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Abstract 

A Gene Regulatory Network (GRN) is a graph that represents the way in which genes 

inhibit or activate other genes. The discovery of GRNs is one of the most important and 

challenging tasks in bioinformatics. This is not only because of the role of GRNs in 

providing insight into processes and functions inside cells, but also because of their 

potential for the treatment of diseases and drug discovery. Usually, the technology used 

for collecting information about changes in gene activity is the microarray. Microarray 

data is complex and noisy and its analysis requires the assistance of computational 

methods.  

This thesis focuses on the automated discovery of GRNs from microarray gene 

expression data using heuristics from the molecular biology domain. We employed 

heuristic information for GRN discovery in three different approaches and employed a 

synthetic data generator called SynTReN to generate different benchmark problems to 

evaluate each approach.  

In the first approach, a combination of local search with gene expression programming 

was advanced, which we called Memetic Gene Expression Programming, to solve a 

system of differential equations that modelled a GRN. This resulted in an improvement 

over techniques previously applied to this problem. Our memetic gene expression 

programming technique also proved to be promising for any other application where 

there is a need for solving a system of differential equations. Despite the improvements, 

this method was found to be unsuitable to solve a large-scale real-sized GRN.  

In the second approach we used a coarse-grain equation-free model with another 

combined evolutionary algorithm (Memetic Algorithm) for the automated discovery of 

large scale real-sized networks. In this approach, we found that the evolutionary 

algorithm was not sufficiently efficient for exploring such a large search space.  

In the third approach, we integrated heuristics from domain knowledge to a greater 

extent than the two previous approaches. The third approach followed two strands. In the 



 

v 

 

first strand, we advanced a new method to measure and visualize the way a gene 

activates or inhibits another gene. We called this a 2D Visualized Co-regulation function 

and used it to select gene pairs for building a GRN. We also advanced two post-

processing steps in order to reduce the number of incorrect associations. The first post-

processing method used heuristic information and the second one used an information 

processing technique.  

In the second strand, the structural properties of known networks were used to discover 

the GRN. Finding the correct structure of the GRN has been reported to be the most 

challenging aspect of GRN discovery. Our solution to finding the correct structure of the 

GRN is based on using Hub Network to build the core structure of the network. Hubs are 

nodes with a high number of links attached to them and are known to be the most 

important genes. We first detected hub genes from domain knowledge and then built a 

network based on them from microarray data. This resulted in a plausible structure for 

building the rest of the network. We built the rest of the network incrementally using 

heuristic information such as the degree of the nodes.  

The results obtained using the third approach showed considerable improvement in the 

performance of GRN discovery when we compared them against existing approaches. 

We thus demonstrated that the process of discovering GRNs can be improved by using 

heuristic information along with computational modelling. 
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Chapter 1 

Introduction 
"The larger the island of knowledge, the longer the shoreline 

of mystery “ 

-'Ralph W. Sockman 

1.1 Prelude  

This thesis explores the broad area of gene regulatory network inference. A gene 

regulatory network is a network that has genes as elements and edges as relationships 

between them. To understand this thesis, it is essential to have some basic background in 

molecular biology. Therefore, here we provide an overview of the basic definitions and 

mechanisms of molecular biology.  

All living things are made of cells. Complex animals such as humans have billions of 

cells. Each cell has a built-in program which controls its functionality. This program 

exists in a molecule called deoxyribonucleic acid (DNA). DNA is the most important 

molecule in the cell, as it has codes for all functionality including reproduction and 

death. 

A functional unit of DNA is a gene. A gene is simply a part of DNA which has a code to 

create a product which is usually a protein. Each DNA molecule has hundreds and 

thousands of genes. Each of these genes can produce proteins.  Each protein has a 

specific job or function in the body; for example, some proteins help muscle cells to 

contract. Certain proteins help one cell to divide into two, while others prevent the cell 

from dividing too often. Each human cell has about 30,000 genes; each one makes a 

protein with a unique function (Cantor and Smith 1999). 
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The hard-coded genetic information of a gene transfers into proteins in two steps. 

Figure  1-1 represents these steps. In the first step called transcription a gene located in a 

DNA molecule is transcribed into an individual transportable messenger called 

messenger RNA (mRNA). Each mRNA contains the copy of a gene’s information for 

synthesis of a particular protein (or small number of proteins). The RNA molecule is 

chemically similar to DNA but unlike DNA, RNA exists in a single-stranded form which 

is less stable and subject to cellular degradation. The primary function of RNA is to act 

as a messenger molecule and carry information copied from DNA. In the second step 

called translation, a protein is produced from the RNA code. The amount of RNA (the 

number of RNA molecules containing a gene’s information) indicates the activity of the 

corresponding gene.  

  

Figure  1-1 Central Dogma of molecular biology  

Each cell has a complete copy of DNA but not all the genes are turned on in every tissue. 

Each cell in our body only expresses a small subset of genes at any time. During 

development different cells express different sets of genes in a precisely regulated 

fashion. For example in the presence of lactose in an environment, E. coli starts 

regulating the gene which produces an enzyme to digest lactose.  

Gene regulation or transcription (also called expression) is the process by which cells 

turn the information in a specific gene into gene products. During this process many 

mRNA copies are produced from the DNA. The number of messenger RNA molecules 

Transcription Translation

Replication 
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(transcripts) available at a given time is called the gene expression level. The expression 

level depends on the rates of transcription and RNA degradation (Kepes 2007). 

Each gene is regulated by a certain protein called transcription factors (TFs), which are 

themselves the product of other genes. Sometimes the expression of a gene requires the 

function of two or more TFs especially in higher organisms (eukaryotic cells). This 

means simply that one gene causes the other gene to be expressed which indicates that 

the processes inside a cell are not stand alone but are connected together to form a 

sophisticated network. There are connections and communication between processes 

inside each living cell that makes it possible for these processes to work together and 

keep a cell alive and active. In molecular biology these networks are called pathways. 

These networks can be categorized based on their function or the type of their elements 

such as metabolic networks, protein networks, or gene regulatory networks.  

A Gene Regulatory Network (GRN) is a network whose nodes are genes and its edges 

(connections) represent regulatory relationships between genes. These connections can 

be directional or unidirectional. Also, the connections can be specified in terms of the 

type of regulatory relationship, such as activation or inhibition relationships. Figure  1-2 

represents the  gene regulatory network of E. coli described in (2004) which we 

visualized using Cytoscape 2.7 (Shannon, Markiel et al. 2003).  

The ultimate goal of genomics is to understand the genetic causes behind conditions and 

characteristics. This means having a blueprint that specifies the exact way that genetic 

components (such as genes and proteins) interact to make a living system. Such a 

blueprint at a high level is a gene network. Having such a systematic understanding is so 

critical that it is considered as the second wave in biology and can change how we 

approach human health (Purnick and Weiss 2009).  

In many complex diseases like obesity and diabetes, environmental and other factors 

contribute along with genetic factors to the creation of the condition over the time 

(Coleman and Tsongalis 2002).  There is usually not a single gene responsible for the 

condition and usually there is a chain of interactions between genes that result in the 
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condition. Also, as the processes are all connected it is essential to have a view of the 

underlying network in order to design treatment.  

 

Figure  1-2 E. coli’s Gene Regulatory Network 

Traditionally, biologists employed laboratory experiments to investigate the cause of a 

specific condition. Each experiment was usually limited to the study of one gene at a 

time. Nowadays, with tremendous progress in laboratory technologies it is possible to 

obtain a big picture and an overall systematic view. As a result, we are faced with a 

massive amount of data which is hard to make sense of without the assistance of 

computational methods. There are also other benefits associated with computational 

modelling. Laboratory experiments are expensive and also time consuming; therefore, 

researchers use computational modelling and simulation in order to save time and 

money. Computational modelling provides the freedom to test virtually several types of 

conditions without bearing the actual costs of the experiments. It enables us to look for 

all possible combinations of causes simultaneously to find relationships between causes 
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and effects quickly. This task might be difficult and, in most cases, impossible for a 

human to carry out as the number of combinations is huge. For example, computational 

modelling provides the opportunity to measure the dependency of thousands of genes 

which makes the reverse engineering of gene regulatory networks viable.  

Predictive computational models of regulatory networks are expected to benefit several 

fields. In medicine, mechanisms of diseases that are characterized by dysfunction of 

regulatory processes can be elucidated (Franke, Bakel et al. 2006). Biotechnological 

projects can benefit from predictive models that will replace some tedious and costly 

laboratory experiments. In addition, computational analysis may contribute to basic 

biological research, for example, by explaining developmental mechanisms or new 

aspects of the evolutionary process. 

The goal of this thesis is to automatically extract the underlying genetic network from the 

microarray data. Microarray is a technology that enables making a profile of the activity 

of genes inside a cell (DeRisi, Iyer et al. 1997). This represents the level of activity of 

each gene inside a cell. Microarray technology has been widely used in a variety of ways 

in different applications such as cluster analysis for diseases (Eisen, Spellman et al. 1998; 

Veer, Dai et al. 2002) and functional gene set analysis (Mootha, Lindgren et al. 2003). 

One popular application of microarray data which has recently emerged is the study of 

gene regulatory networks. For this purpose, different samples of the same condition have 

to be captured in different development stages at different time frames (Margolin and 

Califano 2007). The challenge for computational biology is to discover the underlying 

pattern or network that the microarray data represents. This is not a trivial task. Several 

reasons contribute to make this task complex.  

First of all, the technology is noisy and there are many biological variations among 

samples. Secondly, there are usually hundreds of genes or even thousands of them 

against tens of samples. This causes a problem called the curse of dimensionality in data 

mining. In this situation it is hard to make a robust prediction as there are not sufficient 

samples compared with the number of features (Tan, Steinbach et al. 2006). Thirdly, 
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there are variations in the features of a condition over time but the time order of samples 

in many advanced cells is not obvious. This means that there is no way to find out which 

sample occurred first and which occurred second and so on, which increases the 

complexity of the search space dramatically. Moreover, for biologists it is hard and time 

consuming to interpret the result of computational methods. They have to look at each 

gene to find its functionality in the molecular biology context and a single gene could 

have several functions in the body therefore, it is not known which functionality is 

related to the current situation. The same gene could turn up in many other diseases. In 

addition, the fact that data is so noisy makes this interpretation task even more 

complicated. The conclusion is that it is not only hard to analyse microarray data but also 

even harder to produce a result which makes sense for biologists and is compatible with 

current knowledge. 

There are two facts that led researchers to use the biological domain knowledge along 

with computational and statistical methods. Firstly, by using and applying domain 

knowledge there is a greater chance to produce plausible and understandable results that 

make sense for the biologist. Secondly, existing knowledge can guide the computational 

method and reduce the complexity. Considering the fact that the nature of the data makes 

it really difficult to extract a pattern (because of noise and biological variation and not 

having enough samples compared to the number of features), it is reasonable to use the 

information from domain knowledge to reduce the complexity.  

The pioneering study for incorporating domain knowledge in analysis of microarray data 

is Gene Set Enrichment Analysis (GSEA) (Subramanian, Tamayo et al. 2005). GSEA 

looked for gene sets from domain knowledge and tested their significance based on 

microarray data. Their statistical method was able to find modest changes in a set of 

genes which derived from Gene Ontology categories. There are several studies that 

followed GSEA and tried to find changes in the known gene sets based on microarray 

data (Smyth 2004; Al-Shahrour, Minguez et al. 2006). The aim of the aforementioned 

studies was the identification of functional gene sets not GRN discovery and therefore 

they did not consider any dependency or connections between genes.  
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In the emerging new application of microarray data for GRN discovery, many studies 

have followed the same path and considered using domain knowledge along with the 

computational modelling to find networks which are more plausible as well as more 

accurate. For example, Segal et al (2003) used information about gene set modules in 

order to partition the search space first and then applied a Bayesian Network to find the 

dependency of genes inside each module. Other examples are studies by Schadt and his 

colleagues (Schadt, Stefansson et al. 2008; Zhu, Zhang et al. 2008; Yang, Deignan et al. 

2009) which massively used domain information such as position affinity and 

transcriptional modules.  

Currently, methods for GRN discovery still do not have an acceptable performance in 

practice in the presence of real conditions such as noise, real-sized network or 

complicated interactions (Marbach, Prillc et al. 2010). There is also a lack of studies 

related to advanced cells (eukaryotes) such as human cells (except a few such as (Basso, 

Margolin et al. 2005)). Most of the studies were performed on the simpler eukaryotes 

cells such as Yeast or prokaryotes such as E. coli. This is because of the difficulty of 

such a study in more complex cells which have more genetic variations and more genes. 

Scientists also consider a simple creature such as yeast and E. coli because we already 

know their regulatory networks and much other associated information(Gama-Castro, 

Jimenez-Jacinto et al. 2008). It has been demonstrated that we need to use many samples 

along with the integrated resources from domain knowledge in order to achieve an 

effective GRN discovery (Zhu, Zhang et al. 2008; Lee and Tzou 2009).  

Computational modelling of Gene Regulatory Network has three elements: 1) a dataset 

containing gene expression measurements; 2) a mathematical model of gene regulation; 

3) a search method that can find, within the framework of the model, the networks that 

are most probable given the dataset and possibly some prior knowledge. These three 

aspects must be balanced for effective reverse engineering (De Jong 2002; Marbach, 

Mattiussi et al. 2009). 
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There are different approaches in computational modelling for GRN inference. Some 

consider the temporal aspect of gene interactions (dynamic model) while others assume a 

steady state (static). Usually, the first one is more quantitative and the second one is more 

qualitative. There is also a deterministic approach that always produces the same answer 

which contrasts with the stochastic approach. Different techniques have been applied in 

each of these approaches. Examples of the deterministic approach are Boolean Networks 

(Kauffman 1969; Sehgal, Gondal et al. 2007; Xiao 2009) and differential equations 

(Goodwin 1963; Thomas 1981) and an example of the probabilistic approach is the 

Bayesian Network (Friedman, Linial et al. 2000; Yu, Smith et al. 2004; Liu, Feng et al. 

2009). A survey of different modelling approaches for GRNs can be found in  Chapter 2. 

Our initial aim was to improve the GRN discovery process then we focused on the 

specific question of how we can balance between using heuristics and domain knowledge 

and computational methods to achieve a better discovery process. We followed three 

approaches to answer this question. We will review them in the following section.  

1.2 Research Question & Methodology Overview 

Our broad research question in this PhD was “How can reliance on microarray data and 

heuristics be reconciled to improve GRN discovery?”  

We followed three different approaches in this thesis to answer this question. We started 

with a quantitative deterministic approach which employed a system of differential 

equations to model the network. In the second approach, we considered a more 

qualitative approach which was stochastic in nature. The second approach also 

incorporated some domain knowledge information to accelerate the search process. The 

third approach was a deterministic version of the second approach which used heuristics 

from the outset to limit the search process. The best result was achieved by using the 

third approach which employed the highest amount of heuristics. This indicated that 

using heuristics can improve the GRN discovery process. Examples of such heuristics are 

information about structural properties of GRNs and the nature of co-regulation. The 
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benchmark datasets for the second and third approaches were produced by a synthetic 

data generator called SynTReN (Bulcke, Leemput et al. 2006) and the results evaluated 

based on metrics were previously used to compare performance of well known studies on 

the SynTReN data (Leemput, Bulcke et al. 2008). 

In the following sub-sections we will describe each approach in detail. 

1.2.1 Approach1: Memetic Gene Expression Programming 

In the first approach, a system of differential equations was used to model a GRN; the 

problem was considered as a regression problem. In a regression problem, we try to fit an 

equation or a system of equations to the observed data using different techniques. The 

current techniques applied to this problem are usually limited to a very small network. 

We created a novel technique called Memetic Gene Expression Programming in order to 

solve a system of differential equations which modelled a GRN. We improved on the 

performance of the current methods by applying Memetic Gene Expression 

Programming. Our method was compared with previous evolutionary techniques that 

have been applied to this problem, such as genetic programming, and surpassed them. In 

addition, the proposed method was tested in the presence of different levels of noise to 

demonstrate the robustness of the method. Despite achieving an improvement over the 

current methods, the nature of this type of modelling which requires finding so many 

parameters made it difficult to scale up to the real size. For this reason, we moved to the 

second approach, a coarse-grained equation free approach.  

In summary, we achieved a successful result; however, the above modelling using 

differential equations requires precise parameter estimation which makes it difficult for 

them to scale up to real size. The best method based on this modelling typically can solve 

only a network of ten genes (Sakamoto and Iba 2001; Kimura, Ide et al. 2004). In reality 

the number of genes in a network is much greater than this and at least is hundreds of 

genes. For this reason, in the second approach we moved towards a coarse-grained 
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combinatorial modelling which is more qualitative than quantitative and can perform 

under real conditions.  

1.2.2 Approach 2: Memetic Algorithm using Domain Knowledge  

The second approach provides only the big picture of the network. This approach does 

not focus on the details and specific parameters of interactions; therefore, it is practical 

for real-sized networks. In the first approach, we did not use any domain knowledge but 

in the second approach, we tried to involve domain knowledge in order to accelerate our 

discovery process. Existing knowledge can provide us with clues to the solution as well 

as providing a plausible result. Therefore, in the second approach our model took into 

account some structural properties of GRNs. For example, it considered the modularity 

of the network and therefore discovered the sub solutions first, and then combined them 

to find the complete solution (or network). In this approach we also used domain 

knowledge in the form of gene sets and subnetworks to improve the solutions found by a 

Genetic Algorithm (GA).  

We have noticed, despite several benefits of incorporating domain knowledge, that there 

is no study in which domain knowledge has been combined with a combinatorial search 

process like GA. We attempted at filling this gap by proposing a new memetic algorithm 

(combined GA) which incorporates the information from domain knowledge into a 

genetic algorithm. In this algorithm, we proposed a new concept of local search that we 

called cultural imitation. In our new memetic algorithm, the evolutionary unit is 

considered to be a subnetwork and the GA performs the global search process to find the 

best sub solutions (subnetworks) according to the microarray data. On the other hand, our 

local search process tries to improve each solution (subnetwork) by replacing it with the 

most similar solution from domain knowledge by a case retrieval mechanism. In this 

way, we aimed to speed up the search process and to produce better quality answers in 

terms of accuracy and compatibility with the domain knowledge network.  
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The proposed algorithm had an early convergence issue and as a result, its performance 

was not competitive. The result of this experiment showed us that the evolutionary 

mechanism was not suitable for such a search space.  

Despite the fact that our algorithm did not perform highly in this application, the 

proposed memetic algorithm has potential and is worth following up in other applications 

where a simple GA mechanism is applicable. The idea of using a case retrieval 

mechanism for the local search process may be useful in many applications as we do not 

need to capture the problem information in a function. Information from domain 

knowledge in the form of cases can be used directly to improve the solutions by a case 

retrieval mechanism. The nature of the problem did not let us use a conventional GA and 

as a result, the proposal that uses the case retrieval mechanism as the local search method 

was not further studied. The lesson learnt from that experiment was that the search space 

is too complicated to be explored using just a random search process such as a GA as it 

could not explore the entire search space effectively. In our third approach, we decided to 

use more domain knowledge in the form of heuristics to limit the search space from the 

outset and also to use a guided mechanism by heuristics to explore the search space.  

1.2.3 Approach 3: Heuristics Based on Structure and Association Measures 

In the third approach, we aimed to use more information and heuristics. In this approach 

we followed two strands.  

First, we explored different association measures for gene-gene relationship. We studied 

some of the known association measures and found none of them consider the nature of 

the regulatory relationships. In other words, they look for correlations instead of co-

regulation. Therefore, we considered defining an association measure based on the 

definition of regulatory relationship from a molecular biology context. Our designed co-

regulation function has been proved to have a superior performance. For this study we 

used simulated data produced by SynTReN to produce a variety of regulatory 

relationships. The tests were conducted in five different types of networks with different 
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levels of noise and different levels of complicated regulatory relationships. The first 

version of the function was designed based on a simple one dimensional bin of each 

gene. The second version was based on a two-dimensional grid with a fixed parameter. 

The grid was designed to present the relationship between two genes. It has the 

discretized value of each gene along each axis and the content of each cell represents the 

frequency of that combination of gene values occurring at the same time in a sample. In 

the third version of the function we considered having a variable dynamic threshold. The 

variable threshold function was implemented by two different methods. In the first one 

we used a sliding window over the grid. In the second method, we built a model using 

data mining algorithms which was able to learn the patterns across hundred of different 

samples and apply it to a new search space.  

In addition to testing the performance of our designed co-regulation function, we 

designed other experiments to test our hypothesis about the co-regulation pattern. We 

used a feature selection algorithm in order to detect the most important features and areas 

inside the grid. We also applied k-means clustering on the grid to find the most important 

clusters and then used a decision tree to discover rules which relate the boundaries of 

these clusters with class labels.  

In the following studies, we proposed two ways for post-processing the results of the co-

regulation function to improve accuracy. Our first post-processing approach employs 

heuristic rules in order to eliminate some false positives. In the second post-processing 

approach, we used a measure of information theory called Data Processing Inequality 

(DPI) to remove additional false positives. Both of these approaches were useful and 

improved the results obtained by the co-regulation function.  

In the second strand, we analysed the structural properties of GRNs and also patterns, 

motifs and the other information related to GRN structure in order to find heuristics 

which could assist us with building the structure of the target GRN more effectively. As 

a result we arrived at the idea of using Hub Network to build the core structure of the 

GRN. This proposal finds hub nodes from the domain knowledge networks and builds a 
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network of these hubs based on the expression data. Hub genes are those genes which 

have more than 4-5 links and usually are the most important and the most essential genes 

in the network (Goh, Cusick et al. 2007; Barabási, Gulbahce et al. 2011). They hold the 

network together. We used this initial network as a foundation or primary structure of the 

network. Our algorithm builds the network structure incrementally and also takes into 

account the type and the degree of the nodes. In the first step, it builds the Hub Network 

and then it adds additional nodes from microarray data to this layer. We extracted the 

degree of each hub from the prior network and used this information to attach nodes to 

hubs according to this degree. Also, we considered a process of normalization of 

association measures per gene to select only the most important connection of each gene, 

which reported a further improvement in performance. The combination of our Hub 

Network algorithm, our association measure and our post-processing was tested on 

multiple datasets and networks and achieved excellent results when we compared it with 

state-of-the-art methods.   

1.3 Research Objectives & Contributions 

The corresponding research objectives investigated in this thesis and our contributions in 

solving them are as follows:  

o How can we improve the performance of current techniques applied to 

differential equations modelling of GRNs? 

 We created a new technique called Memetic Gene Expression 

Programming which surpassed the performance of the current 

techniques ( Chapter 5). 

o How can we combine gene set information and other information related 

to genes association in a combinatorial search process (specifically GA) to 

achieve a better discovery process? 

 We proposed a new Memetic Algorithm which employs a new 

local search process. The local search process uses a case retrieval 

mechanism to make the solutions similar to domain knowledge. 
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On the other hand, the GA performs the global search to find the 

solutions which match the expression data ( Chapter 6) 

o How to explain observed gene expression data in terms of co-regulation 

rather than correlation? 

 Existing association functions in the literature do not provide 

enough insight into the nature of the gene-gene interaction. They 

are designed to measure the correlation between any two variables 

and are not designed specifically to measure genes’ co-regulation 

patterns. We proposed a list of desirable characteristics for an 

association function to measure gene pairwise relationships. This 

is presented in  Chapter 7.  

o How can we measure the association between two genes more precisely 

compared with the existing functions? 

 We developed a co-regulation function called 2D Visualized Co-

regulation function which looks for the co-regulation patterns 

(activation and inhibition and dual interactions) and achieved a 

better performance compared with the common correlation 

measures used in the literature ( Chapter 7 and  Chapter 8). 

 Our proposed 2D Visualized Co-regulation function also comes 

with a visualization ability which makes the result understandable 

for experts.  

o How can we find evidence to prove the assumptions behind our co-

regulation function is valid by looking at the microarray data? 

 We validated that by applying data mining techniques on the grid 

which visualizes the co-regulation. First we transformed the data 

in such a way that each cell inside the grid represents a feature in 

the dataset. Then we added class labels such as ac (activation), re 

(repression) and du (dual interaction) to each record and applied a 

feature selection process. In addition, we applied the k-means 
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clustering algorithm to the grid to discover the densest cluster/s 

inside the grid. We extracted the boundaries of these clusters and 

formed a dataset which contained boundaries of each cluster, 

density of each cluster and the class label. In the second step, we 

used a decision tree algorithm to find the rules which related the 

boundaries and densities to the class labels ( Chapter 8). 

Both experiments confirmed our co-regulation assumptions and 

also opened new questions about the effect of indirect relationship. 

o How can we reduce the number of false positives detected by our co-

regulation function (indirect relationships)? 

 We proposed a heuristic post-processing operation which looks for 

the absence of the opposite regulatory relationships in pairs that 

are already recognized as having a regulatory relationship by our 

co-regulation function. Once this was applied to the self-

regulations only the accuracy was 100% (it did not delete any true 

answer, just removed the false answers) ( Chapter 8).  

 We also applied Data Processing Inequality (DPI) on the output of 

our co-regulation function. This method successfully increased our 

performance even further ( Chapter 8).   

o How can we use the properties of known gene regulatory networks (such 

as structural properties) in order to design a more effective discovery 

algorithm? 

 We arrived at the idea of using the Hub Network to build the core 

structure of the GRN. We developed an algorithm which builds a 

network of the hubs based on the expression data. Our algorithm 

builds the network structure incrementally and also takes into 

account the type and the degree of the nodes. In the first step, it 

builds the Hub Network and then it adds additional nodes from 

microarray data to this layer. We used a number of links for hubs 
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extracted from the prior network as a weight of each hub node to 

guide us in how many edges to consider to be connected to each 

node. We also considered a process of normalization of 

association measures for each gene to select only the most 

important connection of each gene, which reported a further 

improvement in performance ( Chapter 9). 

o How can we achieve a better GRN discovery process using heuristic 

information? 

 We achieved good results by combining our three procedures. The 

algorithm uses structural properties of the known network (Hub 

Network algorithm), our proposed co-regulation function and the 

heuristic-based post-processing procedure. Our results 

demonstrated that using heuristics we can improve the GRN 

discovery process ( Chapter 9). 

1.4 Significance of the Study 

This thesis contributes to two different domains of knowledge, computer science and 

computational biology. 

The contributions to computer science are two new techniques that we have developed. 

The first technique is called Memetic Gene Expression Programming which was 

proposed for the first time in this study. This method is the combination of local search 

methods with the gene expression programming technique. This technique improves the 

quality of results produced by using the gene expression programming technique alone 

and it can be used for a range of problems, especially regression problems. The second 

technique is a form of memetic algorithm. Our algorithm proposes a new design of GA. 

Our chromosomes contain a partial solution in the form of a sub graph. Our algorithm 

also employs a different approach toward the local search mechanism. Our local search 

uses information from domain knowledge to guide the search space in the form of a case 

retrieval mechanism.  
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The contribution of this study to computational biology is the proposal of a new 

association measure for measuring pairwise dependencies between genes. In this study 

we first explored the ability of different association measures in the GRN context and 

identified that the existing measures do not detect the exact pattern of the regulatory 

relationships. To the best of the author’s knowledge, there are not many studies that 

consider the nature of the regulatory interactions to define an association function. The 

relationships between gene pairs were considered a black box and researchers have tried 

different correlations and association measures in order to find the one which achieves 

the best results.  

We proposed a function called 2D Visualized Co-regulation function based on the 

definitions of regulatory relationships. Specifically, our association measure is defined 

based on the definition of inhibition or activation and dual interaction from the molecular 

biology context. We demonstrated that this function can surpass the previous measures. 

Another important aspect of our 2D Visualized Co-regulation function is its visualization 

power. Most of the correlation or association functions produce a number indicating the 

degree of association. This does not give much information about the nature of the 

changes. In contrast, our function not only provides information about the degree and 

type of the associations between genes but also represents the relationships in a visually 

powerful and sensible way. This promises to provide insight into the nature of 

interactions and makes it understandable for molecular biologists.  

We also proposed a new heuristic-based post-processing procedure for reducing the 

number of false positives. The proposed post-processing step considers the absence of 

the opposite relationship as the indication of true positives; therefore, it removes those 

which represent some mild patterns of the opposite regulation. Our post-processing step 

achieved very good performance when it was applied only on self-regulations.  

Finally, the last contribution is using Hub Network. Specifically, we identified hub genes 

from the related known network to build a new network. We also used other heuristics 

such as information about the genes connectivity and the number of their edges to guide 
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the discovery process and to build the network structure. This information was also used 

in our proposed background correction process for each gene.  

In this thesis, the best result was achieved using heuristics from the outset. We 

demonstrated the positive benefits of i) using the heuristics related to the structural 

information of the known network ii) using the definition of regulatory relationships to 

detect pairwise associations and iii) using heuristics for reducing the number of false 

positives.  

1.5 Overview of Thesis 

This dissertation stands at the intersection of computer science and molecular biology. 

We assumed no primary knowledge in either area and organized this dissertation to 

provide background in both areas.  

  Chapter 2 provides necessary background information in molecular biology as 

well as the literature related to GRN discovery. This chapter was not meant to be 

a complete literature review as the related literature to each approach is provided 

in each chapter separately. 

  Chapter 3 describes the difficulty of the benchmarking algorithm for reverse 

engineering of gene regulatory networks. Consequently, it provides the 

background and literature about computational benchmarks or synthetic data 

generators. It then discusses different simulators and the reason why we chose a 

particular simulator called SynTReN. This is followed by the description of how 

we generated our six benchmark datasets using SynTReN. At the end of this 

chapter, we provide an evaluation methodology and performance measures based 

on the related literature and other studies applied on the data produced by the 

same synthetic data generator.  

  Chapter 4 provides a solid background in the evolutionary computation 

techniques. This information is necessary for the reader in order to understand our 

first and second GRN discovery approaches.  
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  Chapter 5 proposes a novel technique to solve differential equations which model 

a GRN. The technique is called Memetic Gene Expression Programming. This 

technique was created based on conventional gene expression programming, by 

adding a local search process to tune the parameters for a system of differential 

equations more effectively. 

  Chapter 6 proposes another novel technique for reverse engineering of GRN, 

based on a combinatorial search. The search process uses an evolutionary 

algorithm as the global search process and case-based retrieval as the local search 

process. The method tries to find the functional subnetworks in the network and 

to then merge the subnetworks in order to find the overall picture.  

  Chapter 7 first provides an overview of our third approach for GRN discovery. It 

also describes the theory behind the first strand of our third approach which 

proposes a new association measure for gene pairwise dependency. In doing that, 

we firstly review the most common association functions for measuring the 

pairwise dependencies of genes and their assumptions and limitations. We argue 

that none of them are designed to measure the exact pattern of the regulatory 

relationships. We then provide a list of the desirable characteristics for an 

association function, and finally, we describe our designed association measure 

based on the mentioned characteristics. The experiments with the proposed 

association measures are described in detail in the following chapter.   

  Chapter 8 describes the follow up experiments based on the idea of our 

association function, proposed in the previous chapter. The experiments with 

different versions of our co-regulation measure are reported across different 

synthetic datasets and networks. We started with the basic version of the function 

and finished with a variable threshold co-regulation function. In this chapter, we 

also report the experiments with the proposed post-processing techniques.  

  Chapter 9 describes the second strand of our third approach. We used the Hub 

Network idea in order to build the primary structure of the network as well as 

other background information. We provided experiments to demonstrate the 
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effectiveness of this idea in terms of improving the performance of current 

approaches for modelling GRNs. In addition, we report the highest performance 

of our third approach using the Hub Network idea combined with our co-

regulation function.  

  Chapter 10 summarizes the key contributions of this dissertation and draws a 

number of conclusions. It also proposes possible future work and possible further 

development of our proposed techniques.  
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Chapter 2  

Background 

“The gene is the unit of Life. The soul is the unit of 

Humanity. We know the alphabet of Life, we have 

unraveled the code. But remember, like words, DNA has 

significance beyond the sum of its parts.” 

- David Bromfield 

2.1 Introduction  

In the introduction chapter we briefly talked about the GRN discovery problem and 

provided some basic background to the problem in order for the reader to understand the 

research question. In this chapter we will provide more descriptions and a solid 

background into the related literature. Extra detailed literature will be provided in the 

following chapters where we review each of our approaches. We also will provide 

related literature to evaluation separately in  Chapter 3 Experimental Setup.   

Here, we first start by reviewing microarray technology and the nature of its data. Then 

we will briefly talk about the challenges for analysis of such data and different 

generations of methods and approaches for this purpose. Second, we will describe the 

nature of Gene Regulatory Networks (GRNs) and gene expression mechanism. We then 

will talk about the traditional methods for GRN discovery. At the end we talk about 

approaches towards modelling of GRNs and computational methods which have been 

developed so far for GRN discovery. This provides enough information in order to 

understand the approaches was taken in this thesis. 
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2.2 Microarray Data 

Every cell inside a particular living creature contains a complete identical copy of its 

DNA and identical genes. Only a fraction of these genes are turned on (expressed) in 

different organisms and conditions. This subset of genes is a unique property of each 

cell. For example, a particular subset expressed in liver cells is different from the subset 

expressed in heart cells. Also, in the same cell, genes are expressed differently during 

different stages and conditions. For example, genes expressed in dehydration are 

different compared with those under normal conditions.  

For many years, biologists studied one gene at a time and it was not possible for them to 

capture a complete picture of every gene expressed in a cell. Advances in technology 

enabled them to build a general profile of gene expression, in order to study changes in 

the cell during different conditions genome-wide. Microarray is a technology to read the 

state of DNA through the expression of many genes at once (DeRisi, Iyer et al. 1997). It 

is a tool that allows us to monitor the expression of all genes active in a cell at the same 

time. A microarray is typically a glass or polymer slide, onto which part of a DNA 

molecule (usually a gene) is attached at fixed locations, called spots. There may be tens 

of thousands of spots or genes on an array. Microarray can be used to detect DNA, 

mRNA, proteins or antibodies. For gene expression studies, we measure gene expression 

levels by assaying the relative abundance of mRNA molecules, which are the transcribed 

products of genes in cells. In this research, we are working with mRNA microarray data 

called gene expression data. To measure gene expression, the mRNA molecules 

extracted from the target cells are hybridised to a solid substrate with thousands of 

microscopic spots, each of which contains a certain number of DNA sequences of a 

specific gene. By measuring the amount of mRNA hybridized to one spot, we can infer 

the expression levels of the gene in that particular spot. This is due to the assumption that 

the amount of mRNA is an indicator of the activity of the corresponding gene (DeRisi, 

Iyer et al. 1997). However, it is not easy to quantify the amount of RNA as representative 

of a particular gene because this can vary over time. Thus we need to be able to set a 
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threshold level to specify the presence of a gene. A way to address this is using 

competitive hybridization experiment. This compares the state of a gene in one condition 

to that of a reference and allows the gene’s expression to be quantified in terms of the 

changes between the two.  

There are different technologies available for microarray chips. Two-colour arrays, 

single-colour arrays and longitude arrays. Each of these technologies is different in terms 

of how they produce the gene expression profile. For example, in two-colour arrays after 

biological experiments and preparing samples, all mRNA extracted from each of the two 

samples are labelled with two fluorescent dyes; for example a green label for the 

condition one and a red label for condition two. Then, samples are hybridized and are 

excited by a laser and scanned.  The amount of fluorescence emitted upon laser 

excitation corresponds to the amount of mRNA bound to each spot. In case the nucleic 

acid from the sample one is abundant the spot will be green, whereas if sample two is 

more abundant the spot will be red. If neither is presented, the spot will be black and if 

the two samples are equally present then the spot will be yellow (Klipp, Herwig et al. 

2005). In one-colour array the process is similar, but the main difference is that two 

conditions are not combined in a single array but in two different chips. Still fluorescence 

dyes are used to detect the image; however, the calculation of the differential expression 

of genes is carried out through comparing the intensity of the same spot in different 

arrays. Examples of one-colour chip are Affymetrix "Gene Chip” and Illumina "Bead 

Chip”. 

In general, to perform microarray experiments, the following steps are required: 

designing and printing of the array; designing of the biological experiment; preparing the 

samples, sample labelling with fluorescent dyes, hybridization, washing, scanning image 

acquisition; data cleaning and transformation; background subtraction, normalization; 

data filtering; and data analysis and interpretation (Dubitzky, Granzow et al. 2003). 

These dye arrays are usually prepared and ready for use by the manufacturer and, 

therefore, the first step is to prepare biological experiments and samples. However, 

different technologies of microarray such as single-colour or two-colour microarray work 
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differently, but their output basically shows the same thing which is the differential gene 

expression profile. The image after the numerical transformation is usually in the form of 

large matrices of expression levels of genes (rows) under different experimental 

conditions (columns) with some missing values. After transferring data to numerical 

values, a pre-processing stage is usually applied to the raw matrices of data in order to 

remove noise and also replace the missing values. It is estimated that the majority of 

mRNA from the cell contains transcription from a small minority of genes. The majority 

of genes are expressed at very low levels (Seidel 2008). Therefore, it is usual that a 

mammalian sample after analysis has half a probe (spot) as absent because the amount 

was too low to be detected (Seidel 2008). Therefore, strategies are needed in order to 

replace the missing values. 

After that, a method is required to facilitate comparison between genes by combining the 

two conditions into one value. The most common way to achieve this is to calculate the 

average fold ratio of the intensity of the signals in one channel in one condition over the 

other condition. As this fold ratio can vary hugely depending on the range of genes 

expression, a log of this ratio is taken to decrease the effect of the difference in the range 

of the expression and to normalize these changes. The log ratio allows both an increase 

and a decrease in the expression of a gene to be compared in a unique way (Fraser, Wang 

et al. 2010). However, the log ratio does not take into account the sample size.  It also 

does not take into account the extent to which the measures vary among samples. 

Therefore, statisticians use p-value instead to indicate the probability of observing such a 

difference by chance.  

Laboratory techniques related to microarrays have been developed professionally and 

commercially and are now well established. However, analysis of the results still remains 

a challenging area (Al-Shahrour, Minguez et al. 2006). The reasons are that the nature of 

data is highly variable, redundant and noisy.   

There are different types of data variability including experimental variation and 

biological variation. Biological variations happen mainly as a result of different genes in 

a cell being active at different times. This makes a big difference in samples under study; 
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however, there is not much that can be done to overcome this. In general, there are two 

types of biological noise: intrinsic noise and extrinsic noise (Scherer 2009). The intrinsic 

noise occurs due to the inherent stochasticity of biochemical processes and 

environmental variations. These make variations in the amount of cellular components, 

which in turn affect the biochemical reactions. The extrinsic noise occurs due to different 

developmental stages of cells, e.g., cell cycle variations or continuous mutational 

evolution. 

Biological variability is so high due to individual differences, such as different sex or age 

(Swain, Elowitz et al. 2002; Purnick and Weiss 2009). This is considerable especially in 

eukaryotes. Even in a population of genetically identical cells, the response of 

individuals may be significantly different from the average population response (Novick 

and Weiner 1957; Elowitz, Levine et al. 2002).  

Experimental variation occurs due to the individual sample quality and homogeneity 

such as RNA degradation and cell heterogeneity in the tissue sample (Scherer 2009). 

Data variability is sometimes dramatic, which makes it hard to analyse the data, such as 

cancer conditions where most of the time obtaining information about the type and stage 

of taken samples is impossible. Data variability also makes it almost impossible to repeat 

the experiments and produce the same data.  

Redundancy occurs sometimes because several copies of a single gene are attached to 

different probes of the microarray data and this causes confusion about the expression 

value of a gene. 

In addition to data variability and redundancy, noise is often high, which usually makes 

comparison between platforms and experiments unsatisfactory. It also makes it hard to 

reproduce the data. A source of noise is non-accurate experiments known as 

experimental noise. Hofmann (2006) stated that the main reason for noise in microarray 

data is that there are many experimental steps and, therefore, many sources of data 

variability. This non-biological experimental variation is known as batch effect, which 

renders the task of data combination from different datasets difficult. A major challenge 
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in microarray analysis is to effectively dissociate actual gene expression values from 

experimental noise (Hofmann 2006).  One way to overcome such noise is to integrate 

different data sets related to the same condition. There is software developed to reduce 

the amount of such experimental noises, an example of which is a package called 

Limma. Limma is a package developed using the R language as a part of the 

Bioconductor package (Gentleman, Carey et al. 2004) for differential expression analysis 

of microarray, which is capable of removing the effect of experimental conditions. 

Another challenge of microarray data is that there are usually so many genes compared 

with the relatively small number of experimental samples, and this causes a phenomenon 

called the curse of dimensionality. This refers to the phenomenon that makes the data 

analysis  significantly harder as the dimensionality of the data increases (Tan, Steinbach 

et al. 2006). In such a condition, it is difficult to make any generalizations and extract the 

pattern from the data. This problem is exacerbated by the fact that microarray data is an 

expensive technology and it is, therefore, expensive to have many samples and in many 

research laboratories there are usually less than ten samples available due to 

experimental limitations.  

Statisticians and bioinformaticians have developed algorithms and methods to overcome 

the difficulty of analysis of the microarray data. Several algorithms have been developed 

for normalization and transformation, and also for feature selection and feature 

construction. Normalization and transformation is used to reduce the noise, and feature 

selection is used to reduce the curse of dimensionality.  However, extracting biological 

information from microarrays still remains a difficult task (Goeman 2007).  

