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ABSTRACT 

Objective: The objective of this project is to describe and test the efficacy of new testing 

and training techniques for competitive cyclists. Methods: Physiological variables and cycling 

performance were measured during a graded exercise test (GXT) and a novel, computer-

simulated, variable gradient 20-km cycling time-trial. Initially, data collected from the time-trial 

and GXT were used to establish the reliability of the time-trial, determine the laboratory 

correlates of hilly cycling performance and examine the pacing pattern during hilly cycling 

performance. Then, results from a series of GXT’s and time-trials were used to establish the 

effects of a brief period of overload training on the physiology and performance of competitive 

cyclists. Results: Power output and performance time measured during a computer simulated 

20-km variable gradient cycling test were reliable, however reliability diminished with 

increasing time between trials. Performance in variable gradient time-trial correlated strongly 

with absolute measures of physiological variables; however the strength of correlations 

increased when variables were measured relative to body mass. Power output was highest 

during the first four and last two kilometres of a variable gradient time-trial. Additionally, there 

were large differences in power output between consecutive one kilometre segments 

throughout the trial, particularly when the difference in gradient between segments was 

greater. Performance in the variable gradient time-trial improved substantially following a brief 

period of overload training. Performance improvement corresponded with adaptation in 

important physiological determinants of cycling performance, namely maximal oxygen uptake, 

lactate threshold and gross efficiency. Conclusions: Variable gradient, cycling time-trial tests 

can be used to detect meaningful changes in performance, evoke dynamic distribution of 

power output and are best suited to cyclists who produce high power outputs relative to body 
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mass. The current project also determined that a brief period of overload training induces 

physiological adaptation and substantial improvement in cycling performance in competitive 

cyclists. Sport scientists, coaches and cyclists can use this information to determine the testing 

and training techniques used in preparation for competition. 
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1.1 OVERVIEW AND SIGNIFICANCE OF RESEARCH PROJECT 

The aim of this project was to identify and describe, new testing and training techniques 

to be used in the assessment and preparation of competitive cyclists. This dissertation is a series 

of studies that describes the characteristics of a novel performance test and the effects of a 

short block of intensified training on performance in that test. The first of four studies 

established the short-term reliability of the new performance measure and also examined the 

effects of increasing time between trials on re-test reliability. The second study was an 

examination of the physiological correlates of performance in the novel, variable gradient 

performance test. The third study was an observational analysis of the spontaneous pacing 

patterns used by cyclists to complete the novel performance test. In the final study, a short 

block of intensified training was implemented in a sample of competitive cyclists to determine 

the effects of intensified training on physiological variables and performance in the novel test. 

Overall, the results presented by this collection of investigations define the efficacy and 

performance characteristics of a new computer simulated, variable gradient time-trial.  Specific 

results from this thesis provide important evidence that justifies the use of a new performance 

test to assess a cyclist before and after a specific training block or experimental intervention. 

Additionally, results from the fourth study provide empirical evidence of the effects of a training 

technique commonly used by coaches and cyclists to prepare for important competitive events. 

Importantly, results indicate short blocks of intensified training can be useful to coaches, sports 

scientists and cyclists in the preparation for competition. 
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1.2 THEORETICAL FRAMEWORK 

Two theoretical training frameworks underpin the fourth study in this series of 

investigations. Firstly is the theory of super compensation, a theory of training originally termed 

by Yakovlew in 1967. The theory suggests that in the process of restoring metabolites to normal 

levels following a training stimulus, the body may over restore or super compensate creating 

an improved physiological state and performance standard.1 The traditional theory is 

demonstrated in figure 1-1 below. 

 

Also shown in figure 1-1 is the postulated effect of the training stimulus being 

implemented in study four. In a similar fashion to the popular form of an overloading or shock 

micro cycle2 it is proposed a short block of intensified training will result in a greater overall 

transitional fatigue and therefore a temporary diminishment of fitness and performance. 

Figure 1-1 Model of Super compensation modified from Bompa1. 
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However, following a recovery interval it is expected an extended super-compensatory period 

will occur resulting in a re-bound improvement in fitness and performance. 

The second theoretical training model is the fitness-fatigue theory originally proposed 

by Bannister.3 In this model it is suggested there are two opposing effects of training, a fitness 

effect which improves physiological state and performance, and a negative effect of fatigue. 

However it is proposed the fatigue effect, whilst larger in magnitude, is resolved three times as 

fast as the duration of the fitness effect leading to an eventual improvement in preparedness 

or performance.2 The figure below (Fig. 1-2) illustrates the interaction of fitness and fatigue in 

the fitness-fatigue model. 

 

 

 

 

 

 

 

 

 

 

 

In study four, the fitness and fatigue effect occurring as a result of overload training may 

be expected to be large. If the fatigue effect is resolved as quickly as suggested, it could be 

expected that the lasting fitness effect will result in substantial gains in fitness and an increased 

Figure 1-2 Fitness-fatigue model modified from Zatsiorsky2. 
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performance standard. In examining the fitness-fatigue model, Chiu 4 indicates that following 

a period of short term overreaching followed by adequate recovery, fitness can remain higher 

long after the fatigue effect has diminished therefore leading to performance improvements.  

1.3 LIST OF ABBREVIATIONS 

ATP   Adenosine triphosphate 

CHO    Carbohydrate  

W    Watts 

RPM   Revolutions per minute (pedalling cadence) 

W.kg-1    Watts per kilogram of body mass. 

O2   Volume of oxygen uptake 

O2max  Maximal oxygen uptake 

mL.kg-1.min-1  Millilitres, per kilogram of mass, per minute 

L.min-1   Litres per minute 

RER  Respiratory exchange ratio 

PPO   Peak power output 

OBLA    Onset of blood lactate accumulation 

LT    Lactate threshold 

VT    Ventilatory threshold 
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GE    Gross efficiency 

ECO    Exercise economy 

LSD    Long steady distance training 

HIT    High intensity interval training 

LIT    Long interval training 

SIT    Short interval training 

MIT    Maximal effort interval training 

TT   Time trial 

TTE   Time to exhaustion 

CP    Critical power 

W’    Fixed capacity to do work above the CP 

PP    Power profile 

MMP    Mean maximal power 

kg    Kilogram 

km∙h-1   Kilometres per hour 

km    Kilometres 

s    Seconds 

vs.    Versus    
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r    Pearson’s correlation coefficient 

CV    Coefficient of variation 

ICC    Intra-class correlation coefficient 

ES    Effect size 

CL    Confidence limits 

SD    Standard deviation 

n    Number 

et al.    And others 

%   percentage  

~    Approximately 

>    Greater than  

<    Less than 
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2.1 INTRODUCTION 

Competitive road cycling is a multi-disciplinary sport, including massed start road races, 

individual time trials and criteriums, or in the instance of a stage races, a combination of these. 

Each competitive discipline has its own different physiological and performance demands; 

however all require the individual cyclist to provide forward propulsion of their bicycle against 

a multitude of resistive forces. 

To prepare for competition, coaches, sport scientists and athletes prescribe and 

undertake training programs and interventions based on personal experience, empirical 

evidence and scientific investigation. Recent technological advances in cycling ergometers and  

personal cycling equipment allows for more rigorous assessment of performance, and more 

refined prescription and analysis of cycling training. Therefore, this review will explore articles 

describing performance assessment, the physiological determinants of cycling performance 

and the effects of specific techniques and training organisation on the physiology and 

performance of competitive cyclists. 

2.2 PEFORMANCE TESTING OF COMPETITIVE CYCLISTS 

Performance testing is a fundamental component of scientific experimentation and 

athletic preparation. When combined with physiological assessment, performance testing 

underpins our understanding of the physiological determinants of competitive events and 

subsequently the variables targeted for training or intervention. In the sport of road cycling, 

performance is the product of many variables related both to the internal and external 

environment of the rider, including physiology, pacing strategy, environmental resistance and 

equipment. Additionally, there are a variety of cycle race types, each with very distinct 



25 | P a g e  

 

performance demands. Current literature describes a number of different performance 

measures for competitive cyclists that capture various components of competitive cycling. 

However, the predominant test types are time to exhaustion, fixed duration time trials and 

fixed distance time trials that can be self or experimenter paced. This review will examine the 

literature to present a description of test validity and reliability and determine areas for future 

research. 

Time to exhaustion (TTE) tests take place on a laboratory cycling ergometer and require 

the cyclist to maintain constant exercise intensity until volitional exhaustion. While there are 

examples of TTE tests in which exercise intensity is sub-maximal,1 they are generally completed 

at or above peak power output (PPO). Competitive cycling events, like TTE, require the cyclist 

to maintain high power outputs, often to the point of exhaustion. However, in contrast to TTE 

tests, the exercise intensity of competitive cycling events is often dictated by environmental 

conditions or other competitors, limiting the ecological validity of TTE tests. 

Generally, and regardless of the exercise intensity selected, the reliability of TTE tests is 

poor. In an early comparison of performance tests, Jeukendrup et al. 1 reported an average 

coefficient of variation (CV) between consecutive tests of ~26%, far greater than the smallest 

worthwhile difference in performance.2,3 Although somewhat better reliability results are 

reported in more recent studies,4,5 others suggest the open ended nature of TTE tests increases 

the rider error associated with performance testing.1 Rider, or more appropriately biological 

error, is independent of technical error associated with testing conditions or testing equipment. 

Importantly, it is evident TTE tests have a high degree of biological error and lack the ability to 

detect important beneficial changes in performance. Therefore, the low reliability and lack of 

ecological validity make TTE tests poor measures of cycling performance. 
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Fixed duration performance tests can be completed in the laboratory or in the field and 

require the cyclist to ride as hard as possible for a set time period. The performance outcome 

is then calculated as the distance completed, work completed or the average power output for 

the duration of the test. Several different examples of fixed duration tests are presented in 

current literature, the majority of which are self-paced. However, some fixed duration tests 

also include a fixed exercise intensity component as a prelude to a self-paced component.1,6  

The reliability of fixed duration tests is reportedly good. In an early comparison between 

performance tests, Jeukendrup et al. 1 suggested work completed in a 15 minute period, 

preceded by a 45 minute fixed intensity pre-load, is somewhat reproducible (CV ~3.5%). Bishop 

7 reported a similar level of reproducibility for power, heart rate and rating of perceived 

exertion (mean CV ~ 2.0-3.1%) for a fixed duration TT of one hour in a sample of 20 female 

cyclists. Similarly, Paton et al. 8 reported a low CV (~1.8%) between repeated trials for a shorter 

(5 minute) fixed duration test. However, they also reported a learning effect between the first 

two trials which suggests at least one habituation trial is necessary before experimental trials 

commence. In a more recent study, Driller et al. 6 reported strong reliability between trials for 

mean power and heart rate during a 15 minute pre-load, 15 minute fixed duration TT. 

Therefore, fixed duration tests are reliable and able to detect important changes in 

performance for a range of durations. 

 Results from fixed duration performance tests can also be applied to the power profile 

(PP) and critical power (CP) concepts. Using the results of laboratory based fixed duration tests, 

sports scientists and coaches can develop a profile of the mean power a cyclist can sustain for 

specific time periods.9 The PP can be extrapolated to predict achievable mean power for a given 

time point as well as CP and anaerobic work capacity (W’).  
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In one of the first studies on application of the power profile, Quod et al. 9 reported 

strong agreement between mean power measured over 60-600s in the laboratory and power 

output for the same time periods when measured in competition. Additionally, estimations of 

CP and W’ derived from the PP were similar to corresponding estimates from competitive 

events. However, mean cadence measured during PP testing in the laboratory was higher than 

when measured during competition. Quod et al. 9 suggested the lower cadence during 

competition was likely due to the variation in gradient cyclists experience when cycling in the 

field. The absence of gradient variation in the testing protocol of the PP may therefore limit the 

ecological validity of such tests.  

In a series of studies, Pinot et al. 10,11 applied mean power from 12-13 field measured 

fixed duration time points to the PP concept. Interestingly, the authors reported differences in 

the PP between elite and sub-elite cyclists, changes in the PP throughout the competitive 

season and differences in the PP between cyclists of different specialty.10,11 Importantly, these 

results indicate the PP can be used to effectively monitor changes in performance in both elite 

and sub-elite populations. However, the variability for repeat measures of mean power 

different fixed durations was quite high (CV 6.1-13.1%) which suggests field measured PP may 

not be reliable enough to detect small yet important changes2,3 in performance. 

An extension of the PP is the concept of CP which is defined as the maximum exercise 

intensity sustainable for a long time without rapid onset of fatigue.12 Accompanying CP is W’, 

which is defined as the limited capacity to do work above the CP.12 Recently, the concepts of 

CP and W’ have been applied to field and laboratory based cycling performance in order to 

model performance.13-15 Estimated CP and W’ from a short performance test were reported to 

accurately model W’ exhaustion and reconstitution during intermittent exercise.14 
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Furthermore, Skiba et al. 13 applied the CP and W’ concepts to accurately define the point at 

which cyclists are likely to become exhausted during field cycling. Although not strictly 

performance tests, it appears CP and W’ describe important energetic interactions during high 

intensity and intermittent cycling. Therefore, modelling CP and W’ may be used to inform 

pacing strategy during intermittent cycling performance and allow for accurate prediction of 

cycling performance. However, further validation of the CP and W’ concepts and their 

application to laboratory and field based cycling performance is required. 

Perhaps the most ecologically valid cycling performance test, fixed work time trials (TT) 

are completed at a self-selected pace, with instruction to complete the test as quickly as 

possible. The fixed work TT’s most commonly used in scientific investigations take place under 

controlled laboratory conditions on cycling ergometers. However, there are some examples in 

which the TT takes place in the field on a bicycle fitted with instrumented cranks.16,17  

Importantly, the reliability of performance measures taken from fixed duration TT’s is 

reportedly high. The CV reported for mean power measured during fixed duration TT’s varies 

depending on the distance of the time trial and ergometer used (CV range 1.9%-3.6%).16,18-20 

The same can be said for performance time; however reported CV is somewhat lower (CV range 

0.7%-2.9%).16,18-20 Therefore, either mean power or performance time measured during fixed 

work TT’s are reliable enough measures to detect small worthwhile changes in performance.2,3  

An important oversight of constant gradient self-paced protocols is a lack of variation in 

the external environment consistent with competitive events. To overcome this, Schabort et 

al. 21 and Abbiss et al. 22 described fixed distance TT’s that included experimenter defined, fixed 

work, high intensity epochs. The reliability of mean power measured for the short version of 

this test is acceptable (CV ~2.4%),22 however CV increases substantially when the test distance 
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is tripled (CV ~3.7%).21 Although not self-paced, stochastic performance tests provide 

simulation of massed start road races when cyclists must increase their intensity as would occur 

when responding to a breakaway or similar. However, the test protocol does not replicate the 

almost constant changes to environmental resistance cyclists encounter when competing in 

the field. Currell et al. 23 suggest a performance test should allow the athlete to adopt a similar 

pacing strategy to competition. Importantly, previous investigations indicate a variable pacing 

strategy improves performance time when cyclists encounter variation in wind conditions or 

gradients.24-28 Additionally, Atkinson et al. 29 suggest athletes adjust their effort, and therefore 

pacing, based on internal and external feedback including perception of external environmental 

conditions. Therefore, it would appear commonly used constant gradient self-paced and 

stochastic time trials do not allow cyclists to replicate field based pacing strategy. 

The previous research explored above describes a number of different performance 

tests, based either in a sports physiology laboratory, or less commonly, in the field. As an 

informative component of training and preparation, it is important that performance testing 

encompasses as many aspects of competition performance as possible. In this regard fixed 

distance time trials more closely mimic competition than other performance tests. However, 

as described in this review, the time trials most commonly used for performance assessment 

do not replicate the environmental factors cyclists encounter in the field. Therefore, great 

benefit will be gained from designing new performance tests more specific to competition. 

Subsequent studies could then establish the test’s ability to detect meaningful change in 

performance. 
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2.3 PHYSIOLOGICAL CORRELATES OF CYCLING PERFORMANCE 

The fundamental physiological factors contributing to cycling success can be 

determined in a sports physiology laboratory by testing the cyclist’s cardio-respiratory and 

metabolic capabilities. Laboratory assessment of competitive cyclists typically involves 

measuring aerobic capacity, peak power output, lactate threshold and mechanical efficiency 

during a graded exercise test.30,31 Establishing the laboratory measured variables important to 

cycling performance enables effective and targeted fitness assessment and subsequent training 

prescription to maximise competition success. Therefore this review will explore the 

relationship between the laboratory measured variables defined above and cycling 

performance. 

Peak power output (PPO) is a performance variable measured as part of routine 

laboratory assessment of a cyclist’s physiology and is essentially the highest power output 

reached by a cyclist during a graded exercise test. Generally well correlated to maximal oxygen 

uptake,32-34 PPO can be used to measure aerobic power, predict performance and for training 

prescription.35 

A number of studies have investigated the relationship between PPO and constant 

grade, self-paced cycling TT performance. Bentley et al. 36 reported PPO output is significantly 

related (r = 0.91) to 90 minute TT performance. McNaughton et al. 35 reported a significant 

correlation between PPO and a TT of 30 minutes (r = 0.96). Similarly, Balmer et al. 17 reported 

a significant correlation (r = 0.99) between PPO and 16.1-km TT power output. It is apparent 

from the results of these studies aerobic peak power is a strong indicator of self-paced TT 

performance of varying durations.  
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Recent research indicates PPO is an important determinant of stochastic cycling 

performance. Levin et al. 37 reported a strong to very strong relationship between PPO and both 

long (100-km) and short (30-km) stochastic TT’s. The nature of these TT’s, during which cyclists 

had to complete intermittent high intensity epochs throughout the TT, is similar to a mass start 

road race where cyclists must adjust their efforts to stay within the peloton. Therefore, it 

appears PPO may also be an important indicator of performance where cyclists react to, and 

initiate attacks, as well as TT’s where effort is more stable. 

Maximal oxygen uptake ( O2max) is defined as the maximum rate at which oxygen can 

be taken up and utilised by the body during exercise in one minute.38 Maximal oxygen uptake 

is considered the benchmark measure of the human body’s ability to produce adenosine 

triphosphate (ATP) through aerobic metabolism and is reported as either an absolute (L.min-1) 

or relative value (mL.kg-1.min-1) depending on the intention of its application. The factors that 

limit O2max have been subject to considerable debate, although it is clearly advantageous for 

an individual to possess a high cardiac output, blood oxygen transport capability and have an 

enhanced capability to produce ATP via oxidative phosphorylation in the skeletal muscles.39 

The relationship between O2max and both self-paced and stochastic time trial 

performance has been the focus of several investigations. Interestingly the results of several of 

these studies suggest absolute O2max is a more important determinant of performance than 

relative O2max. Bentley et al. 36 reported a strong correlation between absolute O2max and 20 

minute TT power output (r = 0.69), however the relationship between relative O2max and 

performance was only small to moderate (r = 0.11-0.47). Stickland et al. 40 reported similar 

results with a very strong correlation between absolute O2max and 20-km TT performance time 

(r =-0.72) while the corresponding relationship for relative O2max was somewhat weaker (r = 
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0.59). In a recent study, Levin et al. 37 reported a very strong correlation between constant 

grade stochastic TT performance and absolute O2max (r = 0.80). These findings suggest 

absolute O2max is a stronger determinant of TT power output than relative O2max, particularly 

when the course profile is flat or when intensity is variable. 

