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Detecting K-complexes for sleep stage identifica-
tion using nonsmooth optimization

D. Moloney, N. Sukhorukova, P. Vamplew, J. Ugon,
G. Li, G. Beliakov, C. Philippe, H. Amiel, A. Ugon

Abstract

The process of sleep stage identification is a labour intensive task
that involves the specialised interpretation of the polysomnographic
signals captured from a patient’s overnight sleep session. Automating
this task has proven to be challenging for data mining algorithms be-
cause of noise, complexity and the extreme size of data. In this paper,
we apply nonsmooth optimization to extract key features that lead
to better accuracy. We develop a specific procedure for identifying
K-complexes (special type of brain waves), which are crucial for dis-
tinguishing sleep stages. This procedure contains two steps. First, we
extract “easily classified” K-complexes. Second, we apply nonsmooth
optimization methods to extract features from the remaining data and
refine the results from the first step. Numerical experiments show that
this procedure is efficient for detecting K-complexes. It is also found
that most of the classification methods perform significantly better on
the extracted features.

Keywords: K-complexes, nonsmooth optimization, classification

1 Introduction

In this paper we focus on the detection of K-complexes, a special type of
brain wave characterised by a sharp sudden increase in the wave ampli-
tude [6]. Brain activity monitoring is part of PSG (polysomnography) a
standard method used as a diagnostic tool in sleep medicine. Among the
first to study the dynamics of the brain during sleep was M. Steriade [18],
who remains an active researcher in the area [9]. K-complexes are defined
by standardised scoring rules [16], based on the visual appearance of the sig-
nal. The manual scoring of K-complexes is very time consuming (due to the
extreme size of data and noise) and subjective (due to variation of human
perception). An accurate method for automatic detection of K-complexes
would be very beneficial. In this paper we propose an new algorithm for
detecting K-complexes. This procedure is based on an optimization model.

The automated detection of K-complexes is a challenging problem. A
few algorithms have been proposed and reported in the literature. They
are based on different techniques, including artificial neural network [3],
continuous density hidden Markov model [11], wavelet transform [19] and
matching pursuit approach [12]. However, medical doctors still report that
the identification accuracy is not satisfactory [10, 15].
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In this study, we approximate the brain signal by a wave with piece-
wise linear amplitude. This allows us to create an accurate model for the
wave shapes (modelling patterns) and extract relevant characteristics of the
waves (feature extraction). We minimise the deviation between the data
and the modelling patterns. In this application the sum of absolute devi-
ations is preferable to least square approximation since the data are very
noisy [17]. However, this approach leads to the necessity of solving non-
convex and nonsmooth optimization problems. This is the main difference
between our approach and the existing studies: the existing approaches are
based on smooth functions, which are easier to work with (more approaches
have been developed), but not so appropriate for K-complex detection (see
section 4 for more information). After feature extraction, we apply classifica-
tion algorithms over the obtained set of features, reducing the dimension of
the corresponding classification problems and enhancing their classification
accuracy.

The paper is organised as follows. We provide more information about
the application of this work in section 2. In section 3 we provide the descrip-
tion of the data we use. In section 4 we provide a detailed description of the
proposed procedure for K-complex detection. Section 5 contains the results
of numerical experiments. Finally, in section 6 we provide the conclusions
and future research directions.

2 Motivations

PSG generally consists of monitoring the patient’s airflow (through both
the nose and mouth), blood pressure, electrocardiographic activity, blood
oxygen level, brain wave pattern, eye movement, and the movement of res-
piratory muscle and limbs. The PSG methods are used to help to diagnose
and evaluate a number of sleep disorders. One such disorder is sleep apnoea
disorder, when patients stop breathing during sleep. This causes so-called
micro-arousals when the patient wakes up unconsciously for a brief period.
These frequent awakenings are so short that the patient would not even
remember them, however they completely destroy normal sleep patterns,
leaving patients sleepy throughout the day. This increases chances of traffic
and work accidents and may lead to other complications, including diabetes
and cardiovascular problems.

