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Abstract
This paper revisits the well-studied fixed point problem from a unified viewpoint of
mathematical modeling and canonical duality theory, i.e., the general fixed point
problem is first reformulated as a nonconvex optimization problem, its
well-posedness is discussed based on the objectivity principle in continuum physics;
then the canonical duality theory is applied for solving this challenging problem to
obtain not only all fixed points, but also their stability properties. Applications are
illustrated by problems governed by nonconvex polynomial, exponential, and
logarithmic operators. This paper shows that within the framework of the canonical
duality theory, there is no difference between the fixed point problems and
nonconvex analysis/optimization in multidisciplinary studies.
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1 Introduction
The fixed point problem is a well-established subject in the area of nonlinear analysis [3,
4, 7], which is usually formulated in the following form:

(P0) : x = F(x), (1)

where F : Xa → Xa is a nonlinear mapping and Xa is a subset of a normed space X .
Problem (P0) appears extensively in engineering and sciences, for example, in equilibrium
problems, mathematical economics, game theory, and numerical methods for nonlinear
dynamical systems. A general form of the equilibrium problem was first considered by
Nikaido and Isoda in 1955 as an auxiliary problem to establish existence results for Nash
equilibrium points in non-cooperative games [43–46]. Mathematically speaking, the non-
linear operator F(x) could be any arbitrarily given vector-valued function. Therefore, the
formula (P0) for the fixed point problem is too abstract. Although it can be used to “model”
a large class of mathematical problems, one must pay a price: it is impossible to develop a
unified mathematical theory with powerful real-world applications. This dilemma is due
to a gap between mathematics and physics. As indicated by V.I. Arnold [1]:“In the middle
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of the twentieth century it was attempted to divide physics and mathematics. The con-
sequences turned out to be catastrophic.” Indeed, during the past sixty years extensive
research on the fixed point problems has been mainly focused on this abstract form. It
turns out that the majority theories and methods for solving this nonlinear problem are
based on linear iteration [33, 34, 47, 50]. This paper will provide a different approach. For
simplicity’s sake, we assume that Xa is a convex open set in R

n with a norm ‖x‖ induced
by the bilinear form 〈∗, ∗〉 : X ×X →R.

Lemma 1 If F is a potential operator, i.e., there exists a real-valued function P : Xa → R

such that F(x) = ∇P(x), then (P0) is equivalent to the following stationary point problem:

x̄ = arg sta
{
�(x) = P(x) –

1
2
‖x‖2 ∣∣ ∀x ∈Xa

}
. (2)

Otherwise, (P0) is equivalent to the following global minimization problem:

x̄ = arg min

{
�(x) =

1
2
∥∥F(x) – x

∥∥2 ∣∣ ∀x ∈Xa

}
. (3)

Proof First we assume that F(x) is a potential operator, then x is a stationary point of �(x)
if and only if ∇�(x) = ∇P(x) – x = 0, thus, x is also a solution to (P0) since F(x) = ∇P(x).

Now we assume that F(x) is not a potential operator. By the fact that �(x) = 1
2‖F(x) –

x‖2 ≥ 0 ∀x ∈X , the vector x̄ is a global minimizer of �(x) if and only if F(x̄) – x̄ = 0. Thus,
x̄ must be a solution to (P0). �

By the facts that the global minimizer of an unconstrained optimization problem must
be a stationary point and

1
2
∥∥F(x) – x

∥∥2 = P(x) –
1
2
‖x‖2, P(x) =

1
2
〈
F(x), F(x)

〉
–

〈
x, F(x)

〉
+ ‖x‖2, (4)

the global minimization problem (3) is a special case of the stationary point problem (2).
Mathematically speaking, if a fixed point problem has a trivial solution, then F(x) must be
a homogeneous operator, i.e., F(0) = 0. For general problems, F(x) should have a nonho-
mogeneous term f ∈R

n. Thus, we can let

P(x) = W (Dx) – 〈x, f〉, (5)

where D : X →W ⊂ R
m is a linear operator, W : W →R is a so-called objective function.

Objectivity is a basic concept in continuum physics [6, 41] and mathematical modeling
[18, 19]. Its mathematical definition is given in Gao’s book (Definition 6.1.2 [11]).

Definition 1 (Objectivity) Let R be a proper orthogonal group, i.e., R ∈ R if and only if
RT = R–1, det R = 1. A set Wa is said to be objective if

Rw ∈Wa ∀w ∈Wa,∀R ∈R.

A real-valued function W : Wa →R is said to be objective if

W (Rw) = W (w) ∀w ∈Wa,∀R ∈R. (6)
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Geometrically speaking, an objective function does not depend on rigid rotation of the
system considered, but only on certain measure of its variable. In the Euclidean space
W ⊂ R

m, the simplest objective function is the �2-norm ‖w‖ in R
m as we have ‖Rw‖2 =

wT RT Rw = ‖w‖2 ∀R ∈R. For general F(x), we can see from (4) that 1
2‖F(x)‖T and 1

2‖x‖2

are objective functions. By the fact that x = F(x), we know that 〈x, F(x)〉 is also an objective
function. Therefore, for a given fixed point problem, the corresponding �(x) is naturally
an objective function.

