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Abstract The paper concerns the computation of the graphical derivative and the

regular (Fréchet) coderivative of the solution map to a class of generalized equations,

where the multi-valued term amounts to the regular normal cone to a (possibly non-

convex) set given by C2 inequalities. Instead of the Linear Independence qualifica-

tion condition, standardly used in this context, one assumes a combination of the

Mangasarian-Fromovitz and the Constant Rank qualification conditions. Based on the

obtained generalized derivatives, new optimality conditions for a class of mathematical

programs with equilibrium constraints are derived, and a workable characterization of

the isolated calmness of the considered solution map is provided.

Keywords Parameterized generalized equation · Regular and limiting coderivative ·

Constant rank CQ · Mathematical program with equilibrium constraints

Mathematics Subject Classification (2000) 49J53 · 90C31 · 90C46

1 Introduction

In [1], the authors investigated regular coderivatives of solution maps to perturbed

generalized equations in which the single-valued part depends on the perturbation

parameter and the multi-valued one amounts to the regular normal cone to a set given

by inequalities. In the first part of [1], it was assumed that, at the reference pair, a strong

second-order sufficient condition (SSOSC) held and the constraints set fulfilled both

the Mangasarian-Fromovitz and the Constant Rank qualification conditions (MFCQ

and CRCQ). In the second part, the SSOSC was dropped, but the results from the

first part were used for the computation of the regular normal cone to the graph of the

multi-valued part of the considered generalized equation, which then again enabled the

authors to compute the regular coderivative of the solution map. Thereby they utilized
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the well-known relationship between the projection and the normal-cone operators in

the convex case, and so they had to assume that the constraint set was convex.

The main aim of this note is to show that these results from [1] remain valid

without any convexity assumptions on the constraint set. This improvement is based

on the theory of prox-regular sets and, in particular, on a more subtle relationship

between the projection and the (limiting) normal-cone operator, valid in this context.

This relationship can be found, e.g., in [2, Excercise 13.38] and it is the key reference for

our development. For the reader’s convenience, we state a (for our purposes relevant)

part of this result together with some other important auxiliary results at the end of

the next section.

The structure of the paper is as follows. Section 2 contains besides problem formu-

lation and the mentioned auxiliary statements also definitions of some basic notions

from variational analysis, which are used in the sequel. In Section 3, we compute both

the regular normal cone and the contingent (Bouligand, tangent) cone to the graph of

the multivalued part. On the basis of these results, we obtain then easily the regular

coderivative and the graphical derivative of the solution map at the reference pair. The

final Section 4 is devoted to applications. Specifically, similarly to [1], we derive two

types of sharp optimality conditions to an optimization problem, where the considered

generalized equation arises as a constraint, and state a characterization of the so-called

isolated calmness of the respective solution map.

2 Preliminaries

Our notation is standard. All spaces in use are assumed Euclidean. B is the closed unit

ball, PC denotes the projection map onto a set C and, for a multifunction Φ, GrΦ
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stands for its graph. If K is a cone, then its negative polar {v| ⟨v, x⟩ ≤ 0 for all x ∈ K}

is denoted K0.

As described in the Introduction, we are dealing with local analysis of the solution

map to the generalized equation (GE)

0 ∈ F (x, y) + N̂Γ (y), (1)

where x ∈ Rn is a parameter, y ∈ Rm is the (decision) variable, F : Rn × Rm → Rm

is a continuously differentiable mapping,

Γ = {y ∈ Rm| qi(y) ≤ 0, i = 1, 2, . . . , s}, (2)

and N̂Γ (y) stands for the regular normal cone to Γ at y (see the definition below). In

(2), the functions qi : Rm → R are assumed to be twice continuously differentiable.

For the readers’ convenience, we collect now the definitions of some basic notions

from variational analysis, which are extensively used throughout the sequel.

Let C ⊂ Rm be a closed set and x̄ ∈ C. Then the contingent (Bouligand, tangent)

cone to C at x̄ is the set

TC(x̄) := Lim sup
t↓0

C − x̄

t
= {d ∈ Rm| ∃tk ↓ 0, dk → d : x̄+ tkdk ∈ C ∀ k}.

“Limsup” stands here for the Painlevé-Kuratowski upper (outer) limit, cf. [2, Defini-

tion 4.1], [3, Definition 1.1].

The regular (Fréchet) normal cone to C at x̄ can now be defined by

N̂C(x̄) := (TC(x̄))0.

Consequently, N̂C(x̄) is a closed convex cone.

The limiting (Mordukhovich) normal cone to C at x̄, is defined by

NC(x̄) := Lim sup
x→x̄, x∈C

N̂C(x).
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C is called regular at x̄ provided NC(x̄) = N̂C(x̄).

Consider now a multifunction Φ : Rn ⇒ Rm with a closed graph GrΦ and a point

(ū, v̄) ∈ GrΦ. On the basis of the contingent and the regular normal cones to GrΦ,

one can define the following notions.