PSG for sleep apnoea disorder diagnostics requires an overnight stay in
a sleep clinic where the patient is monitored in a number of ways. The
usual time taken is about 10 hours. Several electrodes are placed on the
patient’s body which include the chin, scalp, and the outer edge of eyelids.
These electrodes must remain in place while sleeping because signals from
electrodes are recorded while the patient is awake, with their eyes closed
and during sleep. The PSG monitors many body functions including brain

2



activity (EEG), eye movements (EOG), muscle activity or skeletal muscle
activation (EMG) and heart rhythm (ECG) during sleep. All together there
are around 16-20 channels to monitor. The frequency of recording varies
among channels, from 10 to 200 recordings per second. The EEG signal is
recorded at a frequency of 100 readings per second. Therefore, the amount of
data collected from one patient is very large and take a long time to process
manually. Therefore an accurate automatic procedure for PSG analysis
would be very beneficial.

The conventional approach for PSG analysis starts with sleep stage iden-
tification. There are five sleep states: awake, sleep stages one, two, three
and REM (Rapid Eye Movement). Currently, doctors use a set of pre-
defined rules to allocate each 30 second frame (epoch) to one of the five
main sleep states. The application of these rules is performed either manu-
ally, by visual inspection of the PSG signal, or, more recently, by a software
implementation of these rules on a computer. The allocation of each epoch
to a sleep stage is performed using the set of standardized scoring rules,
R&K (Rechtschaffen and Kales) rules [16]. One of the major shortcomings
of these rules is the use of arbitrarily-defined thresholds to separate the sleep
stages. This subjective assessment can lead to unreliable results and poor
agreement between scorers. Another drawback arises from the fact that the
rules were developed at a time when sleep staging was performed manually.
This restricts the scoring to a small number of sleep stages and the use of
fairly large epoch lengths, showing that scoring will be prohibitively time
consuming. With all that said, R&K still remains a useful and popular
clinical tool for some applications.

Another important study done in this area is ”The AASM manual for
the scoring of sleep and associated events” [10]. The goal of this study
was to create a manual that reflected the current knowledge and would
provide a more comprehensive standardised specification and scoring rules
for characterising natural sleep as commonly performed in PSG. These rules
and specification in the visual scoring of sleep retain much of the framework
of R&K with some new definitions and rule modifications. These new rules
provide a better method of analyzing data and are crafted as a platform to
support the evolution of both manual (visual) and automatic (non-visual)
methods for the future.

3 Data

One of the problems in the development of efficient methods for K-complex
identification is data availability. There is no test dataset freely available for
this type of research. This is partially because the scoring of K-complexes
is normally not kept in PSG analysis records (it is only necessary to score
the corresponding sleep stage). Therefore, it is either expensive (a qualified
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doctor has to be involved to do extra time-consuming work) or inaccurate (a
fellow researcher is performing the manual scoring after a short PSG analysis
course) to create such kind of datasets. Another problem is that the same
segment of data may be scored differently by two qualified scorers (see [10]).

In our experiments we use data scored at Tenon Hospital in Paris (France).
On these data, it is more efficient to divide 30 second epochs into 3 parts
(10 seconds each) and check the presence of K-complexes in each subepoch
separately.

In this study, each observation is a 10 second segment of EEG recordings
at the frequency of 100 recordings per second (1000 recordings which form
1000 features). As a training set we use a dataset with 28 non-K-complexes
and 31 K-complexes (59 observations), as a test set we use a dataset with
38 non-K-complexes and 35 K-complexes (73 observations). Each signal
consists of a sequence (ti, yi), i = 1 . . . 1000, where yi, i = 1, . . . , 1000 are the
EEG readings recorded at the moment ti, and the yi, i = 1 . . . 1000 are the
features of our observations.

In order to reduce the dimensionality of the data, we apply a special
nonsmooth optimization based preprocessing. This preprocessing allows us
to reduce the number of features from 1000 to 13 (see section 4 for details).

4 Approach

A K-complex is a brief negative high-voltage peak, followed by a slower posi-
tive one. An example of an idealised K-complex can be found in Wikipedia [22].
One of the main characteristics of K-complexes is an abrupt increase in am-
plitude. In real life PSG, the shape of K-complexes is not so clear. An
example of a K-complex from our dataset is presented in Figure 1. The
K-complex is located at the beginning of the data segment, its amplitude is
considerably higher than it is in the rest of the segment.

