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Abstract

It is well known that global optimization problems are, generally speaking, computation-

ally infeasible, that is solving them would require an unreasonably large amount of time

and/or space. In certain cases, for example, when objective functions and constraints

are convex, it is possible to construct a feasible algorithm for solving global optimization

problem successfully. Convexity, however, is not a phenomenon to be often expected in the

applications. Nonconvex problems frequently arise in many industrial and scientific areas.

Therefore, it is only natural to try to replace convexity with some other structure at least

for some classes of nonconvex optimization problems to render the global optimization

problem feasible. A theory of abstract convexity has been developed as a result of the

above considerations. Monotonic analysis, a branch of abstract convex analysis, is analo-

gous in many ways to convex analysis, and sometimes is even simpler. It turned out that

many problems of nonconvex optimization encountered in applications can be described

in terms of monotonic functions. The analogies with convex analysis were considered to

aid in solving some classes of nonconvex optimization problems. In this thesis we will

focus on one of the elements of monotonic analysis - Increasing Positively Homogeneous

functions of degree one or in short IPH functions. The aim of present research is to show

that finding the solution and ε-approximation to the solution of the global optimization

problem for IPH functions restricted to a unit simplex is an NP-hard problem. These

results can be further extended to positively homogeneous functions of degree η, η > 0.
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Chapter 1

Introduction

1.1 Global optimization problem

Global optimization deals with the finding of global maximum or minimum of a given

function (referred to as an objective function) in a certain feasible region. Global opti-

mization (in short GO) problems are very diverse and come from areas such as chemistry

and biology, computer science, engineering, operations research, economics, etc.

Generally speaking, a global optimization problem over an unbounded domain is algo-

rithmically unsolvable. This fact can be shown using the result obtained by Matiyasevich

[18] for Hilbert’s 10th problem, which asks if it is possible to construct an algorithm

that checks if an arbitrary diophantine (multi variable polynomial) equation has integer

solutions. As the problem was answered in the negative, it is possible [39] to construct

an example of an algorithmically unsolvable unconstrained global optimization problem

expressed by the diophantine equation.

Therefore, we will be considering the global optimization problem over a bounded domain.

Our main concern is the feasibility of the algorithm that can be constructed to solve the

1



2 CHAPTER 1. INTRODUCTION

problem. In terms of the complexity of the algorithm we will look at two classes of prob-

lems: P and NP, where class P includes problems that are computable in polynomial time

and class NP encompasses all the problems in P and many others for which only expo-

nential time algorithms have been discovered so far and all attempts to find polynomial

time algorithms have fallen flat. On the other hand, no one has succeeded in proving that

these problems cannot be solved in polynomial time. Despite that, problems in NP are

considered to be intractable. The question of whether P=NP remains the most important

unsolved problem in the field of computer science. In 2000 Clay Institute of Mathematics

listed it among its seven Millennium Prize Problems, offering $1 million dollar reward for

the solution of each [1].

Classical optimization tools in general cannot solve many problems of global optimiza-

tion. The reason for this is that there can be solutions that are locally but not globally

optimal. As a result, the classical techniques that are used mainly in the study of local

optimization can get easily trapped in local minima or maxima. There, however, exist

areas of simultaneously local and global optimization. The most well-known one is convex

programming.

1.1.1 Convex optimization

The story of convex optimization began in the middle of the XX’s century. Convex

optimization deals with the minimization of a convex objective function over a convex

set. The earliest nontrivial problems with constraints in the form of inequalities appeared

in a paper by L.Kantorovich. These problems came to be known as linear programming

problems. A great contribution to the theory of convex optimization was made by G.

Dantzig who developed an algorithm for the solution of linear programming problem that

is known as Simplex Method. Although it was shown by Klee and Minty [15] that the

worst-case time bound for Simplex method is exponential, it proved to be fast on the

average and was successfully implemented in many applications. The first polynomial
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time algorithm for linear programming problem was discovered by Nemirovsky, Yudin

and Shor and is known as the method of circumscribed ellipsoids. However, it showed to

be too slow to be of practical interest. Further major advance was the development of

interior point methods by Karmarkar [13]. These are polynomial-time algorithms that can

be efficiently implemented to solve real-world problems in linear programming. Interior

point methods were subsequently generalized to various convex optimization problems by

Nesterov and Nemirovsky [19] and have gained a lot of popularity and sophistication since

then.

1.1.2 Nonconvex optimization

Convex functions enjoy an important property: a local minimum (or maximum) of a con-

vex function is also a global one. Therefore, any local minimization algorithm yields the

solution to a global minimization problem as well. As mentioned above, in case of convex

functions there exist powerful methods that can be used to find the global minimum effi-

ciently. Unfortunately, the same cannot be said with regard to nonconvex problems. For

some nonconvex objective functions there exist efficient algorithms. However, generally

speaking, nonconvex problems seem to be infeasible. An example of a nonconvex prob-

lem with feasible algorithm is a Fractional Linear Programming problem (FLP). These

problems arise in various fields, including game theory, network flows, etc. FLP looks as

follows:

min (pT x + γ)/(qT x + δ)

subject to Ax ≥ b

where p, q are n-vectors, γ, δ are scalars, A is an m × n matrix, b is an m-vector and

superscript T denotes the transpose. Here an assumption is made that (qT x+ δ) > 0 over

the domain. A possible method for solving the above problem is Dinkelbach’s algorithm.

It makes use of Jagannathan’s theorem [11] which states that y ∈ X is an optimal solution
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for a problem

min{θ(x) =
F (x)

G(x)
: x ∈ X ⊂ Rn},

where F (x) and G(x) are continuous realvalued functions, θ is a continuous function on X

and G(x) > 0, if and only if y is an optimal solution for min{F (x)− θ(y)G(x) : x ∈ X}.
Thus, if the function is defined as

f(θ) = min{(pT x + γ)− θ(qT x + δ)} (1.1)

subject to Ax ≥ b

then the optimal solution of the FLP corresponds exactly to a root of 1.1. Correspond-

ingly, one may find the root of 1.1 using any method of convex programming.

Another example of a tractable nonconvex problem is a quadratic programming problem

with ellipsoidal constraints. Although general nonconvex quadratic programming prob-

lems are computationally intractable as proved by Sahni [27], quadratic programming

problem with an ellipsoidal (sphere in this case) constraint stated as

min
1

2
xT Qx + cT x

subject to ‖x‖2 ≤ r

where x ∈ Rn, Q is symmetric n×n matrix, c is an n-vector and ‖x‖2 = (
∑n

i=1 x2
i )

1
2 is poly-

nomially solvable. Ye [38] proved that the above problem can be solved in O(log(log(1/ε)))

iterations, where ε is the error tolerance.

The above two examples of tractable nonconvex problems, are, as mentioned earlier, ex-

ception rather than the rule in the field of global optimization.
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1.2 Abstract convexity

An important property of a convex function is that it can be represented as a pointwise

supremum of a collection of affine minorizing functions. In the 1970s it was realized that

many results of the convexity theory do not depend on the linearity of the minorants.

These ideas stimulated the development of the theory of Abstract Convexity.

The first book on abstract convexity was published by S.Kutateladze and A.Rubinov in

1976 [17].

A significant role in the study of convex optimization problems belongs to a subdifferential

of a function. It allows to construct a so called global affine support to a given function

f , which is a function that coincides with f at a point x and is less than f at all other

points. Therefore, the global minimum of the underestimate will provide the lower bound

to the global minimum of the objective function.

Generalization of the notion of subdifferential has been used in the development of theory

of abstract convexity while the main motivation for further advances in the theory was

due to its applications in optimization. It was interesting to examine main notions of

convexity in a non-convex setting to see whether it might aid in solving nonconvex global

optimization problems.

As it turned out, many important results and concepts of convex analysis could be ex-

tended to arbitrary sets and functions.

