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Model Free Operational Space Control of 
Mechanical Manipulators 

Abstract 

For successful model-based control of mechanical manipulators, accurate values 

for model parameters have to be defined and used in the system mathematical 

model. Tasks are generally specified in operational space and control actions are 

defined in joint space. However, a small error in joint space can translate to a large 

error in operational space, which may negatively influence the effectiveness of the 

control scheme. To overcome this problem, this thesis presents a set of novel direct 

adaptive controllers for the dynamic learning operational space control of mechanical 

manipulators. These controllers determine the dynamics of the manipulator online 

and synthesize an operational space controller in real-time . . It has been shown that 

the proposed framework can be extended to a variety of control schemes. Using 

subspace identification with post-modern controllers, such as J'!-2 and £00 optimal 

controllers, provides a strong mathematical foundation. The proposed approach 

sheds a new light on the application of generalized predictive controllers (GPC) in 

the area of manipulator control. Moreover, the reference trajectory is still given in 

the operational space, which has numerous benefits. 

The thesis treats the mechanical manipulator as a black box, and no priori knowl-

edge of the dynamics of the manipulator is required. Subspace identification has been 

used to evaluate a predictor for the manipulator. An introduction to the problem 

and a story-line literature survey is presented in Chapter 1 of the thesis. Chapter 2 

reviews the initial steps used in numerical algorithms for subspace state space iden-

tification (N 4SID) to calculate the subspace predictor. To cater for the inconsistent 

excitations of the plant, an efficient method of calculating the subspace predictor is 
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proposed for rank deficient matrices. A simplified and computationally efficient way 

for updating the subspace predictor is also developed in Chapter 2. 

Chapter 3 formulates the model free subspace based operational space £00 op­

timal controller for a serial manipulator. The controller uses the linear subspace 

predictor and synthesizes a control law using £00 optimization criterion in real­

time. The controller minimizes the torque (control effort) and the trajectory error. 

The controller has been extended to ~ based control. A robust version of the 

controller has been proposed to incorporate additive uncertainties. Additive uncer­

tainties compensate for the nonlinearities in the system, which were initially ignored 

at the time of the controller design. 

Chapter 4 extends the concepts discussed in Chapter 3 to derive a controller 

that enables the end-effector to interact with the environment using the concept of 

hybrid force/position interaction control. In the hybrid force/position control, the 

controller minimizes the force acting on the manipulator along with the torque and 

the trajectory error. Another controller is formulated based on the fundamental 

concept of impedance control. In impedance control, the controller tries to follow 

a given trajectory in operational space as much as possible with the least possible 

control effort. As a consequence, the manipulator looses its joint stiffness and main­

tains a dynamic relation between the end-effector and the acting force. The choice 

between the hybrid force/position controller and the impedance controller depends 

on the application. Both of these controllers treat the interacting forces as distur­

bances. Scaling properties of the force signal are also explored and extended to the 

scaling of the reference signal and the force signal in impedance control. 

Chapter 5 applies the hybrid controller formulated in Chapter 4 to remove bias 

from the dynamic behaviour of the manipulator. The controller minimizes the dif­

ference between the torque generated by the actuators and the torque sensed by the 

strain gauges. Similar approaches have been used in the literature to remove the 

effects of the gravitational force and coupling. Another application of the hybrid 
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control is found in the control of a parallel manipulator. First the kinematic frame­

work is formulated and then the hybrid controller is designed to exploit the dynamic 

behaviour of the manipulator. 

Chapter 6 presents the implementation details of the controller described in 

Chapter 3. Other controllers can be implemented in the same manner. A mathe­

matical relation is presented to simplify the controller implementation process. The 

system is then simulated on MATLAB, and a controller is derived to optimize the 

value of the damping factor in real-time. Chapter 7 presents the summary of the 

thesis and offers recommendations for future work. 
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Chapter 1 

Introd uction 

1.1 Background 

Since the advent of 1970's, control of mechanical manipulators has been an active 

area of research. A number of approaches have been proposed in the literature. The 

most common approach adopted in industrial robots features decentralized "pro­

portional, integral, derivate" (PID) control used for each degree of freedom [52]. 

In decentralized control schemes, i.e., when a single manipulator joint is controlled 

independently of others, linear control schemes can be used to control the manipula­

tor especially if electric motors are coupled with reduction gears of high ratios [89]. 

Most industrial robots are designed with such actuation mechanisms and utilize the 

linear controllers [52]. 

More advanced non-linear control schemes have been developed, such as computer 

torque control, which linearizes and decouples the equations of motion. Adaptive 

control techniques were developed to cater for the uncertainties and identify on-line 

the dynamic parameters of the robot. Apart from model-based controllers, there are 

Lyapunov based and passivity-based controllers. Both of these controllers neither 

linearize nor decouple the system nonlinear dynamics. Lyapunov based controllers 
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CHAPTER 1. INTRODUCTION 2 

search for asymptotic stability - exponentially, if possible; and passivity-based con­

trollers exploit the passivity properties of the robot manipulator dynamics [27]. 

When using a model-based approach to control a robot , it is essential to have 

a good understanding of its dynamic behaviour. This understanding can be repre­

sented explicitly by a mathematical model or implicitly by its input-output data. 

Normally, the mathematical model can be derived in form of equations of motion, 

but as the manipulator parameters are constantly changing during operation, it 

becomes imperative to adopt a direct adaptive control strategy. Direct adaptive 

controllers are those controllers that require no priori knowledge about the plant 

and there is no explicit formation of the plant model. The experimental data is used 

directly in the synthesis of a controller. The plant is treated as a black box and the 

controller "learns" the dynamics of the plant and synthesizes a controller in realtime. 

These controllers belong to the category of generalized predictive controllers (GPC) 

and they have been referred to as model free or data-driven controllers [45]. Many 

implementations of model free control can be found in the literature [32, 96, 48]. 

The work presented in this dissertation builds on the results obtained by Wood­

ley [117] for model free control strategy. However, the work presented here is distin­

guished from Woodley's contribution by three main aspects. Whilst Woodley uses 

only linear blocks in the proposed control system, kinematic nonlinearities are ac­

counted for in the system proposed here. Also, Woodley optimizes the cost function 

to reduce the output error and control effort. In this thesis, the cost function is 

optimized for different parameters for different cases of manipulator control. More­

over, Woodley limits implementation discussions to linear systems, whilst in this 

thesis, implementation issues are discussed for nonlinear systems, such as, serial and 

parallel manipulators. 

It should be noted that the task specification (end-effector motion and forces) 

is usually carried out in operational space while the control actions (joint actuator 

generalized forces) are performed in joint space [89]. This leads to two different 

kinds of control schemes: 
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Operational space 
trajectory 

Joil1t space 
traJectur,v .....-----, 

Actuators 

Figure 1.1: Joint space control 

• Joint space control 

• Operational space control 
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As suggested in Figure 1.1, joint space control consists of two subproblems. First, 

manipulator inverse kinematics is performed and then joint space control scheme is 

devised. The inverse kinematics analysis is typically undertaken to calculate the 

joint motor displacements required to locate the end-effector at a specific position 

and orientation in space. The main computational burden of the joint space control 

scheme is incurred by the inverse kinematics procedure, which is normally performed 

by using optimization techniques; particularly in redundant systems where there 

can be infinite solutions for a given task [56]: Many implementations of joint space 

control can be found in the literature [61, 51, 6, 50, 111, 105, 103, 121]. 

Operational space control, on the other hand, implies that the inverse kinematics 

is embedded in the closed-loop control law and not explicitly performed. This is 

shown in Figure 1.2. The operational space control scheme follows a global approach 

that requires greater algorithmic complexity because the inverse kinematics is now 

embedded in the controller. However, It has been suggested that operational space 

control and task space control allude to the same concept [119]. 

If joint space control is employed, a small error in joint space can project a 

larger error in operational space. On the other hand, if operational space control is 

used, the stability of the control depends heavily on the accuracy of the dynamic 

parameters of the manipulator. It has been shown in [75] that a small error in the 

inertia matrix can make the system unstable. This makes it imperative to design a 
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Operational spaGt~ 
trajectory 

Actuators 

..... ______ -+ Transducer 

Figure 1.2: Operational space control 
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to--...t Manipulator 

direct adaptive operational space controller that can update the dynamic parameters 

of the robot in realtime. 

1.2 Control of an Articulated Manipulator 

Dynamics of an articulated manipulator are nonlinear and highly coupled. Consider 

an articulated manipulator of n links. The vector of joint variables and its derivatives 

can be denoted by q, q, ij E ~n. In case of a revolute joint, q signifies an angle while 

in the case of a prismatic joint, q represents a linear distance. The torque generated 

by rotatory actuators, or force generated by prismatic actuators, is represented by 

7 E ~n. The rigid body model can be given by 

M(q)ij + C(q, q)q + v(q) + ~(q, q) = 7 (1.1) 

where M(q) E ~nxn is the mass or inertia matrix, C(q, q) E ~nxn is the Coriolis 

and centrifugal torque coefficient matrix, v(q) E ~n is the gravitational vector, and 

~(q, q) is a vector of unmodeled non-linearities. It is assumed that the mechanical 

manipulator is fully actuated and the forward kinematics model, which relates the 

joint variables to the end-effector position, is known. The presence of the Coriolis 

and gravity components renders the system non-linear, even though the system is 

linear in dynamic parameters [52, 67] . 

Model-based robot control schemes proposed in the literature for articulated ma­

nipulators can be broadly divided into two categories. In the first type of control 
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schemes, the non-linearities and the coupling effect is considered in the control de­

sign. The second type of controllers treat each link of the manipulator as a linear 

system. Related non-linearities and coupling effects are taken as disturbance signals. 

1.2.1 Computer Torque Control 

A mechanical manipulator, whose dynamics are described in (1.1), can be controlled 

using the resolved acceleration control [64] or the computed torque method [24, 4, 8]. 

The computed torque method has also been referred to as the inverse dynamics 

control [27]. The basic idea of inverse dynamics is to find a nonlinear feedback 

control law such that 

T = g(q, q, t) (1.2) 

which, when substituted in (1.1) results in a linear closed-loop system [94]. If M(q), 

C(q, q), and v(q) are the estimated values of the mass matrix, Coriolis matrix, and 

the gravity vector, respectively, for given joint position and velocity vectors, then 

the torque produced by the actuators can be expressed by 

M(q)aq + C(q, q)q + v(q) = T (1.3) 

The term aq denotes a new input vector. From the comparison of (1.1) and (1.3), 

it is obvious that 

q .. - a 
- q 

It has been shown in the literature that the control described in (1.3) has achieved 

remarkable results, and does describe the system as linear and decoupled [94]. 

Since aq is used to control a linear second order system, it can be calculated us­

ing proportional-derivative (PD) control as 

(1.4) 
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where if = q - qd, if = q - qd, Ko, Kl are digonal matrices with diagonal elements 

consisting of position and velocity gain, respectively, and the reference trajectory 

defines the desired joint positions, velocities, and accelerations [94]. 

The performance of the various approaches developed on the basis of the above 

premises depends on the precise knowledge of the robot parameters and loads. The 

performance may degrade significantly if the model parameters are not accurately 

known [4, 114]. Adaptive control was suggested to deal with the parametric uncer­

tainties [30, 68]. Craig et al. [25] and 8lotine and Li [93] developed adaptive control 

techniques that utilize the linearity of the manipulator dynamic parameters. How­

ever, these techniques come under the category of indirect adaptive control schemes 

since a priori knowledge of the dynamic parameters of the manipulator is required. 

In the literature, this technique is also referred to as the model reference adaptive 

control (MRAC) [26]. 

1.2.2 Linear Control of Mechanical Manipulators 

A linearized representation of a nonlinear dynamic system is often sought in control 

design. Each link of the manipulator can be considered a separate single input 

single output 8180 control problem. Nonlinearities and coupling effect are treated 

as disturbance signals in these controllers [89]. Many of these controllers come under 

the category of self-tuning control (8TC) [26]. The most straightforward approach is 

to generate analytical, closed-form, nonlinear equations of motion; and then linearize 

them by first-order Taylor expansion [62J. If the plant is linearized on the node point, 

i.e., qo, then the robot dynamic equations can be written in the form of a difference 

equation [26J. This is usually expressed as follows; 

(1.5) 
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where h is biasing or the gravitational force, Z-l is a unit delay, and A, B, and Care 

the linear blocks in z-domain that can be identified by employing linear prediction 

algorithms. The above model is only valid in the vicinity of qo. If the manipulator 

moves far from qo, the model needs to be updated. 

Remarkable efforts have been made to model the manipulator as a linear system 

and to apply existing adaptive control methods [58, 57, 30, 18]. For example, Chung 

and Leininger [18] employed pole-placement STC method on the linearized model of 

a JPL-Stanform Arm. Dubowsky and Deforges [30] proposed an MRAC that uses 

a linear second-order time invariant differential equation as a reference model for 

each degree of freedom of the robot arm. Koivo and Guo [58] presented a self-tuning 

auto-regression method to fit the input-output data from the manipulator assuming 

that there is no coupling forces between joints. Koivo [57] chose to ignore the 

dynamic complexity and fit the measured data to a second-order linear time-varying 

model using a recursive least-squares approach [93]. Cui and Shin [26] employed 

linear model predictive control on a serial manipulator. Swarup and Gopal [98] used 

Linear Quadratic Gaussian (LQG) cost function on each link of the manipulator 

assuming linear behaviour in the neighborhood of an operating point. 

Linearized time-varying models of mechanical manipulators assume that during 

the adaptation process the parameters are not changing quickly. However, for fast 

motion applications, this assumption is not valid [92]. Stability has always been 

an issue in this approach and no mathematical proof of the stability has ever been 

provided [107]. 

1.3 Problem Statement and Methodology 

The operational space control scheme offers an elegant approach to task control. 

Not only does it provide dynamically consistent control, but it also incorporates 

constrained manipulator motions [88], compliant control, force control, and many 

other favourable features [54, 76]. Operational space control has also been studied as 
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an optimal control problem originally introduced by Khatib [54]. Many of the sug-

gested controllers, which fall under this category, can be described as a constrained 

optimization problem [77]. This can be expressed as follows; 

minL(T) = TT NT subject to Jij = ire! - jq 
T 

(1.6) 

where N denotes a positive definite matrix that weighs the contribution of the motor 

x(t)) denotes a reference attractor in operational space with gain matrices Kd and 

Kp. Peters and Schaal [76] employed the framework of optimal operational space 

control in conjunction with reinforcement learning to form a learning operational 

space controller that also learns the kinematics model of the manipulator. 

In this thesis, a supervisory learning operational space control is proposed. The 

proposed control scheme is equipped with the ability to learn the dynamics of the 

mechanical manipulator and synthesize a controller in realtime. This problem is 

equivalent to obtaining the following mapping; 

(1.7) 

where Xn xn and Ir denote the reference trajectory in the operational space. Unlike 

the learning operational space proposed by Peters and Schaal [76], it is assumed in 

this thesis that the forward kinematics model of the manipulator is known. More­

over, a direct adaptive controller is developed that learns the linear model of the 

manipulator similar to the one mentioned in (1.5) and then synthesizes £00 optimal 

controller using several cost functions for different situations. A feature common to 

the controllers proposed is that they try to minimize both the control effort (torque 

generated by the actuators) and the error between the reference and the end-effector 

trajectory. The proposed controllers are similar in their structure to model free con-

trollers designed by Favoreel et al. [33], Kadali et al. [48], and Woodley et al. [118]. 
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All of these controllers use subspace predictors in the cost function, which is then 

optimized for different parameters. 

There are several benefits of usinp; model free architecture. Model-based con­

trollers reduce the plant order to form the plant model for infinite horizon. In 

contrast, model free controllers use a finite prediction horizon. The predictor is then 

used to synthesize a controller without losing any valuable information of the plant. 

There is no explicit formation of the plant model. The seamless integration between 

the identification of the plant and the controller synthesis makes it favourable for 

direct adaptive control. In £00 optimization criterion, the controller is designed 

for the worst case value of the disturbance signal. This ensures the stability of the 

system. 

1.4 Scope of Work 

The aim of this thesis is to develop tracking operational space direct adaptive con­

trollers for mechanical manipulators using GPC theory. Assuming that the gravity 

compensators are installed on the mechanical manipulator, a computationally fast 

method will be presented to calculate the linear subspace predictor of the manipu­

lator for rank deficient matrices of input data. 

Using the linear subspace predictor, model free subspace based operational space 

£00 control will be developed for a serial rigid body robot. A framework will also 

be formulated to cater for the forward and inverse kinematics operations. The 

controller will be synthesized directly from the experimental data. Details of the 

controller implementation will be presented with the simulation results. 

Exploiting the properties of £00 control, Jr§ control will be formulated. A robust 

version of the model free subspace based operational space £00 control will also be 

developed to cater for the additive uncertainties. Additive uncertainties compensate 

for the nonlinearities in the system, which were initially ignored at the time of the 

design of the controller. 
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One of the benefits of using operational space control is that it can mcorpo­

rate interaction control. A hybrid force/position and impedance controller will be 

developed that will enable the manipulator end-effector to interact with the envi­

ronment. In the hybrid force/position control, the controller tries to minimize the 

effect of the interacting force vector. As a result, the manipulator moves into its force 

and position subspaces to counter the effect of the acting force. Another controller 

will be formulated based on the fundamental concept of impedance control. In the 

impedance control, the manipulator looses its joint stiffness and only maintains a 

dynamic relation between the end-effector and the acting force. 

Joint-torque sensory feedback will be used in conjunction with the hybrid force/position 

controller to remove the bias from the dynamic behavior of the system. The con­

troller will minimize the difference between the torque generated by the actuators 

and the torque sensed by the strain gauges. Similar approaches have been used in 

the literature to remove the effect of the gravitational force and coupling. 

Hybrid force/position controller will be extended to control of parallel manipu­

lators. An expression for the forward kinematics function of a parallel manipulator 

will be evaluated analytically to form the kinematic framework that will cater for the 

forward and inverse kinematics operation in parallel manipulators. Contribution of 

the torque from the passive joints onto the active joints will be used as an exogenous 

force signal in the hybrid control. 