The multifunctions DΦ(ū, v̄)(·) : Rn ⇒ Rm and D̂∗Φ(ū, v̄)(·) : Rm ⇒ Rn defined

by

DΦ(ū, v̄)(h) := {k ∈ Rm| (h, k) ∈ TGrΦ(ū, v̄)}, h ∈ Rn,

and

D̂∗Φ(ū, v̄)(y∗) := {x∗ ∈ Rn| (x∗,−y∗) ∈ N̂GrΦ(ū, v̄)}, y∗ ∈ Rm,

are called the graphical derivative and the regular coderivative of Φ at (x̄, ȳ), respec-

tively.

Both these notions are well suited for description of the local behavior of Φ around

(x̄, ȳ).

Let S : Rn ⇒ Rm be the solution map to (1), i.e.,

S(x) := {y ∈ Rm| 0 ∈ F (x, y) + N̂Γ (y)},

and consider a reference point (x̄, ȳ) ∈ GrS. If the partial Jacobian matrix ∇xF (x̄, ȳ)

is surjective (i.e., we are dealing with the so-called ample perturbations, cf. [4]), then

by virtue of [2, Exercise 6.7], for all h ∈ Rn

DS(x̄, ȳ)(h) = {k ∈ Rm| 0 ∈ ∇xF (x̄, ȳ)h+∇yF (x̄, ȳ)k +DN̂Γ (ȳ,−F (x̄, ȳ))(k)}, (3)

and for all y∗ ∈ Rm

D̂∗S(x̄, ȳ)(y∗) = {(∇xF (x̄, ȳ))T b| 0 ∈ y∗ + (∇yF (x̄, ȳ))T b+ D̂∗N̂Γ (ȳ,−F (x̄, ȳ))T (b)}.

(4)
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To be able to apply these formulas, one has thus to compute DN̂Γ (ȳ,−F (x̄, ȳ)) and

D̂∗N̂Γ (ȳ,−F (x̄, ȳ)), which will be conducted in the next section.

Let us now return to the set Γ given by (2). With each y ∈ Γ and arbitrary

v ∈ Rm we can associate the critical cone to Γ at y with respect to v, given by

K(y, v) := TΓ (y) ∩ {v}⊥. The next proposition collects some simple properties of the

critical cone which will be used in the sequel.

Proposition 2.1 (i) If v = 0, then K(y, v) = TΓ (y).

(ii) If v ∈ N̂Γ (y) \ {0}, then K(y, v) ⊂ bdTΓ (y).

(iii) If v ∈ int N̂Γ (y), then K(y, v) = {0}.

(iv) K(y, v) = K(y, νv) for any ν ̸= 0.

Proof Assertions (i) and (iv) are evident.

(ii) Let v ∈ N̂Γ (y)\{0}. SinceK(y, v) ⊂ TΓ (y), it is sufficient to show thatK(y, v)∩

intTΓ (y) = ∅. Suppose u ∈ K(y, v) ∩ intTΓ (y). Then ⟨u, v⟩ = 0 and u + εB ⊂ TΓ (y)

for some ε > 0. Hence, by assumption, for any b ∈ B, it holds 0 ≥ ⟨v, u+ εb⟩ = ε⟨v, b⟩,

and consequently v = 0. A contradiction.

(iii) Let v ∈ int N̂Γ (y) and u ∈ K(y, v). Then v + εB ⊂ N̂Γ (y) for some ε > 0,

u ∈ TΓ (y), and ⟨u, v⟩ = 0. Hence, for any b ∈ B, it holds 0 ≥ ⟨v + εb, u⟩ = ε⟨u, b⟩, and

consequently u = 0. ⊓⊔

We say that Γ fulfills the MFCQ at y provided

(∇q(y))Tλ = 0

λ ≥ 0

⟨q(y), λ⟩ = 0


⇒ λ = 0.
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To introduce the second needed constraint qualification, namely the CRCQ, we asso-

ciate with each y ∈ Γ the index set I(y) of active inequalities, i.e.,

I(y) := {i ∈ {1, 2, . . . , s}| qi(y) = 0}.

One says that Γ fulfills the CRCQ at ȳ provided there exists a neighborhood M of ȳ

such that for any subsets I of I(ȳ), the family of gradients {∇qi(y)| i ∈ I} have the

same rank for all y ∈ M.

If Γ fulfills MFCQ at y, then it is easy to see that Γ is fully amenable at this point.

Recall from [2, Definition 10.23(b)] that a set C ⊂ Rm is fully amenable at y ∈ C

provided there is an open neighborhood U of y along with a C2 mapping g from U into

Rs and a polyhedral convex set D ⊂ Rs such that

C ∩ U = {u ∈ U| g(u) ∈ D},

and the only vector λ ∈ ND(g(y)) with ∇g(y)Tλ = 0 is λ = 0.