Physically, an objective function is governed by the intrinsic physical law of the system,
which does not depend on observers. Because of Noether’s theorem, the objective func-
tion W (w) should be a SO(n)-invariant and this invariant is equivalent to a certain con-
servation law (see Sect. 6.1.2 [11]). Therefore, objectivity is essential for any real-world
mathematical models. It was emphasized by P.G. Ciarlet that the objectivity is not an as-
sumption, but an axiom [6].

From the viewpoint of systems theory, if x represents the output (or the state, config-
uration, etc.) of the system, then the nonhomogeneous term f can be viewed as the in-
put (or the control, applied force, etc.), which depends on each given problem. Corre-
spondingly, the linear term 〈x, f〉 in (5) can be called the subjective function [18, 19]. Let
Xa = {x ∈ X | Dx ∈ Wa}. The fixed point problem (P0) can be reformulated into the fol-
lowing stationary point problem:

(P) : x̄ = arg sta
{
�(x) = W (Dx) –

1
2
‖x‖2 – 〈x, f〉 ∣∣ ∀x ∈Xa

}
. (7)

From the theory of nonconvex analysis, any nonconvex function can be written as a
d.c. (deference of convex) function [35]. Therefore, the fixed point problem is actually
equivalent to a d.c. programming problem. By the fact that X and W are two different
spaces with different scales (dimensions), the problem (P) can be used to study general
problems in multi-scale complex systems.

For a potential operator, a fixed point is just a stationary point, which can be easily found
by traditional linear iteration methods. For a non-potential operator, the fixed point must
be a global minimizer. Due to the lack of global optimality condition in the traditional
theory of nonlinear optimization, to solve a general nonconvex minimization problem is
considered to be NP-hard in global optimization and computer science. However, this
paper will show that many of these nonconvex problems can be solved in an elegant way.

2 Methods
According to the Brouwer fixed point theorem, we know that any continuous function
from the closed unit ball in an n-dimensional Euclidean space to itself must have a fixed
point. Generally speaking, for any given nontrivial input, a well-defined system should
have at least one nontrivial response.

Definition 2 (Properly- and well-posed problems [18]) The problem (P) is called prop-
erly posed if, for any given nontrivial input f �= 0, it has at least one nontrivial solution. It
is called well-posed if the solution is unique.

Clearly, this definition is more general than Hadamard’s well-posed problems in dy-
namical systems since the continuity condition for the solution is not required. Physically
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speaking, any real-world problems should be well-posed since all natural phenomena exist
uniquely. But practically, it is difficult to model a real-world problem precisely. Therefore,
properly posed problems are allowed for the canonical duality theory. This definition is
important for understanding challenging problems in complex systems.

Example 1 (Manufacturing/production systems) In management science, the output is a
vector x ∈ R

n, which could represent the products of a manufacture company. The input
f ∈ R

n can be considered as market price (or demand). Therefore, the subjective function
〈x, f〉 = xT f in this example is the total income of the company. The products are produced
by workers w ∈ R

m. Due to the cooperation, we have w = Dx and D ∈ R
m×n is a matrix.

Workers are paid salary σ = ∂W (w), therefore, the objective function W (w) is the cost (in
this example, W is not necessarily objective since the company is a man-made system).
Let 1

2α‖x‖2 be the profit that the company must make, where α > 0 is a parameter, then
�(x) = W (Dx) + 1

2α‖x‖2 – xT f is the target and the minimization problem min�(x) leads
to the equilibrium equation

αx = f – DT∂wW (Dx).

This is a fixed point problem. The cost function W (w) could be convex for a small com-
pany, but usually nonconvex for big companies to allow some people have the same
salaries.

Example 2 (Lagrange mechanics) In analytical mechanics, the configuration x ∈ X ⊂
C1[I;Rn] is a continuous vector-valued function of time t ∈ I ⊂ R. Its components {xi}
(i = 1, . . . , n) are known as the Lagrangian coordinates. The input f(t) is a given force vec-
tor function in R

n. Therefore, the subjective functional in this case is 〈x, f〉 =
∫

I x(t) · f(t) dt.
The total action of the system is

∫
I
L(x, ẋ) dt, L = T(ẋ) – V (x),

where T is the kinetic energy density, V is the potential density, and L = T – V is the stan-
dard Lagrangian density. In this case, the linear operator D = ∂t is a derivative with time.
Together, �(x) =

∫
I[T(ẋ) – V (x) – xT f] dt is called the total action. For Newton mechan-

ics, the kinetic energy is a quadratic (objective) function T(v) = 1
2 m‖v‖2. Its stationary

condition leads to the Euler–Lagrange equation:

–mẍ = f + ∇V (x). (8)

Finite difference method for solving this second-order differential equation leads to a fixed
point problem [42]. It is well known that if the potential energy V (x) is convex, the operator
F = f + ∇V (x) is monotone and the problem (P0) has a stable fixed point solution. Corre-
spondingly, the system has a stable trajectory. Otherwise, the system could have chaotic
solutions. The relation between chaos in nonlinear dynamical systems and NP-hardness
in computer science has been discovered recently [37].