1.5 Thesis Outline 

Chapter 2 reviews the initial steps used in numerical algorithms for subspace state 

space identification (N4SID) to calculate the subspace predictor as described in [73, 

117]. A simplified and computationally efficient method of calculating and updating 

the subspace predictor is also developed be in Chapter 2. Chapter 3 formulates 

the model free subspace based operational space .J"e= optimal controller for a serial 

manipulator. The concept is also extended to ~ optimal control. A robust version 

of the controller is also derived to cater for the additive uncertainties. 
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Chapter 4 extends the concepts discussed in Chapter 3 to derive a controller 

that enables the end-effector to interact with the environment using the concept of 

hybrid force/position interaction control. Another controller is formulated on the 

fundamental concept of impedance control. Scaling properties of the force signal 

are also explored and extended to the scaling of the reference signal and the force 

signal in impedance control. Chapter 5 applies the hybrid controller formulated in 

Chapter 4 for removing bias from the dynamic behaviour of a manipulator. Another 

application of the hybrid control is found in the control of a parallel manipulator. 

First the kinematic framework is formulated, and the hybrid controller is used by 

exploiting the dynamic behaviour of a parallel manipulator. 

Chapter 6 presents the implementation details of the controller described in 

Chapter 3. Other controllers can be implemented on the same lines. A mathematical 

relation is presented to simplify the controller implementation process. Using these 

guidelines, the system is simulated using MATLAB, and a controller is developed 

to optimize the value of the damping factor, used in the inverse kinematics block. 

Chapter 7 presents the summary of the thesis and offers recommendations for future 

work. 



Chapter 2 

Subspace Identification 

System identification is used to build dynamic models from measured input-output 

data of a plant. There are many system identification methods. The list starts 

with the classical prediction error (PE) and its variants; the auto regression with 

exogenous input (ARX) , output error (OE), auto regression moving average with 

exogenous input (ARMAX), and Box Jenkins (BJ) [71, 63]. Subspace identification 

methods (SIM) have got a lot of fame in the last ten years since they were introduced 

in 1996 by Overschee and Moor [74] and made their way into a variety of applications, 

including the identification of the dynamic parameters of mechanical manipulators. 

In this chapter, Sections 2.1 and 2.2 discuss issues related to the identification 

of dynamic models for rigid robot manipulators. A review of the methods and 

techniques employed to get reliable estimates of model parameters is presented. 

Sections 2.3 and 2.4 discuss subspace prediction and review the methods to calculate 

subspace predictor. Section 2.5 proposes a new algorithm for faster online calculation 

of subspace predictor. Section 2.6 discusses results obtained from simulations of 

different mechanical systems. 

The subspace predictor used in this thesis resembles N 4SID [73], in which the 

future outputs project onto the past inputs, outputs, and future outputs. A sim­

ilar predictor has been used in the model free subspace based control by Favoreel 

et al. [33] and Woodley et al. [118]. 

12 
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2.1 Rigid Body Dynamics 

There are two rigid body dynamic models usually used for the identification of 

robot dynamics.! The d~fferential model and the energy model. For the differential 

model, the barycentric parameters [34J are employed with the modified Newton­

Euler parameters [9] to express the system in the form of 

T = W(q, q, ij)e (2.1) 

where W E ~nxb is an observation matrix, e E ~b is a vector of dynamic parameters, 

n is the number of joints, and b is the number of base parameters. The energy 

(difference) model, which is also called the integral model, is expressed as follows [60); 

(2.2) 

Both models are linear in dynamic parameters. The integral model consists of 

only one equation and is not dependant on the acceleration of joint variables, while 

the differential model consists of n equations and its dependance on the joint accel­

eration makes it richer in information than the integral model [113]. The differential 

model is also easier to implement. 

There are three kinds of parameters. The first class of parameters are called base 

parameters or independent parameters. These are absolutely identifiable and corre-

spond to different columns of e. Khalil and Kleinfinger [53] showed that different 

columns of e show linear dependance. These parameters that are linear combina­

tion of base parameters comprise the second class of parameters. The last class of 

parameters are those which are unidentifiable through normal methods of param­

eter identification. These unidentifiable parameters do not directly contribute to 

the resulting torque, hence they can be neglected. Therefore, the order of the plant 

can be considered less than IOn since the objective is to calculate a predictor for 

an articulated manipulator to be controlled and not the individual identification of 

IThis classification is according to Kozlowski [60J 
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parameters. However, even in the most reduced set of base parameters, there are at 

most 7n parameters that are nonzero [37] even if all the parameters are nonzero. 

Using the differential model described in (2.1), N samples of data of {q(ti ), q(ti ), ij(ti ) , T(ti )} 

such that i = 1,2, ... ,N, can be expressed as 

W(q(td, q(tI)' ij(td) Ttl 

W(q(t2), q(t2), ij(t2)) 
8= 

Tt2 
+p (2.3) 

W(q(tN), q(tN), ij(tN)) TtN 
" 'V 

J ~ 
<I> Y 

where <I> is a regressor and p is a residual error vector. It is usually the case that N ~ 

c, where c is the number of dynamic parameters to be found. If exciting trajectories 

are not orthogonal to each other, a singularity would occur in the solution. Hence, 

it is important that at all times, exciting trajectories are orthogonal. If regressor 

matrix is based on a large number of trajectories to increase the fidelity of the 

solution, then the condition of orthogonality is sometimes hard to meet. In such 

cases, the system depicted in (2.3) is overdetermined, i.e., there are more number of 

equations than the parameters to be found. For overdetermined systems, techniques 

like singular value decomposition (SVD) or QR factorization are useful in producing 

numerically stable results [41]. The estimated value e can be given by 

e = min I/pW 
e 

(2.4) 

which is a standard least-squares estimate (LSE) problem. If <I> is of full rank, the 

explicit solution of this problem can be given by [52] 

(2.5) 

where t denotes Moore-Penrose inverse, also called pseudoinverse or generalized 

inverse. It should be noted that the LSE is biased because the regressor <I> and p 
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are realizations of random and correlated variables [36]. Nonlinear friction in link 

joints also increases the bias of the system, this is why it is recommended to model 

friction. To overcome this shortcoming and to find the best linear unbiased estimate 

(BLUE), weighted least-squares estimate (WLSE) [101] is used, i.e., 

where Z is the weighting matrix or the covariance matrix of the actuator torque 

data, which is a dense matrix if noise is correlated. The only difference between 

WLSE and LSE is that the data is weighted with the inverse of covariance of the 

actuator torque measurement noise, and therefore discriminates between accurate 

and inaccurate data [101]. One of the important property of WLSE is its maximum 

likelihood estimation. There are numerous ways suggested in the literature to choose 

the weight. Examples can be found in the works of Swevers et a1. [99] and Poignet 

and Gautier [81]. 

2.1.1 Gravity Compensators and Dynamic Coupling 

The inertia of geared actuator rotors and gravity compensating devices contribute 

significantly to the dynamic behaviour of the robotic manipulator. Gravity com­

pensating devices are preloaded springs mounted between the first and second link, 

approximated to compensate for the static torque caused by the mass of the pay­

load [52]. Dynamic coupling and gravity-compensating springs behave linearly, 

hence their effect can be conveniently fit within the linear-in-parameters model struc-

ture described in (2.1) [101]. 

2.2 Excitation 

In the identification of any system, the choice of excitation signal is made so that 

the maximum information can be deduced from a given experiment. For mechanical 

manipulators, the excitation signal is selected in two steps. The first step involves 
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trajectory parameterization and the second one involves the calculation of trajectory 

parameters, usually by means of optimization. 

2.2.1 Trajectory Parameterization and Optimization 

The most general technique has been proposed by Armstrong [7], and it involves 

finite sequences of joint accelerations. Gautier and Khalil [38] proposed a technique 

in which fifth-order polynomials were used, interpolating between sets of joint posi-

tions and velocities separated in time, assuming initial and final acceleration values. 

Swevers et al. [99] parameterized the trajectory as a finite Fourier series, where the 

optimization variables are the coefficients in this series. Pfeiffer and Holzi [79] opti­

mized the trajectory such that the trajectory always follow the steepest descent of 

the optimization criterion. Even though, these trajectories provide adequate excita-

tion of the robot dynamics, the resulting data is neither periodic nor band-limited. 

It has been seen that processing periodic and band-limited data is more accurate 

for the parameter estimation [101]. 

Periodic and band-limited trajectories can be generated using the following sim­

ple finite Fourier series for qi(t), i = {I, ... ,n} joints; 

N 

qi(t) = qi,O + 2:)ai,k sin(kwjt) + bi,k cos(kwjt)) (2.7) 
k=l 

where qi(t) corresponds to the ith joint position, t represents time, and Wj is the 

sampling frequency which is same for all joints. Fourier series contains 2N + 1 

parameters in the frequency range of [Wj, NWf ], which are degrees offreedom (DOF) 

for trajectory optimization [101]. By selecting a lower fundamental frequency, Wj, 

a large work space can be covered at the cost of time. Increasing the coverage 

improves the accuracy of the parameter estimates [80]. On the other hand, high 

fundamental frequency increases the joint acceleration, which is a requirement for 

accurate estimation of moments and products of inertia. The highest frequency that 

should be generated in the robot should fall below the lowest resonance frequency. 
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So there is a trade-off between the accuracy of parameter estimates and the accuracy 

of the estimates of moments and products of inertia [101]. Chirped sinusoidal, sum 

of sinusoids, pseudo-random binary sequence (PRBS), and pulse-impact testing are 

suggested in literature for better trade-off [80]. 

Trajectory parameters can be calculated by either trial and error method or 

solving a nonlinear optimization problem. One of the popular criteria for the opti­

mization is the logarithm of the determinant of the covariance matrix of the model 

parameter estimates, known as d-optimality criterion [63]. The criterion calculates 

the size of the uncertainty region of the model parameter estimates, and it is insen­

sitive to model parameters if the joint position, velocity, and acceleration data are 

free of noise. In this case, the criterion depends only on the robot trajectory through 

the identification matrix, <P, as well as on the covariance of the noise in the actuator 

torque measurements [36]. This property of the criterion is very useful when there 

is no prior knowledge of the model parameters available. 

In the direct adaptive control methodology proposed in this thesis, the subspace 

predictor is calculated online, hence it is most important that the reference trajec­

tory for the manipulator is optimized to form a good-conditioned case for system 

identification algorithm. However, a detailed overview and a deep insight into the 

trajectory parameterization and optimization are outside the scope of this disserta­

tion. 

2.3 Subspace Identification 

As the dynamic parameters have a linear relationship, other identification techniques 

developed for linear plants like subspace identification can also be used [5]. SIMs are 

based on the solution of sequence of least-squares problems [74]. SIMs have many 

advantages over other classical system identification techniques [74]. Notables are: 

• From plant's input and output data, a predictor is found. This bears similarity 

to the Kalman filter states, and transforms the analysis into a simple least 
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squares problem. As such, the whole architecture could be streamlined in a 

user-friendly fashion. 

• When implemented in direct adaptive control, the plant model does not require 

simplification. Simplification or model reduction can omit useful information. 

Instead, in SIMs, all the plant information is stored in a compact form of a 

subspace predictor. 

• The output of SIMs can be in the state space form which makes it easy to 

implement on a computer. However, its architecture has been exploited in 

different model free implementations as well [118, 33]. 

• Galvao et al. [35] compared N4SID with ARX identification and found that 

the state-space models identified by the N4SID algorithm consistently out­

performed the ARX models at identifying the underlying dynamics in the 

structure. A marked improvement was observed to the identification of the 

eighth-order system by exciting the structure using a chirped signal. Inter­

estingly, the improvements in the ARX residuals were not so visible, which 

suggests that in this example, the ARX model did not take full advantage of 

the richness in the excitation [35]. 

• For a six DOF of robot , the number of base dynamic parameters are 42. 

SIMs can handle the large dimensional problems commonly found in system 

identification for process control, producing fast and robust results. However, 

it must be pointed out that SIMs estimates are generally less accurate than 

those obtained from PE methods and standard SIMs are biased under closed­

loop conditions [106]. 

In literature, there are many examples where SIMs have been used in the identifi­

cation of the dynamic parameters of mechanical manipulators. Wernholt [113J used 

SIM to solve system identification problem for an ABB IRB-6600 robot. Hsu et al. 

[44J used N4SID in style translation for human motion. Johansson et al. [47J used 
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multiple input multiple output (MIMO) output-error state space model (MOESP) 

and N4SID subspace identification algorithms on an ABB IRB-2000 to derive a state 

space model for a mechanical manipulator. In this experiment, identification results 

were satisfactory but an innovation model could not be derived. Saleem and Sul-

tan [84] proposed the use of subspace predictors in a predictive control of mechanical 

manipulators. Cescon [15] examined in detail the use of subspace algorithms in the 

identification of dynamic parameters of mechanical manipulators. These are some 

example applications of SIMs in the identification of mechanical manipulators. 

2.4 Calculation of Subspace Predictor 

In the first step, a predictor is calculated for the system described in (2.1). In 

order to formulate it, take Tp and Tf as the past and the future inputs of the 

system, respectively. Similarly, Yp and Yf are the past and the future outputs of the 

system. In model free control, the predictor predicts only a number of steps ahead, 

called the prediction horizon. Suppose that the prediction horizon is i and there 

are j different observations of prediction horizons, each of i length. For an n-link 

articulated manipulator, Tp and Tf can be written in the form of Hankel matrices 

as 

TO T1 Tj-1 

T1 T2 T' 
Tp 6-

J E RinXj (2.8) 

Ti-l Ti Ti+j-2 

Ti Ti+l Ti+j-1 

T
f 

6-
Ti+l Ti+2 Ti+j E Rinxj (2.9) 

T2i-l T2i T2i+j-2 
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where each entry in the matrix corresponds to an n input-vector of torque generated 

by the joint actuators. Similarly, Yp and Yf can be written as 

Yo Yl Yj-l 

Yl Y2 E ~3inXj 

Yi-l Yi Yi+j-2 

Yi Yi+l Yi+j-l 

Y
f 

/), Yi+l Yi+2 

Y2i-l Y2i Y2i+j-2 

where Yk ~ [qT, If, iiT 1: . The Hankel matrix for the paBt outputs and inputs is 

defined as 

(2.10) 

The linear least squares predictor of Yf with given Wp and Tf can be written as 

a minimization norm, i.e., 

(2.11) 

where II-IIF is the Frobenius norm or the Hilbert-Schmidt norm and Lw and LT are 

the subspace orthogonal projections. Frobenius norm of an m x n matrix is defined 

as the square root of the sum of the absolute squares of its elements. Lw and LT 

are calculated here using orthogonal projection of Yj onto [w,;, 7fr r similar to 

N4SID [90] as follows; 

(2.12) 
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Substituting (2.12) in (2.11) yields 

21 

(2.13) 

where Lw E ~3inx4in and LT E ~3inxin. This solution assumes that the problem 

is over-constrained; i.e., there are more independent equations than unknowns. If 

the problem is under-constrained, the pseudo-inverse cannot be computed. Future 

outputs can be predicted from the past inputs, past outputs, and the future inputs 

as follows; 

or 

Tk-l 

Yk-i 

Yk-l 

(2.14) 

(2.15) 

where fh is a strictly causal estimate of future values for the joint variables; i.e., joint 

positions, joint velocities, and joint accelerations over a period of i steps. Figure 2.1 

is a block diagram representation of subspace predictor indicated in (2.14). This 

predictor will be used in Chapter 3 to derive the model free control law. 

2.4.1 Calculation of LWl LT Using QR Decomposition 

QR decomposition is considered to be the most widely used solution for least squares 

solution. It is renowned for providing a numerically stable solution. If 
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r------------------
T f) 

I -----------------. 
Figure 2.1: Subspace predictor 

Wp Rll 0 0 

Tf 
=RTQT = 

R21 R22 0 QT (2.16) 

Yj R31 R32 R33 

then 

[ Lw LT] ~ [R31 R32] [RU 0 r (2.17) 
R21 R22 

The pseudoinverse is normally calculated through SVD such that 

[ ] 

t 

Rll 0 -1 T 
= UsvdL. Vsvd 

R21 R22 

(2.18) 

where U svd and Vs~d are orthogonal matrices and L. is a diagonal matrix such that 

-1 
0"1 0 0 

0 -1 0 
L.-1 = 

0"2 
(2.19) 

0 0 -1 
0" 4in 

The computational complexity of QR decomposition is O(i2j) and the computa­

tional complexity of SVD algorithm is O(i3 ). Hence, the overall complexity of QR 

factorization is O(i 2j + i 3 ) with storage requirement of O(ij) [41]. 
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2.4.2 Calculation of LWl LT Using Cholesky Factorization 

Cholesky factorization is a special type of L U factorization in which the matrix 

under consideration is Hermitian and positive definite. To solve (2.13), let 

Up 

At:> Yp 
E ~8inXj (2.20) 

Uf 

Yf 

then using (2.16), the following expression can be written; 

(2.21) 

where Q is an orthogonal matrix; i.e., QT Q = I, hence 

AAT = RT R E ~8inx8in (2.22) 

where R is an upper triangular matrix, also called Cholesky factor [12]. It can be 

calculated using Cholesky factorization , i.e., 

R = chol(AT A) (2 .23) 

where chol(.) is a routine in MATLAB to calculate the Cholesky factor of • and 

R E ~8inx8in. The computational complexity of calculating Cholesky factorization 

is O(i3 ) [41]. 

Multiplication of Hankel Matrices 

AT A can be directly computed using a "brute force" technique that has the compu­

tational complexity of O(i2j). So when combined with the Cholesky factorization, it 

results in overall complexity of O(i2 j + i 3 ), which is similar to QR/SVD algorithm. 
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Woodley et al. [118] exploited the structure of Hankel matrix in a way that dramat-

ically reduces the number of steps required to perform the multiplication of these 

matrices. Using the definition in (2.20) , AAT can be expanded as 

T/T{ Tp~T T/IJ TpYJ 

AAT = 
YpTJ Yp~T YpTJ YpYJ E R8inx8in (2.24) 
TfTJ Tf~T TfTJ TfYJ 

YfTJ Yf~T YfTJ 1jYJ 

Using the definitions in (2.8) and (2.9), TpTJ can be written as 

[Tp1J]11 [Tp1Jh,2 [TpTJh.i 

TpTJ = 
[Tp1J121 , [Tp1Jh,2 E Rinxin (2.25) 

[Tp1Jli,l [TpTJ]i,i 

where the grayed (i - l)i entries are calculated directly in 2ij - j steps. The rest of 

the (i - 1)2 entries can be calculated using the following recursion; 

[7'. TT] p f r+l,s+l (2.26) 

V 1 ~ r ~ i-I, V 1 ~ s ~ i-I 

The above recursion reduces the computational complexity of TpTJ from O(i2j) 

to O(ij + i 2
). This is a significant improvement, especially when j »i. The same 

technique can be used to calculate other entries of AAT. It can be seen in (2.24) 

that AAT is symmetric. Hence, 10 entries of the upper triangular block of AAT are 

sufficient to calculate AAT . This further reduces the steps required to calculate AAT. 

