterizes the fracture resistance of the interface.
It can be obtained by calibrating the energy release rate G that is obtained
experimentally from test specimens. The energy release rate G that is required
for a crack to propagate along the interface can be expressed as [6]

G =
1/E1 + 1/E2

2 cosh2(πε)

(
K2

1 +K2
2

)
(60)

where ε is the oscillatory index as de�ned in Eq. (45) and

Ej =

{
Ej/(1− ν2j ) plane strain
Ej plane stress

(61)
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Figure 13: Variation of Γ with ψ.

Ej and νj are the Young's modulus and Poisson's ratio of the materials at the
interface crack. The subscript j = 1, 2 denotes the material of the bi-material
interface. Using the K1c and K2c in Table 3 and Eq. (60), the energy release
rates of the specimens can be calculated. The results are listed in column six of
Table 3.

For bi-material interface cracks, the interfacial fracture energy Γ is dependent
on the mode mixity angle ψ. In this study, Γ is assumed to be related to ψ by
the relation

Γ(ψ) =GIc
{

1 + tan2 [(1− λ)ψ]
}

(62)

that was proposed by Kinloch [40]. The parametersGIc and λ are determined by
nonlinear data �tting. Using the results in Table 3 with Γ = Gc, GIc and λ were
found to be GIc = 17.4N/m and λ = 0.44. The expression for the interfacial
fracture energy of the concrete-rock interface crack used in this study is

Γ(ψ) =17.4
[
1 + tan2 (0.56ψ)

]
(63)

A plot of Eq. (63) is shown in Fig. 13. From Fig. 13, it is found that the
interface fracture energy for pure Mode 2 i.e. ψ = −90◦ is about 2.5 times the
interface fracture energy for pure Mode 1 i.e. ψ = 0◦. The relation in Eq. (63)
indicates that Γ increases as ψ increases.

6. Nonlinear fracture analysis of concrete-rock interface

In this section, the fracture behaviour of the concrete-rock interface is in-
vestigated by nonlinear fracture mechanics using the scaled boundary polygons.
The material parameters of the cohesive traction-separation laws are determined
from the experimental measurements and the scaled boundary polygons by cal-
ibration. Cohesive crack propagation in the concrete-rock specimens is then
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modeled. The predicted P − CMOD and P − CMSD responses are validated
using the experimental measurements.

6.1. Calibration of cohesive crack model parameters of concrete-rock interface

The parameters of the cohesive crack model for the concrete-rock interface
are determined by calibrating the experimental measurements with the numeri-
cal simulations. Assuming that the cohesive traction-separation laws for normal
and shear are of the forms shown in Figs.8a and 8b, six independent parameters
i.e. the Mode 1 fracture energy Gf1, the Mode 2 fracture energy Gf2, the tensile

strength t
(u)
n , the shear strength t

(u)
s and the two thresholds wn0 and ws0 for the

ascending sections of the traction separation curves have to be determined.
The initial separation thresholds wn0 and ws0, which is necessary for nu-

merical implementation (as explained in Section 4.3.1), are both selected to

be 0.001mm in this study. Gf1 and t
(u)
n are determined by calibrating the re-

sults from the tensile dominant specimen (Lrock = 210mm) with the numerical

simulations. Gf2 and t
(u)
s are determined from the results for the shear domi-

nant specimen (Lrock = 250mm). The parameters obtained from the calibration
process are listed in Table 4.