Example 3 (Post-buckling of nonlinear Gao beam) In large deformation solid mechanics,
the correct nonlinear beam theory that can be used to model post-buckling phenomenon



Ruan and Gao Fixed Point Theory and Applications  (2018) 2018:23 Page 5 of 19

was proposed by Gao in 1996 [8], which is governed by a forth-order nonlinear differential
equation:

χxxxx –
3
2
αχ2

x χxx + λχxx = q, (9)

where χ (x) is the deflection of the beam, which is a scaler-valued function over its domain
[0, L], where L is the beam length, α > 0 is a material constant, the parameter λ depends on
the axial force, and q(x) is a given distributed lateral load. Clearly, this nonlinear deferential
equation can be written in the following fixed point problem:

χ (x) = F
(
x,χ (x)

)
, F(x,χ ) =

∫ x

0

∫ t

0

∫ s

0
α

(
1
2
χ3

x – λχx

)
ds dt dx + f (x), (10)

where the function f (x) depends on both the lateral load q(x) and boundary conditions. In
this case, F(x,χ (x)) is a nonlinear integration operator. This fixed point problem is equiv-
alent to the stationary point problem

χ = arg sta
{
�(χ ) =

∫ L

0

[
1
2
χ2

xx +
1
2
α

(
1
2
χ2

x – λ

)2

– q(x)
]

dx
∣∣ χ ∈Xa

}
. (11)

It was indicated in [13] that if λ < λc, the Euler buckling load defined by

λc = inf

∫ L
0 χ2

xx dx

α
∫ L

0 χ2
x dx

,

the total potential �(χ ) is a convex functional, and problem (11) has only one fixed point.
In this case, the beam is in a pre-buckling state. It was proved recently (see Lemma 2.1.
and Theorem 2.1. in [40]) there exists a constant λG

c > λc such that if λ > λG
c , then �(χ )

is nonconvex, i.e., the so-called double-well potential, and the beam is in a post-buckling
state. In this case, problem (11) has three fixed points χi(x), i = 1, 2, 3, at each x ∈ [0, L]:
one global minimizer of �(χ ), which corresponds to a globally stable post-buckling state
of the beam, one local minimizer, which corresponds to a locally stable post-buckling state,
and one local maximizer of �(χ ), which corresponds to an un-buckled state. The com-
bination of these three solutions at each x ∈ [0, L] forms a solution set with 3∞ number
of strong solutions on [0, L] to the nonlinear differential equation (9). It was proved in
[25] that for certain lateral load distributions q(x), both the global and local minimum
solutions could be nonsmooth and cannot be captured by any Newton-type method. Nu-
merical approaches to this nonlinear differential equation are considered to be NP-hard
by traditional theories and methods. In order to solve this challenging nonconvex station-
ary problem, a canonical dual finite element method has been developed recently [2]. The
numerical results shown that the locally stable post-buckling configuration is extremely
sensitive to the external load q(x) and numerical precision used in the program.

For unilateral post-buckling problems, the feasible set Xa has usual inequality con-
straints. For example, a simply supported beam on a rigid foundation subjected to a down-
ward lateral load q(x) ∀x ∈ [0, L], this feasible set is a convex cone:

Xa =
{
χ (x) ∈ C2[0, L] | χ (x) ≥ 0 ∀x ∈ [0, L],χ (0) = χ (L) = 0,χxx(0) = χxx(L) = 0

}
.
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Due to the inequality constraint in Xa, the stationary condition of problem (11) leads not
only to the so-called variational inequality [38]

∫ L

0
(χ – χ̄ )δ�(χ̄ ) dx ≥ 0 ∀χ (x) ∈Xa, (12)

where δ�(χ ) = χxxxx – 3
2αχ2

x χxx + λχxx – q is the Gâteaux derivative of �(χ ), but also to
the well-known complementarity condition

(
χxxxx –

3
2
αχ2

x χxx + λχxx – q
)

χ (x) = 0 ∀x ∈ [0, L]. (13)

Since the contact region (i.e., on which χ (x) = 0) remains unknown till the problem is
solved, problem (11) is the combination of the nonlinear free-boundary value problem,
non-monotone variational inequality, and the nonconvex variational analysis. This prob-
lem could be one of the most challenging problems in nonconvex analysis, which deserves
serious study in the future.