We finish this section with three important auxiliary statements sorted out from our

basic references [1,2,5]. To avoid any confusion, the first two statements are formulated

in terms of another GE of the type (1), namely

0 ∈ G(p, y) + N̂Γ (y), (5)

where p ∈ Rl, y ∈ Rm, G : Rl × Rm → Rm is continuously differentiable, and Γ is

given by (2). Moreover, we assume that G amounts to the partial Jacobian of a twice

continuously differentiable function φ : Rl × Rm → R with respect to the second

variable.

Let Ξ : Rl ⇒ Rm be the solution map to (5) and suppose that (p, y) ∈ GrΞ. Under

MFCQ at y there exists a multiplier λ ∈ Rm such that

0 = L(p, y, λ), λ ≥ 0, ⟨λ, q(y)⟩ = 0, (6)
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where

L(p, y, λ) := G(p, y) +

s∑
i=1

λi∇qi(y)

is the Lagrangian associated with the GE (5). In the next statement we make use of

the index set

I+(y, λ) := {i ∈ I(y)| λi > 0}

of strongly active inequalities.

Theorem 2.1 ( [5]) Consider the GE (5) around the reference point (p̄, ȳ) ∈ GrΞ.

Further suppose that

(i) MFCQ and CRCQ hold at ȳ;

(ii) For each λ satisfying (6) with (p, y) = (p̄, ȳ) and each v ̸= 0 such that ⟨∇qi(y), v⟩ = 0

if i ∈ I+(ȳ, λ), one has

⟨v,∇yL(p̄, ȳ, λ)v⟩ > 0.

Then, the following statements hold:

1) There exist neighborhoods V of p̄, U of ȳ and a Lipschitz function σ[V → U ] such

that σ(p̄) = ȳ and

Ξ(p) ∩ U = σ(p) for p ∈ V.

2) For each p ∈ V and d ∈ Rl, σ is directionally differentiable at p in the direction d

and σ′(p; d) = v, the unique solution of the GE

0 ∈ ∇pG(p, y)d+∇yL(p, y, λ)v +NK(v), (7)

where y = σ(p), λ ∈ Rs fulfills the relations (6) and

K := K(y,G(p, y)) = TΓ (y) ∩ {G(p, y)}⊥

is the critical cone to Γ at y with respect to G(p, y).
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Remark 2.1 Assumption (ii) in the above theorem is the SSOSC mentioned in the

Introduction.

Next we state a slight modification of [1, Corollary 3.2] which, however, by virtue of

the preceding statement does not require any changes in the proof, cf. [1, Theorem 3.1].

Theorem 2.2 Consider the setting of Theorem 2.1 and let p ∈ V, y = σ(p) and

λ ∈ Rs satisfy the relations (6). If ∇pG(p, y) is surjective, then one has for all y∗ ∈ Rm

that

N̂GrΞ(p, y) = {(p∗, y∗) ∈ Rl × Rm| p∗ ∈ K, y∗ + (∇yL(p, y, µ))p∗ ∈ K0}. (8)

In the last auxiliary statement, we collect those parts of [2, Exercise 13.38] which

play an essential role in the proof of Theorem 3.1 in the next section.

Theorem 2.3 Let C ⊂ Rm be fully amenable at ȳ. Then there exists a neighborhood

V of ȳ on which PC is single-valued and Lipschitz with

PC = (I + T )−1,

where I is the identity m-matrix and T is a localization of NC around (ȳ, 0), i.e.,

T : Rm ⇒ Rm and GrT = GrNC ∩ (V × U), where U is a neighborhood of 0.

3 Main Results

Lemma 3.1 Consider a cone-valued multifunction Φ : Rn ⇒ Rn, a pair (ū, v̄) ∈ GrΦ

and a number ν > 0. Then,

(i) (h, k) ∈ TGrΦ(ū, v̄) if and only if (h, νk) ∈ TGrΦ(ū, νv̄).

(ii) (u∗, v∗) ∈ N̂GrΦ(ū, v̄) if and only if (u∗, v∗/ν) ∈ N̂GrΦ(ū, νv̄).
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Proof (i) Let (h, k) ∈ TGrΦ(ū, v̄). Then there exist sequences λi ↓ 0, hi → h, ki → k

such that (ū+ λihi, v̄ + λiki) ∈ GrΦ. By virtue of the assumption, (ū, νv̄) ∈ GrΦ and

(ū+ λihi, νv̄ + λi(νki)) ∈ GrΦ. Hence, (h, νk) ∈ TGrΦ(ū, νv̄).

The converse implication is a consequence of the just proved one applied with the

positive constant ν−1.