In convex analysis functions can be represented as upper envelopes of a collection of affine

functions. Generalizing this idea, abstract convex functions can be represented as upper

envelopes of so called elementary functions, which are not necessarily linear.

1.2.1 Monotonic analysis

Monotonic analysis is a branch of abstract convex analysis that uses a special choice of

elementary functions. The term monotonic analysis for this theory was introduced in [26].



6 CHAPTER 1. INTRODUCTION

The simplest and most elegant theory of monotonic analysis can be obtained for functions

defined on the cone Rn
++ and the subsets of this cone.

Monotonicity is exhibited by many functions arising in various areas of mathematics.

Thus, many problems of nonconvex optimization encountered in applications can be de-

scribed in terms of monotonic functions. These problems include multiplicative program-

ming [34], Lipschitz optimization [22], fractional linear programming [32], etc.

There exist a number of numerical algorithms for finding an approximate solution of some

specific classes of non-convex global optimization problems that are based on monotonicity

ideas. For instance, not so long ago the cutting angle method has been proposed and

studied in [2, 4, 3]. It is an extension of a cutting plane method in convex optimization.

Other methods of monotonic optimization are studied in [25, 35, 23].

These methods allow to find only approximate global minimizers or maximizers of a given

function, however the dimensionality of the problems solved can be fairly high due to the

fact that many large-scale nonconvex problems can be reduced to monotonic optimization

problems of smaller dimension.

Nevertheless, presently no methods of global optimization are able to solve general non-

convex problems efficiently - only specific limited classes of problems can be tackled.

1.3 Structure of thesis

In this thesis we will be concentrating on one element of monotonic analysis - Increasing

Positively Homogeneous functions of degree one or, in short, IPH functions. The aim of

present research is to show that finding the solution and ε-approximation to the solution

of global optimization problem for IPH functions restricted to a unit simplex is an NP-

hard problem. These results can be further extended to positively homogeneous functions

of degree η, η > 0.

Chapter 2 of the thesis describes the notions of computational complexity and gives insight

into P, NP, NP-complete and NP-hard complexity classes. It shows examples of problems
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that belong to some of the above classes and gives an overview of the relationship between

the latter. Chapter 3 is devoted to the theory of abstract convexity and to monotonic

analysis. It contains the main definitions and also provides some basic results that have

been previously obtained in the field. Chapter 4 contains the results establishing the

infeasibility of the global optimization problem for IPH functions on a unit simplex.

Chapter 5 is the conclusion.
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Chapter 2

Complexity, Class NP and

NP-completeness

For many problems we are studying it is important not only to find the solution in princi-

ple but to construct an efficient computational method for reaching that solution. Some

problems are easy to solve while others are not. For example, some difficult problems

require an exponential amount of time in terms of the size of the problem to solve.

Computational complexity theory studies the amount of computational effort that is

needed in order to perform certain kinds of computation.

Problems can be classified by complexity class according to the amount of time it takes

for an algorithm to solve them as a function of the amount of input in the problem. We

will be concentrating on two of the most important complexity classes - classes of NP-

complete and NP-hard problems.

The theory of NP-completeness restricts attention to decision problems only. A deci-

sion problem is the one that asks only for a ”yes” or ”no” answer. An optimization

problem is the problem of finding the best of all feasible solutions. However, decision

problems can be derived from optimization problems by imposing a bound on the value

to be optimized and vice versa. Therefore, we can extend the implication of the theory

9
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of NP-completeness to optimization problems. If we find a fast way to solve the decision

problem, then there is a fast way to solve the corresponding optimization problem as well.

Decision problems have a formal counterpart that is called a language, which is more

suitable in the study of theory of computation. The language framework allows to express

the relationship between decision problems and algorithms that solve them. The language

is defined as follows [9]:

For any finite set of symbols
∑

denote by
∑∗ the set of all finite strings of symbols from

∑
. If L is a subset of

∑∗, we say that L is a language over the alphabet
∑

.

2.1 Turing Machine

A Turing machine is an idealized computing device described by Alan Turing in 1936. It

is powerful enough to be able to perform any calculation that any other computer can

do and at the same time is simple enough to be useful in proving theorems in complexity

theory. There are number of types of Turing machines, however it turns out that the

computational capability of all these machines is equal.

A deterministic one-tape Turing machine (a basic Turing machine) consists of [37]

1. a doubly infinite tape that is marked off into squares. Each square can contain a single

character from the character set
∑

that the machine recognizes. For simplicity, we can

assume that the character set contains just three symbols: ’0’, ’1’, and ’t’(blank)

2. a tape head that is capable of either reading a single character from a square on the

tape or writing a single character on a square, or moving its position relative to the tape

by an increment of one square in either direction.

3. a finite list of states Q such that at every instant the machine is in exactly one of those

states. The possible states of the machine are, first of all, the regular states q1, q2, ..., qs

and, second, three special states
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q0 : the initial state

qY : the final state in a problem to which the answer is ”Yes”

qN : the final state in a problem to which the answer is ”No”

4. a program that directs the machine through the steps of a particular task.

Suppose that at a certain instant the machine is in a state q (other than qY or qN) and

that the symbol that has just been read from the tape is ”symbol”. Then from the pair

(q, symbol) the program will decide

a) to what state q′ the machine shall go next and

b) what single character the machine will now write on the tape in the square over which

the head is now positioned and

c) whether the tape head will next move one square to the right or one square to the left.

One step of the program, therefore, goes from

(state, symbol) to (newstate, newsymbol, increment)

The above program is presented in the form of a transition function δ : Q × ∑ →
Q×∑×{L,R,N}, where L indicates left shift, R right shift, N no shift.

If and when the state reaches qY or qN the computation is over and the machine halts.

We say that a Turing machine M with input alphabet
∑

accepts string x ∈ ∑∗ if and

only if it halts in state qY when applied to x.

The collection of strings that the Turing machine accepts is the language of the Turing

machine and is denoted by LM .

We say that a language is recognized by the Turing machine if and only if it accepts all

the words of the language.

A Turing machine that halts (either accepts or rejects) on all inputs is called a decider.

A decider that recognized some language is said to decide that language.
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The following correspondence between the decision problems and languages can be de-

rived: since every decision problem can have only two answers ”yes” and ”no”, we can

think of a decision problem as asking if a given word (the input string) does or does not

belong to a certain language. Therefore, a Turing machine which decides that language

would solve the corresponding decision problem.

2.2 The Class P

Class P contains decision problems which can be solved by deterministic Turing machine

in polynomial time. This is a class of problems that are considered to be efficiently solv-

able. Some problems that are included in this class are:

Reachability Given a directed graph G = (V, E) and two nodes vi, vj ∈ V , is there a

path from vi to vj?

Euler cycle Given a graph G, is there a closed path in G that visits each edge exactly

once?

Primes Given a number n, is it possible to test whether it is prime or composite?

Unary partition Given a set of n natural numbers {a1, ..., an} represented in unary, is

there a subset P ⊆ {1, ..., n} such that
∑

i∈P ai =
∑

i/∈P ai?

2.3 The Class NP

Another type of a Turing machine is a nondeterministic Turing machine. A nondeter-

ministic Turing machine differs from a deterministic one in that at any point during the

computation the machine may proceed according to several possibilities. This means that

the given state and symbol under the tape head no longer uniquely specify the 3-tuple

(newstate, newsymbol, increment), that is the transition function is multi-valued. The

nondeterministic Turing machine is said to accept its input if any sequence of choices of
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moves leads to an accepting state.

Let N be a nondeterministic Turing machine that is a decider. The running time of N

is the function f : N → N , where f(n) is the maximum number of steps that N uses on

any branch of its computation on any input of length n.[30]

The class NP is defined as a class of decision problems which can be solved by nondeter-

ministic Turing machine in polynomial time. Hence, the term NP comes from nondeter-

ministic polynomial time.