Canonical duality-triality is a methodological theory which can be used not only for
modeling complex systems within a unified framework, but also for solving real-world
problems with a unified methodology. This theory was developed originally from Gao
and Strang’s work for solving the following nonsmooth/nonconvex variational problem
[30]:

inf
{

P(u) = W (Du) – U(u) | u ∈ Ua
}

, (14)

where the variational argument u(x) is a deformation field, D is a differential operator such
that the deformation gradient w = Du is a two-point tensor filed, W (w) is an internal (or
free) energy which must be an objective function of w [6, 41], while U(u) is an external
energy which must be a linear functional, i.e., U(u) = 〈u, f〉 such that ∂U(u) = f is a given
external force field. Thus, the difference P(u) is the well-known total potential energy in
nonlinear elasticity. This variational problem (14) covers the most challenging problems
in nonconvex analysis and nonlinear partial differential equations. By the objectivity of the
free energy W (w), there must exist an objective tensor c = wT w and a real-valued function
V (c) such that W (w) = V (c(w)) [6]. In finite deformation theory and differential geometry,
this objective measure c = cT is the well-known Cauchy–Riemann strain tensor and V (c)
is usually a canonical function, i.e., the duality relation c∗ = ∂V (c) is a bijection (say the St.
Venant–Kirchhoff material [23]). These basic truths in nonlinear analysis lay a foundation
for the canonical duality theory. This is the reason why this theory can be used to solve
analytically a large class of nonconvex variational problems and their associated partial
differential equations, including Einstein’s special relativity equation [12], Kantorovich’s
optimal mass transfer problem [39], chaotic dynamics [37, 42], global optimization [16,
28], phase transitions in solids [32], post-buckling of large deformed beam [2], nonlin-
ear PDEs in 3-dimensional finite deformation theory [9, 10, 20, 23], etc. For those prob-
lems that cannot be solved analytically, numerical discretization (such as the finite element
method) can always be used so that the general nonconvex variational problem (14) can
be approximately reformulated as a global optimization problem in R

n. By the fact that
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the discretized W (w) may not be an objective function, the canonical duality theory has
been generalized for solving general nonconvex and discrete optimization problems [5,
15, 17, 26, 27, 29, 36, 49] as well as the most challenging bi-level knapsack problems and
topology optimization in multi-scale complex systems [21, 22].

However, the well-defined objectivity in nonlinear analysis and physics has been seri-
ously misused in optimization and mathematical programming, where the so-called ob-
jective function is allowed to be any arbitrarily given function. As a consequence, Gao–
Strang’s work has been mistakenly challenged by M.D. Voisei and C. Zalinescu [48]. By
oppositely choosing linear functions as the objective function W (see Example 3.1 in [48])
and nonlinear functions as the external energy U(u) (see Examples 3.2, 3.4, 3.5, and 3.6 in
[48]), they produced a series of “counter examples” that led to absurd conclusions includ-
ing “The hope for reading an optimization theory with diverse applications is ruined by
the manner in which [30] is written and the fact that the majority of the results in [30] are
false.” These conceptual mistakes verified Arnold’s declaration [1]: “A teacher of mathe-
matics, who has not got to grips with at least some of the volumes of the course by Landau
and Lifshitz, will then become a relict like the one nowadays who does not know the differ-
ence between an open and a closed set.” A comprehensive review on the canonical duality
theory and breakthrough from the recent challenges are given in [24].

The goal of this paper is to apply the canonical duality theory for solving the challenging
fixed point problem. The rest of this paper is arranged as follows. Based on the concept
of objectivity, the canonical dual for the fixed point problem, its analytical solution, and
global optimality condition are presented in the next section. Applications to a general
fixed point problem with sum of exponential functions and nonconvex polynomial are
discussed in Sect. 4.1. Analytical solutions for a general fixed point problem with a sum
of logarithmic and quadratic functions are given in Sect. 4.2. The paper ends with conclu-
sions and future work.

3 Results and discussion
According to the canonical duality, the linear measure ε = Dx cannot be used directly for
studying duality relation due to the objectivity. Also, the linear operator cannot change
the nonconvexity of W (Dx). We first introduce the canonical transformation.

Definition 3 (Canonical function and canonical transformation) A real-valued function
V : Ea →R is called canonical if the duality mapping ∂V : Ea → E∗

a is one-to-one and onto.
For a given nonconvex function W : Wa → R, if there exist a geometrically admissible

mapping 
 : Wa → Ea and a canonical function V : Ea →R such that

W (ε) = V
(

(ε)

)
, (15)

then transformation (15) is called the canonical transformation and ξ = 
(ε) is called the
canonical measure.