The weaker reported relationship between relative O2max and TT performance can be 

explained by exploring the manner in which these variables are tested and reported. As 

discussed earlier, relative O2max is reported in relation to a subject’s total body mass, while TT 

performance is generally represented by absolute values for either average power output or 

elapsed time. The primary resistance for any cyclists travelling in excess of 13 km∙h-1 on a 

relatively flat surface is the drag produced by their body and the equipment they use.41 

Considering flat TT’s are generally completed at speeds well in excess of 13 km∙h-1 it is apparent, 

within limits, flat TT cycling is not primarily limited by an individual’s body mass. This is 

highlighted by Padilla et al. 42 who suggested the higher body mass values for TT specialists, 

compared with uphill specialists, reduces the body surface area and frontal area to body mass 

ratio, consequently reducing aerodynamic resistance. Therefore, O2max reported in relation to 

one’s body mass will be limited in its capacity to predict flat TT performance, which is the 

manner in which many studies have assessed cycling performance in the laboratory.  

The term lactate threshold (LT) refers to the final exercise intensity before lactate 

production exceeds lactate removal from the body and blood lactate concentration increases.43 

Generally reported as a specific power output, a percentage of O2max or velocity, LT is used as 

a measure of sub-maximal aerobic fitness and subsequently as a marker of exercise intensity 

for training prescription. A recent review article described 25 different definitions of LT used in 



33 | P a g e  

 

current literature.43 This great variety of determination methods has led to continued debate 

as to the validity of LT as a performance determinant. 

Previous investigations into the relationship between LT and TT performance produced 

contrasting results. Bentley et al. 36 reported small to large relationships between cycling 

performance and LT that were dependant on the method of LT determination. Similarly 

McNaughton et al. 35 reported very strong to almost perfect correlations between short (5 min) 

and medium duration (30 min) TT performance. Furthermore, Morris et al. 44 described a nearly 

perfect relationship (r = 0.97) between LT and 20-km TT performance. The relationships 

between LT and TT performance reported by these studies suggest LT is an important 

determinant of TT performance. However, the results of other studies suggest otherwise. 

Stickland et al. 40 reported no significant relationship between 20-km TT performance and LT in 

a sample of 11 experienced male cyclists. Kenefick et al. 45 suggested average blood lactate, 

heart rate, percentage of max heart rate, O2 and power output were significantly higher 

throughout a 20-km TT than when measured at LT during a graded exercise test. Dumke et al. 

46 indicated heart rate during 30 and 90 minute TT’s was significantly higher than when 

measured at several markers of LT during a laboratory exercise test. However, the comparison 

between heart rate from a laboratory exercise test and the heart rates recorded during TT 

performance is significantly limited by the variable nature of heart rate.47 Therefore, the exact 

relationship between LT and self-paced, flat cycling performance is somewhat ambiguous. 

Additionally, the relationship between variable gradient and variable intensity cycling 

performance, more reminiscent of competitive cycling events is still unknown. 

The physiological variable ventilatory threshold (VT) is the point at which ventilation 

increases non-linearly in response to an increase in prescribed work rate.38 Similar to LT, VT is 
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thought of as a marker of the transition from predominantly aerobic to mainly anaerobic 

metabolism and is used in a similar fashion to LT as a measure of sub-maximal aerobic fitness 

and for training prescription.  

A number of studies have investigated the relationship between cycling performance 

and VT. Lucia et al. 48 reported a very strong negative relationship between VT and TT 

performance  throughout three long TT stages (r = -0.86, -0.77 & -0.92 respectively) of the Tour 

de France. Given these TT’s were performed (after a minimum of 6 and up to 19 days of ultra-

endurance exercise) the results of this study are limited in their application. Additionally, Lucia 

et al. 48 compared the heart rates from a laboratory exercise test to those taken during a time 

trial which, as discussed earlier, can be problematic. 

However, these results were supported by Amann et al. 49 who reported a significant 

relationship between VT and 40-km TT performance. Like LT, a number of determination 

methods exist for establishing VT. In this study, Amann et al. 49 indicated the breakpoint of the 

ratio between ventilation and volume of oxygen uptake (VE/ O2) method of defining VT is the 

most reliable and most strongly correlated (r = 0.90) to TT performance. These results are 

supported by Amann et al. 50 who again reported the VE/ O2 method of determination most 

strongly correlated (r = 0.80) to 40-km TT performance. Furthermore, Amann et al. 51 suggested 

the VE/ O2 method of VT determination is the best predictor of 40-km TT performance when 

compared to LT and other methods of VT determination. In this case the comparison of the 

relationship between respective variables and cycling performance is negligible as two different 

exercise test protocols were used to determine VT and LT. The longer stage protocol used to 

measure LT would have caused a greater accumulated fatigue during any given stage, which 
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may explain why Amann et al. 51 reported disparity between the relationships of VT and LT to 

cycling performance. 

Nevertheless, later studies further indicate VT is an important determinant of cycling 

performance. Levin et al. 37 reported a moderate to very strong correlation between stochastic 

TT performance and VT. Additionally Laursen et al. 52 reported a moderate relationship (r = 

0.42) between an increase in VT and improvement in 40-km TT performance. Whilst the 

strength of this relationship is somewhat weaker than the strength of correlations reported by 

others, it suggests improvement in VT will lead to an improvement in the TT ability of cyclists. 

The results of the above studies suggest ventilatory threshold is an important determinant of 

self-paced and variable intensity TT performance. But, given previous investigations all 

compared constant gradient cycling performance to VT, the relationship between VT and 

variable gradient cycling performance is unknown. 

The physiological variable, gross efficiency (GE) is defined by McArdle et al. 53 as the 

fraction of internal energy expenditure expressed as external work. Additionally, GE reflects 

exercise economy (ECO), which is defined as the energy required to maintain a given exercise 

intensity.53 Gross efficiency and, by association ECO, are considered central determinants of 

endurance exercise ability and as such, likely limit cycling performance.54 

Previous literature describing the relationship between markers of GE or ECO and 

cycling performance are largely equivocal. Storen et al. 55 reported a small but insignificant 

correlation between ECO and 15km self-paced TT. Interestingly, the relationship remained 

small, regardless of an increase in the degree to which O2 was scaled to body mass.  Similarly, 

Sassi et al. 56 indicated there was no relationship between GE or ECO and PPO, and GE did not 

change as a cycling season progressed from pre-competition to competition phase. 
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Importantly, these results suggest improvement in performance is achieved independent of 

physiological adaptation that improves GE. Recently, Levin et al. 37reported only a small to 

moderate relationship between ECO and a short or long stochastic TT. While previous literature 

has measured performance in a manner somewhat unlike real competition, reported results 

suggest ECO and GE are not important determinants of intermittent cycling performance.37 

However, other research suggests GE and ECO play an important role in mediating 

cycling performance. In a series of investigations, Hopker and colleagues reported a difference 

in GE between trained and untrained cyclists, an increase in GE following intensified training 

and change in GE as cyclists progressed through a cycling season.57-59 The collective power of 

these results suggests GE, and therefore ECO, increase in association with improvement in 

cycling performance and can discriminate between cyclists of different abilities. Additionally, 

an inverse relationship between GE and O2max reported by Lucia et al. 60 suggests professional 

cyclists with lower O2max, compensate by having a higher GE. Importantly, this relationship 

indicates high standards of cycling performance can be achieved via adaptation that increases 

GE independent of changes in oxygen uptake. 

Evidence presented above suggests the precise relationship between GE or ECO and 

cycling performance remains largely unknown. Additionally, as previous studies have reported 

the relationship between GE or ECO and cycling performance based on performance tests 

bereft of change in gradient, the importance of GE and ECO as performance mediators may be 

understated. Therefore future research should further clarify what role GE and ECO play in 

endurance cycling performance and whether or not their importance changes as performance 

testing moves closer to competitive cycling events. 
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This review of literature reveals a number of laboratory measured physiological 

variables share important relationships with cycling performance. However the relative 

importance of the physiological variables contributing to cycling performance requires greater 

elaboration, as previous findings are inconsistent and not always convincing. Importantly the 

performance tests used in previous research to establish the physiological determinants of 

cycling performance lack specificity in that they have not included variations in external 

environment. Advancement in cycling ergometer technology allows coaches and sports 

scientists to add environmental variation such as changes in gradient to current laboratory 

performance tests. Thus a significant contribution to cycling performance would be made if the 

physiological profile suited to variable gradient cycling was identified. 

2.4 TRAINING TECHNIQUES FOR COMPETITIVE CYCLISTS 

The training and physical preparation of any elite athlete requires considered 

application of a number of training techniques. The sport of road cycling covers a multitude of 

events, all requiring proficiency in a range of physiological and performance markers. Coaches, 

sports scientists and athletes make use of a variety of training techniques to evoke adaptations 

in individual physiology and achieve optimal performance outcomes. The most common 

training techniques include long slow distance training and high intensity interval training (HIT) 

which can take many different configurations.30. This review will explore the impact of these 

forms of training on the physiology and performance standard of competitive cyclists.  

2.4.1 Long Slow Distance Training 

Long, steady distance (LSD) training, sometimes referred to as over distance, continuous 

or prolonged training, is defined by Sleamaker 61 as training sessions completed over distances 
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or durations similar to those of major competitions at a sub-maximal intensity that can be 

maintained for an extended period of time. For the purpose of this literature review, LSD will 

be defined as any training completed at largely sub maximal (below 75% PPO) intensities for 

any duration longer than 90 minutes. A review of training practices suggests ~80% of all training 

is comprised of LSD in endurance athletes.62 

Several studies have investigated the effects of LSD on untrained samples. In these 

studies, participants have demonstrated significant improvement in a number of physiological 

parameters associated with cycling including O2max, muscle buffering capacity, metabolic 

enzyme activity, PPO, LT and anaerobic capacity.63-67 Additionally, Gibala et al. 64 reported a 

significant improvement in TT performance in their participants following only two weeks of 

LSD training. All of the enhancements listed above represent important physiological 

adaptations that would afford the participants of these studies tangible improvement in cycling 

performance. Therefore research indicates the training stimulus provided by LSD training is 

effective and sufficient to improve the physiology and performance of untrained participants. 

Studies using trained participants are not as prevalent, often uncontrolled and, in 

contrast to studies on untrained participants, less exhaustive in their exploration of the effects 

of training on physiology. Hoogeveen 68 investigated the ventilatory response to incremental 

exercise in both the pre-season and competition phases of a cycling season in 15 elite cyclists. 

There was a significant increase in O2max (~13%), PPO (~2%) and VT (~5%) from the pre-season 

to competition phase of the season. Whilst the training volume was reported to increase from 

the pre-season to the competition phase (~10 h), the intensity of exercise was uncontrolled 

throughout the study.  Given training volume was high through the season it is likely the 

majority of this training was of similar intensity to traditional LSD training. However elite cyclists 
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are more likely to undertake interval based training sessions of varying intensity and duration, 

as well as competing in races during the competitive season making it difficult to isolate the 

precise effect of the LSD training.  

In contrast, Lucia et al. 69 found no significant change in O2max across the full breadth 

of a cycling season when investigating the metabolic and neural adaptations to training in 13 

professional cyclists. However, Lucia et al. 69 did report a significant decrease in respiratory 

exchange ratio (RER) at 100 and 200 watts (W), decreased blood lactate concentration and 

enhanced motor unit recruitment as the season progressed. These adaptations indicate 

professional cyclists experience improvement in the recruitment and efficiency of slow twitch 

muscle fibres and not oxygen uptake as the season progresses. However, Lucia et al. 69also 

acknowledged that extrapolation of their findings to racing situations could be difficult due to 

measuring variables at set cadences rather than utilising a testing procedure of dynamic 

cadence. Similarly to the Hoogeveen 68 study, the training performed by participants in Lucia et 

al. 69 was measured but uncontrolled, again making it difficult to make inferences about the 

specific adaptations induced by LSD. 

Sassi et al. 56 completed a similar assessment of changes in aerobic fitness indices in 

response to a cycling season in a group of professional cyclists. There was a significant 

improvement in measures of maximal oxygen uptake as the season progressed from the resting 

phase, through to the competition phase (~10%). The only aerobic variables that did not 

increase throughout the season were GE and ECO. However, GE and ECO were measured in a 

small selection (n=8) of the overall sample which the authors acknowledged may have limited 

the statistical power to find any improvement in the respective variables. Indeed there was a 

trend towards improvement in GE, particularly between the resting and pre-competition 
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phases of the season. Nevertheless, the significant changes in physiology reported, were 

associated with significant improvement in several measures of performance. While the 

training completed by the cyclists in the study was mostly comprised of LSD, the other interval 

type training included in the cyclists training make it difficult to draw conclusions on the 

isolated effect of LSD training. 

Contrary to results stated for samples of professional cyclists, Hopker et al. 59 reported 

a significant increase in GE (~6.7%) in a group of competitive cyclists from the pre-competitive 

to the competitive phases of a cycling season. The authors also reported additional changes in 

O2max as well as markers of the LT during the early part of the cycling season. Interestingly, the 

change in GE was positively correlated with total training time in the pre-competitive phase, of 

which ~73% was spent at LSD training intensities. However, change in GE was also positively 

correlated to time spent above LT power output indicating improvements in aerobic fitness 

were unlikely to be the result of LSD training. Nevertheless, as the majority of training was 

completed below LT intensity, it is possible LSD training evoked some of the reported 

adaptation in physiology. 

Studies investigating the effects of LSD on competitive cyclists are not as definitive as 

those involving untrained participants due in most part to their scarcity and uncontrolled 

nature. The articles employing a sample of competitive cyclists explored by this review 

investigated change in performance and physiology over the duration of a season. However the 

intensity of training was largely uncontrolled, making it difficult to isolate and identify the 

effects of LSD training. Therefore future studies into the effects of LSD on trained cyclists should 

isolate LSD as a training stimulus and control for other forms of training to identify the specific 

effects of the training stimulus provided by LSD training. 
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2.4.2 Interval Training 

Interval training is defined by Brooks et al. 38 as a training session where periods of high 

intensity exercise are interspersed with periods of recovery. A cursory glance at popular cycling 

training literature presents many different forms of interval training.70,71 Variables that can be 

manipulated to influence the overall training stimulus include the length and intensity of both 

the work interval and recovery interval. Hawley 30 suggests this form of training is generally 

completed in the pre-competition and competition phase of the yearly cycle.  

Currently there is no scientifically validated system or formula by which the precise 

training load of individual intervals can be calculated. Additionally, to quantify stimulus of 

interval training, previous literature has simply stated the duration and intensity of the effort 

and recovery segments. Therefore, for the purposes of this review interval training has been 

categorised based on the duration and intensity of the efforts contained in a specific interval 

session. Long interval training (LIT) is defined as training involving any intervals of more than 

four minutes in duration completed at an intensity approximating LT. Short interval training 

(SIT) is defined as training involving intervals of less than four minutes and more than one 

minute in duration completed at an intensity over 90% percent of O2max or PPO with recovery 

periods of similar or longer length than the work interval. Maximal interval training (MIT) is any 

training involving intervals shorter than one minute in duration at intensities above PPO and in 

many cases as a maximal sprint effort. This review will explore the effects of each type of 

interval training as reported in current literature. 

2.4.3 Long Interval Training 

Evidence on the effect of LIT training on the physiological and cycling performance 

characteristics of untrained populations is relatively scarce. In studies that have employed 
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untrained subjects, significant improvement in O2max, oxidative enzyme activity, fat 

metabolism, muscle glycogen content, time to exhaustion (TTE) and repeat sprint ability has 

been reported after as few as seven sessions of LIT.72-74 Clearly, the training stimulus provided 

by LIT is adequate to evoke significant physiological adaptation associated with aerobic 

metabolism in untrained populations. However, the evidence suggests these adaptations 

transfer more universally to performance than events where the aerobic energy system is 

dominant.   

In an early study using well-trained subjects, significant improvement in the physiology 

and performance of competitive cyclists were reported after just six sessions of LIT over four 

weeks.75 The cyclist’s in this study demonstrated marked improvement in PPO (~4.3%) and 

O2max (magnitude unreported). Training adaptations transferred to substantial improvement in 

TTE and TT performance. Importantly the majority of improvement in TTE was evident after 

only two weeks, or three sessions of LIT training. An increase in TTE at a power output 

representative of 150 percent of PPO would likely afford participants substantial improvement 

in events of shorter duration, or specific periods of races requiring sustained high power 

output.  

Using the same LIT sessions over a longer training period (6 weeks), Westgarth-Taylor 

et al. 76 reported similar improvement in physiological parameters and performance in eight 

competitive male cyclists. Following the training intervention, these researchers reported a 

reduction in carbohydrate (CHO) oxidation and an increase in fat oxidation at the same absolute 

intensities; however substrate utilisation was unchanged at the same relative intensities. When 

the above results are taken in combination with a significant improvement in TT performance 

(~12%) it appears that LIT can have a substantial impact on the performance standard of already 
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well-trained cyclists. Interestingly the authors  suggested LIT improved sustainable power 

through mechanisms independent of the reported change in CHO and fat oxidation. Instead 

they suggest the performance improvement was a result of unmeasured improvement in motor 

unit recruitment.  

Weston et al. 77 again used the same LIT sessions when investigating the effect of LIT on 

the physiological characteristics of competitive cyclists. After completing four weeks of LIT, the 

participants demonstrated a significant increase in PPO (3.5%), skeletal muscle buffering 

capacity (~16%), TTE (~22%) and 40-km TT performance (~2.2%). In contrast to reported results 

from investigations using untrained cyclists,73,74 there was no increase in the activity of a 

number of skeletal muscle enzymes (glycolytic, oxidative and fat metabolism enzymes). 

Therefore, it is possible that LIT is inadequate to induce large scale mitochondrial enzymatic 

adaptation in trained populations.  

In a seminal training study, Stepto et al. 78 examined the effects of four different interval 

training sessions on the physiology and TT performance of competitive cyclists. In this study LIT 

was represented by two separate groups, performing either eight repetitions of four minute 

efforts or four repetitions of eight minute efforts at 80~% and 85~% of PPO respectively. Whilst 

the four minute group significantly improved PPO and TT performance, the eight minute group 

did not increase scores in either variable. Stepto et al. 78 described a curvilinear relationship 

between interval length and intensity, and observed change in performance that suggested the 

maximal improvement would occur after work intervals of three to six minutes at ~85% of PPO.  

Following LIT programs of varying lengths, participants in the studies described above 

were reported to have improved aerobic power, increased fat oxidation, enhanced buffering 

capacity, increase PPO and decreased oxidation of CHO. Discrepancies evident between the 
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results of studies involving trained participants indicate careful manipulation of the intensity of 

efforts and length of recovery interval is required. The major limitation in the application of the 

findings from a number of these studies is the lack of, or at least lack of any mention of control 

for other completed training. In this instance it is evident future studies should employ greater 

control or monitoring of training completed as an aside to the intervention. Nonetheless it 

appears evident that, LIT can efficiently improve the performance standard of already well-

trained competitive cyclists. 

2.4.4 Short Interval Training 

As described earlier, for this review short interval training (SIT) is defined as training 

involving effort periods more than one and less than four minutes duration. These intervals are 

generally completed in excess of 90% percent of O2max with recovery periods of similar or 

longer length than the work interval. As with other forms of training, the variables manipulated 

to shape the training stimulus are the work rest ratio and the intensity of the work intervals. 

Current published research presents SIT programs of varying configurations. This review will 

explore the effects of each of these SIT interventions on the physiology and performance of 

participants. 

Limited studies on the effects of SIT on the physiology and cycling performance on 

untrained samples have reported significant improvement in O2max, LT, PPO, the activity of 

oxidative enzymes with associated improvement in short and long TT performance.  