Figure  2-1 represents typical microarray data after numerical transformation and pre-

processing. Further analysis needs to be carried out for the discovery of the gene groups 

that are different between two conditions. For example to find out the most effective 

functional gene sets involved in that condition or ultimately underlying GRNs.  

The first generation of tools for analysing microarray data relied only on computational 

or statistical methods to extract hidden information from the data. The output of such a 
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system was usually a list of genes which seemed to be different between the two groups 

of samples; such as diseased versus normal. Alternatively, clustering and classification 

algorithms were used (mostly hierarchical clustering and K-means) to group genes that 

had shown a similar pattern of change. The aim was to find different subgroups of 

patients or different tumour types by clustering genes in groups according to their 

expression level (Parmigiani, Garrett et al. 2003).  

 

 

 

 

 

 

 

 

Figure  2-1 Typical numerical microarray data 

In either approach, computational methods were applied to expression data to extract the 

most important genes or cluster of genes. Biological knowledge was only used to find a 

meaning for the output. There were several problems with this approach. First of all, it is 

difficult and time consuming for biologists to look at each gene or cluster of genes to 

find their functionality in the molecular biology context. This is because a single gene 

could have several functions in the body and it is not known which functionality is 

related to the current situation. In addition, biologists are interested in the interactions 

between genes, and that approach does not consider any dependencies between genes and 

does not tell us anything about gene relationships. Furthermore, this approach is not 

reliable as it may detect effects rather than causes. There are some factors which will 

change considerably due to a general malfunction in the body, called downstream 
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effectors (Chuang, Lee et al. 2007). Computational methods which consider only the 

amount of gene expression identify the gene with the highest changes in that disease, 

however, the same genes could turn up in many other diseases. Finally, this approach is 

very sensitive to noise because it does not deal with the function of each gene. Therefore, 

it is more likely to process any kind of noise or wrong value, which can lead to an 

incorrect result that does not make biological sense.  

In 2005, a group of researchers (Subramanian, Tamayo et al. 2005) reviewed three 

different studies  related to lung cancer by three different groups in Boston, Michigan 

and Stanford (Bhattacharjee, Richards et al. 2001; Garber, Troyanskaya et al. 2001; Beer, 

Kardia et al. 2002). They revealed that those three different studies only have one gene in 

common among the top 100 genes which are reported to be correlated with poor outcome 

for lung cancer patients. This study also found that no genes in either study were strongly 

correlated with the result at a significance level of 5% after correcting for multiple 

hypothesis testing.  

There are a number of reasons for the lack of agreement between different studies. The 

first reason is using different methodologies such as different pre-processing steps, 

different normalization and transformation procedure, different modelling and, finally, 

different gene selection methods and algorithms. Another reason for the lack of 

agreement is related to the data having different samples, choice of patients or poor 

experimental designs such as noise. Lastly, the influence of underlying biology such as 

the presence of tumour subtypes and an unsuitable model or experiment for considering 

the important factors can make a huge difference between studies (Wilson and Pittelkow 

2007).  

One of the main causes of not getting a good result by conventional methods is that those 

methods consider each gene separately without considering its dependency on other 

genes. The fact is, genes do not operate alone in the cell; they operate in a sophisticated 

network of interactions that researchers have only recently started to investigate (Al-

Shahrour, Minguez et al. 2006). Therefore a single gene analysis approach does not 

match with the nature of the problem. For example, a 20% increase in the expression 
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level of a group of genes in the same pathway1 may be more important than a 20-fold 

increase in a single gene (Subramanian, Tamayo et al. 2005). Looking at a single gene 

usually leads to a non-unified biological result. 

Another key reason for the above-mentioned problems is that they do not use any 

information from the domain to extract a plausible pattern from the data. In the presence 

of noise, redundancy and variability, using domain knowledge can help prevent a false 

result. The researchers who compared lung cancer studies suggested a different approach 

to analysis of microarray data, which they called Gene Set Enrichment Analysis (GSEA) 

(Subramanian, Tamayo et al. 2005). Their method proposed a different perspective on 

the problem. The method starts with some gene sets known to be involved in a biological 

function, such as cell death (apoptosis), and determines whether they can identify a 

difference between a normal versus diseased group. Those gene sets which significantly 

differ between two groups are chosen as the most informative gene subsets. They utilize 

existing knowledge about biological gene pathways to get a result which is biologically 

meaningful. Their statistical method looks at the most coherent and modest changes in a 

group of genes instead of a dramatic change in the individual genes. Using this approach, 

they detected a considerable number of genes in common in different studies related to 

lung cancer and diabetes that were previously not identified by earlier approaches. This 

study has led to a new generation of tools for microarray analysis which use biological 

knowledge from the outset to try to find biologically meaningful changes in the data (Al-

Shahrour, Díaz-Uriarte et al. 2004; Al-Shahrour, Díaz-Uriarte et al. 2005; Lee, Braynen 

et al. 2005).Subsequent studies looked for more information from the domain knowledge 

such as protein interaction networks or transcription factors to define group of genes 

which are related functionally. Another group aimed to develop a statistical function to 

measure the changes more accurately for small size datasets when the number of samples 

is less than ten. This condition occurs frequently in the research laboratories where there 

                                                 
1 A pathway is a series of chemical reactions occurring within a cell between genes, proteins, and other 

elements to perform a function. 
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are a few samples and a couple of hundred genes. ROAST (Wu, Vaillant et al. 2010), 

developed as a function inside the Limma package (Smyth 2005), has the answer for 

such a situations which GSEA (Gene Set Enrichment Analysis) cannot handle properly. 

A review of the methods for gene set analysis can be found in a recent survey 

(Abatangelo, Maglietta et al. 2009). 

In recent decades, by developing a System Biology approach, microarray experiments 

have been used for the systematic study of gene interactions and Gene Regulatory 

Networks. In the next sections we will describe the principal of GRNs and review the 

computational methods for GRN discovery from microarray data. 

2.3 Gene Regulatory Network (GRN) 

A Gene Regulatory Network is defined as a graph that represents groups of genes that are 

activated or inhibited and their interactions regulate certain biological functions, such as 

metabolism and development. They are dynamic objects that continuously sense the 

environment and coordinate their operation accordingly. The core of GRN operation is 

based on gene expression. 

The expression of one gene can be controlled by the specific quantity of a target protein 

which is a product of another gene. These proteins are called transcription factors. In 

general, proteins are key players inside cells. Each gene produces a unique protein/s. 

These proteins participate in many cell functions and also those proteins, which are 

transcription factors, play a key role in the regulation of gene expression. Genes are 

linked to each other through these proteins. The gene regulation (expression) system 

consists of three major elements: genes, cis-elements and regulators. Cis-elements are a 

region of genes that a regulator binds to and controls the expression level of the gene. 

Cis-elements, also known as promoters, generally consist of a few 100bp upstream of the 

Transcription Start Site 2  of the gene. Regulators are often those proteins called 

                                                 
2 Transcription Start Site (TSS) is one base pair and is where the transcription of a gene to RNA begins  
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Transcription Factors (TFs) (Filkov 2006). Transcription Factors (TFs) are a protein 

binding domain which can recognize the sequence of the cis-element of a particular gene 

or genes and binds to it. For transcription to begin, the TFs bind to cis-elements along 

with RNA polymerase II and other proteins and make a Transcription Initiation Complex 

(TIC). RNA polymerase II is a molecule which has the ability to read the DNA sequence 

and make a copy of the code. Once TIC is formed, the transcription begins and the RNA 

polymerase II moves downstream, producing RNA until a stop signal in the DNA is 

reached. The stop signals are particular codes on the DNA sequence which can be 

recognized as stop signs. This process produces mRNA molecules which contain a copy 

of the gene’s code. These mRNA molecules later on translate into proteins to perform 

functions such as acting as an enzyme in a metabolic process. Some of these proteins 

function as TFs to regulate other genes.  

In general, TFs can control the transcription of a gene in two ways: one is through 

binding to cis-elements of the gene and making TIC complex, as described above, the 

other way is by directly binding to the upstream or downstream of the Transcription Start 

Site of the gene (Kleinjan and van Heyningen 2005). 

Transcription Factors (TFs) can be in two states and transit between the active and 

inactive states. After becoming active, they bind to the regulatory regions of genes and 

change the level of expression of these genes. At the qualitative level, a transcription 

factor can activate (positive effect) or inhibit (negative effect) a gene target. A dual effect 

is also sometimes observed, which may be either positive or negative, according to the 

circumstances (Dardel and Kepes 2006). 

Regulatory genes which produce TFs may themselves be regulated, and target genes may 

themselves be regulatory, in which case they participate in a genetic regulatory pathway 

or cascade. If such a regulatory pathway is closed onto itself, it forms a feedback circuit. 

Some genes are self-regulatory which form a unary feedback circuit (Kepes 2007).  

Considering the number of genes and all the possible interactions and regulations 

between them depending on different conditions and stages of the cell, the system is so 

complex which makes it hard to elucidate.  
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Much of the pioneering research in understanding the mechanisms of transcriptional 

regulation has been carried out on model organisms such as yeast. It is only recently that 

the technologies have become available to perform in-depth analysis of regulation of 

transcription in humans, which is inherently complex. In higher eukaryotes such as 

humans, the number of TFs is far less than the number of genes that need to be regulated; 

therefore, transcription factors act in a cooperative, orchestrated manner to initiate the 

transcription of a particular gene (Maston, Evans et al. 2006). Knowing the correct 

combination of transcription factors controlling a gene’s expression is crucial to 

determining the correct function of any given gene; however, understanding 

transcriptional regulation in humans is a difficult task. One of several reasons for this 

complexity is that only one part of gene regulation occurs through the regulation 

mechanism. The other part happens through different mechanisms such as post 

regulation mechanisms including non-coding mRNA3, post-translational modification of 

proteins, RNA processing and transport (in eukaryotes). This means that it is not possible 

to extract all the information necessary to build a gene network solely from mRNA 

microarray.  

The genes, regulators and the regulatory connections between them form a schema called 

a gene network. A directed graph, in which the nodes are genes and edges represent the 

control relationships between them, can be used to model these networks. A GRN is like 

a skeleton that provides a qualitative framework on which quantitative data can further 

be superimposed for reasons of quantitative modelling and simulation (Potapov 2008). 

Depending on the degree of abstraction, there are different levels of modelling of gene 

networks. 

The classic way of building a gene network is to extract information from individual 

studies about individual links and then merge them together. There are some known 

networks available in KEGG (2009) and other databases publicly available that are 

                                                 
3  Non-coding mRNA is a functional mRNA molecule that is not translated into proteins. They perform 

some important functions inside a cell.  
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extracted in this way. This classic way of extracting networks is really time consuming 

and expensive, and with the emergence of new large scale technologies there is a need 

for automating this process.  

Some of the already known networks give us useful information. The complete gene 

transcription network of single cells such as E. coli and S.cerevisiae are now known. 

Figure  2-2  shows a typical GRN built by a computational method. We can see in this 

figure that the structure of GRNs is not similar to a random network. The biological 

networks in general and GRN in particular exhibit a certain property called scale-free. In 

a scale-free network when there is an increase in the number of nodes the number of 

edges does not scale up with power of two as we see in the normal network. Therefore 

their structure follows a certain shape. Most genes are engaged in only a few interactions, 

but a few genes are linked to a significantly higher number of other genes. These highly 

connected genes function as hubs. In Figure  2-2   some of the hubs are distinguished by a 

circle around them and it can be seen that they have more than five other nodes 

connected to them.  

The scale-free topology provides robustness against random failures. These networks are 

also compact and display increased clustering. Some of this structural knowledge can be 

used to model gene networks effectively.  In Section  9.2 we will review these properties 

in details and we use them in our second and third approach to build an effective 

algorithm.  
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Figure  2-2 An example of a Gene Regulatory Network (A part of the cell cycle based on 
http://prime.psc.riken.jp) (Kenji Akiyama, Eisuke Chikayama et al. 2008) 

There are different levels of abstractions and details for the representation of GRNs. In 

general, there are two categories: continuous and discrete modelling. A simple and 

common approach to discrete modelling is a Boolean model, in which each relationship 

is labelled as 0 or 1 (that is, each pair of genes either is related or is not related). The 

simplicity of this approach makes it much faster to calculate a large scale network, but 

doesn’t provide any quantification of the strength of relationships. In contrast, in 

continuous modelling the edges have a real value indicator of the strength of the 

relationship. The graph can also be unidirectional or directional. In Figure  2-2  the graph 

is not directional and has a Boolean representation, therefore there is not any label to 

represent the strength of the relationship. This way is the most abstract representation of 

GRNs. In the next section, we will describe computational methods for reverse 

engineering of GRNs. 
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2.4   Gene Regulatory Network (GRN) Discovery 

The study of gene regulatory networks has received major attention recently due to the 

development of experimental techniques like microarrays. There are different ways of 

inference of Gene Regulatory Network ranging from computational methods to methods 

from laboratory experiments and building them by hand.  

In general there are several molecular biology techniques for building GRNs: Genome-

based methods, High-Quality reconstruction with literature survey of interactions and 

finally reconstruction of the Transcriptional Regulatory Networks (TRN) from curate 

regulatory interactions or knockout experiments. In the Genome-based methods, 

sequence and location information are used in order to find relationship between genes 

and reconstruct GRN. Another way for reconstruction of GRNs is mining related 

literature and extracting information about any possible connection of a single gene with 

others. Usually, a single paper gives us information about the relationship of a gene with 

another gene or sometimes multiple genes. By accumulating this information, one can 

build a GRN related to a specific situation or condition, which has the best accuracy 

compared with other methods for GRN discovery. Finally, the last method tries to build a 

GRN by perturbation or knockout of genes in laboratory experiments. The technology for 

this is usually microarray. This is the most widely used method for reconstruction of 

GRNs (Feist, Herrgård et al. 2009). In this method the data consists of measurements at a 

steady state, following multiple perturbations such as gene over-expression, knockdown, 

drug treatment or at multiple time points following one perturbation (time series data).  

Obviously, laboratory experiments, such as genome-based or curate and knock out 

experiments, combined with extracting information from the related literature, is a more 

accurate way of building GRNs and results in a better quality GRN. However, such a 

manual GRN construction by an expert is really time consuming and is suitable only for 

a small-sized network with few genes. The number of parameters and possible 

combination of the genes scale up drastically with an increasing number of genes. This is 

a combinatorial problem in nature. There are also many sources of information and 
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domain knowledge that cannot be considered all at once by a human. For mining such a 

huge amount of related literature, computer science provides a solution. The text mining 

technology helps to mine the molecular biology literature in an automatic fashion 

(Muller, Kenny et al. 2004). This is much more applicable than manually building GRNs. 

In all of the above-mentioned techniques, we need the assistance of computational 

methods to analyse and process the data. Computational modelling and algorithms is an 

essential part of GRN discovery due to the large amounts of data to be considered and 

the combinatorial nature of the problem.  

In this thesis, our focus is on the building of GRNs using a genome based method which 

are the most widely used methods for GRN discovery. We used a steady state data 

related to multiple samples in the same condition to discover the related GRN.  

Since the 1980s, in two sequential decades, a variety of mathematical formalisms for 

describing GRNs has been proposed. The result of these efforts is a wide range of 

different models with different considerations and assumptions. Currently, major 

formalisms for modelling GRNs are directed graphs, Bayesian Networks, Boolean 

Networks and their generalizations, ordinary and partial differential equations, qualitative 

differential equation, stochastic master equations and rule-based formalisms.   

Each of these models considers different assumptions. Some models take into account 

the inherent stochastic nature of chemical reactions. On the other hand there is 

deterministic approach which considers a deterministic function and relation between 

genes. Simple stochastic models can be used to induce how gene expression noise can be 

manipulated experimentally to improve the network functions or change its function. 

Stochastic modelling is one step further than deterministic and deals with details of the 

process and temporal aspects of the interaction and therefore has more compatibility with 

the real world. Some stochastic approaches are Gillespie stochastic simulation, Langevin 

modelling and Fokker-Planck modelling (Sjöberg, Lötstedt et al. 2007) which belong to 

the family of stochastic master equations. In addition, for stochastic modelling of more 

complex networks phenomenological and mass action kinetic have been used (Kaern, 

Blake et al. 2003; Dilão and Muraro 2010). Stochastic modelling is more compatible 
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with the nature of the problem; however, the effect of the probabilistic nature of 

individual reaction events becomes harder to estimate, when the number of elements 

increases. Thus it becomes unrealistic for large scale networks (Kaern, Blake et al. 2003). 

This deterministic approach is based on the implicit assumption that the underlying 

dynamical process is at equilibrium, and that no circuits exist in the GRN. The 

deterministic model used to guide the construction of toggle switch (Gardner, Cantor et 

al. 2000) is an example of a top-down, phenomenological, deterministic approach to the 

modelling of GRNs. The focus in deterministic modelling is on the structure 

identification problem. They ignore the temporal aspects and search for causality chains 

among the variables at hand.  The update of the network states in this model is 

synchronized whereas in reality gene networks are asynchronous. Examples of the 

deterministic approach are deterministic differential equations and Boolean Networks. 

Another consideration for modelling GRNs is how to quantify the relationships between 

genes. There are two options, Boolean and continuous. In Boolean the relationship 

between genes is either 0 or 1. In continuous modelling each relationship is labelled with 

a number indicating the strength of the relationship. In this thesis all the proposed 

approaches use continuous modelling. Boolean Networks are the example of such a 

model. Continuous modelling offers more precise modelling by providing a flexibility to 

assign strength or a probability to a relationship and opens an opportunity for further 

information processing such as the post-processing. An example of the continuous 

approach is Bayesian Networks. 

Here, we first will describe the major formalisms for GRN discovery then we look at 

their applications within the GRN discovery literature. We will mention their strengths 

and weaknesses.  

2.4.1 Directed Graphs 

The most straightforward way to model a gene regulatory network is a directed graph in 

which nodes are genes and edges are regulatory relationships. The vertices and edges 
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could be labelled for example a tuple , ,  with s equal to + or -, so it can be indicated 

whether i is activated or inhibited by j.  Figure  2-3 shows an example of such a 

representation such as where i=1 and j=2 the relationship is – (inhibition) and when i=2 

and j=1 is + (activation). 

There are many methods which try to build the network by using pairwise correlations 

(associations) between genes. An example of them is Relevance Network. This method 

was proposed based on pairwise association scores and it is a simple approach to reverse 

engineering of GRNs (Butte and Kohane 2000).  Another example is BioLayout Express 

(Theocharidis, Dongen et al. 2009). 

In this PhD thesis, we will follow this modelling in the third approach where we will use 

our proposed co-regulation measure to build the graph of pairwise associations between 

genes. 

 

 1 

 3 

 2 

 

Figure  2-3 Directed graph representing a genetic regulatory network 

There is also another group of studies in this formalism which try to build the network by 

using clustering algorithms. Several techniques for clustering time-series expression data 

have been proposed in the literature, based on measures like Euclidian distance, Mutual 

Information, linear correlation, and rank correlation (Chen, Filkov et al. 1999; 

D'haeseleer 2005; Do and Choi 2007). The assumption behind the clustering algorithm is 

that two genes exhibiting similar expression patterns over the time may regulate each 

other or be in a regulatory connection via other co-expressed genes in the graph. In a 

recent trend, measures from information theory approach have been used in this area 
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successfully (Margolin, Nemenman et al. 2006; Meyer, Kontos et al. 2007; Meyer, 

Lafitte et al. 2008). 

2.4.2 Boolean Networks 

The assumption behind this modelling is that the state of a gene can be described by a 

Boolean variable expression that is either active (1) or inactive (0) and hence its products 

are present or absent. In addition, the interaction between genes can be represented by 

Boolean functions and it is assumed that transition between states occur synchronously. 

Modelling GRNs by Boolean Network started with a study by Kauffman (1969b). The 

structure of a Boolean Network can be recast in the form of a wiring diagram which is a 

convenient representation for computing translations between states, as shown in 

Figure  2-4.   

 

Figure  2-4 Wiring diagram of the Boolean Network 

For instance, if all genes are set to inactive in t=0 then in t=1 the second and the third 

genes become active. Boolean Networks were among the first formalisms for which 

models were proposed with REVEAL algorithm developed by (Liang, Fuhrman et al. 

1998) being an example. The simple modelling nature of Boolean Networks makes them 

suitable in the study of global properties of large scale networks (Kaufman 1979; De 
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Jong 2002). This property of Boolean Networks makes them suitable tools for capturing 

essential properties of gene-regulatory network. Thus, they are used to build an efficient 

tool for reconstructing networks from time series, generating random networks, 

performing robustness analysis via perturbation (Müssel, Hopfensitz et al. 2010) and 

analyse the network though signal processing methods (Xiao 2009). Recent reviews on 

the use of Boolean Networks can be found in Xiao (2009) and Hickman and Hodgman 

(2010). 

2.4.3 Differential Equations 

Differential equations (DE) are the starting point for quantitative modelling of complex 

systems and can be used to describe non-linear and dynamic systems. Ordinary 

differential equations (ODE) are the most widespread formalism to model dynamical 

systems and have been widely used to analyse GRNs. Their use goes back to the 

‘operon’ model of Jacob and Monod (1961) and early work by Goodwin (1963). 

The ODE models the expression of genes by time-dependent variables with non-negative 

real values. Interaction between genes is formulated as a function of other genes and 

differential relations as shown in Equation (2.1). 

 1  
( 2.1)

ODEs were first used in the context of modelling metabolic process (Cornish-Bowden 

1995) but kinetic model of a simple gene regulation process going back to the seminal 

work of Goodwin (1963; 1965). Calculation of a system of differential equations is 

complicated when the number of variables exceed more than five; therefore, a number of 

ways have been proposed for simplification and overcoming the scalability problem. One 

way is numerical simulation, which considers consecutive discrete time points instead of 

continuous time (Reinitz and Vaisnys 1990; Lambert 1991).There is another simplified 

version of ODEs called piecewise-linear differential equation which tries to discretize 
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values between pieces and considers a linear model (De Jong 2002; Geberta, Raddea et 

al. 2007).  

The use of differential equations is still limited in size. In addition, verification of these 

methods is limited to small-sized networks, as the kinetic parameters are available for 

only a handful of small networks and for larger models there is not such information 

available.  

In general, differential equations as a modelling framework have two major drawbacks. 

Each equation of the model requires the knowledge of one or several parameter values 

(such as thermodynamic constants and rate constants). At the moment it is impossible to 

obtain such information based on the current techniques. Thus it is difficult to build an 

instance of the model for large networks directly, and reverse-engineering techniques are 

limited in how much information they can extract from limited datasets. Moreover, 

deriving meaningful dynamical properties of a large differential equations system is a 

challenge (De Jong 2002). The advantage of using differential equations is that they can 

provide us with both a directed and undirected network. Their performance is also the 

best compared with other methods in presence of small perturbation and temporal data.  

It is obvious in this modelling that we have burdened computational overhead to compute 

continuous parameters of the model. A combination of Boolean and continuous 

modelling has been used and the result is known as hybrid modelling (Schlitt and 

Brazma 2007). In the hybrid model, Boolean logic is used to model biochemical 

processes with a sharp threshold, and continuous dynamics to model processes with a 

slower threshold (Smolen, Baxter et al. 2006).  

In the first approach of this thesis, we used a differential equations modelling. In this 

approach, we developed a new technique to more effectively find a system of differential 

equations used for modelling a GRN.   
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2.4.4 Stochastic Master Equations 

Differential equations assume that concentrations of substances vary continuously and 

deterministically. Instead of taking a deterministic and continuous approach, some 

authors have proposed to use discrete and stochastic models of gene regulation (Gillespie 

1977; Nicolis and Prigogine 1977). Stochastic master equations are a phenomenological 

set of first-order differential equations describing the time evolution of the probability of 

a system to occupy each one of a discrete set of states. Discrete amounts x of genes are 

taken as state variables and a joint probability distribution is introduced to express the 

probability that at time t the cell contains  amount of the first gene and  as the 

amount of the second gene etc.  

They consider stochastic relationships between elements and model them by use of rate 

equations. Some of the methods in this category are Gillespie stochastic simulation, 

Langevin modelling and Fokker-Planck modelling (Sjöberg, Lötstedt et al. 2007). 

These types of equations are more difficult to solve than deterministic equations. A 

simulation developed by Gillespie (1977) proposed to solve them.  

2.4.5 Gaussian Graphical Models 

This model is based on the assumption that the expression data follows a multivariate 

Gaussian distribution. The graphical interaction model for the multivariate normal 

distribution is called a Gaussian Graphical Model and was first introduced by Dempster 

(Dempster 1972). 

To avoid the shortcoming assumption of building a directed graph based on Pearson’s 

correlation, this uses partial correlation (Grzegorczyk, Husmeier et al. 2008). It considers 

partial correlation between any two variables conditional on all the other nodes in the 

network. The disadvantage of this method is that the computation over the matrices 

requires that the number of observations exceeds the number of nodes.  Considering the 

fact that in this application there is usually much less number of records compared with 

hundreds of variables, makes this requirement a problem. To overcome this problem 
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some methods have been proposed in the literature; an example is the work by Schafer 

and Strimmer (2005) which proposes a shrink estimator of covariance matrix.  

2.4.6 Bayesian Networks 

In this formalism, the structure of GRN is modelled by a directed acyclic graph. The 

vertices represent genes which correspond to random variables . For each  a 

conditional distribution P |Parent   is defined, where Parent (  denotes the 

variables (genes) with direct regulators to  (Friedman, Linial et al. 2000). 

 

 

 

 

 

 

Figure  2-5 An example of GRN modelled by a Bayesian Network   

It is a network of variables that shows the probabilistic relationship between them in 

terms of conditional independency relationship. For building a GRN based on Bayesian 

Networks there are two steps to follow, first to find the structure of the network and then 

to compute the conditional dependency of edges in the network. The hardest part is to 

learn the structure of the graph. Different methods are used to learn the structure, 

including Markov chain Monte Carlo (MCMC) (Friedman and Koller 2003).  

Bayesian Networks are among the most used techniques in the GRN inference literature. 

There are two reasons for this. Firstly, they can provide models of causal influence and 

secondly, their probabilistic nature is well suited to the noisy nature of expression data 

(Friedman, Linial et al. 2000). Some of the most important studies related to GRN 

discovery were developed based on Bayesian Network. Pioneer of using Bayesian 
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Networks are Friedman and his colleagues (2000). The dynamic version of Bayesian 

network used for quantitative modelling of GRNs (Nachman, Regev et al. 2004). 

Hartmink and his team have developed a popular tool based on Bayesian Network called 

Banjo (Yu, Smith et al. 2004).  

A famous study based on Bayesian Network is called Module Network (Segal, Shapira et 

al. 2003). In that study Bayesian Network were used along gene modules. Modules were 

functional gene sets which were extracted from domain knowledge. Modules were used 

to divide the search space at the beginning and then Bayesian Network was applied to 

find their dependency and relationships, and at the end these networks were combined to 

see the overall picture. The idea of dividing the search spaces overcomes a limitation of 

Bayesian Network. Bayesian Network is not an applicable tool for big datasets with 

thousands of features therefore dividing the search space by using modules helps to scale 

up for bigger problems. There is another study based on the Bayesian Network which 

employs domain knowledge and it considers gene sequence data in addition to known 

and predicted transcription factors to achieve a higher accuracy (Noto and Craven 2005).   

Despite its powerful ability, Bayesian network has two weaknesses in this application. 

One is that it is not applicable for large networks and another is that it cannot present 

loops and feedback loops (He, Balling et al. 2009) Feedback loops are known to play key 

roles in causing dynamic behaviour of the network and are a common feature of them 

(Thomas, Thieffry et al. 1995). An extension of Bayesian networks called dynamic 

Bayesian networks are able to present loops but it has the scalability issue. 

2.5 Summary 

This chapter covered the background information and some of the literature related to 

this thesis topic. We first provided a background on basic concepts in molecular biology 

and then described microarray technology and its usage and a sample output. We also 

reviewed the challenges for the analysis of microarray data and we mentioned that these 

challenge are mainly due to the noise and data variability.  
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In the second part, we moved to the biological background of GRNs. We first described 

the gene regulation mechanism and process in order to understand Gene Regulatory 

Networks and then we described the different GRN representation and modelling. At the 

end, we reviewed the computational modelling for gene regulatory network discovery. 

We highlighted each category’s strengths and weaknesses. 

Gene Regulatory Network discovery literature was reviewed to provide some 

background on the research problems tackled in this thesis. The literature provided in this 

chapter is only a general overview and more detailed literature will be provided later on 

where we describe each of our approaches. 

In the next chapter, we are going to talk about experimental setup. Firstly, we will 

provide a review of the literature about synthetic GRN generators and simulators then we 

will describe the simulator which we chose and the datasets that we produced for our 

experiments using that simulator. Secondly, we will explain the related literature to 

evaluation to provide a background for the reader to understand our evaluation metric 

which we will describe at the end.   
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Chapter 3  

Experimental Setup  

“Remember that all models are wrong; the practical 

question is how wrong do they have to be to not be 

useful.” 

— George Edward Pelham Box 

3.1 Introduction 

The purpose of this chapter is to introduce the experimental data which we used in order 

to test our algorithms. In the first part, we will introduce the concept of simulators and 

why we need them to generate benchmarks for testing GRN reverse engineering 

algorithms. Then we will describe the literature related to simulators. Later, we will 

explain why we chose a particular simulator (SynTReN) for this study. We will also 

inform the reader about its characteristics and functionality.  

In the second part, we will review the literature related to evolution and performance 

measures for GRN discovery in order to choose our performance evaluators. We will 

describe different perspectives that we can choose to evaluate output networks. We will 

also describe existing metrics that have been used in each perspective. Then we will 

focus on studies applied to the data produced by SynTReN. We will describe how they 

performed and what metrics were used to measure the performance.  

Finally, based on those literature reviews, we will present our experimental setup. Firstly 

we will describe our considerations for generating different benchmarks and how our six 

benchmarks were generated using SynTReN. The other configuration setup will then be 

mentioned, such as software, tools and programming languages. Finally, we will inform 

the reader about what metrics we use to measure our performance and also studies with 

which we will compare our work.   
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3.2 Synthetic GRN Simulators: Introduction and 

Motivation 

The development of algorithms to infer gene regulatory networks based on microarray 

expression data is a complicated task. The methods developed so far still do not provide 

an acceptable result (Marbach, Mattiussi et al. 2009). Also, most of the studies focus on 

the prokaryotic cells and still have far to go to be able to perform a discovery for 

advanced cells (eukaryotes) such as human cells. According to Haynes and Brent (2009) 

even small changes in the accuracy of datasets, or the design of experiments can make a 

big difference in the performance of the algorithms applied to it. Thus it is important to 

have a benchmark that is not dependent on any experimental error to test different 

algorithms. We also need test beds which are not only comprehensive enough but also 

realistic.  

A few biologically inspired (small-size) benchmark problems have been proposed, Raf 

pathway (Werhli, Grzegorczyk et al. 2006), a yeast model (Cantone 2009; Cantone, 

Marucci et al. 2009), and finally yeast and E. coli model (Gama-Castro, Jimenez-Jacinto 

et al. 2008). However, experimental datasets of the appropriate size and design are still 

not available. There is not any real known large-scale (genome-wide) model of a gene 

regulatory network to evaluate and compare different methods for reverse engineering 

(Heckera, Lambecka et al. 2008). In such a situation, the validation strategies applied to 

experimentally obtained data are often limited to confirming previously known 

interactions in the reconstructed network. However, with such an approach, false positive 

interactions are not penalized. Moreover, algorithms can only be applied to data from a 

single network which creates bias towards that dataset. Each experiment and dataset has 

a bias and variation; therefore we need a collection of real datasets to have a 

comprehensive test bed, which is not available yet. Most of the already known networks 

are created from a collection of experiments found in the literature; therefore there is 

usually no single corresponding dataset available. We need the ability to test the 

performance of different algorithms in the presence of different conditions, like different 
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types and levels of noise, different regulatory edges and different network sizes. These 

are the reasons behind the need to generate well-characterized synthetic datasets that 

allow thorough testing of learning algorithms in a fast and reproducible manner without 

any bias to a particular condition.  

A gene regulatory network simulator is a program that can generate similar data to 

microarray data as well as generating the underlying network. In this network, the nodes 

represent the genes and the edges are the regulatory interactions between the genes.  

Also, there are other types of microarray simulators which only produce the microarray 

data for other purposes such as classification and clustering of diseases; therefore they do 

not produce the underlying network. In a synthetic GRN we have the ability to change 

the benchmark features and produce (i) different size networks (ii) realistic (non-linear) 

effects like state saturation or joint regulatory action of several genes (iii) perturbation 

experiments like gene knock out and (iv) different types and levels of noise. 

Despite the above facts, data simulators are not popular tools among bioinformaticians 

and there are arguments against them, such as, they do not capture reality and any 

algorithms developed based on them will not be able to perform well on real data (Sauro, 

Harel et al. 2006). Maybe this tendency against them underlies the nature of biology, 

which is complicated and has many variations and as the result hard to simulate all of 

those complications. Also, bioinformatics comes from a biology perspective that tends to 

take laboratory samples.  

3.3 Comparison of Simulators 

There are different types of benchmarks for the purpose of testing Gene Regulatory 

Network reverse engineering methods. Most of these benchmarks were developed in 

silico (by use of computational simulation) and plenty of them are available. A-

BIOCHEM (Mendes, Sha et al. 2003) is an example of in silico benchmarks. Those that 

are based on the computational simulation usually can simulate the large gene networks 

with different levels of noise. Some of them just produce a random network and others 

produce networks in which the structure follows some properties of biological networks. 
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Among most recent simulators we can name GRENDEL (Haynes and Brent 2009), AGN 

(Mendes, Sha et al. 2003), RENCO (Roy, Werner-Washburne et al. 2008), Netsim 

(Camillo, Toffolo et al. 2009), Gene NetWeaver (GNW) (Marbach, Mattiussi et al. 2009) 

and finally COPASI (Hoops, Sahle et al. 2006) which were used in DREAM2 (Lee, 

Narang et al. 2009) competition to build the test benchmarks. Artificial simulators 

usually model the data as systems of non-linear differential equations (Zak, Doyle et al. 

2001; Mendes, Sha et al. 2003).  

Synthetic data generators vary from the perspective of how much their data resembles the 

real data. They range from generators that only produce a network based on the pure 

conditional dependency, to those that generate a network and corresponding microarray 

data based on real known networks and interactions. 

An important factor for comparison of the simulators is how closely the output resembles 

real biological networks. Therefore, recent trends utilize partial networks from the 

biological domain to build a network which is similar to the real one, and then produce 

the expression data based on that network. In a review that we have completed to choose 

a synthetic data generator, we identified SynTReN (Bulcke, Leemput et al. 2006) as the 

best and most well known tool for our purpose at the time. SynTReN effectively uses 

known network parts to build the simulated network and according to the authors, its 

network output is the most similar one to real networks (Bulcke, Leemput et al. 2006). 

Our proposal involved using biological knowledge and heuristics from the known 

network in order to elevate the performance; therefore we needed a simulator which 

could produce networks similar to the domain network as much as possible and 

SynTReN is the best for this purpose. In addition, SynTReN has been applied to different 

well-known studies related to reverse engineering of regulatory networks (Meyer, Lafitte 

et al. 2008). There are many details available describing the exact performance of the 

well-known systems using SynTReN data. This information helped us to figure out in 

which condition our algorithm could improve the performance of the state-of-the-art 

algorithms. SynTReN has been cited 66 times so far in the related literature and was also 

used by minet library (Meyer, Lafitte et al. 2008) in Bioconductor package (Gentleman, 
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Carey et al. 2004) to generate artificial GRNs for the purpose of testing different 

algorithms.  

3.4 How does SynTReN work?  

During three steps SynTReN produces expression data and the underlying network.  

1. In the first step, a network topology is selected from a known network using 

either of two selection strategies. One selection strategy is neighbourhood 

addition and another is clustering addition.  

2. In the second step, transition functions and their parameters are assigned to the 

edges in the network. To model regulatory interactions, Hill Kinetic equations 

and Michaelis-Menten are used. This allows the production of a variety of 

interaction types which are likely to occur in real biological systems, such as 

nearly linear or very steep interactions. All transcription rates are assumed to be 

in a steady-state regime. This is in contrast with other simulators which are based 

on coupled differential equations and as a result, they can only produce a limited 

sized network. Thus SynTReN, because of this simplification, can simulate large 

networks of thousands of genes. 

3. In the third step, mRNA expression levels for the genes in the network are 

simulated under different conditions. After this, there is an option to add two 

types of noise to the data: experimental and biological noise. Finally, the data is 

normalized, and the scaled microarray measurements and the corresponding 

network are generated.  

In SynTReN several parameters are user-defined, such as kinetic parameters of kinetic 

equations; therefore a user can generate datasets with increasing levels of difficulty in 

order to generate benchmark problems for their system.  

Biological GRNs have specific structural properties such as the small world property and 

the scale-free property. They also contain specific structural motifs which do not happen 

in random graphs with the same in-and-out degree. Thus it is quite difficult to produce a 
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network similar to a real biological network. However, SynTReN is one of the best 

simulators in terms of the similarity of its result to real biological data.  

3.5 Literature Related to Evaluation 

In order to have an idea of how to compare the results of our method, we did another 

literature review related to scoring and evaluation. The following two sections will 

present the output of this review. The first section ( 3.5.1) will describe the possible 

indications of performance found in the literature and the second section talks 

specifically about other related studies applied on SynTReN and how their performances 

were evaluated.  

3.5.1 Performance Scoring  

Comparison of algorithms and their performance is necessary not only to order the 

algorithms, but also to find out in which condition a particular algorithm can perform the 

best. In this way we obtain not only information about different systems and algorithms, 

but we can also get insight into the underlying problem by understanding how we can 

perform well in a particular condition.  

In general, the quality of inference algorithms can be evaluated based on the following 

criteria:  

1. The ability to identify the true structure of the GRN  

2. The ability to identify the behaviour of the GRN   

3. The ability to identify the gene-gene interactions   

4. The ability to identify the correct labels for interactions 

Similarity of the structure of the target GRN with the output GRN can be measured in 

terms of the main indicators of the network properties such as scale-free, small world or 

detailed and local properties such as clustering coefficient and average path length. For 

comparison of results in terms of the network structure specifically having small network 

properties, a model fitting index was proposed (Zhang and Horvath 2005). This index is 
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defined as the coefficient of determination (R2) of the linear model constructed by 

regressing log   on tolog  , where k represents the degree of a given node (the 

number of edges connecting to the given node), and p(k) is the frequency distribution of 

the degree k in the co-expression network. Also, the similarity of the networks’ structure 

can be measured in terms of the local structure and network motifs. An example of that is 

considering the rate of successful prediction of feed forward loops (Marbach, Prillc et al. 

2010).  

The second criterion, the ability to identify behaviour of the GRN, is only applicable 

when there is a quantitative modelling approach like differential equations which 

considers time and state of the network.  

The third criterion, the ability to identify gene-gene interactions, is the one most used in 

the literature. It is a straight forward and simple way to measure an algorithm’s 

performance and is frequently used in information retrieval and statistical inference. The 

quality of two networks can be measured based on only the detected interactions (third 

criterion) or more precisely based on the exact nature of these interactions such as 

activation (“ac”), repression (“re”) (fourth criterion).  

We have used the third and the fourth criterion, the ability to identify the correct labels of 

the interactions, to compare the performance of our work with other well known works in 

this area. The reasons behind this decision will be discussed at the end of this section.  

For measuring the third characteristic the following criteria from information retrieval 

have been used in the literature.  

TP (True Positive) = the number of correctly inferred edges;  

FP (False Positives) = the number of inferred edges that are incorrect; 

TN (True Negatives) = the number of missing edges in the inferred network that are also 

missing in the true network;  

FN (False Negatives) = the number of missing edges in the inferred network that are an 

edge in the true network.  
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Figure  3-1 Measures of accuracy and specificity illustrated in the form of a Venn diagram 

Based on the above definition some performance scores are defined as follows:  

 

 

 

Each of those scores, recall or precision, is hardly informative alone and usually 

combinations of these measures are used to show performance of a system. The main 

ones are defined as follows:  
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Based on the above metrics, systems can adjust their parameters to obtain networks with 

different characteristics. ROC (Receiver Operating Characteristic) curve is a common 

visualization tool that presents false positive rates versus true positive rates. In gene 

regulatory network discovery the situation is that there is usually a high number of false 

 

  Target GRN 

FN

 

        Output GRN 

        FP 

     

TP      

 

 



 Chapter 3. Experimental Setup 

54 

 

positives and ROC is of limited use under such a condition. Thus instead of ROC, 

precision versus recall (PVsR) which is more informative has been used just to compare 

true edges versus inferred edges. PVsR used in many studies for measuring performance 

of algorithm such as in ARACNE (Margolin, Nemenman et al. 2006). Figure  3-2 

presents an example ROC curve.  

 

Figure  3-2 An example of a ROC curve 

In the PVsR diagram the horizontal axis presents recall and the vertical axis presents 

precision as shown in Figure  3-3. 

 

 

 

 

 

 

 

Figure  3-3 An example of a PvsR curve 
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The area under the curve (AUC) is another indicator of performance of systems which 

has been used for gene regulatory network inference (Werhli, Grzegorczyk et al. 2006). 

An example of using AUC is in the DREAM competition (Madar, Greenfield et al. 

2010). AUC is the rate of the prediction value for a randomly picked link being larger 

than that for a randomly picked non-link in the test set. According to Soranzo et al. 