By this definition, the one-to-one duality relation ς = ∂V (ξ ) : Ea → E∗
a implies that the

canonical function V (ξ ) is differentiable and its conjugate function V ∗ : E∗
a → R can be

uniquely defined by the Legendre transformation [11]

V ∗(ς ) =
{〈ξ ;ς〉 – V (ξ ) | ς = ∂V (ξ )

}
, (16)
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where 〈ξ ;ς〉 represents the bilinear form on E and its dual space E∗. In this case, V : Ea →
R is a canonical function if and only if the following canonical duality relations hold on
Ea × E∗

a :

ς = ∂V (ξ ) ⇔ ξ = ∂V ∗(ς ) ⇔ V (ξ ) + V ∗(ς ) = 〈ξ ;ς〉. (17)

Let Q(x) = 1
2‖x‖2 + 〈x, f〉. Replacing V (
(x)) in the target function �(x) by the Fenchel–

Young equality V (ξ ) = 〈ξ ;ς〉 – V ∗(ς ), the Gao-Strang total complementary function (see
[14]) � : Xa × E∗

a →R can be defined by

�(x,ς ) =
〈

(x);ς

〉
– V ∗(ς ) – Q(x). (18)

By this total complementary function, the canonical dual of �(x) can be obtained as

�d(ς ) = inf
{
�(x,ς ) | x ∈X

}
= Q
(ς ) – V ∗(ς ), (19)

where Q
 : E∗
a →R∪ {–∞} is the so-called 
-conjugate of Q(x) defined by (see [14])

Q
(ς ) = sta
{〈


(x);ς
〉
– Q(x) | x ∈X

}
. (20)

Let Sa ⊂ E∗
a be an admissible set such that on which Q
(ς ) is well-defined. If 
(x) is

a homogeneous quadratic operator, i.e., 
(αx) = α2
(x), then the total complementary
function

�(x,ς ) =
1
2
〈
x, G(ς )x

〉
– V ∗(ς ) – 〈x, f〉, (21)

where G(ς ) = H(ς ) – I, H(ς ) = ∇2
x 〈
(x);ς〉, and I is an identity matrix in X . In this case,

the 
-conjugate Q
 is simply defined by

Q
(ς ) = –
1
2
〈
G–1(ς )f , f

〉
, (22)

and Sa = {ς ∈ E∗
a | det G(ς ) �= 0}. Thus, the canonical dual problem (Pd) can be proposed

in the following:

(
Pd) : ς̄ = arg sta

{
�d(ς ) | ς ∈ Sa

}
. (23)

By the canonical duality theory, we have the following results.

Theorem 1 (Analytic solution and complementary-dual principle) For a given f , if ς̄ ∈ Sa

is a solution to (Pd), then

x̄ = G–1(ς̄ )f (24)

is a solution to the problem (P) and

�(x̄) = �(x̄, ς̄ ) = �d(ς̄ ). (25)
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If F(x) is a potential operator, then x̄ is also a solution to the fixed point problem (P0). If
F(x) is a non-potential operator, then x̄ is a solution to the fixed point problem (P0) only if
x̄ is a global minimizer of �(x).

Proof By the canonical duality theory we know that (x̄, ς̄ ) is a critical point of �(x,ς ) if
and only if x̄ is a critical point of �(x) and ς̄ is a critical point of �d(ς ). It is easy to prove
that the criticality condition ∇�(x̄, ς̄ ) = 0 leads to the following canonical equations:

G(ς̄ )x̄ = f , 
(x̄) = ∂V ∗(ς̄ ). (26)

The first equation is the canonical equilibrium equation, which leads to the analytical so-
lution (24). By the canonical duality, the canonical duality equation 
(x̄) = ∂V ∗(ς̄ ) leads
to the complementary-duality relation (25). The theorem is proved by Lemma 1. �

Theorem 1 shows that the solution to the fixed point problem depends analytically on
the canonical dual solution, and there is no duality gap between the primal problem (P)
and the canonical dual problem (Pd). By the fact that the problem (P) may have many
fixed points, in order to identify the extremality of these fixed points, we assume that the
canonical function V : Ea →R is convex and introduce two open sets:

S+
a =

{
ς ∈ Sa | G(ς ) � 0

}
,

S–
a =

{
ς ∈ Sa | G(ς ) ≺ 0

}
,

where G(ς ) � 0 means that G is a positive definite matrix, and G(ς ) ≺ 0 means that G is a
negative definite matrix. Also according to the terminology used in the canonical duality
theory, a neighborhood of a critical point is an open set containing only one critical point.