(ii) The second assertion follows from the first one by using the relationship between

polar cones. ⊓⊔

Theorem 3.1 Suppose both MFCQ and CRCQ hold at ȳ. Let v̄ ∈ N̂Γ (ȳ) and λ be an

arbitrary multiplier satisfying the conditions

0 =

m∑
i=1

λi∇qi(ȳ)− v̄, λ ≥ 0, ⟨λ, q(ȳ)⟩ = 0. (9)

Then,

T
Gr N̂Γ

(ȳ, v̄) =

{
(a, b) ∈ Rm ×Rm

∣∣∣∣∣ b ∈
(

m∑
i=1

λi∇2qi(ȳ)

)
a+NK(ȳ,v̄)(a)

}

=

{
(a, b)

∣∣∣∣∣ a ∈ K(ȳ, v̄), b−

(
m∑
i=1

λi∇2qi(ȳ)

)
a ∈ (K(ȳ, v̄))0,⟨

a, b−

(
m∑
i=1

λi∇2qi(ȳ)

)
a

⟩
= 0

}
, (10)

N̂
Gr N̂Γ

(ȳ, v̄) =

{
(y∗, v∗)

∣∣∣∣∣ y∗ +

(
m∑
i=1

λi∇2qi(ȳ)

)
v∗ ∈ (K(ȳ, v̄))0, v∗ ∈ K(ȳ, v̄)

}
.

(11)

Proof We start with proving (11). For that we need to analyze the projection PΓ . Take

p as a parameter and consider the GE of the type (5) in the variable y

p ∈ y + N̂Γ (y). (12)

It corresponds to taking G(p, y) = y − p in (5) and can be associated with the opti-

mization problem

minimize
1

2
∥p− y∥2 subject to y ∈ Γ.
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Let Ξ be the solution map to (12) and consider the point (ȳ, ȳ) ∈ GrΞ. Due to the

imposed MFCQ at ȳ, to this point we can assign only the multiplier λ = 0Rm satisfying

the conditions

0 = G(ȳ, ȳ) + (∇q(ȳ))Tλ, λ ≥ 0, ⟨q(ȳ), λ⟩ = 0.

We observe that all assumptions of Theorem 2.1 are fulfilled and, consequently, there

are neighborhoods V and U of ȳ and a single-valued Lipschitz function σ[V → U ] such

that σ(ȳ) = ȳ and

Ξ(p) ∩ U = {σ(p)} for p ∈ V.

Since PΓ is nonempty-valued, PΓ (p) ⊂ Ξ(p) for all p, and

PΓ (ȳ) = {ȳ} = σ(ȳ),

the neighborhood V and U can be shrunk if necessary (without changing the notation)

so that

GrPΓ ∩ (V × U) = Grσ.

We apply now Theorem 2.2 to a pair (u, ȳ) with u ∈ V and PΓ (u) = {ȳ}. Denoting

v̄ = u− ȳ and taking into account that K(ȳ,−v̄) = K(ȳ, v̄) (Proposition 2.1 (iv)), we

arrive at

N̂GrPΓ
(u, ȳ) =

{
(u∗, y∗) ∈ Rm ×Rm

∣∣∣∣∣
u∗ ∈ K(ȳ, v̄), y∗ +

(
I +

m∑
i=1

λi∇2qi(ȳ)

)
u∗ ∈ (K(ȳ, v̄))0

}
, (13)

where λ ∈ Rm is any multiplier satisfying conditions (9).

Next we make use of the full amenability of Γ at ȳ, mentioned in Section 2. By

Theorem 2.3, there exist neighborhoods Z of ȳ and W of 0 and a single-valued mapping
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T : Z → W such that for p ∈ Z

PΓ (p) = (I + T )−1(p)

and

GrT = GrNΓ ∩ (Z ×W). (14)

Moreover, since Γ is regular on a neighborhood of ȳ, the limiting normal cone on the

right-hand side of (14) can be replaced by the regular normal cone N̂Γ . Hence,

(b, c) ∈ Gr N̂Γ ∩(Z×W) if and only if (b+c, b) ∈ GrPΓ and (b, c) ∈ Z×W. (15)

If we now shrink Z and W in such a way that Z ⊂ U , Z +W ⊂ V, we can invoke

(13) and [2, Exercise 6.7] and obtain that for v̄ ∈ W with PΓ (ȳ + v̄) = {ȳ}

N̂
Gr N̂Γ

(ȳ, v̄) =

 I I

I 0

 N̂GrPΓ
(u, ȳ) =

{
(y∗, v∗) ∈ Rm × Rm

∣∣∣∣∣
v∗ ∈ K(ȳ, v̄), y∗ +

(
m∑
i=1

λi∇2qi(ȳ)

)
v∗ ∈ (K(ȳ, v̄))0

}
. (16)

It remains now to analyze a general pair (ȳ, v̄) ∈ Gr N̂Γ , where v̄ does not neces-

sarily belong to W. Let λ be an arbitrary multiplier satisfying conditions (9). We

readily see that there is a positive real ν ∈]0, 1] such that νv̄ ∈ W and νλ is a multi-

plier satisfying conditions (9) with νv̄ instead of v̄. Moreover, by Proposition 2.1 (iv),