Updating and Downdating of Lw , LT 

If Cholesky /SVD method is used for calculation, the Cholesky factor can be updated 

in O(i2
). New data available (Tn' Yn) can be incorporated by appending a new column 
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at the end of A such that Anew = [A anew]. The Cholesky factor R can be update 

using the following rank-l update of Cholesky factorization; 

cholupdate(R, anew,' +') 

where cholupdate is a Cholesky factor-update routine in MATLAB. Similarly, Cholesky 

factor can be downdated using 

cholupdate(R, aold,' -') 

MATLAB employs a library to update Cholesky factor and that takes O(i2) 

operations to update Cholesky factor [28]. The actual details of updating Cholesky 

factorization are complex and are not presented here. 

2.5 Faster Calculation of Lw , Lr using Cholesky 

Factorization for Rank Deficient Matrices 

The method proposed here is computationally faster. The memory requirement for 

this algorithm is O( ij) and the complexity of this algorithm is O( ij +i3). It is shown 

in Table 2.1 that the proposed technique is faster than the one mentioned in 2.4.2. It 

should be noted that, for a fair comparison, the faster Hankel matrix multiplication 

as described in Section 2.4.2, was used for all the methods. These calculations were 

carried out in MATLAB on a workstation with a serial processor. This technique is 

specifically recommended when the data in Hankel matrices is rank deficient. The 

rank deficiency can occur when the plant is not properly excited, or if i and j are 

set too high. 
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Table 2.1: Computation time (in seconds) of different techniques to calculate sub­
space predictor 
[i I j II QRjSVD I Cholesky /SVD I Cholesky for rank deficient. mat.rices I 

10 100 0.0055 0.0047 0.00090403 
10 1000 0.0143 0.0062 0.0024 

100 1000 1.2569 0.9353 0.1983 

Theorem 2.1. If measurements from the actuator torque (T) is available for times 

{k - 2i - j, ... ,k - 2, k - I} and the measurements from the joint position, joint 

velocity, and joint acceleration is available for times {k - 2i - j, ... , k - 2, k - I}, 

then the subspace predictor can be calculated using following the relation; 

(2.27) 

where L is the Cholesky factor of [Wi, TJ ]" [Wi ' 'If] after removing zero rows, 

L can be calculated on MATLAB using choline C., 'inf') command, where. is 

[ Wi, 11 r [wi ' 'If]. Although, Cholesky jSVD and the proposed technique have 

the same complexity. However, the proposed method outperforms because the inv 

routine in MATLAB is optimized for positive-definite Hermitian matrices; while in 

Cholesky jSVD method, the svd command consumes more computational cycles to 

calculate the pseudoinverse. 

Provided there are sufficient number of processors available, the computational 

complexity of Cholesky factorization, which is of order O(i3 ), can be reduced to 

O(i) on a parallel architecture. Similarly, (LLT)-l can be calculated on a parallel 

architecture in O(log i) [22]. 

The method presented by Courrieu [23] to calculate the pseudoinverse of rank 

deficient matrices and the following mathematical result [83] will be used in the 

proof of Theorem 2.1. 

Lemma 2.1. If A and B exist, then 

(2.28) 
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proof of Theorem 2.1. Suppose [w,;, TJ r = G. Suppose Gar E 111'"' and the 

rank of of this matrix is r such that r < i. If Cholesky factorization is applied on 

this matrix, a unique upper triangular matrix is produced, let it be called S, with 

i - r zero rows, such that SST = GGT. If i - r rows are removed from the matrix 

S, we get another matrix called L such that 

(2.29) 

where L E ~wxi. If B = G and A = GT in (2.28) and using it in (2.29), then it can 

be written that 

(GGT)T = (LTL{ = LT(LLTr\LLTrlL (2.30) 

As 

G= [~] 
Tp 

Yp 

Tf 

then 

TpT[ TpY; TpTf 

GGT = YpT[ Ypy;,T YpTf 

T/Ii' T/Ii' T/Ij 

The above matrix is symmetric, hence calculating the upper triangular part is 

sufficient to calculate the whole matrix. TpTf can be calculated intuitively using the 

recursive relationship in (2.26). Similarly, all the other terms can be calculated the 

same way. Subspace predictor can be calculated by substituting (2.30) in (2.13): 

(2.31) 

where YfTp, YfYp, and YfTf can also be calculated using (2.26). o 
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2.5.1 Updating and Downdating of LWl LT 

The matrices Tp , Tf , Yp, and Yf can be downdated and updated in two steps. In the 

first step, the matrix is circular-shifted and in the second step, the last column is 

replaced with the new data. The complexity of first step is O(ij) and the second 

step is O(i). In MATLAB, circshift command is used to perform this operation. 

It has been found experimentally that this technique is significantly faster than first 

downdating by removing the first column, and then updating by concatenating a 

vector of new data at the end of the matrix. The performance is degraded in this 

process because a new memory location is allocated for the matrix when a column 

is removed or when a column is concatenated. 

Let's suppose a mechanical manipulator with 6 DOF where n = 6 and j = 

50i, then A E ~8iX50i. In this case, the number of rows and columns of A are 

comparable to each other. Cholesky update procedure takes O(i2
) steps to update 

the Cholesky factor, whilst the suggested technique takes O(ij) steps to update the 

Hankel matrices. Because of the simplicity of the suggested technique, it outperforms 

the Cholesky update method in real time operations. In this regard, the proposed 

technique is suited more to the identification of mechanical systems, which involves 

a large number of input and output parameters. 

It is proposed that Hankel matrices, Tp , Tf , Yp, and Yf , can also be updated 

using the following simple mathematical relation; 

(2.32) 

y 
k 
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where '0 = Tk{n+ l:n(i+l),j} , Yo = Yk{3n+l:3n(i+l),j}, and 

S* 1 J-

000 

100 

o 1 o E ~jX(j-l) 

o 

o 0 0 1 

29 

[-]S1-1 truncates the first column of the matrix [-]. In (2.32), 'k is replaced 

with 'excite during excitation phase, where 'excite is the torque generated by the 

actuators during the excitation phase. 

2.6 Results from Simulations 

2.6.1 Experiment 1 

A planar robot with two DOF was simulated using MATLAB and Simulink. Torque 

was applied using actuators mounted on manipulator joints to excite the plant. 

In order to evaluate the subspace predictor, the following steps were followed to 

calculate the error between the actual and predicted trajectories; 

1. The prediction horizon, i, was chosen and a numerical experiment was per-

formed with a given input vector. The resultant joint trajectory was recorded. 

2. From the recorded trajectory, a predictor (Lw, LT ) was calculated using a sub-

space projection algorithm. 

3. The outputs were calculated using the subspace predictor for the given inputs. 

4. The difference (i.e ., error) between the calculated values and the actual values 

were plotted for each joint axis. 
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Figure 2.2: A block diagram showing the process followed for predictor identification 
and error calculation 
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Figure 2.3: The difference between the predicted joint variables and the actual joint 
variables during the training mode [85J 

The process followed to identify the subspace predictor and calculate the error 

is shown in Figure 2.2. The results from this simulation, which are plotted in 

Figure 2.3, suggests that the prediction error is in the range of 10-7 radians. 

2.6.2 Experiment 2 

SimMechanics toolbox of MATLAB was employed to simulate a bipedal leg with a 

torso. One of the challenges in simulations was to simulate foot-ground interaction. 

Many implementations were found in the literature [44, 72, 109, 116J. A model 
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8 
I 

Figure 2.4: On the left is the side view and on the right is the top view of foot model 
where points A, B, and C are connected to three dampers and springs. Dampers 
and springs connected on sides are responsible for friction with the ground [84] 

with three contact points was devised to simulate the human foot. This is shown in 

figure 2.4. It was assumed that there are only three points where the foot touches 

the ground and there is no air friction. 

Under the action of normal gravity and exogenous force signals at each joint, the 

leg falls down, and the joint trajectory of the torso is recorded as shown in Figure 2.5. 

Using subspace identification, a predictor is found. This predictor is then applied on 

the input joint signals. The procedure for evaluating the error between the actual 

and the predicted trajectories is similar to what has been indicated in Section 2.6.1 

and depicted in Figure 2.2. The error in joint space was translated to operational 

space and plotted in Figure 2.6. 

It was found that for prediction horizon i less than a certain value, the system 

simply fails to predict the future outputs. Some suggest that the value of i should be 

2 to 3 times the expected order of the system for stable and accurate results [117], 

however, there is no hard and fast rule. In the experiments performed for this thesis, 

the prediction horizon more than 10 did not improve the accuracy of the prediction. 

Increasing the value of i can also be computationally expensive. It can be seen in the 

simulation and graphs that for movements of more than 1 meter, the error is in the 

order of micrometers. These results are very encouraging especially when there are 

multiple rigid bodies which are coupled together with rotatory joints and complex 

foot-ground interaction. 
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Figure 2.5: Free fall of a biped leg with exogenous force signals acting on its joints. 
Top six and bottom six shots were taken from the same simulation but from different 
angles after every 0.1 second [84] 
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Figure 2.6: Error in the calculation of the torso position. Above graphs are with 
i = 5, i = 10, and i = 20 respectively. Note that the largest movement of torso is in 
the z-direction, the error is also mostly in this direction, which shows that the error 
is increased when the same value of subspace predictor is used for larger movements 
of end-effector in operational space [84J 
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2.7 Summary 

The important results of this chapter are: 

34 

• A fast method of calculating the subspace predictor Lw , LT is presented for 

rank-deficient matrices (2.27); 

• An efficient method of updating the subspace predictor for robot manipulators 

described in Section 2.5.1; 

• A simplified mathematical relation to update the subspace predictor (2.32); 

and 

• Using the method shown in Figure 2.2, results of simulations on different me­

chanical manipulators are given in Figures 2.6 and 2.5. The latter simulation 

uses foot-ground interaction shown in Figure 2.4. 



Chapter 3 

Model Free Operational Space £00 

Control 

This chapter formulates control laws using the linear subspace models evaluated 

in Chapter 2. Section 3.1 establishes a framework to incorporate the reference 

trajectory in operational space. Section 3.2 formulates a model free ,n'oo non-robust 

control. Section 3.3 deduces non-robust ~ control law; and lastly, Section 3.4 

formulates a model free £00 robust control law with additive uncertainty. 

3.1 Operational Space Control 

If the task is given in operational space then it becomes inevitable to cater for the 

non-linearities introduced by the forward and inverse kinematics functions. First, 

the joint variables are translated into operational space. The resultant is compared 

to the reference trajectory and the error is then converted back to joint space, as 

shown in Figure 3.1. 

35 



CHAPTER 3. MODEL FREE OPERATIONAL SPACE £00 CONTROL 36 

'Ianipulator [~] 
(i 

Figure 3.1: Operational space control of an articulated manipulator 

If x is the end-effector position and F(q) is the forward kinematic function then 

its derivatives can be written as 

x F(q) (3.1) 

x F(q) 8q = J(q)q 
8q at (3.2) 

x J(q)ij + j(q, q)q (3.3) 

where J(q) is the systems Jacobian and j(q) is its time-derivate. The Jacobian can 

be formulated using the differential or pushforward of F(q) [95] as follows; 

8ft (q) iJfdq) 8ft (q) 
~ &i2 aq;;-

8F(q) 
8h(q) 8h(q) 8h(q) 

J(q) = 
8ql 8q2 8qn (3.4) 

8q 
-

8fl(q) iJ!L(q) aft(q) 
--a;n OQ2 8qn 

where l is the number of DOF for the end-effector. The time derivative of a Jacobian 

column is the sum of the partial derivatives of this column with respect to joint 

variables, multiplied by the time-derivates of these variables [13]. As such, time­

derivative of the ith column of the Jacobian is given by 

J·i( .) = ~ 8Ji (q) 8qj = ~ 8Ji (q) .j 

q, q ~ 8 j at ~ 8 j q 
j=l q j=l q 

(3.5) 
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Equations (3.1), (3.2), and (3.3) can be combined as follows; 

or 

where N1 E 3t31x3n and 

x 

x 

F(q) 
q 

o 

o 

J(q) 

o 

o 

q 

q 

x 0 j(q, q) J(q) q 

F(q) 
q 

x 

x 

JI(q) 0 0 
q] 

h(q) 0 
q] o 

o 
ft(q) 0 0 0 

ql 

E !Rlxn 

(3.6) 

(3.7) 

(3.8) 

The above matrix produces large values for very small values of q1. To avoid 

this situation, a limit is imposed here on the value of q1 so that there is always a 

valid solution available. The reason for using F(q) instead of F(q) in (3.6) is that 
q 

the output of subspace predictor is [qT, <iT, if'r. Use of (3. 6) malres it possible to 

connect different blocks of the system mathematically. 

For conversion of the error from the reference operational space trajectory and 

the output of the forward kinematics block, a similar approach is adopted. Let 

[!i.x, !i.:i;,!i.x r be the error in operational space. If the error is small, then (3.2) 

can be approximated to 

~x ~ J(q)~q 

However, it can be stated, without any approximation, that 

J(q)~q 

j(q, q)~q + J(q)~q 

(3.9) 

(3.10) 

(3.11) 
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It is a common practice that when end-effector trajectory is formulated in op­

erational space, !J.x is chosen in (3.9) such that the approximate movement of the 

end-effector partially matches the target velocities in (3.10) (115]. Equation (3.9) is 

only valid for a small value of !J.x. If the target position is too distant, it is impor­

tant to bring the target closer. This way, the manipulator reaches its final target in 

smaller steps. For this reason, !J.x needs to be clamped such that 

!
!J.x if II!J.xll < Dmax 

clamp(!J.x, Dmax) = 

Dmax I I~:II otherwise 

(3.12) 

where II • II is the Euclidean norm. The value of the scalar Dmax should be at least 

several times larger than what end-effector moves in a single step and less than 

half the length of a typical link. This heuristic approach has also been reported to 

reduce oscillations in the system, which allows the designer to use a smaller value 

for damping constant. This usually results in a quicker response [14]. To calculate 

the error in joint space, (3.9), (3.10), and (3.11) can be written as 

!J.q Jt(q)!J.x (3.13) 

!J.q Jt(q)!J.± (3.14) 

!J.q Jt(q)(!J.x - j(q, q)!J.q) = Jt(q)!J.x - Jt(q)j(q, q)Jt(q)!J.± (3.15) 

In matrix form, these equations can be written as 

!J.q Jt(q) 0 0 !J.x 

!J.q - 0 Jt(q) 0 !J.± (3.16) 

!J.q 0 -Jt(q)j(q, q)Jt(q) Jt(q) !J.x 

or alternatively 

!J.x 

!J.y = N2 !J.± (3.17) 

!J.x 
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where Jt(q) is the pseudoinverse of J(q). Pseudoinverse is defined for all matrices 

including the ones which are not square or are not full rank. It also gives the 

best solution in terms of least squares. The pseudoinverse gives a stable solution 

even in those cases when the target end-effector position doesn't lie in the work 

volume of the mechanical manipulator. The resulting solution is closest location 

to its target which minimizes II J (q) ~q - ~x 112. However, the pseudoinverse suffers 

from stability issues near singularities. If a manipulator is at a singular position, the 

pseudoinverse doesn't tend to move the manipulator in any direction. In the vicinity 

of singularity, the pseudoinverse creates large changes in joint variables, even for very 

small changes in the end-effector, resulting in an unstable system. One important 

feature of pseudoinverse is that the term (I - Jt(q)J(q)) projects on the null space 

of J(q). This feature can be exploited for redundant manipulators. It is possible to 

generate internal motions in a redundant manipulator, i.e., qo, without changing its 

end-effector position [89] . For redundant manipulators, (3.2) can be written as 

x = J(q)q + (J - Jt(q)J(q))qo (3.18) 

The damped least-squares (DLS) method, which is also referred to the Levenberg­

Marquardt method, solves many problems related to pseudoinverse. The method 

gives a numerically stable solution near singularities, and was first used in inverse 

kinematics by Wampler [108] and Nakamura and Hanafusa [70]. It was also used for 

theodolite calibration by Sultan and Wager [97]. 

Not only does DLS minimize the term IIJ(q)q - xl1 2 but it also minimizes the 

joint velocities with a damping factor, i.e., ).211q112 where). E at and), =1= o. The 

function to be minimized can be written as 

(3.19) 
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The DLS solution is equal to [14] 

(3.20) 

or alternatively 

(3.21) 

Equation (3.20) requires an inversion of an n x n matrix, while (3.21) requires an 

inversion of only an 1 x 1 matrix, which is computationally more efficient. In terms of 

SVD, the singular values change from ;, for Jt(q) to ut:'>.2 for (J(q)fI'(q) + A2 I)-I [14]. 

If O'i ~ 0, ;i ~ 00, while in the other case, u2~>'2 ~ -fr when O'i ~ 0. Therefore, a 

stable solution is observed even near singularities for VA : A =1= O. Using (3.21), N2 

can be redefined as 

J*(q) 

o 

o 
J*(q) 

o 
o 

o -J*(q)j(q,q)J* (q) J*(q) 

E ~31x3n (3.22) 

where J*(q) = JT(q)(J(q)fI'(q) + A2Ifl. The value of A is set by the designer. 

Large values can result in a slower convergence rate and very small values can reduce 

the effectiveness of the method. In literature, there are many methods proposed to 

select the value of A dynamically [66, 70, 17]. In Chapter 6, different values of A are 

tested to examine its effect on the performance and the stability of the system and 

then a control law is synthesized to find the optimum value of A. 

3.2 Model Free Subspace Based Operational Space 

£00 Control 

Figure 3.2 shows a generalized feedback system. The plant has two inputs, d is 

the disturbance signal and u is the input from the controller. The variable to be 

controlled is z, and a certain behaviour is desired from it. The measured output , 
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d z 
... ... ,. 

Plant 
., 

... ---, 

u y 

Controller ~ 

Figure 3.2: Generalized feedback system 

y, is fed into the controller. In terms of £00 optimal control, the transfer function 

from the disturbance signals to the controlled variables is minimized [65] such that 

(3.23) 

where Fzd is the transfer function from disturbance signals d to the controlled vari-

abIes z, and '"Y E ~ : '"Y > o. '"Y is a factor by which the disturbance input vector d 

bounds to the design output z. II- 1100 is defined as [40] 

where norms IIzll2 and IIdll 2 are defined as 

or in terms of ,2P spaces 

max {I F Zd1 I + I F zd2 1 + ... + I F zdn I} 

II Fzdll oo 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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r--------------------------------------, 

Controller 

Figure 3.3: Model free subspace based operational space £00 control. Dynamic 
parameters of the robotic manipulator are unknown and the controller is synthesized 
in realtime 

Intuitively, IIFzd/l oo < , can be interpreted as a ,-level £00 control scheme in 

which the effect of disturbances is minimized onto the controlled variables. These 

controlled variables arise from weighted exogenous signals [29]. 