Theorem 2 (Triality theorem) Suppose that ς̄ is a solution to (Pd) and x̄ = G–1(ς̄ )f . If
ς̄ ∈ S+

a , then x̄ is a globally stable fixed point and

�(x̄) = min
x∈Xa

�(x) = max
ς∈S+

a
�d(ς ) = �d(ς̄ ). (27)

If ς̄ ∈ S–
a , then x̄ is a local maximizer of �(x) iff ς̄ ∈ S–

a is a local maximizer of �d and
on the neighborhood Xo × So ⊂Xa × S–

a of (x̄, ς̄ ), we have

�(x̄) = max
x∈Xo

�(x) = max
ς∈So

�d(ς ) = �d(ς̄ ). (28)

Moreover, x̄ is a locally unstable fixed point of F if it is a potential operator.
If ς̄ ∈ S–

a and dimXa = dimSa, then x̄ is a local minimizer iff ς̄ ∈ S–
a is a local minimizer

of �d(ς ) and on the neighborhood Xo × So ⊂Xa × S–
a ,

�(x̄) = min
x∈Xo

�(x) = min
ς∈So

�d(ς ) = �d(ς̄ ). (29)

Moreover, x̄ is a locally stable fixed point of F if it is a potential operator.
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This theorem is an application of the triality theory. Detailed proof can be found in [31].
Statement (27) is the so-called canonical min-max duality. This statement shows that the
global stable fixed point problem n is equivalent to a concave maximization problem

(
P�

)
: max

{
�d(ς ) | ς ∈ S+

a
}

. (30)

Since the feasible spaceS+
a is an open convex set, this canonical dual problem can be solved

easily by well-developed nonlinear optimization techniques. The second statement (28) is
the canonical double-max duality and the third statement (29) is the canonical double-min
duality. For a potential operator F , these two statements can be used to identify locally
unstable and stable fixed points, respectively.

4 Applications
4.1 Exponential and polynomial functions
As our first application, the objective function is assumed to be

W (Dx) = α exp

(
1
2
‖D1x‖2

)
+

1
2
β

(
1
2
‖D2x‖2 – λ

)2

,

where D1 ∈R
m×n and D2 ∈R

p×n are two given matrices, α, β , λ are real numbers. Clearly,
for a given λ > 0, W (Dx) is nonconvex and

F(x) = ∇P(x) = α exp

(
1
2
‖D1x‖2

)(
DT

1 D1
)
x + β

(
1
2
‖D2x‖2 – λ

)(
DT

2 D2
)
x – f

is a non-monotone operator. In this case, the fixed point problem (P0) can be equivalently
written as

x̄ = arg sta
x∈Rn

{
�(x) = α exp

(
1
2
‖D1x‖2

)
+

1
2
β

(
1
2
‖D2x‖2 – λ

)2

–
1
2
‖x‖2 – xT f

}
.

Clearly, traditional methods for solving this nonlinear fixed point problem in R
n are diffi-

cult. However, by the canonical duality theory, this problem can be solved easily in R
2.

The canonical measure in this problem can be given as

ξ = 
(x) =

(
ξ1

ξ2

)
=

(
1
2‖D1x‖2

1
2‖D2x‖2

)
: R

n → Ea =
{
ξ ∈R

2 | ξ1, ξ2 ≥ 0
}

.

Correspondingly, the canonical function is

V (ξ ) =

(
V1(ξ1)
V2(ξ2)

)
=

(
α exp(ξ1)

1
2β(ξ2 – λ)2

)
,

and the canonical dual variable is

ς =

(
ς1

ς2

)
=

(
∇V1(ξ1)
∇V2(ξ2)

)
=

(
α exp(ξ1)
β(ξ2 – λ)

)
: Ea → E∗

a =
{
ς ∈ R

2 | ς1 ≥ α,ς2 ≥ –λβ
}

.
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By the Legendre transformation, the conjugate function V ∗(ς ) is uniquely defined as

V ∗(ς ) =

(
V ∗

1 (ς1)
V ∗

2 (ς2)

)
=

(
(ln(ς1/α) – 1)ς1

1
2β

ς2
2 + λς2

)
.

Since the canonical measure in this application is a homogeneous quadratic operator, the
total complementary function � : Rn × E∗

a →R has the following form:

�(x,ς ) =
1
2

xT G(ς )x – xT f –
(
ln(ς1/α) – 1

)
ς1 –

(
1

2β
ς2

2 + λς2

)
,

where

G(ς ) = ς1DT
1 D1 + ς2DT

2 D2 – I.

On the canonical dual feasible spaceSa = {ς = [ς1,ς2]T ∈ E∗
a | det(G(ς )) �= 0}, the canonical

dual problem can be formulated as

(
Pd) : ς̄ = arg sta

ς∈Sa

{
Pd(ς ) = –

1
2

fT G–1(ς )f –
(
ln(ς1/α) – 1

)
ς1

–
(

1
2β

ς2
2 + λς2

)}
. (31)

Example 1 Let n = 2, α = 6, β = 8, λ = 1, and

D1 =

[
2 0
0 3

]
, D1 =

[
4 0
0 5

]
, f =

[
2
1

]
,

then the primal function (see Fig. 1)

�(x1, x2) = 6 exp
(
2x2

1 + 4.5x2
2
)

+ 4
(
8x2

1 + 12.5x2
2 – 1

)2 –
1
2
(
x2

1 + x2
2
)

– 2x1 – x2.