An alternative definition [37] of class NP is given below:

A decision problem D is said to belong to class NP if there is an algorithm A such that

1. Associated with each word of the language Q (i.e., with each instance of decision

problem I for which the answer is ”yes”) there is a certificate (an information needed to

verify a positive answer) C(I) such that when the pair (I, C(I)) are input to algorithm A

it recognizes that I belongs to the language Q.

2. If I is some word that does not belong to the language Q then there is no choice of

certificate C(I) that will cause A to accept I

3. Algorithm A operates in polynomial time

Therefore, NP is the class of decision problems for which checking the correctness of a

”yes” answer is easy if the answer is ”yes” indeed. In other words, the answers should be

verifiable in polynomial time by a deterministic Turing machine.

2.4 The Relationship between P and NP

As deterministic Turing machine can be regarded as a simplified version of nondetermin-

istic Turing machine, it is clear that P⊆ NP.

The question of whether P is a proper subset of NP or not has been one of the most

perplexing research problems in computer science. Despite the enormous efforts of many

scientists over the decades, no polynomial time algorithms for numerous problems in NP

have been found, nor has it been proved that no such algorithms exist.



14 CHAPTER 2. COMPLEXITY, CLASS NP AND NP-COMPLETENESS

Considering the given state of knowledge, it seems reasonable to operate with the assump-

tion that P 6=NP, that is to assume that there exists problems that are hard to solve but

whose solutions can be quickly verified.

2.5 NP-completeness

A decision problem is said to be NP-complete if it belongs to NP and any problem in NP

is reducible to it in polynomial time.

The implication of the definition above is that if a polynomial algorithm is found for any

NP-complete problem then a polynomial algorithm can be constructed for any problem

in NP. Vice versa, a provably slow algorithm for a problem in NP means provably slow

for any NP-complete problem.

The first NP-complete problem was discovered by S.Cook in 1971. It is a decision problem

from Boolean logic and is called the satisfiability problem or SAT. SAT was proved to be

NP-complete with the aid of the theory of Turing machines.

Let X = (x1, ..., xn) be a set of Boolean variables. If x is a Boolean variable, then literal

is either the variable x itself, or its negation x. A clause is a set of literals, for example

{x1, x3, x4}. A value ”true” or ”false” is assigned to each variable from X. The literal

inherits the truth value of a variable, that is if the variable x is true, then so is the literal

x, on the other hand literal x is true if and only if the variable x is false. A clause is said

to be satisfied if and only if at least one of its literals is ”true”. We say that a collection

of clauses C1, ..., Cm on the variables x1, ..., xn is satisfiable if and only if there exists an

assignment of truth values to the variables such that all the clauses are ”true”. The SAT

problem is specified as follows:

Given a set of variables X and a collection of clauses C1, ..., Cm does there exist a set of

truth values for the variables such that every clause is satisfied.
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To demonstrate NP-completeness of a problem it is sufficient to show that some other

NP-complete problem reduces to it in polynomial time. Here follow several examples

of classic NP-complete problems that have been widely used in proving other problems

NP-complete.

Hamiltonian cycle Given a graph is there a cycle that visits each vertex exactly once?

Traveling salesman Given a set of n cities and a distance D is there a route that visits

each city, returns to the starting city and has total length not more than D?

Subset sum Given a collection of integers s1, ..., sn is there a subset of the integers that

sums up to exactly s?

Clique Given a graph G = (V, E) and a positive integer K is there a set of K vertices in

G such that each of the vertices is joined by an edge in E to all the others?

Vertex cover Given a graph G = (V, E) and a positive integer K, is there a vertex cover

S (a subset of vertices V such that each edge in E has at least one endpoint in S) of size

at most K?

Knapsack problem Given a set N of n items j with profit pj, weight wj and the capacity

W , select the subset of N such that the total profit of selected items is maximized without

exceeding the capacity W .

Although no proof of it has been found, it is commonly believed that NP-complete prob-

lems are intractable. Therefore, once the problem has been shown to be NP-complete, it is

more practical to construct an approximation algorithm rather than solving the problem

exactly, or to use a heuristic.

2.6 NP-hardness

A problem H is said to be NP-hard if and only if there is an NP-complete problem that

is polynomial time reducible to H. Informally, NP-hard is a class of problems that are at

least as hard as the NP-complete problems. NP-hard problems can be both of decision
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and optimization types. An optimization version of an NP-complete decision problem

is NP-hard. From the definition of NP-hardness follows that if P 6=NP then NP-hard

problems will have no polynomial time solution, however from P=NP does not follow

polynomial solvability of the latter.

The relationship between P, NP, NP-complete and NP-hard classes of problems can be

given with the aid of the following diagrams. The first one describes the case when P=NP,

and the second one the case for P 6=NP.

P=NP=NP-complete

NP-hard

NP

P

NP-complete

NP-hard

Figure 2.1: On the left: P=NP; On the right: P 6= NP



Chapter 3

Abstract convexity and monotonic

analysis

3.1 Abstract convex functions and sets

Many important concepts and results of convex analysis can be naturally extended to the

abstract convexity framework.

In this section we introduce the main notions of the theory [29, 20, 24, 21].

Before we proceed, we need to introduce some notation that will be used in the sequel.

R = (−∞, +∞)

R̄ = [−∞, +∞]

Rn = {(x1, ..., xn) : xi ∈ R, i = 1, ..., n}
Rn

+ = {(x1, ..., xn) ∈ Rn : xi ≥ 0, i = 1, ..., n}
Rn

++ = {(x1, ..., xn) ∈ Rn : xi > 0, i = 1, ..., n}

Definition 3.1.1. Let H be a nonempty set of functions h : X −→ R̄. A function

f : X → R̄ is called abstract convex with respect to H (or H-convex) if there exists a set

U ⊂ H such that f is the upper envelope of this set:

f(x) = sup{h(x) : h ∈ U} for all x ∈ X

17
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The set H will be referred to as a set of elementary functions.

Definition 3.1.2. Let f : X → R̄. The set

supp(f, H) = {h ∈ H, h ≤ f}

of all H-minorants of f is called the support set of the function f with respect to the set

of elementary functions H.

Definition 3.1.3. Let f : X → R̄. The function coHf defined by

coHf(x) = sup{h(x) : h ∈ supp(f,H)}, (x ∈ X)

is called the H-convex hull of a function f .

Definition 3.1.4. A set U ⊂ H is called abstract convex with respect to X (or (H, X)-

convex) if there exists a function f : X → R̄ such that U = supp(f,H).

Definition 3.1.5. The intersection of all (H, X)-convex sets containing a set U ⊂ H is

called the abstract convex hull or (H, X)-convex hull of the set U.

The following lemma is a reformulation of the definition of abstract convex sets in terms

of the separation property.

Lemma 3.1.6 (Separation property). Let H be a set of elementary functions defined on

a set X. Let U be a proper subset of H, that is U 6= ∅, U 6= H. Then the set U is

(H, X)-convex if and only if for each h that does not belong to U there exists x ∈ X such

that

h(x) > suph′∈Uh′(x)

3.1.1 Subgradient

We have mentioned earlier that subdifferential plays an important role in convex opti-

mization. Here follows the definition of a subdifferential for abstract convex functions.
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Definition 3.1.7. Let L be a set of elementary functions l : X → R. A function l ∈ L is

called an abstract subgradient (or L-subgradient) of a function f : X → R+∞ at a point

y if f(x) − f(y) ≥ l(x) − l(y) for all x ∈ X. The set ∂Lf(y) = {l ∈ L : f(x) − f(y) ≥
l(x) − l(y) for all x ∈ X} of all abstract subgradients of f at y is referred to as the

abstract subdifferential (or L-subdifferential) of the function f at a point y.