(2007),  an AUC close to 0.5 corresponds to a random forecast, AUC< 0.7 is considered 

poor and AUC<0.8 is considered good. Usually for the purpose of gene regulatory 

network inference AUC is about 0.6 (Soranzo, Bianconi et al. 2007).   

3.5.2 Studies applied on SynTReN 

In the literature related to GRN inference, the performance of systems was usually tested 

in both artificial and real datasets. The problem is that every study used different 

artificial datasets and there is not common agreement in using artificial data, as they are 

not usually welcomed in the area.  

However, there are studies that try to benchmark different algorithms on single datasets. 

An example is a study  by Leepmut (2008) that tried to benchmark well known systems 

on single-source artificial data. They measured the performance of the well-known 

systems for GRN discovery on a range of synthetic networks produced by SynTReN 

(Bulcke, Leemput et al. 2006). They produced different datasets with different sizes, 

different amounts of noise, and different amounts of complicated interactions. Then, they 

compared the performance of well-known algorithms such as ARACNE (Basso, 

Margolin et al. 2005; Margolin, Nemenman et al. 2006), Genomica (Segal, Shapira et al. 

2003) and SAMBA (Tanay, Sharan et al. 2004) under those different conditions. The 

authors measured the number of correct and false edges detected by the algorithms and 

then calculated the F-measure and Jaccard Index for each of those algorithms on each 

specific dataset.  

Their results revealed some interesting characteristics of those systems. For example, 

they reported that ARACNE achieves the maximum performance on noiseless data sets, 

but Genomica sometimes benefits from small noises. Their results confirmed the added 
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value of synthetic data in revealing operational characteristics of inference algorithms. 

These characteristics are unlikely to be discovered by using real biological microarray 

data with the limited size and options. This is an example of the advantage of using a 

synthetic data generator which provides us with the opportunity to test the performance 

of algorithms under different conditions and provides us with  the opportunities to rank 

algorithms based on how they perform in general not only in a specific dataset.  

SynTReN was also used in a Bioconductor package called minet (Meyer, Lafitte et al. 

2008) which has the implementation of known systems for GRN inference such as 

ARACNE (Basso, Margolin et al. 2005; Margolin, Nemenman et al. 2006) and CLR 

(Faith, Hayete et al. 2007). In addition minet has the implementation of many association 

measures such as Mutual Information and correlation coefficient. In minet, all these 

algorithms were tested on a dataset produced by SynTReN and their performances were 

measured in terms of precision and recall. The ROC curve was used to visualize these 

measures. Having such information about the performance of the well-known systems on 

a dataset produced by SynTReN added an additional weight to choose SynTReN. 

A similar study has been done by Altay and Emmert-Streib (2010) with datasets 

produced by SynTReN along with some famous inference algorithms such as ARACNE 

(Margolin, Nemenman et al. 2006), CLR (Faith, Hayete et al. 2007), MRNET (Meyer, 

Lafitte et al. 2008) and RN (Butte and Kohane 2000).  They compared the performance 

of the above systems from another perspective. They used local network-based measures 

extracted from Emmert-Streib and Dehmer (2009) to compare the performance of the 

systems. They measured the type of interactions extracted by each of those methods, 

basic motifs of three or four genes, and the number of in-degree of the nodes and so on. 

In this thesis, we did not use such a measure because in that research the false positive 

rate was not taken into account and that is an important factor to be considered. We 

decided to follow the most common path for performance evaluation which was also 

followed in the previously mentioned study by Leemput (2008). Thus, our algorithms 

will be evaluated based on precision-recall and F-measure.  
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3.6 Experimental Data 

In order to test our hypothesis, we needed several platforms to test our models and 

algorithms in different conditions. As it was mentioned earlier, we could not find such 

real test beds as the number of the known networks and corresponding data for testing 

purposes is limited in size and variety therefore, the above facts led us to use a synthetic 

data generator. We used SynTReN, a synthetic data generator (Bulcke, Leemput et al. 

2006) to generate benchmark networks with the similar structure to the known network 

of different sizes, different properties, different amounts of noise and different 

percentages of each type of interactions. Parameters that can be set in SynTReN are as 

follows:  

Network Size: Large network size is always a problem. A suggestion to overcome this 

problem is to use domain knowledge to reduce the search space.  

Graph Topology: In SynTReN there is an option to produce the network with a 

neighbour addition method or with cluster addition. The first one uses a random graph 

model. The second one uses subnetworks from domain knowledge and gradually adds 

nodes to that. The neighbour addition method shows more variation for the median in-

degree compared to the cluster addition method. The cluster addition method produces 

networks similar to domain networks in terms of the network properties (Leemput, 

Bulcke et al. 2008). These observations also hold for topological characteristics other 

than average directed path length and average in degree.   

Noise Type and Amount of Noise: There are several types of noise in microarray data: 

biological noise, experimental noise and input noise. In SynTReN biological noise is 

modelled in the transition function. The transition function is a nonlinear function in 

SynTReN. The function type is steep sigmoid. Biological noise propagates through the 

network, but experimental noise does not.  

Amount of Expression Data: This is a challenging area for almost all data mining 

algorithms. The condition in which the number of samples compared to the number of 

genes is so low causes the curse of dimensionality. In such a condition it is hard to infer 
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any pattern from the data. The number of records directly affects the performance of any 

algorithm for identification of co-expression in microarray data (Yeung, Medvedovic et 

al. 2004). This problem becomes extremely important in practice for laboratory research 

experiments, where the number of experiments is usually less than 10 and the number of 

genes is more than a couple of hundred. This is a significant problem mentioned in the 

literature and important research has been done in developing efficient algorithms for 

analysis of microarray data in such a condition (Smyth 2005; Wu, Vaillant et al. 2010).  

Interaction Types: Nonlinear interactions act as a buffer to mask the activity of 

downstream genes in an interaction cascade.  

Based on the above mentioned characteristics, we ran SynTReN six times with different 

parameters and we produced six different networks and corresponding microarray data. 

The domain knowledge network which its subparts was used to produce these six 

networks was E. coli full network (Gama-Castro, Jimenez Jacinto et al. 2008).  

The Table  3-1 summarizes the information regarding our six different datasets that we 

generated using SynTReN. These datasets were used in our experiments in this thesis.  

Table  3-1 Datasets generated for benchmarking by SynTReN 

Dataset 
Number of 

Experiments 
Number of Genes 

Subnetwork 
selection 
method 

Biological 
Noise 

Experimental 
Noise 

Probability 
of Complex 
interactions 

1 100 200 (100 background, 
100 foreground) 

Neighbour 
addition 

0.1 0.1 0.3 

2 100 200 (100 background, 
100 foreground) 

Cluster  
addition 

0.1 0.1 0.3 

3 100 200 (100 background, 
100 foreground) 

Neighbour 
addition 

0.1 0.1 0.4 

4 100 200 (100 background, 
100 foreground) 

Neighbour 
addition 

0 0.1 0.3 

5 50 200 (100 background, 
100 foreground) 

Neighbour 
addition 

0.1 0.1 0.3 

6 100 200 (100 background, 
100 foreground) 

Neighbour 
addition 

0 0 0.3 

The first dataset was generated by the default values of SynTReN as is 

presented in Figure  3-4. In these default parameters, the number of experiments 
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was 100. The number of genes was 200. The 200 genes consisted of 100 genes 

with real genes’ names which made the foreground network, and the other 100 

genes starting with “bgr_” followed by the real genes’ names, made the 

background network. Only the foreground genes are directly or indirectly 

activated/inhibited by varying the external conditions. The role of the 

background network is solely for generating 'background data'. Expression 

values of background genes vary solely due to the effect of different types of 

noise. The method for creating the first network was neighbourhood addition. 

The amount of experimental noise and biological noise was by default 0.1.  

 

Figure  3-4 A screen shot of SynTReN generating the first dataset  
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The second dataset was generated by changing the subnetwork selection method to the 

cluster addition. The rest of the parameters were the same. By choosing the cluster 

addition the result network is going to be more similar to the known network.  

The third dataset was generated like the first one but we only increased the probability of 

generating the complex 2-regulatory interactions from 0.3 to 0.4. The third dataset was 

generated to see the effect of increasing complicated interactions on performance. 

The fourth dataset was produced based on the first dataset by removing the biological 

noise to see the change of performance in the absence of biological noise.  

The fifth dataset was produced based on the settings of the first dataset. The only 

difference was the number of experiments was decreased by half to 50, to see the effect 

of changes when the number of experiments is low. The low number of experiments is a 

big challenge for any algorithms for GRN discovery.  

In the sixth dataset we set the amount of biological and experimental noise to zero in 

order to generate a dataset free of such noise and test our algorithms’ performance in this 

condition. These six datasets were used in the set of several experiments that we will 

illustrate in the following chapters where we will explain our second and third 

approaches.   

3.7 Our Performance Measure 

In the previous section we mentioned that there are several aspects based on which we 

can compare different algorithms and models for GRN discovery. Even for  the same 

network we can consider several aspects to evaluate it , such as similarity of the structure 

of the output network with known networks of the same organism, number of true 

detected edges and number of false detections (false positives). Here we refer the reader 

to the discussion in section  3.5.2 about comparison of different algorithms applied to 

SynTReN data. Based on the fact that algorithms are usually compared in terms of the 

number of true detected edges and number of false ones using F-measures, ROC curve or 

URCOV (Leemput, Bulcke et al. 2008) , we used F-measure for the performance 
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measure. F-measure is the weighted harmonic mean of precision and recall. It is also 

called balanced F-score and was first introduced by van Rijsbergen (1979). Since then it 

has been widely used as a measure for combining precision and recall. We did not 

compare our result with different methods in terms of similarity of the structure of the 

network. The reason for that was that only some of the well known methods use the 

domain knowledge. In addition, it is methodologically questionable to compare the 

algorithms which do not use such information with the ones which do use it, like our 

method. It seems obvious that a method which involves information about the source 

network will result in a more similar network to the source network. Nonetheless, we 

used a visualization tool Cytoscape (Shannon, Markiel et al. 2003) to represent the 

structure of our result networks. Our networks quite resembles the known network in 

terms of the structure of the network compared to networks produced by other systems, 

especially those that do not use any structural properties of the known networks.  

3.8   Software and Tools  

All the programs and algorithms were developed using Python 2.6 in the Eclipse 

environment. NumPy and SiPy and StatsPy were also used for matrix and numerical 

operations and statistical functions. RPy was used for accessing R and Bioconductor 

packages inside the Python environment and we used the 9.1 version of R. We also used 

minet (Meyer, Lafitte et al. 2008) inside the Bioconductor package (Meyer, Lafitte et al. 

2008). Minet is a library including implementation of some of the most famous 

algorithms for GRN discovery such as ARACNE (Margolin, Nemenman et al. 2006), 

CLR (Faith, Hayete et al. 2007) and mrnet (Meyer, Kontos et al. 2007). In addition, 

minet comes with some artificial datasets originally generated by SynTReN and modified 

to be used in this package for testing purposes.    

For network (graph) presentation, filtering and so on, Cytoscape (Cline, Smoot et al. 

2007) was used, and for generating benchmark datasets SynTReN software was used as 

mentioned earlier.   
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3.9 Summary 

In this chapter, we studied the literature related to simulators for the purpose of reverse 

engineering of gene regulatory networks. We discussed that we need simulators because 

real benchmarks of different sizes and variety are not available. We also mentioned the 

advantages of using them, which was the ability to compare different algorithms based 

on different perspectives and different conditions. We mentioned some of the known 

simulator software, and then we discussed why we chose a particular one called 

SynTReN. We explained how SynTReN works in general and mentioned that SynTReN 

uses partial subnetworks from the domain knowledge networks to produce networks with 

the similar structure to the known networks.  

In the second part of the chapter, we provided another literature review related to 

evaluation. We also provided a focused literature review on the measures used by studies 

applied on SynTReN data.   

In the third section, we explained the experimental setup of this thesis. Firstly, we 

showed how we produced six different datasets using SynTReN. These six benchmarks 

enabled us to evaluate our algorithms’ performance in different conditions, such as 

presence of different type and levels of noise and complicated 2-regulator interactions. 

These datasets will be mentioned later on, where we will describe our approaches. 

Secondly, we mentioned the evaluation metrics we chose for testing our algorithms 

according to the mentioned literature. Finally, we provided a list of software and tools 

which were used in this thesis.   

In the next chapter, we will provide the background related to evolutionary computation 

techniques for a reader who is not an expert in this area, as our first and second 

approaches are based on evolutionary techniques. Firstly, we will explain Genetic 

Algorithm, Genetic Programming and Gene Expression Programming.  We will then 

explain hybridization techniques and will move to the memetic algorithms literature.  
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Chapter 4 

Introduction to Evolutionary Computation 

“Science is built up of facts, as a house is with stones. But 

a collection of facts is no more a Science than a heap of 

stones is a house”  

-H. Poincaré 

4.1 Introduction  

As mentioned in the Introduction chapter, we followed three approaches for Gene 

Regulatory Network discovery. Two of these approaches used techniques from 

evolutionary computation to solve the problem. The first approach used a new Gene 

Expression Programming algorithm to solve a model of GRN formulated by a system of 

differential equations. The second approach tried to find sub-networks by using a new 

combined genetic algorithm. Therefore, here we will present an introduction to the 

evolutionary computation area and review the techniques that we used in this thesis. We 

will also provide an introduction to hybrid methods, as both of the methods which we 

used in this thesis are hybrid methods.  

Evolutionary algorithms originated from genetic algorithms (GA). GA was coined by 

John Holland in 1975 in his book ‘Adaptation in Natural and Artificial systems’. 

Although, Holland was known as the creator of GA, he was not the first person who 

thought about using the principle of natural evolution in computer science.  

In the 1970’s in Germany, Rechenberg (1971) and Schwefel (1974) developed the idea 

of the Evolutionary Strategy. In the USA, Fogel, et al (1995)  implemented an idea which 

they called Evolutionary Programming. The common concept in both ideas was using 

mutation and selection (Reeves 2003). Despite achieving considerable results, 



 Chapter 4. Introduction to Evolutionary Computation 

64 

 

Evolutionary Computing did not get enough attention until 1980, mostly because these 

techniques needed enormous computational power which was not available at that time.  

Following Holland, his PhD students continued work on his ideas in evolutionary 

computation optimization and a series of further studies led to the first conference in 

1985. One of Holland’s graduate students, David Goldberg, produced his doctoral thesis 

which won an award for its application to gas pipelined optimization and, consequently 

he published a book ‘Genetic Algorithms in search optimization, and machine learning’ 

(Goldberg 1989). This book was the final element towards sustained development of GA 

and applications (Cotta, Mendes et al. 2003). Nowadays, researchers use the term 

evolutionary computing or evolutionary algorithms to cover the developments of the last 

20 years. 

Currently, the field of evolutionary algorithms has these main strands: 

 Genetic Programming  

 Evolution Strategies 

 Genetic Algorithms 

 Gene Expression Programming 

 Differential Evolution 

 Hybrid methods 

These techniques were inspired by the main idea of genetic algorithms and have been 

developed separately and merged in the early nineties under the name of evolutionary 

computation and, more specifically evolutionary algorithms. 

Not all of these methods will be discussed, as some of them are not directly related to 

this thesis topic. Simply, the basic ideas and methods in the field of genetic algorithm, 

genetic programming and gene expression programming will be reviewed, and then 

memetic algorithms will be discussed broadly. 
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4.2 Genetic Algorithms 

Genetic algorithms were created based on the theory of evolution and genetics in 

biology. From another point of view, a genetic algorithm is a type of global search 

technique, which is used in computing to find true or approximate solutions. As a meta-

heuristic algorithm, genetic algorithms in comparison with several other techniques such 

as greedy search can often find the best or nearly the best solution in a global answer 

space and usually do not get stuck in a local solution. GA is likely to find near the best 

solution for a given problem; however, GA process can be time consuming especially 

when it is applied to a large dataset. Therefore, nowadays in some applications 

researchers apply parallelism to speed up the processes.  

The basic idea behind genetic algorithm can be described as follows. The problem is 

modelled by a representation of individuals. An individual is a possible solution in the 

space of solutions for the problem. In most implementations individuals are represented 

by bit strings.  To evaluate the fitness of an individual to a problem, a fitness function is 

defined according to the characteristics and the goals associated with the problem. To 

find an optimum solution to a given problem, the following operations can be performed 

on the individuals to make them move towards better solutions: 

 Initialization: during this process some individual solutions called chromosomes 

that bear properties known as genes are randomly generated. 

 Selection: after producing an initial population some of the best chromosomes 

(solutions) are selected and an initial generation is formed. 

 Reproduction: in this process, the next generation is produced from the initial 

one. To do this, two operators are applied which are borrowed from the nature: 

crossover and mutation. 

o Crossover: is a process in which some chromosomes are chosen (based 

on a probability) and broken down into two or more parts and are then 

merged together to produce new chromosomes. 
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o Mutation: is a process of flipping over one or more bits of chromosomes, 

again based on a probability. 

After such operations, some of the best individuals are again selected from the current 

population and the process is repeated. 

 Termination: the second and third steps are iteratively repeated until a 

termination condition is reached. The common terminating conditions are i) 

finding satisfactory minimum criteria, or ii) achieving a fixed fitness value, or iii) 

a fixed period of time has elapsed.  

A Pseudocode of a typical GA algorithm is presented in Figure  4-1. 

 

 

 

 

 

 

 

Figure  4-1 Genetic Algorithm Pseudocode 

In practice, there are a large number of variations in the implementation of a GA and 

what works in one case may not work in another. Therefore, some researchers looked for 

a way to predict algorithm performance for particular classes of problems. Reeves (1993; 

2003) suggested that a population size of M with chromosomes size l is needed to get the 

probability of   P 1    which show us how confident we are in exploring the 

Begin 

INITIALIZE PopulationOfSolutions; 

EVALUATE each individual; 

Repeat Until (TERMINATION CONDITION is satisfied) Do 

SELECT parents; 

RECOMBINE to produce offspring; 

MUTATE offspring; 

EVALUATE offspring; 

SELECT individuals for next generation; 

endDo 

End. 
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whole search space when we have binary representation. For example, a population size 

17 is enough to get a probability of 0.99 for a string length 50.  

4.3   Introduction to Genetic Programming 

Genetic Programming (GP) was suggested by Koza (1992). The intuitive idea of GP is to 

generate computer programs automatically. In a GA we find optimal variable values so 

that their objective function has the maximum value. This kind of optimization problem 

is called parameter optimization. Sometimes problems are more complicated and we 

need to find the structure. Then we do structural optimization. This is when we use GP to 

find the function itself not only its parameters.  

 

Figure  4-2 An example of a chromosome in Genetic Programming 

Genetic programming is a kind of evolutionary algorithm where each individual is a 

computer program. These programs are usually in the form of trees which are the 

expressions of a predefined formal language. GP evolves programs which are in the form 

of algebraic expression to find the best expression tree (function). The predefined formal 

language represents a function.  

In general, GP chromosomes have a variable length. In such a condition is relatively hard 

to determine crossover and mutation operators based on a prefix expression. Simple 

+ 

4.3 * 

1.2 X 
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crossover and mutation might generate illegal offspring. Therefore, fixed length 

chromosome has been proposed to be able to use simple variation operators.  

Genetic programming is a popular tool for regression and function approximation tasks 

(Riolo, Soule et al. 2008).  Genetic programming may be used to create a functional 

description of data by discovering classification functions or by modelling dynamic 

processes as described by (Banzhaf 1998). Structure optimization or learning is a 

research field that has attracted a lot of attention. GP for differential equation solving is a 

fascinating research field (Yu and Gen 2010).  

4.4 Introduction to Gene Expression Programming 

Gene Expression Programming (GEP) is a new form of genetic programming and was 

first introduced by Ferreira (2001). GEP is similar to genetic programming in that it 

evolves computer programs but the genotype and the phenotype are different entities 

(both structurally and functionally) and because of this, performance is improved. It has 

been shown in experiments to converge faster than older genetic algorithms (Ferreira 

2002; Ferreira 2008). It also brings a greater transparency as the genetic operators work 

at the chromosome level (Wilson 2008). The most important application of GEP is in 

function finding and regression problems.  

In the previous sections, we described genetic algorithm and genetic programming 

mechanisms.  Here based on the previous understanding of the nature of a genetic 

algorithm we will describe how the GEP mechanism works.  

The fundamental difference between the genetic algorithm, genetic programming and 

gene expression programming resides in the nature of the individuals: in genetic 

algorithm the individuals are linear strings of fixed length (chromosomes); in genetic 

programming the individuals are nonlinear entities of different sizes and shapes (parse 

trees); and in GEP the individuals are encoded as linear strings of fixed length (the 

genome or chromosomes) which are afterwards expressed as nonlinear entities of 

different sizes and shapes (i.e. simple diagram representations or expression trees). We 
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will see in the following chapter how these differences make GEP more effective than 

GA and GP.  

GEP uses fixed length linear strings of chromosomes as the genotype, and the phenotype 

is in the form of expression trees which represent a computer program (Marghny and El-

Semman 2005). The trees are then used to determine an organism’s fitness. The decoding 

of GEP genes to expression trees implies a kind of code and a set of rules which are 

simple. The set of genetic operators applied to GEP chromosomes always produces valid 

expression trees (ET).  

The genes of gene expression programming are composed of a head and a tail. The head 

contains symbols that represent both functions and terminals, whereas the tail contains 

only terminals. For each problem, the length of the head h is chosen, whereas the length 

of the tail t is a function of h and n is the number of arguments in the function. t is 

evaluated by the following equation. 

 
1 1 ( 4.1)

Consider a gene for which the set of functions is F , , ,/,   and the set of 

terminals is , . In this case n = 2; if we choose an h = 6, then t = 6 (2 - 1) + 1 =7, 

thus the length of the gene is 6 + 7 = 13. One such gene is shown below: 

. . ./. . . . . . . . .   

where “.” is used to separate individual building elements, sqrt represents the square root 

function and a, b are variable names. The above is referred to as Kava notation, and the 

above string is called a K-expression (Li X, Zhou C et al. 2004).  

4.5 Hybrid Methods 

Based on the No-Free-Lunch theorem (Wolpert 1997), no single algorithm can be found 

which works well for all types of problems. In this theory, Wolpert and Macready (1997) 

said that all optimization algorithms such as Genetic Algorithms, Simulated Annealing, 
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and Hill Climbing have the same average behaviour over all problems. Therefore, if one 

algorithm is more effective on average for a subclass of problems, it works worse in the 

other classes. This theory claims that the comparison of algorithms is useless unless we 

consider a subclass of problems and make a comparison based on a particular problem 

subclass. 

An algorithm can work efficiently in some parts of a problem, but could be inefficient for 

others. Also, it was shown that as more domain knowledge is used to develop hybrid 

optimization algorithms, more efficient and specialized algorithms can be produced. 

This led researchers to create a combination of different algorithms to solve a broad 

range of problems and use the advantages of each algorithm to make a more robust and 

more generalized problem solver. Also, many complex problems can be decomposed into 

a number of parts, for some of those sub parts exact methods (or very good heuristics) 

may already exist therefore in such a situation it does make sense to use a combination of 

the most appropriate methods for different sub problems (Carr, Hart et al. 2002). 

Moreover, many problems have a set of constraints and local search or other heuristics 

can be used for "repairing" infeasible solutions generated by standard global search 

operators. This is often simpler and more effective than attempting to find a specialized 

representation and or a set of combinations to be sure about the feasibility of all offspring 

(Carr, Hart et al. 2002). 

Algorithms can be combined in different ways; a simple combination is a static 

combination, which means that the structure of combinations in terms of how and when 

those combined algorithms work together is predefined and fixed. In the more advanced 

cases a meta-knowledge selector decides when it has to switch between algorithms and 

also even decides which types of algorithm is better to use for a given problem. The most 

important types of combinations, which were found in the literature, are a combination of 

Global Search Algorithms with Local Searches, which use both algorithms’ strengths to 

make an efficient search algorithm. We are not going to review the broad range of 

combined algorithms, as it is out of the scope of this thesis, instead we focus only on the 

range of combined algorithms which use GA in their combination. 
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Since the establishment of GA as a powerful algorithm in the computer science area, 

there have been significant amounts of work in its combination with other operations, 

such as search algorithms and machine learning techniques to improve performance in 

real-world applications. This section aims to provide a brief review of such 

hybridizations mainly based on notes by Sinha and Goldberg (2003). 

It has been found through research in the Evolutionary Algorithm (EA) area that GAs are 

good at exploring the search area to find possible solution regions, but suffer from a lack 

of ability at finding a fine grained solution. As a result, it has slow convergence while 

performing that stage. On the other hand, local searches and problem-specific methods 

(such as heuristics) can act very well for this purpose. Previous work has shown that 

hybrid algorithms outperform a pure GA in most of the real world problems. Hybrids 

have been shown to be not only good in achieving a quality solution in a minimum time, 

but also in finding maximum solution quality in an acceptable time. Therefore, they are 

very successful from an optimization perspective.  

In this thesis, we used hybrid evolutionary techniques in our first and second approaches; 

therefore, in the next section, we will provide an introduction to hybridization for a better 

understanding of the purpose and benefits of the hybridization in evolutionary 

computation.  

The following categorization of Hybrid GAs will be reviewed from three perspectives 

(Hart, Krasnogor et al. 2005):  

 Purpose of hybridization 

 Hybrid architecture 

 Types of secondary methods 
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4.5.1 Purpose of Hybridization  

Exploitation 

This class uses local search techniques for the purpose of fast convergence of algorithms 

after the GA has found a promising area in the search space. These include hybrids with 

Hill-Climbing and Simulated Annealing and Tabu search.  

Repair 

This class uses hybrids in the form of local searches for the purpose of repairing an 

infeasible solution. These hybrids are valuable in cases with highly constrained search 

spaces. In these cases, in a pure GA, a special kind of operator is used to avoid the 

generation of infeasible solutions, but this can be very hard to design.  

Parameter Optimization 

This class uses GA to optimize parameters in the second method, for example GA 

hybrids with neural networks for training of network parameters, or with reinforcement 

learning for choosing suitable parameters, or with Fuzzy logic for generating rule sets 

and membership functions.  

GA Functionality Enhancement/Substitution 

The second method can be used to perform some function of GA or enhance the 

performance of GA through better control of the process, for example, in the use of 

neural networks as a fitness estimator and the use of fuzzy logic controllers for dynamic 

control of GA parameters.  

We will go through the categorization of local search combined with GA in detail further 

when memetic algorithms are discussed.  
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4.5.2 Architecture 

We can classify hybrids based on how and when the secondary method is utilized. 

Combinations found so far can fall into one of the following categories: 

 Pipelined Hybrids 

 Asynchronous Hybrids 

 Hierarchical Hybrids 

 Embedded Hybrids 

Pipelined Hybrids 

In this group, there are two distinct stages for running the second method with GA. The 

possible combinations are in the form of Pre-processor, Postprocessor, and staged. A 

visualization of these three architectures is shown in  

Figure  4-3. 

In (a) GA is used to find a promising area in the search space, and then the second 

method continues until termination. In (b) the second method provides a good 

initialization for GA. Case-based reasoning and Tabu search have been used commonly 

for this purpose (Ramsey and Grefenstette 1993; Vilcota and Billaut 2008). In (c) there is 

iteration in performing GA and the second method. For example, each offspring which is 

selected based on having good fitness can go through a local search process for a 

specified duration, or to find a better solution in its neighbourhood. Then the process of 

evolution can continue again. This type of combination is the most common among those 

three. The subject of this thesis is based on this type of combination.  
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Figure  4-3 The three different possible combination for pipelined architecture (Sinha and Goldberg 2003) 

Asynchronous Hybrids 

This is a type of cooperation between two methods. The result of each may be utilized by 

another. The two methods typically have a shared memory to make solutions available 

for others. If the performance of the search is not good, they come back to the previous 

solution.  

Hierarchical Hybrids 

In this class, there is a procedure with multiple levels of optimization and at least one of 

those is a GA. An example of this class has been mentioned in work by Rogers (Rogers 

1991). It uses a hierarchical approach for function approximation using splines with two 

levels of optimization. In the beginning, a GA is used to choose an appropriate basis 

function, and then linear regression is used for choosing coefficients with the least error 

for that function.  

 

Initialization 

GA 

Second Method 

Initialization 

GA 

Second Method 

Initialization 

Second Method 

GA 

(b) (a) (c) 

Pre-processor Post-processor Staged 
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Embedded Hybrids 

In this class, the secondary method is embedded inside of GA. The possible ways are: 

Initialization and seeding GA: For example, Case-Based Reasoning (CBR) has been 

used for preparing for GA a good initial population of feasible solutions.  

Fitness evaluation: In some situations, the fitness function is not available and so a 

model of the system can be used for the evaluation of solutions. Using neural networks 

for this purpose is very popular.  

Crossover: In some problems common crossover operators produce infeasible solutions. 

In these situations, problem specific operators are used to generate feasible offsprings 

from parents.  

Mutation: This is a common example of an embedded solution in GA as mutation is the 

GA’s Achilles heel. Local search in the form of G bit improvement of hill-climbing has 

applied for this purpose (Sinha and Goldberg 2003).  

Special operators: A few studies have used a unified operator which integrated crossover 

and mutation. They can be categorized as special operators.  

4.5.3 Secondary Methods 

A wide range of existing machine techniques and algorithms have been used as a 

secondary method in combination with GA. Some of them are: Simulated Annealing, 

Local search methods, Artificial Neural Networks (Determining ANN architecture, 

Training of ANN, Selection and Generation of Training Data, ANN models for fitness 

evaluation, Input Feature Selection). Fuzzy logic, Tabu search, Decision Tree, Expert 

systems, Dynamic Programming, Case-based reasoning, Constrained Logic 

Programming, Branch and Bound. 
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4.6 Introduction to Memetic Algorithm 

Over the past decades, Evolutionary Computation techniques have been successfully 

applied to various optimization problems in the field of engineering, biology, physics, 

chemistry, management, and computer science. However, it has been shown that they are 

not well suited to finetuned searching in complex spaces (Goldberg 1989). Moreover, 

other domain specific optimization techniques sometimes can outperform them, although 

these techniques do not have the same generality as Evolutionary Algorithms. These 

factors led to hybridization of Evolutionary Algorithms with other techniques to make 

them more efficient (Merz 2000).  

There was some work on hybrid methods in the late 1980 that led to the memetic 

algorithms idea. The main pioneer work that led to MA was done in 1989 by Moscato 

and Norman (1989). In their paper, the authors introduced a technique which combined 

Genetic Algorithms with Simulated Annealing. In fact, Simulated Annealing played the 

role of a local search for GA.  The initial motivation was to find a way to overcome the 

limitation of both techniques by combining them to solve a minimum Euclidean 

Travelling Salesman problem. The authors stated that the origin of the idea came from 

computer game tournaments used to study the evolution of cooperation. One year later, 

Moscato and Norman found out that several researchers previously used heuristics to 

improve solutions before recombining them. Particularly in GA, several works 

introduced problem domain knowledge in several ways. Finally, in 1989, Moscato 

introduced the term Memetic Algorithms (MAs) in ‘On Evolution, Search, Optimization, 

Genetic Algorithms and Martial Arts: Toward Memetic Algorithms’ (Moscato 1989). He 

applied this algorithm to the Travelling Salesman as a representative test-bed. In this 

work, he suggested that using cultural evolution can be a better metaphor for avoiding 

constraints in biological evolution. In other words, he argued that some characteristics 

are not inherited from generation to generation; this kind of fashion or cultural 

transmission cannot be inherited by genes, for example, technological evolution or 

martial arts. Therefore, he claimed that a part of the natural process is missing and this 
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concept has not been implemented in Genetic Algorithms. He discussed that there is 

another flow of information which facilitates cultural transmission. The subunit in 

cultural transmission which transmits the cultural information is called memes. 

The concept of a meme was first introduced by Richard Dawkins in his best-selling book 

‘The Selfish Gene’ as the unit of imitation similar to a gene, but in the field of cultural 

evolution (Dawkins 1976). 

There are differences between a gene and meme. First of all genes can be biologically 

inherited, but memes cannot. The second, and most important, difference between genes 

and memes is that before a meme is passed on, it is typically adapted by the person who 

transmits it by thinking and understanding, whereas genes get passed on entirely 

unaltered (other than by mutation). The third difference is that memes pass through 

generations for their popularity and generality, whereas genes survive passing through 

generations based on their strength and fitness. The fourth difference is that a meme can 

evolve much faster than a gene and the process is less resource consuming. The fifth 

difference is that meme evolution variation usually is not the product of chance or 

random exchange and usually is a goal-oriented process. For example, in science the raw 

combination of ideas does not lead to improved theory, usually scientists recombine 

ideas with their own ideas; therefore, this process allows innovation. In contrast, gene 

evolution does not include any idea about innovation and works based on pure chance. 

Therefore, the meme evolution is a goal oriented process, while gene evolution is an 

open-ended process.  

4.6.1 Formal Definition of Memetic Algorithm 

Ten years later after Moscato and Norman’s paper, MAs became a well-known and 

useful approach for solving several NP-Hard optimization problems.   

Different definitions have been introduced so far for memetic algorithms in the literature. 

In this thesis, we look at two common definitions as follows: 
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Begin 

Initialize Population Of Solutions; 

Improve Individuals via local search; 

Evaluate each individual; 

Repeat Until (Termination Condition is satisfied) Do 

Select parents; 

Recombine to produce offspring; 

Mutate offspring; 

Evaluate offspring; 

Improve offspring via Local Search; 

Evaluate offspring; 

Select individuals for next generation; 

End Do 

End. 

Definition 1: The Memetic Algorithm was inspired by the model of adaptation in natural 

systems that combine the evolutionary adaptation of population (already existing under 

the name Evolutionary Algorithms) with individuals’ learning during their life time (in 

the form of local search) to make a more robust and efficient optimization algorithm. 

Memetic algorithms are sometimes called hybrid GA or scatter search (Carr, Hart et al. 

2002). 

Definition 2: This definition was given by Krasnogor in (Carr, Hart et al. 2002) which 

says memetic algorithms were inspired by Dawkins  Meme which represents a unit of 

cultural evolution that can evolve to refinement. So far, memetic algorithms have not 

been used in this sense. The general definition of a memetic algorithm is presented in the 

Pseudocode in Figure  4-4. 

 

 

 

 

 

 

 

 

 

 

Figure  4-4 Pseudocode for a memetic algorithm 

There is much variation in this schema about when and how to apply local searches. 

Sometimes, a local search can act instead of a mutation operator. But, using the 

knowledge or problem domain is not an optional process; in fact it is a principal feature 

of MA. The search strategy behind MA differs from other evolutionary algorithms and, 
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as can be seen, MA incorporates knowledge of the domain in the form of a local search 

and, as a result, has some advantages over evolutionary algorithms. Although, most work 

on MA is about combinations of evolutionary algorithms with domain knowledge in the 

form of local searches, MA definition and scope are much broader than this and are not 

limited to only evolutionary algorithms.  

4.6.2  Why MA is successful?  

MA encompasses a broad class of metaheuristics. The success of MA is due to the 

synergy of different search approaches. Yet, why does the combination of different 

algorithms work so efficiently? 

This is based on a strong theoretical background which originates from the No-Free-

Lunch theorem. In this theory, Wolpert and Macready (1997) said that all optimization 

algorithms have the same average behaviour over all problems. Therefore, if one 

algorithm is more effective on average for a subclass of problems, it works worse in the 

other classes. An algorithm can work efficiently in some parts of a problem, but could be 

inefficient for others. Also, it was shown that as more domain knowledge is used to 

develop hybrid optimization algorithms, more efficient and specialized algorithms can be 

produced. Therefore, the main reason for MA success is the nature of MA which 

combines different algorithms. Another reason is the fact that MA uses domain 

knowledge in the form of local search.  

Many complex problems can be divided into some parts for solving which an exact 

method already exists. In these cases, using the combination of appropriate methods is 

desirable. For example, Evolutionary Algorithms can be used as a part of the process and 

other algorithms to run as a past or pre-process which is the idea behind MA.  

GA Compared to MA 

In particular, to compare MA against GA we can point out following differences:  In 

theory, a GA is useful particularly in global search cases in which there is not so much 
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knowledge from the domain, but in practice we use GA in cases which we have some 

knowledge from the domain. In other words, by applying just GA we do not use this 

knowledge to make our solver efficient (Hart, Krasnogor et al. 2005) and we know that 

the performance of an algorithm really depends on the amount and quality of problem 

knowledge. MA uses domain knowledge in the form of local search; therefore, can 

perform more efficiently. 

Another reason for the success of MA relies on drawbacks of the GA approach. Although 

GA is very good in identifying suitable areas of the search space (exploration), they are 

less good at refining the near-optimal solution (exploitation)(Hart, Krasnogor et al. 

2005). For example in Recent Advances in Memetics, Krasnogor mentioned that when 

GA is applied to the ‘One-Max’ problem, near-optimal solutions are quickly found, but 

convergence to the optimal solution is slow due to the fact that the choice of gene’s 

mutation is random. Therefore, GA hybrids such as MA provide a more effective search 

by incorporating a more systematic search in the neighbourhood of good solutions.  

The third reason for the success of MA compared to GA is that many problems have a set 

of constraints associated with them. In these cases we need special representation and 

operators to make sure that we produce feasible solutions. Local searches or other 

heuristics can be used for repairing infeasible solutions generated by other global search 

methods. This is more effective than finding a special type of representation or variation 

of operators to make feasible offsprings (Hart, Krasnogor et al. 2005).  

As a result of these characteristics, Memetic algorithms are more efficient than simple 

GA, as they can reach an optimal point in a fewer number of generations, although a 

study shows that even having a fewer number of generations does not mean it works 

faster and could be in some cases more time consuming than GA (Areibi, Moussa et al. 

2001).  

Memetic algorithms are better at finding the optimal solution as they apply a local search 

to the final solutions found by the evolutionary process to fine tune it, while GA does not 
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guarantee finding the optimal solution. Therefore, the quality of solutions found by MA 

is usually better than GA. (Due to the drawback of GA in exploitation). 

Simple GAs do not scale well with an increasing problem size, while MA can scale up 

better especially in some combinatorial problems in which solutions are nearby such as 

Travelling Salesman (Merz 2000).  

MA has a disadvantage in comparison with GA, which is that it is prone to converging 

early and we need to think about a strategy to prevent early convergence.   

4.6.3   Local Search 

A typical local search can be described with the Pseudocode presented in Figure  4-5.  

 

 

Figure  4-5 Pseudocode of a local search algorithm (Hart, Krasnogor et al. 2005) 

Three components are important in local search algorithms. 

Begin 

     /* given a starting solution i and a neighborhood function n */ 

     set best = i; 

     set iterations = 0; 

     Repeat Until (depth condition is satisfied) Do 

                   set count = 0; 

                  Repeat Until (pivot rule is satisfied) Do 

                               generate the next neighbor j E n (i); 

                              set count = count + 1; 

                              If (f (j) is better than f(best)) Then 

                                        set best = j; 

                              endIf 

                   endDo 

                   set i = best; 

                   set iterations = iterations + 1; 

     endDo 

End. 
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Pivot Rule: This defines the condition for accepting an improved point. A greedy ascent 

pivot rule ends the inner loop as soon as an improvement is found, while steepest ascent 

pivot rule ends the inner loop when the entire neighbourhood has been searched. 

Sometimes when the neighbourhood is too large, it is recommended to use a random 

sample size which is considerably smaller than the original neighbourhood.   

Depth of Local Search: This defines the termination condition for the outer loop. This 

parameter determines how many improving steps (iteration) have to be applied. There are 

considerable studies on the effect of changing this parameter as mentioned by Hart and 

Krasnogor (Hart, Krasnogor et al. 2005).  

Neighbourhood Generating Function: The choice of an appropriate neighbourhood 

structure is important as it seriously affects the performance of the local search 

algorithm. It usually has to be done in a problem specific way by defining the set of 

solutions can be reached from s in one single step of a local search algorithm. Typically, 

a neighbourhood structure is not defined by explicitly pointing to a set of possible 

neighbourhood points, but rather implicitly by defining the possible local changes that 

may be applied to a solution. 

The neighbourhood structure can also be represented as a graph, called the 

neighbourhood graph, G (v, e); V is the set of vertices or nodes of the graph that 

represent the solutions or points in the search space and two solutions are connected by 

an edge if they are neighbours (a  set of edges show the move operator).  Thus, a typical 

local search algorithm can be represented as a walk on the neighbourhood graph.  This 

function defines a set of points after applying some move operators to the current point. 

Therefore we can consider the graphs defined by different move operators as fitness 

landscapes. Merz and others presented a number of statistical measures for characterizing 

fitness landscapes (Merz and Freisleben 1999; Merz 2000). 

Local search algorithms may start from a randomly generated solution. In general, the 

solution found by a local search algorithm will not be a globally optimal solution; it may 

only be guaranteed to be optimal with respect to local changes. Certainly, the solution 
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quality obtained by a local search algorithm increases with larger neighbourhood size. A 

neighbourhood which guarantees that every local optimal solution is also a global 

optimum is called exact (Aarts and Lenstra 2003). Unfortunately, such neighbourhoods 

are typically of exponential size and searching for an improved neighbouring solution 

may take exponential time in the worst case. For practical reasons, it is required that each 

step of local search can be done in polynomial time (Stuetzle 1998). 

4.6.4 Local Search in MAs 

Here we are going to study local search inside of the MA context and see the effect of 

changing its parameters on MA performance. 

