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Abstract

In this paper the problem of localization of wireless sensor
network is formulated as an unconstrained nonsmooth opti-
mization problem. We minimize a distance objective function
which incorporates unknown sensor nodes and nodes with
known positions (anchors) in contrast to popular semidefinite
programming (SDP) methods which use artificial objective
functions. We study the main properties of the objective
function in this problem and design an algorithm for its mini-
mization. Our algorithm is a derivative-free discrete gradient
method that allows one to find a near global solution. The al-
gorithm can handle a large number of sensors in the network.
This paper contains the theory of our proposed formulation
and algorithm while experimental results are included in later
work.

Key words and phrases: sensor networks, nonsmooth optimiza-
tion, derivative free algorithms.

1. INTRODUCTION

Wireless sensor networks (WSN) have drawn great interest
recently, with applications ranging from environmental moni-
toring, patient observation in healthcare monitoring to military
tracking on battlefields [1], [8]. Sensor networks potentially
consist of a large number of sensor nodes (hundreds to
thousands) which may be for example, strategically placed
in hospitals for patient monitoring or randomly positioned
(scattered) e.g., airdropped on a battlefield. One of the major
deployment issues of wireless sensor networks is node place-
ment which comprises two distinct but related problems. The
first problem is known as optimal placement where one has to
strategically position a number of nodes to fulfil certain criteria
e.g., maximum coverage [22]. The second problem which is
the focus of this paper is self-localization, where the node
positions are unknown and the network tries to discover their
positions [18]. This is achieved using only sensor informa-
tion such as received signal strength (RSS), time difference
of arrival (TDOA) [17] and hop connectivities [16]. Self-
localization is important because sensor data frequently require
node positions to be of practical use, for example tracking

troop movements on the battlefield requires accurate knowl-
edge of sensor positions. While global positioning systems
(GPS) are attractive solutions for WSN localization, they are
not yet cost effective enough to be deployed on every sensor
node and may not function well in enclosed areas with no
satellite line of sight.

Self-localization is not an easy problem as evidenced by the
many existing techniques such as semidefinite programming
(SDP) [6], [7], multidimensional scaling (MDS) [10], [19],
[20], particle filter modelling [13] and kernel methods [15].
In SDP methods, one assumes that the network consists
of Nx nodes with unknown positions and Na nodes with
known positions called anchors. These methods are easy to
implement due to the availability of existing algorithms but
suffer from dimensionality problems. The number of SDP
variables increases quadratically regardless of the number of
unknown nodes and anchor nodes causing larger problems to
be difficult to handle. Modifications to the SDP method include
relaxation [6] techniques which provide a faster localization
algorithm at the cost of an approximate solution. MDS meth-
ods are attractive because they do not require anchor nodes,
however the algorithms suffer from local minima meaning
that algorithm initial conditions determine the final topology
estimates. Local minima nevertheless could be handled by ex-
pressing node proximities as convex constraints and employing
convex programming algorithms [12].

In this paper, we propose another method to handle local
minima using a nonsmooth optimization approach. The orig-
inal SDP constraints is first transformed to a least squares
minimization problem and a derivative free nonsmooth opti-
mization algorithm is applied to solve it. Our algorithm can
handle nonsmooth objective functions and searches for a better
solution as opposed to previous methods which terminate
at approximate solutions. The algorithm finds a sequence of
local solutions and specifically exploits the problem structure
making it applicable for large scale sensor network localization
problems.

The paper is organized as follows. In Section 2 the non-
smooth optimization formulation of wireless sensor network
problem is given. The properties of the objective function in
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the optimization problem are described in Section 3. An algo-
rithm for the approximation of subgradients of the objective
is presented in Section 4. Finally, the minimization algorithm
is described in Section 5 and Section 6 concludes the paper.

2. FORMULATION OF PROBLEM

Fig. 1: A simple wireless sensor network topology depicting the coordinate
system, nodes xi with unknown positions and anchor nodes aj .

We consider the problem of localization of sensor networks
in a planar two dimensional environment. Formally, all points
x = (x1, x2) belong to a well defined compact set X ⊂ IR2

where x1 and x2 are coordinates in the two dimensional plane
(Figure 1). Assume that for a wireless sensor network in IR2

there are m anchors with known locations ak ∈ IR2, k =
1, . . . , m and n sensors with unknown locations xj , j =
1, . . . , n. We assume that all distances are known exactly, that
is we consider the localization problem where measurements
are noiseless.