Figure 3.3 shows the complete system to be controlled. The manipulator pre-

dictor is as depicted in Figure 2.1 and r is the reference trajectory in operational 

space. W1 and W2 are frequency dependant performance weights. These weights 

are chosen by the designer such that W1 is a low pass filter and W2 is a high pass 

or a band-stop filter [102]. Their gain must be finite over all frequencies, and as a 

consequence, they must have relative McMillan degree 0 [117]. 

Theorem 3.1. If measurements of the torque vector (r) , joint vector (y), and refer­

ence trajectory (r) in operational space are available for times {k - i, ... , k - 2, k -1 } , 

then the strictly causal subspace based, ,-level £00 control for times {k, ... , k+i, k+ 

i-I} is given by 

( 
T T - )T -LTMl Q1M1Lw 

T 

t:J. T T- -1 - T 
ropt = (LTMl Q1M1LT + Q2) (L~M[h-2Q1 + I)M[ H[f1 ) 

( -H'[f2)T 
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provided that 

where 

• Optimum torque is given by 

Topt = 

Tk+i-l 

• Forward and inverse kinematics matrices for the prediction horizon i is defined 

using Nl and N2, i. e., 

Nl 0 0 

Ml f),. 

0 Nl 0 
E ~3lix3ni (3.30) 

0 

0 0 Nl 

N2 0 0 

M2 f),. 

0 N2 0 
E R3nix3li (3.31) 

0 

0 0 N2 
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• The state of the discrete linear time invariant (LTl) weighting filters WI and 

W 2 can be updated using 

A'II)1 (XwJk + BWI (M2 (rk - MIYk)) 

CWI (Xwl)k + DWI (M2(rk - M1Yk)) 

(3.32) 

• Hl and H2 are the impulse responses of W l and W 2 , respectively. They are 

defined as 

CwlBwl 

H 1 6 C JIB 
wlI1wl WI 

C Ai - 2B WI WI WI 

DW2 

Cw2 Bw2 

H2 6 CW2Aw2BW2 

o 

C Ai-3B WI WI WI 

0 

DW2 

Cw2 Bw2 

o 
o 

C Ai-4B WI WI WI 

0 

0 

DW2 

o 

o 

o 

DWI 

0 

0 

0 

(3.33) 

(3.34) 
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• The extended observability matrices, r 1 and r 2 , formed from the impulse re-

sponses of the weighting .filters WI and W2 are given as follows; 

CWI 

r
1 

6. 
CwlAwI 

(3.35) 

C Ai-I 
WI wI 

C W2 

r
2 

6. 
C w2 A w2 

(3.36) 

C Ai-I 
W2 11'2 

• (Wp)k is a vector made up of past values of T and y given by 

Yk-i 

Yk-I 

The control law given in (3.28) is a strictly causal controller and doesn't depend 

on the current value of the reference trajectory. Intuitively, it can be seen that the 

future optimum torque vector for the robot manipulator depends on the state of the 

weights and the past values of both torques and joint variables. 

To ensure stability, , is selected such that, = 1.1'min [117]. Higher value of , 

increases the stability of the system at the cost of performance. 

The following mathematical results will be used in the proof of Theorem 3.4 [10, 

41]. 
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Lemma 3.1. If A-I, C- 1 , (BABT + Cr\ and (A-l + BTC-IB)-l exist, then 

A - ABT (BABT + C) -1 BA 

ABT (BABT + Crl 

(A- l + BTC-lBr l 

(A- l + BTC-IBrlBTC-l 

1 1 [AI A2]_1 Lemma 3.2. If Ai , A3" , and exit, then 
Af A3 

(3.37) 

(3.38) 

[

(AI - A2A3" l An-
1 

-(AI - A2A3"lAn-IA2A3"I] 

-(A3 - Af Ail A2rlAf Ail (A3 - Af AiIA2)-1 

Lemma 3.3. If AI, A;-l, and A3"1 exit, then according to Schur decomposition 

Lemma 3.4. If is a Hessian such that A3 = AI and it has been formu-
[
AI A2] 

Af A3 

lated by double differentiation of [aT, bT r for the maximum and minimum values 

of a and b, respectively, then 

Proof of Lemma 3.4. From (3.39) 

(3.40) 

(3.41) 
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The matrices on sides in (3.42) are transpose of each other, hence they do not 

affect the polarity of the terms in the middle matrix. As the top rows were differ­

entiated by the variable to be maximized, hence 

and similarly, the bottom rows were differentiated by the variable to be minimized, 

hence 

o 

Proof of Theorem 3.1. The reference signal r is defined as 

Xk 

Xk 

Xk 

r A E ~3il 

Xk+i-I 

Xk+i-I 

Xk+i-I 

where l is the number of DOF in operational space. In time domain, WI and W2 

can be formulated using their impulse responses (Markov parameters) and extended 

observability matrices. The output of these weights can be given by 

(3.43) 

where X W1 and X W2 are the state variables for the weighting matrices WI and W2 · 

These weights are normally assigned by the designer. 
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Figure 3.4: Model free subspace based operational space Jeoo robust control 
Subspace identification of an articulated manipulator in operational space in the 

presence of uncertainties 

From figure 3.4, e = M2(r - MIff!), hence (3.43) becomes 

(3.44) 

The cost function to minimize the control effort and the feedback error for the 

given refence trajectory as bounded by '"Y is given by 

(3.45) 

where the objective is 

minmaxL(r) < 0 
T T 



p 
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Substituting the cost function in (3.45) gives 

The vector of control variables in (3.44) can be rewritten as 

[zw,] = [HIM, -HI M2MI LT -HI M2MI Lw rIO] x 
ZW2 0 H2 0 o r 2 

where 

r 

T 

X= wp 

XW1 

X W2 

. Using (3.47) in (3.46) produces 

[ LI minmaxxT 

T r . 

where 

L,] 
: x < 0 

MiH[rI 

-L!;M[M!H[rI 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

To find the point that minimizes T and maximizes r at the same time, (3.48) is dif­

ferentiated with respect to [rT TT] T and equated to zero. As x = [rT TT wT xT xT ] T, 
, , 'p' Wl' W2 



CHAPTER 3. MODEL FREE OPERATIONAL SPACE £00 CONTROL 50 

only the first two rows (3.48) will be left as follows; 

r 

T 

=0 (3.51) 

which can be rearranged to 

(3.52) 

In order to find the maximum condition for r and minimum condition for T, (3.52) 

is differentiated again with respect to [rT, 7T r that yields 

(3.53) 

Let 

(3.54) 

As A3 E lR3ilx3il and r E lR3il , the condition for worst case input reference signal 

can be stipulated by (3.40). From (3.54) and (3.40), the following can be obtained; 

(3.55) 
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From (3.55) and (3.37), the following can be deduced; 

or 

where 'x[e] is the largest eigenvalue of e and "(min is the minimum value of "(. 

As Q1 = Qf and Q2 = Qr, and both of these matrices are positive definite, then 

it can be concluded from (3.53), (3.54), and (3.41) that A3 > 0, which satisfies the 

saddle condition of T approaching the minimum. Equation (3.52) can be rewritten 

to calculate the optimum torque T opt and the worst case reference trajectory r we, i.e., 

(3.57) 

or 

(3.58) 

Using Lemma 3.2, it can be stated that 

(3.59) 
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Substituting (3.58) and (3.49) in (3.59) yields the following expression; 

Wp 

[L;M[M!QIM2(M!QIM2 - ry21)-1 I] L2 XW1 3.6C 

or 

Topt 

(-L;M[(M'{QIM2 - M{QIM2(M!Q1M2 - ry21)-IM!Q1M2)M1Lw{ 

(-L;M[(M!Q1M2(M!QIM2 - ry2Iri - I)M!H[f1{ 

(-H!f2f 

If A /:),. M!QIM2, B /:),. I, and C /:),. -,,? I in (3.37), then it can be concluded that 

T 

T T T 2 -1 T T -1 -2 -1 _ ~ 
M2 QI M2-M2 QI M2(M2 QIM2 - ry 1) M2 QIM2 = ((M2 QI M2) - ry 1) = Ql 

(3.62) 

Similarly, (3.38) can be written as 

T T 2 -1 T -1 -2 -1 -2 -2 ~ 
M2 QI M2(M2 QIM2 - ry 1) = -((M2 Q1 M2) - ry 1) ry 1= -ry Q1 

(3.63) 

Using (3.62) and (3.63) in (3.61) produces 

~ T 
(L;M[QIMI Lw) 

T 

_ T T ~ )-1 ~ T 
Topt = -(LTMI QIM1LT + Q2 -(L;M[h-2Q1 + 1)M! H[fd 

(Hif2)T 

Equation (3.64) calculates the optimum torque for the joint actuators. It holds 

as long as the matrix [(M!QI M2)-1 - ry-2 I] is not singular. In case the matrix is 

singular, Topt can be calculated using (3.58). D 
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3.3 Model Free Subspace Based Operational Space 

~ Control 

$00 control synthesis relates to a worst case synthesis that takes account of the 

robustness of the feedback system to plant disturbances. On the other hand, ~ 

control is a generalization of LQG optimal control [42], in which the disturbance is 

assumed to be zero. Here, the controlled signals arise from exogenous signals which 

are fixed or have a fixed power spectrum [29]. 

Theorem 3.2. If measurements of the torque vector (T), joint vector (y), and refer­

ence trajectory (r) in operational space are available for times {k - i, ... , k - 2, k -1 }, 

then the strictly causal subspace based ~ control for times {k, ... , k + i, k + i-I} 

is given by 

(3.65) 

where 

• Q1 and Q2 are positive diagonal matrices that can be written as 

Q 0 0 

l:> 
0 Q 0 

E ~3nix3ni Q1 (3.66) 

0 0 Q 

R 0 0 

~ 
0 R 0 

E ~nixni Q2 (3.67) 

0 0 R 

It can be seen in (3.65) that the system has no dependance on the value of 

r. This lack of dependence on the value of r is due to the strict causal nature 
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of the control algorithm, and inability of the weights to retain their states. The 

performance channels can be formulated using the following relations: 

D1(M2 (rk - M1(Yk))) 

D2(T) 

(3.68) 

(3.69) 

Another explanation for this disappearance of r is that when, -+ 00 in (3.24), 

all the disturbances are assumed to be zero. 

Proof of Theorem 3.2. In £00' when disturbances are zero or in other words, when 

, -+ 00, £00 -+ ~ [40]. 

If, -+ 00 then (3.62) can be written as 

lim ((M!QI M2)-1 - ,-2 I)-I 
"(-+00 

Similarly, using (3.66) and (3.67) 

and 

Substituting these values in (3.28) yields 

(3.70) 

o 
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3.4 Robust Control 

There are two ways to incorporate model uncertainty in small gain theorem, addi-

tive uncertainty and multiplicative uncertainty (for details on small gain theorem, 

reference is made to [65]). Additive uncertainty counts for high frequency dynamics 

and nonlinearities neglected in the control design model, while multiplicative uncer-

tainty caters for input modeling errors and imperfections in the linearized actuator 

model [49] . As shown in Chapter 1, linear control techniques for mechanical manip-

ulators approximate the non-linear model using Taylor series expansion. For this 

negligence of non-linear components, "It;. - level £00 robust control law with addi­

tive uncertainty is proposed. Additive uncertainty also deals with high frequency 

noise from sensors, which are used to measure joint accelerations. This increases the 

overall robustness of the system. 

Theorem 3.3. If measurements of torque vector (7), joint vector (y), and reference 

trajectory (r) in operational space are available for times {k-i, . .. ,k-2, k-1} , then 

the strictly causal subspace based, "It;. -level c7f'oo control for times {k, ... , k+i, k+i-1} 

is given by 

(3.71) 
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where 

-MiQIM2MILT 

HI M[ MiQ 1M2M1LT 

-L~M[MiQIM2 L~ M[ M'{ QIM2MILT + Q2 + Q3 

-M'{Q1M2M1Lw M'{H[r1 0 0 -M'{Q1M2M1r 4 

L2t;. '" HIM[ M'{Q 1M2M1Lw -HIM[ M'{ H[rl 0 0 If[ M[ M'{Q1M2M1r 4 

L~M[ M'{Q1M2M1Lw -L~M[M'{H[rl H'{r2 H;rr3 L~M[M'{QIM2Mlr4 

provided that 

/£1 > /min", "'J>"[(I + M1Q4Mn(M!Q1M2 + M1LT(Q2 + Q3)-lLTMn- 1
] 

(3.73) 

where 

• The state of discrete LTI weighting filters W3 and W4 can be updated using 

(Xw3 )k+1 AW3 (xW3 )k + BW3 (M2(rk - M1Yk)) 

(ZwJk CW3 (XW3 )k + Dw3 (M2(rk - M1Yk)) 

(3.72: 
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• H3 and H4 are the impulse responses of W3 and W4 , respectively. They are 

defined as 

Cw3 Bw3 

o o 

o 
H3t:. CAB W3 W3 W3 

o 

o 

o 

C A i - 2 B W3 W3 W3 C Ai - 3 B W3 7l'3 W3 C A i - 4 B W3 1113 W3 DW3 

DW4 0 0 0 

Cw 4 Bw4 DW4 0 0 

H4 t:. Cw4 Aw4 Bw4 Cw4 Bw4 DW4 0 

C A i-2B C A i - 3 B C Ai-4 B D 
W4 W4 W4 W4 W4 W4 W4 W4 W4 W4 

(3.74) 

(3.75) 

• The extended observability matrices, r3 and r3, formed from the impulse re­

sponses of the weighting .filters W3 and W 4 , are given as follows; 

CW3 

r3 t:. 
Cw3 Aw3 

(3.76) 

C A i - 1 
W3 W3 

CW4 

r4 t:. 
Cw4 A W4 

(3.77) 

C A i - 1 
W4 W4 

The following mathematical result will be used in the proof of Theorem 3.3. 
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Aa Ab Ad 

Lemma 3.5. !fAa) Ab ) Ac) Ad ) Ae) Af) Ajl, and (Ac-AeAjl A;)-l exist and Ai Ac Ae 

A~ A;' Af 

is a Hessian such that Af = AJ and it was formulated by double differentiation of 

[aT Ii" cT 1 T for the maximum values of a and b and minimum value of c then 

Af > 0 

Proof of Lemma 3.5. Let 

and 

then from (3.41) 

Using Lemma 3.4 for above inequality) it can be stated that 

Substituting values of AI) A2 ) and A3 in the above expression yields 

(3.78) 

(3.79) 

(3.80) 
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which can be expanded to 

It can be deduced from Schur decomposition, in Lemma 3.4, for above inequality 

that 

and 

o 

Proof of Theorem 3.3. From Figure 3.4, control variables ZWl' ZW2' and ZW3 can be 

written as 

(3.81) 

where X W1 ' X W2 , and XW3 are the state variables for the weighting matrices WI, W2 , 

and W3 • From Figure 3.4, e = M 2 (r - M I f1t), hence (3.81) can be re-expressed as 

H2(r) + f 2(xW2 )k 

H3(r) + f 3(xW3 )k 

(3.82) 

The cost function to minimize the control effort and the feedback error for the 

given refence trajectory bounded by IA is given by 

(3.83) 
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where the objective is 

minmaxL~h~) < 0 
T 1',8 

Substituting objective in (3.83) gives 

T 

ZWI ZWI 

min max ZW2 ZW2 - "(irT T <0 
T r,s 

(3.84) 

ZW3 ZW3 

From (3.30), (3.31), and (3.82), the following can be concluded; 

ZWI H1M2 -H1M2M1H4 -H1M2M1LT -H1M2M1Lw r1 0 0 -H1M2M1r4 

ZW2 0 0 H2 0 0 r2 0 0 

Zw3 0 0 H3 0 0 0 r3 0 

(3.85) 

where 

T 

s 

Substituting (3.85) in (3.84) produces 

[

L1 
min max xI 

T r S • , . 
(3.86) 
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where 

and 

-M'{QI M2M I Lw M!H[f l 0 

L26. = HI M[ M!Q1M2M 1Lw -HIM[M!H[fl 0 

L!;M[ M!Q 1M2M 1Lw -L!;M[ M! H[fl H!f2 

-M!Q1M2M1LT 

HI M[ M!Q 1M2M1LT 

L!;M[ M!Q 1M2M1LT + Q2 + Q3 

(3.87) 

0 -M!Q1M2M1 f 4 

0 HIM[M!QI M2M l f 4 

Hl f 3 L!;M[ M!Q1M2M 1 f 4 

(3.88) 

To find the saddle point that minimizes T and maximizes r at the same time, (3.86) 

is differentiated with respect to [rT, ST, rTr and equated to zero. As XI> = 

[rT sT TT wT xT xT xT3] T, only the top three rows from (3.86) will be left. , , 'p' Wi' W2' W 

Rearranging the equation yields 

wp 
r 

LI6. = -L26. 
X Wi 

(3.89) S 

X W2 

T 

XW3 

In order to find the maximum condition for rand s, and minimum condition for 

r, (3.89) is differentiated again with respect to [rT, ST, rT r, which yields 

- M! QIM2MILT 

HI M[ M!QIM2MILT 

L!;M[ M!Q 1M2M1LT + Q2 + Q3 

(3.90) 
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Comparing the Hessian in Lemma 3.5 with (3.90) and then substituting these 

values in (3.80) produces 

where 

Using (3.37), the above relation can be rewritten as 

If A D. X, B D. HI M'[, and C D. l'iI, then using (3.37) produces 

(3.93) 

which can be rearranged to 

or 

Using the value of X from (3.92) in the above inequality for the minimum value 

of I yields 

ILl > J>..[(I + M1Q4Mn((M!Q1M2 )-1 + M1LT (Q2 + Q3)-lLT Mn- 1] -lminD. 

(3 .94) 
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The minimum condition for the torque is stipulated by applying the condition 

mentioned in (3.78) onto (3.90), i.e., 

As, Ql > 0, Q2 > 0, and Q3 > 0, the above inequality proves the minimum 

saddle condition for the torque. From (3.89), Taptt!. can be written as 

- L-1L Taptt!. = - It!. 2t!. (3.95) 

where LIt!. and L2t!. are defined in (3.87) and (3.88), respectively. 

o 

The control law presented in (3.71) gives a robust solution at the cost of perfor­

mance. The following theorem proves this hypothesis. 