K(ȳ, v̄) = K(ȳ, νv̄). By virtue of (16),

N̂
Gr N̂Γ

(ȳ, νv̄) =

{
(y∗, b)

∣∣∣∣∣ b ∈ K(ȳ, v̄), y∗ +

(
m∑
i=1

νλi∇2qi(ȳ)

)
b ∈ (K(ȳ, v̄))0

}

=

{
(y∗, b)

∣∣∣∣∣ νb ∈ K(ȳ, v̄), y∗ +

(
m∑
i=1

λi∇2qi(ȳ)

)
νb ∈ (K(ȳ, v̄))0

}
.
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It follows by Lemma 3.1 (ii) that

N̂
Gr N̂Γ

(ȳ, v̄) =
{
(y∗, v∗)| v∗ = νb, (y∗, b) ∈ N̂

Gr N̂Γ
(ȳ, νv̄)

}
=

{
(y∗, v∗)

∣∣∣∣∣ v∗ ∈ K(ȳ, v̄), y∗ +

(
m∑
i=1

λi∇2qi(ȳ)

)
v∗ ∈ (K(ȳ, v̄))0

}
,

and so (11) has been established.

Let V be the neighborhood specified above and let u ∈ V be such that PΓ (u) = {ȳ}.

By virtue of Theorem 2.1,

TGrPΓ
(u, ȳ) =

{
(h, k) ∈ Rm ×Rm

∣∣∣∣∣ h ∈

(
I +

s∑
i=1

λi∇2qi(ȳ)

)
k +NK(ȳ,v̄)(k)

}
,

where v̄ = u− ȳ and λ ∈ Rm is any multiplier satisfying conditions (9). If v̄ lies even

in the neighborhood W specified above, one can make use of (15) and conclude (with

the help of [2, Exercise 6.7]) that

T
Gr N̂Γ

(ȳ, v̄) =

(a, b)

∣∣∣∣∣∣∣∣
 I I

I 0


 a

b

 ∈ TGrPΓ
(u, ȳ)

 =

=

{
(a, b)

∣∣∣∣∣ b ∈
(

m∑
i=1

λi∇2qi(ȳ)

)
a+NK(ȳ,v̄)(a)

}
.

It remains to analyze a general pair (ȳ, v̄), where v̄ does not necessarily belong to W.

By using the same reasoning as in the proof of (11), based this time on Lemma 3.1 (i),

we conclude that T
Gr N̂Γ

(ȳ, v̄) is given by (10), where λ ∈ Rs is an arbitrary multiplier

satisfying conditions (9). So, the statement has been proved. ⊓⊔

Theorem 3.1 yields immediately the following representations of the graphical

derivative and regular coderivative of N̂Γ .
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Corollary 3.1 Suppose both MFCQ and CRCQ hold at ȳ and v̄ ∈ N̂Γ (ȳ). Then, for

any λ ∈ Rm satisfying conditions (9), it holds

DN̂Γ (ȳ, v̄)(w) =


(

m∑
i=1

λi∇2qi(ȳ)

)
w +NK(ȳ,v̄)(w), ∀w ∈ K(ȳ, v̄),

∅, ∀w /∈ K(ȳ, v̄),

D̂∗N̂Γ (ȳ, v̄)(v
∗) =


(

m∑
i=1

λi∇2qi(ȳ)

)
v∗ + (K(ȳ, v̄))0, ∀v∗ ∈ −K(ȳ, v̄),

∅, ∀v∗ /∈ −K(ȳ, v̄).

An interesting feature of the representations in Theorem 3.1 and Corollary 3.1 is

the fact that they do not depend on the choice of λ ∈ Rm satisfying conditions (9).

This apparent contradiction is due to the definition of K(ȳ, v̄) as it is clarified in the

next corollary.

Corollary 3.2 Suppose both MFCQ and CRCQ hold at ȳ and v̄ ∈ NΓ (ȳ). Then, for

any λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm) satisfying (9), it holds⟨(
m∑
i=1

(λi − µi)∇2qi(ȳ)

)
w1, w2 − w1

⟩
= 0, ∀w1, w2 ∈ K(ȳ, v̄). (17)

In particular, ⟨(
m∑
i=1

(λi − µi)∇2qi(ȳ)

)
w,w

⟩
= 0, ∀w ∈ K(ȳ, v̄). (18)

Proof Choose w1 ∈ K(ȳ, v̄) and let λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm) satisfy (9).