There is a lot of variety about when and how to apply local searches and this is the most 

important factor in the design of a MA. As it was mentioned in section  4.4 (Hybrid 

Methods), the hierarchy of applying local searches inside of a MA is an important design 

factor, but the choice of local search algorithms and its parameters inside the local search 

is important as well.  

Merz studied five famous problems in combinatorial optimization NK-landscapes, the 

Travelling Salesman, Binary Quadratic Programming, Graph Bipartitioning Problem and 

Quadratic Assignment Problem. He showed that MA on average outperforms other 

heuristic methods. He tried different types of local searches over those five problems and 

measured their performance. He also proposed some new local search algorithms in each 

problem which worked more effectively than other known local searches in those 

specified problems (Merz 2000). In TSP, there is a variety in types of instances, but in 

general it shows that lower correlation between tour lengths and distance to global 

optimum make a case hard and, also, a higher correlation between tour lengths and 

distance to global optimum indicates that recombination based search algorithms work 

well in these cases. MA with the newly proposed greedy recombination operator has 

been shown to outperform all its competitors: MAs with DPX or MPX recombination, 

MAs with non-sequential fur change mutation, and iterated local search. MAs with DPX 

(the distance preserving crossover operator) and GX (A greedy recombination operator) 
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recombination and mutation have been applied to various instances contained in 

TSPLIB4 to show robustness and scalability of the approach. The memetic algorithm 

appears to be superior in average solution quality and running times. Finally, the MA 

with GX has been applied to very large instances of up to 85900 cities and is, thus, the 

first meta-heuristic known which can tackle very large problems. In Graph Bi-

partitioning he proved that for geometric graphs, the combination of differential greedy 

and Kernighan-Lin local search is sufficient for small graphs (up to 5000 nodes).  

There have been a large number of studies over the different statistical measures of 

landscape for prediction problem difficulty. Merz and Freisleben (1999) studied  some of 

these measures and showed that choice of move operators can have a strong effect on 

MA. In another study, a number of statistical measures for characterizing fitness 

landscapes was presented (Hart, Krasnogor et al. 2005). However, there is still a huge 

amount of potential for further study of landscapes analysis and performance 

measurement. 

Merz mentioned that the choice of move operator (neighbourhood structure) has a 

dramatic effect on the efficiency of local searches and consequently on MA (Merz 2000). 

Krasnogor mentioned that in some cases domain knowledge can be used to guide the 

choice of neighbourhood structure(Hart, Krasnogor et al. 2005). Recently, it has been 

discovered that optimal choice of operator is not only specific within a class of problem, 

but also inside MA can be dependent on the state of the evolutionary search. Krasnogor 

(Hart, Krasnogor et al. 2005) also mentioned that changing the neighbourhood operator 

during a search, where points are locally optimal for a given neighbourhood operator, 

may result in a means of progression. Due to this fact, points that are locally optimal in 

one neighbourhood structure may not be in another structure (except those that are 

globally optimal). This fact leads to variable neighbourhood search algorithms (Hart, 

                                                 
4 TSPLIB is a library of sample instances for the TSP (and related problems) from various sources and of 

various types 
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Krasnogor et al. 2005). In the following section, we present some of the design issues in 

MA, which involves how and when a local search has to be applied inside a MA.  

4.6.5 Design Issues  

The process of designing effective and efficient MA needs problem specific details and 

therefore, is an ad-hoc process. Krasnogor and Smith (2005) reviewed some examples of 

MAs application to provide a systematic model for MA which determines role of 

different parts and their relationship. They tried to provide a better understanding of how 

to design MA for a problem and also provided a conceptual framework to deal with 

difficult questions about MAs general behaviour.  

They raised several important questions which must be addressed to design a MA 

effectively.  

 The first and foremost of those is the question of what is the best trade-off 

between local search and global search? 

 Where and when local search can be applied within the evolutionary process? 

 Which individuals in the population should be chosen for improving by local 

search? 

 For how long should perform local search? 

 How genetic operators should be integrated with local search to get an effective 

combination? 

They indicated that these theoretical questions have not been answered properly yet in 

the MA literature.  

4.7 Summary 

In this chapter, we provided an introduction to evolutionary computation including 

genetic algorithms, genetic programming and gene expression programming. We also 

explained combined evolutionary methods and different methods for combination of 
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algorithms. Then we provided a good background on memetic algorithms which is a 

combined genetic algorithm. We discussed the superiority of memetic algorithm over the 

standard genetic algorithms.  

The technique that we used for our first approach is a hybrid gene expression 

programming. Our second approach uses a hybrid genetic algorithm. Therefore, we 

considered to provide a solid background for the reader in evolutionary computation and 

hybridization in order to understand those approaches.  

Now that the reader has been provided with enough background, in the next chapter, we 

will review our first approach which uses a hybrid of Gene Expression Programming 

with local search to solve a system of differential equations used for modelling a GRN. 
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Chapter 5 

Approach 1: Memetic Gene Expression 
Programming  

“What distinguishes a mathematical model from, say a 

poem, a song, a portrait or any kind of ‘model’, is that the 

mathematical model is an image or picture of reality 

painted with logical                            

symbols instead of with words, sounds, or watercolors.” 

-John Casti, Reality Rules 

5.1 Introduction 

In the previous chapter we provided background information on evolutionary 

computation techniques such as Genetic Algorithms and Gene Expression Programming 

and combined evolutionary algorithms called memetic algorithms. That information was 

necessary in order to understand our first and second approaches which employed 

evolutionary techniques. In this chapter, we introduce our first approach to solve the 

GRN inference problem which will propose a new combined evolutionary technique 

called Memetic Gene Expression Programming (MGEP). The MGEP is a combination of 

Gene Expression Programming (GEP) with a local search method. GEP is known to be a 

highly effective tool for function approximation and regression; however when it comes 

to parameter estimation it is not as effective. Previously, local search methods combined 

with other evolutionary techniques such as genetic programming proved to be an 

effective tool for parameter estimation. Therefore we used a local search mechanism 

combined with GEP to make a more effective tool for function approximation. We 

applied our Memetic Gene Expression Programming technique to an artificial dataset to 

obtain a system of differential equations which were used for modelling a gene 
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regulatory network. We also investigated the effect of noise on our algorithm, as this is 

an important consideration for any algorithms applied on microarray data which is high 

in noise and the number of missing values.  

In this work, for the first time, a combination of Gene Expression Programming with a 

local search method is proposed and proved to be effective compared to GEP alone. This 

combined method also showed robust behaviour in the presence of noise and missing 

values.  

We provided an introduction to Gene Expression Programming (GEP) in  Chapter 4 

Section  4.4. Here, we will firstly describe how this technique can be used for GRN 

discovery and then we will describe our proposed approach which is based on GEP. 

5.2 Gene Expression Programming for GRN Inference 

Gene Expression Programming is a highly effective method for function finding. This 

quality of GEP makes it a suitable tool for any application which requires function 

approximation. One common method for GRN inference involves approximation of 

differential equations.  

Temporal differential equations are the most common modelling used to build a Gene 

Regulatory Network (GRN) from time series data (Wang, Joshi et al. 2006; Hallinan 

2008). Differential equations are a powerful and flexible model to describe complex 

relations among components. Differential equations represent a GRN by quantifying the 

rate of changes of the expression of one gene as a function of the expression of the other 

genes.   

A system of differential equations which can be used to model a GRN is shown in 

Equation 5.1: 

 
, , … , 1,2, …  ( 5.1)
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Here  is the expression level of the i-th gene (state variable) and n is the number of the 

genes (components) in the network.  

Evolutionary computation is a particularly useful approach when a problem cannot easily 

be solved mathematically and we cannot realistically look for an optimal solution, but 

one or more good solutions are needed. Therefore it is particularly suitable for the 

problem of solving a differential equations system. Different kinds of evolutionary 

computation techniques have been applied to this problem, ranging from extensions of 

genetic algorithms to genetic programming and differential evolution. 

Sakamoto and Iba (2001) used genetic programming (Koza 1992) to solve this problem 

modelled by a system of differential equations. Solving the general form of a system of 

differential equations is very difficult, so a fixed form, called the S-system (Savageau 

1988), was used and the goal became simply to optimize the parameters in the fixed 

equations. An S-system is a type of power-law formalism. The concrete form of the S-

system is shown in Equation 5.2 where    is a state variable. The first term gives us all 

the effect of increasing whereas the second term gives the effect of decreasing . 

 

  1,2, …  ( 5.2)

The first work which used genetic algorithms to solve the S-system was presented by 

Maki et al. in (2001). There are other works which applied genetic algorithms to this 

problem such as a study by Morishita (2003) which used a genetic algorithm to find 

parameters for an  S-system representing a 5-node network. Kikuchi and others (2003) at 

the same time reported a good result for the same number of nodes. Spieth and others 

(2004) used a genetic algorithm along with evolutionary strategies as a local search 

method. Later on, in 2005, genetic programming was used to solve the S-system by 

Matsumura et.al. (2005) and appropriate solutions were obtained. Also in 2005, for the 

first time, differential evolution was used for this purpose by Noman and Iba (2005). 

Their work exhibited high performance. However in their study the number of genes was 

still limited to five and the model could not easily be scaled up for larger networks. The 
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reason for this is the fact that the number of parameters in a differential equation system 

is proportional to the square of the number of genes in the network. Therefore, when the 

number of genes increases, the algorithms must simultaneously estimate a larger number 

of parameters. This is why inference algorithms based on the differential equations 

model have so far only been applied to small-scale networks of about five genes.  

At the time of writing this thesis we found a new publication which suggests using global 

search methods (Genetic Programming) for finding the general structure and then a local 

search method (RLS method) for finding parameters (Wang, Qian et al. 2010).  They also 

used a simplified S-system for modelling the network in this way they reduced the 

number of detailed parameters. As a result, they successfully scaled up the size of the 

network for which they could estimate the simplified S-system it might be worthwhile to 

try their simplified S-system and RLS method within our proposed approach which uses 

a more powerful global search method (Gene Expression Programming).  

Evolutionary techniques were used along with other modelling approaches for gene 

regulatory networks. An example of that is a study by Eriksson and Olsson (2004) which 

used genetic programming to successfully solve a Boolean Network of 20 genes.  

Here, we attempted at solving the problem of inferring a gene regulatory network 

modelled by a system of differential equations with an extension of the Gene Expression 

Programming (GEP) algorithm. GEP has been applied in many regression problems 

successfully. In particular, it was used previously for solving elliptic differential 

equations (Jiang, Wu et al. 2007). Our extension exploited the effectiveness of GEP in 

finding the structure of gene regulatory network modelled by ordinary differential 

equations. It also used a local search technique along with GEP for extra benefits. The 

combination of these methods, using GEP as a global search for finding a function 

structure and a local search for fine tuning the model parameters, resulted in a more 

powerful algorithm. 

The combination of global search methods with problem specific solvers is known as 

Memetic Algorithms (MAs) (Moscato and Norman 1989). This combination has been 

proved to be effective as the global search tries to find the best solution for the problem, 
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and meanwhile the local search tries to improve the solution by finding the best solution 

in a neighbourhood. Usually global search techniques find near to optimal solutions, not 

the optimal one. Using local search helps to improve the solutions found by global 

search. The problem-specific solvers are usually implemented as local search heuristic 

techniques. The hybridization is meant to accelerate the discovery of an optimal solution 

or to reach a solution which is impossible to discover by either of the component 

methods (Krasnogor, Aragón et al. 2006). So far, conventional genetic algorithms have 

mainly been used in MAs as the global search method, however, the scope of MAs is not 

limited to the genetic algorithms and in general any global search method can be used 

(Krasnogor & Smith, 2005). In Spieth et al. (2004) authors used a genetic algorithm 

along with evolutionary strategies as a local search method to solve an S-system which 

was used for modelling of a gene regulatory network. Sakamoto and Iba (2001) used a 

local search algorithm along with genetic programming to obtain the constant parameters 

of the target function effectively. Here for the first time we have proposed an MA with 

GEP as the global search method. The Least Mean Square method (LMS) was used as 

the local search method. We have used the same data as were used in a previous study in 

the literature (Noman and Iba 2005) and compared the efficiency of our method with 

conventional genetic programming. 

5.3 Memetic Gene Expression Programming for GRN 

Inference 

Here we present an algorithm designed to infer a gene regulatory network from the 

observed time series data. As noted earlier, the problem can be modelled as a set of 

differential equations. We used a GEP algorithm to evolve the structure of the gene 

regulatory network and to find the best form of differential equations from the observed 

time series of the gene expression. Although GEP is effective in finding a suitable 

structure, it is not so effective in optimizing the parameters of the formula such as 

constants or coefficients. Thus we enhanced it by incorporating a local search process 

into GEP to find the constant parameters of the equations more effectively and we called 
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it Memetic Gene Expression Programming. Local search methods are known to be able 

to find the constant values and parameters effectively, and GEP is known to be effective 

in finding function structures. This combination results in an effective algorithm which is 

highly capable for function estimation.  The overall algorithm is presented below:  

1. The GEP evolution begins with the random generation of linear fixed-length 

chromosomes for individuals of the initial population. 

2. In the second step, the chromosomes are translated into expression trees and 

subsequently into mathematical expressions, and the fitness of each individual 

chromosome is evaluated based on the formula presented in Equation ( 5.3) by 

using the Runge-Kutta method. 

3. Local search is applied on individuals at some interval generations. 

4. The worst individuals in the population are replaced with the improved 

individuals generated earlier.  

5. These operations are applied: selection with tournament selection and then 

genetic recombination.  

6. The above steps are repeated until there is no further improvement in the fitness 

function.  

The local search algorithm was applied in two different ways. In the first method, it was 

used only for the best individuals in each generation. In the second method it was used 

on the whole generation at some intervals. The result of the second method was better 

than the first method; therefore, the reported results are based on the second method of 

applying the local search procedure. 

5.3.1 Fitness Function 

In general, the genetic network inference problem is formulated as a function 

optimization problem to minimize the following sum of the squared relative error and the 

penalty for the degree of the equations:  

 



 Chapter 5. Approach 1: Memetic Gene Expression Programming 

93 

 

 
∆ ∆  

 

( 5.3)

     : the expression value of gene i 

     : the starting time 

     t: the step size 

    n: the number of components in the network  

    : the number of the data points 

Where     ∆  is the given target time series (k=0, 1,…, T-1) and  ∆   is 

the time series acquired by calculating the system of differential equations represented by 

a GEP chromosome. All of these time series are calculated using the Runge-Kutta 

method. This fitness function has often been used in previous studies in GP, for example 

by Samakato and Iba (2001).  

The problem of inferring gene networks based on the differential equations has several 

local optima. Local optimal points are the points in the search space that are optimal 

within their local neighbourhood, in contrast with global optimum which is the general 

optimal solution. The high number of local optima happens because the degree of 

freedom of the model is high. The degree of freedom is the indicator of the number of 

variables required to estimate a model. As we are not interested in finding the local 

optimum instead of the global optimum, a penalty function has been introduced by 

Kimura et al (2004) to avoid the local optima solutions. This penalty function which is 

the second part of the fitness function encourages low degree solutions. The  is the 

penalty coefficient for the j-th degree and  is the sum of the absolute values of 

coefficients of  j-th degree.  

5.3.2 Local Search for the Local Optimizations of the Model 

GEP is capable of finding a desirable structure effectively, but it is not very efficient in 

the optimization of the constant parameters, as it works on the basis of the combination 
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of randomly generated constants. Thus we used the Least Mean Square (LMS) method to 

explore the search space in a more efficient way. To be more specific, some individuals 

were created by the LMS at some intervals of generations. Therefore we used the LMS 

method to find the coefficient of the expression of the right-hand sides of the system of 

differential equations. We applied LMS in such a way that was previously introduced by 

Sakamoto and Iba (2001) in combination with GP. 

Consider the expression approximation in the following form:  

 
y ,… ,   a F x i , … , x i  

 

( 5.4)

Where  , … ,  is the basis function, , … , are the independent variables,             

  , … ,   is the dependent variable, and M is the number of the basic functions.  

Let a be the coefficient vector and   as follows:   

 
, … ,  

 

( 5.5)

The purpose of the local search is to minimize the function in Equation ( 5.5) to acquire a. 

N is the number of data points. Let b be the vector y(1),…y(N) and A be a N*N matrix 

described as follows:  

 F1 x1 2 , … , xL 2 … FM x1 1 , … , xL 1

F1 x1 2 , … , xL 2       …            FM x1 2 , … , xL 2  
…                    …                           …

F1 x1 N , … xl N        …             FM x1 N , … xl N

 

 

 
( 5.6)

y(i) for the i-th equation of the system is calculated as follows: 

 
 

Δ
Δ

 ( 5.7)

Then the following equation should be satisfied to minimize Equation ( 5.5).  
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 .  

 

( 5.8)

a can be acquired by solving Equation ( 5.8).  

5.4 Experiments 

To confirm the effectiveness of the proposed algorithm, we have used a small network 

model with four sets of time series data with different initial values. The number of the 

network components (genes) was considered to be five.   

From those four experiments, here we present the results for one, which was the most 

complicated example. Figure  5-1 shows the gene network used in this experiment. 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-1 A sample of weighted Gene Regulatory Network 

A weighted network was used to represent gene networks (Weaver, C.T.Workman et al. 

1999). Each node is a gene and an arrow indicates a regulatory relation between two 

elements (gene). Negative values show an inhibition relationship and positive values 

show activation.   

0.6

Up_regulation: positive labels 

Down_regulation: negative labels 
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To account for the stochastic behaviour of GEP, each experiment was repeated for 20 

independent runs, and the results were averaged. Table  5-1 lists the parameter values 

used for these runs. 

Table  5-1 General settings of our algorithm 

Number of generations 500 
Population size 100 
Mutation rate 0.044 
One-point recombination rate 0.2 
Two-points recombination rate 0.2 
Gene recombination rate 0.1 
IS transition rate 0.1 
RIS transition rate 0.1 
Gene transposition rate 0.1 
Function set + - * /  
Terminal set 

Figure  5-2 shows the observed expression levels of the five components (genes) of the 

network and the predicted level produced by our method.  

 

Figure  5-2 Predicted versus actual gene expression levels for the best model obtained 

The effect of local search on the performance of the algorithm is presented in Figure  5-3. 

The local search was applied in two different ways: in the first way it was applied to the 

best individual of the generation and in the second way it was applied to the whole 

population. The first approach rarely improved the performance, but the second approach 
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significantly improved the fitness of average individuals in the population, especially in 

the early stages of evolution. 

The reported result is based on the second approach to applying local search. It can be 

seen that on average the memetic system using both GEP and LMS achieved superior 

fitness levels than the system using GEP alone.  

 

Figure  5-3 Comparison of GEP performance with and without local search 

The local search (constant creation method) applied to the best individual of the 

generation can seldom improve them, however when it is applied to the whole population 

it can significantly improve the fitness of average individuals in the population, 

especially in the early stages of evolution. 

We also compared our algorithm with the conventional GP algorithm. For this purpose 

we used GPLAB (MATLAB toolbox for genetic programming) with default parameter 

values. The result is presented in  

Figure  5-4 which shows that the proposed method had a faster convergence rate by an 

index of 100 compared to the conventional GP.  
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Figure  5-4 Performance comparison of MGEP against GP (logarithmic scale) 

5.5 Effect of Noisy Data 

We introduced artificial noise to the data to test the robustness of our method. Usually in 

microarray data the presence of missing values is a common problem causing many 

difficulties. Therefore we considered this type of problem here. We started with one 

missing variable per sample (2% noise) and then increased the amount of the missing 

variables up to 10% noise. The effect of such a problem is presented in Table  5-3. We 

present the correlation coefficient (r) that quantifies the similarity between predicted 

values and observed ones as the measure of robustness of the algorithm in the presence 

of missing values or noise. 

In the second experiment, we tested the effect of Gaussian noise on the data by 

perturbing a certain value x with a random number drawn from a Gaussian distribution 

N 0, σ  by x x σ N 0,1 . We used a Gaussian noise because it means that the 

noise is normally distributed across experiments. This simulates a random noise. 

Table  5-2 shows the result of applying noise on the gene expression values. 
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Table  5-2 Effect of noise with adding missing values 

Output R 
Output without noise 0.891 
Output with 2% noise  0.846 
Output with 10% noise 0.798 
Output with 20% noise 0.702 

Table  5-3 Effect of Gaussian noise 

Output R 
Output without noise 0.891 
Output with 2% noise  0.888 
Output with 10% noise 0.863 
Output with 20% noise 0.801 

The results in Table  5-2 and Table  5-3 show that the noise in the form of missing values 

affects the algorithm more than the Gaussian noise.  

The proposed system presents robust behaviour in the presence of noise, along with good 

performance. To compare the robustness of this algorithm in the presence of noise and 

also to make further investigation of the effect of noise type on our GEP system, we 

investigated the Gene Expression Programming (GEP) literature. It has been said that 

GEP is a robust method in the presence of noise, although there is not enough literature 

available on the effect of different types of noise on GEP systems. The only trace of this 

type of work is a study by Lopes and Weinert (2004). In this work, they used a simple 

form of random noise on each value and still obtained a good result. Therefore we 

decided to review the effect of the noise on Genetic Programming (GP) algorithms, as 

GEP can be considered as an extension of GP. 

Typically, the fitness function for regression problems is based on a sum-of-errors, 

involving the values of the dependent variable directly calculated from the candidate 

expression. Although this approach is extremely successful in many circumstances, its 

performance can decline considerably in the presence of noise. Therefore, in a study by 

Imada and Ross (2008) it was suggested to use a feature-based fitness function in which 

the fitness scores are determined by comparing the statistical features of the sequence of 

values rather than actual values themselves. This type of fitness functions can be 
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considered for future research on improving the proposed algorithm in the presence of 

noise. 

5.6 Analysis of the Results and Future Work 

Recently, evolutionary computation methods have been used for model-based inference 

of gene regulatory networks. In this work, we have investigated the suitability of Gene 

Expression Programming (GEP) for this problem. We have also proposed a memetic 

version of GEP which uses LSM as the local search procedure to improve the quality of 

solutions. The experimental results reported in this chapter, using synthetic gene 

expression data; show that the proposed Memetic GEP (MGEP) algorithm can find a 

suitable combination of constants and function structures.  

The proposed MGEP can be further examined with other local search methods to more 

effectively fine-tune parameters. It is also vital to increase the number of genes in the 

network to scale up this method as much as possible. In reality, the gene regulatory 

network usually has more than ten components. To the best of the author’s knowledge, 

existing evolutionary techniques can not deal with this number of components 

considering real gene expression values. Partitioning is a possible solution to scale up 

these methods. Partitioning methods which have been previously used with other 

evolutionary algorithms by Kimura et al. (2004) have improved their scalability. Also as 

it was mentioned earlier using the newly proposed simplified version of the differential 

equations system (Wang, Qian et al. 2010) can help to overcome the scalability problem. 

In order to study the effect of real noise on our algorithm, the noise in the real data needs 

to be mathematically modelled. In this way it would be possible to investigate the effect 

of real noise on our algorithm. The only part of the noise in our study which had a 

corresponding part in the nature was the missing values. Modelling of noise in the form 

of mutated values is subject to further investigation of the distribution of noise in real 

microarray data.  

In general, we made an improvement on the state-of-the-art function approximation 

techniques in particular for the system of differential equations. However, the scalability 
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remained an open problem. The scalability problem is a common problem previously 

reported in the related literature of modelling GRNs with differential equations.   

5.7 Summary 

In this chapter, we explained our first proposed approach. This approach modelled a 

Gene Regulatory Network as a set of differential equations and tried to solve these 

equations using Memetic Gene Expression Programming. The Memetic Gene Expression 

Programming which was proposed for the first time in this thesis uses LMS (Least Mean 

Square) method as a local search mechanism. The local search mechanism improved the 

quality of parameter estimation considerably and helped the algorithm to converge faster 

and to a better solution. The algorithm was tested on an artificial dataset and was 

reported to perform considerably better than the Genetic Programming technique or 

simple Gene Expression Programming. The effect of noise is also studied in this work. 

Despite achieving a higher performance compared with other techniques applied on 

differential equations, this approach still suffered from the lack of scalability in real-sized 

gene networks. The performance indicated that it will not be applicable for hundreds of 

genes and this is mainly due to using differential equations modelling which requires the 

approximation of many detailed parameters. 
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Chapter 6 

 Approach 2: Combined Evolutionary 
Algorithms 

“The scientist is not a person who gives the right 

answers; he’s one who asks the right questions”.  

 ~Claude Lévi-Strauss, Le Cru et le cuit, 1964 

6.1 Introduction 

The previous approach proved to be effective in improving the inference of Gene 

Regulatory Networks (GRN) modelled by a differential equations system; however, 

using that technique we cannot overcome scalability problems. Underlying the scalability 

problem is its modelling approach, which uses a system of differential equations. Using 

those equations we need to consider too many parameters and details which are 

computationally expensive. In reality, there is not much need for exact estimation of such 

parameters, as they are so variable, depending on the thermodynamic situations such as 

temperature and other environmental factors.  

That is why we considered a coarse-grained equation-free modelling in the second 

approach, to be able to find a network of real size having hundreds of genes.  There are 

several methods for such a modelling, including building a directed graph of 

dependencies. In such an approach we tried to build the network by finding edges and 

usually considering one edge at a time. Many studies have been done using this 

modelling such as Relevance network (Butte and Kohane 2000) and its extension CLR 

(Faith, Hayete et al. 2007), BioLayout Express (Theocharidis, Dongen et al. 2009) and 

ARACNE (Margolin, Nemenman et al. 2006).  
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Another important factor mentioned in the literature was using information from the 

domain knowledge whenever it is possible to improve the discovery process which 

helped us to limit the search space and discover real-sized networks. Using information 

from domain knowledge can be useful in any application, in particular for GRN 

discovery, as the data is noisy, the number of samples compared to the number of genes 

is so low and there is also a hidden temporal relationship between variables. The benefit 

of using domain knowledge has been demonstrated in the context of microarray analysis 

very well (Subramanian, Tamayo et al. 2005; Franke, Bakel et al. 2006).  

A line of research related to using information from domain knowledge was initiated by 

a famous study called Gene Set Enrichment Analysis (Mootha, Lindgren et al. 2003; 

Subramanian, Tamayo et al. 2005). In this work a combined group from Harvard and 

Cambridge suggested a different approach to the analysis of microarray data. Their 

method takes a different perspective on the problem. The method starts with some gene 

sets known to be involved in a biological function, such as cell death (apoptosis), and 

determines whether they can identify any difference between a normal versus disease 

group. Those gene sets which significantly differ between the two groups are chosen as 

the most informative gene subsets. In this way, they involve existing knowledge about 

biological gene pathways to obtain a result which is biologically meaningful. The 

information about gene sets usually comes from Gene Ontology. Gene Ontology is a 

classification effort to organize information related to genes hierarchically in the form of 

gene sets, which are related to a specific function or a part of a cell (Ashburner, Ball et 

al. 2000).  

The statistical method used in Gene Set Enrichment Analysis looks at the most coherent 

and modest changes in a group of genes instead of a dramatic change in individual genes. 

For example, a 20% increase in the expression level of a group of genes in the same 

pathway may be more important than a 20-fold increase in a single gene (Subramanian, 

Tamayo et al. 2005). Using this approach, their study detected a considerable number of 

genes in common between different studies related to diabetes that were previously not 

detected by earlier approaches.  
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This study has led to a new generation of tools for microarray analysis which uses 

biological knowledge from the beginning to find biologically meaningful changes in the 

data called functional gene set analysis (Al-Shahrour, Díaz-Uriarte et al. 2004; Al-

Shahrour, Díaz-Uriarte et al. 2005; Lee, Braynen et al. 2005; Jiang and Gentleman 2007). 

Some of these studies tried to add more value by adding more information from the 

domain knowledge such as protein interaction networks to define a group of genes which 

are functionally related. Another group of studies has aimed to develop a statistical 

function to measure the changes more accurately for small-sized datasets when the 

number of samples is less than ten such as roast function (Wu, Vaillant et al. 2010) 

developed in the limma package (Smyth 2005).   

Based on the above literature, we considered using similar ideas in the context of Gene 

Regulatory Network discovery. There are some previous studies which use the 

information about gene groups (modules) in the context of Gene Regulatory Network. 

There is a famous study called Module Network which uses transcriptional modules to 

partition the search space and uses Bayesian Network to find the structure of each 

module and the dependency of modules together (Segal, Shapira et al. 2003). In this way 

the algorithm was able to explore the search space which was not possible by the use of 

Bayesian Network on the whole search space, as Bayesian Network is not an applicable 

tool where a search space is too big. A limitation of Module Network is that it makes use 

of overlapping genes between modules to connect them. This implies we need overlaps 

for connections. The algorithm also has to identify one gene as the representative for 

each group to connect them. These assumptions decrease the similarity of the result with 

known networks.  

In networks with a large number of nodes, a useful approach to reconstruction is to 

partition them and recompose the parts. Partitioning a network into sub-networks is 

meaningful and useful if the resulting sub-networks or modules are biologically relevant 

and display characteristics that are retained after decomposition and recomposition. 

Partitioning into modules has shown to be useful; however, it is still in its infancy (Kepes 

2007). 
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Inspired by Gene Set Enrichment, we looked for a way to use gene set information to 

find the GRN more effectively. Based on the properties of the biological network and 

gene networks, which we will discuss in detail in Chapter 9, we know that the network is 

a modular network and is built from cliques. Those cliques are functional gene sets that 

cooperate to perform a function (Ravasz, Somera et al. 2002; Almaas, Vazquez et al. 

2007). The fact is, these modules do not stay the same under different conditions such as 

disease conditions and may undergo substantial changes. Therefore, we can use them to 

find which modules have the most changes. Our idea of using modules is similar to 

GSEA but unlike GSEA it enable us  to detect changes and find new modules whereas 

GSEA can only indicate the changes in the original gene sets and cannot point out the 

genes which are added or deleted.  

Based on the above facts we considered a design that starts with the gene sets and 

evolves them to fit to the microarray data, then uses these final gene sets to build the 

overall network. In doing that we needed a method to evolve the gene subsets and 

explore the possible answers. A combinatorial search process can globally search the 

answer space. We can also use a local search method to efficiently improve the possible 

candidates (gene sets). A suitable tool for exploring the search space globally can be any 

combinatorial search. We chose genetic algorithm as it is easier to apply in any given 

problem without any consideration or assumption about the data and the nature of the 

problem.  

Corne and Pridgeon (2004) have argued that genetic algorithms may be particularly well 

suited for reverse engineering of biological networks, which are themselves a product of 

an evolutionary process. Our familiarity with evolutionary techniques was an additional 

factor in choosing GA as a tool to implement such an idea. GA has previously been used 

in this context, especially to obtain a random Boolean network (Halinan 2008; Marbach, 

Mattiussi et al. 2009). We extended the conventional GA to be able to evolve a 

chromosome with a partial solution (gene sets) instead of a whole solution. Gene sets are 

basically the partial solutions that undergo the evolutionary process in order to be 
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refined. In the next stage these partial solutions were combined to build the final network 

(complete solution).  

Similarity of the solutions with the domain knowledge is an important aspect of any 

algorithm in this area. Therefore, we found a way to make our solutions compatible with 

the domain knowledge. Our solution for this was to use a case retrieval mechanism as a 

local search process to extract information from domain knowledge in order to upgrade 

our partial solutions. The combination of GAs with the local search methods is known as 

Memetic Algorithm (MA). In the past, local search methods such as hill climbing and 

Tabu search have been applied to the solutions to upgrade them (Hart, Krasnogor et al. 

2005). Here for the first time, we proposed using direct information from the domain 

knowledge as a case retrieval mechanism. The local search mechanism tried to make 

solutions similar to the domain knowledge as much as possible and find the shortcuts in 

the search space using the information known about the association of genes. An 

example of such information is protein interaction networks. Protein interaction networks 

give us a picture of how proteins which are in turn products of genes, affect each other. 

Due to the fact that there is a relationship between genes and protein products, protein 

interaction networks can give us a clue about genes’ relationships as well.   

6.2 Proposed Algorithm 

GRNs are represented as graphs. A conventional method to represent a graph involves 

the use of a matrix where nodes are represented as rows and as columns. Cells of value 1 

represent a connection; those of value 0 represent no connection. The matrix 

representation of a graph is not efficient for this modelling because GRNs are sparsely 

connected graphs. The analysis of the properties of biological networks and particularly 

GRNs shows us that these networks are not a complete network. They show the small 

world and scale-free properties. A scale-free graph is a graph in which, when the number 

of nodes increases, the number of edges does not increase exponentially like a complete 

graph. They have a few nodes with many connections and the rest of the nodes have one 

or two connections. For more information about the properties of GRNs see Section  9.2.  
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The fact that most of the nodes in a scale free graph have one or two connections and 

only a few nodes have many connections causes a matrix representation of such a graph 

to end up with a very large and sparse matrix. Such a large and sparse matrix adds to the 

computational overload. Furthermore, applying some operators such as mutation and 

crossover to add or remove an entire node or branch, or to merge two graphs, are 

difficult to define. Most studies related to modelling a graph represent them as a tree to 

make it simpler; however, this results in the loss of information. Also, there are many 

self-interacting elements (Prill, Iglesias et al. 2005; Alon 2007) which means there are 

many loops in GRNs. Considerable information will be lost if we model these networks 

as trees; as a result, the structure we chose was a graph.  

The above reasons led us to choose subnetworks as individual solutions. We evolve these 

solutions to find those solutions which match the data best and then merge these 

subnetworks to find the complete network. We also needed to prioritize those solutions 

which were already known in domain knowledge to be able to generate a plausible 

biological output. We can advance the computational process by using existing 

knowledge about the dependency of genes. This knowledge is either in the form of 

pathways, gene functional sets or gene interaction networks. Pathways or gene 

interaction networks are usually represented in the bioinformatics literature as a directed 

graph.  

The score for each subnetwork comes from two sources: one is the similarity of the 

subnetwork with the other biologically known graphs (or gene functional set) and the 

other score comes from how well they can explain the microarray data.  
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Figure  6-1 The General schematic of our scoring system for solutions in the second approach 

Given that protein interaction networks and gene interaction networks are already 

represented as graphs, we concluded that a convenient representation is a graph. Each 

gene is a node in the graph and genes are connected together by edges that reflect their 

dependencies. As mentioned earlier, for a computational method we chose to use a 

Memetic Algorithm (MA) which is a combined Genetic algorithm. This decision was 

made for two reasons. First because GAs are known to be particularly useful for 

parameter estimation in complex nonlinear systems such as modelling of biological 

pathways (Hallinan 2008). It is also a general tool which is easy to implement, regardless 

of the problem under study. The second reason is that the MA gives us the facility of 

searching the global search space plus local improvement of the chromosomes. This 

property of MAs is quite compatible with the local property of GRNs. MAs have 

previously been used for clustering gene expressions (Merz and Zell 2002; Speer, Merz 

et al. 2003).  

In this proposal, we used MA in a different way than in existing MAs. Instead of 

applying a local search method to individuals we used a case retrieval mechanism to 

refine and improve individuals according to domain knowledge. In other words, instead 

of using conventional local search methods such as hill climbing for improving 

individual solutions, we used a case retrieval mechanism to improve individuals and 
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make them similar to the domain knowledge. This improvement potentially has two 

benefits: firstly it helps to find the right answers quickly and secondly it makes the 

solutions more plausible. The case retrieval mechanism retrieves the most similar 

solutions from domain knowledge to the existing solutions found by the global search. 

The existing solutions then are replaced by the one found by the case retrieval 

mechanism. As such, we expect to find solutions which are more similar to real networks 

and thus more plausible. It also helps to find the solutions quicker especially in terms of 

finding the right structure of the graph which is hard and time- consuming by searching 

through the search space.     

The algorithm searches for any subnetwork in the search space, and then it calculates 

their first score which shows how well they match the microarray data. Then the 

algorithm looks at the meaning of that subnetwork in terms of functional gene sets or 

corresponding pathways to find the second score. If there is any similarity the 

subnetwork gets a higher score. The similarity score is calculated based on the number of 

common genes between a given solution and a subnetwork of genes or a subset of genes 

from domain knowledge if they share more than a prespecified number of genes. The 

procedure of the local search (evaluation of similarity with domain knowledge) was 

applied only to those good solutions with a higher first score.  Then we replaced the 

solution with the similar one from domain knowledge and we evaluated whether they 

score at least as well as the original one. If so, we substituted the new one. Otherwise, we 

left them at this stage. The procedure of local improvement can also be done by adding 

chains or changing existing chains in the given solution based on the biological network 

if it improves its ability in differentiating microarray samples.  

The approach which was described above is presented in the following steps. In  Chapter 

4, we provided an extensive background on evolutionary algorithms but here, we give the 

reader a quick reminder about genetic algorithm in order to understand the following 

steps. 

A solution in an evolutionary algorithm is represented as a chromosome. The extent to 

which a chromosome can solve the problem is evaluated with a fitness function so the 
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design of the fitness function is critical.  A bunch of chromosomes evolve in order to find 

the best ones. The MA procedure adds an extra step inside the GA which is the local 

search procedure. Usually only some of the best chromosomes undergo this process.   

Our memetic algorithm for GRN discovery:  

 Step 1: Generate initial population. 

 Initialize a population of individuals where each individual is a subnetwork. 

The initial population is generated by including all the genes in microarray 

data samples. The connections are generated randomly.  

 Step 2: Determine fitness of each individual. 

This involves evaluating each individual graph against microarray data to 

determine how good they are in explaining the data. The fitness function is a 

combination of different measures. The most important one is the measure of 

how the subnetwork can fit to microarray data. More details about the fitness 

function and combination operator will be discussed in the following sections. 

 Step 3: Global Search for generating a new population. 

 Explore the search space with the GA and its exploration and exploitation 

operators.   

o Apply crossover on selected sub-networks (see more details in the 

next section). 

o Apply mutation on selected sub-networks (see more details in the 

next section). 

o Fitness evaluation and selection for local search Evaluate the fitness 

of each individual and select some of them to go through the 

improvement process using local search.  

 

 



 Chapter 6. Approach 2: Combined Evolutionary Algorithms 

111 

 

 Step 4: Local search. 

We will improve the best individuals or sub-networks with the procedure of 

extracting the similar connections from the existing networks and pathways 

from the literature. We substitute those similar ones with the existing ones 

which are found by our search algorithm if the one from the literature is 

scored at least as good as the existing ones. Otherwise, if we cannot find any 

similar solution making an improvement, we use another form of 

improvement by adding or changing a chain to the existing subnetwork. The 

chains are extracted from existing known pathways or networks.   

 Step 5: Generate new population.  

We find the final score of each individual solution (repeat step 2) and choose 

the best one with a tournament selection process to generate a new generation. 

Steps 3 to 5 are repeated several times to converge to the point where no 

significant improvement can be made or when we pass a specific number of 

generations.  

 Post-processing step: Merging the sub-networks.  

After finishing the above phases we merge subgraphs together in order to 

build a graph which shows an overall picture. We can also map the subgraphs 

to corresponding pathways, as this way we can obtain more insight into the 

development of the condition under study. It is important to note that it is 

impossible to do this for all the subnetworks, as knowledge about pathways 

and gene functionality has not been completed yet.  
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We also tried different alternatives to this algorithm. One alternative was using a non 

random initialization. Instead of using random initialization we used pairs from known 

networks to initialize the solutions. The above algorithm is presented in  Figure  6-2 . 

 Figure  6-2 The steps of the proposed memetic algorithm 

.In the above, we described the general algorithm. In the following section we will 

explain the detailed design and assumptions that underpin the overall presented picture. 

We will start with describing how we determined the first score of solutions. This score 

was an indicator of similarity of solutions with the domain knowledge. Subsequently, we 
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will describe the second score for the solutions which is the fitness function. Finally, we 

will describe variation operators in global search and the mechanism for the local search 

process.  

6.3 Domain Knowledge for Scoring the Solutions  

We need some criteria to evaluate the similarity of our solutions with the solutions from 

the domain knowledge as it is important to produce a plausible result. This can also guide 

the search process to find the solutions more effectively. In order for us to find the 

properties and shape of the known GRN we did a comprehensive literature review, which 

the reader can find in Section  9.2 where we will review it and use it again in our third 

approach. Here we only review two properties that we used in this algorithm. Our first 

measure is an indicator of the shape of the solution and the second one recognizes 

difference in the total distance of the genes in the subnetwork compared with the 

corresponding biological network. The criteria that we proposed in this study are as 

follows: 

 Biological Networks are known to be organized through hubs. Hubs are those 

nodes which have a large number of connections and are known to be the 

most important nodes in the network (for more information read Section  9.2). 

Therefore, we should prefer to select those solutions (sub-networks) that have 

nodes organized through hubs. For example, in Figure  6-3 we preferred the 

architecture uppermost than the lower most. 
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Figure  6-3 Shows samples of desired (a) and undesired (b) subnetwork solutions 

 It is necessary to compare the proximity of nodes in a solution with their 

proximity in known biological networks. For this, we needed to define a 

measure of the distance between two nodes in a graph. For the fitness function 

to be used in this study we considered that two nodes are x units apart if there 

are x other nodes between them. Adjacent nodes are scored “1”. For example, 

consider AC in the upper part of Figure  6-4. The distance between nodes A 

and C is “0” because there are no connections between them and they are not 

adjacent.   

a) An example of a fit subnetwork 

b) An example of an unfit subnetwork 
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Figure  6-4 Sample of distance calculation  

Consider two nodes n1, n2 for which a typical solution can be as follows:  

∑ SDistance  Distance ,
 

Where: 

a. SDistance is the distance between nodes i and j in the solution 

b. Distance is the distance between nodes i and j in the domain 

knowledge  

c. N is the total number of nodes in the sub-network 

These two criteria can be used to find the similarity of our solutions to the similar 

subgraphs in the domain knowledge. We considered the first criteria in our 

penalty function and we used the second criteria as the local search. 