Table 4: Parameters for traction separation curves.

tn − wn
Gf1(N/m) t

(u)
n (MPa) wn0(mm)

100 2.0 0.001

ts − ws
Gf2(N/m) t

(u)
s (MPa) ws0(mm)

200 3.5 0.001

6.2. Validation of numerical simulations

Crack propagation in the bi-material specimens tested are modeled using
the scaled boundary polygons. The material properties of concrete and rock
tabulated in Table 1 are used as inputs. The cohesive crack models with the
parameters determined in Table 4 is used to model the fracture process zone
at the concrete-rock interface. The same polygon meshes used in Section 5
are used for the simulations. The numerical simulations were validated by the
experimental measurements.
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(a) Lrock = 210mm, ψ = −8.5◦

CMODCMSD

experiment

numerical result

(b) Lrock = 220mm, ψ = −17.1◦

CMODCMSD

experiment

numerical result

(c) Lrock = 235mm, ψ = −38.1◦

CMODCMSD

experiment

numerical result

(d) Lrock = 245mm, ψ = −64.5◦

CMODCMSD

experiment

numerical result

(e) Lrock = 250mm, ψ = −82.4◦

Figure 14: Load-crack mouth displacement curves.

Fig. 14 shows the load-crack mouth opening displacement (P −CMOD) and
load-crack mouth sliding displacement (P − CMSD) curves of the specimens
with ψ = −8.5◦,−17.1◦,−38.1◦,−64.5◦ and ,−82.4◦. Generally, the numeri-
cally predicted P −CMOD curves agree reasonably well with the experimental
measurements.
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For the case of ψ = −8.5◦, the Mode 1 component is always dominant at
the crack tip. The CMOD is about ten times larger than the CMSD. When the
mode mixity angle is increased, the in�uence of the Mode 2 stress component
at the crack tip becomes more apparent. Correspondingly, the CMSD increases
while the CMOD decreases. For the case of ψ = −82.4◦, the magnitude of the
CMSD is approximately two times larger than the CMOD.

For the tensile dominant specimens, e.g. ψ = −8.5◦ and ψ = −17.1◦, a wide
and stable plateau is observed in the experimentally measured and numerically
simulated P − CMOD curves after the peak load has been reached (Figs. 14a
� 14c). This re�ects a signi�cant amount of ductility and strong nonlinearity
of the interface. This observation highlights the importance of incorporating
the cohesive crack model in the numerical simulations to enable the nonlinear
fracture behavior at the concrete-rock interface to be captured more realistically.

For the shear dominant specimens, e.g. ψ = −64.5◦ and ψ = −82.4◦, there
is no clear indication that a plateau developed in P − CMSD. Some degree of
nonlinearity was observed in the P −CMSD curves after the peak load has been
reached and the specimens failed when the specimen was further loaded. The
numerical simulations were able to capture the strain-softening behaviour at the
interface in the P − CMSD curves. This phenomenon was not observed in the
experimental measurements.

The numerically predicted peak loads agreed very well with the experimental
measurements. For example, the predicted peak loads Pmax for the specimens
with ψ = −8.5◦and ψ = −82.4◦ are 8.66kN and 25.13kN, respectively. The
experimental Pmax were in the range of 8.97kN − 14.09kN for ψ = −8.5◦ and
20.41kN − 27.71kN for ψ = −82.4◦. The peak load for the shear dominant
specimen is about three times of that in the tensile dominant specimen, which
is consistent with the increase of Γ with ψ observed in Section 5.3.

Fig. 15 shows the variation of the experimentally measured and numerically
predicted peak loads Pmax with the mode mixity angle ψ. The peak load in-
creased when the mode mixity angle ψ was increased. In specimens with large
mode mixity angles ψ, the load bearing capacity of the specimen increased
because of the increase in the magnitude of the K2 near the crack tip. This
created a crack shielding e�ect which delayed the crack propagation. The plot
in Fig. 15 indicated that Pmax increased by approximately three times when
the mode mixity angle ψ was increased from −8.5◦ to −38.1◦. The magnitude
of Pmax does not signi�cantly increase when ψ was further increased to −82.4◦.

31



°

Figure 15: Variation of Pmax with mode mixity angle ψ.

In the shear dominated specimens, the magnitude of the tensile stress com-
ponent caused by external loading is negligible compared to the shear stress
component (indicated by the small CMOD values in Fig. 14e). From the sign
of K2 reported in Table 3, the crack has a strong tendency to de�ect into the
rock. At the same time, the magnitude of the bending moment and the shear
force at the right support also increase when the external load is increased.
This explains the frequency of the IC and IR failure modes observed in these
specimens. This phenomenon also leads to an underestimation of the fracture
toughness at high mode mixity angles.