Theorem 3.4. If 'mint!. is as defined in (3. 73) and ,min is as defined in (3.29) then 

,mint!. > ,min (3 .96) 

The following mathematical result will be used in the proof of Theorem 3.4. 

Lemma 3.6. If A-I, B-1 , and C- 1 exist then 

(3.97) 
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Proof of Theorem 3·4· Applying the condition in (3.78) to (3.90) yields 

MiQ 1M2 + (L;1'vJn- 1(Q2 + Q3)(M1LT )-1 > 0 

-(L;Mn-l(Q2 + Q3)(M1L T )-1 < MiQ 1M2 

Taking the inverse on both sides of the equation and then using (3.97) produces 

or 

or 

M1LT(Q2 +Q3tlL;M[ > -(MiQ1M2)-1 

(MiQ1M2)-1+M1LT(Q2+Q3)-lL;M[ > 0 

As Q3 > 0 

As Q4 > 0 and M[ Ml > 0, hence 

(1 + M1Q4Mn((MiQ1M2)-1 + M1LT(Q2 + Q3)-lL;Mn-1 

> ((MiQ1M2 )-1 + M1LT(Q2)-1 L; Mn-1 

)>"[(1 + MIQ4M'[) ((MiQ1M2)-1 + M1LT(Q2 + Q3)-lD~'M'[)-ll 

> V>"[((MiQ1M2 )-1 + MILT(Q2)-lL~M'[)-ll 

that equates to 

I'mintJ. > I'min 
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D 

3.5 Summary 

The important results of this chapter are: 

• Formulation of a basic framework to cater for the kinematic constraints (3.6) 

- (3.22) ; 

• Model free operational space £00 control for rigid robot manipulators (3.28) 

- (3.29); 

• Model free operational space £z control for rigid robot manipulators (3.65); 

• Model free operational space £00 robust control with additive uncertain­

ties (3.71) - (3.73); and 

• Reduction in performance of model free robust control at the cost of robust­

ness (3.96). 



Chapter 4 

Interaction Control 

One of the most important requirements of a manipulator is its ability to interact 

with the environment. There are many applications in industrial robots where the 

end-effector of the manipulator interacts with the environment. Some of the exam­

ples are available in applications that involve polishing, deburring, machining, or 

assembly. It is important that a control algorithm used for these applications caters 

for the contact force, otherwise the job can be detrimental to both the manipulator 

and the work piece. 

Since the interaction between the environment and the manipulator is described 

in operational space, it is natural to design the control strategy in operational space. 

The control laws, described in Chapter 3, can be adapted to cater for the contact 

forces that interact with the end-effector. These forces can be related to the reactive 

joint force through the following relation [94]; 

where fl E RI is a force vector in operational space and fn E Rn is either a force 

vector or a torque vector depending on whether the joints are prismatic or rotatory. 

This relation will be used in the formulation of different control schemes for serial 

manipulators. 

66 
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Interaction control schemes are generally categorized into two groups [19]. The 

first group is referred to as the hybrid position/force control. Section 4.1 proposes a 

control scheme under this category. The second group is called impedance control, 

and it implies the use of a controller that regulates the stiffness of the joints of a 

manipulator. This is formulated in Section 4.2. Section 4.3 discusses the effect of 

scaling of the force vector for different cases. 

4.1 Hybrid Interaction Control 

This control scheme is based on the observation that when a manipulator is in 

contact with the environment, some of its force and position subspaces vary to keep 

the manipulator free to move despite being constrained by the environment. The 

controller is designed to mimic these variations by involving two disturbance signals, 

one to guide the position of the end-effector and one to signify the force signal, as 

shown in Figure 4.1. The controller tries to minimize the control effort for the worst 

case value of the reference trajectory and the force vector. 

For a given job, if a desired force is required to be applied, whilst following a 

given trajectory, the force vector can be expressed as 

I fe - fd if fe > fd 
f= 

o otherwise 

(4.1) 

where Id is the desired contact force, and Ie is the actual recorded force from the 

sensor mounted on the end-effector. 

Theorem 4.1. If measurements of the torque vector (7), joint vector (y), force 

vector on the end-effector (J) and reference trajectory (r) in operational space are 

available for times {k - i, ... , k - 2, k - 1}, then the strictly causal subspace based, 

1rlevel £00 hybrid force/position control for times {k, ... , k + i, k + i - 1} is given 
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r-------·----------------------·------~ , I 

Manipulator pr~'<lictor 
r---........a.:~ 

, L ____________________________________ _ 

Controller 

I 

68 

ZWI 

Figure 4.1: Model free subspace based operational space £00 hybrid force/position 
control. f is measured from sensors attached to the end-effector 

by 

T 

k 
(4.2) 

provided that 

'"'if> '"'imin! ~ />"[(1 + MILT M3 M j L~Mn((MiQIM2)-1 + MILTQ"21 L~Mn-ll 
(4.3) 

where 

Q~ ~ (Q-l _ -2M MT)-l 
• 2! - 2 '"'if 3 3 

• Forces acting on the end-effector in operational space can be projected onto 

joint space using 

.rr 0 0 

M3 ~ 
0 JT 0 

E ~ni xli (4.4) 
0 

0 0 .rr 
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The following mathematical results will be used in the proof of Theorem 4.1. 

Lemma 4.1. 

rAj 0 r rA~! A~!l (4.5) 
o A2 

-1 

Aa 0 Ad 

Lemma 4.2. If A~I, A;I, and 0 Ac Ae exist, then 

AT d AT 
e Af 

-1 

o 

(4.6) 

Proof of Lemma 4.2. Let 

and 

-1 
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then from (3 .59) 

-1 

Aa 0 Ad 

[0 0 I] 0 Ac Ae 

AI A~ Af 

(A3 - Ar All A2rl [-Af All I] 

(Af- [AI A;] [~" :r [~]r [- [AI Ar] [~ :r I] 

Using (4.5) in the expression above yields 

o 

Proof of Theorem 4.1. The force signal f in operational space is defined as 

!k 

f 6 
fk+l 

E Ril 

fk+i-l 

From (3.23) and (3.24), If-level £00 control with d disturbances and z control 

variables can be written as 

(4.7) 
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From Figure 4.1, it can be seen that the disturbance signals consist of the refer-

ence trajectory and the force signal acting on the end-effector. Squaring the perfor-

mance objective for the force control for the system described in (4.7) produces 

(4.8) 

or 

(4.9) 

The force f acting on the end-effector in operational space projects onto the 

torque in joint space with a factor of JT. The control variables can be re-written as 

(4.10) 

where M3 is a diagonal matrix with JT on its diagonal. Substituting the value of e 

from Figure 4.1 yields 

(4.11) 

The cost function to minimize the control effort and the feedback error, for the 

given reference trajectory and force on the end-effector bounded by "tI, is given by 

(4.12) 

where the objective is 

minmaxLbI) < 0 
T r,J 

A controller for the maximum force f and the reference trajectory r will now be 

formulated to cater for the worst case scenario. Substituting the cost function given 
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in (4.12) in the above objective gives 

(4.13) 

Substituting the values of ZWl and ZW2 in (4.11) yields 

o 
(4.14) 

o 

where 

r 

f 

6 
T 

XI = (4.15) 
wp 

XW1 

XW2 

Using (4.14) in the performance objective described in (4.13) produces 

where 

Llf 6 

and 

L2f 6 

[
Llf L2f] minmaxxJ xI < 0 

T r,f : : 
(4.16) 

M'{Q1M2 - ryJI 

0 

- L;' M[ M'{ Ql M2 

-M'{Q1M2M1Lw 

0 

0 

MJQ2 M3 -ry]I 

Q2 M3 

M!H[r 1 

0 

- M'{ QIM2MILT 

MJQ2 

L;'M[ M'{Q1M2M1LT + Q2 

(4.17) 

o 

MJ H'{r2 (4.18) 
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To find the saddle point that minimizes T, and maximizes r and I at the same 

time, (4.16) is differentiated with respect to [rT , 1'", rT r and equated to zero. As 

xf = [rT IT TT wT X T xT ] T, only the first three rows from (4.16) will remain. , , 'p' WI ' W2 

After differentiation, (4.16) can be written as 

r 

(4.19) 

T 

In order to find the maximum condition for r and I, and minimum condition 

for r, (4.19) is differentiated again with respect to [rT, 1'" , rT r. This yields the 

following; 

o 

MJQ2 M3 -IJI 
Q2M3 

-M[Q1M2M1LT 

MJQ2 

L; M[ MiQ1 M2M1LT + Q2 
( 4.20) 

To evaluate the value of If for the worst case situation, (3.80) can be written as 

(4.21 ) 

where 

(4.22) 

where A b. (L;M[MiQ1M2M1LT + Q2)-1, B b. MJQ2' and C b. IJ - MJQ2M3. 

Using (3.37) in (4.22) produces 
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If A ~ Q2, B ~ Mi, and C ~ -'"'IF, then using (3.37) gives 

Substituting XI in (4.21) results in 

where A ~ MiQ1M2, B ~ L~Mr, and C ~ (Q2 1 - '"'Ij2M3Mi)-1. Simplification 

of the above inequality using (3.37) produces 

or 

or 

The above inequality can be rearranged to 

or 

As Q1 > 0 and Q2 > 0, hence 
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By comparing (4.20) and the Hessian in Lemma 3.5, the above relation satisfies the 

minimum condition for T as per the criteria described in (3.78). Equation (4.19) 

can be rewritten to calculate the optimum torque Tapt! and the worst case reference 

trajectory T we, i.e., 

or 

Using (4.6) 

Tapt! 

where 

Twe 

Tapt! 

Wp 

Tapt! = - [0 0 1] L"])L2! X W1 

X h b. MiQ1 M2 - MiQ1 M2(MiQ1 M2 + (-'YjI))- lMiQ1 M2, 

X/2 b. Q2 - Q2M3(MJQ2M3 + (-'YjI))-lMJQ2, 

and 

(4.25) 

(4.26) 

(4.27) 

X/3 ~ [L~M[ MiQ1M2(MiQ1M2 + (-'Y;I)t 1 -Q2M3(MlQ2M3 + (-'Y;1))-1 1] 

(4.28) 



CHAPTER 4. INTERACTION CONTROL 

X/l and X h can be simplified using (3.37), i.e., 

((M'[Q1M2)-1 -1j2t 1 Q1 

(Q-1 -2M MT)-1 - Q~ 
2 -1f 3 3 = 2j 

From (4.18) and (4.28) 

76 

(4.29) 

(4.30) 

(L~M'[(MiQ1M2 - MiQ1M2(MiQ1M2 -1]I)-lMiQ1M2)M1Lw{ 
T 

Xf3L2j = (L~M'[(M!QIM2(M!QIM2 -1]I)-1 - I)M! H'[f1{ (4.31) 

(Hif2 - Q2M3(MiQ2M3 -1]I)-lMi Hi f 2)T 

If A l!. Q2, B l!. Mi, and C l!. -121 in (3.38), then it can be written that 

H!f2 - Q2M3(M'{Q2M3 -1JI)-1 M'{ H'[f2 

H'[f2 + 1j2(Q21 - 1j2 M3M'{)-1 M3M'{ H'[f2 

(1 + 1j2Q2jM3M'{)H'[f2 

Using (4.32), (3.62), and (3.63) in (4.31) produces 

T 

(4.32) 

(4.33) 

Substituting the value of X h L2j obtained above and the values of X h and X h 

from (4.29) and (4.30) in (4.27), respectively, yields 

T T~ T 
(LT M1 Q1 M1Lw) 

T 

-(L~M'[(ryj2Q1 + I)M! HtfdT 

2~ T T T 
((1 + 1j Q2jM3M3 )H2 f 2 ) X W2 

k 
( 4.34) 

D 



CHAPTER 4. INTERACTION CONTROL 77 

The hybrid control law stated in (4.2) provides a robust solution when an ex­

ternal force is exerted on the end-effector. This robustness comes at the cost of 

performance. The following proposition proves this hypothesis. 

Proposition 4.1. If /"min~ is defined in (3.73) and /"min is defined in (3.29) then 

fro~ Jrheore~ 3.4 

/"min~ > /"min 

and if /"minf is defined in (4·3), it can be stated fro~ co~paring (3.73) to (4.3) that 

/"min f > /"min (4.35) 

Proof of Proposition 4·1. If Q3 = I and Q4 = LT M3MJ L~ in (3.73), then rest of 

the proof is analogous to the proof of Theorem 3.4. D 

4.2 Impedance Control 

In impedance control, the impedance, or stiffness, of the joints of the mechanical 

manipulator is regulated. The main idea in this control scheme is not to follow a 

certain trajectory but to maintain a desired dynamic relation of the contact forces 

between the end-effector and the environment. Unlike the hybrid control scheme 

gi ven in Section 4.1, the control effort is minimized only for the worst case value of 

the given trajectory in operational space. This way, the controller tries to follow the 

trajectory as much as possible without countering the effect of the applied force. The 

controller passes the effect of the applied force onto the joints, and as a consequence 

it seems to an observer as if the stiffness of joints has been compromised. 

Theorem 4.2. If ~easure~ents of the torque vector (7), joint vector (y), force 

vector on the end-effector (J) and reference trajectory (r) in operational space are 

available for ti~es {k - i, ... , k - 2, k - 1}, then the strictly causal subspace based, 
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"Ii-level £00 impedance control fOT times {k, ... ,k + i, k + i-I} is given by 

provided that 

(Q2 M3f 

( 
T T ~ )T LrMl QIMILw 

-(L!;MTbi- 2
Ql + I)M{HTf1{ 

(Hif2 ( 

T 

f 

X W2 
k 

(4.36) 

Proof of Theorem 4.2. Following the proof of Theorem 4.1 for the same system de-

scribed in Figure 4.1, the objective is given as 

( 4.38) 

where the vector of control variables is given by 

(4.39) 
o 

where 

r 

T 

6 
Xi = 

f 

Wp 

X W1 

X W2 
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Using the vector of control variables in (4.39) and expanding the objective de­

scribed in (4.38) yields 

( 4.40) 

where 

( 4.41) 

and 

MiH[r l 

The differentiation of (4.40) with respect to [rT, rT r, and then equating it to 

zero gives the saddle point for the maximum r and minimum T, i.e., 

or 

( 4.43) 

The performance objective (,minJ can be found by differentiating the above 

expression one more time by [rT, rT r. This results in 

b. [ MiQ1M2 -I; I -MiQIM2MILT 1 
Hhessi = -L~MfMiQIM2 L~M[MiQIM2MILT + Q2 

( 4.44) 
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which is the same expression as (3.53). Following the steps in (3.54) - (3.56), the 

performance objective is found to be 

- J'[(MTQ )-1 Q-1LT TJ-I-Ii > Imini = 1\ 21M2 + MILT 2 T M1 = Imin 

Similar to (3.58), optimum torque for impedance control is given as 

f 

- [0 I] L1/L2i 

Wp 
Topt i 

X W1 

X W2 
k 

Substituting the value of L2i from (4.42) produces 

- [0 I] L;;' [ 0 
Q2M3 

According to (3.50) 

-MiQIM2M1Lw MiHrr l 

L!;M[ MiQ1M2M1Lw - L!; M[ Mi Hrr 1 

MiHrrl 

-L!;M[M!Hrrl 

MiHrrl 

-L!;Mr M! Hrr1 

( 4.45) 

H;r,] 
f 

wp 

X W1 

XW2 
k 

k 

( 4.46) 
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As L1 is defined in (3.49) and it can be seen that L1i = L1 , hence 

- [0 I] Ll' [Q2:}'- [0 +1'L2 

- [0 I] Ll' [Q2~,] M T"pI 
( 4.47) 

where 'opt is defined in (3.28). Using results from (3.60) - (3.63) in above equation 

yields 

or 

(Q2 M3Y 

( 
T T ~ )T LTMl QIMILw 

-(L~ M[bi-2
Ql + I)M'J H[rd

T 

(H'Jr2)T 

where the lower bound of Ii is as defined in (4.45). 

( 4.48) 

T 

f 

XW2 
k 

(4.49) 

o 

It can be seen in (4.48) that the force (f) is linearly related to the torque in joint 

space. The direct relation of the applied force onto the generated torque enables the 

manipulator to reduce its stiffness. 

4.3 Scaling of the Force Vector 

This section explores the properties of the force control when the force vector is 

scaled, as shown in Figure 4.2. One of the interesting property of the following 

theorem is that the expression for the optimum torque and the performance objec-

tive remains the same. This property has been used in Section 5.2 to simplify the 

expression for the optimum torque and the performance objective. 
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ZWI 

Figure 4.2: Scaling of the force vector. The scaling factor a is not part of the plant 

Theorem 4.3. If Tapt! is defined in (4·2) and !min! is defined in (4 ·3) for the force 

vector (f) acting on the end-effector of the manipulator in operational space, then 

the optimum torque vector (Topt
a
!) for the force vector (af) is given by 

(4.50) 

provided that 

(4.51) 

and 

(4.52) 

Proof of Theorem 4.3. Following the proof of Theorem 4.1, the objective in (4.13) 

can be written as 

(4.53) 
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and the vector of control variables in (4.14) becomes 

( 4.54) 
o 

where Xj is defined in (4.15). Substituting (4.54) in (4.53) yields 

[

Ll 1 L2 I] minmaxxJ '" "Xj < 0 
T r,J : : . . 

( 4.55) 

where 

MiQ1M2 -ryF 0 - Mi QIM2MILT 

Ll I'>. 
"'I 0 a 2 Ml Q2M3 - a 2ryJI aMj'Q2 

-L;M[MiQIM2 aQ2 M3 L; M[ Mi QIM2MILT + Q2 

and (4.56) 

- Mi QIM2MILw MiHrrl 0 

L2 I'>. 
0.1 0 0 aMlHir2 (4.57) 

L;M[ M'{Q 1M2M1Lw -L;M[M'{Hrrl Hir2 

Following the steps (4.19) - (4.21) to find the performance objective, (4.22) can 

be written as 

(4.58) 

where A I'>. (L;M[MiQ 1M2M 1LT+Q2)-t, B I'>. aMlQ2, andC I'>. a2ryJ-a2MlQ2M3. 

Using (3.37) in (4.58) produces 

that is equivalent to (4.23) which leads to 
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Similarly, following steps (4.25) - (4.26) and using (4.6) 

where 

Wp 

-(L; M'{ X ah MILT + X afJ-1 Xah L2",! X W1 

Xah A M'{QI M2 - M'{QIM2(M'{QIM2 + (-'~fI))-IM'{QIM2 X fll 

Xaf2 A Q2 - O?Q2M3(a2MJQ2M3 + (-(i 'r~fI))-IMJQ2 

Q2 - Q2M3(MJQ2M3 + (-'~fI))-IMJQ2 - X h , 

and 

84 

(4.60) 

Xah A [L;M[MiQI M2(MiQIM2 + (-'~fI))-1 -aQ2M3(a2MlQ2M3 + (-a2';fI)t1 I] I 

(4.61 

X ah and X af2 can be simplified using (3.37), i.e., 

X af1 - ((M'{QI M2t1 _,j)-1 = Ql 

X (Q-l -2M MT)-1 - Q-af 2 2 -, af 3 3 = 2",! 