6.4 Fitness Function  

We previously mentioned that there are two measures for evaluating a good solution: one 

is the score which comes from evaluating the similarity of the solution to the domain 

knowledge and the other one is the fitness function which tells us how well a solution 
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can explain the microarray data. In this section we will describe our second score which 

indicates how well a solution matches microarray data. This score is used as the fitness 

function.   

Our fitness function measures how a set of features (genes) are dependent on each other 

with regards to the microarray data. Among the measurements of the independence 

between random variables, mutual information is singled out. It is sensitive to any 

dependencies which do not show up by covariance. Mutual information is “0” only if two 

variables are not dependent at all.  

Fitness function is a central part of a GA; therefore, we will describe the Mutual 

Information here by providing an example. The approach of applying Mutual 

Information to the subnetworks was adopted from the scoring protein network interaction 

introduced by Chuang et al. (2007). 

Expected Mutual Information:  

Here we provide an example of calculating Expected Mutual Information. In order for 

the reader to understand this we provide a simple example. In this example there are two 

class labels, “diseased” and “normal”. Given a particular gene set M, let a represent its 

vector of activity scores over the diseased sample and let c represent the corresponding 

vector of class labels. To calculate a, expression values ,  are normalized to z-

transformed scores ,  which for each gene i has a mean   0   and the standard 

deviation 1 over all samples J. The individual  ,   of each member gene in the gene 

set are averaged into a combined z-score, which is designated the activity  . Example 1 

illustrates the Expected Mutual Information (EMI).   

Example 1. 

Original activity: a = [-2   -1   1   2   -4   -2    2   4] where scores are gene expression 

levels for individuals.  

Discretized activity: ́= [-1.15   -1.15   1.15   1.15   -3.45   -1.15   1.15   3.45] where 

scores are z-transformed transformations of a. 
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Class Label: C= [1  1  1  1  2  2  2  2 ]   where scores are class labels  1= diseased and          

2= non-diseased. 

 

 

 

 

 

Figure  6-5 Mutual Information between activities and class labels 
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( 6.1)  

Equation ( 6.1) depicts the Expected Mutual Information as described by Chuang et al. 

(2007) between a and c.  

Example 2. 

A more general case can be considered when we need to calculate MI between a pair of 

genes. The following example shows the calculation of MI for a gene pair.  

Consider discretize profile for two genes A and B are: A=[1,1,0,1,-1] and B=[1,-1,0,1,-

1]. The probability for each combination to occur is as follows: 

 

 

 

 

 

 

 

C 

  x    

 -3.45 -1.15 1.15 3.45  

1 0 1/4 1/4 0 1/2 

2 1/8 1/8 1/8 1/8 1/2 

 1/8 3/8 3/8 1/8  
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Genes 

Probability 

P(1) P(0) P(-1) P(1)+P(0)+P(-1) 

A 3/5 1/5 1/5 (3+1+1)/5=1 

B 2/5 1/5 2/5 (2+1+2)/5=1 

Figure  6-6 Step 1 in calculation of Mutual Information between two genes- calculation of individual 
probabilities 

From the above table the Shanon’s etnropy for each gene can be calculated as follows:  
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( 6.2)  

Now, the third step is calculation of pairwise combination of states.  

P(A,B) Frequency of occurrence 

P(1,1) 2/5 

P(1,0) 0/5 

P(1,-1) 1/5 

.. .. 

Figure  6-7 Step 3 in calculation of Mutual Information between two genes- frequency of pairwise 
combination 

And then in the fourth step, we need to calculate the joint entropy , .  

, ∑ ,,
 P , = 1  *    1.923 

Finally Mutual information between expression profiles of two genes is calculated.  

, , 1.371 1.522 1.923 0.97 



 Chapter 6. Approach 2: Combined Evolutionary Algorithms 

119 

 

In addition to the Expected Mutual Information, we proposed a penalty function that 

takes into account the requirements that we discussed earlier in section  6.3.  

6.5 Penalty Function  

The Penalty function will be determined using the same formula for the topological 

measurement of protein interactions by Pei and Zhang (2005) which has resulted in the 

measure that was called the cluster coefficient. A clustering coefficient is defined as the 

edge density around a node’s neighbours. In a small-world protein interaction network, a 

high clustering coefficient property predicates that proteins are likely to form dense 

clusters by interactions. We chose to measure the significance of two proteins co-existing 

in a dense network as an indication of interaction reliability. In Equation ( 6.3), N(A) and 

N(B) means show the number of neighbours for node A and node B.  

 | |

| | | |
 

( 6.3)  

The penalty function is applied at the stage when chromosomes are selected to undergo 

the local search process.  

In general, we use the following three criteria in this algorithm to evaluate a score for 

each individual solution.  

 Fitness Function: Expected Mutual Information (or alternatively Chi-Square) 

for the estimation of the dependency of a set of genes considering our 

microarray data. This metric has been used in microarray studies by Chuang 

et al. (2007) to distinguish the microarray data from diseased and non-

diseased samples.  

 Local Search: Difference in the total distance of our solution with 

corresponding genes in the other gene regulatory networks or protein 

interaction networks. 

 Penalty Function: A penalty function can be considered for solutions having 

genes with fewer edges. 
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6.6 Combination Operators 

Parameters for the settings of the global search component of the MA were drawn from a 

study by Speer (2003) and the GA literature. An initial population of 70 chromosomes 

over 200 generations with a probability of crossover 0.5, and probability of mutation 

0.07 was initially considered. Further tests and tuning were done to determine the 

parameters according to our algorithm. Crossover and mutation operators for individuals 

which are represented as a graph cannot easily be drawn from other studies, because few 

studies have explored the graph representation. Inspired by the combination operators of 

the study by Mabu et al. (2007) which also used the graph representation of 

chromosomes we designed the following combination operators. However, in that work a 

graph represents a complete solution.  

Mutation: For mutation, we defined an operator to change the connections randomly 

based on the mutation rate. In order for the reader to understand this operation, 

Figure  6-8 is provided. We chose an individual based on the mutation probability, and 

then we chose one of its branches by another probability. We then removed it and 

randomly connected that node to the other node to create another branch. The rate and 

probability of the mutation operator is arbitrary and is usually chosen by experience.  

 

Figure  6-8 Mutation operator 

 

Mutation 

The selected branch becomes 

connected to another node randomly 

G1 
G1 

G2 G2 G3 G3 

Each branch is selected with the probability 

of Pm (Probability of mutation) 
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Crossover:  

Crossover takes two individual solutions (parents) and generates two offspring. The 

procedure of crossover is as follows: 

1. We selected one individual using tournament selection then selected the 

second individual based on the tournament selection biased towards the 

fittest individual that had genes in common with the first one. In this way, 

we biased our selection towards finding individuals with common genes for 

use as parents.  

2. We preferred to find the common nodes (biological gene) to perform 

crossover operations on them.  Therefore, we chose a set of nodes which 

were common between individuals. Then we selected one node based on 

user configured probability of Pc (Probability of Crossover). If two 

individuals did not have any node in common, a node i was selected as a 

crossover node with the probability of Pc. Two parents exchanged the edges 

of the selected node for crossover. Figure  6-9 illustrates the crossover 

operation.  
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Figure  6-9 Crossover operator 

Selection: The selection process which we used in our algorithm was tournament 

selection. Figure  6-10 represents the code for the tournament selection which we 

implemented. Each time, based on the tournament pressure a portion of population was 

selected randomly and the best of them were added to the next generation. This 

procedure continued until we finished with a population as large as the previous one. 

 

Crossover 

Parent 2Parent 1

Offspring 1 Offspring 2 

G1 

G2 G3 

G1 

G2 G3 

G1 G1 

G2 G2 
G3 

G3 

Each node is selected with the 
probability of Pc (crossover node) 
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Figure  6-10 Tournament selection code 

6.7 Local Search  

In memetic algorithms local search usually plays the role of local improvement and is 

implemented with a heuristic or exact method. We had a GA which searched the global 

search space in order to find the possible subsets of genes which were able to 

differentiate between two groups of samples in microarray data. On the other hand we 

needed solutions that match with the existing domain knowledge. Related domain 

knowledge can be in the form of GRNs, pathways, Gene Ontology sets and protein 

network interactions (for the definition of these terms see the glossary). All of these 

different sources can give us a clue about any association between genes. It has been 

demonstrated that using integrated information sources will improve the GRN discovery 

process (Zhu, Zhang et al. 2008).  

This implies that we will improve the process if we can improve the subnetworks which 

we found by our global search process. We did this by making the solutions similar to the 

corresponding subnetworks in the domain knowledge. We implemented this idea as 

follows: we performed a global search to find the possible solutions according to 

microarray data but at the same time we wanted to have solutions compatible with 

biological knowledge. Therefore, we improved the solutions by a local search process. 

def  tournamentSelection(self):  

       nextGeneration = Genetics() \\ Initialize population of solutions 

       for chromo in self.curGen: \\For each chromosome in population  

             chromo.fitnessCalculation() \\Calculate Fitness function 

         \\ do this operation until we reach to the same size population again 

       while len(nextGeneration) < POPULATION:  

              \\take a random sample from the population to generate the new generation 

             tournament = random.sample (self.curGen,TOURNAMENT_P)      

                  tournament.sort (reverse=True)  \\sort the sample pool 

               \\copy chromosomes from the sample pool to make a new generation 

             nextGeneration.append (copy.deepcopy(tournament[0])) 

return  nextGeneration 
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The local search process in previous MAs was usually a neighbourhood search which 

improved the individual solutions. Here we defined a different local search process. Our 

local search process looked at the information from the domain knowledge in order to 

change and improve our solutions by making them similar to the domain knowledge. We 

called this part imitation from culture.   

The above local search was implemented in two ways. In the first way, given a 

subnetwork, we looked for the similar subnetworks in domain knowledge. If a 

subnetwork was found, then we substituted the new network; otherwise, if an exact 

match was not found, chains from the best matched subnetwork were added to or 

removed from the existing subnetwork.  

6.7.1 Balance between Genetic and Local Search 

An issue that needs to be considered in the design of a memetic algorithm is how to 

establish the right switching mechanism between local search and genetic search. Ideally, 

operators that belong to these groups should work together in cooperation instead of 

against each other (Burke and Landa-Silva 2004). Burke and Landa-Silva also mentioned 

that for making a right balance between genetic and local search, three questions need to 

be addressed: 

 What is the right balance between the local search and genetic search operators? 

 Which solutions undergo the local search?  

 What is the best balance between the local search and the global search in terms 

of computing time? 

The following answers to the above questions were extracted from (Krasnogor & Smith, 

2005). It was shown that even within a single problem class (in that case Travelling 

Salesman Problem) the choice of a single LS operator which gives the best results when 

incorporated in an MA is entirely instance specific. Furthermore, the studies of the 

dynamic behaviour of various algorithms showed that in fact the choice of the local 

search operator yielded the biggest improvements and was also time-dependent. 
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Therefore we needed to find the balance between local and global searches at run time by 

tuning the algorithm as it depends on the distribution of individuals in the population (El-

Mihoub, Hopgood et al. 2006). The answer for the second question is to choose only the 

best individuals (probably only 20%) to apply a local search to them. Of course, these are 

only the starting points and these parameters have to be tuned in practice by testing 

different values in each run of the algorithm. The best balance between GA and local 

search can only be achieved at runtime, via an experimental process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6-11 Our local search algorithm 

6.8 Data and Tools 

Data: A computational technique for GRN inference can be tested by measuring its 

performance on real test beds (known networks) or on synthetic data. It is obvious that 

def improve(self, percent): 
      global knownPairs 
      replaceNum = int(self.size() * percent) 
      self.genes.sort(reverse = True) 
      self.genes = self.genes[0:-replaceNum] 
      availablePairs = [] 
      for pair1 in knownPairs: 
           add =True 
           for pair2 in self.genes: 
                 if pair1.genepair==pair2.genepair: 
                    add = False 
                    break 
                if add: 
                    availablePairs.append(pair1) 
      if (replaceNum>len(availablePairs): 
           temp1=replaceNum%len(availablePairs) 
           temp2=len(availablePairs)/2  
           self.genes.extend(random.sample(availablePairs, temp2)) 
           self.genes.extend(random.sample(availablePairs, temp2)) 
           self.genes.extend(random.sample(availablePairs, temp1)) 
      else: 
                
          self.genes.extend(random.sample(availablePairs,replaceNum)) 
      random.shuffle(self.genes) 
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having a real test bed is a better way of measuring a performance of algorithms but for so 

many reasons as mentioned earlier in  Chapter 3 (Experimental Setup), this is not 

applicable yet. Therefore, for this study we used simulated data which was produced 

using a gene regulatory network simulator called SynTReN. The first dataset described in 

the experimental chapter was used to test this algorithm. The parameters and settings to 

generate the first dataset were described in Section  3.6.     

Tools: In this study we used SynTReN to generate the datasets and we used Cytoscape to 

visualize the network and also to retrieve the related information for subnetworks and 

genes by using its several integrated tools. 

Another important tool that we used for the retrieval of similar cases in CBR module was  

BABELOMICS (Al-Shahrour, Minguez et al. 2006). BABELOMICS is a suitable tool 

for this purpose as it uses several different molecular biology resources to extract 

information including Go, KEGG pathways and Gene expression in tissues. 

A Cytoscape  plug-in, ActiveModules, which can find a subnetwork for each condition 

can also be used (Shannon, Markiel et al. 2003). This tool was previously used in a 

network enrichment analysis in the study by Chuang et al. (2007).  

6.9 Results of the Proposed Memetic Algorithm  

In this experiment, we tried different sizes for chromosomes, different generations, 

different crossover rates, and different mutation rates. The best results were achieved 

with the largest chromosome size and only 30 generations. The algorithm converged 

after 27 generations and we could not find any solution for the early convergence 

problem, despite trying different mutation and crossover rates.  

Table  6-1 Result of our Memetic Algorithm approach 

Number of 
Generations 

Chromosome 
Size 

True 
Positives  

False Positives Precision Recall F-measure 

30 30 12  544 0.0216 0.041 0.0282 

30 50 25 940 0.026 0.085 0.0398 

30 70 34 1329 0.025 0.116 0.041 
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As shown in Table  6-1, as the chromosome size increases, the number of true positives 

increases therefore the performance increases. We could not try a chromosome with the 

size larger than 70 genes (genes here are evolutionary units not biological genes) because 

of a memory overflow problem. However, it was obvious from the result that we would 

not achieve a good performance anyway, as the number of false positives grows as well 

as the number of true positives. Despite the F-measure being improved by increasing the 

size of chromosomes, the result was still far from the best reported performance in the 

literature with an F-measure 0.1 previously reported in a similar situation (Leemput, 

Bulcke et al. 2008). The above result was obtained by using only our GA and we did not 

add the local search. The reason behind not using the local search was that GA itself did 

not work well and suffered from early convergence. Local search usually causes faster 

convergence and by using it we only made the situation worse.   

This experiment proved that GA is not a suitable technique for this type of complicated 

search space. We also found that the design of GA to work on partial solutions is still in 

its infancy (Yang, Tang et al. 2008) based on which no strong algorithm can be 

established.  

6.10  Summary 

In this chapter, we proposed our second approach which used a type of evolutionary 

process to find the subnetworks and a different local search process to make the solutions 

similar to the domain knowledge. Our attempt at designing a combined evolutionary 

algorithm using information from domain knowledge showed us that GA works well 

when the search space is large and coding is simple. However in this application, we 

could not use the simple GA to find the GRN structure, as that required a huge 

chromosome which was hard to evolve in order to find the solution. That is why we tried 

to build the whole GRN by evolving its smallest elements (functional gene subnetworks). 

This also gave us a facility to incorporate the domain knowledge which is in the form of 

gene subsets and subnetworks. Our GA mechanism suffered from early convergence and 

therefore, we could not achieve a good result. We could not find a solution for the early 
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convergence problem and we concluded that GA is not practical in such a search space. 

Using partial chromosomes in GA has not been studied yet. This area is still in an early 

stage of development and it takes more time and study before such a mechanism can be 

applied to a real application.  

We realized from this experiment that the search space is too large and complex to be 

explored by a GA. The solution which we found to limit the search space was using more 

information from the domain knowledge to limit the search space from the outset. In the 

next chapter we will describe our third approach which used more heuristics from the 

domain knowledge from the outset in order to limit the search space. The third approach 

also questioned the usefulness of the dependency measure which we used here as a 

fitness function (MI) and arrived at a new association measure. 
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Chapter 7 

Approach 3: Heuristics Based on 
Regulatory Relationships 

“It is the theory which decides what we can observe” 

— Albert Einstein 

7.1 An Overview of Approach 3 

In the previous two chapters, we described two approaches toward the GRN discovery 

problem. We reviewed their weaknesses and limitations which gave us a basis to develop 

a new approach introduced in this chapter. In the previous chapter ( Chapter 6), we 

reviewed an approach which used a combined evolutionary algorithm for the GRN 

discovery problem. That approach considered some information related to the properties 

of GRNs to design a customized GA for solving the problem. We reported that the GA 

mechanism did not work well because the design of an evolutionary algorithm in such a 

way made it a complicated algorithm and prone to early convergence. We also did not 

have enough freedom to use as much information inside the evolutionary algorithm.  

In this chapter and the two following chapters, we will introduce our third approach 

which uses more information from domain knowledge directly. In doing that, we 

changed our technique as we found in the second approach; GA is not a suitable 

technique for this purpose. GA is usually effective when there is a huge search space 

with simple encoding. By using domain knowledge we ended with a complicated 

encoding that made it difficult for a GA to converge. Moreover, we do not really need 

GA as the search space is not that large if we use domain knowledge from the outset to 

limit the search space.  
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That is why in the third approach, we considered more information from the domain 

knowledge to solve the problem as our previous attempts had demonstrated that we 

needed to use more domain knowledge. There is also much evidence that confirms using 

more information from domain knowledge will improve the process considerably (Zhu, 

Zhang et al. 2008).  

The main research question of this thesis was “How can reliance on microarray data 

and heuristics be reconciled to improve GRN discovery?” In this approach, we answered 

this question by using the maximum amount of heuristics in several ways and comparing 

the results with methods that do not use such information. The third approach followed 

two strands. In the first strand, we used the definitions of regulatory relationships in 

order to design an association function for measuring pairwise dependencies between 

genes more accurately and plausibly. The proposed association function is called a 2D 

Visualized Co-regulation Function and has great visualization ability. In the second 

strand, we used the structural properties of the known GRNs to design an effective 

algorithm for GRN discovery.  

In this chapter we will explain the theory behind our co-regulation function. First in 

section  7.2 we will review some of the well-known association measures and in 

section  7.3 discuss the limitations of each of them. In section  7.4, we will then review the 

desirable properties for an association measure for measuring gene-gene relationships. 

These two sections answer the question of “How to explain observed gene expression 

data in terms of co-regulation rather than correlation?” Following on in section  7.5, we 

will propose our new association measure to answer the question of “How can we 

measure the association between two genes more precisely compared with the existing 

functions?” 

In  Chapter 8, we will present the experiments related to our proposed co-regulation 

function.  Chapter 9 will review the second strand of the third approach which employed 

the structural properties of the known GRN to design an effective algorithm. A 

comprehensive literature review and analysis was carried out to specify the gene 

regulatory network properties. We identified some heuristics based on this analysis and 
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used them in order to find the right structure of the target GRN more effectively. The 

question that we will answer in that chapter will be “How can we use the properties of 

known gene regulatory network (such as structural properties) in order to design a more 

effective discovery algorithm?” 

7.2 Association Measures  

Association measures are mathematical formulas which interpret co-occurrence 

frequency data. For the construction of gene regulatory networks in the form of 

correlation networks the pairwise associations between genes has to be measured.  

Such a measure specifies the strength of relationship between two variables. There are 

two types of association measures: similarity measures and dissimilarity measures.  

Similarity measures reflect the similarity between variables and dissimilarity measures 

reflect the dissimilarity of variables. A direct relationship between similarity and 

dissimilarity may occur but it cannot be assumed that it is always relevant.  

Goodman and Kruskal (1954) support the idea that the measure of association used by an 

empirical investigator should not be blindly chosen because of tradition and convention 

only. Although these factors may properly be given some weight, but they should be 

constructed in a manner that has operational meaning within the context of the particular 

problem. They also stated that even when a single precise goal for the investigation 

cannot be specified it is still desirable and possible to choose a measure of association 

which has a contextual meaning. They emphasize the fact that the measure of association 

should have operationally meaningful interpretations that are relevant in the contexts of 

empirical investigations in which the measures are used.  

In the context of gene regulatory networks (GRN), measuring the associations between 

genes is the first and a crucial process in constructing the network. There are several 

tools and functions from statistics to information theory for measuring the associations 

between genes. In the GRN literature some of the most commonly used ones are 

correlation coefficient (Pearson’s correlation) and expected Mutual Information (MI).  
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There is a limited research exploring association measures for GRNs. Little is reported 

on different association measures, their comparative performance and justifications for 

the use of one over another. Therefore this chapter will review some of the common 

measures for GRN and will provide desirable characteristics for an association measure 

for the GRN discovery purpose. Finally, we will propose a new association measure that 

has most of those desirable characteristics.  

7.3 Comparing Association Measures for GRN Discovery  

Here, we will review some of the most common association measures for GRN 

discovery. The list of association measures for this purpose is long but we do not 

consider all of them here. Instead we will focus on the common ones that have been 

reported to perform better than the others. For a better understanding of how different 

association measures work, we will provide examples by using a toy dataset provided in 

Table  7-1. 

The toy dataset is produced by using a synthetic data generator called SynTReN. In this 

dataset there are six genes and 20 samples. We will explore how different association 

measures work on this dataset, what type of assumptions they follow and what are their 

limitations.  
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Table  7-1 A toy dataset 

G1 G2 G3 G4 G5 G6 

sample_0 0 0.1 0.1 0.1 0 0.9 

sample_1 0.1 0 0.3 0.4 0.3 1 

sample_2 0.2 0.3 0.4 0.6 0.1 0.9 

sample_3 0.2 0.4 0.5 0.3 0.5 0.8 

sample_4 0.2 0.3 0.5 0.6 0.4 0.7 

sample_5 0.2 0.7 0.6 0.8 0.2 0.1 

sample_6 0.3 0.1 0.6 1 0.2 0.7 

sample_7 0.3 0.1 0.7 0.2 0.3 0.8 

sample_8 0.4 0.3 0.7 0.6 0.6 1 

sample_9 0.4 0.4 0.7 0.8 0.1 0.7 

sample_10 0.4 0.3 0.8 0.8 0.4 0.9 

sample_11 0.4 0.6 0.8 0.7 0.3 0.5 

sample_12 0.5 0.6 0.8 0.9 0.1 0.7 

sample_13 0.5 0.4 0.8 0.9 0.2 0.6 

sample_14 0.6 0.2 0.9 0.5 0.8 0.5 

sample_15 0.6 1 0.9 0.7 0.7 0.3 

sample_16 0.7 0.5 0.9 0.8 0.6 0.9 

sample_17 0.7 0.8 0.9 0.9 0.3 0.9 

sample_18 0.8 0.9 1 0.9 0.4 0.9 

sample_19 0.9 0.8 1 0.9 0.9 0.7 

7.3.1 Correlation Coefficient  

The correlation coefficient belongs to the group of similarity measures and indicates the 

strength of a linear relationship between two variables. The most used correlation 

measure is Pearson’s correlation (PC). Pearson’s correlation describes the linear 

relationship between two variables. Its values range from -1 to 1. The formula in 

Equation ( 7.1) calculates Pearson’s correlation (Soranzo, Bianconi et al. 2007) between 

variable x and y.   

 ∑

1
 

( 7.1)  
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Where n is the number of observation, S  is the standard deviation of x, and S  is the 

standard deviation of y. For example, Pearson’s correlation between G1=x and G2=y is 

calculated as follows: 

0.42  0.44 

   
.

√ . .
  = 0.69 

Examples in GRN Literature: 

Pearson’s correlation is one of the first measures used in the literature of GRN for 

measuring pairwise dependencies. An early example of this appears in a work by Butte 

and Kohane (1999). They calculated pairwise Pearson’s correlation to build a relevance 

network. Pearson’s correlation also was used in (Zhu, Zhang et al. 2008) to build a 

weighted co-expression network. In a study by Zhou and et al. (2005) first order 

Pearson’s correlation (the correlation between each pair) and the second order correlation 

(the correlation between the first order items) were used to build the network.  

A more precise way of measuring the correlation between two variables is considering 

the partial correlation. A partial Pearson’s correlation measures the correlation between 

two genes conditioned on one or several other genes. The number of genes conditioning 

the correlation determines the order of the partial correlation. In a package called 

ParCorA by de la Fuente et al.(2004) the partial correlations of up to 3rd order were 

implemented. 

Assumptions, Strengths and Limitations:  

 Pearson’s correlation assumes that data is normally distributed and therefore 

is not skewed either negatively or positively. 

 Pearson’s correlation can be applied on real values as well as discrete values. 

 Pearson’s correlation looks for linear relationships and is not able to detect 

any relationship which does not appear in any of two diagonals when we draw 

a two dimensional histogram from two genes. It has poor visualization ability 

as it reduces the relationship to a single number.  
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7.3.2 Information Theory 

Inspired by the increasing power of computation and the successful application of 

information theory in telecommunication and physics, similarity measures from the 

information theory have recently been used for GRN inference (Margolin, Nemenman et 

al. 2006; Watkinson, Liang et al. 2009). Expected mutual information is a commonly 

used one. It is a general measure of the dependency between two variables. Mutual 

information measures how much more is known about one random value when we know 

the value of another. For example, by knowing that a person has a high blood pressure 

we can better predict the risk of a heart attack. In other words, mutual information 

measures the difference in predictability when considering two variables together versus 

considering them independently Mutual information can be computed in different ways, 

but often is based on Shannon’s entropy formula which is shown in ( 7.2): 

 
, ,  ( 7.2)  

,  is the amount of information between X and Y. H(X) is the entropy or the amount 

of uncertainty of variable X.  H (X|Y) is the conditional entropy of two random variables 

x and y and is a measure of the uncertainty in X once we know Y.  

Entropy can be considered as the measure of probability distribution and can be 

formulated as follows:  

In such a definition then mutual information is a measure of the difference between the 

joint probability and product of the individual probabilities. These two distributions are 

equivalent only when x and y are independent, and diverge as x and y become more 

dependent. Mutual information can be considered as the difference between two 

distributions and is equal to: 

 H X P X x log P X x
Ω

 ( 7.3)  



 Chapter 7. Approach 3: Heuristics Based on Regulatory Relationships 

136 

 

Where I is the mutual information between two variables X and Y. , is the joint 

probability distribution of x and y. P(x) and P(y) are the marginal probability distribution 

functions of x and y.   

This formula works only on discrete values not on real values; therefore, microarray data 

needs to be discretized. Here for simplicity our toy dataset has ten different values 

between 0 and 1 and we discretized it in 5 categories, as shown in Table  7-2 for genes G1 

and G2: 

Table  7-2 Example of Mutual Information calculation 

     G2   

G1 0.1-0.2 0.3-0.4 0.5-0.6 0.7-0.8 0.9-1 

 

Total 

0.1-0.2 2/20 3/20 0 1/20 0 6/20 

0.3-0.4 2/20 3/20 1/20 0 0 6/20 

0.5-0.6 2/20 1/20 1/20 0 1/20 5/20 

0.7-0.8 0 0 1/20 1/20 1/20 3/20 

0.9-1 0 0 0 1/20 0 1/20 

Total 6/20 7/20 3/20 3/20 2/20  

Examples in GRN Literature: 

Mutual information has been widely used in the literature for GRN discovery. Recent 

studies tend to use mutual information as the measure of dependency of two variables. 

Some of the best-performing packages developed for GRN discovery use mutual 

information. For example, the famous study called ARACNE (Margolin, Nemenman et 

al. 2006) used mutual information along with Data Processing Inequality (DPI) and 
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reported good performance. DPI is a method to distinguish between direct and indirect 

relationships. In each triplet of fully connected nodes in the network obtained after 

applying mutual information, the edges with the lowest mutual information are removed 

as these edges are indicators of indirect relationships. Another example of using mutual 

information is CLR which uses mutual information along with background correction to 

eliminate indirect influence (Chuang, Lee et al. 2007) and another recent example is 

(Watkinson, Liang et al. 2009). 

Assumptions, Strengths and limitations:  

 Mutual information does not assume a linear relationship between any given pair 

of genes (or any parametric relationship, for that matter). Therefore, it is more 

general than Pearson’s correlation as it tells us about differences not only in the 

mean but also in variance of expressions of two genes. 

 It does not require a normal distribution.  

 MI scales well to genome-wide regulatory networks, where the functional forms 

of regulatory interactions are unknown, complex, or where there is insufficient 

data to learn more intricate models (Madar, Greenfield et al. 2010).  

 MI based methods provide limited insight into the dynamic behaviour of the 

system, and hence have limited use in predicting new observations—a key 

property for estimating a model’s relevance when the ground truth is unknown. 

 MI does not work particularly well when two variables are low together at the 

same time. Also, there are some other conditions where MI fails to detect the 

pattern, such as the case presented in Figure  7-1.   

 Like Pearson’s correlation MI has limited potential for the visualization of gene 

relationships. 

Figure  7-1 presents an example where MI fails to detect a pattern as the MI score is 

0.34. This is lower than the 0.5 threshold in the scale of 0 to 1. As mentioned, MI 

also does not work as effectively when a pattern exists in the Low-Low area because 

the information gain reduces. 
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         Mutual information =0.34  

Figure  7-1 Examples where MI fails to detect a pattern  

7.4 Desirable Association Measure for Gene 

Co-expression 

We reviewed two widely used association measures in the past sections. We described 

pros and cons of each measure. Based on this review so far none of the association 

measures look exactly for the regulatory relationships that we are going to detect in GRN 

discovery. There is a lack of association measures based on the definitions of regulatory 

relationships. Measures reviewed so far detect general dependencies (MI) or a special 

kind of dependencies such as the linear dependency (PC).  

The first question here is “What is the nature of the regulatory relationships that we are 

going to discover?” We need a function to measure the regulatory relationship 

specifically. Another important characteristic for an association function is having 

plausible results. Visualization can help the expert to get a sense of what is the exact 

pattern of the relationship between two genes. Producing a number to explain a 

relationship is not informative enough. For example, MI is able to produce only a 

positive number which does not tell anything about the nature of the relationship 

(whether it is activation or suppression). 

G2 

G1 



 Chapter 7. Approach 3: Heuristics Based on Regulatory Relationships 

139 

 

The function also needs to have the ability to scale up and it is important to be simple to 

implement. The following is a summary of characteristics that we expect an association 

function to exhibit:  

 Allow for visualization 

Visualization is a key concept of understanding and analysing the expression 

data. It makes the result meaningful and plausible and gives biological insight 

(Gehlenborg, O'Donoghue et al. 2010) .  

 No data assumptions 

The nature of data is so complicated and full of variations therefore, the method 

should not consider any particular distribution or assumption.  

 Accurate 

Accuracy of current methods on this application is low and unsatisfactory 

(Marbach, Mattiussi et al. 2009). Therefore, it is important to elevate the 

performance.  

 Easy to implement. 

This is a relatively minor consideration but still makes some difference in 

practice.  

 Scale up 

It is important for a measure of association to scale up, especially in reality, 

where the size of networks is large; therefore, this is an important characteristic. 

For example, when we apply an association measure on a protein interaction 

network the size of the network is huge. Thus a tool such as Bayesian Networks 

cannot be applied.  

7.5 Co-regulation Measure Based on Heuristics 

(Visualized Co-regulation Function) 

Considering the above characteristics list, we designed our co-regulation function to 

satisfy those requirements. We defined a co-regulation function which works based on 
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the definition of the main regulatory relationships. The function also supports the 

visualization of the gene relationships. The visualization ability of the function gives an 

expert the opportunity to see clearly the overall behaviour of any gene pairs across the 

samples without any assumptions about the data. 

In general there are three major regulatory relationships: up regulation, down regulation 

and dual interaction. Up regulation is where a product of one gene causes the other gene 

to express highly. This definition does not tell us anything about when the amount of the 

first gene is low what would be the behaviour of the second gene. The second gene could 

be low or high as a result of the influence of other genes. Therefore, the only conclusion 

about this type of the relationship, is that most of the time when the first gene is high, the 

second gene is high as well.  

Down regulation is where a product of a gene causes another gene to be suppressed. 

Again, this definition does not tell us anything about when the amount of the first gene is 

low what would be the behaviour of the second gene. The second gene could be high or 

as a result of a third gene could be still low. Therefore, the only conclusion about this 

type of relationship is that most of the time when the first gene is high, the second gene is 

low.  

Dual interaction is the situation where sometimes a gene causes another gene to be high 

and sometimes low. We consider another type of common regulatory mechanism here, 

feedback loops which will be mentioned as a common motif in gene regulatory network 

in section  9.2. We consider a thermostat like operation. When one gene is high, another 

one is low and vice versa. 

To summarize these regulatory relationships in terms of how we would expect to see the 

pattern in our data we provide Table  7-3 . The information provided in this table is based 

on RegulonDB and EcoCyc (Sun, Tuncay et al. 2007; Gama-Castro, Jimenez-Jacinto et 

al. 2008; Keseler, Bonavides-Martinez et al. 2009). 
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Table  7-3 Regulatory relationship and related patterns 

Type of relationship Pattern Acronym Percentage 

Up regulation High-High ac 50%-60%of interaction 

Down regulation High-Low re 30%-40%  of interactions 

Dual Interaction High-Low & Low-High du 5% of interactions 

Having these patterns in mind, we designed a function to identify these patterns based on 

a two dimensional grid. We aimed to consider the expression values which frequently 

occurred in the upper or lower bounds of each gene pair in the same sample together. For 

this purpose we considered the first quartile and the third quartile of the values. A 

percentile is the value of a variable below which a certain percent of observations fall. 

The 25 percentile, known as the first quartile and is the value below which one quarter of 

the data is located. The 75 percentile, known as the third quartile, is the value that 75% 

of the numbers are below. In this way, we considered the upper and lower values that 

influence the relationships. In addition, by using such measures (quartiles) our function 

became less sensitive to the extreme values. The reason for that is for calculating 

quartiles we only rank values and choose top 25 percent or bottom 25 percent; therefore, 

we do not rely on the actual values and the shape of the distribution as such (Boslough 

and Watters 2008). 

First we define a two dimensional grid. The two dimensional grid is a grid which has the 

discretized value of the first gene on the vertical axis and the second gene on the 

horizontal axis. The content of each cell inside the grid shows us the number of times 

that the first gene and the second gene in the same sample (record) have the expression 

values in the range of the cell boundaries. Figure  7-2 shows a typical two dimensional 

grid for G1 and G2.  
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     G2   

G1 0.1-0.2 0.3-0.4 0.5-0.6 0.7-0.8 0.9-1 

0.1-0.2 2 3 0 1 0 

0.3-0.4 2 3 1 0 0 

0.5-0.6 1 1 1 0 1 

0.7-0.8 0 0 1 1 1 

0.9-1 0 0 0 1 0 

Figure  7-2 A two dimensional grid of G1 and G2 

In Figure  7-2, the gray boundaries are discretized values usually between 0 and 1. 

However, the lower and upper boundaries are not necessarily 0 and 1 but depend on the 

maximum and minimum values of the gene. In the above examples, for simplicity, we 

provide an example where both genes have a similar range but in reality, for example, 

one gene might have a minimum of 0.3 and a maximum of 0.8 and the other might have 

a minimum of 0.2 and a maximum of 0.7. In such cases the boundaries for each gene 

starts with the minimum value of that gene. The cells inside the grid show us the number 

of samples that G1 is in that specific range and G2 is in another range. For example the 

first cell on the top left is 2 which mean two samples exist where G1 is between 0.1-0.2 

and G2 is between 0.1-0.2 as well. The discretization assigns values to different bins and 

then we calculate the frequency of each bin which helps in visually depicting the 

relationship. 

Now, with this two dimensional bin we can count the frequency of two genes occurring 

in the particular range. For example, we can count how many times when the first gene is 

more than the third quartile (the 75 percentile); the second gene is less than the first 

quartile (25 percentile). In other words, when the first one is high and the second one is 

low. We consider 75 percentile and 25 percentile as the cut boundary for being high and 

being low. We design the function in this way to be able to consider the definition of 

three major regulatory relationships and also for visualization of the relationship. 

Figure  7-3 represents an example of this two dimensional grid and the related 

calculation.  
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High Threshold=75 Quartile 

Low Threshold=25 Quartile 

 

H   

          

   

 

 

 

 

 

Figure  7-3 An example of 2D grid and calculation of the co-regulation function 

The result of the analysis shows that there is a significant pattern of High-Low and 

therefore we can label this relationship as inhibitory or “re”. The threshold to choose how 

many numbers are significant can be calculated based on the distribution of the data, but 

in general with testing many datasets having different gene distributions a threshold of 20 

works well across the range of datasets.   

Examples in GRN Literature: 

The 2D Visualized Co-regulation function as proposed is a novel technique but there are 

some examples in the literature which have mapped a relationship between co-regulation 

and correlation in different ways (Allocco, Kohane et al. 2004). There is also a study 

which takes into account the state of transcription factor genes in the form of activated or 

inactivated, high or low inside a Bayesian Network approach (Noto and Craven 2005). 

0 1 0 0 0 0 0 0 0 0 

1 3 3 2 2 3 0 0 0 0 

0 1 1 3 4 3 0 0 0 0 

0 0 2 0 1 3 3 1 2 3 

0 0 0 1 1 1 1 1 2 1 

0 0 0 0 0 0 0 1 1 2 

0 0 0 0 1 0 0 1 2 1 

0 0 0 0 0 2 2 1 0 1 

2 4 1 0 0 1 1 1 0 0 

4 13 5 2 0 0 0 0 1 2 

Gene 2 

LH 
Gene 1  

    HH 

 

LL 

 

HL 

 

High-High=9/100 

High-Low=31/100 

Low-High=0/100 

Low-Low=16/100 



 Chapter 7. Approach 3: Heuristics Based on Regulatory Relationships 

144 

 

The reader should note that our proposed grid used in our co-regulation function is 

different from other grids used in this area, such as adjacency matrices. An adjacency 

matrix is a grid which has all the genes in each dimension and covariance correlation of 

each two genes as the content of each cell. The content of a cell is “1” if the distance is 

more than a threshold and “0” otherwise. In an adjacency matrix, the grid represents the 

relationship between all the genes, while in our case the grid just presents the relationship 

between two genes. In addition, the content of each cell is different in our grid, where 

each cell shows the frequency of having expression values of two genes on the same 

percentile range at the same time. Thus our grid has a different purpose and different 

contents and is proposed for the first time in this study.  

Assumptions, Strengths and Limitations:  

1. This function does not assume anything about the distribution of the data.  

2. The function has a good visualization ability which gives experts the chance to 

see clearly the overall relationship between pairs and any existing patterns of 

relationship. The visualization makes the result plausible for the experts.  

3. It has the ability to distinguish between different types of associations compatible 

with the definition of regulatory relationships. 

4. Despite detecting the type of regulatory relationship still like Pearson or MI 

cannot detect the causality of the relationship. For example in up-regulation 

where we see a pattern of High-High, we can’t say if gene A up-regulates gene B 

or the other way around. 

7.6 Discussion 

In the previous sections, we reviewed common association measures for gene regulatory 

network discovery, Pearson’s correlation and Mutual Information. We reviewed the 

assumptions and limitations of each and arrived at the conclusion that there is no link 

between these similarity metrics and regulatory relationships such as up regulation and 

down regulation and dual interactions. This link needs to be defined in order to detect the 
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correct association. Here, we provide examples where other association measures fail to 

detect correct regulatory relationships.  

Any relationship with the High-Low and Low-High patterns are detected by Pearson’s 

correlation as a negative correlation and therefore, would be labelled as down regulation. 

However, Low-High is not a down regulation and only the High-Low pattern can be 

considered as a down regulation.  

Mutual Information has an output value in the range of 0 to 1 and any number near to 1 is 

considered as an association and near to 0 as a non-association. This does not tell much 

about the type of the regulatory relationship. In other words, if the pattern is in the High-

High, Low-High or High-Low the result is similar. Even if the pattern is in the middle 

like medium-medium still is considered the same. Therefore, MI does not tell us much 

about the type of the association. It indicates the existence of a relationship between a 

pair of genes, but does not specify the nature of that relationship.  

We provided a list of desirable features for an association measure for GRN discovery 

and based on that we proposed an association measure to cover those features. We 

showed that our function is able to identify regulatory relationships that are impossible to 

detect otherwise. We also, showed the visualization ability of our function which 

provides a sense of the data for molecular biologists. Something important that we have 

to note is that the correlation or association between two variables does not necessarily 

mean causation. For obtaining such a relationship we need temporal dependency data 

(Boslough and Watters 2008). 