Due to the first representation in Corollary 3.1,(
m∑
i=1

λi∇2qi(ȳ)

)
w1 +NK(ȳ,v̄)(w1) =

(
m∑
i=1

µi∇2qi(ȳ)

)
w1 +NK(ȳ,v̄)(w1),

and consequently (
m∑
i=1

(λi − µi)∇2qi(ȳ)

)
w1 ∈ NK(ȳ,v̄)(w1).
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Thanks to the convexity of K(ȳ, v̄), we have

⟨(
m∑
i=1

(λi − µi)∇2qi(ȳ)

)
w1, w2 − w1

⟩
≤ 0, ∀w2 ∈ K(ȳ, v̄).

Since λ and µ in the last formula are interchangeable and w1 ∈ K(ȳ, v̄) is arbitrary,

equality (17) has been proved. Equality (18) follows if we take w1 = w and w2 = 0. ⊓⊔

Remark 3.1 Another representation for the graphical derivative of the normal cone

mapping was obtained in [2, Corollary 13.43(a)]:

DN̂Γ (ȳ, v̄) = ∂
[
1

2
d2δΓ (ȳ, v̄)

]
, (19)

where δΓ is the indicator function of Γ and d2 denotes its second subderivative which

in its turn was computed in [2, Exercise 13.17] under the assumption that MFCQ holds

at ȳ. In the current setting, it gives:

d2δΓ (ȳ, v̄)(w) = δK(ȳ,v̄)(w) + max
λ∈Λ

⟨
w,

(
m∑
i=1

λi∇2qi(ȳ)

)
w

⟩
, ∀w ∈ K(ȳ, v̄), (20)

where Λ denotes the set of all λ ∈ Rm satisfying conditions (9). Hence, taking into

account [2, Theorem 10.31], we have the following representation:

DN̂Γ (ȳ, v̄)(w) = NK(ȳ,v̄)(w)+conv

{(
m∑
i=1

λi∇2qi(ȳ)

)
w

∣∣∣∣∣ λ ∈ Λ(w)

}
, ∀w ∈ K(ȳ, v̄),

where

Λ(w) =

{
λ ∈ Λ

∣∣∣∣∣
⟨
w,

(
m∑
i=1

λi∇2qi(ȳ)

)
w

⟩
= max

µ∈Λ

⟨
w,

(
m∑
i=1

µi∇2qi(ȳ)

)
w

⟩}
.

The last representation is more complicated compared to the one in Corollary 3.1. This

is likely to be due to the additional assumption of CRCQ in Theorem 3.1. Indeed, as

it can be seen from Corollary 3.2, under this assumption one has Λ(w) = Λ for all
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w ∈ K(ȳ, v̄), and consequently, representation (20) of the second subderivative gets

simpler:

d2δΓ (ȳ, v̄)(w) = δK(ȳ,v̄)(w) +

⟨
w,

(
m∑
i=1

λi∇2qi(ȳ)

)
w

⟩
, ∀w ∈ K(ȳ, v̄), ∀λ ∈ Λ.

As a result, (19) reduces to the first formula in Corollary 3.2.

Based on formulas (3), (4) and the preceding theorem, we can now immediately

compute the desired graphical derivative and regular coderivative of S at (x̄, ȳ).

Theorem 3.2 Let ∇xF (x̄, ȳ) be surjective, both MFCQ and CRCQ hold at ȳ, and λ

be an arbitrary multiplier satisfying conditions (9). Then, for all h ∈ Rn,

DS(x̄, ȳ)(h) = {k ∈ Rm| 0 ∈ ∇xF (x̄, ȳ)h+∇yL(x̄, ȳ, λ)k +NK(k)}, (21)

and, for all y∗ ∈ Rm,

D̂∗S(x̄, ȳ)(y∗) = {(∇xF (x̄, ȳ))T b| 0 ∈ y∗ + (∇yL(x̄, ȳ, λ))T b+K0,−b ∈ K}, (22)

where

L(x, y, λ) := F (x, y) +

s∑
i=1

λi∇qi(y)

is the Lagrangian associated with the GE (1) and

K := K(ȳ, F (x̄, ȳ)). (23)

Formulas (21), (22) have multiple applications, some of which will be discussed in

the next section.
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4 Applications

A multifunction Φ : Rn ⇒ Rm is said to have the isolated calmness property at

(ū, v̄) ∈ GrΦ, provided there exist neighborhoods U of ū and V of v̄ and a constant

κ ≥ 0 such that

Φ(u) ∩ V ⊂ {v̄}+ κ∥u− ū∥B when u ∈ U .

In [6], it has been proved that Φ possesses the isolated calmness property at (ū, v̄)

if and only if

DΦ(ū, v̄)(0) = {0}, (24)

cf. also [7, Theorem 4C.1]. In that monograph, this characterization has been ap-

plied to variational inequalities with polyhedral constraint sets [7, Theorem 4E.1]. Our

Theorem 4 yields a substantial generalization of this result to the GE (1).