Figure 1 Graphs of �(x1, x2) and its contour for Example 1
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Figure 2 Graphs of �d(ς1,ς2) and its contour for Example 1

The corresponding canonical dual function is

�d(ς1,ς2)

= –
1
2

(
4

4ς1 + 16ς2 – 1
+

1
9ς1 + 25ς2 – 1

)
– ς1

(
ln(ς1/6) – 1

)
–

(
1

16
ς2

2 + ς2

)
.

Its graph is shown by Fig. 2. It is easy to find that the canonical dual problem (Pd) has
three solutions:

ς1 = [7.38697, –1.39206]T ∈ S+
a ,

ς2 = [6.00566, –7.97189]T ∈ S–
a ,

ς3 = [7.3106, –2.23695]T ∈ S–
a .

By Theorem 1 we have three primal solutions:

x1 = [0.318731, 0.0325932]T ,

x2 = [–0.0191337, –0.00683777]T ,

x3 = [–0.264945, 0.112718]T .

It is easy to check that

�
(
x1) = �d(ς1) = 6.78671,

�
(
x2) = �d(ς2) = 10.0225,

�
(
x3) = �d(ς3) = 7.99906.

By Theorem 2 we know that x1 is a global minimizer of �(x), x2 is a local maximizer of
�(x), and x3 = [–0.264945, 0.112718]T is a local minimizer of �(x) (see Fig. 1). By the fact
that

xi
1 = F1

(
xi

1, xi
2
)

= 6 exp
(
2xi

1 + 4.5xi
2
)
4xi

1 + 8
(
8xi

1 + 12.5xi
2 – 1

)
16xi

1 – 2,
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xi
2 = F2

(
xi

1, xi
2
)

= 6 exp
(
2xi

1 + 4.5xi
2
)
9xi

2 + 8
(
8xi

1 + 12.5xi
2 – 1

)
25xi

2 – 1

hold for all i = 1, 2, 3, we know that {xi} (i = 1, 2, 3) are all fixed points.

4.2 Logarithmic and quadratic function
In this application, we let

W (Dx) = c1‖Dx‖2 + c2‖Dx‖2 log‖Dx‖2,

where D ∈R
m×n is a matrix, c1, c2 are real numbers. Clearly, W (Dx) is nonconvex and

F(x) = ∇P(x) = 2c1
(
DT D

)
x + 2c2

((
DT D

)
x
)(

log‖Dx‖2 + 1
)

is non-monotone. The fixed point problem x = F(x) can be reformulated as

(P) : x̄ = arg sta
{
�(x) = c1‖Dx‖2 + c2‖Dx‖2 log‖Dx‖2 –

1
2
‖x‖2 – xT f | x ∈R

n
}

.

By using the canonical measure

ξ = 
(x) = ‖Dx‖2 : R
n → Ea = R

+ = {ξ ∈ R | ξ ≥ 0},

the canonical function is V (ξ ) = c1ξ + c2ξ (log ξ + 1) and its Legendre conjugate is

V ∗(ς ) = c2 exp

[
1
c2

(ς – c1) – 1
]

,

which is convex on its domain E∗
a = R. In this case, we have the total complementary func-

tion

�(x,ς ) =
1
2

xT G(ς )x – xT f – c2 exp

[
1
c2

(ς – c1) – 1
]

,

where G(ς ) = 2ςDT D – I and the canonical dual problem is

(
Pd) : ς̄ = arg sta

{
Pd(ς ) = –

1
2

fT G–1(ς )f – c2 exp

[
1
c2

(ς – c1) – 1
] ∣∣∣ ς �= 0

}
. (32)

Example 2 We first let m = n = 2, c1 = –8, c2 = 10, and

D =

[
3 0
0 4

]
, f =

[
–5
2

]
.

The primal function

�(x1, x2) = –8
(
9x2

1 + 16x2
2
)

+ 10
(
9x2

1 + 16x2
2
)

log
(
9x2

1 + 16x2
2
)

–
1
2
(
x2

1 + x2
2
)

– 5x1 + 2x2

is nonconvex and its graph is shown in Fig. 3. The corresponding canonical dual function
is

�d(ς ) = –
1
2

(
25

18ς – 1
+

4
32ς – 1

)
– 10 exp

[
0.1(ς + 8) – 1

]
.
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Figure 3 Graph of �(x1, x2) and its contour for Example 2

Figure 4 Graph of �d(ς ) for Example 2

For this example, the one-dimensional canonical dual problem (Pd) can be solved easily
(by using Mathematica) to obtain total three solutions (see Fig. 4):

ς1 = 0.969642 > ς2 = –0.955077 > ς3 = –91.0174.