In the next section, we will discuss a post-processing procedure which we designed to 

prune the result of our co-regulation function. Our post-processing procedure is a 

complementary process for our co-regulation function and improves its performance 

further. The post-processing procedure was also designed based on the heuristic 

information.   
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7.7 Post-Processing for False Positives  

Usually the association measures detect some real answers and some false answers. Their 

performance not only depends on the high number of true detections but also on the 

small number of wrong detections. The correctly detected answers are known as true 

positives and the falsely detected ones are known as false positives. Table  7-4 explains 

the concepts of true positives, false positives, false negatives and true negatives. True 

positives are the number of pairs that we identified as the answer and they actually exist 

in the goal network. False positives are the records that we identified as the answer but 

they are not the answer, as they are not in the goal network. False negative means the 

number of records that we should detect, but we did not and true negatives are the pairs 

that are neither in the goal network nor in our experiments. True negatives indicate the 

number of pairs in the possible search space which are not our answer.  

Table  7-4 Performance indicators of our experiments 

        

              Found 

     

       Not Found 

 

            Found 
True Positive False Positive 

 

      NotFound 
False Negative True Negative 

One of the biggest challenges for any association measure or any model aiming to 

discover dependent genes is the high number of false positives. The known regulatory 

associations can be used as positive training examples but obtaining negative examples is 

not straightforward, because definite knowledge that a given pair of genes do not interact 

is typically not available (Cerulo, Elkan et al. 2010). The number of false positive cases 

is very high using any method compared to true positives which result in a drop of 

performance considerably. Therefore, we tried to decrease the number of false positives 

by applying post-processing procedures. In this thesis, we applied two post-processing 

procedures.  

Goal 

Result 
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The first one used heuristics information and the second one used a measure of 

information theory called Data Processing Inequality (DPI) (Cover and Thomas 1991). 

Based on the literature, indirect relationships happen where there is a chain between two 

genes and it usually result in a weaker relationship. The longer the chain is the weaker 

the interaction is. The direct relationship presents a strong gradual change (Akitaya, Seno 

et al. 2007).  

DPI assumes that the false positives are the effect of indirect relationships; therefore are 

weaker connections compared to the direct ones. In a loop of connections between three 

genes DPI considers the weakest link as an indirect effect of other relationships and 

removes it if is considerably less than the other two. We applied DPI on the output of our 

co-regulation function to reduce the indirect relationships and improve the performance. 

More explanation about DPI will be provided in the next chapter where we will present 

the result of its related experiment. 

We also proposed a heuristic post-processing. In our proposed co-regulation function, we 

looked only for the presence of a strong pattern of “ac” then “re” then “du” relationship 

which pass the threshold. Therefore, we did not consider information in other areas of the 

grid. Our proposed heuristic post-processing looks for the absence of a noticeable pattern 

of the opposite relationship in order to recognize a pair as true positive. Therefore any 

pair which presented a mild indication of the opposite relationship was considered as a 

false positive. It means when a pair is labelled as an “ac” then we look for the evidence 

of a “re” pattern and if it is labelled as “re” we look for the evidence of an “ac” pattern. 

Of course, the other pattern is not as strong as the pattern related to the current label and 

we need to set a different threshold for the reverse pattern. The reasoning behind this 

process is we know that strong gradual changes are indicator of a direct relationship 

(Akitaya, Seno et al. 2007); therefore, if we do not see a single strong pattern then it is 

more likely to be due to indirect influence. The heuristic post-processing was applied on 

the output of our co-regulation function in order to reduce the number of false positives 

and improve its performance further. Further explanation about our heuristic post-

processing will be provided in the next chapter. 
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7.8 Summary 

In this chapter, we reviewed common pairwise association measures for GRN discovery. 

We reviewed Pearson’s correlation and Expected Mutual Information. We created a toy 

data set and presented the calculation of those measures on this data set. We also 

reviewed their limitations and assumptions. We concluded that existing association 

measures do not consider the definition of regulatory relationships to discover the 

regulatory relationships patterns. We also claimed that there is a lack of visualization 

ability in the existing functions. We presented a list of desirable characteristics for an 

association measure and proposed a new association measure that considers most of 

them. We designed our own association measure based on the definition of activation, 

inhibition and dual effect; the three major regulatory relationships. Activation is defined 

as: when one gene is high that causes the second gene to be high too. Inhibition is 

defined as: when one gene is high that causes the second gene to be low. For dual effects, 

we consider when a gene is high the second one is low and vice versa. 

The new association measure is called 2D Visualized Co-regulation function and looks to 

find the regulatory relationships patterns in each gene pair. The co-regulation function 

has an innate ability to visualize the relationship as well. In the next chapter, we will 

provide experiments related to this function. We will also review the different versions of 

the function and will provide the result of the experiments for each version. 
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Chapter 8 

Approach 3: Experiments with 
Co-regulation Function 

“A scientific or technical study always consists of the 

following three steps: 

1. One decides the objective. 

2. One considers the method. 

3. One evaluates the method in relation to the objective.”  

— Gen'ichi Taguchi 

8.1 Introduction  

In the previous chapter we reviewed some of the most common pairwise association 

measures for GRN discovery. We studied characteristics of each measure to find out 

what sort of pattern they are able to detect.  We also raised the question of “What sort of 

relationship are we looking for?” in order to choose an appropriate measure which 

matches with the nature of the problem.  

We found that none of the existing measures are able to exactly detect the three major 

regulatory relationships between genes. We provided a list of desirable characteristics 

which are needed to measure gene pairwise association. Later on, we designed our own 

association measure based on those characteristics. Our function was designed based on 

the definition of activation, inhibition and dual effect; the three major regulatory 

relationships. Activation is when one gene is highly expressed that causes another gene 

to be highly expressed. Inhibition is when one gene is highly expressed that causes 

another gene not to be expressed or to be expressed at a low level. The dual effect is 

when a gene sometimes activates and sometimes inhibits another gene. 
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Our association measure, called 2D Visualized Co-regulation function, passed three 

different stages of design. In the first step, we discretized values of each gene and 

categorized them into bins individually and then we considered the first quartile and the 

third quartile of each gene as the low and high boundaries in order to count the number 

of High-High and High-Low combinations. This version was based on one dimensional 

bin and was the simplest one.  

In the second step, we calculated a two dimensional grid from two genes and then 

identified the regions in the grid which indicate up regulation, down regulation and dual 

regulation. In the third step, we tried to dynamically set the cut off threshold by 

identifying those regions dynamically. Moreover, we tried to show that our assumption 

about regulatory patterns in terms of machine learning was correct. We applied feature 

selection methods and also decision tree algorithm to our grid to find out the relationship 

between the class labels (ac, re, du) and boundaries of the densest area inside the grid. 

In addition to our Visualized Co-regulation function and its related experiments, we did 

two post-processing experiments to reduce the number of false positives. The first post-

processing procedure was based on heuristics and the second one was based on a 

measure from information theory called Data Processing Inequality (DPI). 

All of these experiments will be reported in this chapter. Data for these experiments was 

produced by SynTReN, the synthetic data generator and was discussed in section  3.6. 

SynTReN provides us the facility to produce different networks. There are two types of 

sampling strategy in SynTReN: cluster addition and neighbourhood addition. The cluster 

addition method generates networks that are closer to the source network than the 

network generated with the neighbourhood addition. In addition to using these two 

different sampling methods we used different amounts of noise; biological noise and 

experimental noise; as well as different level of complex interactions. The first dataset 

was produced by the default parameters of SynTReN which employs a neighbourhood 

addition method to generate the network with some biological noise and experimental 

noise. The second dataset used the cluster addition method. The second dataset is the 

easiest because it was generated using the cluster addition method. The cluster addition 
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method generates a network which is more similar to the domain network and easier to 

discover compare to the neighbourhood addition. More details about the benchmark 

datasets can be found in the experimental setup in Section  3.6.  

The algorithms in this chapter were implemented in Eclipse using Python as the 

programming language. We also used Python packages such as, NumPy and SiPy and 

StatsPy for matrix and numerical operations and statistical functions. RPy were used for 

accessing R and Bioconductor package. We also used Minet (Meyer, Lafitte et al. 2008) 

library from R to access the mutual information function implemented in ARCNE. Their 

function was reported to have the highest performance compared to other mutual 

information implementations (Meyer, Lafitte et al. 2008; Qiu, Gentlesa et al. 2009).    

8.2 Experiment 1: Simple Frequency Based Co-regulation 

Function  

Purpose: This was the first version of our co-regulation function. In this experiment, we 

aimed to see if defining a function based on the definition of regulatory relationship can 

perform as well as the other known measures in the area. The definition and 

implementation of the regulatory relationships was quite simple here. This version of the 

function was quite simple but was the starting point which later led us to the 2D version 

of the function.   

Algorithm: This version of our co-regulation function works based on a simple idea. In 

the first step we considered all of the gene pairs and then we calculated the histogram 

(one dimensional bin) for each gene in a pair separately. Then we counted the number of 

High-High and High-Low and so on. The following steps will describe the procedure.  

1. Calculate one dimensional bin (histogram) for each gene. Bins are equally 

divided. 

2. Calculated 25th percentile and 75th percentile of each gene (any values above 75th 

percentile are considered to be high and any values lower than 25th percentile are 
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considered to be low). The choice of 25 percent comes from the experiment and 

is arbitrary. 

3. Go through each sample and look for these relationships: 

3.1 High-High: Count the number of times (number of samples) that the first gene 

is high and the second one is high  

3.2 High-Low: Count the number of times (number of samples) that the first gene 

is high and the second one is low 

3.3 High-Low & Low-High: Count the number of times (number of samples) that 

the first gene is high and the second one is low, plus the number of times that 

the first gene is low and the second one is high.  

4. If the total number of 3.1, above, is more than a pre-specified threshold, label the 

relationship as “ac” (up regulation)  

5. If the total number of 3.2, above, is more than the pre-specified threshold, call 

this relationship “re” (down regulation) 

6. If the total number of 3.3 is more than the pre-specified threshold called this 

relationship “du” (dual interaction) 

7. Otherwise, label this relationship as “none” (no relationship) 

The choice of threshold came from experiments. In our experiments we set the threshold 

to 17 percent. We tried this algorithm with one quarter and the third quarter of the mean 

instead of the median as well but the best result was achieved with median and 

percentiles. The justification for this is because the data is really skewed and does not 

have a normal distribution, median and related percentiles are the best descriptive 

statistics (Boslough and Watters 2008). Table  8-1 provides an example to describe the 

above procedure. In this table the expression values of the twenty samples were 

provided. The first quartile (25th percentile) and the third quartile (75th percentile) 

values were calculated and indicated by Q1 and Q3. In each sample (record), if the value 

of the first gene was greater than Q3 we labelled it as “High” and if was lower than Q1 

we labelled it as a “Low”. The expression values between these were not important. 
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Table  8-1 A toy dataset and sample of calculations for simple frequency-based co-regulation function 

 

 

 

 

 

 

 

 

 

 

 

We then counted the number of times the first gene was “High” (greater than the third 

quartile) while the other gene was also “High” (greater than its third quartile). We called 

this number the High-High indicator. We did the same for the Low-Low, High-Low and 

Low-High. In this example the number of High-High was 5 and Low-Low was 2. As the 

total number of the record was only 20 and 5 out of 20 makes 25 percent of samples, 

therefore the pattern of High-High was dominant and based on these numbers; we 

recognized this relationship as “ac”. 

 Total number of High-High=5                          Percentage of the High-High =5/20= 25% 

Total number of Low-Low=2                             Percentage of the Low-Low =2/20=10% 

Total number of High-Low=0                             Percentage of the High-Low =0 

Total number of Low-High=0                             Percentage of Low-High=0 

 Ion rpoH Ion status rpoH status 

1 0.417949 0.142587   

2 0.843632 0.490734 High High 

3 0.560716 0.27895 High High 

4 0.41598 0.103687   
5 0.614831 0.2987 High High 

6 0.44987 0.2789 High High 
7 0.47191 0.156482 High  

8 0.35849 0.10288  Low 
9 0.34258 0.25478   

10 0.425871 0.10498   
11 0.44987 0.27521 High High 

12 0.138224 0.112589 Low  

13 0.36987 0.008103  Low 

14 0.317368 0.198754   
15 0.272448 0.105358   

16 0.23547 0.11022   

17 0.178962 0.047852 Low Low 

18 0.41897 0.00689  Low 
19 0.32457 0.209607   

20 0.168776 0.047918 Low Low 
Q1 0.44987 0.259888   

Q3 0.306138 0.103485   
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We conclude that the first gene up regulates the second gene. The Pearson’s correlation 

score for this pair was 0.741 while in most of the experiments the cut off threshold for 

Pearson’s correlation is above 75%, therefore, based on Pearson’s correlation these genes 

are not dependent. The situation with Mutual Information was different. The raw score 

was 1.1068 and after normalization, MI was able to just recognize the dependency of 

these two genes.  

Setup: We used the first benchmark to compare the performance of this function against 

Pearson’s correlation and Mutual Information.  

Result: We applied our function on the first dataset and the result is presented in 

Table  8-2.  

Table  8-2 Result of simple co-regulation function on the first benchmark 

Method 
Total 

Records 
False 

Positive 
True 

Positive 
False 

Negative 
Recall Precision F-measure 

Mutual Information from 
minet Threshold=0.92 

761 713 48 245 0.16 0.063 0.092 

Pearson Threshold=0.9 516 422 42 250 0.14 0.081 0.10 

 Simple Frequency Based Co-
regulation 

710 672 38 255 0.13 0.05 0.08 

In this experiment we described how our simple frequency based co-regulation function 

works and provided an example of its calculation. We also presented the result of 

applying this function to our first benchmark. This function was the first version (design) 

of our co-regulation function and the starting point which led us to a more sophisticated 

function. The second version of the function is based on a grid and comes with 

visualization ability. In the next section we will describe the second version of the 

function which we called Fixed 2D Visualized Co-regulation.    
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8.3 Experiment 2: Fixed 2D Visualized Co-regulation 

Function  

Purpose: Here we describe the second version of our co-regulation function and provide 

the related experiments. In this version, we used a different way of discretization from 

that in the previous version. This way of discretization provided us with visualization 

ability. We called this function Fixed 2Dimensional Visualized Co-regulation function. 

In this experiment we present the visual impact of the function and also we test its 

functionality in terms of precision and recall against Pearson’s correlation and Mutual 

Information.  

Algorithm: The followings are steps of the algorithm: 

Calculate a two dimensional grid of two genes as follows:  

1. Discretize the first gene and the second gene in a fixed number of equal bins 

(for example, 10 bins). 

2. Make a grid with the discretized values of the first gene on the vertical axis 

and the second one on the horizontal axis.   

3. For each cell in the grid count the number of times that those genes have 

appeared together in one sample at those specific ranges.  

4. Calculate the first and third quartile of each gene and then separate the 

following areas: High-High, High-Low, Low-High, Low-Low 

5. Count the numbers of those areas referred to above.  

If High-High is more than a specific threshold, label this relationship as an 

“ac”. Otherwise, if High-Low is more than a specific threshold, label this 

relationship as a “re”.  

If neither of High-High and High-Low numbers were passed the threshold, 

consider the sum of High-Low and Low-High. If this number is greater than a 

specific threshold, label the relationship as a “du”.  

6. If the pair has not been labelled yet, label it as a “none”. 
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Similar to the previous experiment, the choice of thresholds comes from the experiment. 

For this experiment we set the “ac” threshold as 18 percent and “du” as 25 percent. In the 

previous chapter we described this version of the function but in the following, we 

present another example to remind the reader about the process. 

Table  8-3 A sample of expression values for rpoH and 
Crp and related quartiles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8-1 The two dimensional grid for crp and 
rpoH 

Total number of records=100 

Number of bins=10 

HH=0 

HL=34   &   LH=9 

LL=13 

HL+ LH=43 ~ 43% > 25% 
 

 “du” 

 

rpoH Crp 

1 0.21021 0.838681 

2 0.10452 0.874244 

3 0.19246 0.589221 

4 0.5473 0.115408 

5 0.19212 0.471806 

6 0.15109 0.53969 

7 0.17842 0.801398 

8 0.60287 0.011306 

9 0.20815 0.649452 

10 0.69288 0.006955 

11 0.48004 0.121246 

12 0.65649 0.091801 

13 0.10563 0.782216 

14 0.14524 0.753745 

15 0.768 0.020388 

16 0.06701 0.57206 

17 0.74759 0.005891 

18 0.32212 0.333972 

19 0.06281 0.410009 

20 0.10951 0.957171 

… … … 

Quartil 0.1502 0.217 

Quartil 0.376 0.758 

Max 0.961 0.995 

Min 0.015 0.006 

High (>Q3) 

Low (<Q1) 

Low (<Q1) High (>Q3) 

rpoH

Crp 
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Figure  8-1 shows the two dimensional grid which was created based on these values.  

Each axis represents the discretized value of one gene. The content of each cell is the 

indicator of how many times those values occurred in one sample together. For example, 

in the upper most left corner cell we have zero, which means that we did not have any 

sample that the first gene was between its minimum value and the second bin’s value, 

and also the second gene was between its minimum value and the next bin’s value. After 

calculating this grid, we calculated the first quartile and the third quartile of each gene. 

The first quartile is the indicator of Low and the third quartile is the indicator of High. 

This means that any values less than the first quartile should be considered as Low and 

any values more than the third quartile should be considered as High. We drew these 

lines for each gene then we surrounded some areas which were indicator of two genes 

being Low-Low, High-High, Low-high and High-Low. In the last step, we counted the 

number of items in each of those areas and labelled this relationship based on those 

values.  In the above example the label is “du”.  

After calculating this score for all gene pairs, we also applied a background correction 

process. In this procedure, we normalized the association values for each gene. Then we 

selected only those pairs displayed association values more than 0.5. This procedure 

helps to eliminate a number of false positives which are the result of having some genes 

which are correlated with too many other genes. A more sophisticated version of this 

background correction employed heuristic information as well. In that procedure, the 

degree of genes were extracted from the domain knowledge and then we normalized the 

association values for each gene, ranked them, and chose a number of top-ranked 

association values according to the degree of the gene. In the enhanced version of this 

heuristic background correction, we used a rule of thumb to improve the process. The 

rule was, if the degree of the gene was less than 15 we chose from the normalized ranked 

list exactly equal to the degree of the gene, otherwise we chose according to the 15+ 

1/3(degree of gene-15).  
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Setup: We applied this function to several datasets to compare its performance with 

some of the well known association measures. We used datasets was produced by 

SynTReN which were discussed in Section  3.4   

How does SynTReN work? We used the first, the second dataset and the sixth dataset 

here to observe the effect of different network topologies and also different amounts of 

noise. The first dataset used the neighbourhood addition method with some experimental 

and biological noise; the second dataset used the cluster addition method with the same 

amount of noise, and the sixth dataset uses the neighbourhood addition method without 

experimental and biological noise. The second dataset is easier than the first one, because 

of the cluster addition method and the sixth dataset is the easiest one because of not 

having experimental and biological noise. These datasets gave us the opportunities to see 

the effect of noise and the effect of the network topology on the result. 

Result: For evaluating the performance of our method we used the F-measure which 

combines precision and recall together. Precision is a measure of exactness and is the 

number of the correct answers divided by the total number of answers that we found. 

Recall is the indicator of completeness and is defined by the number of correct answers 

divided by the number of the actual answers. F-measure is a measure to combine 

precision and recall and is defined by two times of precision and recall divided by the 

sum of them. More details about our performance measures were provided in         

Section  3.7.  

Table  8-4 presents the result of this experiment on the first test bed, in terms of precision 

and recall and F-measure. The first dataset was generated using the neighbourhood 

addition method with experimental and biological noise of 0.1 and the probability of 

complex relationships set to 0.3. For each method and each dataset we applied different 

thresholds and reported the best performing threshold.  

The result shows that our proposed function detected the same number of true positives 

compared with MI but far fewer false positives. In comparison with Pearson’s 

correlation, our function yielded more true positives for comparable false positives.   
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Table  8-4 Result of experiments with the first benchmark  

Method 
Total 

Records 
False 

Positive 
True 

Positive 
False 

Negative 
Recall Precision F-measure 

Mutual Information from 
minet Threshold=0.92 

761 713 48 245 0.16 0.063 0.092 

Pearson threshold=0.90 516 422 43 250 0.15 0.083 0.11 

2D Fixed Co-regulation 
function Thresholds: du = 
0.38; ac = 0.21; re=0.21 

482 434 48 245 0.16 0.10 0.12 

The second dataset was generated using the cluster addition method, probability of 

biological noise and experimental noise was set to 0.1 and the probability of complex 2-

regulator interactions was set to 0.3. The second benchmark is easier than the first; 

therefore the performances of the functions are higher compared to that of the first 

benchmark as indicated in Table  8-5. Again in this dataset our function performance was 

superior. It produced the least number of false positives while it yielded fewer true 

positives than MI, but more true positives than Pearson.  

Table  8-5 Result of experiments on the second benchmark 

Method 
Total 

Records 
False 

Positive 
True 

Positive 
False 

Negative 
Recall Precision F-measure 

Mutual Information from 
minet Threshold=0.9 

812 751 61 173 0.26 0.075 0.12 

Pearson Threshold=0.85 598 546 52 182 0.22 0.087 0.13 

Fixed 2D Visualized Co-
regulation function 
Thresholds: ac=0.16 re=0.22 
and du=0.32 

570 513 57 177 0.24 0.1 0.14 

Then we observed the effect of not having noise on the result by applying the function on 

the fourth and sixth data set.  
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Table  8-6 Result of experiments on the fourth benchmark 

Method 
Total 

Records 
False 

Positive 
True 

Positives 
False 

Negatives 
Recall Precision F-measure 

MI threshold =0.95 776 704 72 221 0.25 0.093 0.14 

Pearson threshold=0.9 543 477 66 227 0.23 0.12 0.16 

Fixed 2D Visualized Co-
regulation  Thresholds: 
0.18& 2 (for up and down) 
0.38 for dual 

502 430 72 221 0.25 0.14 0.18 

The fourth dataset was produced without any biological noise but with experimental 

noise. The sixth data set was produced without any biological and experimental noise. 

The results for the fourth and sixth datasets are presented in Table  8-6 and Table  8-7. The 

sixth dataset is the easiest among the three as it does not contain biological and 

experimental noise; therefore the result shows a considerable improvement on 

performance compared with the other two datasets, especially the first dataset. 

Table  8-7 Result of experiments on the sixth benchmark 

Method 
Total 

Records 
False 

Positives 
True 

Positives 
False 

Negatives 
Recall Precision F-measure 

MI threshold =0.9 801 719 82 211 0.28 0.11 0.16 

Pearson threshold=0.9 560 483 77 216 0.26 0.14 0.18 

Fixed 2D Visualized Co-
regulation Threshold= 0.18& 
2 (for up and down) 0.38 for 
dual 

553 437 87 206 0.3 0.16 0.21 

The results of all the above experiments indicated that considering the definition of 

regulatory relationships in order to define an association function can improve the 

performance. This is mainly due to reduced false positive rates while maintaining a good 

discovery rate. Therefore, we can conclude that by using the Fixed 2D Visualized Co-

regulation function we can achieve a higher success rate for genes pairwise associations.  

Significance Test: We ran a paired t-test on the above results to find out if the results 

from co-regulation function on average are significantly better than those of MI and 

Pearson. We chose paired t-test as the changes in F-measure, precision and recall for the 
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different methods are not independent and change across the datasets accordingly. As 

paired t-test requires the assumption that there is no difference between the variances of 

two distributions we need to test our data for this assumption. We ran an F-test to see if 

the variances of the two distributions are the same and the result confirmed that there is 

not any significant difference between the variance of Pearson’s distribution and that of 

the co-regulation function or that of MI and co-regulation function.  

Table  8-8 Result of significance test for Experiment2 

Compared Methods Test 
P-

value 
Is 

Significant 

F-measure from Mutual 
Information against co-
regulation 

=TTEST({0.12,0.14,0.18,0.21},{0.092,0.12,0.14,0.16},1,1) 0.0069 

 

Yes 

F-measure from Pearson 
Correlation against Co-
regulation function 

=TTEST({0.12,0.14,0.18,0.21},{0.11,0.13,0.16,0.18},1,1) 0.018 

 

Yes 

Precisions from Mutual 
Information against Co-
regulation function 

=TTEST({0.1,0.1,0.4,0.16},{0.063,0.075,0.093,0.11},1,1) 0.0029 

 

Yes 

Precisions from Pearson 
Correlation against Co-
regulation function 

=TTEST({0.1,0.1,0.14,0.16},{0.083,0.087,0.12,0.14},1,1) 0.0009 

 

Yes 

Recalls from MI against Co-
regulation  function 

=TTEST({0.16,0.24,0.25,0.3},{0.16,0.26,0.25,0.28},1,1) 0.5 No 

Recalls from Pearson 
Correlation against Co-
regulation function 

=TTEST({0.16,0.24,0.25,0.3},{0.15,0.22,0.23,0.26},1,1) 0.019 Yes 

The table indicates that in general our method achieved a significantly higher F-measure 

across different datasets compared with Pearson Correlation and MI. The improvements 

were mainly due to the increase in precision. The recall of our method was similar to that 

of MI and significantly better than Pearson correlation.   

Case Study: 

For the evaluation of the visualization effect of our co-regulation function, we carried out 

two case studies and asked two experts to evaluate our function. The experts that we 

chose both have many years of experience working with the gene expression microarray 
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data. The case study had three steps, in the first step; we described and illustrated how 

the function works by showing the experts a picture of the grid and explaining the 

algorithm steps. In the second step, we showed six training examples to the experts. The 

examples included, ac, re and dual relationships as well as no relationship. In the last 

stage, we tested the experts by presenting the expression profile of two genes at a time 

and asked the experts to guess what type of relationship it was. At this stage, we tested 

the experts by six examples and in the end, presented the result. Both experts said that it 

was not always easy to detect the type of the relationship by just looking at the 

expression values. They also both stated that the Co-regulation function was informative 

and helped them to better understand the nature of the relationship even without 

presenting them the numerical result of the function. The experts expressed their interest 

in seeing examples of applying the function to real datasets.  The case study supported 

the useful visualization ability of the function. 

8.4 Experiment 3: Feature Selection for Finding 

Important Areas of the Grid  

Purpose: In this approach the aim was to test the validity of our assumptions about how 

the definition of the regulatory relationships would be reflected in the data. In doing this 

we tried to find the areas of the grid which are more important and most informative. For 

this purpose we applied feature selection algorithms to the grid. Feature selection 

algorithms can provide us with the list of the most relevant features for explaining the 

class labels to build a better predictive model of the data (Guyon and Elisseeff 2003).   

Setup: For this experiment we used a variety of feature selection algorithms 

implemented in Weka package (Hall, Frank et al. 2009). For applying the feature 

selection algorithms we needed to transform the grid to a tabular format. This experiment 

was performed on a dataset that we made from the five initial datasets discussed in 

Section  3.6. From each of those five dataset some records were chosen randomly and 

total number of records was 358. We needed to perform this experiment on a combined 
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dataset, as we needed to extract general characteristics regardless of the type of the 

network. We computed the two dimensional grid for each pair and then we considered 

each cell in the grid as a feature in the dataset. Therefore, each row contained 

information related to cells in the grid and each column was an indicator of a single cell 

in the grid. Different rows represented different pairs. Each gene pair’s grid transformed 

into one row. Figure  8-2 shows a grid and Table  8-9 provides an example of 

transformation of the data inside the grid to tabular formats. Each cell represents a 

feature (column) in dataset and the content of the cell is the value of that feature. 

 

Figure  8-2 Example of two dimensional grid (bin Size=5) for crp and htpY 

Then we added a final column to represent the class label for this pair. These labels are 

produced for our synthetic data by SynTReN. The aim was to use feature selection 

methods to find the most informative areas of the grid. In this way, we hoped to find 

more evidence to support our assumption about how the regulatory relationships are 

reflected in expression data.  

Table  8-9 An example of data transformation from the grid for the feature weighting approach 
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Algorithm: For the feature selection algorithm, we chose Gain Ratio Attribute 

Evaluator, Info Gain Attribute Evaluator and SVM Attribute Evaluator which are 

implemented in the Weka package (Hall, Frank et al. 2009). The results of these three 

methods were similar and had almost 85 percent overlap. Therefore, we only reported the 

result based on Gain Ratio Attribute Evaluator. The result was obtained by 10 fold cross 

validation re-sampling. 

Result: The result is presented in the Table  8-10. The most important features are in the 

High-High area of the grid where we expect to see an “ac” pattern. Based on our 

experience, we expect to see that “ac” pairs show the clearest pattern. The second most 

important area is the High-Low area which belongs to “re” class labels. 

Table  8-10 Result of the feature selection with Info Gain Attribute Evaluator 

Rank Attribute  Rank Attribute 

1 x10y1  19 x9y2 
2 x10y10  20 x1y7 
3 x9y10  21 x1y10 
 4 x9y1  22 x6y10 
5 x9y9  23 x0y0 
6 x10y9  24 x3y10 
7 x8y1  25 x2y10 
8 x8y9  26 x1y1 
9 x9y8  27 x10y2 
10 x8y2  28 x1y6 
11 x1y9  29 x2y8 
12 x2y9  30 x4y1 
13 x4y10  31 x7y9 
14 x7y1  32 x10y8 
15 x5y10  33 x3y9 
16 x7y2  34 x7y10 
17 x10y0  35 x8y8 
18 x1y8  36 x6y1 

These features were mapped to the actual cells in the grid for a better representation. 

Figure  8-3 presents these important features inside the two dimensional grid. We found 

three distinct areas, when we mapped the features in Table  8-10 to the grid. These three 

areas were High-High, High-Low and Low-High. The High-High and High-Low areas 

confirmed our assumptions about pattern of “ac’ (activation) and “re” (suppression) 
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relationships. The only issue in this experiment was the set of important cells (features) 

in the Low-High area which we could not explain, based on our assumptions. We assume 

that this pattern comes from how our synthetic data generator produces and considers 

“du” and “re”.  

This experiment almost demonstrated that our definition of regulatory relationships was 

valid. Other correlation functions, such as Pearson’s correlation which relies on the 

orthogonal information only or Information theory measures, which consider any 

changes in any values, are not precise enough. 

 

 

 

 

 

 

 

 

Figure  8-3 The important features indicated by feature selection- Info Gain Attribute Evaluator-, in the 2-
dimensional grid representation 

The observation of records with “du” class labels produced by our data generator showed 

us that this type of relationship has been defined in SynTReN like a flip-flop relationship, 

where one gene is low, another one is high and vice-versa. This pattern does not match 

the definition of “du” in the literature, where we expect to see both “ac” and “re” across 

different samples to recognize this as a “du” (Van den Bulcke 2009).  The ”re” patterns 

produced by SynTReN are also subject to further investigation. SynTReN produces a 

network with a similar structure to the real known networks, however, expression 

profiles are produced by SynTReN are not quite similar to known biological patterns (Li, 

Zhu et al. 2009). Just at the time of writing this thesis, a new GRN simulator was 

x0y0 x0y1 x0y2 x0y3 x0y4 x0y5 x0y6 x0y7 x0y8 x0y9 x0y10 

x1y0 x1y1 x1y2 x1y3 x1y4 x1y5 x1y6 x1y7 x1y8 x1y9 x1y10 

x2y0 x2y1 x2y2 x2y3 x2y4 x2y5 x2y6 x2y7 x2y8 x2y9 x2y10 

x3y0 x3y1 x3y2 x3y3 x3y4 x3y5 x3y6 x3y7 x3y8 x3y9 x3y10 

x4y0 x4y1 x4y2 x4y3 x4y4 x4y5 x4y6 x4y7 x4y8 x4y9 x4y10 

x5y0 x5y1 x5y2 x5y3 x5y4 x5y5 x5y6 x5y7 x5y8 x5y9 x5y10 

x6y0 x6y1 x6y2 x6y3 x6y4 x6y5 x6y6 x6y7 x6y8 x6y9 x6y10 

x7y0 x7y1 x7y2 x7y3 x7y4 x7y5 x7y6 x7y7 x7y8 x7y9 x7y10 

x8y0 x8y1 x8y2 x8y3 x8y4 x8y5 x8y6 x8y7 x8y8 x8y9 x8y10 

x9y0 x9y1 x9y2 x9y3 x9y4 x9y5 x9y6 x9y7 x9y8 x9y9 x9y10 

x10y0 x10y1 x10y2 x10y3 x10y4 x10y5 x10y6 x10y7 x10y8 x10y9 x10y10 

ac re 

du? 
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introduced, called ReTRN, which was claimed to produce not only a similar structure, 

but also similar expression profiles (Li, Zhu et al. 2009). Our experiment should be 

repeated in the future on a real dataset or at least datasets generated by ReTRN for a 

further investigation of the exact regulatory patterns.    

8.5 Experiment 4: Finding Rules with Decision Trees  

Purpose: In this approach the aim was to test the validity of our assumptions about how 

the definition of the regulatory relationships would be reflected in the data. In other 

words, how we expect to see the pattern of regulatory relationships in terms of machine 

learning. In this experiment we approached this problem using a different technique. For 

this purpose, we decided to analyse the data with a decision tree algorithm to find general 

rules which may explain the relationship between the location and boundaries of the 

densest cluster inside the grid and the class labels (types of the relationship). 

Algorithm: In doing this we modified our code for the Fixed 2D Visualized Co-

regulation function and embedded a k-means clustering algorithm inside the code. For 

each gene pair, the algorithm first calculates the two dimensional grid as discussed 

earlier. Then it applies a k-means clustering algorithm to the grid in order to find the 

densest cluster inside the two dimensional grid and also the second densest if it exists 

(for dual relationship). The number of clusters (k) is set to three as we expect to see 

maximum of three clusters when the relationship is dual (one for each High-Low and 

Low-High and one for the rest of the numbers) and otherwise we expect to see two 

clusters (one is the densest cluster in either high-high or high-low and the second one is 

the rest of the grid). A good cluster has a small number of cells but a higher number of 

entries in the cells. Figure  8-4 shows an example of such a cluster. Then it calculates the 

density and the boundaries of the cluster in terms of minimum x, minimum y, maximum 

x and maximum y values. These x and y are the horizontal and vertical axes of the grid. 

Their range starts from 0 and ends with the maximum number of bins. For example, a 

cluster with a minimum x=5 and maximum x=9 and minimum y=1 and maximum y=5 is 

shown in Figure  8-4.  
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Figure  8-4 Example of the result of k-means clustering on a grid 

The output of our program is in the tabular format as shown in Table  8-11. Each row 

contains a class label and associated minimum x, minimum y, maximum x, maximum y 

and density of the cluster inside the grid for each gene pair.  Figure 8-5 describes the 

overall process. 

Table  8-11 The output of applying k-means to the two dimensional grid 

 

 

 

0 1 2 3 4 5 6 7 8 9 

1 2 0 0 1 2 1 0 0 0 

2 5 6 1 4 3 1 0 0 0 

3 2 7 0 1 5 0 2 0 0 

4 1 0 0 0 1 1 0 2 0 

5 0 1 2 5 5 0 1 2 1 

6 1 6 5 4 4 1 0 0 0 

7 0 4 6 9 2 1 2 0 0 

8 1 3 7 5 3 1 1 2 0 

9 0 0 2 3 4 0 0 0 1 

Class MinX MinY MaxX MaxY Density 

ac 0 7 9 10 1.265913 

ac 9 0 10 5 1.382716 

ac 0 5 10 7 1.449905 

ac 3 0 10 6 2.9536 

ac 0 0 5 7 2.964497 

ac 0 8 7 9 3 

ac 0 0 10 8 3.027778 

du 0 0 4 4 2.270833 

du 0 3 4 10 2.522222 

re 6 0 10 4 1.398669 

re 4 4 6 6 1.441082 

re 0 0 7 8 2.913495 

re 0 4 9 10 2.95679 

re 3 0 9 7 3.160494 

y 

x 
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Transfer the data inside the grid to the 
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Figure  8-5 The process of finding rules with the decision tree 
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In summary, in this experiment we identified the minimum and the maximum of x and y 

of the restricted region and also the density of the region and used a data mining 

technique to identify any relationship between the above parameters and the class labels 

as a general rule. The data mining technique that was used here was decision trees. The 

aim was to discover general rules relating class labels to boundaries and density.  

Setup: In this experiment we used the combined dataset which we used in the previous 

experiment. This dataset was made from the five initial datasets and total number of its 

record was 358. We needed to perform this experiment on a combined dataset, as we 

needed to extract general rules regardless of the type of the network. For the decision tree 

algorithm we used the J48 and Random Forest algorithms in the Weka package (Hall, 

Frank et al. 2009). For the k-means algorithm we used an implementation of k-means in 

R (Fraley, Raftery et al. 2006). 

Result: The boundaries of clusters plus their density and the class labels were 

given as the input to a decision tree algorithm to find out the rules describing the 

class labels, based on the boundaries of the clusters. The output rules are 

presented in Figure  8-6.  
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Figure  8-6 Decision tree J48 for rule discovery based on the boundaries of clusters 

For simplicity, in Figure  8-6 we only kept the important branches. The tree shows the 

rules related to “ac” and “re” labels. There are two main rules for “re” and one for “ac”. 

As we mentioned earlier, in the previous experiments the “re” labels produced by our 

synthetic generator did not completely match with the definitions in the literature, 

therefore we assume that the second set of rules for “re” happens because of this property 

of synthetic data generator. The important cells for detection of “re” and “ac” classes are 

highlighted inside the two dimensional grid in Figure  8-7 

 

 

 

 

 

maxY 

min X 

<=8 >8 

>5 

min Y 

min X 

re (20.0) 

>4 

<=3 >3 

re (41.0) 

<=5 

ac (31.0) 

<=1 

max X 

re (2.0) 

>8 

ac (9.0) 

>1 

…. 

<=8 

ac (120) 

maxX 

…. 



 Chapter 8. Approach 3: Experiments with Co-regulation Function 

171 

 

 

 

 

 

 

 

Figure  8-7 Representation of the output of the decision tree on the 2-dimensional grid (light grey is re, dark 
grey is ac) 

The light grey represents the area related to “re” and the dark grey ones represent related 

area to “ac”. This experiment confirmed the result of the feature selection experiment. 

Thus these experiments validated our assumption about regulatory relationships in terms 

of machine learning.    

8.6 Experiment 5: Variable 2D Visualized Co-Regulation 

Function Using a Sliding Window 

Purpose: We analysed pairs that we were incorrectly detected by the Fixed 2D 

Visualized Co-regulation function. We discovered in many cases there was a pattern, but 

it was shifted out of the restricted area and that is why we could not detect those pairs. 

Therefore, it might be beneficial, to not have a fixed restricted area. If the area of interest 

can be dynamically restricted, then a fixed threshold is not required anymore and our 

method will be more flexible and general.    

In doing this, we tried different strategies. The first strategy used a sliding window over 

the grid to find an area with the maximum frequency numbers and the minimum number 

of cells. Considering an “ac” relationship the search area for identifying “ac” started 

from the bottom right corner (maximum, maximum point) until the Low-Low point (a 

x0y0 x0y1 x0y2 x0y3 x0y4 x0y5 x0y6 x0y7 x0y8 x0y9 x0y10 

x1y0 x1y1 x1y2 x1y3 x1y4 x1y5 x1y6 x1y7 x1y8 x1y9 x1y10 

x2y0 x2y1 x2y2 x2y3 x2y4 x2y5 x2y6 x2y7 x2y8 x2y9 x2y10 

x3y0 x3y1 x3y2 x3y3 x3y4 x3y5 x3y6 x3y7 x3y8 x3y9 x3y10 

x4y0 x4y1 x4y2 x4y3 x4y4 x4y5 x4y6 x4y7 x4y8 x4y9 x4y10 

x5y0 x5y1 x5y2 x5y3 x5y4 x5y5 x5y6 x5y7 x5y8 x5y9 x5y10 

x6y0 x6y1 x6y2 x6y3 x6y4 x6y5 x6y6 x6y7 x6y8 x6y9 x6y10 

x7y0 x7y1 x7y2 x7y3 x7y4 x7y5 x7y6 x7y7 x7y8 x7y9 x7y10 

x8y0 x8y1 x8y2 x8y3 x8y4 x8y5 x8y6 x8y7 x8y8 x8y9 x8y10 
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x10y0 x10y1 x10y2 x10y3 x10y4 x10y5 x10y6 x10y7 x10y8 x10y9 x10y10 



 Chapter 8. Approach 3: Experiments with Co-regulation Function 

172 

 

conjunction of first quartile lines for the first and second gene). For “re” relationship the 

area starts from the bottom left corner (maximum-minimum) point to the Low-High 

boundary which is the conjunction point of the first quartile of the first gene and the third 

quartile of the second gene. For clarity, the search directions are presented in Figure  8-8. 

 

 

 

 

 

 

 

 

Figure  8-8 Search directions for the sliding windows over the grid for “ac” and “re” 

Algorithms: This algorithm starts from the predefined fixed area. It calculates the score 

of each pair according to the numbers in High-High, Low-Low, High-Low and Low-

High areas. This step is similar to what we did in the fixed version. If a pair does not earn 

enough score to be labelled then we will go to the second step. In the second step, we 

expand x and y boundaries, one at the time and then we calculate a score which indicates 

the density of the area based on the following formula:  

If this metric for the new area is greater than the previous area we keep the new 

boundaries, otherwise we try to expand the boundary again by 1. In this algorithm the 

number of tries for expanding the boundaries is a flexible parameter. We tried different 
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values for this parameter and the best result was achieved with four tries. We also tried 

different formulas to find the best formula to describe a dense cluster.  