4.1 Nonsmooth optimization and data extraction

The application of nonsmooth optimization to K-complex detection is based
on minimising the deviation error (sum of absolute deviations) between the
actual EEG curve and the modelled wave patterns. This approach is a
proven method to extract wave characteristics so that we can obtain the
targeted wave shape description. These characteristics can be used for the
explicit description of wave shape patterns, so that we can obtain consider-
ably lower dimensions for the corresponding classification problems.

The EEG curve is modelled as the sum of two sinusoidal curves. The
amplitude of each curve is modelled as a piece-wise linear function (linear
spline). This approach allows one to obtain more precise curve patterns
than in the case of classical sine curves where the amplitude is a constant.
Before we proceed, it is necessary to introduce the following definitions.
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Figure 1: K-complex in practice

Polynomial splines are piece-wise polynomial functions [14]. In most
applications polynomial splines are continuous. The points where the cor-
responding polynomials are joined together are called spline knots. Spline
knots may be fixed or free. The highest degree of the corresponding poly-
nomials is called the spline degree.

In this study we model the amplitude of the signal as a continuous spline
function rather than a constant value. This approach is more flexible since
it allows the amplitude to vary through the 10-second interval. Consider an
example of polynomial spline construction (see [14]).

Sm(A, θ, t) := a0 +
m∑
j=1

a1jt
j +

n∑
i=2

m∑
j=1

aij((t− θi−1)+)j , (4.1)

where m is the spline degree, θ = (θ1, . . . , θn) are the spline knots (in this
paper we use either 1, 2 or 3 knots),

(ξ(x))+ :=

{
ξ(x), ξ(x) > 0,

0, ξ(x) ≤ 0,

A = (a0, a11, . . . , anm) ∈ Rmn+1 is called the vector of spline parameters.
The knots may be fixed or free.

In order to use the polynomial splines for the amplitude one needs to
know the spline parameters and knots. These can be obtained as a solution
to the following optimization problem:

min
X,ω,τ

N∑
i=1

|yi −Amp(X, ti) sin(2πωti + τ)|, (4.2)

where yi, i = 1, . . . , N are the EEG readings recorded at the moment ti,
Amp(X, t) is the amplitude function, modelled as a polynomial spline (see
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the specifications below for the knots and spline parameters) ω is the fre-
quency, τ is the curve shift which does not change the wave pattern, X is a
vector which characterizes the amplitude function.

The optimization problem (4.2) is nonsmooth. Nonsmooth optimiza-
tion problems are generally difficult and time consuming to solve. One of
the ways to avoid nonsmoothness is to use the least squares method rather
than the sum of the absolute deviations in (4.2). However, the least square
method is not very robust when the corresponding data contain many out-
liers [17]. Since this is the case for EEG data, the least squares method may
not be a suitable approach to extract key characteristics of brain waves and
therefore nonsmooth optimization models are more suitable for this problem.
In this study we propose a new nonsmooth optimization based approach (see
subsection 4.1 for details) for detecting K-complexes.

For this paper we propose the following models for the amplitude func-
tion Amp.

• Linear spline with fixed knots, two intervals:

Amp = Amp1(X, t) = a0 + a1t+ a2(t− θ1)+.

The knot θ1 corresponds to the centre of a 10-second interval (5 seconds
from the start of each subepoch), X = (a0, a1, a2).

This model for the amplitude function is suitable for subepochs where
the behaviour of the actual amplitude is changing approximately in the
middle of the subepoch. For example, if it is growing in the first half of
the subepoch and then stays relatively constant, one can expect a1 > 0
and a2 = −a1. This model is also suitable for the subepochs where the
behaviour of the actual amplitude is not changing. For example, if it
is decreasing through the whole subepoch, one can expect a1 < 0 and
a2 = 0. The dimension of the corresponding optimization problem is 5.

• Linear spline with free knots, two intervals:

Amp = Amp2(X, t) = a0 + a1t+ a2(t− θ1)+.

Amp2 is similar to Amp1, but θ1 is considered as an additional variable
in the optimization problem (4.2) and therefore X = (a0, a1, a2, θ1).
Amp2 is more flexible than Amp1, but the associated optimization
problem is more complicated.