The crack propagation process of the specimens with ψ = −8.5◦, ψ = −38.1◦

and ψ = −82.4◦ are plotted in Figs. 16-18, respectively. The black lines in the
left and right meshes represent the normal and shear cohesive traction distribu-
tion at a particular load step. In all the three specimens, the crack mouths re-
main open as the load increases. The fracture process zone is present throughout
the entire loading, indicating that it has yet to fully develop in the specimens.

For the tensile dominated specimen i.e. ψ = −8.5◦ shown in Fig. 16, the
magnitude of the normal traction tn on the cracks faces decreases as the crack
propagates. However, the shear traction ts remains equal to the shear strength

(t
(u)
s = 3.5MPa) throughout the entire simulation. This indicates that the

sliding between the crack faces is small. For the shear dominated specimen i.e.
ψ = −82.4◦ shown in Fig. 18, the shear traction ts on the crack faces decreases
as the crack propagates. However, the normal traction tn remains equal to the

tensile strength (t
(u)
n = 2.0MPa), which indicates that the opening of the crack

faces is very small. For the specimens where neither the tensile or shear mode
dominates i.e. ψ = −38.1◦ shown in Fig. 17, both ts and tn decrease as the
crack propagates.
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(a) P = 5.57kN

(b) P = 8.66kN

(c) P = 7.25kN

Figure 16: Crack propagation process and cohesive traction distribution (left-tension, right-
shear) of composite beam with ψ = −8.5◦.

(a) P = 12.15kN

(b) P = 19.05kN

(c) P = 17.51kN

Figure 17: Crack propagation process and cohesive traction distribution (left-tension, right-
shear) of composite beam with ψ = −38.1◦.
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(a) P = 16.80kN

(b) P = 25.13kN

(c) P = 24.39kN

Figure 18: Crack propagation process and cohesive traction distribution (left-tension, right-
shear) of composite beam with ψ = −82.4◦

Fig. 19 shows the crack lengths of the specimens when P = Pmax. It can
be clearly seen that the cohesive crack length increases as the mode mixity
increases. Since for all specimens, the fracture process zones are not developed to
the full length, the magnitude of the cohesive traction in the cracks is generally
high. The longer cohesive cracks indicate the load bearing capacity at the
interface has yet to be exhausted. This phenomenon could contribute partly to
the higher peak load for specimens with high mode mixity ratio.
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Figure 19: Crack pro�le at peak loads.

7. Conclusions

The dependency of the fracture behaviour of concrete-rock interface crack
on the mode mixity ratio has been investigated. Four-point shear tests were
performed on a series notched concrete-rock composite beams. The specimens
were designed so that a wide range of mode mixity angle (from almost pure shear
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to almost pure tensile loading) can be tested. To interpret the experimental
results, the scaled boundary polygon formulation, which is well-known for its
accuracy in fracture analysis, is used to compute the fracture toughness and
the fracture energy at the concrete-rock interface and to model the nonlinear
fracture behaviour. The numerical simulations were successfully validated using
the experimental measurements. From this study, it was found that:

1. The mode mixity angle ψ a�ects the failure mode at the concrete-rock
interface. Specimens with low magnitudes of ψ were observed to fail due
to cracking along the concrete-rock interface. In specimens with high
magnitudes of ψ, the crack showed a tendency to kink into the rock after
initial cracking along the interface.

2. The fracture energy Γ of the concrete-rock interface increases when the
magnitude of ψ increases. For the materials tested, fracture energy under
shear dominant condition is 2.5 times of the tensile dominant case.

3. Nonlinear crack propagation simulations showed that specimens with low
ψ showed a signi�cant amount of ductility, which re�ected the strong
nonlinearity of the interface. In specimens with high magnitudes of ψ,
only a small degree of nonlinearity was observed in the loading response.