We will regard set L as a set of abstract linear functions. Let HL be the closure of L under

vertical shifts, that is HL = {h′ : h′(x) = h(x) − c, h ∈ H, c ∈ R}. The set HL will be

referred to as the set of abstract affine functions with respect to L or L-affine functions.

3.2 IPH functions and their properties

Monotonic analysis is abstract convex analysis with respect to a special choice of elemen-

tary functions.

Many of the concepts and results presented in this section can be found in [20, 21, 6]. We,

however, include them here for the purpose of a clearer view and a better understanding

of the subsequent results.

Let us first introduce some basic notation. For any two vectors x = (x1, ..., xn) ∈ Rn, y =

(y1, ..., yn) ∈ Rn x ≥ y means that for any i = 1, ..., n xi ≥ yi. Two vectors x, y for which

xi ≥ yi, i = 1, ..., n does not hold shall be referred to as incomparable.

A function f : Rn
+ → R is said to be increasing if x ≥ y, where x, y ∈ Rn

+ implies

f(x) ≥ f(y).

Many functions encountered in mathematical economics are increasing in that sense. One

example of it is a well known Cobb-Douglas production function f(x) =
∏

i

xαi

i , αi ≥ 0

A subset C of a vector space is called a conic set or a cone if λx ∈ C for each x ∈ C and

λ > 0
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Here we will study monotonic, that is increasing and decreasing functions defined on a

conic set with a certain property along rays.

Let C be a conic set. We say that a property (P) of a function f : C → R holds along

rays if the restriction of f to the ray Rx = {αx : α ≥ 0} starting from zero and passing

through x enjoys property (P) for each x ∈ C. That is, (P) holds along rays if the function

fx defined by fx(α) = f(αx), α ≥ 0 possesses the property (P).

Several examples of functions with properties along rays are:

1) Continuous along rays functions f : the function fx is continuous for all x ∈ C.

2) Convex along rays functions f : fx is convex for all x ∈ C.

3) Positively homogeneous functions of degree γ: a function f is said to be positively

homogeneous of degree γ if f(λx) = λγf(x) for any λ ≥ 0.

We shall consider increasing positively homogeneous functions of degree one, the common

abbreviation for which is IPH. Hence, the formal definition of IPH functions is stated as

follows:

Definition 3.2.1. (IPH functions) Let Q be either Rn
+ or Rn

++. A function f : Q →
R+∞ is an IPH function if the following conditions are satisfied:

1. x ≥ y implies f(x) ≥ f(y) (monotonicity condition);

2. f(λx) = λf(x) for λ > 0 and x ∈ Q (positive homogeniety condition).

Examples of IPH functions:

1. f(x) =
∑

i∈I aixi, ai ≥ 0;

2. f(x) =‖ x ‖p, p > 0;

3. f(x) =
√

[Ax, x], where A is a matrix with nonnegative terms;

4. f(x) =
∏

j∈J x
tj
j , J ⊂ I = {1, ..., n}, tj > 0,

∑
j∈J tj = 1.

It is easy to see that if f1 and f2 are IPH functions, then for any λ1 ≥ 0, λ2 ≥ 0 the

function λ1f1 + λ2f2 is IPH as well.
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We proceed with some properties of IPH functions defined on Rn
++ [20]. Let f be an IPH

function, then

1. f(x) ≥ 0 for all x ∈ Rn
++. Indeed, consider a vector x ∈ Rn

++. Since (1/2)x ≤ x, it

follows that (1/2)f(x) = f((1/2)x) ≤ f(x). Hence f(x) ≥ 0.

2. If f is IPH and there exists a point x̄ ∈ Rn
++ such that f(x̄) = +∞, then f(x) = +∞

for all x ∈ Rn
++. Indeed, if x ∈ Rn

++, then there exists λ > 0 such that x ≥ λx̄. Therefore

f(x) ≥ f(λx̄) = λf(x̄) = +∞.

3. If there exists a point x̄ ∈ Rn
++ such that f(x̄) = 0, then f(x) = 0 for all x ∈ Rn

++. In

fact, for each x ∈ Rn
++ there exist λ > 0 such that x ≤ λx̄. Hence 0 ≤ f(x) ≤ λf(x̄) = 0.

4. Each IPH function f is continuous on Rn
++. Assume that f : Rn

++ → R++. Let

x ∈ Rn
++ and xn → x. For ε > 0 and large n we have (1 − ε)x ≤ xn ≤ (1 + ε)x. Then

(1− ε)f(x) ≤ f(xn) ≤ (1 + ε)f(x), that is f(xn) → f(x).

Consider the set L of all functions l(x) defined on Rn
++ as per the following definition.

Definition 3.2.2. (min-function) A function l(x) =
(x

l

)
= min

i∈I

xi

li
, where x, l ∈

Rn
++, I = {1, ..., n} is called a min-function.

If vectors x and l are collinear, the min-function produces a number by which vector

l needs to be multiplied in order to be shrunk or stretched to the length of vector x.

Figure 3.1 is a diagram for the case of 2-dimensional space.

If they are not collinear then l(x) is a minimum number which we need to multiply

the vector l by so that it reaches the boundary of the box generated by the vector x

(Figure 3.2).

It is easy to see that min-functions are IPH.

For x ≤ l,
(x

l

)
≤ 1. Indeed, x ≤ l implies x1 ≤ l1, ..., xn ≤ ln, that is

x1

l1
≤ 1, ...,

xn

ln
≤ 1.

By definition
(x

l

)
= min

i∈I

xi

li
= min

(
x1

l1
, ...,

xn

ln

)
. Therefore,

(x

l

)
≤ 1.

Similarly, for x ≥ l,
(x

l

)
≥ 1.
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x1l1

l2

x2

Figure 3.1: Collinear vectors

x1

x2

l1

l2

Figure 3.2: Noncollinear vectors
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Proposition 3.2.1. A function f : Rn
++ → R+∞ is abstract convex with respect to L if

and only if it is IPH.

Proof. Since functions
(x

l

)
are increasing and positively homogeneous, any L-convex

function is IPH. Conversely, suppose that p is IPH and y ∈ Rn
++. Let ly =

y

p(y)
. We have

ly(y) =

(
y

ly

)
= p(y). Let x ∈ Rn

++ and λ = mini
xi

yi

. Then x ≥ λy. Therefore,

p(x) ≥ p(λy) = λp(y) = min
i

xip(y)

yi

= min
xi

ly
=

(
x

ly

)

Let U = {lx : x ∈ Rn
++}. Then for each y ∈ Rn

++

p(y) =

(
y

ly

)
= max

l∈U

(y

l

)

Lemma 3.2.3. For any x, y ∈ Rn
++ the following inequality is true

y

(
x

y

)
≤ x (3.1)

Proof. Proof of lemma. Indeed,

y

(
x

y

)
= (y1, . . . , yn) min

i

xi

yi

=

(
x1

y1

x1

min
i

xi

yi

, . . . , xn
yn

xn

min
i

xi

yi

)
≤

≤
(

x1
y1

x1

x1

y1

, . . . , xn
yn

xn

xn

yn

)
= (x1, . . . , xn) = x

The lemma is proved.

Let us now introduce the following criterion for a function to be IPH.

Theorem 3.2.4. A function p is IPH if and only if for any x, y ∈ Rn
++ it satisfies the

following inequality (
x

y

)
p(y) ≤ p(x) (3.2)
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Proof. Let p be an IPH function. Since p is IPH, applying it to 3.1 as follows

p

(
y

(
x

y

))
≤ p(x)

we obtain (
x

y

)
p(y) ≤ p(x)

Let us now show that the reverse is true as well. First we need to show that p is positively

homogeneous. Assume that inequality 3.2 holds. Then the following inequality is true as

well
(y

x

)
p(x) ≤ p(y) (3.3)

From 3.2 we get

p(y) ≤ p(x)(
x
y

) (3.4)

Hence, from 3.3 and 3.4

p(x)
(y

x

)
≤ p(y) ≤ p(x)(

x
y

)

Taking y = αx, where α > 0, we obtain

p(x)
(αx

x

)
≤ p(αx) ≤ p(x)(

x
αx

)

αp(x) ≤ p(αx) ≤ αp(x)

i.e.

p(αx) = αp(x)

which means that function p is positively homogeneous.
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It is now sufficient to show that function p is monotonic. Let y ≤ x. Then

(
x

y

)
≥ 1

and from

(
x

y

)
p(y) ≤ p(x) it follows that p(y) ≤ p(x). Thus function p is monotonic.