This model is suitable for all the cases described above, but the change
of the amplitude function may occur at any point inside subepochs,
not necessarily in the middle. The dimension of the corresponding
optimization problem is 6.

• Sharp peak amplitude:

Amp = Amp3(X, t) = max{a0,−a1|ti − a2|+ a3}, aj ≥ 0,
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j = 0, . . . , 3, a2 ≤ 10.

This model is suitable for subepochs where the amplitude is relatively
constant (a1 = 0), or there is a sudden sharp increase of the amplitude
inside the subepoch while on the rest of the epoch the amplitude stays
the same. The corresponding X = (a0, a1, a2, a3). The dimension of
the corresponding optimization problem is 6.

This amplitude function is a special case of a linear spline with some re-
strictions on spline parameters and can be written in the form of (4.1).

In our experiments, we solve optimization problem (4.2) using the GANSO
library [5, 20]. GANSO is a programming library which implements several
methods of global, nonsmooth, nonconvex and nonlinear optimization. In
practice, there is no optimization method which is able to find a global min-
imum to any function, in particular if this function is nonconvex and non-
smooth. In (4.2) the objective function is nonsmooth and nonconvex and
therefore we can only claim that the obtained solutions are locally optimal
(optimal in a certain neighbourhood). Therefore, in practice, a solution to a
simpler problem may be more precise than a solution to a more complicated
problem, which, in theory, describes the behaviour of the amplitude much
better. This is especially critical when the dimension of the corresponding
optimization problem is increasing.

Our numerical experiments with Amp1, Amp2 and Amp3 show that
Amp1 is preferable. Amp1 works faster than Amp2 and the knot θ1 for
almost all the subepochs (for Amp2) was placed at the beginning or the end
of the epoch and therefore was not useful. Amp3 failed to find any sud-
den increase in the amplitude. Therefore, in this paper we only present the
results for Amp1. For other datasets the preferences may be different.

Remark 1 We also modelled the signal frequency as a polynomial function,
since it decreases significantly on K-complexes (see Figure 1). However,
this significantly increased the dimension of the corresponding optimization
problem without any improvement.

We model the waveform as a sum of two waves

W = W1+W2 = Amp(X1, ti) sin(2πω1ti+τ1)+Amp(X2, ti) sin(2πω2ti+τ2).
(4.3)

Therefore, the corresponding optimization problem is

min
X,ω,τ

N∑
i=1

|f(ti)−Amp(X1, ti) sin(2πω1ti+τ1)−Amp(X2, ti) sin(2πω2ti+τ2)|.

(4.4)
The dimension of this problem is 10. In our experiments, we used the
following two stage procedure to reduce the dimension.
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In the first step, we minimise the error (exactly as it is in (4.2)):

min
X,ω,τ

N∑
i=1

|yi −Amp(X, ti) sin(2πωti + τ)|. (4.5)

Suppose that (X∗
1 , ω

∗
1, τ

∗
1 ) is the solution obtained at the first step (opti-

mization problem (4.5)). Then the resulting wave is

W1 = Amp(X∗
1 , ti) sin(2πω∗

1ti + τ∗1 ).

In the second step, we minimise the error over a new dataset, where the
original data were substituted with the difference between the original data
and the wave obtained before:

min
X,ω,τ

N∑
i=1

|yi −W1 −Amp(X, ti) sin(2πωti + τ)|. (4.6)

Now suppose that (X2, ω2, τ2) is the solution obtained at the second step
(optimization problem (4.6)). Then the resulting wave is

W2 = Amp(X2, ti) sin(2πω2ti + τ2).

Therefore, we are extracting two trends, and the sum W = W1 +W2 is the
waveform we are looking for.

One can see that (4.6) is equivalent to the following problem:

min
X,ω,τ

N∑
i=1

|yi −Amp(X∗
1 , ti) sin(2πω∗

1ti + τ∗1 )−Amp(X, ti) sin(2πωti + τ)|.

(4.7)
Comparing (4.4) and (4.7), one can see that the problems are not equiv-

alent. However, the two-step approach requires solving two smaller opti-
mization problems (the corresponding dimension of each problem is 5) and
therefore we use this approach in our numerical experiments.