Theorem 4.1 Let (x̄, ȳ) ∈ GrS, λ be an arbitrary multiplier satisfying conditions

(9), and assume that MFCQ and CRCQ hold at ȳ. Then S has the isolated calmness

property at (x̄, ȳ), provided the GE

0 ∈ ∇yL(x̄, ȳ, λ)k +NK(k) (25)

(with K given in (23)) possesses only the trivial solution k = 0.

Moreover, if ∇xF (x̄, ȳ) is surjective, then the above condition is not just sufficient

but also necessary for S to have the isolated calmness property at (x̄, ȳ).

Proof The full characterization under the surjectivity of ∇xF (x̄, ȳ) follows directly

from condition (24) combined with formula (21). The “sufficiency” part follows from

the fact that, in absence of the surjectivity of∇xF (x̄, ȳ), equation (3) becomes inclusion

of the type “⊂”, cf. [2, Theorem 6.31]. ⊓⊔
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Example 4.1 Consider the GE

0 ∈ x+ N̂Γ (y), (26)

where

Γ =



y ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
2y

2
1 + y1 − y3 ≤ 0,

− 1
2y

2
1 − y1 − y3 ≤ 0,

− 1
2y

2
2 + y2 − y3 ≤ 0,

− 1
2y

2
2 − y2 − y3 ≤ 0,

− 1
4 (y

2
1 + y22) +

1
2 (y1 + y2)− y3 ≤ 0



. (27)

Out[27]=

Fig. 1 Illustration of the feasible set Γ defined by (27) and of the critical cone K.
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Observe that the corresponding solution map S assigns x the stationary points of

the nonconvex program

minimize ⟨x, y⟩ subject to y ∈ Γ.

As the reference point, take the pair (x̄, ȳ) with x̄ = (−0.3,−0.7, 1) and ȳ = 0R3 . All

assumptions of Theorem 8 are fulfilled and the equality

0 = x̄+

5∑
i=1

λi∇qi(ȳ)

holds, for instance, with λ̄1 = 0.3, λ̄3 = 0.7, λ̄2 = λ̄4 = λ5 = 0. Clearly, the GE (25)

can be written down in the form

k ∈ K, −


−0.3 0 0

0 −0.7 0

0 0 0

 k ∈ K0, 0.3k21 + 0.7k22 = 0,

where K = R+(1, 1, 1)T and K0 = {(v1, v2, v3)| v1 + v2 + v3 ≤ 0}. It follows that

k1 = k2 = k3 = 0 and, consequently, the respective S has the isolated calmness property

at (x̄, ȳ). ⊓⊔

Theorem 3.2 will now be used in a generalization of [1, Theorem 4.2], where we

remove the requirement of convexity imposed on the functions qi. Consider the math-

ematical program with equilibrium constraints (MPEC)

minimize f(x, y) subject to 0 ∈ F (x, y) + N̂Γ (y), (28)

where f : Rn ×Rm → R is continuously differentiable and, apart from the GE (1), we

do not have any constraints.
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Theorem 4.2 Let (x̄, ȳ) be a (local) solution of the MPEC (28), and assume that

∇xF (x̄, ȳ) is surjective, and MFCQ and CRCQ hold at ȳ. Then, there is an MPEC

multiplier b̄ ∈ −K such that

0 = ∇xf(x̄, ȳ) + (∇xF (x̄, ȳ))T b̄, (29)

0 = ∇yf(x̄, ȳ) + (∇yL(x̄, ȳ, λ̄))T b̄+K0, (30)

where λ̄ is an arbitrary multiplier satisfying conditions (9) with v̄ = −F (x̄, ȳ) and K is

given by (23).

Proof The statement follows immediately from the standard optimality condition

0 ∈ ∇f(x̄, ȳ) + N̂GrS(x̄, ȳ)

by virtue of Theorem 3.2. ⊓⊔

Example 4.2 Consider the following modification of the MPEC from [1, Example 4.1]:

minimize y3 +
1

2
∥x− a∥2 subject to 0 ∈ x+ N̂Γ (y), x, y ∈ R3 (31)

where a = (−1− ε, 0, 1) with some ε ≥ 0, Γ is given by (27). It can easily be checked

that x̄ = (−1 − ε

2
, 0, 1 +

ε

2
), ȳ = 0R3 is a local solution to (31). All assumptions of

Theorem 4.2 are fulfilled and the equality

0 = x̄+

5∑
i=1

λi∇qi(ȳ)

holds with λ̄1 = 1 +
ε

2
, λ̄2 = λ̄3 = λ̄4 = λ̄5 = 0. Conditions (29), (30) take the form

0 =


ε

2

0

ε

2

+ b̄, 0 ∈


0

0

1

+ λ̄1


−1 0 0

0 0 0

0 0 0

 b̄+K0,
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where K = {(y1, y2, y3)|y1 = y3 ≥ |y2|} and K0 = {(v1, v2, v3)|v1 + v3 + |v2| ≤ 0} .