Correspondingly, the three primal solutions are

x1 =

[
–0.303886
0.0666033

]
, x2 =

[
0.274855

–0.0633664

]
, x3 =

[
0.00305006

–0.000686446

]
.

It is easy to check that xi = F(xi), i = 1, 2, 3. Therefore, {xi} are fixed points. Since ς1 ∈ S+
a =

{ς ∈ R | ς > 0}, we know that x1 is a globally stable fixed point. It is easy to check that x2

is a locally stable fixed point, x3 is a locally unstable fixed point, and

�
(
x1) = �d(ς1) = –9.84726,

�
(
x2) = �d(ς2) = –6.69103,
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�
(
x3) = �d(ς3) = 0.00739894.

Example 3 We now let m = 3, n = 2, c1 = –15, c2 = 9, and

D =

⎡
⎢⎣

0.3 0.2
0.5 0.6
0.4 0.7

⎤
⎥⎦ , f =

[
1
4

]
,

then the primal function is

�(x1, x2) = 9
(
0.5x2

1 + 1.28x1x2 + 0.89x2
2
)

log
(
0.5x2

1 + 1.28x1x2 + 0.89x2
2
)

– 15
(
0.5x2

1 + 1.28x1x2 + 0.89x2
2
)

–
1
2
(
x2

1 + x2
2
)

– x1 – 4x2.

Its graph is a nonconvex surface in R
3, which has multiple critical points, but their loca-

tions cannot be found precisely as the surface is rather flat around these critical points
(see Figs. 5–7). However, its canonical dual is a single-valued function

�d(ς ) = –
1
2

[
1 4

][
ς – 1 1.28ς

1.28ς 1.78ς – 1

]–1 [
1
4

]
– 9 exp

[
1
9

(ς + 15) – 1
]

,

and from its graph, we can see clearly that it has five critical points in total (see Figs. 8–9).
These critical points can be easily obtained by Mathematica:

ς1 = 20.396 > ς2 = 17.9735 > ς3 = 1.46219 > ς4 = –0.881733 > ς5 = –52.7144.

By Theorem 1, we have all the primal solutions:

x1 =

[
–21.57
16.065

]
, x2 =

[
18.937
–13.93

]
, x3 =

[
2.130
0.008

]
,

x4 =

[
0.546

–1.797

]
, x5 =

[
0.323

–0.272

]
.

Figure 5 Graph of �(x) and its contour for Example 3
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Figure 6 Graph of �(x) and its contour for Example 3 around x1

Figure 7 Graph of �(x) and its contour for Example 3 around x2

Figure 8 Graph of �d(ς ) for Example 3

Since F(x) is a potential operator, these stationary points are all fixed points of F(x). It is
easy to find that the matrix G(ς ) has two singularity points: ς1 = 19.266 and ς2 = 0.367;
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Figure 9 Graph of �d(ς ) for Example 3 around ς 2

therefore,

S+
a = {ς ∈R | ς > 19.266}, S–

a = {ς ∈R | ς < 0.367}.

By the facts that ς1 ∈ S+
a and ς5 ∈ S–

a , we know that x1 is a globally stable fixed point,
x5 is a locally unstable fixed point. Although ς4 ∈ S–

a is a local minimizer of �d(ς ), we
cannot say if x4 is a locally stable fixed point since dimXa = 2 �= dimSa = 1. But by the
complementary-dual principle and the order of the canonical dual solutions {ς i} , we have

�
(
x1) = �d(ς1) = –190.381

< �
(
x2) = �d(ς2) = –110.759

< �
(
x3) = �d(ς3) = –21.7036

< �
(
x4) = �d(ς4) = –12.5735

< �
(
x5) = �d(ς5) = 0.332915.

5 Conclusions
Based on the canonical duality theory, a unified model is proposed such that the general
fixed point problems can be reformulated as a global optimization problem. This model
is directly related to many other challenging problems in variational inequality, d.c. pro-
gramming, chaotic dynamics, nonconvex analysis/PDEs, post-buckling of large deformed
structures, phase transitions in solids, computer science, etc. (see [24] and the references
cited therein). By the complementary-dual principle, all the fixed points can be obtained
analytically in terms of the canonical dual solutions. Their stability and extremality are
identified by the triality theory. Applications are illustrated by problems governed by non-
convex polynomial, exponential, and logarithmic functions. Our examples show that both
globally stable and locally stable/unstable fixed point problems in R

n can be obtained eas-
ily by solving the associated canonical dual problems in R

m with m < n. However, the local
stability condition for those fixed points x̄(ς̄ ) with indefinite G(ς̄ ) still remains unknown,
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and it deserves serious study in the future. Also, the results presented in this paper can be
generalized to problems with nonsmooth potential functions.
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