Using (4.57) and (4.61) 

( 4.62) 

(4.63) 

(L;M[(MiQIM2 - MiQI M2(MiQIM2 -';fI)-IMiQIM2)MILw{ 

XahL2",! = (L;M[(MiQIM2(MiQIM2 -';fI)-1 - I)Mi H[r1{ 

(Hir2 - aQ2M3(a2MlQ2M3 - a2'~fI)-I(aMl Hir2){ 
(4.64) 

T 
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or 

(L;M[(MiQIM2 - MiQ 1M2(MiQ 1M2 - "t';/1)-lMiQIM2)MILw{ 

(L;M'[(MiQIM2(MiQIM2 - "(;IIr l 
- 1)Mi Hfrt}T 

(Hir2 - Q2M3(M[Q2M3 - "(;/1)-1 MJ Hir2)T 

(4.65) 

which is equivalent to (4.31). Substituting the value of X ahL2",!, X aII , and X aI2 

from (4.33) , (4.29), and (4.30) in (4.60), respectively, yields 

T 

As 'I - ,aI, hence 

o 

For the scaled disturbance vector, the expressions for the optimum torque and 

the performance objective remain the same. However, scaling affects the updating 

procedure for the weight state as given in (4.52). The expressions for torque and 

performance objective remain unchanged because (4.2) and (4.3) are not directly 

affected by the value of j. The following two corollaries utilize these properties. 

Corollary 4.1. IjToPt! is defined in (4·2), ,min! in (4·3), Topt",! in (4·50), and ,min",! 

in (4.51) such that 

(4.66) 

provided that 

,min",! - ,min! (4.67) 

and 

(4.68) 

T 
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~-------------------------------.-----

T 

Controller 

Figure 4.3: Scaling of the reference trajectory 

then the strictly causal subspace based, faT -level £00 hybrid force/position control 

with scaled reference trajectory (ar) for times {k l ... l k + i,k + i-I}, as shown in 

Figure 4.3, is 

(4.69) 

provided that 

(4.70) 

and 

(4.71) 

Corollary 4.2. If Topt! = g(wpl X Wll XW2 ) is defined in (4 ·2) and "(min! in (4·3) for 

the force vector (J) in operational space on the end-effector such that 

(4.72) 

provided that 

"(mina ! - "(min! (4.73) 

and 

(4.74) 
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then Tapti = g(l, wp , X Wll X W2 ) defined in {4.36} for the force vector (f) in operational 

space can be re-written for the scaled force vector {af} as 

provided that 

and 

where /'mini is defined in {4.37}. 

4.4 Summary 

(aQ2 M3f 

T T~ T 
(LTMI QIMILw) 

-(L~M[hi2Ql +I)M!H[f1 { 

(Hif2 ( 

~ 

/'minai = /'mini 

The important results of this chapter are: 

T 

f 

X W2 
k 

(4.75) 

(4.76) 

• Model free subspace based operational space £00 hybrid force/position con-

trol (4.2) - (4.3); 

• Reduction in performance in the hybrid control (4.35); 

• Model free subspace based operational space £00 impedance control (4.36) 

- (4.37); 

• Effect of the scaling of the force vector in hyrbrid force/position control (4.50) 

- (4.52); 

• Effect of the scaling of the reference trajectory (4.69) - (4.71); and 
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• Effect of the scaling of the force vector in impedance control (4.75) - (4.76). 



Chapter 5 

Special Cases of Interaction 

Control 

This chapter proposes two control schemes which can be considered extension 

to interaction control. The control scheme proposed in Section 5.1 removes the 

bias from the dynamic behaviour of the system to compensate for gravity effects. 

The control scheme proposed in Section 5.2 formulates a control law for parallel 

manipulators. 

5.1 Bias Removal Control 

In this section, interaction control as presented in Section 4.1 is adapted to remove 

the bias from the dynamic behaviour of the system. In isolation, if an actuator is 

driving a single joint, the torque produced by the actuator should be equal to the 

measurement of a strain gauge mounted on the joint. In the presence of exogenous 

forces such as gravity, the strain gauge senses the combined torque of both the 

actuator and these forces. If Ig is the measurement of the torque from strain gauges 

and 7 is the torque produced by the actuators, then 

f 6 7 g - 7 (5.1) 

89 
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r····································· 

Manipulator predictor 
r---,.....i..i~ Ln L", 

T 

Controller 

Figure 5.1: Model free subspace based operational space £OCJ control with bias 
removal. Tg is the torque vector measured from strain gauges 

is the disturbance vector that needs to be minimized, as shown in Figure 5.1. The 

actuator torque data, T, is obtained through actuator current measurements [101]. 

The relationship between current and torque for an actuator can be determined 

through a separate experiment. 

Such a technique has been used by Koivo [57] and Raibert and Craig [82], in 

which the manipulator follows a torque trajectory. Hashimoto [43] proposed the 

use of joint-torque sensory feedback (JTF) control to remove the effect of external 

disturbances such as gravitational force. Aghili et al. [3] proposed an adaptive 

implementation of JTF control. 

It has been reported that the bias in the dynamic behaviour of the manipulator 

is mainly due to gravity [57, 26], hence the proposed control scheme can be used to 

compensate the gravitational pull on the structure. Examples of torque-measuring 

techniques that employ strain gauges are given in [82], [78], and [2]. 

Here, it should be noted that the impedance control cannot be used with the 

bias removal control because the whole structure would lose its stiffness and sim-

ply collapse as a result of the torque measured at joints being mainly due to the 

gravitational force. 
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Proposition 5.1. If measurements of the calculated torque vector (r), joint vector 

(y), torque vector from strain gauges (rg) , and reference trajectory (r) in operational 

space are available for times {k - i, ... , k - 2, k - I}, then the strictly causal subspace 

based, ,g-level £00 bias removal control for times {k, ... , k + i, k + i - 1} is given by 

provided that 

where 

( 
T T ~ )T LTMl Q1M1Lw 

-(L;M[(r;2Ql + I)Mi H[f1 ( 

((,;2Q2 + I)Hif2( 

T 

k 
(5.2) 

(5.4) 

Proof of Proposition 5.1. Substituting I for M3 in Theorem 4.1 as the torque vector 

(7g ) is in joint space. Q2J can be re-written as 

Using new values of Q2J and M3 in (4.2) and (4.3) yields 

and 

T T~ T 
(LT Ml Q1M1Lw) 

-(L;M[(r;2Ql + I) MiH[fd
T 

((r;2Q2 + I)Hif2( 

T 

k 
(5.5) 

D 
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The state vector of the performance weight W2 can be updated using 

or 

(5.7) 

5.2 Parallel Manipulators 

The end-effector of a parallel manipulator is connected to its base via a number 

of serial manipulators in parallel. In these manipulators, there are always more 

joints than the number of DOF of the end-effector. This places constraints on the 

structure such that all the joints cannot be actuated at the same time. If the end­

effector has l DOF, then there are l active joints where l :::; 6. All the other joints 

are passive and their motion is dependant on the motion of the active joints. The 

most famous family of such manipulators are called Stewart-Gough platforms [11]. 

These platforms are widely used in simulators [120] , low impact docking systems for 

space vehicles [104]' and in form of a hexapod for precise machining [110]. 

Figure 5.2 shows a 3-RPR robot, which has three joints in each serial link. R 

stands for a rotatory joint and P stands for a prismatic joint whereby the underline 

signifies the joint which is actuated [91] . 

The forward kinematics function of a parallel has been studied in detail in the 

literature, especially for a 3-RPR robot. Kong [59] derived algebraic expressions for 

the forward kinematics of a 3-RPR robot and analyzed its singularities. Collins [20] 

used planar quaternions to formulate kinematic constraints in equations for a 3-

RPR robot . Murray et al. [69] used coefficients of a constraint manifold, which are 

functions of the locations of the base and platform joints and the distance between 

them, for the kinematics synthesis of a 3-RPR robot. Wenger et al. [112] studied the 

degeneracy in the forward kinematics of a 3-RPR robot. Kim et al. [55] and Dutre 

et al. [31] found the analytical Jacobian for a parallel manipulator. However, there 
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Figure 5.2: A 3-RPR planar parallel manipulator. B l , B 2 , and B3 are connected to 
a stationary base 

is no attempt in literature to formulate analytically the forward kinematics function 

for non-redundant parallel manipulators. 

In the following, the forward kinematics function of a parallel manipulator is 

evaluated analytically using the position-closure property to relate the joint variables 

of the active joints to the position of the end-effector. The analytical Jacobian of 

a parallel manipulator is also obtained as described in the literature. The following 

section formulates, Nlc and N 2c ' matrices for the forward and inverse kinematics 

operations followed by a control scheme for the manipulator. 

5.2.1 Forward Kinematics Function 

In order to formulate the forward and inverse kinematics matrices such as (3.6) 

and (3.22), it is important to formulate analytically the forward kinematics function 

of a parallel manipulator. The derivation is somewhat similar to the derivation of the 

analytic Jacobian of a parallel manipulator by Dutre et al. [31], which was derived 

using the velocity-closure property. The derivation is given as follows; 

As all the manipulators are connected to the same end-effector, it can be stated, 

using the position-closure property, that 

(5.8) 
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where qj is the vector of joint variables of lh manipulator and Fj(q) (),. F~;q) is the 

forward kinematics function of the lh manipulator. 

Each column of the function Fe corresponds to rotational angle or displacement 

of an active joint, depending on whether the joint is rotatory or prismatic. Hence 

(5.9) 

where F~ E ~na is the ith column of Fe and q} is a vector of joint variables of the lh 

manipulator when the ith active joint is moved one unit while all the other active 

joints are locked. If qc is the vector of all the joint variables, i.e., 

ql 

(5.10) 

then (5.9) can be written as 

(5.11) 

where q~ is a vector of all the joints when the ith active joint is moved one unit 

while all the other active joints are locked and Sj is a selection matrix to select the 

variables of the lh manipulator, i.e., 

o 

o 

o 

1 0 

o 1 

o 0 

o 

o 

1 

o 

o 

o 
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where nj is the number of joints in the lh manipulator. Let qp be the vector of 

passive joint variables and qa be the vector of active joint variables such that 

(5.12) 

(5.13) 

where qp E ~np and qa E ~na and Sp and Sa are selection matrices for passive and 

active joints, respectively. Typical values of Sp and Sa can be written as 

0 1 0 0 0 0 

Sp= E ~npxnc 

0 0 0 0 1 0 

and 

0 0 0 0 1 0 

Sa = E ~naxnc 

0 1 0 0 0 0 

Both of these matrices are sparse and orthogonal, i.e., SpSJ = I and SaS~ = I, 

which implies 

(5.14) 

(5.15) 

where qcP is equivalent to qc except that the active joints are set to zero and similarly, 

qCa is equivalent to qc except that the passive joints are set to zero such that 

(5.16) 

Substituting (5.14) and (5.15) in (5.16) yields 

(5.17) 
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In reference to the position-closure property (5.8), let 

(5.18) 

where 
fl _E:;. 0 0 
ql q2 

Pi 0 -~ 0 
A= ql q3 E Rn,,(n-l)xnc (5.19) 

fl 
ql 

0 0 _.&.. 
qn 

Substituting the value of qc from (5.17) gives 

- AS; qp + AS~qa 

(5.20) 

Applying (5.18) 

(5.21) 

Substituting this expression in (5.17) yields 

(5.22) 

As q~ is defined for a unit displacement of the ith active joint, hence, qa can be 

replaced with a column of Sa which corresponds to the ith active joint, denoted by 

(Sa)i, to evaluate q~, i.e., 

(5.23) 

Substituting the above value in (5.11) gives 

(5.24) 
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or 

F. = FB· [ql q2 qna] c JJ c c··· r: (5.25) 

Example 

As the proposed kinematics framework is evaluated analytically, it can be applied 

on any non-redundant parallel manipulator. However, in this section, for the sake 

of demonstration, a simple case of a 3-RPR robot is presented, shown in Figure 5.2. 

The forward kinematics function for the first manipulator can be stated as 

(XI,1 + ql,2 + XI,2) COS(ql ,l) + XI,3 COS(ql,1 + ql,3) 

FI = (XI,1 + ql,2 + XI,2) sin(ql,l) + XI,3 sin(ql,l + ql,3) 

ql,l + ql,3 

(5.26) 

where XI,2 and ql,2 denote the length of the second link and the second joint variable, 

respectively. The expressions for other links can be written in the same way. 

Table 5.l: Assumed values for a 3-RPR robot 
I Manipulator 1 II Manipulator 2 II Manipulator 3 I 

ql,l = 7r /3 Q2,1 = 27r /3 Q3,l = 47r /3 
Ql ,2 = 1 q2 ,2 = 1 Q3 ,2 = 1 
QI ,3 = 0 Q2 ,3 = -7r /3 Q3,3 = -7r 

XI,l = 0.5 X2,1 = 0.5 X3,1 = 0.5 
XI ,2 = 0.5 X22 = 0.5 , X3,2 = 0.5 
Xl ,3 = 1 X2,3 = 1 X3 ,3 = 1 

Using this kinematic model for the values given in Table 5.1, the end-effector 

position was found to be at 

1.5 

Xendc = 2.5981 

1.0472 

where the first two elements represent the position in x - y plane and the third 

element represents the angular rotation of the end-effector. 
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The forward kinematics function, Fe, gives the following end-effector position for 

the active joints [1,1,1 r [87]; 

1.498 

Xend = 2.597 

1.048 

5.2.2 Analytical Jacobian and its Derivative 

Dutre et al. [31] evaluated the analytical Jacobian for a parallel manipulator using 

the velocity-closure property. The Jacobian can also be derived by replacing Fe in 

(5.25) by Je and q~ by q~, i.e., 

(5.27) 

where Je is the analytical Jacobian that relates the velocities of the active joints to 

the end-effector velocity. Jj and qj are the Jacobian and the vector of joint velocities 

of the lh manipulator, respectively. q~ can be stated using (5.23) as follows; 

·i _ ST(S)i STBtB (S )i qe - a a - p p a a (5.28) 

where Bp = BS;, Ba = BS;" and 

J1 -J2 0 0 

J1 0 -J3 0 
E Rn a (n-1)xn c B= (5.29) 

J1 0 0 0 -In 

Using B, the velocity-closure property of a parallel manipulator can be written 

as 
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The derivative of the closed-loop Jacobian (JJ given in (5.27) is 

(5.30) 

where 

(5.31) 

The derivative of the Jacobian of each manipulator of a parallel manipulator can 

be expressed using (3.5), i.e., 

(5.32) 

where k is a joint of the lh manipulator and :Jj represents Jacobian derivative of 
Q],k 

the lh serial manipulator. The factor, a;~:k in (5.32), is the kth component in SA~. 

5.2.3 Forward and Inverse Kinematics Matrices 

The forward kinematics matrix Nlc for a parallel manipulator can now be expressed 

using (3.6), (5.25), (5.30), and (5.27) 

(5.33) 

Similarly, the inverse kinematics matrix N2c for a parallel manipulator can be 

written using (3.22) as follows; 

J* c 0 o 
N2c 6. 0 J* c 

(5.34) 

0 -J;JcJ; J* c 

where J; = J'[(Jcf[ + A~I)-l. The value of Ac is set by the designer. 
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5.2.4 Model Free Operational Space Control 

It can be proven that, like serial manipulators, the dynamic parameters of parallel 

manipulators are linearly related to the applied torque [1, 39], i.e., 

(5.35) 

where Ta is the torque of active joints and 8 c is a vector of the dynamic parameters 

of a parallel manipulator. 

The relationship between the torque of active joints and passive joints is given 

by the following relation [16]; 

(5.36) 

where Tp E Rnp is the torque measured from strain gauges on passive joints, Ta E Rna 

is the torque produced by the actuators in active joints, and Tc E Rna is the torque 

measured from the strain gauges mounted on active joints. From [31], it can be 

inferred that 

Using the above value in (5.36) yields 

or 

- _ BT(Bt)T Tc - Ta a p Tp (5.37) 

The passive joints project torque onto the active joints with a factor of -B~(B;)T. 

This will be used as the exogenous force disturbance signal in the hybrid controller, 

as shown in Figure 5.3. 

Proposition 5.2. If measurements of the calculated torque vector for active joints 

(Ta) , joint vector of active joints (Ya) , torque vector from passive joints (Tp) , and 
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reference trajectory (r) in operational space are available for times {k - i, ... , k -

2, k - 1}, then the strictly causal subspace based, Ie-level £00 parallel manipulator 

control for times {k, ... , k + i, k + i - 1} is given by 

provided that 

and 

where 

( T T ~ )T LTMI QIMILw 

-(L~Mr(I;2Ql + I)Mi Hfr1)T 

(( 1;2Q2 + I)HJr 2) T 

T 

X W2 
k 

(5.38) 

(5.40) 

• The torque of the passive joints projects onto the active joints with a factor of 

-B~(B~? 0 0 

M4 t:. 
0 -B~(B~? 0 

E ~naixnpi (5.41) 

0 0 -B~(B~? 



CHAPTER 5. SPECIAL CASES OF INTERACTION CONTROL 102 
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Figure 5.3: Model free subspace based operational space £00 control for parallel 
manipulators. ip is a torque vector from passive joints 

• Forward and inverse kinematics matrices for the parallel manipulator can be 

given by 

N1c 0 0 

M1c t:. 
0 N1c 0 

E ~3lix3nai (5.42) 
0 

0 0 N1c 

N2c 0 0 

M2c t:. 
0 N2c 0 

E R3n aix3li (5.43) 
0 

0 0 N2c 

Proof of Proposition 5.2. Using Theorem 4.3, M3 is taken out of the plant and sub­

stituted with M4 that is a factor by which the torque of passive joints is superimposed 

onto the torque acting on the active joints for the prediction horizon i. 