Setup:  We tried this algorithm on the first dataset to see if it was going to make any 

difference. The best result was obtained with the four tries around the area, which is 

presented in the Table  8-12. 

Table  8-12 Result of sliding threshold co-regulation function  

Result:  This strategy did not result in improvement because we could not find the best 

way or formula to effectively calculate that area. Therefore, we decided to follow another 

approach. In the next section we will describe another technique for automatically 

isolating the area of interest using machine learning methods. We called it black box 

modelling. In the black box modelling we tried to solve the problem by using a data 

mining technique to detect the pattern of regulatory relationships automatically. We 

performed this experiment on a combination of our five datasets plus some artificial 

nodes. This database was created to have the highest variability, as this way the machine 

learning algorithm could be trained to distinguish the pattern of regulatory relationships 

better.  

8.7 Experiment 6: Dynamic 2D Visualized Co-regulation 

Function Using Black Box Modelling  

Purpose: In this experiment the aim was to build a model to learn the pattern of 

regulatory relationships from an ensemble of datasets. Such a model will remove the 

need for finding any cut off threshold. This way the trained model would detect the 

Method 
Total 

Records 
False 

Positives 
True 

Positives 
False 

Negatives 
Recall Precision F-measure 

Fixed 2D Visualized 
Co-regulation 

482 434 48 245 0.16 0.10 0.12 

Sliding 2D 
Visualized Co-
regulation 

719 570 56 237 0.19 0.078 0.11 
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relationships automatically. The result of our previous experiments showed us that if we 

set up a way to find the thresholds dynamically we could improve our function further.  

Setup:  For this experiment, we organized a training dataset and a test dataset. The 

training set contained records from each of the initial five datasets. We also added some 

“none” pairs. In addition to these records we added some artificial records that we 

created based on our definition from the regulatory relationship. These artificial records 

were designed to show the exact pattern of the regulatory relationships.  We created these 

artificial records in order to test whether learning these patterns might result in better 

performance compared to when such a pattern is not learnt.  

The training dataset that we used for this experiment finally contained 518 records. The 

test dataset was the 6th microarray test bed, which had the same genes but different 

characteristics and a different network. The test dataset contained all possible 

combinations of the 200 genes, which is 40,000 records and covers the possible search 

space. Table  8-13 shows an example of the dataset used in this experiment.  

Table  8-13 Examples of records in training and test datasets 

Algorithms: We applied different classification methods such as Naïve Bayes and 

Random Forest to our datasets to see how they learn the model. Then we saved the 

output model and presented the test dataset to this model. We measured the performance 

of the model on the training and test dataset. Among all the classifiers, we achieved the 

G1 G2 
x0 
y0 

x1 
y0 

x2
y0 

x3 
y0 

x4
y0

x5 
y0

x6
y0 … 

x8 
y0 

x9 
y0

x10 
y0 

x10 
y5 

x6 
y10

x7 
y10 

x8 
y10 

x9 
y10 

x10 
y10 Class

rpoH lon 1 0 0 0 0 0 0 … 0 0 0 0 0 0 0 1 1 ac

rpoH mopA 0 1 0 0 0 0 0 … 0 0 0 0 0 0 0 0 1 ac

rpoH grpE 1 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 1 ac

rpoE_rseA rpoH 0 0 0 1 0 0 0 … 0 0 0 1 0 0 0 0 1 Ac

rpoE_rseA ecfG 1 0 0 0 0 0 0 … 0 0 0 0 0 4 4 7 13 Ac

rpoE_rseA rpoD 0 1 0 0 0 0 0 … 0 0 0 0 0 0 3 7 12 Ac

crp rpoH 0 0 0 0 1 0 0 … 0 0 0 2 0 0 0 1 0 Du

crp crp 1 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 12 Du
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best performance with KStar (Cleary and Trigg 1995). We used the implementation of 

the above algorithms in Weka (Hall, Frank et al. 2009). 

Result:  We had two sets of results. The first one belonged to the initial training dataset 

and the second one belonged to the second training dataset. The second dataset was 

created from the first dataset by adding more none records. For each training dataset we 

reported the performance on the test set as well.  

The initial training dataset had 435 records. Out of this, 358 were randomly selected 

from the five target networks and the rest were artificial records that we made to teach 

the exact pattern of “ac” and “re” and “du” to the classifier. Table  8-14 presents the result 

of such a classification on training and test set. The result is presented in the form of a 

confusion matrix. The confusion matrix is a matrix used to summarize the results of  a 

classification. Items along the main diagonal are correct classifications and other than 

those ones are errors (Bramer 2007). 

Table  8-14 Confusion matrices of the first training set (left) and the first test set (right) 

ac du re none Classified as  ac du re none Classified as 

215 7 1
8 

10 ac  162 3 26 9 ac 

7 7 6 2 du  2 6 2 2 du 

31 7 6
5 

9 re  25 5 50 1 re 

11 2 4 76 None  19067 600 10794 9240 none 

The performance on the training set was 76% and on the test set was 23.6%. Then, we 

added 20 more artificial “none” records to the training set in order to teach the model the 

rejection pattern (“none”) better. The effect of this was that the amount of the false 

positives was decreased therefore the performance increased. Then we added another 20 

none records and the same affect was recorded and the result improved further. 
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 Table  8-15 Confusion matrices of the final training set (left) and the final test set (right) 

ac du re None Classified 
as 

 ac du re None Classified 
as 

206 6 20 18 ac  149 3 26 22 ac 

6 7 6 3 du  2 6 2 2 du 

27 7 62 16 re  23 5 47 6 re 

13 1 9 110 none  16701 541 10063 12396 none 

The result after adding “none” records on the training dataset: Table  8-15 shows the 

performance of the model on the final dataset. We achieved 91 percent accuracy on the 

training data however; again in the test dataset performance was not that good. The 

performance was about 32 percent. The drop in performance happens mostly because of 

having different number of records in training and test datasets, especially “none” 

records. This result shows performance improvement by adding more artificial “none” 

records to the dataset. By adding more “none” records we helped the classifier to learn a 

variety of none relationship patterns more easily. Since “none” relationships are the most 

frequent relationships this can improve the performance of the classifier considerably. It 

can be observed that the size of training and test datasets here are still very different and 

by adding to the size of the training set we can train the classifier to perform better. 

The result on the test dataset: As it shows in Figure  8-9, the performance was dropped 

to 31.50 percent. As the confusion matrix shows in Table  8-15, there is still a good 

accuracy on the “ac”, “re” and “du” labels but the drop in performance is due to “none” 

labels.  



 Chapter 8. Approach 3: Experiments with Co-regulation Function 

177 

 

 

Figure  8-9 The result of the black box modelling experiment on the test dataset  

The test set contained all possible gene pairs from the sixth dataset (size 40,000 pairs). 

The training dataset size contained 600 records that were collected from the target 

networks of our five initial datasets. In addition to those records we added some artificial 

records which helped the program to learn the model of “ac”, “re” and “du”. We 

compared the performance of the model when we did not present these artificial records 

with the performance when we did present these records. We achieved a better result 

with presenting these artificial records, which is an indication that learning those 

regulatory relationships can help to improve the procedure. This once again confirmed 

our previous result which proved to us that our interpretation of regulatory relationships 

is valid.  

This experiment indicated that we could use machine learning to learn the pattern of 

regulatory relationships and set the threshold dynamically. In this experiment we did not 

achieve a high performance, as we had a high number of false positives. For increasing 

the performance we needed to add more “none” records to the training dataset, as the 

drop in performance was due to high number of false positives. Our data was limited to 
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the known network of E. coli; therefore we could not add more extra known records to 

increase the performance.  

Another way for further improvement could be to change the encoding in such a way that 

close cells which are related to each other become close features in the dataset as well. In 

this way, the classifier can learn the pattern of relationships better. Figure  8-10 describes 

the effect of encoding on data transformation. The left grid has a distinct pattern on its 

top left corner, but when we read the cells in sequential rows and transform it to a record 

the pattern has vanished and there is not much difference from a classifier perspective 

between the left grid and the right grid.   

1 2 4 0 0  1 2 4 0 0 

2 1 0 0 0  0 0 0 0 0 

3 0 0 0 0  0 0 0 0 0 

… … … … ….  … …. …. …. …. 

                  A grid with a pattern on the top left side                    A grid without that pattern 

 F00 F01 F02 F03 F04 F10 F11 F12 F13 F14 F20 F21 F22 F23 F24

Left 
Grid 1 2 4 0 0 2 1 0 0 0 3 0 0 0 0 

Right 
Grid 

1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 

Figure  8-10 Example of two grids and the effect of transformation on the pattern 

 In addition to encoding, we could make further improvement by building the grid in a 

more effective way. One way would be to use a better discretization method which is 

finer where there is more information and that could help by increasing the amount of 

given information and subsequently increases the performance of the classifier.  

In the next experiment, we will describe how we used heuristics to create a post-

processing procedure to reduce the number of false positives and increase the 

performance of GRN discovery. 
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8.8 Experiment 7: Heuristic Based Post-Processing 

Purpose: The high number of false positives is the main challenge for any GRN 

discovery algorithm and is a well known problem in the literature. This phenomenon 

happens because we cannot distinguish indirect relationships from direct relationships. 

The indirect effect happens because genes influence each other through other genes and 

sometimes this indirect effect represents a stronger correlation than the direct effect.  

In the previous chapter we described how we intended to use heuristic information for 

eliminating the false positives. Here we set up an experiment to test this idea. This 

experiment tests whether using information regarding the absence of the other types of 

relationships can reduce the number of false positives and improve the performance.  

The elimination process is done by looking for the absence of the reverse relationship. In 

this experiment, we only applied this procedure to the self loops. Self loop is a 

mechanism where a gene is acting on itself. The self loop genes usually are transcription 

factors the product of which binds to its own promoter. Self-regulation is a key-lock 

relationship and usually represents a reversible reaction like when an enzyme consumes 

its own product  (Goemann B, Potapov AP et al. 2009 ). Self-regulation is particularly 

important and is our main focus here as the other methods are usually not able to detect 

self-loops. Self-regulation makes as many as 59% of the transcription factors in 

Escherichia coli. This means 59% of genes regulate their own transcription rate 

(Hermsen, Ursem et al. 2010). Out of the total number of self-regulation, 87% are 

negative feedback, 6.5% are positive feedbacks, and 6.5% are dual circuits(Thieffry, 

Huerta et al. 1998). 

Another reason to apply this procedure only to self loops was that after the initial 

experiments we decided to limit our experiments to a specific condition. This enabled us 

to measure the effect of that condition directly. Therefore we limited the experiment to 

only self loops. Further experiments could be done to measure the effect of this 

procedure in general on any pairs.  
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We analysed 17 cases to discover a rule and then we implemented this rule in a program 

to see the result on the whole dataset. The rule which we discovered for self-regulation is 

based on the contents of cells in the High-High and Low-Low area. The example in 

Figure  8-11 helps the reader to understand the post-processing step. The gene in this 

example is “fur”. 

 

 

 

 

 

 

           

   Figure  8-11 A negative example for illustration of post-processing on self-regulatory relationships 

Here we see a clear example of High-High as the numbers in the Low-Low area are 

much weaker than High-High. Therefore, we recognize this as a valid pair. In contrast 

another example is “dnaA”. As we can see in Figure  8-12 the numbers are almost evenly 

distributed across the diagonal. This pair was recognized as a self-regulation by our 

Fixed 2D Visualized Co-regulation function because of having high numbers in High-

High area. However, because the numbers in the Low-Low area are considerable, we 

label this as a false positive.  
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Figure  8-12 A positive example for illustration of post-processing on self-regulatory relationships 

Table  8-16 shows the 15 gene pairs that we analysed in terms of the contents of High-

High and Low-Low area. The pairs on the left are true positives. The pairs on the right 

side are pairs that were previously recognized as “ac” self-regulations but they are not, as 

they have a considerable pattern of Low-Low as well.  

Table  8-16 The result of analysis of self-regulatory pairs. The left table shows the true positive self-regulation and the 
right table shows the false positives. 

High-High Low-Low Ratio(LL/HH)  High-High Low-Low Ratio(LL/HH) 

39 12 0.31  29 8 0.28 

50 5 0.1  37 24 0.65 

37 8 0.22  34 25 0.74 

41 21 0.51  23 22 0.96 

43 13 0.3  83 6 0.06 

42 15 0.36  2 55 27.5 

44 12 0.27  5 62 12.4 

    21 38 1.81 

The rule which we extracted for detecting a false positive based on the above tables is as 

follows:  

0.1
_
_

0.6 ( 8.2)

5 0 0 0 0 0 0 0 0 0 

0 8 0 0 0 0 0 0 0 0 

0 0 9 0 0 0 0 0 0 0 

0 0 0 10 0 0 0 0 0 0 

0 0 0 0 14 0 0 0 0 0 

0 0 0 0 0 10 0 0 0 0 

0 0 0 0 0 0 17 0 0 0 

0 0 0 0 0 0 0     9 0 0 

0 0 0 0 0 0 0 0 9 0 

0 0 0 0 0 0 0 0 0 9 

re 

ac 
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This simple rule was extracted from 15 cases in Table  8-16 (7 true positives and 8 false 

negatives) and it can distinguish all of the self regulatory false positive pairs. This rule 

simply says that when the numbers in High-High area are considerably higher than in the 

Low-Low there is more chance of having a true self-regulatory up regulation.  

The result of this case study is consistent with our assumption about the regulatory 

relationships described in  Chapter 7.  

Setup: We used the output of the experiment mentioned in Section  8.7 as the input for 

this process. The input for this procedure is the result of our Fixed 2D Visualized Co-

regulation function mentioned in the previous sections on the fourth benchmark.  

Algorithm:  

 Read the final pairs result of the Fixed 2D Visualized Co-regulation function. 

 Calculate a two dimensional grid for each pair in that list which is a self loop. 

 Count the number of items in the High-High area and also Low-Low area. 

Calculate the proportion of Low-Low to High-High according to the Equation 

( 8.2).  

 If the result is more than a threshold, consider the pair as a false positive and 

remove it from the final list.  

Result: 

Table  8-17 The result of heuristic post-processing  

 True 
Positives 

False 
Negatives 

False 
Positives 

Recall/Precision F-measure 

Before 72 221 430 0.25/0.14 0.18 
After 72 221 416 0.25/0.15 0.19 

Here the threshold for the proportion of the Low-Low’s to High-High’s was set by 

experiments. This procedure was so precise, with 100% percent accuracy. It detected 12 

pairs and all of them were false positives. 
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Significance Test: We performed a binomial test to find out if the results after and 

before applying the heuristic post processing are significantly different. The binomial test 

here, considers each detection as a true or false discovery. The calculation was done 

using Matlab 7.11 implementation.  Equation 8.1 shows the formula for calculating the 

binomial tests. 

We can observe significant improvement in the result after applying the post-processing 

step therefore we concluded that our post-processing step was a very effective process. 

The result of this experiment once again confirmed the effectiveness of using heuristics. 

It also validated our assumption about the pattern of regulatory relationships. Further 

improvement would be achieved by investigation of applying the same principle for the 

post-processing of the other pairs, not only the self-regulators.  

8.8.1 Experiment 8: Proof for Heuristic Post-Processing Using 
Weights of a Neural Network 

Purpose: The aim of this experiment was to confirm the theory behind our heuristic 

post-processing by finding evidence from the expression data. Our assumption was that 

the presence of the opposite relationship is informative and can help to further 
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distinguish classes. For example, a pair which has been recognized as an “ac” is a true 

positive if it does not have considerable content in the “re” area.   

To confirm this assumption, we employed a neural network to find cells inside the grid 

which had negative weights in relation to each class label. Cells with negative weights in 

relation to a class label are informative, like cells with positive weights. Having 

considerable entries in cells with positive weights in relation to a class label can confirm 

the presence of that class. Similarly, having entries in cells with negative weights is an 

indicator of having weak dependency on that class label. In this experiment, we first 

found cells with negative weights for each class label. Then we looked to see in which 

areas of the grid they were located. We found they were located in those areas related to 

the opposite relationship. This meant that the assumption behind our heuristic post-

processing was valid.  

For this purpose we used a simple neural network called multilayer perceptron with no 

hidden layer to discover the internal weights. We did not use a hidden layer of neurons, 

as this enabled us to find direct relationships between inputs and outputs. Neural 

networks express this relationship by assigning a weight (either positive or negative) to 

each connection from an input node to an output node.  

The reason behind choosing a neural network for this experiment was that there are 

studies which confirm that inter node weights of neural networks can indicate the 

importance of features (Sestito and Dillon 1991; Sestito and Dillon 1993). In addition, 

neural networks can provide us with negative weights as well as positive weights for 

each feature in relation to each class label. This gives us an opportunity to recognize the 

presence of high value entries in those cells with negative weights as an indicator of false 

positives.  

Figure  8-13 represents the idea of using a neural network for the discovery of important 

features for each class label.  We had three classes which made three output nodes for the 

neural network and we have some input nodes which were the cells inside the grid. The 

features’ weight in each node shows how important those cells are for that class label.  



 Chapter 8. Approach 3: Experiments with Co-regulation Function 

185 

 

 

 

 

 

 

 

 

 

 

Figure  8-13 Neural network for discovery of the important cells inside the grid  

Setup: This experiment was performed on a dataset that we made from the five initial 

datasets mentioned in  8.2. We computed a two dimensional grid for each pair and then 

we applied a transformation process similar to what we did in the feature selection 

experiment. The data transformation process enabled us to apply a neural network to the 

data. The data after transformation was in a tabular format, where each column was a 

single cell and each row had all the cells related to a pair. Different rows represented 

different pairs. In this way, each cell inside the grid became a feature in the dataset, and 

the neural network with no hidden layer was applied to find the direct relationships 

between cells (input nodes) and the class labels (output nodes). Figure 8-14 shows a 

small grid and Table  8-18 provides an example of such a transformation of the data from 

the grid to a tabular format.  

 1 2 3 4 5 6 7 8 9 

1 2 0 0 1 2 1 0 0 0 

2 5 6 1 4 3 1 0 2 0 

3 2 7 0 1 5 0 0 1 0 

4 1 0 0 0 1 1 0 2 0 

5 0 1 2 5 5 0 1 2 1 

6 1 6 5 4 4 1 0 0 0 

7 0 4 6 9 2 1 2 0 0 

8 1 3 7 5 3 1 1 1 1 

9 0 0 2 3 4 0 0 3 1 

x 

y 

du 

0.9

0.9

0.7

0.3 

0.4 

0.3 

re 
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0.6
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Figure  8-14 Example of two dimensional grid (bin Size=5) for crp and htpY 

In Table  8-18 each feature (column) represents a cell and each row is a complete grid 

which belongs to a gene pair.  We added a final column which was the indicator of the 

class label for that pair.  

Table  8-18 An example of data transformation from the grid for feature weighting approach 

Algorithm: We applied a neural network algorithm specifically a multilayer perceptron 

with no hidden layer to find out the weight of each feature based on the class labels. The 

neural network that we used was the implementation of a multilayer perceptron from the 

Weka package (Hall, Frank et al. 2009). We used 10 fold cross validation resampling. 

Result: This experiment confirmed our hypothesis. The accuracy was 68.67 percent. The 

result of the most important negative features for each class label is presented in the 

following table. 
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Table  8-19 The result of multilayer perceptron for feature weighting  

                                       ”ac”                                           ”re”                                              

 

 

 

 

 

 

 

 

 

                --                    

 

Table  8-19 shows two distinct areas with negative weights for “ac” and one for “re”. For 

“ac” the negative areas are the High-Low and for “re” are Low- High. This means 

features in High-Low area have negative weights in relation to “ac” class and features in 

the High-High area have negative weights in relation to “re” class. In other words, we 

can use the existence of the opposite relationship pattern in order to detect false positives. 

In this experiment, we aimed to find evidence from a data mining perspective to validate 

our heuristic post-processing. Here, we demonstrated that the concept of considering the 

absence of the opposite relationship for post-processing was supported by the expression 

data.   

 

 

Feature Weight  Feature Weight 

x6y1 -12.78  x6y9 -9.15 

x6y6 -11.27  x0y0 -6.89 

x4y1 -9.07  x6y7 -6.18  

x1y9 -9.04  x6y10 -5.85  

x3y10 -8.9  x7y8 -5.7  

x10y6 -8.47  x9y8 -5.22  

x3y7 -8.26  x8y9 -5.22  

x1y7 -7.48   

x1y8 -5.92     

x2y8 -5.92     

x2y10 -5.97     

x10y0 -5.2     
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8.9 Experiment 9: Post-Processing Using Data Processing 

Inequality (DPI) 

Purpose: In this experiment we applied an information processing technique called Data 

Processing Inequality (DPI) (Cover and Thomas 1991) to prune the search result to 

reduce the number of false positives. This method was previously applied in ARACNE 

(Margolin, Nemenman et al. 2006) along with Expected Mutual Information. The DPI 

procedure was applied to the output of our Fixed 2D Visualized Co-regulation function 

to reduce the number of its false positives and further improved the performance of 

pairwise discovery.  

Setup: This experiment was performed on the output of our Fixed 2D Visualized Co-

regulation function on the sixth dataset. We chose that output particularly as it had the 

highest number of true positives compared with other results. This provided us with a 

better opportunity to observe the effect of DPI in reducing the true positives as well as 

false positives. The DPI method was implemented in Python.   

Figure  8-15 Example of Data Processing Inequality (DPI) 

Algorithm: Consider we have a situation where there is a chain of three genes such as 

shown in Figure  8-16. Gene 1 affects Gene 2 and Gene 2 effects Gene 3. We eliminate 

the connection from Gene1 to Gene 3 if it is the weakest connection among the three of 

them. The connection is strong if it has a greater association value and is weak if it has a 

small association value. In other words if (gene 1, gene 2) > (gene 1, gene 3) and also 

Gene 1 Gene 3 Gene 2 



 Chapter 8. Approach 3: Experiments with Co-regulation Function 

189 

 

(gene 2, gene 3) > (gene 1, gene 3) then we can eliminate (gene 1, gene 3). Figure  8-16 

Example of Data Processing Inequality (DPI) 

The reason for doing this is that sometimes the observed relationship between genes is 

not a direct relationship and happens because of the influence of other genes in a chain. 

Association measures consider any relationships greater than a threshold as a direct 

relationship; however a strong correlation does not necessarily mean a direct 

relationship.  

We were interested only to find direct relationships; therefore, we need a way to detect 

these indirect relationships and remove them. DPI did this job for us by detecting the 

weakest link in the chain and by assuming this weak link is the result of an indirect 

effect.  

Result: The result of performing DPI on the output of our Fixed 2D Visualized Co-

regulation function on the sixth benchmark is presented in Table  8-20. The sixth dataset 

had a higher number of true positives and this property enabled us to see the maximum 

effect of DPI on true positives. DPI process affects true positives as well as false 

positives. We also applied DPI on the fourth dataset and the result is presented in 

Table  8-21. 

Table  8-20 The result of post-processing with DPI on the output of the fourth benchmark 

 True 
Positives 

False 
Negatives 

False Positives Recall/Precision F-measure 

Before 72 221 430 0.25/0.14 0.18 

After 61 232 298 0.21/0.17 0.19 

Table  8-21 The result of post-processing with DPI on the output of the sixth benchmark 

 True 
Positives 

False 
Negatives 

False Positives Recall/Precision F-measure 

Before 87 206 437 0.297/0.15 0.2 

After 77 216 380 0.263/0.18 0.22 
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Significance Test: We performed a binomial test to find out if the results after and 

before applying the DPI post processing are significantly different. The following 

formulas show the calculation of the binomial tests. 

Fourth Benchmark: 

Sixth Benchmark: 

The result confirmed the effectiveness of the DPI post-processing step; however we 

observed that by using DPI we removed some of true positives as well. This situation did 

not happen with our heuristic post-processing. We also observed that when the number 

of output records was higher the process was more effective.  

8.10  Summary 

This chapter mainly reported the experiments related to different versions of our 

proposed co-regulation function. Our association measure passed through three different 
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designs (versions). The first version was based on a one-dimensional bin. The function 

calculated a gene pair association in the following way. First, it discretized the values of 

each of gene into individual bins. Subsequently, it calculated the first quartile and the 

third quartile of each gene and considered them as the low and high boundaries. Then it 

counted the number of times that the two genes appeared as being High-High and High-

Low in the same sample. Based on these numbers, our algorithm determined the strength 

and type of the relationship.  

In the second version, we calculated a two dimensional grid for each gene pair. Then the 

area of interest was restricted using the first and the third quartile of each gene. The area 

of interest was the bottom right corner for “ac” (activation) and the top left corner for 

“re” (inhibition). If the numbers in the High-High area exceeded more than a threshold 

this relationship was labelled as “ac”. If the sum of numbers in the High-Low area 

exceeded more than a specific threshold, this was considered as an inhibition and the 

relationship was labelled as a “re”. A dual effect was observed when there was a 

considerable sum of High-Low and Low-High numbers.  

This function demonstrated a high performance when it was compared with Pearson’s 

correlation measure and Mutual Information. We also showed by examples, that this 

function has the ability to show us any pattern that, by use of other measures, we would 

not be able to detect. This function also has a great visualization ability that can be used 

by experts in order to better understand the pattern of changes and the relationship 

between two genes.  

In the third version of our association function, we tried to make the previous function a 

function with dynamic thresholds. In the first attempt, a sliding window was used over 

the grid to maximize a function and find the densest area inside the grid automatically. 

This algorithm was able to detect the area of interest dynamically; however its 

performance was not high enough. 

In the second attempt, we used machine learning algorithms to learn the regulatory 

relationships patterns dynamically. In this way we could have a function with automatic 
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detection of thresholds. In doing this, we transformed the information inside the grid to a 

tabular format. This is the desired format for supervised classification algorithms. Each 

cell inside the grid became a feature and a row was made from all cells belonging to a 

grid. We used a combined dataset for this experiment which was a combination of our 

five benchmarks and also some artificial records. The artificial records were added to 

teach the clear regulatory relationships patterns to the classifier. We then applied a 

supervised classification algorithm (k-star) to this dataset. Our result demonstrated that 

we could train the machine learning algorithm to learn the regulatory relationships 

patterns. The result also showed that by increasing the number of “none” records; we 

could improve the classification performance.  

We also tried to validate our assumptions about the regulatory relationship patterns in 

terms of machine learning by applying data mining techniques to our datasets. We 

transformed the data into a tabular format and applied a feature selection algorithm to 

discover the most important cells of the grid in relation to class labels. The result largely 

confirmed the validity of the regulatory relationship patterns we assumed based on the 

definitions of the regulatory relationships. In addition to feature selections, we tried 

another technique based on decision trees. In this technique, we tried to find general rules 

that could explain the relationships between the area of the densest cluster inside the gird 

and the class labels. In doing this, we applied the k-means clustering algorithm to 

discover the densest cluster inside the grid. Subsequently, we calculated the border of the 

densest cluster to find the minimum and maximum of boundaries. The above routine was 

performed on the known gene pairs which already had labels. Then, we used a decision 

tree to discover rules relating the location and density of the cluster to the class labels. 

This experiment also validated our assumption about the regulatory relationship patterns.  

To achieve a higher performance, we decided to apply a post-processing step to eliminate 

some false positives. We applied two different post-processing methods. The first 

method was based on heuristics and the second one was Data Processing Inequality 

(DPI) a measure from information theory. Our proposed heuristic post-processing 

method looked for the absence of the opposite relationship in order to confirm a true 
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positive. Therefore, a false positive was defined where a pattern of the opposite 

relationship existed. For example if a pair was labelled as “ac” we looked for a pattern of 

“re”. If such a pattern existed we labelled this pair as a false positive and removed it. We 

limited this procedure to self-regulation only and achieved promising results. We also 

applied the DPI procedure to the result of our association function to delete false 

positives. This enabled us to further decrease the number of false positives. Both of the 

post-processing methods were effective and resulted in improvements in performance. 

The advantage of our heuristic post-processing over DPI was that our method was more 

accurate and did not remove any correct answers.  

In summary, in this chapter we provided experiments with our co-regulation function. 

These experiments confirmed that using the definition of regulatory relationships in order 

to design a function, can improve the performance. We also provided supporting 

experiments that validated our assumptions about the regulatory patterns in terms of 

machine learning language. Our Fixed 2D Visualized Co-regulation function not only 

performed well but also provided us with a visualization tool. The visualization feature 

of our function has the potential to provide useful information for experts. We also 

showed by example that this function has the ability to show us any pattern that by use of 

other measures we would not be able to detect. Finally, we provided experiments related 

to post-processing procedures. Our heuristic based post-processing procedure was 

demonstrated to be quite useful and effective. We also applied DPI post-processing on 

the result of our co-regulation function and proved its effectiveness. 
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Chapter 9 

 Approach 3: Heuristics based on Network 
Structure  

"See things not as they are but as they might be,"  

- biography of Robert Oppenheimer 

9.1 Introduction 

The research question which drove this thesis was: “How can reliance on microarray 

data and heuristics be reconciled to improve GRN discovery?” In  Chapter 6 we 

mentioned that the result of the second approach inspired us to use more domain 

knowledge. Thus in the third approach we incorporated more heuristic information 

compared with the other two approaches. In the first strand of the third approach, the 

definitions of the regulatory relationships were employed in order to design an effective 

association measure, which not only achieved a better performance but also had great 

visualization ability. We also employed heuristics to design a post-processing procedure 

as well as a background correction procedure. In  Chapter 7 we introduced our co-

regulation function and concepts behind that and in  Chapter 8 we provided the 

experiments which supported the success of our idea. 

In this chapter, we will introduce the second strand of the third approach. In this strand, 

the general question was the same, but we used another type of heuristic information to 

achieve an even higher performance. In the second strand, we used structural properties 

of the known networks in order to design an efficient computational model. The research 

question here was:  “How can we use the properties of known gene regulatory networks 

(such as structural properties) in order to design a more effective inference algorithm?” 
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In this chapter we will describe our idea for using structural properties of the known 

network in order to design an effective GRN discovery algorithm. The idea is simple but 

powerful. We arrived at this idea by a comprehensive literature review and analysis of 

properties of biological networks, specifically gene networks. Firstly we will review the 

literature related to the structural properties and subsequently we will present a shortlist 

of the facts found in the literature. 

In the second part of this chapter, we will discuss how we made use of such information 

in our modelling and we will present our algorithm based on such structural information. 

Finally, in section  9.5 we will report the results of our experiments with our designed 

algorithm and also the combination of this algorithm with the Fixed 2D Visualized Co-

regulation function introduced in the previous chapter. 

9.2 Analysis of Structural Properties of Biological 

Networks  

In this section, we will review the structural properties of biological networks. The main 

focus is on gene networks and their properties. Our research question looks for any 

heuristic information that can be used to guide the search process in order to achieve a 

better performance. In order to obtain this information we explored the structural 

properties of the known biological network. As mentioned in  Chapter 2 (Background), 

biological networks are modelled in bioinformatics as a connected graph. In this section 

we will describe some statistics and specifications of these biological graphs. Biological 

graphs can be divided based on the type of their elements to metabolic networks, protein 

interaction networks and gene transcription (regulatory) networks. In general, there are 

many similarities between these types in terms of the graph structure and properties.  

The topologies of graphs are characterized by the degree of distribution, clustering 

coefficient, and  with the presence or absence of subgraphs or motif characteristics 

(Almaas, Vazquez et al. 2007). There are also other characteristics and properties of a 
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graph that cannot be obtained from topological information and we will review them 

separately.  

9.2.1 Degree Distribution (Scale-Free Property) 

In general, biological networks are far from fully connected. In a fully connected 

network with K nodes, the number of edges is K2. Experiments have demonstrated that 

in the biological networks  the number of edges is approximately K (Kepes 2007; Maslov 

2007).  

This shows that this graph is a scale-free graph. Scale-free means that when there is an 

increase in the number of nodes the number of edges does not scale up as the square of 

the nodes but instead increases with the same order as the nodes. As a result, a scale-free 

graph has a specific topology in which some nodes act as highly connected nodes having 

high degrees, while most other nodes are of low degree.   

The degree of a node is the mean number of edges connected to the node. In other words, 

in a scale-free network some nodes (known as hubs) are highly connected and most of 

the nodes are less connected. Scale-free networks' structures and dynamics are 

independent of the number of their nodes (Kleinberg 2000). This means a network that is 

scale-free will have the same properties regardless of the number of nodes. Many real 

world networks are scale-free networks which makes the study of this class of networks 

important. Formally, scale-free networks show the distribution illustrated in Equation 

(9.1), known as a power law relationship (Barabási, Newman et al. 2006; Junker and 

Schreiber 2008).  

Figure  9-1 represents Equation ( 9.1). In this figure and equation, k (horizontal axis) is the 

average node degree, y is a parameter whose value is typically in the range 2 < y < 3 and 

the diagram represents the fact that there is a reverse relationship between k and the 

 ~  ( 9.1) 
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degree distribution P(k) (vertical axis). This means that when degree increases the degree 

distribution decreases. 

 

 

Figure  9-1 Characterizing degree distribution of biological networks 

Figure  9-2 presents a protein interaction network which is an example of scale-free 

networks in biology. As you can see, Figure  9-1 represents a specific structure known as 

scale-free structure where a few nodes are highly connected and the majority of nodes 

are connected to the average of two other nodes. Different colours represent different 

types of proteins.  

Biochemical activity in both metabolic and genetic networks is dominated by several Hot 

links that represent a few highly active nodes embedded into a web of less active nodes. 

This is not a unique feature of biological systems: “Hot links” appear in a wide range of 

non biological networks where the activity of the links follows a wide distribution. The 

root of this property comes back to the network topology; the “scale-free” nature of the 

network (Menezes and Barabási 2004). The highly connected hubs seem to act as glue in 

these webs, allowing most nodes to connect to each other through a small number of 

jumps. In a random network only 27% of the nodes are reached by the five most 
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connected ones, while we reach more than 60% of the nodes in a scale-free network. This 

illustrates the key role played by the hubs. Hubs are also the most important and the most 

essential genes (Goh, Cusick et al. 2007). In regulatory networks, hubs form an important 

centre of regulation with a far-reaching control. They have significantly more outgoing 

edges than incoming edges with many feed forward loops around them to make them 

robust against failure (Konagurthu and Lesk 2008; Seo, Kim et al. 2009).   

 

 

Figure  9-2 Yeast protein network interaction (from 
http://www.bordalierinstitute.com/images/yeastProteinInteractionNetwork.jpg) 

9.2.2 Average Path Lengths (Small World Property) 

Biological networks have small average link distance between any two nodes (small-

world property)(Albert 2005). In small world networks most of the nodes are not 

neighbours of each other, but can be reached from every other node by a small number of 
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edges or steps. In other words they are  rich in local connections, with a few long range 

connections (Kleinberg 2000). This sort of graph can be classified based on the mean-

shortest path length. Small world networks look like some dense subgraphs which are 

connected through a few edges to make the overall network (Kleinberg 2000; Vázqueza, 

Flamminia et al. 2003). Many real world problems have the small network property, such 

as the Internet and social networks, as well as gene and protein networks. The majority of 

genes in all databases have less than ten interaction partners (Mathivanan, Periaswamy et 

al. 2006). The average number of links or degrees reported by different studies vary, but 

fall between two and seven (Hallinan and Wipat 2006; Mathivanan, Periaswamy et al. 

2006).  

 

Figure  9-3 The relationship between degree distribution and percentage of genes based on (Davierwala, 
Haynes et al. 2005)  

Another feature of biological networks is that the most important elements (more 

essential for our body) have a higher degree (Davierwala, Haynes et al. 2005; Roth 

2005). For example, the highly connected proteins are more essential and their average 

connectivity is around 10-15 edges per node. This means hubs which are the most 

connected nodes produce the most important and essential proteins (Goh, Cusick et al. 

2007).  
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9.2.3 Clustering Coefficient (Modularity) 

A common technique for measuring the tendency of an element to form a cluster in a 

network involves determining the clustering coefficient. Clustering coefficient (CC) is 

defined as the edge density around a vertex’s neighbours and can give us insight into the 

local structure of a network. Clustering coefficient is also known as clustering of a node, 

and is defined for a node  with degree  as follows (Almaas, Vazquez et al. 2007):  

The clustering coefficient is calculated for each node and then overall clustering is given 

by ∑ . For example, in a small world protein interaction network, a high clustering 

coefficient property indicates that proteins are likely to form a subnetwork (clique) or a 

dense cluster by their interactions. This suggests a structure where some dense clusters 

are connected to each other through links and most of the edges have a very short 

alternative path length. Only less than 5% of the edges have the shortest alternative path 

length of more than five (Pei and Zhang 2005).  

It has been shown that for biological networks the average clustering follows a power-

law form as   ~  . This suggests an existence of a hierarchy of nodes with 

different degrees of modularity (measured by the clustering coefficient) overlapping in 

an iterative manner (Ravasz, Somera et al. 2002; Almaas, Vazquez et al. 2007). These 

modules are usually functional modules which are a group of genes working together to 

perform a function.  

Biological networks are modular and these modules are associated with well-defined 

functions as you can see this in Figure  9-4. Modules have been defined as functionally 

buffered, robust, independently controlled, plastic in composition and interconnectivity, 

and evolutionarily conserved. The evolutionary conservation of modules was especially 

beneficial for gene networks involved in early development. This special feature of some 

of the modules is tightly linked to their robustness under different sources of noise.  

 2
1

 ( 9.2)  
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Figure  9-4 A Protein Interaction Network (from: 
http://science.cancerresearchuk.org/sci/lightmicro/116743) 

9.2.4 Motifs and Subgraphs 

We described earlier in the Introduction and Background chapter that a gene can activate 

or inhibit another gene. A dual effect is possible as well, when in some circumstances 

there is an activation effect and sometimes there is an inhibition effect (Kepes 2007). 

This implies that a graph of genetic interactions is naturally of a directed graph.  

The interaction between genes is not limited to pairs. A gene might activate another gene 

which in turns causes a third gene to be activated. Network motifs are small building 

blocks composed of two or more interactions (or ‘edges’) that are overrepresented in 

GRNs compared to randomized networks (Milo, Shen-Orr et al. 2002). The interaction 

between genes causes a cascade or genetic regulatory pathway. If such a pathway is 

closed onto itself, it forms a feedback circuit. Some examples of feedback circuits are 

self-regulation and feed-forward loops. The best-studied motifs are feed-forward loops. 

Transcriptional regulatory networks of cells and some electronic circuits are all 

information processing networks that contain a significant number of feed-forward loops. 

This pattern is found in GRNs from Bacteria, yeast and C. elegans (Arda and 

J.M.Walhou 2009). This pattern does not show up in the other type of networks. In 
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transcriptional regulatory networks, this pattern melds into patterns of clusters (Almaas, 

Vazquez et al. 2007). Of course there is a global feedback in the network as well.  

Another important motif is self-regulation. It has been demonstrated that as many as 59% 

of the transcription factors in Escherichia coli regulate the transcription rate of their own 

genes (Hermsen, Ursem et al. 2010).  

9.2.5 Other Properties 

In addition to the above properties, there are some other structural properties that we did 

not discuss above, but which have been identified in system biology literature. The 

following information is from Kitano (2007).  

1. Nature uses network in order to make a system which is robust against noise and 

failure.   

2. Positive feedbacks are used to create bistability and make the system stable 

against minor perturbation in stimuli and rate constants. 

3. Alternative mechanisms and concepts for a function increase tolerance against 

failure.  

4. Modularity provides isolation of perturbation from the rest of the system. A cell 

is the most significant example. Modules inside the network buffer the 

perturbations. 

5. Buffering properties isolate noise and fluctuations (decoupling). 

9.3 Summary of Heuristics Based on Structural 

Properties 

In summary, there is strong evidence that biological networks are scale-free, small world, 

hierarchical and modular (Ravasz, Somera et al. 2002; Ma, Kumar et al. 2004). They also 

show specific patterns. They have a significant number of self-regulatory elements and 

feed-forward loop (59% in E. coli). 

Network models therefore have the following properties: 
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1. Nature uses networks in order to make a robust system against noise and failure.   

2. Biological networks are represented as connected graphs in the computational 

world. 

3. They demonstrate scale-free network properties with hierarchical structure. 

4. There is a small average link distance between any two nodes (small-world) 

property. 

5. The average degree falls between 2 and 7 (average around 5). 

6. Highly connected nodes called hubs are more essential, having a degree of 10-15. 

They provide a strong backbone for the network and any mutation of them is 

critical and fatal (Barabási, Gulbahce et al. 2011). 

7. GRN networks have a considerable amount of loops and especially have a motif 

of feed forward loops which are melded into the structure of the network.  

8. Positive feedback is used to create bistability, which make the system learn 

against minor perturbation in stimuli and rate constants. 

9. 59% of the total transcription factors in Escherichia coli regulate the transcription 

rate of their own genes (Hermsen, Ursem et al. 2010).  

10. Alternative mechanisms and concepts for a function increase tolerance against 

failure.  

11. Modularity provides isolation of perturbation from the rest of the system. A cell 

is the most significant example. Modules inside the network buffer the 

perturbations. 

12. Buffering properties isolate noise and fluctuations (decoupling). 

13. Bow-tie global architecture (diverse overlapping inputs and output cascades) is 

connected by a core network (Zhao, Yu et al. 2006). 

14. Indirect relationship is where there is a chain between two genes and it usually 

shows a weaker relationship. The longer the chain, the weaker the interaction. 
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The direct relationship presents a strong gradual change (Akitaya, Seno et al. 

2007). 