It is well-known that scale e�ects exist in structures made of quasi-brittle ma-
terials such as the concrete-rock interface considered in this study. The experi-
mental program presented in Section 2 can, in the near future, be repeated with
specimens of di�erent sizes in order to investigate the e�ects of scale that govern
the problem.

Acknowledgements

This study was supported by the Australian Research Council through grant
number DP120100742, by the National Science Foundation of China through
Grant number 51009019.

References

References

[1] B. K. Atkinson, Fracture mechanics of rock, Academic Press, London, 1989.

[2] S. Kumar, S. V. Barai, Concrete fracture models and applications, Springer,
Berlin, Heidelberg, 2011.

[3] Design speci�cation for concrete gravity dams, Ministry of Water Resources
of the People's Republic of China, 2005.

[4] J. W. Chavez, G. L. Fenves, Earthquake analysis of concrete gravity dams
including base sliding, Earthquake Engineering and Structural Dynamics
24 (1995) 673�686.

35



[5] F. Javanmardi, P. Leger, R. Tinawi, Seismic structural stability of concrete
gravity dams considering transient uplift pressures in cracks, Engineering
Structures 27 (2005) 616�628.

[6] J. W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials, Ad-
vanced in Applied Mechanics 29 (1992) 63�191.

[7] K. M. Lee, O. Buyukozturk, Fracture analysis of mortar-aggregate inter-
faces in concrete, ASCE Journal of Engineering Mechanics 118 (1992) 2031�
2047.

[8] K. M. Lee, O. Buyukozturk, Fracture toughness of mortar-aggregate inter-
face in high-strength concrete, ACI Structural Journal 92 (1995) 634�642.

[9] O. Buyukozturk, B. Hearing, Crack propagation in concrete composites
in�uenced by interface fracture parameters, International Journal of Solids
and Structures 35 (1998) 4055�4066.

[10] H. V. Tippur, A. J. Rosakis, Quasi-static and dynamic crack growth along
bimaterial interfaces: A note on crack-tip �eld measurements using coher-
ent gradient sensing, Experimental Mechanics 31 (1991) 243�251.

[11] H. V. Tippur, S. Ramaswamy, Measurement of mixed-mode fracture pa-
rameters near cracks in homogeneous and bimaterial beams, International
Journal of fracture 61 (1993) 247�265.

[12] A. Agrawal, A. M. Karlsson, On the reference length and mode mixity
for a bimaterial interface, ASME Journal of Engineering Materials and
Technology 129 (2007) 580�587.

[13] S. C. Yang, S. Li, Z. Li, S. M. Huang, Experimental investigation on frac-
ture toughness of interface crack for rock/concrete, International Journal
of Modern Physics B 22 (2008) 6141�6148.

[14] C. F. Shih, R. J. Asaro, Elastic-plastic analysis of cracks on bimaterial
interfaces: Part I - small scale yielding, Journal of Applied Mechanics 55
(1988) 299�316.

[15] P. P. L. Matos, R. M. McMeeking, P. G. Charalambides, M. D. Drory,
A method for calculating stress intensities in bimaterial fracture, Interna-
tional Journal of Fracture 40 (1989) 235�254.

[16] K. Y. Lin, J. W. Mar, Finite element analysis of stress intensity factors
for cracks at a bi-material interface, International Journal of Fracture 12
(1976) 521�531.

[17] N. Sukumar, Z. Y. Huang, J. H. Prevost, Z. Suo, Partition of unity enrich-
ment for bimaterial interface cracks, International Journal for Numerical
Methods in Engineering 59 (2004) 1075�1102.

36



[18] M. L. Williams, The stress around a fault or crack in dissimilar media,
Bulletin of the Seismology Society of America 49 (1959) 199�204.

[19] B. L. Karihaloo, Q. Z. Xiao, Asymptotic �elds at the tip of a cohesive crack,
International Journal of Fracture 150 (2008) 55�75.