M3 is taken out of the plant by equating it to I and incorporating M4 in the 

update procedure of X W1 for a single update results in 

(5.44) 
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Substituting M3 by I in (5.5), the optimum torque is given by 

T T~ T 
(LrMl QIMILw) 

T 

Topte - -(L~M[QIMILT + (2)-1 -(L!;M[(ry;2Ql + I)M! H[rd
T 

((ry;2Q2 + I)H!r2{ 

Using (4.51), for the torque vector Tp and the scaling factor M 4 , it can be stated 

that 

Hence, applying M3 = I to (4.3) yields 

o 

5.3 Summary 

The important results of this chapter are: 

• Model free subspace based operational space bias removal £00 control (5.2) 

- (5.3); 

• Forward kinematics function of a parallel manipulator (5.23) - (5.25); 

• Framework to cater for kinematic constraints of a parallel manipulator (5.33) 

- (5.34); and 

• Model free subspace based operational space £00 control for a parallel manip-

ulator (5.38) - (5.40). 



Chapter 6 

Implementation Details & 

Simulations 

This chapter presents implementation details and simulation results of the model 

free subspace based operational space £00 controllers as proposed in Chapter 3. Im­

plementation details for the robust control, Je2 optimal control, and other controllers 

proposed in Chapter 4 and 5 are similar. 

In this chapter, Section 6.1 presents implementation details for a serial mechan­

ical manipulator. Section 6.2 presents results of simulations conducted with bang­

bang trajectory [52J for different values of the damping factor. Section 6.3 proposes 

a control law that finds the optimum value of the damping factor. 

6.1 Implementation 

Figure 6.1 depicts the implementation of a model free subspace based operational 

space £00 controller for a serial manipulator. Before running the software, the 

prediction horizon (i) and the number of prediction problems (j) are selected. In 

a typical system, i is selected 2 or 3 fold the expected order of the system and 

j is selected such that j > > i. There are 13n unknown parameters in a serial 

manipulator [52J and many of these parameters are linear combination of other 

104 
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parameters. Hence, an order of p < 13n suffices as long as there is no extra load on 

the end-effector that can increase the order of the system. 

Reference trajectory is generated such that the system is properly excited and all 

its properties appear in the output. In subspace identification, it is ensured that at all 

times, the rank of TTT = 2 x 3n x i [74]. The value of i is generally assigned twice the 

expected order of the system. Hence, for a mechanical manipulators, its value can be 

set to 2p. However, if a higher value is selected higher for i to increase the fidelity, the 

algorithm proposed in Section 2.5 will be used as it can calculate subspace predictor 

for rank deficient matrices with an added advantage of the increase in performance. 

Rank deficiency can also occur if the exciting trajectories are badly selected or if 

i and j are assigned too high values. However, it has been coded in the program 

that at any time stamp, when the subspace predictor is calculated, the rank of rrT 
should not fall below 2 x 3n x p. If it happens, then the calculation of a new subspace 

predictor is postponed until the condition of minimum rank is met. 

If previous states of WI and W2 are unknown then X W1 and XW2 can initially 

be assigned the value of O. The current values of q and q are observed and F(q), 

J(q), j(q, q) , J*(q) = JT(q)(J(q)JT(q) +,,\21)-1 for the selected value of .A, are 

calculated to assemble Nl and N2 using (3.16) and (3.22), respectively. Ml and M2 

are calculated using (3.30) and (3.31) for the same value of q and q, provided that 

the assumption in (3.9) is not violated for i steps. In MATLAB, blkdiag command 

can be used to create Ml and M2 from Nl and N2 respectively, when the same value 

of q is used to initialize M} and M2 . 

WI and W2 are square positive definite frequency dependant weights to be se­

lected by the designer for different values of /'min. WI has the property of having 

a large absolute value for small frequencies, whereas the absolute value tends to a 

limit for large frequencies. On the other hand, W2 is typically a high pass filter to 

remove biases from the inputs to the plant [65]. In MATLAB, these weights can be 

designed in the s-domain (where s is the Laplace operator) and then transferred 

into z-domain with a sampling rate equal to the sampling rate chosen in Simulink 



CHAPTER 6. IMPLEMENTATION DETAILS & SIMULATIONS 106 

generate excitation trajectory 

if[rank(TTT) < 3npJ 

select WI and W2 

calculate 'min 

min is adjusted 

calculate Tapt 

if[rank(TTT) ~ 3np] 
----. 

calculate Lr and Lw in batch 

Figure 6.1: Software flow for the model free control of an articulated manipulator 
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for a fixed-step solver. It has been noticed that variable-step solvers produce erratic 

results as these weights are not regularly updated after equal intervals of time. 

Optimum torque for a manipulator, i.e., Topt = f (XWl' X W2 , I, L w , L T , wp ), is cal-

culated using (3.28). Current values of Tk and Yk are observed, and X Wll X W2 ' Tp , TI , 

Yp, and YI are updated. The values of X W1 and X W2 are calculated using 

The above steps can be simplified into two equations. Using (3.28), let 

where {. }l:n is the extract of first n rows from the. matrix, and kl E 

(6.1) 

(6.2) 

(6.3) 

(6.5) 

~nxin , 

k2 E ~nx3in, k3 E ~nxnWl, k4 E ~nxnW2. The vector [T T T T ] T can be 
Tp ,Yp , X W1 ' X W2 
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calculated in a single step using 

[:~] 
o 

k+1 
o 

o 

o 

o 

[:.] 
o 

o 

o 

[:J [:4] 
o o 

o 

o 0 

Texcite 

r 

y 

o o 

108 

+ 

(6.6) 

k 

where Texcite is the excitation signal during the initial phase of exciting the system 

to get a starting value for the predictor. Its value is set equal to 0 in the normal 

mode of operation. In and hn are n x nand 3n x 3n identity matrices respectively, 

and 

0 In 0 0 

0 0 In 0 
E ~(i-l)nxin 8n = 

0 

0 0 0 In 

0 I 3n 0 0 

0 0 I 3n 0 
E ~(i-l)3nx3in 83n = 

0 

0 0 0 I 3n 

83 [-] and 83n [_ J truncates the first nand 3n rows of the matrix [-], respec-

tively. Equation (6.6) features the general formula to find the optimum torque for 
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the manipulator. A similar procedure has also been used in [118] to simplify the 

implementation. 

Equation (6.6) requires direct input from the reference trajectory, r, which is 

calculated using 

rk = clamp(roriginal - MIYk) + IV[IYk (6.7) 

where clamp(e) is defined in (3.12). The calculated torque ropt can be generated by 

controlling the current in the actuators. The relationship between the current and 

the torque for a given actuator is modeled using polynomials [100] whose parameters 

are either provided by the manufacturer or identified experimentally [21, 101]. 

6.2 Results 

The proposed control technique has been implemented using MATLAB and Simulink. 

In the simulation, gravity and joint friction have been neglected. In the presence of 

gravity, the manipulator is pulled out of the region of operation. The predictor is 

trained only for a subset of the total operational space, therefore the system behaves 

erratically when the manipulator moves far from the region for which the predictor 

was calculated. In a real life situation, gravity compensators can be used. For the 

sake of simplicity, the controller is implemented on a two link planar robot. The 

forward kinematics function for a two link planar robot is 

where Xl and X2 are the link lengths. Using (3.4) and (3.5), the Jacobian and its 

derivative is given by 
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J(q) 

j(q, q) 

where 

L· h 

L· h 

Similarly 

[

-Xl sin(qd - X2 sin(ql + q2) 

Xl COS(ql) + X2 COS(ql + q2) 

-X2 sin(ql + q2)] 

X2 COS(ql + q2) 

[L. L.] h 12 

[

-Q2 X2 cos( ql + q2) + ql (-Xl cos( qd - X2 cos( ql + q2))] 

-Q2X2 sin(ql + q2) + ql( -Xl sin(ql) - X2 sin(ql + q2)) 

[

-q2 X2 COS(ql + q2) - QlX2 COS(ql + q2)] 

-Q2X2 sin(ql + q2) - QlX2 sin(ql + q2 

F(q) 
q [

Xl COS(ql)+:: COS(ql +q2) 0] 
Xl sin(qd+X2 sin(ql +q2) 0 

ql 

110 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

where Vql < 0.1 : ql = 0.1, to avoid very large values of F~q). NI and N2 can be 

calculated by substituting the above equations in (3.6) and (3.22). 

Figure 6.2 shows the actual and the calculated values of end-effector coordinates 

and their derivatives. It can be seen that in the beginning, the limit on the value of 

ql results in a value of Xl different from the actual value. 

Figure 6.3 shows the smooth conversion of the error signals from the joint space 

to the operational space. The smooth conversion is due to the use of DLS in the 

definition of Nl (3.22). In the given example, A is set equal to 5. A has a significant 

impact on the response of the system as it can be seen in the context of Figure 6.5. 

A Bode plot of the frequency dependant weights is shown in Figure 6.4. The 

selection of these weights has a direct effect on the performance. The estimated 

response of the manipulator should be below IIWI-111 for the operating frequency 

range. In the case presented here, these weights were selected by trial and error. If 
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Figure 6.2: The left figure shows the actual end-effector position during excitation 
mode and the right figure shows the end-effector position calculated using Nl matrix 
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Figure 6.3: The left figure is the error signal in joint space and the right figure 
shows the error signal in operational space. DLS provides a smooth solution to 
inverse kinematics 
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Bode Diagram 
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Figure 6.4: IIWi-ill should be more than the expected response of the system for all 
operating frequencies 

the dynamics of a mechanical manipulator exhibit changes considerably beyond the 

initial values, the weights need to be re-adjusted. 

Figure 6.5 shows the position of the end-effector of a 2-DOF planar robot on 

one axis along with the desired end-effector trajectory against time. A bang-bang 

trajectory is used as the reference signal that was originally designed for the joint 

space control [52]. The right hand side shows the response of a mechanical manipu-

lator whose dynamics were greatly tempered. In real life, such a situation can arise 

when Wi and W2 are properly chosen for a given robotic arm, but the arm then 

tries to lift a weight which is many times more than the value it was trained with. 

Figure 6.5 also shows that an increase in the value of A dampens the system response 

and a decrease increases the perturbations in the system. It was noticed that below 

a certain value of A, the system becomes unstable. 
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6.3 Optimum Damping 

It can be seen in Figure 6.5 that the value of the damping factor has a significant 

effect on the behaviour of the system, which makes it imperative to find its optimum 

value. In this section, optimum value of the damping factor will be derived. 

The optimum value of the damping factor, Amin, can be defined as the lowest 

value of A permitted by the performance objective 'Yd. Decreasing the value of A 

beyond this limit would make the system unstable. 

In DLS, it can be seen in (3.19) that instead of minimizing only IIJ(q)q - ±112, 

the second term ,A21IqI12, is also minimized. This can be achieved by adding another 

weighted output from the plant that minimizes the error between a disturbance 

signal (l) and q. Let 

or 

(6.12) 

where ~d is a vector in which all the elements have the same positive scalar value. 

For a given performance objective ('Yd) , the worst case value of the disturbance signal 

(lwe) is calculated and used to workout the damping factor using the relation 

A = 11 (SdM2 X e + ~d) 0 l~ c - 11 if Ilwe - SdM2 X el 2: ~d 
o otherwise 

(6.13) 

where 0 is an operator of element-wise multiplication, and Sd is a selection matrix 

to extract q from y. Sd is given as follows; 

0 1 0 0 0 0 0 

0 0 0 0 1 0 0 
Sd= E Ri nx3in (6.14) 

0 0 0 0 0 1 0 
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The end-effector position in operational space is given by 

Xt 

Xl 

Xl 

Xe = E ~3il (6.15) 

Xi 

Xi 

Xi 

Near singularity, q increases even more than the worst case value of l permitted 

by the performance objective ('"Yd). The value of A needs to be increased such that 

the difference in (6.13) is equal to or less than i3.d • The increase in A will affect the 

response of the system indirectly by changing the behaviour of the inverse kinematics 

block (M3) near singularities. 

It is worth noting here that q in (6.12) is calculated using the subspace predictor 

but in (6.13), q is calculated from the inverse kinematics block (M2) for the worst 

case value of l (lwe). The reason being that the increase in q is due to a very non­

linear behavior of M2 near singularities. In this case q needs to be compared with 

the worst case value of l so that the minimum value of the damping factor could be 

found. It also ensures that the performance of the controller is bounded bY'"Yd. 

A controller is proposed in the following theorem that adjusts the damping factor 

in realtime for the system shown in Figure 6.6. 

Theorem 6.1. If measurements of the torque vector (7), joint vector (y), reference 

trajectory (r) in operational space are available for times {k - i, ... , k - 2, k - I}, 

then the strictly causal subspace based, '"Yd-level £00 optimally damped control for 
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Figure 6.6: Model free subspace based operational space £00 control with optimum 
damping 

times {k, ... , k + i, k + i-I} is given by 

where 

and 

L2d 6 

T wp 

0 

6 
Lid

l 
L2d 

X W1 
Toptd = - 0 (6.16) 

X W2 

I 
XW3 

k 

o -Q3S d L T 

o - Mi QIM2MILT 

-L;'SIQ3 -L;'M[ MIQIM2 L;'M[ MIQIM2MILT + L;'SIQ3S d LT + Q2 

(6.17) 

-Q3S d Lw 0 0 Hlr3 

MIQIM2MlLw MIHfr l 0 0 

L;'M[ MIQIM2MILw + L;'SJQ3 Sd Lw - L;' M[ MI H[r 1 Hlr2 -L;'SJHlr 3 

(6.18) 
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provided that 

~ \ 1 (SdM
2
xe + ~d) ® l~ c - 11 

A> Amin -
o otherwise 

(6.20) 

and 

T Wp 

I 

lwe 6 _ Lidl 
L2d 

X W1 

0 (6 .21) 
X W2 

0 
XW3 

k 

Using Theorem 3.4 and Proposition 4.1, it can be proven that 

,mind> ,min (6.22) 

where ,mind is defined in (3.29). This decrease in the performance is due to the 

added optimization criterion in the cost function that is used in regulating the 

damping factor. In £00 control, the stability of a system is ensured for a given 

performance objective. Hence, a value of A below Amin would make the system 

unstable. Increasing its value would increase the stability but the system will be 

over damped. 

Proof of Theorem 6.1. From Figure 6.6 and using (4.7), it can be stated that 

(6.23) 

The vector l contains the disturbance signal. Its worst case value for the given 

performance objective will be used to find the optimum damping for the manipulator. 
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The control variables can be re-written as 

(6.24) 

Substituting the values of e and y as given in Figure 6.6 and (2.15) yields 

ZWI 0 HIM2 -HIM2MILT -HI M2Ml Lw fl 0 0 

ZW2 - 0 0 H2 0 0 f2 0 Xd (6.25) 

ZW3 H3 0 -H3SdLT -H3SdLw 0 0 f3 

where 

[ 

r 

r 
/),. 

(6.26) Xd = wp 

X W1 

X W2 

XW3 

The cost function to minimize the control effort and the feedback error for a 

given refence trajectory and force on the end-effector bounded by If is given by 

(6.27) 

Using the above relation, the objective is given as 

T 
ZWI ZWI 

min max ZW2 ZW2 _1~(rT r + [Tl) <0 
T T,l 

(6.28) 

ZW3 ZW3 
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Using (6.25) in above inequality produces 

(6.29) 

where 

o -Q3SdLT 

o -Mi'QI"7I,;[2 M ILT 

-L;SrQ3 -L;MrMi'QIM2 L;MrMi'QIM2MILT+L;SrQ3SdLT+Q2 

(6.30) 

and 

-Q3Sd Lw 0 0 HJr 3 

L2d - Mi'Q IM2M ILw Mi'Hrr l 0 0 

L;Mr Mi'QIM2M ILw + L;SrQ3SdLw -L;MrMi'Hrrl Hir2 -L;SrHJr 3 

(6.31) 

To find the saddle point that minimizes T and maximizes rand i at the same 

time, (6.29) is differentiated with respect to [l"',rT, TT r and equated to zero. Ai; 

Xd = [iT rT TT wT xT xT xT ] T, only the first three rows from (6.29) will re-, , 'p' WI ' W2 ' W3 

main. After differentiation, (6.29) can be written as 

Wp 

LId = - L2d 
X WI 

(6.32) r 
X W2 

T 

XW3 
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Equation (6.32) is differentiated again wi t.h respect to [IT, r T , TT r to get the 

maximum condition for rand l, which produces 

or 

o -Q3Sd Lr 

o -MiQ1M2M1Lr 

-L;'SIQ3 -L;'M'[MiQ1M2 L;'M'[MiQ1M2M1Lr + L;'SIQ3SdLr + Q2 
(6.33) 

Using (3.79), the performance objective can be written as 

As Q1 > 0, Q2 > 0, and Q3 > 0, hence 

which satisfies the minimum condition of Toptd according to (3.78) and (6.33). The 

optimum torque can be given by rearranging (6.32) as follows; 

T wp 
0 

LId1 L2d 
X W1 

(6.35) Toptd - - 0 
X W2 

I 
XW3 
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Similarly, the worst case input for the vector l can be calculated by 

T 

I 
wp 

lwe - L1d
1 
L2d 

X W1 
(6.36) 0 

X W2 

0 
XW3 

for the performance objective given in (6.19). This value gives the upper bound for 

the error between land q. Any increase in this error would require a larger value of 

A to damp the system. Using (6.13), the lower bound of A can be given by 

_ {1(SdM 2xe + ~d) ® l~c - 11 if Ilwe - SdM 2 X el ~ ~d 
A> Amin = 

o otherwise 

(6.37) 

o 

Similar to "(min, A was heuristically found to be 1.lAmin. 

In Figure 6.6, W3 is a low pass filter, whose state can be updated using 

Using the lowest value of the damping factor, i.e. , A = 0, for a constant error 

between land q in (6.12) yields 

(6.38) 

The reason for using the lowest value of A in the above equation is that the value 

of A affects the response of the system indirectly by changing the behaviour of the 

inverse kinematics block (M3 ), and the direct effect of its variation on the response 

of the system is not desired. 
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Figure 6.7: Response of a 2-DOF planar robot with optimum damping 
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Figure 6.7 shows the response of a 2-DOF planar robot with optimum damping. 

In this figure (Xr)k and (Xend)k denote the desired and the actual position ofthe end­

effector at the kth time, respectively. The square and the sinusoidal waves represent 

the position trajectory on x-axis and y-axis, respectively. A similar approach was 

adopted in [85] for joint space control, in which the cost function was optimized for 

the torque, the error between the reference trajectory and the joint variables, and 

the square of the joint velocities. 

6.4 Summary 

The important results of this chapter are: 

• Implementation details of a model free subspace based operational space £00 

control for a serial manipulator in Figure 6.1; 

• Fast calculation of the optimum torque (Topt) and updating performance weight 

states (6.6) - (6.7); 

• Results from the forward and inverse kinematics blocks in Figures 6.2 and 6.3; 

• Expression for adjusting the damping factor (6.13); 

• Model free subspace based operational space £00 control with optimum damp­

ing (6.16) - (6.20); and 

• Response of a 2-DOF serial manipulator in Figures 6.5 and 6.7. 