Therefore, p is an IPH function.

Let us now examine two very important notions of abstract convexity - the support set

and the subdifferential. One of the significant results of abstract convex analysis is that

we can obtain explicit representation of both of the above.

Proposition 3.2.2. Let p be an IPH function defined on Rn
++ and L be the set of min-

functions l. Then

supp(p, L) = (l : p(l) ≥ 1)

Proof. By definition the support set for p is the following

supp(p, L) = (l ∈ L : p(x) ≥ l(x)),

which in turn is equivalent to

supp(p, L) =

(
l ∈ L : p

(
x

l(x)

)
≥ 1

)
(3.5)

For x = l from 3.5 we obtain

supp(p, L) = (l : p(l) ≥ 1) (3.6)

We now need to show that if p(l) ≥ 1 then 3.5 holds true as well. Let us write out the

expression for p

(
x

l(x)

)

p

(
x

l(x)

)
= p

(
x

mini
xi

li

)
= p

(
x1

mini
xi

li

, ...,
xn

mini
xi

li

)
= p

(
l1

x1

l1

mini
xi

li

, ..., ln

xn

ln

mini
xi

li

)
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As for all i, j = 1, ..., n

xj

lj

mini
xi

li

≥ 1,

p

(
l1

x1

l1

mini
xi

li

, ..., ln

xn

ln

mini
xi

li

)
≥ p(l1, ..., ln) = p(l)

Thus, for any x

p

(
x

l(x)

)
≥ p(l) ≥ 1

.

Proposition 3.2.3. Let p : Rn
++ → R be an IPH function, L be the set of min-functions

l and xo, y ∈ Rn
++. Then

∂Lp(xo) = {l ∈ Rn
++ : p(l) = 1, p(y) ≥

(y

l

)
, p(xo) =

(xo

l

)
for all y ∈ Rn

++} (3.7)

Proof. We know that the general definition of a subdifferential for an IPH function p is

the following:

∂Lp(xo) = {l : p(y)− p(xo) ≥ l(y)− l(xo) for all y ∈ Rn
++} (3.8)

Here l(y) is a min-function l(y) =
(y

l

)
= mini

yi

li
.

Consider inequality

p(y)− p(xo) ≥
(y

l

)
−

(xo

l

)

Dividing both sides by
(y

l

)
as y tends to infinity we obtain

lim
y→∞

[
p(y)

(y
l
)
− p(xo)

(y
l
)

]
≥ lim

y→∞

[
1− (xo

l
)

(y
l
)

]
(3.9)

As p is an IPH function

lim
y→∞

p(y)

(y
l
)

=
p(y)

(y
l
)
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Thus we get
p(y)(

y
l

) ≥ 1 and

p(y) ≥
(y

l

)
(3.10)

By making y tend to 0 in 3.9 we get

0− p(xo) ≥ 0−
(xo

l

)

From here
(xo

l

)
≥ p(xo) (3.11)

From 3.10 for y = xo we get p(xo) ≥
(xo

l

)
. Taking into account 3.11 it follows that

p(xo) =
(xo

l

)
(3.12)

From 3.10 for y = l we have p(l) ≥ 1. From theorem 3.2.4 p(l)
(xo

l

)
≤ p(xo). Taking into

account 3.12 we obtain p(l) ≤ 1. As a result we have

p(l) = 1 (3.13)

If we add 3.10 to 3.12 we will get 3.8. Thus, the subdifferential for an IPH function p will

look as follows

∂Lp(xo) = {l ∈ Rn
++ : p(l) = 1, p(y) ≥

(y

l

)
, p(xo) =

(xo

l

)
}
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Chapter 4

Global optimization problem for

IPH functions

In this chapter we will look into the global optimization problem for the IPH functions.

The results in this section of the thesis are new. We first introduce some auxiliary results

that will aid in the investigation of the above problem. For the following theorem we will

introduce an auxiliary definition of a so called set of incomparable elements.

Definition 4.0.5. A set M is called a set of incomparable elements if any two elements

x, y ∈ M are incomparable, that is neither x ≤ y nor x ≥ y holds.

For example, a unit simplex S = {(x1, ...xn) ∈ Rn
++,

∑n
i=1 xi = 1} is a set of incomparable

elements.

Note that for any two points x, y on a set of incomparable elements

(
x

y

)
≤ 1.

Definition 4.0.6. Let M be a set of incomparable elements. We say that the extension

of a function p : M → R onto a cone C generated by M is positively homogeneous if for

any x ∈ M and for any z ∈ C such that z = αx, where α > 0

p(αx) = αp(x)

29
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Theorem 4.0.7. Let us assume that we are given a function p defined on a set of incom-

parable elements M ⊂ Rn
++. Then positive homogeneous extension of this function onto

a conic set generated by M is an IPH function if and only if for any x, y ∈ M it satisfies

inequality (
x

y

)
p(y) ≤ p(x) (4.1)

Proof. Let x, y ∈ M and a, b ∈ Rn
++ be arbitrary points such that a = αx and b = βy,

α, β > 0. Assume that p satisfies inequality 4.1. Then

(
x

y

)
p(y) ≤ p(x),

α

β

(
x

y

)
p(y)β ≤ p(x)α,

(
αx

βy

)
p(βy) ≤ p(αx),

(a

b

)
p(b) ≤ p(a),

Similarly, reversing the above scheme we obtain that if the positively homogeneous ex-

tension of function p is IPH, then p satisfies the inequality 4.1. Thus, it follows from

Theorem 3.2.4 that the extension of the function is IPH.

4.1 Lipschitz functions embeddable in IPH functions

Let us now introduce the notation we will be using throughout the rest of the chapter.

1) ∆n−1 = {(x1, ...xn) ∈ Rn
++,

∑n
i=1 xi = 1} is a unit simplex.

2) A denotes a compact set which belongs to the interior of ∆n−1

Let f(x) be a Lipschitz function defined on A. Since A is compact and f(x) is continuous

on A, it achieves its minimum there.

3) We will denote the minimal value of f(x) on A by m.
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The min-function

(
x

y

)
is defined on A2. Since A2 is compact and

(
x

y

)
is continuous on

it, it achieves its maximum there.

4) By M we will denote the maximal value of

(
x

y

)
on A2.

5) N = sup maxi yi, y = (y1, ..., yn) ∈ A.

Theorem 4.1.1. Let f be a Lipschitz function defined on A and L be the Lipschitz

constant of the function f . Let

L ≤ m

M
√

nN

Then the positively homogeneous extension of f is an IPH function.

Proof. According to theorem 4.0.7 in order to prove that the function f(x) can be extended

homogeneously as an IPH function we should show that for any x, y ∈ A ⊂ ∆n−1 it satisfies

the inequality f(y)

(
x

y

)
≤ f(x). If f(y) ≤ f(x) then as x and y are incomparable and

(
x

y

)
≤ 1 the above inequality holds. Let us now look at the case when f(y) ≥ f(x).