The parameters of the extracted trend form the nonsmooth optimiza-
tion output. In the case of Amp1 the size of the output is 10 (twice the
dimension of the corresponding optimization problem). Also, we take into
account three more parameters which characterise the improvement of the
objective function after nonsmooth optimization. Therefore, 1000 features
of the original data have been replaced by 13 essential features.

In Figure 2 one can see an example of the approximation curve and
the original PSG pattern (EEG). This is the same data segment as the
one from Figure 1. One can see that the approximation curve’s amplitude is
considerably higher at the beginning of the segment (where the K-complex is
located). Although the approximation does not follow precisely the original
trend, it is close enough to detect the K-complex and therefore to produce
the correct classification result.
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Figure 2: Approximation example: the amplitude of the approximation
curve is considerably higher at the beginning of the data segment (where
the K-complex is located)

4.2 Weka and data classification methods

Weka is a collection of machine learning algorithms for data mining tasks
(see [8]). Weka supports several standard data mining tasks, including data
preprocessing, clustering, classification, regression, visualization and feature
selection.

We use the following classification methods from Weka, applying them
before and after data preprocessing through nonsmooth optimization:

• LibSVM - an integrated software for support vector machines (SVM)
classification;

• Logistic - a generalised linear model used for binomial regression;

• MLP - a classifier that uses backpropagation to classify instances, also
known as MultilayerPerceptron (a special type of neural network);

• RBF - a classifier that implements a normalised Gaussian radial basis
function network, using the K-means clustering algorithm to provide
the basis functions;

• SMO - a sequential minimal optimization algorithm for training a sup-
port vector classifier (a special case of LibSVM);

• Lazy IBK - a K-nearest neighbours classifier (uses normalised Eu-
clidean distance to find the training instance closest to the given test
instance, and predicts the same class as this training instance);

• J48 and J48graft - classifiers based on C4.5 decision tree;
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• LMT - a logistic model tree based approach, with logistic regression
functions at the leaves;

• Random Tree - a classifier for constructing a tree that considers K
random features at each node (no pruning).

• Random Forest - a classifier which consists of a collection of tree struc-
tured classifiers (see Random Tree for constructing trees);

All these methods were used with default parameters, except Lazy IBK,
which was used with K = 1, 5 and 10. Weka is open source software, its
web-site [21] provides all the necessary documentation. Therefore, we only
provide a very short description of the classification methods used in this
research.

5 Numerical experiments

First, we try classification methods from Weka without any application of
nonsmooth optimization. The results are presented in Table 1.

From this table one can see two very important outcomes. First of all,
RBF produces very good results. Second, MLP has not produces any result
(software crash after running out of memory). This is most probably due to
the large size of the corresponding data (1000 features).

The next step is to apply all the above classification methods after nons-
mooth optimization based preprocessing. In this study we use optimization
methods from the GANSO library [20]. The description to all these meth-
ods (ECAM, DFBM, DFBMECAM, DSO) can be found at the GANSO
web-site [20]. Now we present a brief introduction to these optimization
methods.

• Extended Cutting Angle Method (ECAM), [2, 4]. This method is
based on the fact that under Lipschitz continuity (our objective func-
tions satisfy this property), it is possible to estimate the smallest pos-
sible minimum of the objective function from its recorded values at
various points. By using a large number of points, it is possible to ap-
proximate the original function closely enough by its underestimate,
and then use the global minimum of the underestimate to approximate
that of the original function.

Lipschitz continuous functions are restricted in how fast they can
change. Namely,

|f(x)− f(y)| ≤ Ld(x− y), (5.1)

where x and y are two points in the feasible region of f, L is the
Lipschitz constant, d is the distance between x and y (for example,
Euclidean).
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• Derivative-Free Bundle Method (DFBM), [1]. An essential step of this
method is to estimate the direction of descent using some information
about the subdifferential, a generalisetion of the gradient to the case
of nonsmooth functions. After obtaining a descent direction, the al-
gorithm performs a line search along this direction. While the DFBM
is a local method (it converges to a locally optimal solution, from any
starting point), the fact that it uses an approximation to the subdif-
ferential, allows it to converge to a sufficiently “deep” local minimum
in multiextremal problems. This is an advantage of this method over
other competing approaches that converge to the nearest local mini-
mum.