We denote by dij the Euclidean distance between i-th and
j-th sensors while the distance between the i-th sensor and
the k-th anchor is denoted by dik. In general, not all pairs
of distances may be known, so the pairs of nodes for which
mutual distances are known are denoted as (i, j) ∈ Nx for
sensor/sensor and (i, k) ∈ Na for sensor/anchor pairs, respec-
tively. The WSN localization problem [6] can be formally
stated as: Given m anchor locations ak, k = 1, . . . , m and
some distance measurements dij , (i, j) ∈ Nx, dik, (i, k) ∈
Na find the locations xj , j = 1, . . . , n of n sensors such that

‖xi − xj‖2 = d2
ij ,∀(i, j) ∈ Nx, (1)

‖xi − ak‖2 = d2
ik, ∀(i, k) ∈ Na. (2)

We now reduce the system of equations (1)-(2) to the following
unconstrained optimization problem:

minimize f(x1, . . . , xn) =
∑

(i,j)∈Nx

(‖xi − xj‖2 − d2
ij

)2

+
∑

(i,k)∈Na

(‖xi − ak‖2 − d2
ik

)2
(3)

subject to
xi ∈ IR2, j = 1, . . . , n.

The objective function f in Problem (3) is nonconvex, poten-
tially possessing a large number of local minima. The number

of local minimizers of this function is also strongly dependant
on the number of sensors.

Now let us consider the localization problem with measure-
ments noises. Then we have the following equations:

dij = d(xi, xj) + ωij (4)

dik = d(xi, ak) + ωik (5)

In [6] two different approaches were considered to take
into account noise. In the first approach it is assumed
ωij ∼ N(0, σ2

ij) and ωik ∼ N(0, σ2
ij), where N(0, σ2) is

a random variable with mean zero and variance σ2, and they
are independent.

In the second approach, a distance feasibility problem with
upper and lower bounds is solved. In this paper we will
consider the second approach to take into account noise in the
distance measurements. Then noisy distance measures may be
represented in a confidence interval form of a lower bound dij

and an upper bound dij between sensors xi and xj , or lower
bound dik and upper bound dik between a sensor xi and an
anchor ak. In this case we reformulate the equations (1) and
(2) as follows:

d2
ij ≤ ‖xi − xj‖2 ≤ d

2

ij ,∀(i, j) ∈ Nx, (6)

d2
ik ≤ ‖xi − ak‖2 ≤ d

2

ik, ∀(i, k) ∈ Na. (7)

Then the objective function in presence of noise is as follows:

f(x1, . . . , xn) =

∑

(i,j)∈Nx

max
(
0,−‖xi − xj‖2 + d2

ij , ‖xi − xj‖2 − d
2

ij

)
+

∑

(i,k)∈Na

max
(
0,−‖xi − ak‖2 + d2

ik, ‖xi − ak‖2 − d
2

ik

)
.

(8)
The problem of localization in the presence of noise in dis-
tance measurements is reduced to the following optimization
problem:

minimize f(x1, . . . , xn) s.t. xi ∈ IR2. (9)

Unlike Problem (3) the objective function in Problem (9) is
nonconvex and nonsmooth. Such problems can be studied by
applying the Clarke generalized gradients (see [9]).

In the next section we observe that the objective function
in the optimization problem is semismooth, quasidifferentiable
and piecewise partially separable. The use of these properties
allow us to design an efficient algorithm for approximation of
subgradients of the objective function and to apply the discrete
gradient method for its minimization.
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3. PROPERTIES OF THE OBJECTIVE FUNCTION

In this section we describe some properties of the objective
functions in Problems (3) and (9). Since Problem (9) reflects a
more realistic situation we choose to concentrate on it. First we
recall the definitions of the Clarke subdifferential, quasidiffer-
ential, semismooth and piecewise partially separable functions
from nonsmooth analysis.

A function f , defined on IRn, is called locally Lipschitz
continuous if for any bounded subset X ⊂ IRn there exists an
R > 0 such that

|f(x)− f(y)| ≤ R‖x− y‖ ∀x, y ∈ X.

Clarke introduced generalized gradients for Lipschitz functions
[9]. Since a locally Lipschitz function f is differentiable
almost everywhere we can define for it a subdifferential by

∂f(x) = co {v ∈ IRn : ∃(xk ∈ D(f)) : x = lim
k→∞

xk

and v = lim
k→∞

∇f(xk)},

here D(f) denotes the set where f is differentiable, co
denotes the convex hull of a set. The mapping ∂f(x) is
upper semicontinuous and bounded on bounded sets [9]. The
generalized directional derivative of f at x in the direction g
is defined as

f0(x, g) = lim sup
y→x,α↓0

α−1[f(y + αg)− f(y)].