To prove the theorem we will need to evaluate the following expression

f(x)




1−
(

x

y

)

(
x

y

)




We can proceed as follows:

f(x)




1−
(

x

y

)

(
x

y

)


 ≥ m

M

(
1−

(
x

y

))
=

m

M

(
1−min

i

xi

yi

)
=

m

M
max

i

(
1− xi

yi

)
=

=
m

M
max

i

(
yi − xi

yi

)
=

m

M
√

n

√
n max

i

(
yi − xi

yi

)2

≥
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≥ m

M
√

n

√
(y1 − x1)2

y2
1

+ . . . +
(yn − xn)2

y2
n

≥ m

M
√

n

√
(y1 − x1)2

N2
+ . . .

(yn − xn)2

N2
=

=
m

M
√

nN

√
(y1 − x1)2 + . . . (yn − xn)2 =

m

M
√

nN
|y − x| (4.2)

As f(x) is a Lipschitz function with a Lipschitz constant L ≤ m

M
√

nN
, we can write

m

M
√

nN
|y − x| ≥ L|y − x| ≥ |f(y)− f(x)| = f(y)− f(x) (4.3)

Hence, combining 4.2 and 4.3 we have obtained the following inequality

f(x)


1−

(
x
y

)
(

x
y

)

 ≥ f(y)− f(x)

simplifying which we get the needed inequality

f(y)

(
x

y

)
≤ f(x)

Thus, we have shown that a positively homogeneous extension of a Lipschitz function

f(x) on a compact set A ⊂ ∆n−1 with a Lipschitz constant L ≤ m

M
√

nN
is an IPH

function.

Definition 4.1.2. Let

∆̃n−1 = {(x1, ..., xn−1) ∈ Rn−1 : xi ≥ 0, i = 1, ..., n− 1, x1 + ... + xn−1 ≤ 1},
∆n−1 = {(x1, ...xn) ∈ Rn

++,
∑n

i=1 xi = 1}
and Ψ : ∆̃n−1 → ∆n−1 be the following mapping

Ψ(x1, ..., xn−1) = (x1, ..., xn−1, 1− (x1 + ... + xn−1))
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We will refer to Ψ as a lifting function.

For any function f(x1, ..., xn−1 : ∆̃n−1) → R we will denote by f̂ : ∆n−1 → R the following

function

f̂(x1, ..., xn−1, 1− (x1 + ... + xn−1) = f(Ψ−1(x1, ..., xn−1, 1− (x1 + ... + xn−1)))

4.2 Reduction to subset sum problem

The subset sum problem is one of the most well-known NP-complete problems. Tradi-

tionally there are three formulations of the problem:

(S1) Given a set of n positive integers a1, ..., an and a bound B, find a subset of the

integers whose sum is closest to but does not exceed the bound.

(S2) Given a set of n integers, find a subset that sums to exactly 0.

(S3) Given a set of m integers S = {s1, ..., sm} and an integer s, find a subset of S that

sums exactly to s.

In what follows m in (S3) will be either equal to n − 1 or n. We will be using the third

formulation of the problem to show that the following problem is NP-complete as well.

Before we proceed, we introduce the following class of functions.

f(x1, ..., xn) = 1 +
n∑

i=1

(
xi − α

β − α

)2 (
xi − β

β − α

)2

+

(
n∑

i=1

si

(
xi − α

β − α

)
− s

)2

(4.4)

Here α, β ∈ R, xi ∈ [α, β], i = 1, ..., n and s1, ..., sn, s are integers. We will denote this

class of functions by F(α, β).

Remark 4.2.1. Note that the value of the functions in F(α, β) is greater than or equal

to 1 since the first term of the functions is 1 and the second and third terms are always

nonnegative.
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Let us formulate the following problem:

(P (α, β)) Given a function f ∈ F(α, β), is the global minimum of this function equal to

1 or not?

Theorem 4.2.2. The problem (P (α, β)) is equivalent to the subset sum problem.

Proof. Let f(x) ∈ F(α, β), that is

f(x) = 1 +
n∑

i=1

(
xi − α

β − α

)2 (
xi − β

β − α

)2

+

(
n∑

i=1

si

(
xi − α

β − α

)
− s

)2

where xi ∈ [α, β], α, β ∈ R and s1, ..., sn, s are arbitrary integers.

Let us prove that the global minimum of function f(x) is equal to 1 if and only if there

exists a subset {si1 , ..., sik} of {s1, ..., sn} such that
∑

sij = s

Assume that the value of the function f(x) is equal to 1. Then, as it is a sum of non-

negative terms, both its second and third terms should be equal to 0. The second term

of the above function is equal to 0 if and only if for arbitrary i = 1, ..., n either xi = α or

xi = β. Therefore, for any i = 1, ..., n,
xi − α

β − α
would be either equal to 1 or to 0. The

third term can be, thus, equal to 0 if and only if
∑

si

(
xi − α

β − α

)
= s, that is if and only

if there exist indices {i1, ..., ik} ⊂ {1, ..., n} such that xij = α and
∑

sij = s.

On the other hand, if there exists a set of indices {i1, ..., ik} ⊂ {1, ..., n} such that
∑

sij = s

then we can choose xi1 = β, ..., xik = β and the rest of xi equal to α. In this case, second

and third terms of the function will be equal to 0 and, hence, the value of the function

f(x) will be equal to 1. That is the problem (P(α, β)) and the subset sum problem are

reducible to each other. This completes the proof.

Corollary 4.2.3. (P (α, β)) is NP-complete.

As we mentioned above, subset sum (S3) is an NP-complete problem. Since its solution

yields the solution to (P (α, β)) and vice versa, (P (α, β)) is NP-complete as well

Corollary 4.2.4. The problem of finding the global minimum of a given function f(x) ∈
F(α, β) is NP-hard.
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Let us assume that there exists a polynomial time algorithm for finding the global mini-

mum of f(x). Then comparing this minimum with 1 would require additional polynomial

time computation (polynomial of degree zero). This means that there would be a polyno-

mial time algorithm for solving problem (P (α, β)). We arrive at a contradiction. Hence,

corollary 4.2.4 is proved.

Remark 4.2.5. Note that global optimization problems for functions f(x) ∈ F(α, β) and

a + bf(x), where a is an arbitrary real number and b is a positive real number, are

equivalent in the sense that finding global optimum for one of them yields the solution

for the other one.

4.3 NP-hardness of GO problem for IPH functions

Theorem 4.3.1. Let f(x) be a Lipschitz function defined on an (n− 1)-dimensional box

B =

[
1

2n
,

2n− 1

2n(n− 1)

]n−1

, B ⊂ ∆̃n−1 with the Lipschitz constant L ≤ m

2n
√

n
, where m is

the minimal value of f(x) on B and Ψ is the lifting function, B̂ ⊂ ∆n−1, B̂ = Ψ(B). Let

f̂(x) : B̂ → R be the function defined as

f̂(x1, ..., xn−1, 1−(x1+...+xn−1)) = f(Ψ−1(x1, ..., xn−1, 1−(x1+...+xn−1)) = f(x1, ..., xn−1)

Then f̂(x) is Lipschitz continuous on B̂ and the positively homogeneous extension of f̂(x)

to Rn
++ is an IPH function.

Proof. First we show that
m

2n
√

n
can be used as a Lipschitz constant for f̂(x) as well.

Indeed, as
m

2n
√

n
is a Lipschitz constant for f(x),

|f(x)− f(y)|
|x− y| ≤ m

2n
√

n
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On the other hand, from the definition of function f̂(x) it follows that

|f̂(x̂)− f̂(ŷ)|
|x̂− ŷ| ≤ |f(x)− f(y)|

|x− y| ≤ m

2n
√

n

Here x̂ = (x1, ..., xn−1, 1− (x1 + ... + xn−1))

According to Theorem 4.1.1, it is sufficient to show that
m

2n
√

n
≤ m

M
√

nN
(here we use

the notation of Theorem 4.1.1).