Improvements have been reported after as little as two weeks SIT Stepto et al. 78 and indicate 

the potential for SIT to substantially improve the physiological and cycling performance 

parameters of untrained populations.67,72,79 In contrast to the positive findings presented in 

studies on untrained participants Stepto et al. 78 reported minimal improvement in the 
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performance of competitive  cyclists following six sessions of SIT. A major point of difference in 

the composition of SIT sessions between that study and studies involving un-trained 

participants is the length of the recovery interval. Stepto et al. 78 used a recovery period of four 

minutes duration, whereas McKay et al. 67 and Little et al. 79 imposed shorter recovery intervals 

of 60 or 75 seconds. It is possible the shorter recovery resulted in greater stress on oxidative 

pathways which lead to the performance improvement. Indeed, Laursen et al. 80 reported a 

significant improvement in fitness parameters of competitive cyclists following a SIT 

intervention. Cyclists completed 20 repetitions of one minute, 100% PPO efforts and one effort 

to exhaustion at 100% PPO on four occasions in two weeks. On completing the training 

intervention, cyclists showed significant increases in ventilatory threshold one (~6%), 

ventilatory threshold two (~7%) and PPO (~4%). These results are further indicative of the 

potential for a positive impact on the physiology of competitive cyclists from an SIT program, 

and it could be expected significant improvements in endurance performance would arise as a 

result. Importantly, Laursen et al. 80 used a shorter recovery interval than Stepto et al. 78 

resulting in a work rest ration of 1:2 as opposed to 1:4 respectively. When considering these 

results in combination with findings from studies of untrained participants,67,79 it is likely 

shorter recovery intervals are an integral component of effective SIT training.   

Further evidence of the need for shorter recovery intervals is presented by Laursen et 

al. 81 They reported a significant improvement in the physiology and performance of 

competitive cyclists following four weeks of a SIT program. Participants were split into two 

groups and performed eight efforts of 60% of the TTE at PPO twice per week. However, group 

one completed efforts with a work rest ratio of 1:2 whilst group two completed a recovery 

interval based on the time taken to return to 65% of heart rate max (work rest ratio ~1:1-2 
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depending on which interval in session). Whilst group two had significantly less mean total 

recovery time when compared to group one (~1248s & ~2028s respectively) they demonstrated 

similar improvements in PPO (~4.7% & ~6%), O2 peak (~5.2% & ~8%) and TT speed (~4.7%& 

~5.5%). Given Laursen et al. 81 reported a SIT bout completion rate among participants of only 

64%, it appears there is a need for considered management of fatigue when implementing an 

SIT program.  

In a follow up investigation, Laursen et al. 52 used the same SIT protocol to further 

investigate the effect of SIT on physiology and performance in 41 trained males. After a four 

week training intervention the authors described improvement in O2max, PPO and TT 

performance similar to those reported in previous studies.80,81 Additionally, training groups 

demonstrated significant improvement in VT (~15% for both groups) and anaerobic capacity 

(~100% & ~54% for groups 1 & 2 respectively). The improvement in short term performance is 

indicative of a major adaptation in anaerobic physiology that would no doubt be beneficial to 

performance, particularly in events of dynamic intensity. The findings suggest a need for work 

rest ratios of 1:1.5-2 when performing SIT to enhance cycling performance.  

Whilst inconclusive, the majority of research appears to indicate a positive impact of SIT 

on the fitness status of competitive cyclists. Even after only four sessions of SIT over two weeks, 

significant improvement in power output at ventilatory thresholds, aerobic capacity, anaerobic 

capacity and PPO are evident; these adaptations are associated with superior performance in 

a 40-km TT and TTE at an intensity approximating PPO. However, studies investigating SIT often 

failed to mention control for training completed externally to the training intervention. Whilst 

it is unlikely other training lead to the changes presented in the research explored above, care 

should be taken to outline the control for external training. Additionally future studies involving 
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trained cyclists would benefit from inclusion of morphological investigations into adaptations 

in skeletal muscle metabolism and enzyme activity. 

2.4.5 Maximal Interval Training 

Often referred to as supra-maximal training, maximal interval training refers to training 

involving all-out (or close to) maximal efforts. For the purpose of this literature review maximal 

interval training (MIT) is any training involving intervals shorter than one minute in duration. 

Typically intervals are completed at intensities close to or at maximal intensity (>100% PPO) 

with recovery durations dependant on the desired outcome. As the effort component of this 

type of training is often completed at power outputs well in excess of O2max power, they 

require a large contribution from anaerobic metabolic pathways and likely involve recruitment 

of large numbers of fast twitch muscle fibres.64 Hawley 30 suggests this form of training should 

be combined with LIT and SIT in the lead up to competition as a means of peaking. A number 

of studies have investigated the effects of MIT on various forms of cycling using both trained 

and untrained participants. This review will examine the findings of current literature to 

establish the effect of MIT on physiology and performance. 

Several studies have investigated the physiological adaptations to MIT in untrained 

populations. These studies have demonstrated significant improvement in physiological 

parameters including O2max, PPO, oxidative enzyme activity and fat metabolism after as few 

as six MIT sessions, whilst others have reported similar adaptations over longer training 

periods.64,65,82-88 These adaptations have generally been associated with significant 

improvement in performance in a variety of cycling disciplines including long and short TT 

performance. Overall MIT appears to have a substantial effect on physiological adaptation and 

subsequently leads to superior performance in untrained populations. 
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Stepto et al. 78 included a MIT intervention in their seminal training study on the effects 

of interval training on the endurance performance of trained cyclists. Four trained male cyclists 

completed six MIT sessions over three weeks. Each session consisted of 12 repetitions of 30s 

efforts at ~175 percent of PPO interspersed with four and a half minute recovery intervals. 

Stepto et al. 78 reported significant improvement in long duration (40-km TT) and short duration 

(30s sprint) average power. These results suggest MIT can improve the cycling performance of 

trained populations. However in contrast to observed adaptations in untrained participants, 

the authors reported no improvement in PPO following the MIT program. This would suggest 

MIT is not sufficient to increase aerobic power in trained populations and indicates the 

improvement in TT performance arose as the result adaptation in other, non-measured 

physiological variables. However, given PPO is reportedly the best predictor of TT 

performance,17 it is possible the small sample size limited the statistical power to elucidate the 

true effect of MIT on PPO. Nevertheless, the findings of Stepto et al. 78 provide evidence of the 

ability of MIT to improve cycling performance over a variety of durations.  

Similar training sessions were used by Laursen et al. 81 to investigate the effect of MIT 

on 10 trained cyclists. The participants completed the MIT sessions twice per week for four 

weeks. Unlike the earlier study,78 Laursen et al. 81 observed a significant improvement in PPO 

(~3%) in addition to increases in O2max (~3%) and 40-km TT speed (~4.3%). However Laursen 

et al. 81 implemented a longer training block and increased the absolute exercise intensity of 

the efforts mid-way through the study which may explain the difference in results. Nonetheless, 

these results indicate that MIT is effective in improving aerobic power and subsequently 

endurance performance in already trained cyclists despite the brief and intense nature of the 

training stimulus.  
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In a further study Laursen et al. 52 again used the same MIT program of 12 repetitions 

of 30s efforts to investigate the effect of MIT on central and peripheral adaptations in trained 

cyclists. After the MIT program, Laursen et al. 52 reported a significant increase in PPO, 

ventilatory threshold one (~17%), ventilatory threshold two (~9%) and anaerobic capacity 

(~75%). There was also a significant improvement in 40-kmTT performance, with subsequent 

increases in time trial O2, heart rate and blood lactate. Interestingly, Laursen et al. 52 indicated 

there was no change in plasma volume, haematocrit or haemoglobin after the MIT program. 

As these are common indicators of central physiological adaptations, it appears the 

improvement in TT performance could occur as a result of peripheral adaptation. However as 

there are a number of central regulators of exercise performance, it would be erroneous to 

suggest only peripheral adaptations led to the performance change.  

Paton et al. 89 incorporated explosive single leg efforts into a MIT program to evaluate 

its effect on the performance and physiology of trained cyclists. After five weeks of the 

combined MIT and explosive leg training intervention  the authors reported significant 

increases in PPO (~7%), one kilometre TT power (~9%), four kilometre TT power (~8%), lactate 

power profile (~6%) and an improvement in ECO (~3%). However due to the combined nature 

of the MIT program, it is difficult to isolate the training stimulus responsible for improved 

performance.  

In trained cyclists the adaptive effects of MIT are somewhat lessened but nevertheless 

significant improvements are evident in PPO, VT and anaerobic capacity. These adaptations are 

combined with improvement in a variety of performance measures including long TT and sprint 

power, and also to enhanced physiological response to intense exercise. Given some studies 

did not control for external training; further well controlled studies involving competitive 
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cyclists are warranted. Future studies might include investigations into the changes in muscle 

metabolism, oxidative and glycolytic capacity and determine the effects of concentrated 

periods of high volume bouts of MIT on performance. Nevertheless, it is evident that MIT 

evokes adaptation in a number of energy pathways and improves different cycling performance 

mediums. Additionally, given well-trained athletes can reach a performance plateau, it is 

plausible that MIT could be a catalyst to further improvement in physiology and performance 

standard. 

2.5 ORGANISATION OF TRAINING FOR COMEPTITIVE CYCLISTS 

The organisation of training within a cycling season is often dictated by one of the 

paradigms of periodisation; a model of training organisation.90 While this review has described 

the effects of specific training techniques when they are implemented in isolation, in practice 

they are often implemented simultaneously to evoke physiological adaptation, despite 

conflicting adaptive mechanisms. In this manner, periodisation would determine how and 

when each specific type of training would be executed in order to achieve optimal 

performance, based on mechanisms of physiological adaptation.  

A concept that underpins the training response, no matter how training is organised in 

a periodised program, is functional overreaching. Functional overreaching has been defined as 

a training stress that results in a short term decrement in physiological and exercise 

performance measures followed by a period of recovery that has a super-compensatory effect 

on performance.91 The two predominant models of the physiological response to training, the 

super-compensation model and the fitness-fatigue model, indicate that a degree of 

overreaching is necessary to evoke beneficial physiological adaptation and improve 

performance.90,92 However, if the period of overreaching is not followed with sufficient rest and 
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the disturbances in physiology and performance continue, non-functional overreaching can 

occur.91 One method coaches, athletes and sports scientists use to instigate functional 

overreaching is program a period of intensified training as would occur during a training camp.91 

Early studies on the effects of intensified training on cycling physiology and performance were 

limited to identifying and distinguishing between non-functional overreaching and 

overtraining. Nevertheless, evidence presented in some of these studies suggests performance 

not only returns to normal but may be enhanced after a period of intensified training and an 

appropriate recovery interval. 

Jeukendrup et al. 93 highlighted the potential for a short bout of intensified training to 

rapidly improve exercise performance. In their study seven trained cyclists completed two 

weeks of intensified training where both volume and intensity were significantly increased. 

Jeukendrup et al. 93 reported that all participants displayed physiological and psychological 

symptoms of overtraining immediately following the two week training block. Additionally 

performance immediately following the training was significantly impaired and even after a two 

week recovery period participants still exhibited signs of mental fatigue. However, after the 

recovery period participants showed significant improvement in PPO and 40-km TT 

performance. Whilst there must be consideration for continued mental fatigue, results suggest 

a significant increase in the volume and intensity of training is a viable training technique for 

the rapid improvement of physiology and cycling performance. 

In contrast Halson et al. 94 reported no improvement over baseline scores for a number 

of variables following a similar intensified training regimen. After two weeks of training, eight 

endurance trained males exhibited impairment in physiological, psychological and performance 

measures. Importantly, although physiological and performance measures returned to normal 
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they were not enhanced over baseline scores following a two week recovery period. However, 

the cyclists who made up the sample in that study were less trained (average O2max ~58 mL.kg-

1.min-1) when compared to the earlier study ( O2max ~65 mL.kg-1.min-1).93 In this instance it could 

be suggested the training stimulus provided is more appropriate for cyclists of superior 

physiological and performance standards. Nevertheless, the absence of performance 

decrement indicates the cyclists avoided maladaptation despite completing a substantially 

intensified training period. Additionally, given both Halson et al. 94 and Jeukendrup et al. 93 

reported psychological signs of overreaching after only one week of training, a shorter training 

period could negate additional accumulated fatigue caused by the longer training intervention 

necessitated by the diagnostic aim of both of these studies. 

Recent studies have evolved from diagnostic outcomes to focus on the physiological 

and performance response to intensified training in elite athletes. The first example of such 

investigations suggests intensified training leads to substantial improvement in physiological 

status and performance measures. Breil et al. 95 reported a significant increase in O2max (~6%), 

PPO relative to body mass (~5.5%) and VT (~9.6%) following an 11 day period of intensified 

cycling LIT in alpine skiers. Importantly, there was no improvement in any measure for the 

control group who completed conventional training. While the recovery period used by Breil et 

al. 95 was shorter than earlier studies that reported lingering signs of fatigue, the training 

volume was somewhat reduced. This suggests if the overall training volume of the intensified 

training period is moderated, beneficial physiological adaptation can occur. However, given the 

participants recruited for the study were not trained cyclists, the application of results to a 

competitive cycling population, or trained populations, is limited.  
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A similar response to intensified training was reported following a comparison between 

traditional and block periodisation.96 Cyclists in the block periodised group completed a four 

week, two component training intervention. To instigate a functional overreaching response, 

the first component was one week highly populated by LIT (five consecutive sessions). The 

second component consisted of three weeks where the frequency of LIT was reduced to once 

per week and LSD training volume increased. In contrast, cyclists in the traditional periodised 

group completed the same LIT sessions twice a week, in addition to LSD training, for four weeks. 

Interestingly, physiological adaptation only occurred in the block periodised group despite both 

groups completing the same number of interval sessions and a similar amount of LSD training. 

Although there was no specific measure, performance was assessed in this study by comparing 

mean power outputs from the work interval of LIT sessions. Ronnestad et al. 96 suggested the 

performance improvement occurred only after the three week, reduced LIT volume period. 

However, there appeared to be a trend for improvement in mean power output during LIT in 

the first interval training period of the second component. Thus, it is possible the improvement 

in physiology and performance is a result of the first week of intensified training and not the 

following weeks of predominantly LSD. Any further improvements are more likely the result of 

a super-compensatory effect following a sufficient recovery period, an example of functional 

overreaching. 

In a follow up study, Ronnestad et al. 97 completed a similar comparison between block 

and traditional periodisation. However, participants repeated each cycle a further two times 

giving a total intervention period of 12 weeks. Again the block periodised group demonstrated 

a superior adaptive response and subsequently superior performance improvement 

characterised by a significant increase in haemoglobin mass (~5.6%), O2max (~8.8%), LT (~22%), 
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PPO (6.2%) and TT performance (~8.2%). Therefore, it is evident intensified training periods in 

well trained cyclists, evokes substantial improvement in performance as a result of important 

physiological adaptation. However, it is important to recognise limitations in the allocation of 

participants to training groups and the training stimulus provided to participants in both 

Ronnestad and colleagues studies. Traditional periodisation is typically characterised by a 

broad training focus whereby many physiological mechanisms are targeted for adaptation at 

once.98 Conversely, block periodisation is characterised by highly concentrated training 

stimulus that progresses consecutively through a small number of targeted physiological 

mechanisms.98 Given participants in the traditional groups from both studies completed only 

LSD and LIT, it is apparent the training stimulus doesn’t truly replicate traditional periodised 

training. Additionally, the lack of progression in the training stimulus for the block periodised 

groups is more representative of a shock micro-cycle than a block periodised training program. 

Importantly, there appeared to be a difference in the fitness and performance standard of the 

two training groups in the shorter study before the training intervention commenced. 

Therefore, it is possible the substantial gains reported for the block group occurred as an 

artefact of a greater potential to improve when compared to the traditional group. Therefore, 

further evidence is required to define the differences in the physiological and performance 

response to each form of training. Nevertheless, the adaptations and performance 

improvements reported in both studies, suggest intensified training followed by sufficient 

recovery, results in effective functional overreaching and not a maladaptive response. 

Overall, the articles described above suggest organisation of training into intensified 

periods provides an effective training stimulus for competitive cyclists. Early studies, in which 

the focus was on the diagnosis of maladaptation and non-functional overreaching, reported 
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some negative ramifications following intensified training. However, a sufficient recovery 

period appears to resolve any lingering fatigue and in some cases, allows for functional 

overreaching to occur. Later investigations, in which the training stimulus is slightly mediated, 

demonstrated a more positive adaptive outcome that lead to substantial performance 

improvement following intensified training. Nevertheless, as lingering signs of fatigue were 

evident following intensified training in early studies, and the time course of performance 

improvement was ambiguous in others, further research is required to elucidate the effect such 

training has on competitive cyclists. 

2.6 CONCLUSION 

The current physiological and performance assessment techniques used by scientists 

and coaches are limited in that performance assessment does not truly replicate competitive 

cycling. Utilising the simulation capacity available in current ergometer technology will allow 

development of more specific and ecologically valid testing protocols that include controlled 

variation in external environmental conditions. Subsequently, new test protocols can be used 

to further study the pacing response, and how CP and W’ determine pacing response, to 

variable resistance cycling.  

An artefact of poor test specificity is a dearth of information regarding the physiological 

profile best suited to variable gradient cycling. While previous studies have described the 

physiological variables that determine flat and uphill cycling performance, none have 

determined the correlates of variable gradient performance. Given competitive cycling events 

take place on public roadways with almost constant variation in gradient, further research into 

the physiological determinants of variable gradient cycling is required. The results of such 
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research will elucidate which variables should be targeted for training intervention to maximise 

performance potential in competitive events. 

The chronic adaptive response to specific training techniques and the changes in 

performance that follow are well defined. However, greater quantification of the immediate 

physiological response to different training is required to provide a better means to classify 

specific training techniques. How such techniques are organised into training programs for 

endurance athletes is attracting research interest. Early studies with a diagnostic approach, 

evident in the training prescription and analysis of training response, reported equivocal results 

following intensified training. Recent studies with a greater emphasis on performance, and 

subsequently a reduced training stimulus, have reported a more positive response following 

block periodisation of interval training. However, the time courses of the adaptive and 

performance responses to such training remains ambiguous and in some instances, training 

groups appear to be poorly matched before starting the intervention. Additionally, the training 

interventions described as traditional and block periodisation bear little resemblance to 

descriptions of those periodisation paradigms, limiting the ability to compare the training 

response.  Future research should further investigate the effect of intensified training on 

physiology and performance, paying particular attention to methodological limitations 

identified above and identifying the time course of the adaptive and performance response to 

intensified training. 
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ABSTRACT 

Purpose: Ergometer based time trials are commonly used to assess performance 

changes due to training or other interventions. This investigation establishes the reliability of a 

novel computer simulated cycling time trial. Methods: Nineteen cyclists (age: 32 ± 12 years, 

mass 73 ± 11 kg, height 178 ± 5 cm) completed four time-trials over a 20-km course which 

included numerous changes in gradient. The time-trials were completed over a 4-week period 

in order to establish both short and long-term reliability. Results: Performance time (mean ± 

SD) for trials one to four was 2265 ± 149 s, 2252 ± 153 s, 2236 ± 146 s and 2240 ± 154 s 

respectively; the corresponding power output for consecutive trials was 293 ± 35 W, 297 ± 36 

W, 299 ± 35 W and 299 ± 35 W. The coefficient of variation (± 90% confidence limits) of 

performance for trials separated by 7, 14, 21 and 28 days was 1.1% (0.8% – 1.5%), 1.3% (1.1% 

– 1.9%), 1.3% (1.1% – 1.9%) and 1.5% (1.1% – 2.1%) respectively for time; the corresponding 

values for power output were 2.0% (1.5% – 2.7%), 2.3% (1.8% – 3.2%), 2.6% (2.0% – 3.6%) and 

3.2% (2.5% – 4.5%). Further analysis based on rider ability indicated slower riders were less 

reliable than faster riders by a factor of ~1.1. Conclusions: The reliability of performance in a 

novel simulated variable gradient time-trial is excellent and should allow sports scientists, 

coaches and cyclists to detect small, but worthwhile changes in performance. However, 

reliability of performance time and power output diminishes with increasing time between 

trials. Additionally, faster riders show better reliability than slower riders over time. 