For the locally Lipschitz function f the generalized directional
derivative exists and f0(x, g) = max{〈v, g〉 : v ∈ ∂f(x)}. f
is called a Clarke regular function on IRn, if it is directionally
differentiable and f ′(x, g) = f0(x, g) for all x, g ∈ IRn, where
f ′(x, g) is a derivative of the function f at the point x in the
direction g:

f ′(x, g) = lim
α↓0

α−1[f(x + αg)− f(x)].

Let f be a locally Lipschitz continuous function defined on
IRn. For a point x to be a local minimizer of the function f
on IRn, it is necessary that 0 ∈ ∂f(x).

A function f : IRn → IR1 is called semismooth at x ∈ IRn,
if it is locally Lipschitz at x and for each g ∈ IRn and for any
sequences {tk} ⊂ IR1, {gk} ⊂ IRn, {vk} ⊂ IRn such that
tk ↓ 0, gk → g, vk ∈ ∂f(x + tkgk), the limit

lim
k→∞

〈vk, g〉
exists [14]. The semismooth function f is directionally differ-
entiable and

f ′(x, g) = lim
k→∞

〈vk, g〉, vk ∈ ∂f(x + tkgk).

A function f is called quasidifferentiable at a point x, if
it is locally Lipschitz continuous, directionally differentiable
at this point and there exist convex, compact sets ∂f(x) and
∂f(x) such that:

f ′(x, g) = max {〈u, g〉 : u ∈ ∂f(x)}+min
{〈v, g〉 : v ∈ ∂f(x)

}
.

The set ∂f(x) is called a subdifferential, the set ∂f(x) a su-
perdifferential and the pair [∂f(x), ∂f(x)] a quasidifferential
of the function f at a point x [11].

The function f is called a partially separable if there exists
a family of n × n diagonal matrices Qi, i = 1, . . . ,M such
that the function f can be represented as follows:

f(x) =
M∑

i=1

fi(Qix).

We assume that the matrices Qi are binary, that is they contain
only 0 and 1 and the number of non-zero elements in the
diagonal of the matrix Qi is much smaller than n. In other
terms, the function f is called partially separable if it can be
represented as the sum of functions of a much smaller number
of variables. If M = n and diag(Qi) = ei where ei is the
i− th orth vector, then the function f is separable.

The function f is said to be piecewise partially separable
if there exists a finite family of closed sets D1, . . . , Dm such
that

⋃m
i=1 Di = IRn and the function f is partially separable

on each set Di, i = 1, . . . ,m (see [3]).

Now we can describe some of properties of the objective
function in Problem (9).

It is clear that the function f is locally Lipschitz continuous.

Proposition 1: The function F is quasidifferentiable and its
subdifferential and superdifferential are polytopes.
Proof: Consider the function

ϕij(xi, xj) = max
(
0,−‖xi − xj‖2 + d2

ij , ‖xi − xj‖2 − d
2

ij

)
.

One of functions under maximum is constant and two others
are quadratic functions. Both quadratic functions are not
convex, however it follows from Proposition 3.2 in [21] that
they are d.c. functions that is they can be represented as a
difference of two smooth convex quadratic functions. Since
the maximum of d.c. functions is again d.c. function (see [21])
then the function ϕij is d.c., therefore it is quasidifferentiable
and its subdifferential and superdifferential are polytopes.

The function

θik(xi, xj) = max
(
0,−‖xi − ak‖2 + d2

ik, ‖xi − ak‖2 − d
2

ik

)

is a maximum of constant function, one concave and convex
functions. All three functions are smooth. Therefore the func-
tion θik is d.c. function, it is quasidifferentiable and its sub
and superdifferential are polytopes.

Since the sum of d.c. functions is again d.c. function then
one can see the function f is d.c., it is quasidifferentiable and
its sub and superdifferential are polytopes. 4

Proposition 2: The function f is semismooth.
Proof: The proof follows from the facts that distance functions
are smooth and consequently they are semismooth, maximum
of semismooth functions is also semismooth and finally, the
sum of semismooth functions is also semismooth. 4

Proposition 3: The function f is piecewise partially sepa-
rable.
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Proof: The distance functions by their definition are separable.
Maximum of separable functions is piecewise separable and
finally sum of piecewise separable functions is piecewise
partially separable (see [3]). 4

The function f is not regular and Clarke calculus for
such functions exists in the form of inclusions and such
calculus cannot be used to estimate subgradients. Therefore
the computation of subgradients of such functions is quite
difficult task. In the next section we consider one scheme to
approximate subgradients of the function f .