Hence,

b̄ = (− ε

2
, 0,− ε

2
) ∈ −K and −


0

0

1

− (1 +
ε

2
)


ε
2

0

0

 ∈ K0.

The optimality conditions in Theorem 4.2 are fulfilled. ⊓⊔

The theory developed in Section 3 enables us also to derive the so-called fuzzy

optimality conditions for a general MPEC, where one has, apart from the equilib-

rium constraint, also additional constraints, for instance, in the form of equalities and

inequalities.

Consider the following MPEC:

minimize f0(x, y)

subject to fi(x, y) ≤ 0, i = 1, . . . , l,

fi(x, y) = 0, i = l + 1, . . . , k,

0 ∈ F (x, y) + N̂Γ (y),

(32)

where 0 ≤ l ≤ k and the functions fi : Rn × Rm → R are lower semicontinuous

for i = 0, . . . , l and continuous for i = l + 1, . . . , k near (x̄, ȳ) ∈ GrS (recall that

S denotes the solution map of the equilibrium constraint). Observe that under the

imposed assumptions the graph GrS is locally closed near (x̄, ȳ). Indeed, Γ is regular

on a neighborhood of ȳ and so, on this neighborhood, the regular normal cone in (1)

can be replaced by the limiting one. The local closedness of S follows then immediately

from the outer semicontinuity of the map NΓ (·).

Theorem 4.3 Let (x̄, ȳ) be a (local) solution of problem (32). Suppose that ∇xF (x̄, ȳ)

is surjective and both MFCQ and CRCQ hold at ȳ. Then for any ε > 0, there exist
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points (xi, yi) ∈ (x̄, ȳ) + εBRn×Rm , i = 0, . . . , k + 1; numbers µi ≥ 0, i = 0, . . . , k; a

point (u∗, v∗) ∈ Rn × Rm, and an MPEC multiplier b̄ ∈ Rm such that

fi(xi, yi) ≤ fi(x̄, ȳ) + ε, i = 1, . . . , l, (33)

(u∗, v∗) ∈
l∑

i=0

µi∂̂fi(xi, yi) +

k∑
i=l+1

µi

(
∂̂fi(xi, yi) ∪ ∂̂(−fi)(xi, yi)

)
+ εBRn×m , (34)

−b̄ ∈ K(yk+1, F (xk+1, yk+1)), (35)

0 = u∗ + (∇xF (xk+1, yk+1))
T b̄, (36)

0 = v∗ + (∇yL(xk+1, yk+1, λ̄))
T b̄+ [K(yk+1, F (xk+1, yk+1))]

0, (37)

µifi(xi, yi) = 0, i = 1, . . . , l, (38)

k∑
i=0

µi = 1, (39)

where λ̄ = (λ1, . . . , λm) ≥ 0 is an arbitrary multiplier satisfying

0 =

m∑
i=1

λi∇qi(yk+1) + F (xk+1, yk+1),

λiqi(yk+1) = 0, i = 1, . . . ,m.

Proof Applying to problem (32) the fuzzy/approximate multiplier rule (see, e.g., [8,

Theorem 3.3.8]), we get for any ε > 0, the existence of points (xi, yi) ∈ (x̄, ȳ) + εBRn×Rm ,

i = 0, . . . , k + 1; numbers µi ≥ 0, i = 0, . . . , k, and a point (u∗, v∗) ∈ Rn × Rm such

that conditions (33), (34), (38), and (39) hold true and −(u∗, v∗) ∈ N̂GrS(xk+1, yk+1).

The rest follows from Theorem 3.2 due to the fact that the surjectivity of ∇xF and

MFCQ and CRCQ are stable in the sense that once they are satisfied at a point, they

also hold in its neighborhood. ⊓⊔

Note that in Theorem 4.3, the case µ0 = 0 is not excluded. This is because the

constraint qualifications in its statement are for the equilibrium constraint only. To

guarantee µ0 > 0 some additional qualification conditions are needed.
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5 Concluding Remarks

In most finite dimensional applications of variational analysis, we use nowadays vari-

ous limiting derivative-like objects, because they typically admit a much richer calculus

than the basic constructions (like regular normal cones, subdifferentials and coderiva-

tives). On the other hand, basic notions yield mostly sharper optimality / stationarity

conditions than their limiting counterparts and in some stability considerations (re-

lated, e.g., to the isolated calmness), just these basic notions are needed.

In this note, we continue the research started in [1] and investigate a situation

which seems to be especially suitable for the computation of graphical derivatives and

regular coderivatives of solution maps to a class of perturbed GEs. Thereby we employ,

as a main tool, a deep result from the theory of prox-regular sets relating a local notion

(normal cone mapping) with a global one (projection map)). It is, however, not clear,

to what extent this approach could be applied to not fully amenable sets Γ arising,

e.g., in the context of conical programming.
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