Researchers should consider the effect of time between trials and athlete ability when making 

conclusions about intervention effectiveness. 
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3.1 INTRODUCTION 

Laboratory based assessments of physiology and performance form an integral part of 

athlete monitoring and preparation for competition. Establishing the physiological capacities 

and performance standards of athletes, allows sports scientists and coaches to assess the 

effectiveness of training programmes and other experimental interventions. The performance 

capabilities of competitive cyclists are often assessed using simulated time trials completed 

under controlled conditions in a laboratory. Laboratory based cycling trials can take several 

forms,1 and there has been considerable debate on the advantages and disadvantages of the 

different types of test.2 However from an ecologically valid perspective, fixed distance self-

paced time-trials most closely represent a true competitive situation and are often the 

preferred option when investigating athlete performance enhancement strategies.  

Irrespective of the test design, any test must have good reliability to monitor the small 

changes in performance that matter to competitive athletes.3,4 Several previous studies have 

investigated the reliability of different types of time-trial protocols. The re-test reliability 

(reported as a coefficient of variation) for simulated cycling time-trials of ~30-60 minutes 

duration, completed on a flat course and bereft of changes in gradient or prescribed changes 

in intensity is reportedly between 0.7%-1.5% and 1.9%-3.6% for time and power respectively.5-

7 Similar reliability measures have also been reported for time (1.4%-2.9%) and power (1.7-

3.5%) during a simulated up-hill time-trial completed on a constant gradient 8-mile course.8 In 

a more recent study Driller et al. 9 reported excellent reliability (~1.3% for power) for a short 

duration 15- minute self-paced time-trial following a 15-minute pre-load activity at a fixed 

intensity. However, whilst these previous studies have reported the reliability of performance 

measures between consecutive trials over short intervening periods (typically 1-10 days 
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between trials), none have reported the effects of increasing time between trials on test 

reliability. Further, a common issue with these previous studies is they lack the variations in the 

external environment that are typically seen during real competitions.  

Unlike traditional laboratory based time-trials, competitive cycling events typically take 

place on public roadways and as such consist of constant changes in road gradient. Perception 

of these changes in combination with internal physiological feedback mechanisms combine to 

determine how an individual cyclists adjusts pace and effort.10 Pacing strategy is therefore 

adjusted according to perception of the internal and external environment by important brain 

centres.10 Currell et al. 2 suggest that any laboratory measure of sporting performance should 

allow participants to adopt a pacing strategy similar to that which is required by competitive 

situations. By providing a constant external environment, most laboratory test protocols do not 

challenge the perceptive skills of the cyclists and present a testing stimulus that is unlike 

competitive situations. In one of the few studies to examine reliability of performance when 

the test required substantial changes in intensity, Schabort et al. 11 reported short-term (>7days 

between trials) reliability for both total time and repeated high intensity efforts (1-km and 4-

km) time of ~2% during a simulated 100-km time trial. Conversion of this reliability in time to 

an equivalent mean power yields relatively poor reliability of ~3.7%.3 In a more recent 

modification of the Schabort et al. 11 study using a shorter duration 30-km time-trial, Abbiss et 

al. 12 reported reliability in mean power of 2.4% after subjects had completed a familiarisation 

session. Interestingly in their study, Abbiss et al. 12 reported a large decrease in test reliability 

(~11%) when trials were separated by large intervening periods.  

While these two previous studies address some of the issues associated with variations 

in pace during laboratory based time trials, they do not fully simulate a competition situation 
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requiring almost constant changes in exercise intensity in response to variation in the external 

environment. However the development of new computer technology and bicycle ergometers 

which allow accurate simulation of real race course profiles provides an opportunity to study 

the effects of scientific interventions in a more realistic environment. Therefore the aim of this 

study was to establish the short and long term re-test reliability of a novel computer simulated 

cycling time-trial completed on a course of varying gradients. 

3.2 METHOD 

3.2.1 Participants:  

Nineteen competitive cyclists (17 males, 2 females) volunteered to participate in this 

study (Age: 32 ± 12 years, mass 73 ± 11 kg, height 178 ± 5 cm). All cyclists were well-trained 

with a minimum of two years racing experience at an A or B grade standard. All testing was 

performed in the athlete’s competition phase of the season. Participants were free from illness 

or injury and gave their written informed consent to participate in the study. The study was 

carried out in accordance with the ethical and procedural requirements of the journal 13 and 

approved by the institutional human research ethics committees. 

3.2.2 Design and Procedure: 

The study was a repeated measures design requiring cyclists to complete four simulated 

20-km cycling time-trials at set time intervals. Trials one to two and two to three were 

separated by 7 days and trials three to four by 14 days. Each trial was completed at a similar 

time of day (±2 hours) and was preceded by a standardised 20 minute warm up. Participants 

were instructed to treat each trial as it was an important competition and refrain from vigorous 

exercise and maintain a consistent diet in the 24 hours before each trial. Cyclists were 
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requested not to consume any alcohol, caffeine or other substances that may affect 

performance in the 12 hours immediately preceding each trial. 

3.2.3 Methodology:  

All test sessions were completed on a Velotron Dynafit Pro cycle ergometer (RacerMate 

Inc, WA, USA) using the company’s associated 3D race course software. Prior to the first trial, 

the Velotron factory calibration was confirmed according to manufacturer instructions using 

the “Accuwatt” function. During the first session each participant was fitted to the ergometer 

in a manor to replicate their own racing bicycle. The fit measurements were recorded and 

repeated for each subsequent testing session. Cyclists initially completed a 20 minute 

standardised warm up consisting of three repeated increasing intensity bouts. The first two 

minutes were completed at 2-2.5 W.kg-1, followed by two minutes at 3-3.5 W.kg-1 and finally 

one minute at 4-4.5 W.kg-1 repeated consecutively. For the final five minutes cyclist pedalled at 

a fixed intensity of 100W. The time-trial was completed on an experimenter designed course 

which replicated a typical racing circuit and contained numerous changes in gradient 

represented by both ascents and descents as shown in Figure 3-1. The total elevation gain over 

the 20-km was 300 meters leading to an average gradient of ~1.5%. 

 

 

 

Participants were able to view their progress over the course on a computer monitor 

and were provided with information on distance completed and gear selected; all other 

information was blinded to remove any potential pacing feedback. Participants were requested 

Figure 3-1 The computer simulated course profile showing the variation in gradient and specific segment information of 
the time-trial used in this study. 
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to complete each time-trial as quickly as possible with no restriction on gear selection, cadence 

or cycling posture (seated or standing). Participants were not restricted to a set pacing strategy, 

were not coached on how to best ride the course and in order to control for extrinsic 

motivation, no encouragement was given to cyclists during the trials. Throughout the trial 

participants were cooled by two 30 cm pedestal fans and were able to consume water ad 

libitum.  

3.2.4 Statistical Analysis: 

Simple descriptive statistics are shown as means ± between-subject standard 

deviations. All measures were log transformed to reduce bias arising from non-uniformity of 

error and analysed using a made for purpose Excel spread sheet for reliability analysis.14 Typical 

error was determined as coefficients of variation (CV%) along with their 90% confidence 

intervals (CI). The spreadsheet also provided the intra-class correlation (± 90% CI) between 

trials. Analysis was performed for all subjects together and as separate analysis for the fastest 

(n=10) and slowest (n=9) sub-groups in the time trial. 

3.3 RESULTS 

Table 3-1. shows the time and power output (mean ± SD) for all cyclists, and the sub-

groups of fastest and slowest cyclists across all four trials. The change in mean of the 

performance variable represents the size of any learning effect between trials. For all cyclists 

there was a change of -0.6%, -0.7% and 0.2% in mean performance time between consecutive 

trials; the corresponding change in mean power between consecutive trials was 1.3%, 0.9% and 

-0.1% respectively. The magnitude of the mean change between trials was largest from trial 1-

2 and reduced with subsequent trials, however all changes were deemed trivial (ES<0.2) The 
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fastest subgroup of cyclists was ~10% faster and produced ~18% more power across all four 

trials than the slower sub-group.  

Table 3-1 Performance characteristics for all cyclists and sub-groups of fastest and slowest cyclists (mean ± SD). 

 Tall (s) Tfast (s) Tslow (s) Wall (W) Wfast (W) Wslow (W) 

Test 1 2265 ± 149 2153 ± 87 2390 ± 90 293 ± 35 314 ± 28 269 ± 26 

Test 2 2252 ± 153 2137 ± 85 2379 ± 98 297 ± 36 320 ± 28 271 ± 24 

Test 3 2236 ± 146 2122 ± 75 2363 ± 83 299 ± 35 323 ± 23 273 ± 26 

Test 4 2240 ± 154 2115 ± 68 2379 ± 85 299 ± 35 324 ± 20 271 ± 25 

Mean 2248 ± 151 2132 ± 79 2378 ± 89 297 ± 35 320 ± 25 271 ± 26 

Abbreviations: Tall = performance time all cyclists; Tfast = performance time fastest cyclists; Tslow = performance 

time slowest cyclists; Wall = mean power all cyclists; Wfast = mean power fastest cyclists; Wslow = mean power 

slowest cyclists. 

Figure 3-2. shows the coefficient of variation of performance for trials separated by 7, 

14, 21 and 28 days. The CV for seven days was calculated by taking the average CV from tests 

1-2 and 2-3, 14 days by taking the average CV from tests 1-3 and 3-4, 21 days by taking the CV 

from tests 2-4 and 28 days the CV from tests 1-4. The variation in performance time for all 

cyclists’ increased linearly from 1.1% to 1.5% with increasing time between trials. Similarly the 

variation for mean power increases from 2.0% to 3.2% with increasing time between trials. The 

faster cyclists were marginally more reliable than the slower cyclists over the short term (7-14 

days between trials) but there were no substantial differences in reliability between sub-groups 

over the longer term. 
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Table 3-2. shows the intra-class correlations (± 90% CI) for performance time and power 

output for all cyclists, and sub-groups of fastest and slowest cyclists as time increases between 

trials. A gradual decline in reliability is evident for time and power with increasing time between 

trials. 

Figure 3-2 Coefficient of variation (CV) for time and power output (±90% CI) as time increases between trials for all cyclists 

(a), fastest cyclists (b) and slowest cyclists (c). 
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Table 3-2 The changes in intra-class correlation coefficient (ICC ± 90% CI) for all cyclists, fastest cyclists and slowest cyclists 
with increasing time between trials. 

 
Tall Tfast Tslow Wall Wfast Wslow 

ICC 7days 
0.98     

(0.96-0.99) 
0.95     

(0.81-0.99) 
0.93         

(0.79-0.98) 
0.98     

(0.95-0.99) 
0.97     

(0.87-0.99) 
0.97       

(0.89-0.99) 

ICC 14days 
0.97     

(0.94-0.99) 
0.95     

(0.84-0.98) 
0.86         

(0.58-0.96) 
0.97     

(0.94-0.99) 
0.95     

(0.84-0.98) 
0.95       

(0.84-0.99) 

ICC 21days 
0.97     

(0.93-0.98) 
0.92     

(0.78-0.98) 
0.88         

(0.65-0.97) 
0.96     

(0.91-0.98) 
0.92     

(0.76-0.97) 
0.94       

(0.81-0.98) 

ICC 28days 
0.96     

(0.91-0.98) 
0.87     

(0.65-0.96) 
0.88         

(0.64-0.96) 
0.94     

(0.87-0.97) 
0.87     

(0.63-0.96) 
0.92       

(0.76-0.98) 

Abbreviations: Tall = performance time all cyclists; Tfast = performance time fastest cyclists; Tslow = performance 

time slowest cyclists; Wall = mean power all cyclists; Wfast = mean power fastest cyclists; Wslow = mean power 

slowest cyclists; 7days = seven days between trials; 14days = 14 days between trials; 21days = 21 days between 

trials; 28days = 28 days between trials. 

3.4 DISCUSSION 

The major findings of the present study is that a novel laboratory based simulated 

cycling time-trial performed on a course of varying gradients is a reliable test in terms of time 

(~1.2%) and power output (~2%) with competitive cyclists when trials are separated by less 

than 14 days. However reliability of performance declines substantially as time between trials 

increases beyond this period. In addition it was evident that faster cyclists were more reliable 

in the short term in comparison to their slower counterparts, though this finding was not 

apparent when trials were separated by longer intervening trial periods. We also found 

evidence of a learning effect between particularly between trials 1-2; though this was deemed 

statistically trivial. Evidence of a learning effect, all be it small, is a finding consistent with 
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previous studies7,8,12 and adds support to the requirement of at least one familiarisation trial 

for subjects prior to performing any experimental study trials. 

The observed short term (7-14 days between trials) reliability for performance in our 

study was similar to, and in some cases better, than the short term reliability reported in 

previous studies using constant grade time-trials.5-8 However, a unique aspect of our study is 

the inclusion of frequent variations in terrain which we may have expected to increase 

performance variation compared to a constant gradient time-trial. Importantly, the similarity 

in short term reliability between this study and others indicates the presence of changes in 

gradient does not appear to adversely affect the tests reliability. 

The variation in performance we report here is also substantially smaller than that 

reported in previous studies using dynamic changes in effort over both 100-km and 30-km 

distances.11,12 The reasons for the better reliability in the current study are unclear, since both 

the previous studies used cyclists of similar ability. However a possible explanation relates to 

the differing nature of the dynamic tests. In both previous dynamic studies cyclist were required 

to perform set periods (0.25-4-km) of high-intensity activity during the trial when instructed by 

the researchers, whereas in the current study the cyclists were free to modify their intensity in 

response to their perceived feelings at the time. The ability to make smaller but continuous 

modifications to exercise intensity may have allowed the athletes in our study to adopt a more 

even pacing strategy and this therefore may lead to better reliability. It is also possible the 

shorter distance in the current study influenced reliability, as longer distances would allow for 

greater errors in a cyclists self-pacing strategy to manifest. Clearly changes in feeding for 

example during a 100-km trial would have a much bigger effect on pacing than during a 20-km 

trial.  
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We also observed a substantial decrease (Fig 3-2.) in reliability of cycling performance 

with increasing time between trials. The decrease in reliability over time is consistent with the 

findings of Abbiss et al. 12 who reported a very large decline in reliability (CV of ~11%) when 

time-trials were separated by six-weeks. A likely explanation for the increased variation in 

performance within our study (and that of previous studies) is during long intervening periods 

subjects simply lose their perception of the appropriate pacing strategy. It is also likely 

individual variations in fitness over longer time-periods contribute to greater variations in 

performance within a study group. 

 Separate analysis of reliability based on cyclist’s ability in our study also indicated the 

faster cyclists were more reliable in performance than slower cyclists (CV~1.9% & 2.4% 

respectively) at least in the short term; this finding is in agreement with previous 

investigations.7 However, reliability declined linearly in both groups with increasing time 

between trials and was similar after a 28-day period. Irrespective of athlete ability, the decrease 

in trial reliability over time has important implications for studies examining training and other 

interventions where time between experimental trials exceeds 14-days. In these situations we 

would recommend that researchers perform regular re-habituation trials so that subjects might 

remain familiar with testing conditions. Theoretically this could improve the ability to detect 

meaningful and important changes to performance in experimental studies with a large 

intervening time period between pre and post testing. 

3.5 PRACTICAL IMPLICATIONS: 

The novel protocol investigated in the present study may detect meaningful changes in 

performance that matter to athletes and can therefore be used by coaches and sports scientists 

to examine the efficacy of training and other scientific interventions. Continued habituation is 
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necessary in all cyclists when a large period of time elapses between trials. Habituation could 

be achieved by including the performance trial as part of any training intervention in long 

duration experimental trials or as a prescribed training session if monitoring performance 

throughout a competitive season. There was also evidence of a small learning effect between 

trials 1-2 and we therefore recommend that all athletes undertake a familiarisation session 

prior to any experimental study. 

3.6 CONCLUSION: 

A novel computer simulated cycling time trial completed over a course of varying 

gradient is a reliable measure of performance, when trials are separated by short intervening 

periods. However a substantial decline in performance reliability was evident when more than 

14 days elapsed between trials. Furthermore, faster cyclists were generally more reliable in 

performance than slower cyclists over the short term though any differences were insubstantial 

over the longer term. Future studies are needed to confirm the reliability of variable gradient 

time-trials and determine the effects of individual variations in fitness on test reliability. 

 

 

 

 

 



82 | P a g e  

 

REFERENCES 

1. Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. 

Sports Med. 2001;31:211-234. 

2. Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting 

performance. Sports Med. 2008;38:297-316. 

3. Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport 

performance enhancement. Med Sci Sports Exerc. 1999;31:472-485. 

4. Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur 

J Sport Sci. 2006;6:25-31. 

5. Smith MF, Davison RCR, Balmer J, Bird SR. Reliability of mean power recorded during 

indoor and outdoor self-paced 40 km cycling time-trials. Int J Sports Med. 

2001;22:270,274. 

6. Sporer BC, McKenzie DC. Reproducibility of a laboratory based 20-km time trial 

evaluation in competitive cyclists using the Velotron Pro ergometer. Int J Sports Med. 

2007;28:940-944. 

7. Zavorsky GS, Murias JM, Gow J, et al. Laboratory 20-km cycle time trial reproducibility. 

Int J Sports Med. 2007;28:743-748. 

8. Noreen E, Yamamoto K, Clair K. The reliability of a simulated uphill time trial using the 

Velotron electronic bicycle ergometer. Eur J Appl Physiol. 2010;110:499-506. 

9. Driller MW, Argus CK, Bartram JC, et al. The reliability of a two-bout exercise test on a 

Wattbike cycle ergometer. Int J Sports Physiol Perform. 2013;8:379-383. 



83 | P a g e  

 

10. Atkinson G, Peacock O, St Clair Gibson A, Tucker R. Distribution of power output during 

cycling: impact and mechanisms. Sports Med. 2007;37:647-667. 

11. Schabort EJ, Hawley JA, Hopkins WG, Mujika I, Noakes TD. A new reliable laboratory test 

of endurance performance for road cyclists. Med Sci Sports Exerc. 1998;30:1744-1750. 

12. Abbiss CR, Levin G, McGuigan MR, Laursen PB. Reliability of power output during 

dynamic cycling. Int J Sports Med. 2008;29:574-578. 

13. Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 

update. Int J Sports Med. 2013;34:1025-1028. 

14. Hopkins WG. Precision of measurement. A New View of Statistics 2011. 

 



84 | P a g e  

 

 

 

 

 

 

CHAPTER 4.                      
THE PHYSIOLGICAL 

CORRELATES OF VARIABLE 
GRADIENT CYCLING 

PERFORMANCE 
 

 

 

 

 

 



85 | P a g e  

 

ABSTRACT 

Purpose: This study investigates the physiological correlates of computer simulated hilly 

time-trial performance with competitive cyclists. Methods: Twenty eight trained cyclists (age 

33.7 ± 10.3 years, mass 74.4 ± 7.3 kg, and maximal oxygen uptake 64 ± 7 mL.kg-1.min-1) 

participated in this study. Cyclists initially completed a graded exercise test (GXT) to establish 

measures of peak power output (PPO) maximal oxygen uptake ( O2max), onset blood lactate 

accumulation (OBLA), ventilatory threshold (VT) and gross efficiency (GE). On a further occasion 

cyclists then completed a 20-km time trial over a computer simulated hilly course from which 

performance time and power output were determined. Pearson’s correlation (r) was used to 

examine the magnitude of the relationship between measures in the GXT and time-trial. 