4. APPROXIMATION OF SUBGRADIENTS

In this section a scheme to approximate subgradients of the
function f is described. This approach is introduced in [4],
[5]. All necessary proofs also can be found in these papers.

We consider a function f defined on IRn and assume that
this function is quasidifferentiable. We also assume that both
sets ∂f(x) and ∂f(x) are polytopes at any x ∈ IRn. We denote
by Φ the class of all semismooth, quasidifferentiable functions
defined on IRn, whose subdifferential and superdifferential are
polytopes at any x ∈ IRn. Results from the previous section
show that the objective function f in Problem (9) belongs to
this class.

Let G = {e ∈ IRn : e = (e1, . . . , en), |ej | = 1, j =
1, . . . , n} be a set of all vertices of the unit hypercube in
IRn. We take e ∈ G and consider the sequence of n vectors
ej = ej(α), j = 1, . . . , n with α ∈ (0, 1]:

e1 = (αe1, 0, . . . , 0),
e2 = (αe1, α

2e2, 0, . . . , 0),
. . . = . . . . . . . . .
en = (αe1, α

2e2, . . . , α
nen).

Let e ∈ G be a given vector and λ > 0, α > 0 be given
numbers. Consider the following points

x0 = x, xj = x0 + λej(α), j = 1, . . . , n.

It is clear that

xj = xj−1 + (0, . . . , 0, λαjej , 0, . . . , 0), j = 1, . . . , n.

Let v = v(α, λ) ∈ IRn be a vector with the following
coordinates:

vj = (λαjej)−1
[
f(xj)− f(xj−1)

]
, j = 1, . . . , n. (10)

For any fixed e ∈ G and α > 0 we introduce the set:

V (e, α) = {w ∈ IRn : ∃(λk → +0, k → +∞),

w = lim
k→+∞

v(α, λk)}.
Proposition 4: [4], [5]. Assume that f ∈ Φ. Then there

exists α0 > 0 such that

V (e, α) ⊂ ∂f(x), ∀ α ∈ (0, α0].

Remark 1: It follows from Proposition 4 that in order to
approximate subgradients of the function f one can choose a
vector e ∈ G, sufficiently small α > 0, λ > 0 and apply (10)
to compute a vector v(α, λ). This vector is an approximation
to a subgradient.

A. Computation of subdifferentials

Now we can describe an algorithm for the computation of
subdifferentials. This algorithm is based on the notion of a
discrete gradient. We start with the definition of the discrete
gradient, which was introduced in [2].

Let f be a locally Lipschitz continuous function defined on
IRn. Let

S1 = {g ∈ IRn : ‖g‖ = 1},
P = {z : IR+ → IR+, β−1z(β) ↓ 0, β ↓ 0}.

Here S1 is the unit sphere and P is the set of univariate
positive infinitesimal functions. We take any g ∈ S1, e ∈ G
and a positive number α ∈ (0, 1]. Then we define |gi| =
max{|gk|, k = 1, . . . , n} and the sequence of n vectors
ej(α), j = 1, . . . , n. For given x ∈ IRn and z ∈ P consider
a sequence of n + 1 points:

x0 =
x1 =
. . . =
xn =

x+ λg,
x0+ z(λ)e1(α),
. . . . . .
x0+ z(λ)en(α).

Definition 1: [2] The discrete gradient of the function f
at the point x ∈ IRn is the vector Γ(x, g, e, z, λ, α) =
(Γ1, . . . , Γn) ∈ IRn, g ∈ S1 with the following coordinates:

Γj = [z(λ)αjej)]−1
[
f(xj)− f(xj−1)

]
, j = 1, . . . , n, j 6= i,

Γi = (λgi)−1


f(x + λg)− f(x)− λ

n∑

j=1,j 6=i

Γjgj


 .

It follows from Definition 1 that

f(x + λg)− f(x) = λ〈Γ(x, g, e, z, λ, α), g〉 (11)

for all g ∈ S1, e ∈ G, z ∈ P, λ > 0, α > 0.
Remark 2: One can see that the discrete gradient is defined

with respect to a given direction g ∈ S1 and in order to
compute it, first we define a sequence of points x0, . . . , xn

and compute the values of the function f at these points that
is we compute n+2 values of this function including the point
x. n−1 coordinates of the discrete gradient are defined similar
to those of the vector v(α, λ) and i-th coordinate is defined
so that to satisfy the equality (11) which can be considered as
some version of the mean value theorem.