• DFBMECAM. This is a combination of the DFBM with a version of
ECAM, designed to improve line search used in DFBM, as well as to
facilitate leaving shallow local minima.

• Dynamical Systems - Based Optimization (DSO), [13]. This method
is based on the construction of a dynamical system using a number of
values of the objective function, and associating certain “forces” with
these data. The evolution of such a system yields a globalized descent
trajectory, leading to a lower value of the objective function.

ECAM0.1 and ECAM0.001 are modifications of ECAM with the Lips-
chitz constant equal to 0.1 and 0.001, while ECAM itself takes the Lipschitz
constant 1. ECAM modifications with a lower value for the Lipschitz con-
stant work faster, but are not as precise as higher value modifications. The
classification methods from Weka have been trained on the preprocessed
training set and the classification accuracy is the test accuracy obtained on
the preprocessed test set. Table 2 contains these results.

The classification of one subepoch by any method from Weka takes less
than 30 seconds, while nonsmooth optimization preprocessing may take
around 1 minute (DFBM, DFBMECAM, DSO) or even 10 minutes (ECAM,
ECAM0.1, ECAM0.001).

From Table 2 one can see that even though the best results are not as
good as the results obtained on the original dataset by RBF, they are still
interesting, because

• none of the classification methods failed when performed on the pre-
processed data;

• the accuracy of all the classification methods from Weka (except RBF
and Random Forest) has been considerably improved after nonsmooth
optimization based preprocessing.
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Method Test set accuracy

LibSVM 47.95%

Logistic 39.73%

MLP OUT OF MEMORY

RBF 73.97%

SMO 43.84%

Lazy IB1 56.16%

Lazy IB5 49.32%

Lazy IB10 47.95%

J48 56.16%

J48graft 53.42%

LMT 45.21%

Random Forest 63.01%

Random Tree 53.42%

Table 1: Original datasets, 1000 features.

Method ECAM0.001 ECAM0.1 ECAM DFBM DFBMECAM DSO

LibSVM 52.54% 62.71% 59.32% 54.24% 54.24% 54.24%

Logistic 54.23% 54.23% 55.93% 59.32% 66.01% 55.93%

MLP 57.62% 45.76% 55.93% 59.32% 57.63% 61.02%

RBF 62.71% 44.02% 61.02% 61.02% 57.63% 55.93%

SMO 45.76% 50.85% 64.41% 62.71% 55.93% 47.46%

Lazy IB1 62.72% 50.85% 54.24% 40.68% 61.02% 64.41%

Lazy IB5 64.41% 62.72% 62.72% 50.85% 64.41% 62.72%

Lazy IB10 54.24% 54.24% 61.02% 59.32% 49.15% 59.32%

J48 49.15% 54.24% 50.85% 55.93% 55.93% 55.93%

J48graft 49.16% 54.24% 50.85% 55.93% 55.93% 55.93%

LMT 47.46% 55.93% 62.71% 61.02% 62.72% 45.77%

Rand. Forest 62.72% 55.93% 57.62% 55.93% 55.93% 55.93%

Rand. Tree 62.71% 54.24% 54.24% 44.07% 59.32% 66.10%

Table 2: Classification results after nonsmooth optimization preprocessing
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The second observation is especially important, because if the parameters
for RBF are not known (in our case the default parameters were suitable)
the accuracy after preprocessing may be better than without preprocessing
even for RBF. Also, in most cases, this observation is independent of the
optimization method applied and therefore even a fast and not very precise
method (DSO, DFBM, DFBMECAM) can be used in preprocessing. Over-
all, one can see that in general faster optimization methods (DSO, DFBM,
DFBMECAM) work quite well and very often outperformed the slow and
precise methods ECAM, ECAM0.1, ECAM0.001.

The best classification results have been obtained for the combination
of DSO and Random Tree (66.1%) and the combination of DFBMECAM
and Logistic (66.01%). Also, one can notice that some of the Weka methods
perform better after certain optimization methods (Random Tree performs
well after DSO or ECAM0.001), while others (Logistic, Lazy IB5, J48 and
J48graft) are mostly independent of the chosen optimization methods.