Results: There were large to very large (r= 0.51-0.9) correlations between performance time 

and mean power in the time-trial and measures of absolute O2max and PPO from the graded 

exercise test. Correlations between time-trial performance and physiological measures were 

further increased when physiological measures were expressed relative to body mass. The 

smallest correlations (r<0.3) were reported between time-trial performance and measures of 

the anaerobic threshold when threshold parameters were reported as fractional utilisations of 

peak power. Conclusions: These findings support the use of body mass corrected variables for 

predicting performance in hilly time-trials. Cyclists preparing for hilly races are recommended 

to optimise their power to weight ratio to gain a performance advantage when competing over 

hilly terrain. 
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4.1 INTRODUCTION 

The performance outcome for competitive cyclists during road cycling events is largely 

mediated by the type of event, interaction with other competitors and the environmental 

conditions. Competitive cycling events have previously been well described,1-4 and it is clear 

that different events have specific performance demands and are therefore suited to cyclists 

of different physiological characteristics. Whilst all competitive road cyclists require a highly 

developed aerobic capacity, descriptive studies indicate cyclists within professional male 

cycling teams have different physiological and anthropometrical profiles dependent upon their 

areas of speciality.5 For example Padilla et al. 5 reported that time-trial specialists generally 

have lower frontal areas and body surface area to mass ratios, as well as higher power outputs 

when compared to uphill, all terrain or flat specialists.  

Laboratory based time-trials are commonly used to determine the performance 

capacities of competitive cyclists. Previous researchers have described the physiological 

correlates of time trial performance via comparison between graded exercise tests (GXT) and 

laboratory simulation of a cycling time-trial.6-21 In the majority of these investigations, a 

constant flat gradient (i.e. flat), self-paced time-trial has been used as the performance 

measure. Results reported in several of these studies indicate there is a strong to very strong 

relationship (r = 0.69-0.72) between flat time-trial performance and absolute maximal oxygen 

uptake ( O2max).6,14 However, these studies generally report weaker correlation (r = 0.11-0.59) 

between relative O2max and time-trial performance. Similarly, strong to nearly perfect 

correlations have been reported between lactate threshold (r = 0.67-0.97)6,7,13,15,17 or 

ventilatory threshold (r = 0.61- 0.90)10-12 reported as absolute power output and flat time-trial 

performance of various distances. Conversely, several studies,17,18,21 in which a constant uphill 
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gradient was used as the performance test, report stronger correlations between cycling 

performance physiological variables when values are scaled relative to a proponent of body 

mass.  

Interestingly, differences in the strength of correlations between flat and uphill cycling 

suggest there may be a shift in the relative importance of physiological variables to cycling 

performance when the terrain changes. However, to our knowledge, there are no studies 

examining the physiological correlates of variable gradient cycling performance during which 

cyclists must respond to frequent variations in terrain. Fortunately, recent advances in 

ergometer technology allow for test protocols that better mimic changes in resistance that 

cyclists face when cycling over varying terrain. Therefore, whilst the physiological profile best 

suited to constant gradient self-paced time-trials and constant gradient, experimenter paced 

stochastic time-trials is well established, it is unclear whether variable gradient time-trial 

performance, requires specific development of a similar physiological profile. Therefore the 

principal aim of this investigation was to establish the physiological correlates of hilly time-trial 

performance to describe the physiological predictors of hilly cycling performance 

4.2 METHOD 

4.2.1 Participants 

Twenty eight competitive male cyclists (Mean ± SD. age: 33 ± 10 years, mass 74 ± 7 kg, 

height 178 ± 5 cm) gave their written informed consent to participate in this study. All cyclists 

had a minimum of two years racing experience and were competitive at A and B grade Oceania 

National level. The study was completed in the cyclist’s competitive phase and was pre-
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approved by the participating institutions human research ethics committee in accordance with 

the declaration of Helsinki. 

4.2.2 Design 

The study was a repeated measures experimental trial where each cyclist completed a 

graded exercise test and two computer simulated 20-km variable gradient time-trials, the first 

trial served as a habituation trial and the second as the experimental trial. All tests were 

completed on a Velotron Dynafit Pro cycle ergometer (RacerMate Inc, WA, USA) using the 

company’s associated software package. Prior to testing each participant was fitted to the 

ergometer in a position to replicate as closely as possible their own racing bicycle; the fit 

measurements were recorded and repeated for each subsequent session. In the 24 hours 

before any testing session, participants were instructed to prepare as if it was a competition, 

and to avoid strenuous physical activity and any performance altering supplements. 

Participants reported to the laboratory approximately 30-minutes prior to each test having 

slept a minimum of seven hours and in a well fed and hydrated state. Throughout all tests, 

cooling was provided via two 30 cm pedestal fans and the ambient temperature of the 

laboratory was controlled at ~20oC with a relative humidity of ~50-60%.   

4.2.3 Incremental Exercise Test 

Cyclists completed an incremental exercise test to volitional exhaustion, from which 

measures of peak power output (PPO), maximal oxygen uptake ( O2 max), power at the 4 

mmol/L lactate point (OBLA), ventilatory threshold (VT) and efficiency (GE) were assessed. 

During the incremental exercise test respiratory gases were continuously measured breath by 

breath with a metabolic cart (Metalyser 3B, Cortex, Leipzig, Germany) calibrated in accordance 

with the manufacturer instruction using Alpha gas standards. Cyclists initially began exercising 
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at 100W increasing by 40W every four minutes thereafter until reaching volitional exhaustion. 

The ergometer was set to isokinetic mode during the incremental test so that power output 

remained constant regardless of changes in pedal cadence. Cyclists were allowed to freely vary 

there cadence during the test though were encouraged to maintain a cadence of ~90 

revolutions per minute. During the final 30 seconds of each stage 25µL of blood was collected 

from the participant’s fingertip and immediately analysed for whole blood lactate 

concentration using an automated system (YSI 1500, Yellow Springs, OH, USA) calibrated to the 

manufacturer’s specifications. Peak power output in the incremental test was determined as 

the final completed stage plus the proportion of any uncompleted stage reached during the 

graded exercise test in accordance with Lucia et al. 22 Maximal oxygen uptake was determined 

as the highest 30 second oxygen uptake value recorded during the test. The onset of blood 

lactate accumulation (OBLA) was determined as the power at which blood lactate reached a 

fixed concentration of 4 mmol/L. Ventilatory threshold was determine as the breakpoint in VE/

O2 without a concomitant rise in VE/ CO2  in accordance with the methods of Amann et al. 10. 

Gross efficiency (GE) was determined from respiratory data at 220W in accordance with the 

methods of Horowitz et al. 23 

4.2.4 Variable Gradient Time-Trial 

The time-trial was completed on a computer simulated course using the same 

ergometer as previously described. The developed course was based upon topography of a 

local racing circuit and consisted of numerous changes in gradient represented by both ascents 

and descents as shown in figure 4-1.  
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Participants were able to view their progress over the course on a computer monitor 

and were provided with information on distance completed and gear selected; all other 

information was blinded to remove any potential pacing effect. Participants were requested to 

complete each time-trial as quickly as possible with no restriction on gear selection, cadence 

or cycling posture (seated or standing). Participants were not restricted to a set pacing strategy 

and were not coached on how to best ride the course. Throughout the trial participants were 

able to consume water ad libitum.  

4.2.5 Statistical Analysis 

All descriptive statistics are reported as means ± standard deviation. The relationship 

between physiological variables measured during the graded exercise test and performance in 

the variable gradient time-trial were examined using Pearson’s product-moment correlation 

coefficient and are reported ± 90% confidence limits. Magnitudes of the correlation between 

variables were interpreted and reported using the thresholds of: 0.1, 0.3, 0.5, 0.7 and 0.9 for 

small, moderate, large, very large and nearly perfect correlations respectively according to the 

recommendations of Hopkins.24 Correlation coefficients below 0.1 were considered trivial. The 

difference in mean power output for flat, uphill and downhill segments was estimated using a 

spreadsheet via the unequal-variances t statistic computed for difference between the mean 

power outputs for each of the three segment types.25 Magnitudes of the standardised 

differences were interpreted and reported using the effect thresholds of: 0.2, 0.5, and 0.8 for 

Figure 4-1 The computer simulated course profile showing the variation in gradient and specific segment information of 
the time-trial used in this study. 
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small, moderate, and large differences respectively in accordance with the recommendations 

of Cohen 26. Effect size values <0.2 were considered trivial differences. 

4.3 RESULTS 

Cyclist performance and physiological characteristics are shown in table 4-2.  

Table 4-1 Performance and physiological characteristics of cyclists (mean ± SD). 

Variable Mean ± SD 

Time-trial time (mm:ss) 37:39 ± 2:28 

Time-trial power (W) 288 ± 29 

Time-trial power/mass (W.kg-1) 3.9 ± 0.6 

Peak power output (W) 352 ± 29 

Peak power-mass (W.kg-1) 4.8 ± 0.6 

Maximal oxygen uptake  (L.min-1) 4.8 ± 0.4 

Maximal oxygen uptake (mL.kg-1.min-1) 64 ± 7 

Onset Blood Lactate Accumulation 
(OBLA) power (W) 

289 ± 35 

OBLA power-mass  (W.kg-1) 3.9 ± 0.6 

OBLA as % of PPO (%PPO) 82 ± 6 

Ventilatory Threshold (VT) power (W) 288 ± 29 

VT power/mass (W.kg-1) 3.9 ± 0.6 

VT as % of PPO (%PPO) 82 ± 4 

Gross Efficiency (%) 21.5 ± 1.1 

4.3.1 Time-Trial Segment Power Output 

There were a moderate to large differences (4.6-10.9%, ES=0.50-1.22) between overall 

mean power output and mean power output for each segment category (table 4-2). Similarly 
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there were moderate to large differences (6.6-12.1%, ES=0.72-1.36) in mean power output 

between flat and both uphill and downhill segments, and there was a large difference (17.9%, 

ES=2.09) in mean power output between uphill and downhill segments. 

Table 4-2 Characteristics and mean power for overall time trial and flat, uphill and downhill segments (mean ± SD) 

 
Overall 

(mean ± SD) 
Flat 

(mean ± SD) 
Uphill 

(mean ± SD) 
Downhill 

(mean ± SD) 

Distance (km) 20 6.3 7.1 6.6 

Grade (%) 0.5% 0 4.7 ± 2.7 -3.8 ± 2.7 

Power (W) 294 ± 28.9 281 ± 36.7 318 ± 28.6 263 ± 33.0 

4.3.2 Correlations Between Anthropometric, Physiological and Performance Variables 

The strength of correlations between time-trial performance and physiological variables 

was dependent on the manner in which performance and physiological parameters were 

expressed (Figure 4-2).Time-trial time was strongly to very strongly correlated (r = -0.50 to -

0.84) to all physiological variables with the exception of OBLA%PPO and there were very large to 

nearly perfect correlations between time and other performance measures (r = -0.73 to -0.94). 

Similarly there were large to very large correlations (r = 0.65 to 0.84) between time-trial power 

output and all measures (physiological and performance) with the exception of OBLA and VT 

when expressed as fractional utilisation of PPO (r = 0.11-.32). Relative time-trial power output 

was very strongly to nearly perfectly correlated with all physiological variables and 

performance measures expressed relative to body mass (r = 0.83 to 0.95) however the strength 

of correlations reduced when the same variables were expressed as an absolute value (r = 0.22-

0.59).  Peak power output relative to body mass was more strongly correlated to variables 

expressed relative to body mass and absolute peak power output was more strongly correlated 

to variables expressed as an absolute value. There was a large to very large correlation between 
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time and relative time-trial power output and body mass (kg) (r = 0.55 & -0.81 respectively). 

However the correlation between time-trial power output and body mass was only moderate 

(r = -0.37). 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 DISCUSSION 

The aim of the present study was to establish the correlations between physiological 

and performance measures during a novel variable gradient individual cycling time-trial. Results 
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Figure 4-2 Pearson’s correlation matrix (r ± 90% CI) between 20-km time-trial performance and physiological variables. 
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from this study show that hilly time-trial performance is most strongly related to physiological 

and performance variables measured during a graded exercise test when measured variables 

are expressed relative to body mass. Further, results indicate physiological variables expressed 

as a fractional utilisation of PPO correlate poorly with hilly time-trial performance and are 

therefore poor predictors of performance.   

Similar to previous studies that have used flat profile performance tests, the measure 

from a graded exercise test that was most strongly related to variable gradient time-trial 

performance was PPO.6-8,27 However, the strength of the relationship between PPO and time-

trial performance increased when PPO was expressed relative to body mass. Previous 

investigations also report stronger correlations with performance when PPO is expressed 

relative to body mass.17,18,21,28 However, in contrast to earlier studies in which the time-trial 

was exclusively uphill, the uphill segments of the protocol used in this study only comprised 

one third of the total course distance (7.1-km), the rest being either flat (6.3-km) or downhill 

(6.6-km). Therefore, even with the inclusion of segments where greater mass may yield higher 

speeds, and subsequently better performance time,29 PPO scaled to body mass is an important 

determinant of variable gradient cycling performance. Subsequently, it is important that 

cyclists who are targeting hilly or variable gradient events optimise their power to mass ratio 

to improve performance.  

In line with previous research, there were moderate to strong correlations between 

cycling performance and O2max,6,9,13,14
 OBLA6,7,13,15 and VT.10-12 However, similar to PPO, when 

variables were expressed relative to body mass, the strength of relationships was increased. 

Gregory et al. 30 reported similar correlations between physiological variables expressed 

relative to mass and mountain bike performance which included multiple changes in gradient. 
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Therefore, the inclusion of uphill segments in self-paced performance tests also increases the 

importance of expressing physiological variables relative to a proponent of body mass. The 

strength of the correlation between scaled variables and hilly cycling was stronger than those 

reported for self-paced and experimenter paced cycling performance. Importantly, 

comparisons based on self-paced constant gradient time-trial, may have under represented the 

importance of some physiological variables to field cycling performance, particularly relative   

O2max.  

In contrast to earlier research9 there was a very strong correlation between cycling 

efficiency and time-trial performance. Given the sample of cyclists recruited to participate in 

this study differed in performance ability (as indicated by their Oceania National Level grading), 

and previous investigations that indicate more experienced cyclists have greater aerobic 

efficiency than less experienced cyclists,31 this result is not surprising. Additionally, GE is 

trainable,32 improves throughout a competitive cycling season33 and is defined as an important 

determinant of endurance performance.34 Like other physiological variables, it is possible 

constant grade performance tests, under estimate the importance of GE to field cycling 

performance. Importantly, muscle fibre type recruitment and substrate utilisation are different 

for variable intensity cycling.35 Furthermore, GE decreases when cycling up steep hills (> 4%),36 

a similar grade to the uphill segments included in the performance test of the current study. It 

is possible that cyclists with higher GE are less affected by changes in cycling efficiency when 

completing hilly, variable intensity cycling.  However, further research is required to determine 

the nature of the relationship between the decline in GE and gradient and the effects of variable 

intensity cycling on GE. Nevertheless, testing protocols for competitive cyclists should include 

some measure of GE to present an analysis of physiology relevant to field cycling performance. 
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In agreement with previous research,9,13 the physiological measures that did not at least 

share a moderate correlation with time-trial performance were OBLA and VT expressed as a 

fractional utilisation of PPO. Previous studies indicate fractional utilisation is a stable measure 

and is generally unresponsive to training.37 In a group of well-trained competitive cyclists, it is 

likely other physiological variables are more important determinants of overall cycling 

performance and should therefore be the main focus of training programs. 

4.5 PRACTICAL IMPLICATIONS: 

 These data highlight the physiological variables that underpin hilly cycling performance 

and indicates cyclists targeting hilly events need to produce high power relative to body 

mass and have a high relative O2max.  

 Coaches and sports scientists should consider ways to optimise body mass when 

preparing cyclists for hilly competitive events.  

 When assessing performance and physiology sport scientists should evaluate and report 

results as absolute and relative values to better predict performance potential in hilly 

events.  

 Gross efficiency should be measured and reported during routine physiological 

assessment of cyclists as it is likely an important determinant of competitive 

performance particularly when the course is hilly. 

 Ventilatory threshold and OBLA expressed as a percentage of PPO (fractional utilisation) 

were poorly correlated with performance and were homogenous between cyclists of 

different ability. As such cyclists should focus on training strategies that target maximal 

aerobic power and gross efficiency as opposed to fractional utilisation to improve 

performance in hilly events  
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4.6 CONCLUSION 

Performance in hilly time-trials is more closely related to physiological variables when 

they are expressed relative to body mass as opposed to their absolute values. Overall results 

suggest the strongest determinants of hilly time-trial performance are relative PPO and relative 

O2max. Conversely, the correlation between fractional utilisation and performance was poor. 

Therefore cyclists targeting hilly events require a highly developed, efficient aerobic energy 

system and the ability to generate high power output relative to body mass.  
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ABSTRACT 

Purpose: Pacing is an important determinant of cycling time-trial performance and the 

optimal pacing strategy is often dependent on many factors including changes in road gradient. 

However, the pacing response to variable gradient cycling performance is currently unknown. 

The purpose of this study is to describe the self-selected pacing pattern in competitive cyclists 

during computer simulated variable gradient time-trial performance. Methods: Twenty-five 

competitive male cyclists (age 33.8 ± 10.8 years, mass 74.8 ± 7.8 kg, and maximal oxygen uptake 

64 ± 7 mL.kg-1.min-1) participated in this study. Cyclists initially completed a graded exercise test 

(GXT) to establish measures of peak power output, maximal oxygen uptake, onset blood lactate 

accumulation and gross efficiency. Following an initial habituation trial, subjects completed a 

20-km time-trial over a computer simulated hilly course. Power output was measured 

continually throughout the trial and then dissected into 1 km segments. Differences in mean 

power output over each segment were then determined to describe the overall pacing pattern 

during a variable gradient cycling test. Results: Power output tended to be higher in the first 4 

and last 2-km of the time-trial, while power output throughout the middle segments (4-18-km) 

was moderated. Additionally, there were large differences in mean power output between 

consecutive segments 2-3, 3-4, 4-5, 5-6, 9-10, 14-15, 18-19 (ES = 0.81-1.71). Conclusions: 

Cyclists self-selected a variable-parabolic distribution of exercise intensity to complete a 

computer simulated variable gradient cycling test. Importantly, results indicate power output 

during variable gradient cycling is largely determined by distance and road gradient. However, 

the presence of a parabolic distribution of exercise intensity supports an anticipatory 

mechanism of pacing regulation. 
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5.1 INTRODUCTION 

The, pacing strategy adopted by cyclists during competitive time trial plays an important 

role  in overall performance.1 Competitive cyclists are believed to pre-determine their pacing 

strategy by using previous performance experience and knowledge of the expected 

performance duration.2-4 Throughout an event, pacing is then regulated via integrative afferent 

feedback relating to distance remaining, internal condition, perception of physiological strain 

and environmental cues.1,5,6 

Experimental examination of the spontaneous pacing response to cycling exercise has 

been largely limited to laboratory observation of simulated cycling performance.4,7,8  Foster et 

al. 7 reported two distinct pacing strategies in response to short (500-1500m) and medium 

(3000m) distance cycling performance tests. During shorter tests, Foster et al. 7 indicated 

cyclists used an “all-out” start after which power output declined to the finish of the trial. 