15. The distribution of the pairwise correlation coefficients of genes follows a power 

law. That is, while the majority of gene pairs have only a few links, a few gene 

pairs display a significant number of edges connected to them (Kepes 2007). 

The above information about properties of gene networks can help us to choose the best 

representation for GRNs and design efficient algorithms for GRN inference. In this thesis 

we used structural properties of the network in our second and third approaches.  In the 

second approach we used local properties of the network and its modularity to design a 

more effective global search algorithm based on a Genetic Algorithm. Our solutions in 

the genetic algorithm were partial solutions, each containing a subgraph and at the end of 

the evolutionary process we merged them to find the complete network. Our fitness 

function also considered the shape of the network to favour the solutions which were 

more similar to the known networks with small world property. 

In the first strand of the third approach, we mainly used the definition of regulatory 

relationships, which is not a structural property. We also used fact number 14 (about 

indirect relationships) to find the indirect relationships and eliminate them. Here in the 

second strand of the third approach we used more structural properties in order to 

achieve a better discovery process. The main property that we used was the scale-free 

property. Specifically, we used the concept of hubs and their relationships. In the first 

step, we found the hubs then we built a network of hubs in order to build the core 

structure of the unknown network. Our algorithm builds the structure of the network in 

an incremental fashion by taking into account structural properties such as the degree of 

each node and shortest path length. The detailed description of our method is presented 

in the following section.   
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9.4 Approach 3: Algorithm Based on Heuristics from 

Network Structure 

Regardless of the approach for reverse-modelling of GRN the hardest point is to identify 

the network structure (d'Alche-Buc 2007). This problem is known to be a NP-hard 

problem (Chickering, Heckerman et al. 2004). NP-hardness either calls for a relaxation 

of the combinatorial problem into a continuous one or demands heuristics to explore the 

finite but huge set of candidate networks for a given number of genes. We looked at the 

network properties to find which heuristics we could use in order to find the structure of 

the graph more effectively. The key finding was Hub Network.  

Hubs are the most important elements in the network. They are usually the most 

important genes which regulate many other genes. Therefore any mutation or changes in 

them results in the collapse of the network structure. Hubs are evident in many 

laboratories experiments because they have so many connections and are therefore well 

known genes. Further investigation told us that the hubs are connected. They make a 

network which is an essential and critical part of the GRN. This primary structure, the 

network of hubs, acts as a backbone to keep the network together. Figure  9-5 shows the 

hub nodes in the full E. coli network (Ma, Kumar et al. 2004) which we drew using 

Cytoscape software (Shannon, Markiel et al. 2003). The Hub Network which builds the 

core structure of the network is highlighted in the graph.  
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Figure  9-5 The E. coli full regulatory network and its Hub Network  

This property of the network gave us the idea to use the Hub Network in order to build 

the core structure of the unknown network. It was not desirable to be limited to existing 

knowledge as this would limit the discovery of new information therefore we needed to 

consider not only building the network based on the connections in the known network, 

but also based on what the expression data shows. Despite the changes in the number of 

connections between normal and diseased conditions, the overall distribution remains the 

same. There is evidence that differential connectivity follows systematic gain or loss of 

connections and distribution of gain and loss is symmetric (Leonardson, Zhu et al. 2010). 

Therefore we can assume that connections in experimental conditions follow the same 
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distribution as the known network. In addition, it was demonstrated that nodes with high 

connectivity (hubs and super hubs) tend to have low levels of change in gene expression 

and genes with a high level of change in expression are more likely to be peripheral 

nodes (low connectivity) in the network (Lu, Jain et al. 2007).  

Finding the structure of a GRN is both the most difficult part and the initial part of GRN 

discovery. Therefore finding the right structure will help improve the process drastically. 

By using a network of hubs we have the opportunity to not only find the right structure, 

but also to find the network which has similarity in terms of structure with the networks 

from domain knowledge.  

There are further heuristics from the domain that we used here. Domain knowledge can 

tell us the average degree of each hub. This knowledge usually is in the form of known 

interactions saved in a public database and based on such knowledge; we usually know 

approximately how many genes are connected to each hub. This can guide us to where 

we want to add nodes to the Hub Network. The network structure also has small world 

property; therefore the average neighbourhood size is around 5. 

In order to use such information we decided to build the network incrementally. We 

decided to build the first layer or fundamental structure of the network from hubs by 

looking at the known network. We also considered building the connections between 

hubs based on the expression data. This resulted in a network of hubs which makes the 

first layer of our target network.  

The second layer was calculated based on the first layer.  The second layer was built by 

the most connected nodes to the hubs. Having known the degree of each hub and having 

known that non hubs have average degree of one or two; we applied a background 

correction after computing the pairwise association of each gene by considering these 

facts.   

In our background correction process, we first normalized the correlation values between 

each gene and any other genes and filtered those which were less than 0.5. Then we 

chose the top one from the list according to the degree of the node and attached them to 
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the node. We created a rule of thumb for this selection procedure. If the degree of the 

node was less than 15 we chose exactly according to the degree of the node, otherwise 

we chose 15 plus one third of the degree minus 15.  

In ( 9.3), n is the number of genes which we chose from the normalized ranked list. This 

equation tells us that if a hub node has degree of 10 in the domain knowledge then we 

chose 10 nodes from that list to be attached to it. If a hub’s degree is 42 (like “crp”) we 

chose only 15+ (42-15)/3 which is 24. As mentioned in  Chapter 8 , this helps to eliminate 

connections which are the result of genes that appear to have connections with too many 

other genes based on microarray data.  

In the background correction process all non hub genes get only their top ranked gene 

attached to them (as they have degree of one). Based on the information from the 

literature non hubs have usually less than five nodes and are most likely to have one or 

two connections. Therefore we chose to attach only one node to non hub nodes to build 

the third layer of the network. 

We also built the network incrementally layer by layer. There is literature supporting 

such an incremental approach using a dynamic threshold. In a study by Gowda et al. 

(2009), the correlation for each gene with the rest of the genes is calculated and sorted 

based on their rank, then a classification method was used to decide whether to add a 

connection between genes from the ranked list (starting from top ones) to the given gene, 

whenever the error of classification does not increase.    

We also analysed the skewness of the expression distributions in order to find whether 

there is a relationship between false positives and the amount of skewness of distribution. 

We found that there is a relationship between skewness of more than a certain threshold 

and false positive answers. Therefore we pruned the answers related to genes with 

extreme skewed distributions, if skewness of the gene was greater than 1.5 or the sum of 

the skewness of the two genes in the pair was greater than 2.2.  

 ,    15
15 15 0.3, 15

 ( 9.3)  
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The proposed algorithm takes into account all of the above processes and is as follows:  

1. Find the hubs from the known network (We chose any node with degree more 

than four to be considered as la hub).  

Also find the degree of each hub. 

2. Calculate pairwise associations between each pair of hubs in order to find the 

network of hubs. The pairwise associations are calculated based on the expression 

data only. For this purpose any association measure can be used such as 

Pearson’s correlation or our proposed co-regulation function. 

3. Now that the Hub Network is established, build the second layer by finding more 

nodes and adding them to the network incrementally. In doing this, calculate 

pairwise associations for each hub against all other non-hubs. 

4. Remove those genes which show a skewed expression distribution (This is 

because those genes with extreme skewed distributions are more likely to be 

noise). 

5. Normalize these association values for each hub and then rank them and choose 

the top ranked one according to the formula presented in ( 9.3). Add those top 

ranked ones to the Hub Network. Now the second layer of the network is 

completed. 

6. Calculate the pairwise association for each node in the second layer with every 

other node which is not already in the network. Normalize the values and choose 

the most correlated gene to add to the network (considering degree of two for non 

hubs). Consider removing the skewed one here as well. Now the third layer of the 

network is ready.  

7. For those nodes that are not already in the network, calculate the most correlated 

place to put them.  

We have to mention that the result of this algorithm using the co-regulation function is a 

directed network as our co-regulation function specifies a directional regulatory 

relationship between each pair of genes.  
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9.5 Experiment 10: Using Hubs for Structure Discovery 

Purpose: To test how effective the algorithm to find the core structure of the target 

network.   

Setup: In this experiment we used the default dataset (set 1). We also used the original 

E. coli network to find the hubs and their degree.  

Algorithm: As illustrated in the previous section above.  

Result: The result of this procedure gave us 100 percent accuracy in the first layer, 

where the Hub Network matched exactly. The accuracy for the second layer and the last 

layer dropped considerably. The target network was also quite similar to the known 

networks in terms of the structural properties. The result was clearly promising and 

demonstrated the great ability of using hubs to build the GRN network. Table  9-1 and 

Figure  9-6 show the Hub Network discovered in the first stage of our algorithm which 

was 100% matched with the Hub Network from the E. coli full regulatory network. The 

last column in the table indicates the measure of co-regulation between the two genes. 

We tried Pearson’s correlation along with this approach as well, but the presented result 

here came from our 2D Visualized Co-regulation function. In that function, any number 

greater than 0.17 is considered as a significant association and the maximum association 

was 0.25 for “ac” and “re”. 
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Table  9-1 Hub pairs extracted in Experiment 11 

 Gene1 Gene2 Relationship Co-regulation 

crp dcuB_fumB re 0.18 

fnr dcuB_fumB ac 0.17 

narL dcuB_fumB re 0.15 

arcA focA_pflB ac 0.19 

crp focA_pflB ac 0.19 

fnr focA_pflB ac 0.2 

himA focA_pflB ac 0.2 

narL focA_pflB re 0.17 

arcA nuoABCEFGHIJKLMN re 0.21 

fnr nuoABCEFGHIJKLMN re 0.21 

himA nuoABCEFGHIJKLMN re 0.21 

narL nuoABCEFGHIJKLMN ac 0.18 

crp rpoH du 0.17 

cytR rpoH re 0.18 

rpoE_rseABC rpoH ac 0.2 

arcA Soda re 0.17 

fur Soda re 0.18 

himA Soda re 0.19 

crp tdcABCDEFG ac 0.17 

fnr tdcABCDEFG ac 0.18 

himA tdcABCDEFG ac 0.18 
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Figure  9-6 The Hub Network generated in Experiment 11 

9.6 Experiment 11: Using Hubs along with 2D 

Co-regulation Function  

Purpose: To test the maximum performance of the model that employs the Hub Network 

and Fixed 2D Visualized Co-regulation function. The purpose of this experiment was to 

make further improvement in the performance of GRN discovery by using all the 

elements of the third approach. In this experiment we did not use only the DPI method 

for post-processing as it was tested later on after this experiment.   

Setup: This experiment was performed on the first and the second dataset because they 

have two different network structures. In this experiment we used our Fixed 2D 

Visualized Co-regulation function along with the Hub Network algorithm.  
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Algorithm: The algorithm is similar to the previous one, the only difference between 

this experiment and the previous experiment is that this one was applied to the output of 

our Fixed 2D Visualized Co-regulation function, after it passed the heuristic post-

processing step.   

We used the 2D Fixed Visualized Co-regulation function described in section  8.3 and our 

heuristic post-processing described in section  8.8 for this experiment. Basically our Hub 

Network algorithm, mentioned previously, can be applied to the output of any other 

association function, but for reaching the maximum performance we used our 2D Fixed 

Visualized Co-regulation function here.  

We first applied our association function to expression data and chose the final pairs and 

then applied the heuristic post-processing step for further reduction of false positives. 

Then we used those final pairs as the input for our Hub Network algorithm.  

 Result: We compared the performance of our system against some of the most well 

known systems for GRN discovery. For this purpose, we used implementation of these 

systems in minet package (Meyer, Lafitte et al. 2008) inside Bioconductor. We called 

them through our Python code using RPy scripts. 
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Table  9-2 Result of Experiment 12: Using hubs along with our co-regulation function on the first benchmark 

Method Dataset Total 
Records 

True 
Positive 

False 
Negative 

Recall Precision F-measure 

ARACNE 1 140 24 269 0.082 0.17 0.11 

CLR 
T=10 

1 589 39 254 0.13 0.07 0.09 

Hub 
Network 

1 206 41 252 0.20 0.14 0.17 

Table  9-3 Result of Experiment 12: Using hubs along with our co-regulation function on the second benchmark 

Method Dataset Total 
Records 

True 
Positive 

False 
Negative 

Recall Precision F-measure 

ARACNE 2 218 31 203 0.13 0.14 0.14 

CLR T=8 2 842 64 170 0.27 0.08 0.12 

mrnet & 
norm=0.5 

2 178 28 206 0.119 0.15 0.14 

Hub 
Network 

2 221 47 187 0.22 0.21 0.21 

We ran ARACNE (Margolin, Nemenman et al. 2006), mrnet (Meyer, Kontos et al. 

2007), CLR (Faith, Hayete et al. 2007) on the first two benchmarks and the results are 

presented in Table  9-2 and Table  9-3. We can see that the result improved even further 

compared with applying solely the 2D Visualized Co-regulation function. This result 

reported further improvement on the performance, especially over the second 

benchmark. The difference between the performance of our system and other systems 

was more considerable on the second benchmark. The reason for that is because the 

second dataset had a similar structure to the known networks compared with the first one. 

Therefore our system which employed structural information of the known networks 

resulted in a better performance on the second benchmark. Figure  9-7 shows a partial 

view of the network produced by our system using the second benchmark. 

Significance Test: We ran a paired t-test on the above results to find if the results from 

the HubNework algorithm are significantly better than those of ARACNE and CLR. We 

chose paired t-test as the changes in F-measure, precision and recall for different 

methods are not independent. As paired t-test assumes that there is no difference between 

the variance of two distributions, we ran F-test to confirm this assumption.  
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Table  9-4 Result of significance test for Experiment12 

Method Recall 
P-

value 
Is 

Significant 

ARACNE against 
HubNetwork 

=TTEST({0.11,0.14},{0.17,0.21},1,1) 0.0244 

 

Yes 

CLR against HubNetwork =TTEST({0.09,0.12},{0.17,0.21},1,1) 0.0187 

 

Yes 

This result confirms the effectiveness of our Hub Network heuristic. Not only did the 

system find the interactions that existed between hubs (existing knowledge) as we 

showed on the previous experiment, but also it was capable of finding new interactions 

as was indicated by the rate of true positives while producing far less false positives. We 

have to mention one characteristic of the Hub Network algorithm here. In this algorithm, 

the size of the output network does not vary as much as in the other algorithms. The 

reason behind this is that the structural information is constant and the only difference 

relies on the Co-regulation function performance therefore, it shows a smoother 

behaviour. Using the structural information has both advantages and disadvantages. The 

main advantage is improved performance and the disadvantage is that it makes the 

approach dependent to the availability of the information about known hubs from domain 

knowledge. In the absence of such information the first step cannot be applied but the 

rest of the steps of the algorithm are still applicable. 

As mentioned earlier our Hub Network algorithm can be used in combination with other 

association functions such as Mutual Information. It can also be employed in Bayesian 

Network approaches.  
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Figure  9-7 Visualization of the result network produced in Experiment 12 using Cytoscape  

9.7 Summary 

In this chapter, we introduced and investigated the second main idea inside our third 

approach. In this approach, we used more heuristics from molecular biology domain 

knowledge to improve the process of GRN discovery. Specifically, we used the Hub 

Network to construct the primary structure of the network. We also used the degree of 

each hub in our process. 

We first explained our overall algorithm, and then provided the related experiments. Our 

algorithm first extracted hubs from the known GRNs related to the same organism to 

build a network of hubs based on microarray expression data. This provided us with the 

first layer or foundation of the target network. We used this small network as a primary 
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structure of the new network to build the rest of the network. The algorithm also used the 

degree of each node to build the network incrementally layer by layer. The degrees of 

nodes were extracted from the domain knowledge and gave us a clue about possible 

connections in the unknown network. Based on this information, we created a procedure 

which based on we determined how many nodes we needed to attach to the hubs and also 

the non hubs in each layer.  

In the second part of the chapter, we presented experiments related to our final system. In 

our system we combined three algorithms. We combined our Fixed 2D Visualized Co-

regulation function to identify edges (gene pairs), our post-processing procedure to 

decrease the false positives rate, and our Hub Network algorithm to identify the correct 

structure of the target network. All major ideas of our third approach were combined in 

this system to achieve the best performance. We provided the result of our system’s 

performance on two benchmark datasets.  

The result reported improvement not only in the number of true edges detected, but also 

in the decrease of false positive edges compared to some other methods. One interesting 

characteristic of our method compared with some other methods was observed when we 

visualized our output. Our output GRN showed a similar structure with the known 

networks compared with the other methods. This property is lacking in other methods 

which do not consider domain knowledge. This demonstrates the great benefit of using 

hubs to build the primary structure of the GRNs. 
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Chapter 10   

Conclusion and Future Directions 

 “Just a moment, I’ve almost finished’ If on a Winter’s Night 

a Traveler’.”  

-Italo Calvino, If on a Winter’s Night a Traveler (1979)  

10.1  Conclusion 

Biological systems have traditionally been studied by focusing on individual cellular 

components. Though the knowledge gained in this way is insightful, it has been 

increasingly clear that the understanding of complex cellular systems requires 

understanding of how different components work together.   The advent of high-

throughput technology like microarrays, where cellular activities can be measured on a 

genome-wide scale, has provided opportunities to obtain a systematic view which is 

known as system biology. The advances in system biology, which look at the system 

level of cellular activities, have an innate ability to achieve the objective of prognosis of 

disease and potential drugs/treatment development.  

DNA microarray technology provides us with a picture of the whole genome at once. In 

this way we can systematically study the relationships between genes in a certain 

condition which can then be represented as a Gene Regulatory Network. To achieve this 

goal we need to obtain several samples during developmental stages of a condition. A 

condition can be an artificial perturbation such as gene knocking-out or the effect of an 

environmental factor such as dehydration. The goal is to find the network of genes 

responding to that condition.  

Microarray technology gives us a facility to build a gene regulatory network. However, 

analysing such data is challenging due to its high dimensionality, noise and various kinds 
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of biases, which reduce the accuracy of knowledge discovery techniques applied for the 

aforementioned applications. 

There are various techniques and modelling approaches towards the problem of gene 

regulatory network discovery, ranging from differential equations, which provide detail 

of interactions, to directed graphs representing only a topological model.  

In order to achieve the objective of gene regulatory network discovery in this thesis, we 

applied different modelling techniques inside three approaches. Our initial aim was 

“How can we improve gene regulatory network inference?”. By understanding the 

benefit of using domain information we then decided to focus on the question of “How 

can reliance on microarray data and heuristics be reconciled to improve GRN 

discovery?”. 

To address our research question, we presented three novel computational approaches. In 

the first approach we did not use any information from the domain and tried to increase 

the performance of GRN discovery by creating a better computational technique. Our 

novel computational technique achieved a higher performance compared with other 

methods, but still this approach was not scalable enough. Then we moved to the second 

approach which incorporated some heuristics to navigate the search space effectively. 

The second approach was applicable for a genome-wide GRN but the performance was 

not good enough. Finally, the third approach used the highest amount of heuristic 

information. The third approach successfully outperformed some of the best systems for 

GRN discovery and was the most successful. In this thesis we have shown using 

heuristics can improve the GRN discovery process.  

In the remainder of this thesis, we will summarize the main contributions of each 

approach and then conclude with a discussion of directions for the future work.   
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10.2  Summary of Results and Contributions  

10.2.1  Approach 1: Memetic Gene Expression Programming 

In this approach we used a system of differential equations to model the problem. The 

question was: “How can we improve the performance of current techniques applied to 

differential equations modelling of GRNs?” To answer this question we proposed using 

Gene Expression Programming combined with a local search mechanism to improve the 

regression procedure, aiming to find a system of differential equations. The combination 

of the local search methods with evolutionary algorithms is known as Memetic 

Algorithms (Moscato and Norman 1992). Memetic algorithms are more efficient than 

GAs and are also more scalable. This is because of the use of local search which enable 

the algorithm to reach the optimal solution faster and more accurately (Hart, Krasnogor 

et al. 2005). By combining a local search with Gene Expression Programming (Ferreira 

2001) we expected to increase the performance of GEP. The proposed approach 

advanced the ability of Genetic Expression Programming in this problem. Our technique 

surpassed the conventional genetic programming performance by a factor of one hundred 

in terms of the quality of the final solution. It also improved the ability of gene 

expression programming in finding constant values and parameters. The combination of 

a local search method with Gene Expression Programming is proposed for the first time 

in this thesis. The proposed combination proved to be effective and is promising to be 

effective in other applications as well.  

Based on this study, it is recommended that the Memetic Gene Expression Programming 

technique is a useful technique for solving a system of differential equations. We 

particularly demonstrated its effectiveness for solving a system of differential equations 

used to model a GRN. We also recommend that differential equation modelling is not 

applicable for a large scale real size network.  
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Specific Computational and Bioinformatics Contributions 

Our contribution to Computer Science: 

1. Introducing a new method called Memetic Gene Expression Programming which 

surpassed the performance of current evolutionary techniques for finding a 

system of differential equations. 

Our contribution to the Bioinformatics: 

2. Applying the Memetic Gene Expression Programming technique to a GRN 

discovery problem modelled by a system of differential equations. 

10.2.2  Approach 2: Combined Evolutionary Algorithms (Memetic 
Algorithm) 

The second approach ignored details of quantitative modelling and focused on finding 

the big picture of the GRN structure to be able to discover genome-wide GRNs. To 

achieve this aim, this approach introduced the use of heuristics based on domain 

knowledge in combination with a genetic algorithm.  In this approach, for the first time, 

we combined a combinatorial search method with the domain knowledge for GRN 

discovery. The domain knowledge was used in the form of a local search process to 

make the solutions similar to domain knowledge. In this way, we introduced a new 

design for GA and also a new memetic algorithm. The new GA was different in the way 

that we designed a chromosome as a partial solution in the form of a subgraph. The new 

MA was different as it used a case retrieval mechanism to retrieve similar cases from the 

domain knowledge to replace the chromosomes (subgraphs) with these cases. In contrast 

with the existing MAs which employ a local search method, such as hill climbing which 

need to capture information in the form of a function, in our proposal we did not use any 

function and instead, the cases from the domain were used directly. We called this new 

local search cultural imitation.    

Our attempt to design a combined evolutionary algorithm using information from domain 

knowledge showed us that a simple GA works well when the search space is big and 
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coding is simple. However in this application, we could not use the simple GA to find 

GRN structure, as that required a huge chromosome which was hard to evolve in order to 

find the solution. That is why we tried to build the whole GRN network by evolving its 

smallest elements (functional gene subnetworks). This also gave us a facility to 

incorporate the domain knowledge which is in the form of gene subsets and subnetworks. 

The GA mechanism suffered from early convergence therefore the result was not 

comparable. 

The lessons from the second approach taught us that we needed a simpler search 

mechanism to explore the search space and GA was not an effective tool for this purpose. 

By using considerable information from domain knowledge, the search space is not as 

large. Thus, in the third approach we tried to use as much heuristics that we could to limit 

the search space and build an effective model.  

Specific Computational and Bioinformatics Contributions  

Our contribution to Computer Science: 

3. Exploring a new GA algorithm design in which chromosomes are the partial 

solutions in the form of subgraphs and we evolve these partial solutions to find 

the complete solutions.  

4. Exploring a new memetic algorithm design. Our memetic algorithm suggests a 

new concept of meme. In our design, local search played a role of imitating from 

nature and we used a case retrieval mechanism to make the solutions similar to 

one in the domain knowledge.  

Our contribution to Bioinformatics: 

5. Combining information about functional gene sets inside a combinatorial search 

process for the first time. 

10.2.3  Approach 3: Heuristics Based Association Measures 

The third approach aimed to use more heuristics and reported the best results. This 

approach proposed two major new ideas and several minor ones. The first major idea 
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used heuristics to define an association measure. The contributions in that section are as 

follows:    

a. The first and most important idea was using the definition of regulatory 

relationships to compare and validate different association measures. As a result of 

this study we found that existing association measures are not designed to measure 

regulatory relationships and therefore are not precise enough for this purpose. We 

provided examples to demonstrate this problem. Then we proposed a list of 

desirable characteristics of an association measure for gene regulatory 

relationships. 

b. Following the desired characteristics identified in the previous step, we proposed a 

new association measure. The function is called 2D Visualized Co-regulation. The 

function has been shown to perform better compared to the best known measures 

in the area. Its superiority is not only in the precision and recall of the function but 

also in its useful visualization characteristic. The visualization characteristic 

makes the result more convincing and plausible for the molecular biologist 

experts. It also has potential to give us additional information such as indirect 

relationships between the genes. 

c. We also tried to show that our assumptions about the patterns of regulatory 

relationships in terms of machine learning were valid. These assumptions were 

used to create our 2D Visualized Co-regulation function. We applied a feature 

selection algorithm on our data which was then transformed into a grid. The grid 

was designed to present the relationship between two genes. It had the discretized 

value of each gene’s expression along each axis and the content of each cell 

represents the frequency of that combination of gene values occurring at the same 

time in a sample. The feature selection algorithm detected the most important 

features inside the grid. The result of this experiment validated our assumptions.  

Similar to the experiment with the feature selection algorithm, we tried to prove 

the same thing in another way by using a K-means algorithm and a decision tree. 

To find the rules which can relate our class labels (ac, re, du) with the locations of 
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the densest area inside the grid. Both of these experiments supported our 

assumptions.  

d. As a complementary process for the co-regulation function, we proposed a post-

processing operation. We applied two post-processing operations to the output of 

our co-regulation function in order to prune the false positive records. The first 

idea again came from heuristics. We proposed looking for the absence of the 

opposite relationship for the pairs which had been labelled as having an activation 

or inhibition relationship. This means if the pair was recognized as having an 

activation relationship we looked for the absence of an inhibition pattern and vice 

a versa.  When we applied this rule to the self regulatory relationships, we 

achieved a superior result. This post-processing step was demonstrated to be 

effective by reducing the number of false positives. 

The second post-processing method involved Data Processing Inequality (DPI) to 

reduce the false positives. DPI hypothesis is based on eliminating the weakest 

relationship among a loop of three genes. Based on our experiments, DPI also 

proved to be an effective process when it was applied to the result of our 2D 

Visualized Co-regulation function.  

Specific Computational and Bioinformatics Contributions 

Contribution to the Computer Science: 

6. We explored and studied the functionality of the well known measures such as 

Pearson’s correlation and Mutual Information in the context of GRN. The result 

of our study revealed that those functions do not measure the exact pattern of co-

regulation and we needed to design a specific function for this purpose. We also 

found that there is not any literature related to the definition of regulatory 

relationship from the machine learning perspective.  

Contributions to Bioinformatics: 

7. Our first contribution to bioinformatics was introducing a new function for 

measuring co-regulation which was called 2D Visualized Co-regulation function. 
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This function advanced the current performance of other pairwise association 

functions such as correlation measures. This function also provides us with a 

great visualization ability which has the potential to make the result sensible for 

biologists. The visualization feature of the function can also provide us with the 

additional information. Therefore, the function not only has a superior 

performance but also is more informative. This means two fold contributions.  

8. The third contribution to the bioinformatics field was introducing a novel 

heuristic post-processing step. Our post-processing performance was proven to be 

quite effective when it was applied to the self regulatory pairs.  

9. Our fourth contribution to the bioinformatics field was combining a further post-

processing procedure (DPI) with our co-regulation function. DPI was previously 

used in the literature along with Mutual information. Here, we used it in 

combination with our co-regulation function and made a further improvement.  

10.2.4  Approach 3: Heuristics Based on GRN Structure  

The second major idea of approach 3 involved using structural properties of GRNs to 

construct the unknown GRN structure. The contributions in this part are listed: 

a. The second major idea in the third approach was using a network of hub nodes to 

build the core structure of the target network. The procedure was started by 

detecting hub nodes from the known network to build a network of hubs by using 

microarray data. The degree of hub nodes was also extracted. We also identified 

additional hub nodes from microarray data, if any existed, and added them to that 

network. This gave us a core structure for the network. The overall procedure to 

build the network was incremental.  In the second step, we built the second layer 

of the network by taking into account the degree of the hub nodes in the known 

network. We calculated the association of each hub node with any other gene and 

then we normalized these values and ranked them. Then we chose top listed genes 

from this ranked list according to the hub’s degree and attached them to that hub. 

The hub’s degree was then extracted from the domain knowledge. In the third step 
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we added the third layer to the network by adding nodes to the non hub nodes. For 

non hub nodes based on the literature again, we assumed a degree of one. The 

algorithm built the target network, layer by layer, taking into account all the above 

information. We also created a procedure which takes into account the skewness 

of the expression values in order to remove extreme values and noise.  

b. Based on this study, it is highly recommended to use the hub’s network in order to 

build the initial network structure. It is also quite helpful to use information about 

the degree distribution from the known networks.  

Specific Computational and Biological Contributions  

Our contribution to Bioinformatics: 

10. We built a model which uses the Hub Network for the first time to build the core 

structure of an unknown GRN. This model employs several heuristic facts in 

addition to the Hub Network. The procedure for building the structure of the 

network is an incremental process. It takes into account the type of node (hub or 

non-hub), and the degree of the node to build the network. Information about the 

degree of the node was used to set up a background correction process where 

association measures for each gene normalized and then ranked and we chose the 

top ranked ones according to the degree of the node.  This list was calculated for 

each gene and was used in an incremental process for adding nodes to the 

network. We also created a procedure based on the skewness of expression values 

in order to delete noise and extreme values.  

11. This model can be used in conjunction with any correlation and association 

measure but we combined this model with our co-regulation function and 

achieved a superior performance compared to other well known systems in this 

area. This makes our last contribution in this approach.   

In general, the third approach used the highest amount of heuristic information and 

achieved the best result among the approaches in this thesis. Our association measure has 

shown the ability to detect regulatory relationships more effectively compared with the 

other most used measures in this area. The combined performance of our 2D Visualized 



 Chapter 10. Conclusion and Future Directions 

227 

 

Co-regulation function and Hub Network algorithm achieved a better prediction capacity 

than other well known studies.  

In summary, in this thesis we investigated the effect of using heuristic information for 

GRN discovery and proved that using heuristics can improve the GRN discovery 

process. This was our last contribution to the bioinformatics field.    

10.3 Limitation and Discussion 

In this thesis, we introduced three new approaches for GRN discovery. In previous 

chapters we emphasised and discussed the impact of using each of these approaches in 

addition to their limitations. We mentioned that the first approach despite improving the 

state of the art performance of algorithms for solving differential equations was not 

scalable enough. The second approach did not perform well. The third approach was 

successful in improving the performance of the state of the art methods while being able 

to perform in real sized networks. Despite the success of the third approach, it had some 

limitations similar to any other method.  

Our third approach uses heuristics from domain knowledge and has three components. 

The third component which works based on using known hubs relies on the availability 

of domain knowledge. In case that we do not have any information about the hubs, we 

will not be able to apply the first step of the algorithm. However the rest of the steps and 

the other two components of our system are still applicable and the performance is 

comparable with existing methods. One alternative would be to find the hubs from gene 

expression data by considering those genes which are associated with many other genes.   

Another philosophical argument in the third approach is about the impact of using 

domain knowledge on the discovery of new information. Using information from domain 

knowledge is beneficial as it limits the search space when the search space is too large 

and the information content is low. In many previous applications, other researchers tried 

to embed heuristics from domain knowledge to improve the search process similar to 

what we did in the third approach. However, this might raise a question of the impact of 

using heuristics on the discovery of new information.   
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One should note that in this approach we do not build the connections based on domain 

knowledge but based on microarray gene expression data. In our third approach only the 

first layer uses information about known hubs to build the core structure of the network 

and the rest of the network is built based on the co-regulation measure of gene pairs and 

is independent from domain knowledge. Even in the first layer, we only use the list of 

known hubs, and the interaction between them is calculated based on the expression data. 

In case that we do not have any information about hubs, it is still possible to infer hubs 

from the gene expression data. The experiment in Chapter 9 shows that our algorithm is 

capable of finding new interactions as well as the existing interactions. The only 

exception is when there is a complex relationship rather than what we considered as ac, 

re and dual. In such a case our co-regulation function might not be able to correctly 

identify other complex relationships.    

 In this thesis we also used simulated data. It would be preferable to see the performance 

of the algorithms on some real datasets. 

10.4  Directions for Future Work 

The attempts in this thesis that we made to solve the problem of gene regulatory network 

discovery along with the comprehensive study of the literature gave us a good insight 

into the problem and the ability to identify possible future directions. Some of those ideas 

will now be discussed.  

Approach 1: Using Memetic Gene Expression Programming  

It will be possible to make a further improvement in Memetic Gene Expression technique 

by using a gradient search method instead of least mean square (LMS) for the local 

search.  

Our Memetic Gene Expression Technique can be applied to any sort of regression and 

function finding problem in the future.  

 

 



 Chapter 10. Conclusion and Future Directions 

229 

 

Approach 2: Using combined evolutionary algorithm 

As mentioned in the second approach, we could not find a way to avoid the early 

convergence of our designed evolutionary algorithm therefore the local search proposal 

did not get a chance to be tested. One future direction is testing our proposed local search 

which uses cases from the domain knowledge to improve solutions. This proposal can be 

implemented in any suitable application where standard GA can be applied.  

Approach 3: Using heuristics to build an association function 

In this thesis we used a synthetic data generator, while the best result might be achieved 

with applying the third approach on a real dataset. Real benchmarks are essential for 

evaluation of algorithms in this area, but unfortunately there is a lack of them. The 

current ones such as (Werhli, Grzegorczyk et al. 2006; Cantone, Marucci et al. 2009) are 

limited in size and the network specification. For this reason we chose SynTReN 

simulator to test our algorithm.  

Among other existing simulators, SynTReN produces networks which have similar 

structure with the known network, which is why we chose this particular one. 

Nevertheless, in terms of expression values it does not incorporate the domain 

knowledge. At the time of writing this thesis, a new GRN simulator was introduced 

called ReTRN which is claimed to produce not only a similar structure but also a similar 

expression profile (Li, Zhu et al. 2009). One possible future work is to further test our 

approaches by using ReTRN to produce synthetic data which resembles real data more 

closely.  

The visualization effect of our 2D Visualized Co-regulation function that we claimed 

here needs to be tested properly in practice by involving biological experts. 

There are also aspects that could be further considered in our third approach. One 

important aspect is considering dependency of more than two genes. Based on the facts 

from the literature that genes interact with each other in a small group of 4-5 

(transcriptional groups); therefore it is necessary to consider dependency of more than 

two genes.  
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Another further consideration is improving the performance of our variable co-regulation 

function. In section  8.7, in the sixth experiment (Variable threshold Co-regulation 

Function), we showed that we can use machine learning to learn the pattern of regulatory 

relationships dynamically. This idea can be further investigated by using different 

encodings for transformation of the data inside the grid to the tabular format. The better 

encoding can preserve the existing pattern of the grid; therefore algorithms can learn the 

pattern better. A better discretization method for building the grid can also increase the 

amount of information provided and result in improving the performance. This was 

presented in Figure  8-10 in section  8.7. In addition, by showing more training data to the 

model, especially more “none” pairs to the model the performance can be increased 

further.  

In this approach we involved only three types of regulatory relationships to define our 

co-regulation function. This idea can be extended to use the definition of more 

sophisticated gene relationships. There are more complex relationships that involve two 

or more genes including switches (Gardner, Cantor et al. 2000; Ham, Lee et al. 2008), 

oscillators (Stricker, Cookson et al. 2008; Purcell, Savery et al. 2010), cascading 

networks and logic gates which present more sophisticated control of gene expression. 

Implementation of each of those relationships as a function can be quite useful and result 

in increasing the predictability of GRNs (Mads, J.Blake et al. 2003).  

In logic circuits theory and practice, some of these concepts are implemented as a 

separate module or chip to be used in the design of circuits. Similarly we can model these 

relationships and implement them as a function.  

In approach 3: Using heuristics to build the Network Structure. 

Our proposed Hub Network algorithm can be used in combination with other approaches 

such as Mutual Information or Bayesian network. Especially, this combination can be 

beneficial for Bayesian network modelling where finding the structure of the network is a 

challenging task. Our algorithm can assist a Bayesian Network approach to produce 

networks with more similar structure to the domain networks which is currently an issue.  
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For the future work, one could consider another recently observed structural property 

which we did not use in our modelling. The Bow-tie global architecture which is known 

to make the network’s core (Csete and Doyle 2004; Kitano 2004; Ma'ayan 2009) can be 

used as well. This additional property might help algorithms to find the core structure of 

the network more effectively. 

Another interesting idea is building a library of patterns of each gene containing the 

nature of the gene as a “fan in” or “fan out”. This is especially important for hub genes. 

Usually hubs either have many outgoing links or many incoming links (Costanzo, 

Baryshnikova et al. 2010). This property is the signature of each gene and it is constant 

across networks in different conditions. Therefore, it can be used to build the core 

structure of the network more effectively and facilitate building a causal and directional 

network. Other information about each gene can be added also into such a library. For 

example the pattern of changes related to each gene like activation threshold and range of 

changes in its expression level (minimum and maximum values). This information can 

train a model which is going to measure the association between genes.  

One further possible extension of the Hub Network is using the information about 

functional gene sets in combination with the Hub Network. Usually, hubs are important 

genes which are central genes for functional gene sets (Costanzo, Baryshnikova et al. 

2010). We can retrieve the related gene sets to a hub and use information about other 

genes in the gene set to limit the search space. The functional gene sets were previously 

used to limit the search space in Module Network (Segal, Shapira et al. 2003) where a 

Bayesian Network approach was employed. However, they have not been used along 

with hubs in GRN discovery literature.   

We discussed the possibility to use the PageRank algorithm (Page 1998) along with our 

Hub Network algorithm in Section  9.2. The PageRank algorithm takes into the account 

the importance of each node as well as the degree of that and has been used recently for 

gene network discovery in different ways (Özgür, Vu et al. 2008; Smriti, Vogel et al. 

2009; Davis, Jr et al. 2010). It basically rank genes not only based on the number of 

connections but also based on the importance of those connections. Topic sensitive 
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PageRank algorithms (Haveliwala 2003) can also be used in this context. In the web 

pages application, topic sensitive PageRank algorithm considers the similarity of the 

query with web pages. Topics are Yahoo categories and algorithm biases the ranking 

procedure towards the more relevant pages related to the topic of the query. In other 

words, it captures more accurately the notion of importance with respect to a particular 

topic. Similar to this we can consider Gene Ontology categories or functional modules 

instead of Yahoo categories. Thus we can bias the ranking and selection procedure 

towards the genes which are related functionally in a process. Using Topic Sensitive 

PageRank we can bias the selection process towards genes which are functionally more 

related to each other or to the situation under study and in this way we can involve the 

experts’ knowledge. 

Future Direction of the GRN Discovery 

Recent advances in biotechnology in the past years are shifting the technology of gene 

expression profiling from microarray to RNA sequencing. RNA sequencing  results in a 

much more precise way of measuring genes expressions and promises a higher ability 

than microarray to discover Gene Regulatory Networks more effectively (Ozsolak and 

Milos 2011). 

Compared to Microarray, RNA sequencing expression estimates are highly reproducible 

and often more accurate, less noisy and provide a larger dynamic range (Marioni, Mason 

et al. 2008). Microarray technology cannot fully catalogue and quantify gene 

expressions. The main reason is that the microarray probe sequence must be known a 

priori, where this can be done afterwards with sequence technology. Microarray gene 

expression profile measures continuous probe intensities and there are limited ways to 

analyse RNA splicing and other mechanisms affecting gene expression.   

In addition to RNA sequencing, the availability of other genomics technologies can 

improve our knowledge of the interactions between different genomic areas and 

ultimately helps us build more precise GRNs.……………………………………………   
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Glossary 

GRN: Gene Regulatory Network; a network which has genes as the nodes and 

regulatory relationship as edges.  

Genome:  Entire heredity information of an organism.  

DNA: The most important molecules inside a cell containing codes for all function and 

operations of the cell. 

Gene: Smallest functional part of a DNA which has a code to produce a protein.  

Microarray: A glass or solid surface containing thousands of probes that have a gene 

attached to each probe. It can capture a profile of genes genome wide. 

Association Measure: A measure (usually a mathematical formula) which specifies the 

strength of relationship or dependency between two variables. 

Correlation Measure: Any statistical indicator of relationships between two or more 

random variables usually indicating a linear relationship. 

Hub: Is a highly connected node in a network. 

Small world Network: The small world property is often informally referred to as six 

degrees of separation. It is a type of network that most nodes can be reached from each 

other by a small number of steps. Many type of real networks such as social networks 

have this property. 

Co-regulation: Genes that are expressed by the same transcriptional factor.  

Co-expression: Genes that share similar expression patterns 

Up regulation (Activation): Increase in the expression of a gene due to increase of 

expression of another gene or another factor. 

Down regulation (Inhibition): Decrease in the expression of a gene due to increase of 

expression of another gene or another factor. 
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Dual Interaction: A relationship between two genes which sometimes is activation and 

sometimes is inhibition. lac_operon has a good example of such dual regulation (Müller-

Hill 1996). 

Gene Ontology: Is a big collection (database) which unifies representation of genes and 

gene products as well as providing a hierarchical classification of genes in groups based 

on their function or their product type. 

Pathway (Biological pathway): Is a series of actions among molecules in a cell that 

leads to a certain product or a change in a cell. 

Protein Interaction Network: An interaction network where nodes are cellular proteins 

and edges represent an interaction between them. Interactions can be physical (protein A 

binds protein B), metabolic (A and B catalyze reactions involving the same chemical), 

genetic (A and B are expressed together) or biochemical. 
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