It is easy to check that N ≤ 1 and M ≤ 2n. Indeed, as N = sup maxi yi, y = (y1, ..., yn) ∈
B, N will be less than or equal to the upper bound of the box B, that is N ≤ 2n− 1

2n(n− 1)
≤

1. M is the maximal value of min-function

(
x

y

)
, x, y ∈ B. Obviously, the maximum of

the function

(
x

y

)
can be attained at the boundary points of the box when xi =

2n− 1

2n(n− 1)

and yi =
1

2n
, i = 1, ..., n. Hence, M ≤

2n−1
2n(n−1)

1
2n

=
2n− 1

n− 1
≤ 2n Therefore, the inequality

m

2n
√

n
≤ m

M
√

nN
holds.

Theorem 4.3.2. Let f(x) : B → R be defined as

f(x1, ..., xn−1) =

= 1+
1

[4(n− 1)2 + 2(n− 1)(Q + s)Q] · n√n




n−1∑
i=1

(
xi − α

β − α

)2 (
xi − β

β − α

)2

+

(
n−1∑
i=1

si

(
xi − α

β − α

)
− s

)2



where α =
1

2n
, β =

2n− 1

2n(n− 1)
, s1, ..., sn−1, s are arbitrary integers and Q =

n−1∑
i=1

si, and

let f̂(x) be the lifting of f(x).

Then the positively homogeneous extension of f̂(x) to Rn
++ is an IPH function.

Proof. Since the minimal value of f(x) is 1, it is sufficient to check that
1

2n
√

n
is a

Lipschitz constant for f(x). Indeed, according to the mean value theorem,
|f(x)− f(y)|
‖x− y‖ =

∣∣∣∣
∂f(z)

∂ξ

∣∣∣∣, where z is some point between x and y, x, y ∈ B, and
∂f

∂ξ
is the directional

derivative of f along unit vector ξ = (ξ1, ..., ξn−1), ‖ξ‖ = 1. Let us show that the value of
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the derivative of f(x) is always less than or equal to
1

2n
√

n
. Indeed,

∣∣∣∣
∂f(z)

∂ξ

∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=1

ξi
∂f(z)

∂xi

∣∣∣∣∣ ≤
n−1∑
i=1

|ξi|
∣∣∣∣
∂f(z)

∂xi

∣∣∣∣ ≤
n−1∑
i=1

∣∣∣∣
∂f(z)

∂xi

∣∣∣∣

For simplicity we will denote
1

[4(n− 1)2 + 2(n− 1)(Q + s)Q] · n√n
by K. Then

n−1∑
i=1

∣∣∣∣
∂f(z)

∂xi

∣∣∣∣ = K
n−1∑
i=1

∣∣∣∣∣
2

β − α

(
xi − α

β − α

)(
xi − β

β − α

)2

+
2

β − α

(
xi − α

β − α

)2 (
xi − β

β − α

)
+

+2

(
n−1∑
i=1

si

(
xi − α

β − α

)
− s

)(
si

β − α

) ∣∣∣∣∣ ≤

≤ K

n−1∑
i=1

[
2

β − α

∣∣∣∣
xi − α

β − α

∣∣∣∣
∣∣∣∣∣
(

xi − β

β − α

)2
∣∣∣∣∣ +

2

β − α

∣∣∣∣∣
(

xi − α

β − α

)2
∣∣∣∣∣
∣∣∣∣
xi − β

β − α

∣∣∣∣ +

+

∣∣∣∣∣2
(

n−1∑
i=1

si

(
xi − α

β − α

)
− s

)∣∣∣∣∣
∣∣∣∣

si

β − α

∣∣∣∣
]

As xi ∈ [α, β], for any i = 1, ..., n

∣∣∣∣
xi − α

β − α

∣∣∣∣ ≤ 1 and

∣∣∣∣
xi − β

β − α

∣∣∣∣ ≤ 1. Therefore, we can

proceed as follows

n−1∑
i=1

∣∣∣∣
∂f(z)

∂xi

∣∣∣∣ ≤ K

n−1∑
i=1

[
2

β − α
+

2

β − α
+ 2(Q + s)

(
si

β − α

) ]
=

= K

[
n−1∑
i=1

4

(β − α)
+

(
2(Q + s)

β − α

) n−1∑
i=1

si

]
=

=
K

β − α

[
n−1∑
i=1

4 + 2(Q + s))
n−1∑
i=1

si

]
=

K

β − α
[4(n− 1) + 2(Q + s)Q]

Since β − α =
2n− 1

2n(n− 1)
− 1

2n
=

1

2(n− 1)
, we can further write
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n−1∑
i=1

∣∣∣∣
∂f(z)

∂xi

∣∣∣∣ ≤ K[8(n− 1)2 + 4(n− 1)(Q + s)Q] =
1

2n
√

n

Hence it follows that

|f(x)− f(y)|
‖x− y‖ =

∣∣∣∣
∂f(z)

∂ξ

∣∣∣∣ ≤
n−1∑
i=1

∣∣∣∣
∂f(z)

∂xi

∣∣∣∣ ≤
1

2n
√

n

that is

|f(x)− f(y)| ≤ 1

2n
√

n
‖x− y‖

Therefore
1

2n
√

n
can be considered as a Lipschitz constant of f(x). The rest follows from

the theorem 4.3.1.

Theorem 4.3.3. Global optimization problem for IPH functions restricted to a unit sim-

plex is NP-hard.

Proof. According to corollary 4.2.4 and remark 4.2.5 the global optimization problem for

any function of form

f(x) = a + b

n∑
i=1

(
xi − α

β − α

)2 (
xi − β

β − α

)2

+

(
n∑

i=1

si

(
xi − α

β − α

)
− s

)2

where a and b are real numbers, is NP-hard. From theorem 4.3.2 it follows that the

lifting of functions of this form onto a unit simplex can be extended as an IPH function.

Therefore, the global optimization problem for IPH functions on a unit simplex is NP-

hard.

4.4 NP-hardness of ε-approximation

Since we can be almost certain that NP hard problems cannot be solved efficiently, we

have to limit ourselves to find approximate solutions. Approximation algorithms can have
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different measure of efficiency, or so called performance guarantee. It may be absolute, as

described in the following definition

Definition 4.4.1. An algorithm is said to be an ε-absolute approximation algorithm for

a problem P, if for for some constant ε and for any instance I of this problem it outputs

an estimate m′ such that

|m′ −m| ≤ ε

where m is the exact solution of P.

More commonly though, performance guarantee is relative, that is the approximate value

found by the algorithm is within some fixed percentage of the optimal value.

Definition 4.4.2. An algorithm is said to be an ε-approximation algorithm for a problem

P, if for some constant ε and for any instance I of this problem it outputs an estimate m′

such that

m

1 + ε
≤ m′ ≤ (1 + ε)m

where m is the exact solution of P. Here 1 + ε is called the approximation ratio.

However, even the problem of finding approximate solutions cannot always be tackled

successfully. Some problems have extremely good approximation algorithms, while for

others finding approximate solution is no easier than solving them exactly. For example,

knapsack problem can be approximated within any approximation ratio [10]. The trav-

eling salesman problem, on the other hand, cannot be solved approximately within any

constant factor [28].

In the previous section we have shown that the global optimization problem for IPH

functions restricted to a unit simplex is NP-hard. A natural question arises: is there a

way to find efficient approximation algorithm for the above problem? In this section we

will show that the problem cannot be approximated at all.
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Consider the set of functions f : Rn → R of the following form

f(x) =
n∑

i=1

x2
i (1− xi)

2 +

(
n∑

i=1

sixi − s

)2

(4.5)

here s1, ..., sn, s > 0 are arbitrary integers, x ∈ Rn, and 0 ≤ xi ≤ 1 for any i = 1, ..., n.

The following theorem holds

Theorem 4.4.3. If the global minimum of function f(x) on In = [0, 1]n is not equal to 0

then it is greater than

(
2Q− 1

4Q2

)2

, where Q =
n∑

i=1

si.