Conversely, during the middle distance test, cyclists used a more even pacing strategy so that 

power output was even throughout the trial. In a slightly longer performance trial (4000m), 

Ansley et al. 4 observed a parabolic pacing response whereby power output peaked early, 

decreased through the middle part of the trial, then increased again in the final minute of 

exercise. Chaffin et al. 8 also reported a similar increase in power towards the end of a 30 

minute self-paced performance test. Cyclists in that study employed an even pacing strategy 

from the outset of the trial, with power varying by no more than ~5% until the final minutes 

when power output increased by ~28%, an example of a negative pacing strategy9  and an end 

spurt.6 The changes in pacing response between events of different duration indicates the 

adopted pacing strategy is largely determined by the distance of the trial. However, the pacing 

patterns described in previous literature were all observed in flat race conditions in the absence 



106 | P a g e  

 

of variation in external resistance such as wind speed or gradient that could alter the pacing 

response. 

Recently, consideration for the effect of external resistance has revealed the benefits 

of variable pacing strategies.10-12  Mathematical modelling of cycling performance suggests 

cyclists need to vary power output in response to changes in environmental resistance caused 

by wind conditions or changes in road gradient.10-12 Additionally, performance models suggest 

that greater amplitude of power output variation is required when there are larger increases 

or decreases in external resistive forces to maintain cycling speed. 10-12 It is therefore important 

that cyclists select a variable intensity pacing strategy to achieve optimal performance in cycling 

events that occur in variable environments.  

Investigations of the pacing response to constant resistance performance tests indicate 

the predominant pacing strategy used by competitive cyclists is characterised by even 

distribution of energy with an end spurt during which exercise intensity increases markedly. 

Additionally, cyclists use prior knowledge of performance in combination with physiological and 

environmental feedback to adjust effort during testing and competition. However, while it is 

evident that optimal pacing strategy for competitive cycling events is different between courses 

of different gradient profile, there is a dearth of research that examines the spontaneous pacing 

response to variable environmental resistance. Recently a simulated time-trial in which 

gradient variation was achieved by controlled manipulation of the course profile was found to 

be reliable in a sample of competitive cyclists.13 Therefore the aim of this study was to 

determine if the pacing profile common to flat cycling performance tests is maintained when 

gradient changes and exercise intensity variation would be beneficial to performance. The 
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results of this study will provide initial insight into the regulation of exercise intensity during 

endurance events where environmental resistance varies. 

5.2 METHOD: 

5.2.1 Participants: 

Twenty-five competitive cyclists gave their informed written consent to participate in 

this study. All cyclists had a minimum two years racing experience, including time trials, and 

were competitive at an A or B grade Oceania National Level. This study was completed during 

the cyclists’ competitive phase and was pre-approved by the institutions human research ethics 

committee in accordance with the declaration of Helsinki. 

5.2.2 Design: 

This study was a repeated measures experimental trial where each cyclist completed a 

graded exercise test and two computer simulated 20-km variable gradient time-trial’s; the first 

trial served as a habituation trial and the second as the experimental trial. All tests were 

completed on a Velotron Dynafit Pro cycle ergometer (RacerMate Inc, WA, USA) using the 

company’s associated software package. Prior to testing each participant was fitted to the 

ergometer in a position to replicate as closely as possible their own racing bicycle; the fit 

measurements were recorded and repeated for each subsequent session. In the 24 hours 

before any testing session, participants were instructed to prepare as if it was a competition, 

and to avoid strenuous physical activity and any performance altering supplements. 

Participants reported to the laboratory approximately 30-minutes prior to each test having 

slept a minimum of seven hours and in a well fed and hydrated state. Throughout all tests, 
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cooling was provided via two 30 cm pedestal fans and the ambient temperature of the 

laboratory was controlled at ~20oC with a relative humidity of ~50-60%.   

5.2.3 Incremental Exercise Test 

Cyclists completed an incremental exercise test to volitional exhaustion, from which 

measures of peak power output (PPO), maximal oxygen uptake ( O2 max), power at the 4 

mmol/L lactate point (OBLA), ventilatory threshold (VT) and efficiency were assessed. During 

the incremental exercise test respiratory gases were continuously measured breath by breath 

with a metabolic cart (Metalyser 3B, Cortex, Leipzig, Germany) calibrated in accordance with 

the manufacturer instruction using Alpha gas standards. Cyclists initially began exercising at 

100 W increasing by 40W every four minutes thereafter until reaching volitional exhaustion. 

The ergometer was set to isokinetic mode during the incremental test so that power output 

remained constant regardless of changes in pedal cadence. Cyclists were allowed to freely vary 

there cadence during the test though were encouraged to maintain a cadence of ~90 

revolutions per minute. During the final 30 seconds of each stage 25µL of blood was collected 

from the participant’s fingertip and immediately analysed for whole blood lactate 

concentration using an automated system (YSI 1500, Yellow Springs, OH, USA) calibrated to the 

manufacturer’s specifications. Peak power output in the incremental test was determined as 

the final completed stage plus the proportion of any uncompleted stage reached during the 

graded exercise test in accordance with Lucia et al. 14. Maximal oxygen uptake was determined 

as the highest 30 second oxygen uptake value recorded during the test. The onset of blood 

lactate accumulation (OBLA) was determined as the power at which blood lactate reached a 

fixed concentration of 4 mmol/L. Ventilatory threshold was determine as the breakpoint in VE/

O2 without a concomitant rise in VE/ CO2  in accordance with the methods of Amann et al. 15. 
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Gross efficiency (GE) was determined from respiratory data at 220W in accordance with the 

methods of Horowitz et al. 16. 

5.2.4 Variable Gradient Time-Trial 

The computer simulated, 20-km variable gradient time-trial was completed on a 

computer simulated course using the same ergometer as previously described. The developed 

course was based upon topography of a local racing circuit and consisted of numerous changes 

in gradient represented by both ascents and descents as shown in figure 5-1. 

 

 

 

Participants were able to view their progress over the course on a computer monitor 

and were provided with information on distance completed and gear selected, however all 

other information was blinded. Participants were instructed to complete the time-trial as 

quickly as possible with no restriction on gear selection, cadence or cycling posture (seated or 

standing). Participants self-selected pacing strategy and were not coached on how to best ride 

the course. Throughout the trial participants were able to consume water ad libitum.  

5.2.5 Statistical Analysis: 

The performance time, mean power output and cadence for the complete time-trial 

were recorded for each subject. The complete trial was then divided into 20 segments of 1-km 

and the mean power output, elapsed time and cadence for each segment were recorded for 

analysis. Heart rate data for 12 of the 25 cyclists contained multiple erroneous results (spikes 

Figure 5-1 The computer simulated course profile showing the variation in gradient and specific segment information of 
the time-trial used in this study. 
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or dropout) and were therefore removed, leaving 13 files for the analysis of heart rate. Simple 

descriptive statistics are displayed as means ± standard deviations. To describe the pacing 

response, the standardised differences in mean power, time, cadence and heart rate between 

segments were interpreted and reported using the effect thresholds of: 0.2, 0.5, and 0.8 for 

small, moderate, and large effects respectively in accordance with the recommendations of 

Cohen 17. Effect size values <0.2 were considered trivial. 

5.3 RESULTS: 

Cyclist physiological and performance characteristics from the GXT are displayed in 

table 5-1.  

Table 5-1 The physiological and performance characteristics (mean ± SD) of the participants. 

Variable Mean ± SD 

Age (years) 33.3 ± 10.8 

Body mass (kg) 74.5 ± 7.5 

PPO (W) 350 ± 31 

O2max (mL.kg-1.min-1) 64 ± 7 

OBLA (W) 288 ± 35 

GE (%) 21.4 ± 1.2 

The power output, performance time, relative power output (as a percentage of full 

trial mean power) and cadence for the 20 segments from the simulated variable gradient 20-

km time-trial are shown in table 5-2. Overall, cyclists increased their power output during uphill 

segments, however there was an overall decline in power output for all segments from 

kilometre four to kilometre 18, after which power increased substantially (figure 5.2). Analysis 

revealed large differences in mean power output between consecutive segments 2-3 (ES and 

their 95% CL) (ES = 1.10 [0.49, 1.68]), 3-4 (ES = 1.14 [0.52, 1.72]), 4-5 (ES = 1.71 [1.04, 2.33]), 5-
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6 (ES = 1.09 [0.50, 1.69]), 9-10 (ES = 0.81 [0.23, 1.28]), 14-15 (ES = 1.23 [0.61, 1.82]), 18-19 (ES 

= 0.83 [0.24, 1.39]). 

Table 5-2 Segment specific results (mean ± SD) from the computer simulated, variable gradient 20-km time-trial. 

Distance 
(km) 

Gradient 
(%) 

Power 
Relative to 
Mean (%) 

Performance 
Time 

(mm:ss) 

Cadence 
(RPM) 

1 1.2 110 ± 14 1:46 ± 0:07 93 ± 7 

2 2.5 111 ± 10 2:03 ± 0:08 87 ± 8 

3 -1.7 100 ± 11 1:26 ± 0:03 92 ± 8 

4 3.1 112 ± 10 2:12 ± 0:12 83 ± 6 

5 -2.6 94 ± 10 1:38 ± 0:05 92 ± 6 

6 1.9 105 ± 10 2:00 ± 0:09 84 ± 6 

7 4.3 101 ± 12 2:50 ± 0:20 83 ± 8 

8 0.0 97 ± 12 1:38 ± 0:04 90 ± 6 

9 -2.3 93 ± 13 1:31 ± 0:05 93 ± 6 

10 7.3 103 ± 12 4:03 ± 0:32 77 ± 11 

11 -0.8 94 ± 13 1:30 ± 0:04 92 ± 7 

12 0.0 98 ± 12 1:35 ± 0:04 87 ± 6 

13 -2.0 95 ± 12 1:31 ± 0:04 88 ± 6 

14 -5.9 85 ± 11 1:02 ± 0:02 98 ± 4 

15 -1.3 99 ± 11 1:25 ± 0:03 89 ± 5 

16 -0.3 95 ± 12 1:35 ± 0:04 89 ± 5 

17 -2.2 90 ± 13 1:19 ± 0:02 92 ± 6 

18 -0.2 98 ± 11 1:38 ± 0:05 87 ± 6 

19 4.4 107 ± 12 2:38 ± 0:18 82 ± 7 

20 3.8 113 ± 14 2:07 ± 0:16 84 ± 9 
Full Trial 1.5 - 37:27 ± 2:40 88 ± 7 

 

Similarly, there were large differences in cadence between consecutive segments (ES = 

0.83-2.12), particularly when the difference in gradient between two consecutive segments 

was greater. After a large increase between segments one and two (ES = 1.54 [0.62, 2.36]), 

heart rate stabilised and there were no further differences between consecutive segments for 

the rest of the trial (figure 5-3). However, heart rate was higher for the final 1-km segment 
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when compared to all others (ES = 0.52-2.94). Overall, time to complete each segment was 

substantially slower for the uphill when compared to the flat (ES = 1.63[0.97, 2.24]) and 

downhill segments (ES = 1.93 [1.24, 2.57]). Additionally, segment completion time was slower 

for flat when compared to downhill segments (ES = 1.31 [0.68. 1.90]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Mean power output (±95% CL) for each 1-km segment from the variable gradient time-trial. 

Figure 5-3 Mean heart rate (±95% CL) for each 1 km segment from the variable gradient time-trial. 
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5.4 DISCUSSION: 

The aim of the present study was to determine if the even pacing profile common to 

flat cycling performance tests is maintained when gradient varies and exercise intensity 

variation would be beneficial to performance. Results from this study show large variations in 

power output during variable gradient cycling. The extent of the variations in power appears to 

be largely influenced by both changes in road gradient and elapsed time.  Additionally, the 

pacing pattern was characterised by a high initial (fast start) and end power outputs despite 

the large variation in power output throughout the trial. 

Previous investigations have described the spontaneous pacing response to cycling tests 

of a constant gradient for short to long durations.4,7,8,18-20 The pacing strategies commonly 

observed in these studies differs according to the duration of the trial. The pacing pattern 

observed in the current investigation is similar to that seen in other constant gradient time-

trials8 with the highest power outputs recorded during the first and last 10% of the trial. 

However unlike other constant gradient time-trial, we observed large variations in the cyclists 

power output (~6%) throughout the trial in response to changes in road gradients. Therefore, 

the self-selected pacing response to variable gradient cycling is a mixture of the parabolic and 

variable pacing patterns described by Abbiss et al. 9 The results indicate that pacing is regulated 

not just by distance, but also by changes in external resistance, represented in the current 

investigation by variations in gradient.  

Parabolic pacing patterns are characterised by a fast start and end-spurt at the start and 

end of a trial respectively, separated by a period of moderated exercise intensity.9 In the 

current study there was a decline in cycling exercise intensity from 4-18-km after which 

intensity increased substantially for the final 2-km of the time-trial. The results indicate exercise 
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intensity was moderated throughout the middle segments of the trial, even when cycling 

against increased resistance. The moderation of exercise intensity through middle segments, 

and subsequent increase of power output for final kilometres of the time-trial, is similar to the 

pacing response previously reported for medium and long distance cycling.4,7,8,20-22 A pattern of 

moderated exercise intensity through the middle part of a competitive or experimental trial is 

said to be the result of an anticipatory control mechanism that acts to protect the body from 

severe homeostatic disturbance or competitive failure.23 This mechanism likely exists to 

preserve some exercise capacity that is then utilised towards the end of exercise as an end-

spurt when the perceived risk of physiological or competitive failure is mitigated by the short 

remaining duration of exercise.6,23,24 Interestingly, the presence of a moderated middle portion 

and an end-spurt in which power output was 110% of the overall mean in the current study 

provides further evidence for an anticipatory pacing control mechanism. 

Although exercise intensity was somewhat moderated throughout the middle segments 

of the trial, there were large variations in power output, due mainly to changes in the road 

gradient between segments. Previous research using models of cycling performance indicate 

power output should move from an even to variable pattern to optimise cycling performance 

over hilly terrain.10-12 Additionally, research has validated model predictions by implementing 

model defined optimal variable pacing strategies during hilly cycling to improve simulated 

cycling performance.25,26 However, to our knowledge, this is the first study to demonstrate that 

cyclists self-select a pacing strategy where exercise intensity changes in a manner that reflects 

the course profile. In contrast, Terblanche et al. 27 indicated power output did not track the 

variation in the course profile during a self-paced laboratory cycling simulation. However, 

cyclists in that study were asked to complete the course at a “comfortable speed” which likely 
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attenuated variation in power output in response to changes in road gradient. Conversely, in 

the present study cyclists were asked to complete the course as quickly as possible and as a 

result, power output was seen to increase during uphill segments and decrease during downhill 

segments. Therefore, it is evident that changes in external environmental resistance are 

important determinants of the pacing response and should be included to improve the 

ecological validity of performance testing for competitive cyclists. 

Interestingly, mean power output for uphill segments through the middle portion of the 

trial were lower (ES = 0.62–0.98) than uphill segments in the first and final sections of the trial. 

The lower power for these segments could be the result of the very high power outputs 

observed at the beginning of the trial. Indeed mean power output for the first four kilometres 

was 108%, 107% and 96% of overall time-trial mean power, OBLA power output and PPO 

respectively. Earlier investigations report an elevated physiological response and rating of 

exertion after a fast start during cycling time trials.28 The anticipatory model suggests pacing is 

controlled based on instantaneous afferent feedback from central and peripheral systems to 

protect the athlete from catastrophic physiological or competitive failure.6,24 Importantly, no 

cyclists in the current study reached a state of absolute fatigue and all were able to maintain a 

power output equivalent to or greater than ~76% of PPO for all segments during the trial. 

Therefore it is possible the fast start observed in the current study lead to down regulation of 

power output in later segments by a central pacing control mechanism. Importantly, given this 

trial included segments of steep gradient during which ability to generate higher power outputs 

would be beneficial, it is possible a fast start may have negatively influenced overall 

performance time. Indeed, other research has reported best overall performance following a 
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slower start during a 20-km cycling time-trial.28 Therefore, further research is necessary to 

determine the effect of different starting strategies on variable gradient cycling performance. 

After an initial increase at the beginning of the trial, heart rate stabilised during the 

middle portion of the trial and then steadily increased during the end-spurt at the end of the 

trial. Interestingly there was only one moderate difference between consecutive segments 

despite large differences in power output between multiple sets of consecutive segments 

throughout the trial. A similar heart rate response to cycling performance tests has been 

reported in previous investigations.2,8,19,20,29 However, unlike the present study, power output 

and exercise intensity observed in earlier studies was stable. It is likely heart rate remained 

stable due to a relatively long half-life when compared to power output which changes 

dramatically depending on exercise intensity.30 As a result, it is possible the long duration of 

some segments and the brevity of others masked more severe changes to heart rate as a result 

of changes in exercise intensity. However, it is also possible that heart rate is not sensitive to 

frequent changes in power output during variable gradient cycling. Therefore, its use as an 

indicator of underlying physiological response to immediate changes in exercise intensity is 

limited. 

One limitation of the ergometer used in the current study is that resistance is only 

reduced, and not assisted during negative gradient cycling. Cyclists often choose to, or are 

forced to coast during downhill cycling in the field. As a result, field cycling likely affords greater 

opportunities for recovery between high intensity segments that, with the ergometer 

technology used in the current study, we were unable to replicate. Furthermore, to minimise 

disruptions to the time-trial effort and ensure a spontaneous pacing response, we did not 

include other invasive physiological measures or rating of perceived exertion in this study. 
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Given pacing is regulated based on feedback relating to physiological status and the perception 

of effort,1 future investigations could include measures of the acute physiological response to 

exercise and rating of perceived exertion to better describe the characteristics of variable 

gradient cycling. Additional studies could investigate the effect of coaching, particularly to 

mitigate the fast start observed in the current study, on the pacing response and overall 

variable gradient time-trial performance. 

5.5 PRACTICAL APPLICATIONS: 

 Although power output varied in response to changes in gradient, a parabolic pacing 

pattern was still evident which suggests energy distribution during endurance cycling 

events is dominated by an anticipatory control system. 

  The results of this study may help sport scientists and coaches to understand the 

distribution of work used by cyclists to complete hilly events. 

 The variable-parabolic pacing pattern observed in the current study indicates 

performance testing of cyclists should include some variation in environmental 

resistance to remain specific to competitive events. 

 Heart rate monitoring is not sensitive enough to describe the frequent changes in 

power output during variable gradient cycling and may therefore under or 

overestimate exercise intensity and training load. 

5.6 CONCLUSION: 

The pacing pattern observed in the current study during a computer-simulated, variable 

gradient 20-km cycling time-trial was influenced largely by distance and gradient. Previous 

studies suggest intensity throughout time-trial is relatively even until the final 10% when a brief 
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finishing burst is evident. In the present study cyclists increased power output a number of 

times throughout the time-trial often in response to steep gradients as they cycled uphill. 

However, power output was moderated throughout the middle portions of the trial and a fast 

start and end-spurt were still evident. The result was a variable-parabolic pacing pattern that 

supports the anticipatory model of pacing control. Therefore, it is evident both distance and 

changes in the external resistive forces are important determinants of pacing regulation and 

strategy during cycling. 
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ABSTRACT  

Objectives: Competitive endurance athletes commonly undertake periods of overload 

training in the weeks prior to major competitions. This investigation examined the effects of 

two seven-day high-intensity overload training regimes (HIT) on performance and physiological 

characteristics of competitive cyclists. Design: The study was a matched groups, controlled trial. 