[20] A. Alberto, S. Valente, Asymptotic �elds at the tip of a cohesive frictional
crack growing at the bi-material interface between a dam and the founda-
tion rock, Engineering Fracture Mechanics 108 (2013) 152�161.

[21] J. P. Wolf, The scaled boundary �nite element method, John Wiley & Sons
Inc, 2003.

[22] C. Song, F. Tin-Loi, W. Gao, A de�nition and evaluation procedure of
generalized stress intensity factros at cracks and multi-material wedges,
Engineering Fracture Mechanics 77 (2010) 2316�2336.

[23] P. O. Bouchard, F. Bay, Y. Chastel, Numerical modeling of crack propaga-
tion - implementation techniques and comparison of di�erent criteria, Com-
puter Methods in Applied Mechanics and Engineering 192 (2003) 3887�
3908.

[24] N. Moes, T. Belytschko, Extended �nite element method for cohesive crack
growth, Engineering Fracture Mechanics 69 (2002) 813�833.

[25] E. T. Ooi, C. Song, F. Tin-Loi, Automatic modeling of cohesive crack
propagation in concrete using polygon scaled boundary �nite element., En-
gineering Fracture Mechanics 93 (2012) 13�33.

[26] F. Barpi, S. Valente, The cohesive frictional crack model applied to the
analysis of the dam-foundation joint, Engineering Fracture Mechanics 77
(2010) 2182�2191.

[27] C. Song, Analysis of singular stress �elds at multi-material corners under
thermal loading., International Journal for Numerical Methods in Engi-
neering 65 (2006) 620�652.

[28] Z. J. Yang, A. J. Deeks, Fully-automatic modeling of cohesive crack growth
using a �nite element-scaled boundary �nite element coupled method., En-
gineering Fracture Mechanics 74 (2007) 2547�2573.

[29] E. T. Ooi, C. Song, F. Tin-Loi, Scaled boundary polygon �nite element for
crack propagation modeling., International Journal for Numerical Methods
in Engineering 91 (2012) 319�342.

[30] M. Y. He, H. C. Cao, A. G. Evans, Mixed-mode fracture: the four-point
shear specimen, Acta Metallurgica et Materialia 38 (1990) 839�846.

[31] A. Carpinteri, S. Valente, G. Ferrara, G. Melchiorri, Is mode II fracture
energy a real material property?, Computers and Structures 48 (1992) 397�
413.

37



[32] A. J. Deeks, J. P. Wolf, A virtual work derivation of the scaled boundary
�nite-element method for elastostatics, Computational Mechanics 28 (2002)
489�504.

[33] G. Barenblatt, The mathematical theory of equilibrium cracks in brittle
fracture., Advances in Applied Mechanics 7 (1962) 55�129.

[34] D. Dugdale, Yielding of steel sheets containing slits., Journal of the Me-
chanics and Physics of Solids 8 (1960) 100�104.

[35] A. Hillerborg, M. Modeer, P. E. Petersson, Analysis of crack formation
and crack growth in concrete by means of fracture mechanics and �nite
elements., Cement and Concrete Research 6 (1976) 773�782.

[36] P. E. Petersson, Crack growth and development of fracture zone in plain
concrete and similar materials., Tech. Rep., Lund Institute of Technology,
Sweden, 1981.

[37] R. E. Goodman, R. L. Taylor, T. L. Berkke, A model for the mechanics
of jointed rock., ASCE Journal of the Soil Mechanics Division 99 (1968)
637�659.

[38] W. Gerstle, M. Xie, FEMmodeling of �ctitious crack propagation concrete.,
ASCE Journal of Engineering Mechanics 118 (1992) 416�434.

[39] Z. P. Bazant, N. Y. Li, Stability of cohesive crack model: Part 1 - energy
principles., ASME Journal of Applied Mechanics 62 (1995) 959�964.

[40] A. J. Kinloch, Adhesion and adhesives, Chapman and Hall, 1987.

38