Consider the results obtained by RBF without preprocessing (the best
accuracy, Table 1) in detail. The test accuracy is 74%. 34 out of 38 non-K-
complexes have been classified correctly, but only 20 out of 35 K-complexes
have been classified correctly. The corresponding confusion matrix is(

34 4
15 20

)
.

In our confusion matrices element {11} corresponds to the number of cor-
rectly classified non-K-complexes, element {22} corresponds to the number
of correctly classified K-complexes, element {12} corresponds to the num-
ber of false positives and element {21} corresponds to the number of false
negatives.

Our ultimate goal is to create an automatic technique for fast and ac-
curate detection of K-complexes. Therefore, such a high number of false
negatives has to be improved since it is much better to highlight “suspi-
cious” segments of data for the doctor to accept or reject rather than omit
them completely from further consideration. We propose the following al-
gorithm to decrease such a high rate of false negatives.

First, we apply RBF to the original dataset and remove the segments
which have been classified as K-complexes. Then the rest of the dataset is to
be reclassified after nonsmooth optimization preprocessing. The advantages
of this procedure are that

• the first step of the procedure does not have too many false positives
(4 out of 38);
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ECAM0.001 ECAM0.1 ECAM

LibSVM

(
3 31
1 14

) (
20 14
8 7

) (
12 22
4 11

)
RBF

(
22 12
8 7

) (
23 11
13 2

) (
23 11
9 6

)
Lazy IB1

(
19 15
9 6

) (
24 10
11 4

) (
18 16
10 5

)
Lazy IB5

(
16 18
10 5

) (
26 8
12 3

) (
22 12
8 7

)
Logistic

(
21 13
12 3

) (
27 7
11 4

) (
29 5
13 2

)
MLP

(
18 16
7 8

) (
29 5
10 5

) (
26 8
13 2

)
DFBM DSO DFBMECAM

LibSVM

(
6 28
4 11

) (
33 1
15 0

) (
33 1
15 0

)
RBF

(
20 14
8 7

) (
30 4
15 0

) (
23 11
13 2

)
Lazy IB1

(
16 18
10 5

) (
23 11
11 4

) (
19 15
7 8

)
Lazy IB5

(
12 22
4 11

) (
21 13
8 7

) (
18 16
9 6

)
Logistic

(
10 24
6 9

) (
28 6
12 3

) (
21 13
12 3

)
MLP

(
13 21
6 9

) (
28 6
13 2

) (
26 8
11 4

)
Table 3: Reducing the number of false negatives: confusion matrices
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• the second step, which is time consuming due to nonsmooth optimiza-
tion, takes only part of the original dataset (49 out of 73).

Table 3 contains the results of the proposed procedure.
One can see that this procedure does not improve the classification ac-

curacy, but reduces the number of false negatives (see ECAM0.1 combined
with MLP). Therefore, even though it has been already observed that the
faster group of nonsmooth optimization methods performs well, the highest
accuracy has been achieved on ECAM0.1, a method from the slow group.

6 Main conclusions and further research

6.1 Conclusions

In this study we propose a new procedure to detect K-complexes, short
lasting waves which serve as key points for detecting sleep stage two. This
procedure is based on nonsmooth optimization and classification methods
from Weka. A combination of RBF (to detect “easy classified” K-complexes)
and ECAM0.1 with MLP (for the removal of extra false negatives) produced
the best classification results.

The proposed combination works well on the available data, however, the
lack of freely available test datasets prevents us from testing this procedure
on larger sets of data and comparing with other researchers’ approaches.

The proposed approach has two main advantages. Firstly, the proposed
nonsmooth optimization based preprocessing allows one to reduce the size
of the classification problem. Secondly, the accuracy of all the classification
methods from Weka (except RBF and Random Forest) has been consider-
ably improved after the preprocessing.

6.2 Further research directions

Although our nonsmooth optimization based preprocessing approach per-
forms very well on our datasets, we identify some future research directions
for further improvement of the procedure.

One of the main problems of the proposed algorithm is that the non-
smooth optimization part is time-consuming. This issue has to be ad-
dressed before implementing our approach in an automatic procedure for
K-complexes detection, which can be used by medical doctors. One way to
achieve this is to develop a specific optimization method for this particu-
lar problem. Such a specific method will work faster and more efficiently
than general purpose optimization algorithms used in this study. Our future
studies will address this important issue.
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