Methods: Twenty-eight male cyclists (mean ± SD, Age: 33 ± 10 years, Mass 74 ± 7 kg,  O2max 

4.7 ± 0.5 L.min-1) were assigned to a control group or one of two training groups for seven 

consecutive days of HIT. Before and after training cyclists completed an ergometer based 

incremental exercise test and a 20-km time-trial. The HIT sessions were ~120 minutes in 

duration and consisted of matched volumes of 5, 10 and 20 second (short) or 15, 30 and 45 

second (long) maximal intensity efforts. Results: Relative to the control group, the mean 

changes (± 90% confidence limits) in time-trial power were 8.2% ± 3.8% and 10.4% ± 4.3% for 

the short and long HIT regimes respectively; corresponding increases in peak power in the 

incremental test were 5.5% ± 2.7% and 9.5% ± 2.5%. Both HIT (short vs long) interventions led 

to increases (mean ± SD) in O2max (2.3% ± 4.7% vs 3.5% ± 6.2%), lactate threshold power (3.6% 

± 3.5% vs 2.9% ± 5.3%) and gross efficiency (3.2% ± 2.4% vs 5.1% ± 3.9%) with only small 

differences between HIT regimes. Conclusions: Seven days of overload HIT induces substantial 

increases in time-trial performance and physiology with competitive cyclists.  
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6.1 INTRODUCTION 

For many endurance athletes training is periodised across the season in order to 

prepare for competitions. The structure of training within a specific phase of a season often 

varies, and can include a combination of training techniques which are ultimately designed to 

enhance the athlete’s performance capacity through increases in maximum oxygen 

consumption ( O2max), the sustainable percentage of maximum oxygen consumption 

(anaerobic threshold) or aerobic economy. Whilst low intensity, high volume training plays a 

major role in an endurance athlete’s preparation there is little doubt that bouts of higher 

intensity training (HIT) are necessary in order to enhance athletic form and particularly                

O2max.1 Further a common practice observed amongst competitive athletes is to include short 

periods of heavily intensified training (often in the form of overload HIT or minor competitions) 

immediately prior to important competitions in order to further enhance race performance.  

The structure of HIT sessions are diverse but generally involve short (< 5 minutes) 

repeated bouts of maximal intensity exercise at or above an athlete’s maximum oxygen 

consumption power.2 In recent years there have been a number of studies investigating the 

effects of various specific HIT regimes on an athletes’ performance and physiological 

characteristics. In an early study Stepto et al. 3 examined the effects of six sessions (completed 

over two weeks) of different varieties of HIT programmes on 40-km time-trial performance with 

well-trained cyclists. Interestingly this study reported that the largest improvements in time-

trial performance occurred from two quite diverse (30-s vs 240-s) HIT programmes, 

unfortunately this study did not examine the physiological mechanisms underlying any of the 

observed performance enhancements from the HIT sessions. Similarly in a series of related HIT 

studies with competitive cyclists, Laursen and colleagues4-6 reported significant improvements 
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in time-trial performance following 2-4 weeks of different duration (>30-s) maximal intensity 

intervals. The improvements in performance, in this series of studies, were associated with a 

significant increase in two of the recognised determinates of endurance performance, namely 

maximal oxygen consumption and lactate threshold power. Combining short duration (30-s) 

sport specific HIT with non-specific explosive training has also been shown to substantially 

enhance the third physiological determinant associated with endurance performance, namely 

aerobic economy, in both cyclists7 and runners.8 

 As it is apparent that quite diverse forms and durations of HIT are an effective training 

strategy,2 more recent research has focussed on the organisation and distribution of the HIT 

sessions within a periodised training program. In a study examining the effects of three weeks 

(nine sessions) of HIT performed on either consecutive or non-consecutive days, Gross et al. 9 

reported similar improvements in performance and physiology following either strategy with 

recreational level cyclists. Furthermore two other recent studies indicate performance may be 

enhanced if a short block of concentrated interval training is followed by a three week period 

of less frequent interval training.10,11 Interestingly in the study by Ronnestad et al. 10 the 

changes in the cyclists recorded training intensity (power) appear to indicate that the majority 

of performance enhancement occurs immediately following the first week of intensified 

training. 

Regardless of its configuration, training is often organised to induce a state of temporary 

but functional overreaching. Functional overreaching is a training state that results in a short 

term performance decrement that, when followed by an adequate period of recovery, results 

in super-compensation and subsequent performance enhancement.12 To evoke short term 

functional overreaching coaches and athletes often include short periods of highly intensified 
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training, such as a training camp or low priority competition, in the weeks preceding a major 

competition. For example elite professional cyclists will often ride the week long Criterium du 

Dauphine in final preparation for the Tour de France. Previous research has established the 

potential for a very short period of intensified block training, such as would occur during a 

training camp or race, to improve performance. Jeukendrup et al. 13, reported significant 

improvements in performance after competitive cyclists had undertaken two weeks of 

recovery following a two-week period of intensified training. In a similar study investigating the 

effects of induced overreaching, Halson et al. 14 found brief periods of highly intensified training 

can lead to a decline in performance that may be sustained for periods of up to two weeks 

following the training period. However, this study did not include any longer term monitoring 

so it is unknown if any super-compensation effects occurred after the two week recovery 

period. Importantly in both the studies by Jeukendrup et al. 13 and Halson et al. 14, the authors 

reported physical and mental signs of overreaching and fatigue in the cyclists after only one 

week of intensified training which were amplified after an additional week of training and 

persisted through the early recovery period. Consequently it appears from observation and 

previous research that approximately seven days of intensified training maybe the optimal 

duration for improving performance without causing undue long term fatigue. The use of a 

seven day training period is also consistent with the common micro-cycle length utilised by 

athletes using periodised training programmes. Therefore while it appears different forms of 

HIT can lead to substantial performance gains, further research is warranted to determine the 

effects of shorter block periods of intensified training on the physiology of trained cyclists and 

the time course of any performance enhancements. To our knowledge no previous study has 

examined the magnitude of performance gains possible following a typical seven day 

intensified training period. Therefore the aim of this study was to determine the effects of 
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seven consecutive days of two different HIT programs which simulated the intensity of efforts 

seen in competition, on the physiological and performance adaptations of competitive cyclists, 

and also to examine the time course of any adaptations during the post-training recovery 

period. 

6.2 METHODS 

6.2.1 Subjects 

Thirty competitive male cyclists initially volunteered to participate in this study. Two 

cyclists failed to complete all sessions due to illness unrelated to the study and were therefore 

excluded from the final analysis leaving a total of 28 cyclists (Mean ± SD, age: 33 ± 10 years, 

mass 74 ± 7 kg, height 178 ± 5 cm, O2max 4.7 ± 0.5 L.min-1) at completion. All cyclists gave their 

written informed consent to participate in the study which was prior approved by the 

participating Universities human research ethics committees in accordance with the 

declaration of Helsinki. The cyclists were well-trained with a minimum of two years competitive 

experience at grade A or B (Oceania amateur grading). The study was performed in the 

competitive season following a period of base and pre-competition training. Due to the nature 

of each cyclist’s competition programme it was not possible to control their individual training 

leading up to the study. However immediately prior (2 weeks) to the start of the study cyclists 

were completing individual self or coach-determined training regimes consisting of a minimum 

of ten hours (~300-km) mixed intensity training per week.  At the start of laboratory testing 

cyclists were required to be in a well-prepared and non-fatigued state.  
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6.2.2 Testing Procedures  

Cyclists were matched as closely as possible based on peak power output and maximum 

oxygen consumption ( O2max) from the initial incremental test, and assigned to one of three 

conditions; a control group (n=9), short sprint (n=9) and long sprint (n=10) HIT groups. The 

control group completed two physiological and performance assessments separated by three 

weeks during which they continued with their normal prescribed training (minimum of ten 

hours per week). The cyclists in the training groups completed a series of physiological and 

performance assessments before and after completing a seven day block of intensified training. 

Figure 6-1 outlines the sequence of testing and training for all subject groups.  

 

 

 

VO2 = incremental exercise test, TT = time trial. 

Figure 6-1 Sequence of training and testing followed by the cyclists in the experimental groups; control group subjects 
completed tests 2 and 4 only.  

 All physiological and performance assessments were completed on a Velotron Dynafit 

Pro cycle ergometer (RacerMate Inc, WA, USA) using the company’s associated 3D race and 

coaching software. Prior to testing each participant was fitted to the ergometer in a position to 

replicate their own racing bicycle; the fit measurements were recorded and repeated for each 

subsequent session. In the 24 hours before any testing session, participants were instructed to 

prepare as if it was a competition, and to avoid strenuous physical activity and any potential 

performance altering supplements (e.g. caffeine). Participants reported to the laboratory 

approximately 30-minutes prior to each test having slept a minimum of seven hours and in a 

well fed and hydrated state. Throughout all tests, cooling was provided via two 30cm pedestal 
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fans and the ambient temperature of the laboratory was controlled at ~20oC with a relative 

humidity of ~50-60%. 

6.2.3 Incremental Exercise Test 

The physiological assessment consisted of an incremental exercise test to volitional 

exhaustion, from which measures of peak power output (PPO), O2max, power at the 4 mmol/L 

lactate point (OBLA), aerobic economy and efficiency were assessed. During the incremental 

exercise test respiratory gases were continuously measured with a metabolic cart (Metalyser 

3B, Cortex, Leipzig, Germany) calibrated in accordance with the manufacturer instruction using 

Alpha gas standards. Cyclists initially began exercising at 100 watts (W) increasing by 40W every 

four minutes thereafter until reaching volitional exhaustion. The ergometer was set to 

isokinetic mode during the incremental test so that power output remained constant regardless 

of changes in pedal cadence. Cyclists were allowed to freely vary there cadence during the test 

though were encouraged to maintain a cadence of ~90 revolutions per minute. During the final 

30 seconds of each stage 25µL of blood was collected from the participant’s fingertip and 

immediately analysed for whole blood lactate concentration using an automated system (YSI 

1500, Yellow Springs, OH, USA) calibrated to the manufacturer’s specifications. Peak power 

output in the incremental test was determined as the final completed stage plus the proportion 

of any uncompleted stage reached during the graded exercise test in accordance with Lucia et 

al. 15. Maximal oxygen uptake was determined as the highest 30 second oxygen uptake value 

recorded during the test. The onset of blood lactate accumulation (OBLA) was determined as 

the power output at which blood lactate reached a concentration of 4 mmol/L. Aerobic 

economy (W.L-1) was determined as the oxygen consumption at 220W for all subjects as this 

was the highest intensity achieved in all subjects where oxygen consumption remained at 



131 | P a g e  

 

steady state and the respiratory quotient <1.0; similarly gross efficiency (GE) was determined 

from respiratory data at 220W in accordance with the methods of Horowitz et al. 16. 

6.2.4 Time-Trial Test 

The time trial (TT) was completed on a computer simulated 20-km course using the 

same ergometer as previously described. The developed course was based upon topography of 

a local racing circuit and consisted of numerous changes in gradient represented by both 

ascents and descents as shown in figure 7-2. Studies from our laboratory (unpublished 

observations) indicate a coefficient of variat6on for this test of ~1% for time and ~2% for mean 

power output. Participants were able to view their progress over the course on a computer 

monitor and were provided with information on distance completed and gear selected; all 

other information was blinded to remove any potential pacing effect. Participants were 

requested to complete each time trial as quickly as possible with no restriction on gear 

selection, cadence or cycling posture (seated or standing). Participants were not restricted to a 

set pacing strategy and were not coached on how to best ride the course. Throughout the trial 

participants were able to consume water ad libitum. Performance time (TT TIME) and mean 

power output (TT PO) recorded from the variable gradient time-trial were the main 

performance measures in this study. 

 

 

6.2.5 Training Interventions 

Cyclists in the two experimental training groups completed seven consecutive days of 

HIT. The composition of the training sessions was designed to replicate the intensity and 

Figure 6-2 The computer simulated course profile showing the variation in gradient and specific segment information of 
the time-trial used in this study. 
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duration of efforts seen in real competition and was determined in conjunction with two elite 

level coaches, using power data collected from competitive cyclists during racing and on 

previous competition based performance analysis by Ebert et al. 17. The training sessions, 

consisted of multiple sets of self-paced maximal intensity sprints and corresponding recovery 

periods. The work to rest ratio was matched for both groups at 1:5 and the total session time 

was ~120 minutes including a self-selected 15 minute warm up and cool down period. Cyclists 

in the short training group completed 25 sets of sprints lasting 5, 10 and 20 seconds (each set) 

completed in sequence for a total work period of 14.6 minutes and corresponding recovery 

period of 73 minutes. Cyclists in the long training group completed 10 sets of sprints lasting 15, 

30 and 45 seconds for a total work period of 15 minutes and corresponding recovery period of 

75 minutes. Cyclists in both groups were asked to complete each effort at the highest possible 

intensity and in the recovery periods, maintain a work rate of ~30-40% PPO. All training sessions 

were controlled using pre-recorded audio signals which indicated the exercise and recovery 

periods.  Cyclists completed the first, fourth and seventh training session under the supervision 

of one of the researchers using the laboratory ergometer previously described. The remaining 

sessions were performed by the cyclists on their own bicycle either on the road or using a 

stationary ergometer. In the recovery period post the training intervention cyclists were able 

to resume light recovery intensity training (<120 mins) but were required to refrain from 

engaging in high intensity exercise or competitions in the 7 days immediately post HIT. The 

control group continued with their own personal training programmes for a minimum of 10 

hours per week to ensure that total training volume was similar to that of the experimental 

groups. 
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6.2.6 Statistical Analysis 

Simple descriptive statistics are shown as means ± between-subject standard 

deviations.  Mean effects of training and their 90% confidence limits were estimated with a 

made for purpose spreadsheet18 via the unequal-variances t statistic computed for change 

scores between the mean of the two pre-tests and each post-test in the two training groups 

and between the single pre and post-test in the control group. Each subject's change score 

between trials was expressed as a percent of baseline score via analysis of log-transformed 

values. Data were log-transformed in order to reduce bias arising from any non-uniformity of 

error in the data.  The spreadsheet also computes chances that the true effects are substantial, 

when a value for the smallest worthwhile change is entered. We used a value of 1% for the 

performance power measures, as previous research has shown that this value represents the 

smallest worthwhile enhancement in power for cyclists competing in time-trial events.19 To 

date no research has established how percentage changes in physiological measures would 

translate directly to percent changes in cycling performance,  therefore we interpreted changes 

in our physiological measures using standardised effects (change in mean divided by the 

between subject standard deviation).  The magnitudes of the standardised effects for 

physiological measures only were interpreted and reported using the established effect 

thresholds of: 0.2, 0.5, and 0.8 for small, moderate, and large effects respectively in accordance 

with the recommendations of Cohen 20. Effect size values <0.2 were deemed trivial differences 

and considered to be not worthwhile.  
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6.3 RESULTS 

Both HIT groups successfully completed 100% of the prescribed training regime over 

the allotted 7-day period. Table 6-1 shows the mean ± SD results for the performance and 

physiological measures for each of the groups at baseline (Pre) and following (Post) the training 

period. The control group experienced trivial to small (ES= 0.15-0.23) decreases in performance 

variables during the monitoring period whilst both training intervention groups reported 

moderate (ES=0.51-0.76) enhancements in performance following the HIT interventions. 

Further, both HIT groups reported small (ES=0.24-0.47) increases in O2max and power output 

at OBLA and moderate to large (ES=0.64- 1.02) improvements in aerobic economy and gross 

efficiency, whilst the experimental controls experienced trivial to small (ES= 0.05-0.34) 

decrements in most physiological measures (in line with the performance decrease) with the 

exception of aerobic economy and efficiency. 

 

 

 

 

 

 

 

 

Table 6-1 The mean (± SD) for all measured variables and the % change between Pre and Post testing for each experimental 
group, and the effect size for the observed % change. 

 

 
Control 

pre 
Control 

post 

Change 
(%) 
(ES) 

Short 
pre 

Short 
post 

Change 
(%) 
(ES) 

Long 
pre 

Long 
post 

Change 
(%) 
(ES) 

TTPO 
(W) 

286 
± 38 

277 
± 39 

-3.3 ± 4.2         
(-0.23) 

279 
± 24 

291 
± 19 

4.6 ± 4.4 
(0.51) 

277 
± 26 

296 
± 25 

6.8 ± 5.8 
(0.63) 

TT time 
(s) 

2290 
± 205 

2338 
± 213 

1.8 ± 2.2 
(0.18) 

2299 
± 104 

2232 
± 84 

-2.9 ± 2.6 
(-0.59) 

2320 
± 135 

2216 
± 103 

-4.4 ± 3.7 
(-0.74) 

PPO 
(W) 

345 
± 36 

339 
± 37 

-1.7 ± 3.3 
(-0.15) 

341 
± 21 

353 
± 19 

3.6 ± 3.0 
(0.57) 

337 
± 27 

362 
± 28 

7.6 ± 2.3 
(0.76) 

O2max    
(L.min-1) 

4.6 
± 0.5 

4.6 
± 0.5 

-0.6 ± 6.3 
(-0.05) 

4.6 
± 0.3 

4.7 
± 0.4 

2.3 ± 4.8 
(0.27) 

4.7 
± 0.4 

4.9 
± 0.5 

3.5 ± 6.2 
(0.34) 

OBLA 
(W) 

292 
± 34 

282 
± 37 

-3.6 ± 6.4 
(-0.27) 

266 
± 21 

276 
± 28 

3.6 ± 3.5 
(0.47) 

298 
± 34 

306 
± 34 

2.9 ± 5.3 
(0.24) 

ECO 
(W.L-1) 

72.5 
± 4.0 

74.1 
± 4.3 

2.2 ± 4.3 
(0.34) 

71.3 
± 4.5 

74.0 
± 3.6 

3.9 ± 2.8 
(0.64) 

71.9 
± 3.3 

75.3 
± 3.9 

4.6 ± 3.5 
(0.84) 

GE 
(%) 

21.1 
± 1.2 

21.4 
± 1.3 

1.5 ± 4.3 
(0.22) 

20.7 
± 1.2 

21.3 
± 1.0 

3.2 ± 2.4 
(0.53) 

20.8 
± 0.9 

21.8 
± 1.1 

5.1 ± 3.9 
(1.02) 

(ES) = effect size; TTPO = Time-trial mean power output; TT time = performance time; PPO = peak power output; VO2max = 
maximal oxygen uptake; OBLA = onset blood lactate accumulation; ECO = exercise economy; GE = gross efficiency. 
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Table 6-2 shows the relative change score (as a percentage) for all measured variables 

between the three groups. There were moderate to large (ES =0.57-0.89) gains in performance 

measures for both training groups relative to the control condition; however the magnitude of  

changes in performance measures between the two training conditions were all considered 

small (ES <0.50).  Differences in the change scores for O2max, power at the lactate threshold 

and aerobic economy between the two training groups were trivial, whilst the long HIT group 

experienced a small (ES = 0.34) increase in gross efficiency relative to the short HIT group. 

Table 6-2 Comparison of changes in performance and physiological measures between all experimental groups. 