Remark 3: Since the objective function f in Problem (9)
is piecewise partially separable we will use a special scheme
described in [3] to compute its discrete gradients. This scheme
allows us to use only two evaluations instead of n + 2
evaluations of the objective function f in Problem (9) to
compute one discrete gradient. Such an approach allow us to
apply the above described algorithm to functions with large
number of variables.

For a given α > 0 we define the following set:

B(x, α) = {v ∈ IRn : ∃(g ∈ S1, e ∈ G, zk ∈ P, λk ∈ IR1) :

zk ↓ 0, λk ↓ 0, k → +∞
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and v = lim
k→+∞

Γ(x, g, e, zk, λk, α)}. (12)

Proposition 5: [4], [5] Assume that f ∈ Φ. Then there
exists α0 > 0 such that

co B(x, α) ⊂ ∂f(x), ∀ α ∈ (0, α0].

Remark 4: Proposition 5 shows that one can use discrete
gradients to approximate the Clarke subdifferentials.

5. THE DISCRETE GRADIENT METHOD

In this section we describe the discrete gradient method for
solving Problem (9). An important step in this method is the
computation of descent directions. Therefore we start with the
description of an algorithm for finding descent directions.

A. Computation of descent directions

Let z ∈ P, λ > 0, α ∈ (0, 1], the number c ∈ (0, 1) and a
tolerance δ > 0 be given.

Algorithm 1: An algorithm for the computation of the de-
scent direction.

Step 1. Choose any g1 ∈ S1, e ∈ G, compute i =
argmax {|gj |, j = 1, . . . , n} and a discrete gradient v1 =
Γi(x, g1, e, z, λ, α). Set D1(x) = {v1} and k = 1.

Step 2. Compute the vector ‖wk‖2 = min{‖w‖2 : w ∈
Dk(x)}. If

‖wk‖ ≤ δ, (13)

then stop. Otherwise go to Step 3.

Step 3. Compute the search direction by gk+1 = −‖wk‖−1wk.
Step 4. If

f(x + λgk+1)− f(x) ≤ −cλ‖wk‖, (14)

then stop. Otherwise go to Step 5.

Step 5. Compute i = argmax {|gk+1
j | : j = 1, . . . , n} and a

discrete gradient

vk+1 = Γi(x, gk+1, e, z, λ, α),

construct the set Dk+1(x) = co {Dk(x)
⋃{vk+1}}, set k =

k + 1 and go to Step 2.
Algorithm 1 terminates after a finite number of iterations

[5].

B. The method

Let sequences δk > 0, zk ∈ P, λk > 0, δk → +0, zk →
+0, λk → +0, k → +∞, sufficiently small number α > 0
and numbers c1 ∈ (0, 1), c2 ∈ (0, c1] be given.

Algorithm 2: The discrete gradient method

Step 1. Choose any starting point x0 ∈ IRn and set k = 0.

Step 2. Set s = 0 and xk
s = xk.

Step 3. Apply Algorithm 1 for the computation of the descent
direction at x = xk

s , δ = δk, z = zk, λ = λk, c = c1. This

algorithm terminates after a finite number of iterations l > 0.
As a result we get the set Dl(xk

s) and an element vk
s such that

‖vk
s‖2 = min{‖v‖2 : v ∈ Dl(xk

s)}.
Furthermore either ‖vk

s ‖ ≤ δk or for the search direction gk
s =

−‖vk
s‖−1vk

s

f(xk
s + λkgk

s )− f(xk
s) ≤ −c1λk‖vk

s‖. (15)

Step 4. If
‖vk

s ‖ ≤ δk (16)

then set xk+1 = xk
s , k = k + 1 and go to Step 2. Otherwise

go to Step 5.

Step 5. Construct the following iteration xk
s+1 = xk

s + σsg
k
s ,

where σs is defined as follows

σs = argmax
{
σ ≥ 0 : f(xk

s + σgk
s )− f(xk

s) ≤ −c2σ‖vk
s ‖

}
.

Step 6. Set s = s + 1 and go to Step 3.
Remark 5: The discrete gradient method can be applied

to solve both Problems (3) and (9). The discrete gradients
contain three parameters and the parameter λ > 0 is most
important among them. Large values of λ > 0 allows us
to find descent directions from local minimizers. Therefore,
the discrete gradient is capable to escape from shallow local
minimizers and to find near global solution.

6. CONCLUSION

In this paper the wireless sensor network localization problem
is formulated as an unconstrained nonsmooth optimization
problem. Such a formulation allows us to reduce the number
of variables in an optimization problem and design efficient
algorithm for its solution. We proposed to apply the derivative
free discrete gradient method for solving the wireless sensor
network localization problem.
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