Remark 4.4.4. Note that if there exists a subset {si1 , ..., sik} of s1, ..., sn such that
∑

sij =

s then the global minimum of f(x) is equal to 0, and vice versa. Therefore, the fact that

the global minimum is not equal to 0 means that |∑ sij − s| > 1.

Proof. Let us assume that for some x ∈ In f(x) <

(
2Q− 1

4Q2

)2

. Since all terms in the

expression for f(x) are nonnegative, for any i = 1, ...n we have

x2
i (1− xi)

2 <

(
2Q− 1

4Q2

)2

or

x2
i − xi +

2Q− 1

4Q2
> 0

Taking into account that 0 ≤ xi ≤ 1 and solving the quadratic inequality explicitly it is

easy to see that 0 ≤ xi <
1

2Q
∨ 1 − 1

2Q
< xi ≤ 1,

1

2Q
<

1

2
. Let us now evaluate the

following expression ∣∣∣∣∣
n∑

i=1

sixi − s

∣∣∣∣∣

We will split the sum
n∑

i=1

sixi into two terms
∑

I

sixi and
∑

J

sjxj where I is the set of

indices for which 0 ≤ xi <
1

2Q
and J is the set of indices for which 1 − 1

2Q
< xj ≤ 1.

Therefore, we can write



4.4. NP-HARDNESS OF ε-APPROXIMATION 41

∣∣∣∣∣
n∑

i=1

sixi − s

∣∣∣∣∣ =

∣∣∣∣∣
∑

I

sixi +
∑

J

sjxj − s

∣∣∣∣∣ =

∣∣∣∣∣
∑

I

sixi +
∑

J

sj(1− x̃j)− s

∣∣∣∣∣

Here 1− x̃j = xj and therefore 0 ≤ x̃j <
1

2Q

∣∣∣∣∣
∑

I

sixi +
∑

J

sj(1− x̃j)− s

∣∣∣∣∣ =

∣∣∣∣∣
∑

I

sixi −
∑

J

sjx̃j +
∑

J

sj − s

∣∣∣∣∣ =

=

∣∣∣∣∣

(∑
J

sj − s

)
−

(∑
J

sjx̃j −
∑

I

sixi

)∣∣∣∣∣ ≥
∣∣∣∣∣
∑

J

sj − s

∣∣∣∣∣−
∣∣∣∣∣
∑

J

sjx̃j −
∑

I

sixi

∣∣∣∣∣ ≥

≥
∣∣∣∣∣
∑

J

sj − s

∣∣∣∣∣−
(∑

J

sjx̃j +
∑

I

sixi

)
≥ 1− 1

2Q

(∑
J

sj +
∑

I

si

)
= 1− 1

2Q
Q =

1

2

Therefore,

(
n∑

i=1

sixi − s

)2

≥ 1

4

Hence, it follows that f(x) =
n∑

i=1

x2
i (1 − xi)

2 +

(
n∑

i=1

sixi − s

)2

>

(
n∑

i=1

sixi − s

)2

≥ 1

4
.

On the other hand, we assumed that f(x) <

(
2Q− 1

4Q2

)2

<

(
2Q

4Q2

)2

=
1

4Q2
<

1

4
.

We arrive at a contradiction. Thus the global minimum of f(x) is greater than

(
2Q− 1

4Q2

)2

.

Remark 4.4.5. Note that for functions of form

f(y) = 1 + K




n∑
i=1

(
yi − α

β − α

)2 (
yi − β

β − α

)2

+

(
n∑

i=1

si

(
yi − β

β − α

)
− s

)2

 (4.6)

where K, α, β are positive real numbers, α ≤ yi ≤ β and s1, ..., sn, s are arbitrary integers

the global minimum is either equal to 1 or is greater than 1 + K

(
2Q− 1

4Q2

)2

Theorem 4.4.6. The problem of finding ε-absolute approximation to the global minimum

of 4.6 is NP-hard.

Proof. Suppose that we have an algorithm for solving this ε-absolute approximation prob-

lem in polynomial time. Then there would exist a polynomial algorithm for checking
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whether the exact minimum of function is equal to 1 or is greater than 1. Indeed, let

ε(Q, K) = K

(
2Q− 1

4Q2

)2

. Calculating ε(Q,K) would require a polynomial amount of

time. Next we find
ε(Q,K)

2
-absolute approximation m′ to the global minimum m such

that |m′ − m| <
ε(Q,K)

2
. According to our assumption, this can be done in polyno-

mial time. From Theorem 4.4.3 and Remark 4.4.5 follows that the global minimum of

function f(y) can either be 1 or be greater than 1 + ε(Q,K). Then by comparing m′

with 1 +
ε(Q, K)

2
we can tell if m = 1 or m > 1. Indeed, if m′ > 1 +

ε(Q,K)

2
then

m > m′ − ε(Q,K)
2

> 1. On the other hand, if m′ < 1 +
ε(Q,K)

2
then

m−m′ < |m′ −m| < ε(Q,K)

2

m < m′ +
ε(Q,K)

2
< 1 + ε(Q,K),

that is m = 1.

We have just shown a polynomial way for checking whether global minimum of f(y) is

equal to 1 or not. However, we proved earlier (Theorem 4.2.2) that this problem is NP-

hard. Thus, we have arrived at contradiction. Therefore, finding ε-absolute approximation

to the global minimum of f(y) is NP-hard.

Theorem 4.4.7. The problem of finding ε-approximation to the global minimum of 4.6

is NP-hard.

Proof. Assume that we have a polynomial algorithm to find an ε-approximation E to the

global minimum m of 4.6. Let us assume that m = 1. By definition of ε-approximation,

E

1 + ε
≤ m. Since m = 1, E ≤ 1 + ε, that is E − 1 ≤ ε. Then by definition of ε-absolute

approximation, we can see that E is an ε-absolute approximation to the global minimum

m as well. However, we have previously shown that the problem of finding ε-absolute

approximation to the global minimum 4.6 is NP-hard. We have arrived at contradiction.

Theorem is proved.
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Theorem 4.4.8. Finding ε-absolute approximation and ε-approximation to the solution

of global optimization problem for IPH functions restricted to a unit simplex is NP-hard

Proof. Indeed, from theorems 4.4.6 and 4.4.7 follows that for functions of form

f(y) = 1 + K




n∑
i=1

(
yi − α

β − α

)2 (
yi − β

β − α

)2

+

(
n∑

i=1

si

(
yi − β

β − α

)
− s

)2



ε-absolute approximation and ε-approximation problems are NP-hard. On the other hand,

theorem 4.3.2 proposes that the liftings of functions of form f(y) with

K =
1

[4(n− 1)2 + 2(n− 1)(Q + s)Q] · n√n
onto a unit simplex can be extended as IPH

functions. Therefore, ε-absolute approximation and ε-approximation problem for these

functions is NP-hard.
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Chapter 5

Conclusion

In this thesis we have looked into one problem of global optimization. We have given a

short overview of convex and nonconvex optimization problems. It is known that non-

convex problems are, generally speaking, hard to solve. We, therefore, have narrowed our

focus to one particular class of nonconvex optimization problems - the ones that can be

described by means of monotonic, namely IPH functions.

We have talked about the classification of the complexity of problems, particularly about

the classes of NP-complete and NP-hard problems, which can be thought of as intractable.

Basic properties of IPH functions are covered in this thesis, along with the basic notions

and propositions of abstract convex analysis which these functions are one element of.

We have shown that any Lipschitz function can be described in terms of IPH functions

on a unit simplex.

The results we have obtained demonstrate the NP-hardness of the global optimization

problem for the IPH functions restricted to a unit simplex .

These results suggest that monotonicity of a function is not sufficient for solving the re-

spective global optimization problem, thus additional restrictions should be applied to

this class of functions to narrow it down further.
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