 Long - Control % 
difference ± 90% CL† 

(ES) 

Short –Control % 
difference ± 90% CL 

(ES) 

Short – Long % 
difference ± 90% CL 

(ES) 

TTPO (W) 10.4 ± 4.3 (0.82) 8.2 ± 3.8 (0.67) -2.1 ± 3.9 (-0.22) 

TT time(s) -6.1 ± 2.2 (-0.80) -4.6 ± 1.9 (-0.62) 1.6 ± 2.6 (0.28) 

PPO (W) 9.5 ± 2.5 (0.89) 5.5 ± 2.7 (0.57) -3.7 ± 2.1 (-0.48) 

O2max (L.min-1) 4.2 ± 5.1 (0.37) 2.9 ± 4.6 (0.27) -1.2 ± 4.2 (-0.15) 

OBLA (W) 6.8 ± 4.9 (0.53) 7.5 ± 4.5 (0.60) 0.7 ± 3.5 (0.05) 

ECO (W.L-1) 2.3 ± 3.2 (0.43) 1.7 ± 3.0 (0.26) -0.6 ± 2.4 (-0.11) 

GE (%) 3.6 ± 3.3 (0.65) 1.7 ± 2.9 (0.26) -1.9 ± 2.5 (-0.34) 
† ± 90% confidence limits: add or subtract this number to the mean effect to obtain the 90% confidence limits 
for the true difference. (ES) = effect size; TTPO = Time-trial mean power output; TT time =  

 

Figure 6-3 shows the mean (±90% confidence limits) percentage changes in 

performance and physiological measures at both one week and two weeks post training. Whilst 

both experimental training groups experienced substantial gains in performance at the final 

post training (14 days) tests relative to the control group, Figure 6-3 shows the short HIT group 

experienced a delayed improvement in their time trial performance in the first post training 

test (7 days) in comparison to the long HIT group.  
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Figure 6-3 Mean (±90% CL) percentage change in performance and physiological measures from baseline (pre) at 7 days (post 
1) and 14 days (post 2) the HIT training period. 
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6.4 DISCUSSION 

The aim of the present study was to examine the effects of 7-days of two pre-

competition HIT regimes on the physiological and performance characteristics of competitive 

cyclists. Results from this study show that multiple sets of maximal short or long-duration 

efforts completed on consecutive days leads to substantial improvement in 20-km time trial 

performance in competitive cyclists. In addition both HIT regimes examined lead to 

enhancements in the key physiological determinates commonly associated with endurance 

performance.  

Several previous authors have reported substantial performance gains following HIT in 

trained cyclists. 3-6,21-24. In these studies HIT was associated with improvements in the main 

physiological variables associated with endurance performance, namely O2max
4,6,22,24,25 

anaerobic threshold power6,22 aerobic economy 7 and gross efficiency.26. However in all of these 

previous investigations, HIT was implemented over several weeks to months and typically in 

regimes that included just 2-3 interval training sessions per week. In comparison, cyclists in the 

current study experienced similar gains to those in previous studies after completing only seven 

consecutive days of HIT sessions. The findings in the current study therefore add empirical 

support to our observations that competitive athletes commonly use short blocks of intensified 

training to improve form prior to major competitions.  

Similar rapid and substantial gains in performance and physiology have previously been 

reported with alpine skiers who performed 15 session of HIT over 11-days.27 However a major 

difference between the current study and that of Breil et al. 27 is the latter study was completed 

with non-endurance trained individuals (alpine skiers) and in the athletes off season where 

there is much greater range for improvement due to their lower level of fitness. We also believe 
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further evidence for the efficacy of short blocks of HIT comes from a more recent study by 

Ronnestad et al. 10. While this previous study actually reported changes over a longer training 

period than the current study, they did include an initial 5-day intensified training block at the 

beginning of their 4-week training period. While it lacks specific performance testing following 

the initial HIT block, training data presented in these authors paper appears to indicate 

significant increases in training power output in the three weeks following the initial 5-days of 

training. We would therefore expect these increases in training power to also manifest as 

improvements in performance tests. 

Whilst both the short and long HIT programmes in the current study led to substantial 

performance enhancements relative to the control group, the magnitude of change in 

performance measures between the two HIT programmes 2-wks post training were assessed 

as qualitatively small (ES~0.2). Similarly differences in changes in physiological measures 

between the two HIT regimes were assessed as being trivial (ES <0.2) with the exception of 

gross efficiency (ES =0.34) which tended to a larger improvements in the long HIT group. Whilst 

the magnitude of performance difference between the two HIT strategies was small, this 

difference may be substantial enough to provide a worthwhile advantage during a real 

competition.19 However while we tentatively suggest that there is a potentially greater 

improvements in the group performing the longer form of HIT, a study with a much larger 

sample size and clearer confidence limits would be required to verify this suggestion. 

 Further support for our opinion of the superiority of the long HIT form as the preferred 

training regime also comes from the differences in the rate of post training recovery in 

performance between the two HIT regimes. During the first post-training testing subjects in the 

short HIT showed no improvement in time trial performance relative to their pre-training test 
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(Fig. 7-3) despite small improvements in performance measures during the short duration 

incremental test. We interpret this finding to indicate that the short HIT group had residual 

fatigue and insufficient recovery to gain any benefits from the training regime at this stage. 

Indeed, previous research examining the effects of short term overreaching has reported 

similar performance decrements in cyclists one week post a HIT intervention.13,14 A possible 

explanation for the performance difference between the two groups at this stage could relate 

to differences in the intensity of efforts in the training sessions. Whilst both groups were 

matched closely for total duration (volume) of both exercise and recovery, it is possible that 

the overall intensity of shorter sprints was somewhat higher than the longer efforts and 

therefore the short HIT is likely to have experienced greater cumulative fatigue. Indeed case 

study evaluations (unpublished observations) after the main study indicate that mean power 

in the short intervals was ~10% higher than in the long intervals for the same total duration of 

effort. However we cannot exclude the possibility that the delayed improvement in the short 

HIT group is simply due to individual differences in the groups and sampling variation. 

The contributions of physiological mediators underpinning the enhancement in time 

trial performance in both the HIT groups are unclear. While both HIT forms enhanced all 

measured physiological characteristics, the range of individual responses makes a precise 

determination of the contribution from any single mechanism difficult. Nevertheless a cursory 

analysis of the improvements in the groups suggests improvements in the long HIT group are 

more likely associated with increases in aerobic economy (4.6%) and gross efficiency (5.1%) 

while improvement for the short HIT group appear associated with an increase in lactate 

threshold (OBLA) power (3.6%). Further it is possible other un-measured mechanism variable 

contributed to the performance enhancements. Indeed given the HIT interventions in the 
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current study involved repeated maximal sprints, an increase in anaerobic and muscle buffering 

capacity could be expected as has been reported in previous studies examining the effects of 

HIT on time trial performance.6,24. However further investigations with a larger sample size, and 

additional measures related to biochemical adaptations28 and mitochondrial biogenesis29 

would be necessary to further elucidate the potential mechanisms responsible for any 

performance enhancements.  

6.5 PRACTICAL APPLICATIONS 

 Short blocks of intensified training can be used to evoke substantial physiological 

adaptation and performance improvement in cyclists preparing for competition. 

 Sport scientists, coaches and cyclists should ensure there is adequate time for recovery 

prior to competition if using the short duration sprints. If sufficient recovery time is not 

available (minimum 2 weeks), only longer duration sprint intervals should be used to 

ensure performance is not compromised by ongoing fatigue. 

 Coaches, cyclists and sport scientists should use care when prescribing short blocks of 

intensified training paying particular attention to signs and symptoms of ongoing 

fatigue and potential non-functional overreaching. 

6.6 CONCLUSION: 

In conclusion one week of self-paced high-intensity overload training performed as 

multiple sets of short (5-20s) or long (15-45s) duration efforts led to substantial improvements 

in time-trial performance with competitive cyclist. The increases in performance were 

associated with enhancements in the three main mediators of endurance performance, O2max, 

power output at the lactate threshold, and economy. While both long and short HIT sessions 
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led to substantial increases in performance compared to the control group, the differences 

between the two training groups were generally small. However, although both the short and 

long interval programmes were closely matched for total exercise and recovery duration it 

appears the shorter intervals led to greater short-term decrements in performance and 

required a longer post-training recovery period in order for any benefits to be realised.  In light 

of the current findings we would advise athletes planning to undertake block periods of 

intensified training, prior to competition, to opt for a combination of longer intervals or allow 

more recovery prior to the competition if using shorter more intense intervals during their 

block training period. The findings of this study are limited to the training of competitive 

cyclists, but may be applicable to similar non-weight bearing aerobic sports (e.g. swimming and 

rowing). However caution is advised if trying to apply such an intense training routine to other 

sports, such as running, as the increased impact may lead to a greater injury potential. Future 

studies are warranted to examine more closely the physiological mechanisms that lead to 

improvements in performance following intensified training and also to establish the time 

course over which any performance benefits are lost. 
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7.1 DISCUSSION & MAJOR FINDINGS 

The purpose of this body of research was to determine the reliability of a variable 

gradient performance test, describe the physiological correlates of variable gradient cycling 

performance and the pacing pattern during variable gradient cycling, and determine the effects 

of a short intensified block of training on physiological adaptation and variable gradient cycling 

performance. The results show that cycling performance can be reliably measured using a 

computer simulation of a 20-km variable gradient course. Performance from the variable 

gradient cycling test was strongly correlated to PPO, O2max, OBLA and VT; however the 

strength of correlations increased when the same variables were expressed relative to body 

mass. To complete the 20-km variable gradient test, cyclists distribute exercise intensity in a 

variable-parabolic pattern so that, in addition to a fast start and end-spurt, exercise intensity 

fluctuates throughout the test in response to changes in gradient. Variable gradient cycling 

performance improved substantially following a brief block of intensified training. The 

improvement in performance was associated with positive adaptation in several physiological 

variables; however the precise physiological adaptation underpinning performance 

enhancements remains unclear. 

The first study in this series evaluated the reliability of a computer-simulated, 20-km 

variable gradient cycling time-trial. The unique aspect of this study was the inclusion of 

frequent gradient variation throughout the 20-km trial so that cyclists encountered segments 

of positive and negative gradients. When trials were separated by less than 14 days, completion 

time and mean power output were highly reliable measures of cycling performance. 

Additionally, when separated based on ability, fastest cyclists were more reliable than the 

slowest cyclists, particularly in the short term. However, reliability for all cyclists declined when 
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more than 14 days elapsed between trials and was similar for both groups after 28 days. A 

similar decline in reliability with increasing time between trials has been reported previously.1 

Importantly, the results indicate the need for habituation prior to commencing experimental 

trials, and again when time between experimental trials is greater than 14 days. Nevertheless, 

results also indicate the inclusion of gradient variation in a cycling performance trial does not 

negatively impact on the ability to detect small, yet meaningful changes in performance.   

Study two examined the physiological correlates of variable gradient cycling 

performance. The physiological correlates of other forms of cycling, namely constant gradient 

self-paced time-trials,2-5 and flat researcher paced stochastic time-trials6 have been well 

described by previous research. However, in all instances, the performance test used in those 

studies was somewhat unlike field cycling which takes place on public roadways where gradient 

frequently changes. Importantly, the current study indicated variable gradient cycling 

performance is strongly correlated with PPO, O2max, OBLA, VT and GE. However, the strength 

of those correlations increased when the physiological variables were expressed relative to 

body mass. Even though the test course included numerous downhill sections where a greater 

body mass is beneficial to performance, the results indicate cyclists need to maximise their 

power output and oxygen uptake relative to body mass to optimise variable gradient cycling 

performance. Additionally, differences between the strength of correlations observed in the 

current study and those reported in previous investigations suggests comparison between such 

tests and physiological variables underestimates the importance of some variables for field 

cycling.  

The third study in the overall body of work explored the spontaneous pattern of exercise 

intensity during a variable gradient cycling test. Despite the inclusion of large and frequent 
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variations in gradient, a fast start and end-spurt, characteristics of a parabolic distribution of 

work, were observed during the variable gradient cycling test. Previous studies also report a 

parabolic distribution of exercise intensity during constant gradient cycling performance over 

medium to long distances.7-9 However, in the current study large variations in power output 

were evident between consecutive segments throughout the trial in response to changes in 

gradient between segments. Interestingly, the pacing pattern observed in the current study 

presents as a mixture of the parabolic and variable patterns described previously.10 The pattern 

of power output distribution observed in competitive cyclists during the cycling time-trial 

suggest distance and gradient interact to determine the pacing response during variable 

gradient cycling. Importantly, when viewed in combination with results of study two, it is 

evident variable gradient cycling has distinctly different performance characteristics and 

physiological determinants when compared to self-paced and experimenter paced constant 

grade cycling. Therefore, one of the primary overall recommendations from this dissertation, 

is cycling tests should include some form of variation in external environmental resistance to 

adequately mimic field cycling performance and improve the ecological validity of performance 

testing 

The final and major study of this thesis assessed the efficacy of a short block of 

intensified training to induce physiological adaptation and improve cycling performance. 

Previous investigations reported performance improvement and beneficial physiological 

adaptation when HIT is integrated into periodised programs for 4-6 weeks.11-13 More recently, 

others have reported large improvements in performance when HIT is implemented in a highly 

concentrated block and followed by three weeks of LSD training.14,15 In the current study, 

participants completed seven consecutive days of highly concentrated short or long sprint HIT. 
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Following one week of recovery, there were large improvements in cycling performance and 

physiological variables in the long HIT group. At the same time point, cycling performance for 

the short sprint group was slightly worse than pre-training, which suggests a lingering fatigue 

effect despite a week of recovery. However, after an additional week of recovery, there were 

substantial improvements in performance for cyclists in both groups when compared to pre-

training measures and a control group. The improvements in performance were accompanied 

by enhancement in aerobic physiological variables, particularly GE and OBLA. Importantly, 

results indicate short blocks (one week) of intensified HIT can induce large beneficial gains in 

performance and physiology to a similar magnitude of that reported for 6-8 week training 

interventions. However, in light of the ongoing performance decrement for the short training 

group, cyclists should select the long sprint form of the training intervention or allow a greater 

recovery period before competition if using the shorter form of training. 

7.2 PRACTICAL APPLICATIONS 

The major findings discussed above have the following practical applications for cyclists, 

coaches and sport scientists in preparation for competition: 

 A novel, computer-simulated variable gradient cycling time-trial can be used to detect 

small, yet worthwhile changes in cycling performance. 

 Coaches, cyclists and sport scientists should include additional habituation trials when 

the time between experimental trials exceeds 14 days. However, if time or other 

circumstances do not permit, faster more experienced cyclists can commence 

experimental trials without habituation. 
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 These data highlight the physiological variables that underpin hilly cycling performance 

and indicates cyclists targeting hilly events need to produce high power relative to body 

mass and have a high relative O2max.  

 Coaches and sports scientists should consider ways to optimise body mass when 

preparing cyclists for hilly competitive events.  

 When assessing performance and physiology sport scientists should evaluate and report 

results as absolute and relative values to better predict performance potential in hilly 

events.  

 Gross efficiency should be measured and reported during routine physiological 

assessment of cyclists as it is likely an important determinant of competitive 

performance particularly when the course is hilly. 

 Ventilatory threshold and OBLA expressed as a percentage of PPO (fractional utilisation) 

were poorly correlated with performance and were homogenous between cyclists of 

different ability. As such cyclists should focus on training strategies that target maximal 

aerobic power and gross efficiency as opposed to fractional utilisation to improve 

performance in hilly events.  

 The variable-parabolic pacing pattern observed in the current study indicates 

performance testing of cyclists should include some variation in environmental 

resistance to remain specific to competitive events. 

 Although power output varied in response to changes in gradient, a parabolic pacing 

pattern was still evident which suggests energy distribution during endurance cycling 

events is dominated by an anticipatory control system. 
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 Sport scientists and coaches can use the results of study three to inform pacing strategy 

selection and target possible coaching interventions to improve the pacing response to 

hilly cycling. 

 Heart rate is not sensitive enough to describe the frequent changes in power output 

during variable gradient cycling and may therefore under or overestimate exercise 

intensity and training load. 

 Short blocks of intensified training can be used to evoke substantial physiological 

adaptation and performance improvement in cyclists preparing for competition. 

 Sport scientists, coaches and cyclists should ensure there is adequate time for recovery 

prior to competition if using the short duration sprints. If sufficient recovery time is not 

available (minimum 2 weeks), only longer duration sprint intervals should be used to 

ensure performance is not compromised by ongoing fatigue. 

 Coaches, cyclists and sport scientists should use care when prescribing short blocks of 

intensified training paying particular attention to signs and symptoms of ongoing fatigue 

and potential non-functional overreaching. 

7.3 FUTURE DIRECTIONS 

The results from this series of studies discussed, above present a number of 

opportunities to integrate the concepts and findings described into future projects regarding 

testing and training of competitive cyclists. While the first study described the reliability of a 

computer-simulated, variable gradient performance test, only one specific course profile was 

tested. Road cycling is a sport that takes place on public roadways and as such, competitive 

cyclists encounter a variety of courses throughout a racing season. Therefore, future studies 

could establish the reliability of other variable gradient course profiles to determine the 
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broader effect of gradient variation on the reliability of cycling time-trial performance tests. 

The first study also reported decay in the reliability of the variable gradient test with increasing 

time between trials. Maintenance of test reliability is imperative during experimental trials 

when it is important to be able to detect small but worthwhile differences in performance. 

However, the precise cause of the decline in reliability observed here and in previous 

investigations1 remains largely unknown. Therefore, future studies could determine the 

contribution of changes in fitness, learning or de-learning to change in test reliability. 

Additionally, other studies could determine how frequently cyclists need to complete a 

performance test to mitigate possible fitness and learning effects and subsequently maintain 

reliability. 

Recently, the concepts of critical power16-18 and functional threshold power19 have 

become popular to determine training zones and describe the load of specific training sessions. 

The protocols for establishing CP and FTP call for a consistent effort of 3-20 minutes.18,19 

However, the results reported in studies two and three indicate the physiological determinants 

and pacing response are different for variable gradient cycling time-trials compared to constant 

gradient time-trials. Additionally, others have reported differences in the physiological 

response to constant and variable exercise intensities.20 Importantly, results suggest the need 

for variation in external environmental resistance during cycling performance tests. Therefore, 

future studies could investigate the efficacy of CP and FTP derived from a variable gradient or 

variable resistance performance test.  

The pacing pattern observed during variable gradient cycling also presents a number of 

questions for future research. Importantly, future studies should investigate the effect of 

pacing coaching to ease the fast start to determine the effect on ensuing pacing response and 
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subsequently overall performance. Additionally, the physiological and perceptual responses to 

exercise were not measured in the current project. Therefore, future studies could include such 

measures to further describe the characteristics of variable gradient cycling. Other limitations 

related to the technical specifications of the cycling ergometer used in the study also present 

research opportunities. Specifically, studies should investigate the effects of matching external 

cooling to cycling speed and reducing or removing the power output required to propel the 

cyclist during downhill segments on the pacing response during variable gradient cycling. 

While the results of study four highlighted the performance benefits of short term, 

highly concentrated, intensified training, as the first investigation of such training it also 

presents a number of areas for further investigation. In particular, the differences in the fatigue 

response between the two training groups and the rate at which physiological and performance 

improvements decay following intensified training warrant further investigation. Additionally, 

future research could use targeted, more invasive, testing of the skeletal muscle of the lower 

limb to elucidate the precise mechanisms associated with the gross physiological adaptation 

observed in the current study. Lastly, investigations of similar, yet slightly longer, training 

interventions have reported perturbations in the immunological and psychological response to 

intensified training.21 Therefore, future research should determine the effects of shorter 

periods of intensified training, similar to the intervention used in the current study, on markers 

of immune function and well-being. Ultimately, such analysis will help determine when and 

how often short blocks of intensified training should be implemented throughout a competitive 

season to optimise performance while reducing the risk of inducing non-functional 

overreaching. 
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