Chapter 7 

Conclusions & Recommendations 

for Future Work 

For successful model-based control of mechanical manipulators, accurate values 

for model parameters have to be defined and used in the system mathematical 

model. Tasks are generally specified in operational space and control actions are 

defined in joint space. However, a small error in joint space can translate to a large 

error in operational space, which may negatively influence the effectiveness of the 

control scheme. To overcome this problem, this thesis presented a set of novel direct 

adaptive controllers for the dynamic learning operational space control of mechanical 

manipulators. The fundamental architecture of these controllers resemble the ones 

proposed by Woodley et al. [118] and Favoreel et al. [33]. The controller observes 

the dynamics of a mechanical manipulator and synthesizes a control law in realtime. 

The major advantage of this control scheme is that it deals with the mechanical 

manipulator as a black box. 

Subspace identification has been used for the identification of manipulator dy­

namics. For different trajectories, inputs and outputs of the system are collected, 

and used to assemble input and output matrices of varying ranks. A novel subspace 

prediction algorithm is proposed to cater for the rank deficiency, and it has been 

demonstrated to improve the performance. 

124 
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The reference trajectory is presented in operational space, and a framework has 

been developed to cater for the forward and inverse kinematics operations. A con­

troller is designed to minimize the torque produced by the actuators and the ref­

erence trajectory using £00 optimization criterion. A robust controller has been 

presented to incorporate the additive uncertainties. Additive uncertainties cater for 

the non-linearities in the system that were ignored during the early stages of the 

control design. A controller based on the quadratic cost, i.e., ~ optimal controller, 

has also been proposed. 

The functionality of the controller is extended by including the vector of the 

force acting on the end-effector. This enables the manipulator to interact with its 

environment. The force vector and the reference trajectory act as the disturbance 

signals. A controller has also been designed to minimize the effect of the force vector 

and the error with the reference trajectory. The resultant controller resembles a 

hybrid force/position controller. Another controller has been proposed in which the 

interaction force is not regulated. As a result, the manipulator looses its impedance. 

It has also been demonstrated mathematically that scaling the disturbance vectors, 

i.e., the reference trajectory and the force vector, doesn't affect the expression for 

the torque and the performance objective. 

The hybrid force/position controller, mentioned above, has been used to remove 

the bias from the dynamic behaviour of the manipulator. This has been achieved by 

using the difference between the torque produced by the actuators and the torque 

signal from the strain gauges mounted on the manipulator joints as the exogenous 

force signal in the hybrid controller. This is similar to JTF control [2, 3] in which 

the joint-torque sensory feedback is used to remove the bias and coupling effects. 

The interaction control is also extended to the control of a parallel manipulator. 

A framework for forward and inverse kinematics, which relates the joint variables 

of the active joints of the manipulator to the end-effector, has been formulated. 

Exploiting the dynamic behaviour of a parallel manipulator, the torque from passive 

joints is used as the exogenous force signal in the hybrid controller. 
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Finally, implementation details for the model free subspace based operational 

space £00 optimal control have been presented. A simple relation has been presented 

to calculate the optimum torque, update the predictor and weight states. Simulation 

of a 2-DOF manipulator has been presented. It has been found that the damping 

factor has a significant effect on the response of the system when the manipulator 

operates near singularity. To find the optimum damping factor, a controller has been 

proposed to regulate the damping factor bounded by a given performance objective. 

The results obtained in this thesis offer many opportunities for further research. 

It has been assumed in the thesis that each link of the manipulator behaves linearly in 

the vicinity of its operational space. This assumption requires a continuous updating 

of the predictor. However, if a non-linear direct adaptive implementation using crisp 

control is developed, it can significantly improve the performance of the system. 

The proposed controllers haven't been tested on a real robot. However, it would 

be interesting to see the effect of the gears, backlash, and the friction of the joints. 

In this regard, experimental work will be needed. 

If a manipulator is not excited properly, accurate dynamic information of the ma­

nipulator cannot be observed. Hence, it is of utmost importance to create trajectory 

parameterization algorithms that excite the manipulator properly with least effect 

on the desired end-effector trajectory. The simulations presented in Chapter 6 are 

of simple cases where the controller starts operating with a rich subspace predictor. 

The persistency excitation condition [46] necessary for parametric convergence and 

achieving high performance is one of the areas that need to be addressed before the 

proposed technique is used in real world. 

It would be interesting to explore the possibility of a true model free controller 

that not only learns about the dynamics but also learns the kinematic model of 

a manipulator. Similarly, if an algorithm can be designed to automatically select 

the performance weights, it can significantly decrease the human intervention in the 

operation of the controller. 



CHAPTER 7. CONCLUSIONS & RECOMMENDATIONS FOR FUTURE WORK127 

In bias removal control and the control for a parallel manipulator, strain gauges 

are a requisite. Normally, industrial robots don't have strain gauges installed on 

them, and it is generally expensive to use strain gauges to measure torque. If an 

alternative technique could be developed for these controllers, it can significantly 

reduce the implementation cost on a real robot. 



Vita 

Publications arising from this thesis include: 

Muhammad Saad Saleem and Ibrahim A. Sultan Model-Free Operational Space 
Dynamic Control of Serial Manipulators. Journal of Advanced Robotics. Manuscript 
submitted for publication. 

Muhammad Saad Saleem and Ibrahim A. Sultan (2009), Analytical Kine­
matics Framework for the Control of a Parallel Manipulator. In ICINCO, July 
2009. 

Muhammad Saad Saleem and Ibrahim A. Sultan (2008), Robotics, Automa­
tion, and Control, chapter Model-free subspace based dynamic control of me­
chanical manipulators. I-Tech, Vienna, Austria, 2008. ISBN 978-953-7619-18-
3. 

Muhammad Saad Saleem and Ibrahim A. Sultan (2007), Feasibility of sub­
space identification for bipeds - an innovative approach for kino-dynamic sys­
tems. In Janan Zaytoon, Jean-Louis Ferrier, Juan Andrade-Cetto, and Joaquim 
Filipe, editors, ICINCO-ICBO, pages 133-140. INSTICC Press, 2007. ISBN 
978-972-8865-82-5. 

Permanent Address: School of Science and Engineering 

University of Ballarat 

PO Box 663 

University Drive, Mount Helen 

Ballarat, Victoria 3353 

Australia 

This thesis was typeset with :g.'IEX 2c1 by the author. 

lI¥IEX 2c: is an extension of Jg.'lEX. Jg.'lEX is a collection of macros for 'lEX. 'lEX is a trademark 
of the American Mathematical Society. 

128 



References 

[1] H. Abdellatif, B. Heimann, and J. Kotlarski. Parallel Manipulators, New De­

velopments, chapter On the Robust Dynamics Identification of Parallel Ma­

nipulators: Methodology and Experiments, page 498. I-Tech Education and 

Publishing, Vienna, Austria, April 2008. ISBN 978-3-902613-20-2. 

[2] F. Aghili, M. Buehler, and J. M. Hollerbach. A joint torque sensor for robots. 

In ASME International Mechanical Engineering Congress fj Exposition, 1997. 

[3] F. Aghili, M. Buehler, and J. M. Hollerbach. Motion control systems with 

£00 positive joint torque feedback. IEEE Transactions on Control Systems 

Technology, 9(5):685-694, September 200l. 

[4] C. H. An, C. G. Atkeson, and J. M. Hollerbach. Model-based control of a robot 

manipulator. MIT Press Cambridge, MA, USA, 1988. 

[5] G. Antonelli, F. Caccavale, and P. Chiacchio. A systematic procedure for the 

identification of dynamic parameters of robot manipulators. Robotica, 17(04): 

427-435, 1999. 

[6] S. Arimoto. Fundamental problems of robot control: Part I, innovations in 

the realm of robot servo-loops. Robotica, 13:19-27, 1995. 

[7] B. Armstrong. On Finding Exciting Trajectories for Identification Experiments 

Involving Systems with Nonlinear Dynamics. The International Journal of 

Robotics Research, 8(6):28, 1989. 

129 



REFERENCES 130 

[8J H. Asada and K. Youcef-Toumi. Direct-drive robots: theory and practice. MIT 

Press, Cambridge, MA, USA, 1987. 

[9J C. G. Atkeson, C. H. An, and J. M. Hollerbach. Estimation of Inertial Param­

eters of Manipulator Loads and Links. The International Journal of Robotics 

Research, 5(3):101, 1986. 

[lOJ D. S. Bernstein. Matrix mathematics: theory, facts, and formulas with appli­

cation to linear systems theory. Princeton University Press, 2005. 

[l1J S. Bhattacharya, H. Hatwal, and A. Ghosh. An on-line parameter estimation 

scheme for generalized Stewart platform type parallel manipulators. Mecha­

nism and Machine Theory, 32(1):79-89, 1997. 

[12J A. Bjorck. Numerical Methods for Least Squares Problems. Society for Indus­

trial Mathematics, 1996. 

[13] H. Bruyninckx and J. De Schutter. Symbolic differentiation of the velocity 

mapping for a serial kinematic chain. Mechanism and Machine Theory, 31(2): 

135- 148, 1996. 

[14J S. R. Buss and J. S. Kim. Selectively Damped Least Squares for Inverse 

Kinematics. Journal of Graphics Tools, 10(3):37-49, 2005. 

[15J M. Cescon. Subspace-based identification of a parallel kinematic manipulator 

dynamics. Master's thesis, Department of Automatic Control, Lund Univer­

sity, Sweden, May 2008. 

[16J H. Cheng, Y.-K. Yiu, and Z. Li. Dynamics and control ofredundantly actuated 

parallel manipulators. IEEE/ASME Transactions on Mechatronics, 8(4):483-

491, December 2003. doi: 10.1109/TMECH.2003.820006. 

[17] S. Chiaverini, B. Siciliano, and O. Egeland. Review of the damped least­

squares inverse kinematics with experiments on an industrial robot manipula­

tor. IEEE Transactions on Control Systems Technology, 2(2):123-134, 1994. 



REFERENCES 131 

[18] C.-H. Chung and G. G. Leininger. Adaptive self-tuning control of manipu­

lators in task coordinate system. In Proceedings of the IEEE International 

Conference on Robotics and Automation, volume 1, pages 546-555, March 

1984. 

[19] R. Colbaugh, H. Seraji, and K. Glass. Direct adaptive impedance control of 

robot manipulators. Journal of Robotic Systems, 10(2):217-248, 1993. 

[20] C. L. Collins. Forward kinematics of planar parallel manipulators in the Clif­

ford algebra of P2. Mechanism and Machine Theory, 37(8):799-813, 2002. 

[21] P. Corke. In situ measurement of robot motor electrical constants. Robotica, 

14(4):433-436, 1996. 

[22] P. Courrieu. Solving Time of Least Square Systems in Sigma-Pi Unit Networks. 

Neural Information Processing-Letters and Reviews, 4(3):39-45, 2004. 

[23] P. Courrieu. Fast Computation of Moore-Penrose Inverse Matrices. Neural 

Information Processing-Letters and Reviews, 8(2):25-29, 2005. 

[24] J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley, 

Boston, MA, USA, 1989. 

[25] J. J. Craig, P. Hsu, and S. Shankar Sastry. Adaptive control of mechanical 

manipulators. The International journal of robotics research, 6(2):16-28, 1987. 

[26] X. Cui and K. G. Shin. Robot trajectory tracking with self-tuning predicted 

control. Technical report, Center for Research on Integrated Manufacturing, 

Department of Electrical Engineering and Computer Science, The University 

of Michigan, Ann Arbor, Michigan, 48109, August 1987. 

[27] C. C. De Wit, G. Bastin, and B. Siciliano. Theory of Robot Control. Springer­

Verlag, Secaucus, NJ, USA, 1996. 

[28] J. J. Dongarra. LINPACK Users' Guide. Society for Industrial Mathematics, 

1979. 



REFERENCES 132 

[29] J . C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space 

solutions to standard ~ and &00 control problems. IEEE Transactions on 

Automatic Control, 34(8) :831-847, 1989. 

[30] S. Dubowsky and D. Deforges. The application of model-referenced adaptive 

control of robotic manipulators. ASME Journal of Dynamic Systems, Mea­

surement, and Control, 101(3):193-200, 1979. 

[31] S. Dutre, H. Bruyninckx, and J. De Schutter. The analytical jacobian and 

its derivative for a parallel manipulator. In IEEE International Conference 

on Robotics and Automation, volume 4, pages 2961-2966, April 1997. doi: 

10.1109/ROBOT.1997.606737. 

[32] W . Favoreel and B. De Moor. SPC: Subspace Predictive Control. In Proceed­

ings of the 14th World Congress of IFAC, pages 235-240, 1998. 

[33] W. Favoreel, B. D. Moor, and P. V. Overschee. Model-free subspace-based 

LQG-design. In Proceedings of the American Control Conference, pages 3372-

3376, June 1999. 

[34] P. Fisette, B. Raucent, and J. C. Samin. Minimal dynamic characterization 

of tree-like multibody systems. Nonlinear Dynamics, 9(1):165-184, 1996. 

[35] R. K. H. Galvao, S. Hadjiloucas, V. M. Becerra, and J. W. Bowen. Subspace 

system identification framework for the analysis of multimoded propagation of 

THz-transient signals. Measurement Science and Technology, 16(5):1037-1053, 

2005. 

[36] M. Gautier. Identification of robots dynamics. In IFAC/IFIP /IMACS Sym­

posium on Theory of Robots, pages 125-130, 1986. 

[37] M. Gautier and W. Khalil. A direct determination of minimum inertial 

parameters of robots. In Proceedings of the IEEE International Confer­

ence on Robotics and Automation, pages 1682-1687, 24- 29 April 1988. doi: 

1O.1109/ROBOT.1988.12308. 



REFERENCES 133 

[38] M. Gautier and W. Khalil. Exciting Trajectories for the Identification of Base 

Inertial Parameters of Robots. The International Journal of Robotics Research, 

11(4):362, 1992. 

[39] M. Gautier, W. Khalil, and P. P. Restrepo. Identification of the dynamic 

parameters of a closed loop robot. In Proceedings of the IEEE International 

Conference on Robotics and Automation, volume 3, pages 3045-3050, 21-27 

May 1995. doi: 10.1109/ROBOT.1995.525717. 

[40] H. P. Geering. Optimal Control with Engineering Applications. Springer, 2007. 

[41] G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins 

University Press, 1996. 

[42] S. Hara, B. D. O. Anderson, and H. Fujioka. Relating ~ and £oo-norm 

bounds for sampled-data systems. IEEE Transactions on Automatic Control, 

42(6):858- 863, June 1997. doi: 10.1109/9.587344. 

[43] M. Hashimoto. Robot motion control based on joint torque sensing. In Proceed­

ings of the 1989 IEEE International Conference onRobotics and Automation, 

pages 256-261, 1989. 

[44] E. Hsu, K. Pulli, and J. Popovic. Style translation for human motion. ACM 

Transactions on Graphics (TOG), 24(3):1082-1089, July 2005. ISSN 0730-

0301. doi: 10.1145/1073204.1073315. 

[45] M. Ikeda, Y. Fujisaki, and N. Hayashi. A model-less algorithm for tracking 

control based on input-output data. Nonlinear Analysis, 47(3):1953-1960, 

2001. 

[46] P. A. Ioannou and J. Sun. Stable and Robust Adaptive Control, volume 2. 

Prentice Hall, 1995. 



REFERENCES 134 

[47] R. Johansson, A. Robertsson, K. Nilsson, and M. Verhaegen. State-space 

system identification of robot manipulator dynamics. Mechatronics, 10(3): 

403-418, 2000. 

[48] R. Kadali, B. Huang, and A. Rossiter. A data driven subspace approach 

to predictive controller design. Control Engineering Practice, 11(3):261-278, 

2003. 

[49] M. Karkoub, G. Balas, K. Tamma, and M. Donath. Robust control of flexi­

ble manipulators via j.t-synthesis. Control Engineering Practice, 8(7):725-734, 

2000. 

[50] R. Kelly. Comments on adaptive PD controller for robot manipulators. IEEE 

Transactions on Robotics and Automation, 9:117-119, 1993. 

[51] R. Kelly. PD control with desired gravity compensation of robotic manip­

ulators: A review. The International Journal of Robotics Research, 16(5): 

660-672, 1997. 

[52] W. Khalil and E. Dombre. Modeling, Ident~fication, and Control of Robots. 

Kogan Page Science, 2004. 

[53] W. Khalil and J. F. Kleinfinger. Minimum operations and minimum parame­

ters of the dynamic models of tree structure robots. IEEE Journal of Robotics 

and Automation, 3(6):517-526, 1987. 

[54] O. Khatib. A unified approach for motion and force control of robot manip­

ulators: The operational space formulation. IEEE Journal of Robotics and 

Automation, 3(1):43-53, 1987. 

[55] D. Kim, W. Chung, and Y. Youm. Analytic jacobian of in-parallel manipu­

lators. In Proceedings of the IEEE International Conference on Robotics and 

Automation ICRA '00, volume 3, pages 2376-2381, 24-28 April 2000. doi: 

1O.1109/ROBOT.2000.846382. 



REFERENCES 135 

[56] J. O. Kim, B. R. Lee, C. H. Chung, J. Hwang, and W. Lee. The Inductive 

Inverse Kinematics Algorithm to Manipulate the Posture of an Articulated 

Body. Lecture Notes in Computer Science. Springer-Verlag GmbH, 2657 edi­

tion, 2003. 

[57] A. Koivo. Force-position-velocity control with self-tuning for robotic manipu­

lators. In Proceedings of the IEEE International Conference on Robotics and 

Automation, volume 3, pages 1563-1568, April 1986. 

[58] A. Koivo and T.-H. Guo. Adaptive linear controller for robotic manipulators. 

IEEE Transactions on Automatic Control, 28(2):162-171, February 1983. 

[59] X. Kong. Advances in Robot Kinematics: Analysis and Design, chapter 

Forward Kinematics and Singularity Analysis of a 3-RPR Planar Paral­

lel Manipulator, pages 29-38. Springer Netherlands, 2008. doi: 10.1007/ 

978-1-4020-8600-7_4. 

[60] K. Kozlowski. Modelling and Identification in Robotics. Springer Verlag, 1998. 

[61] A. Laib. Adaptive output regulation of robot manipulators under actuator 

constraints. IEEE Transactions on Robotics and Automation, 16:29-35, Jan­

uary 2000. 

[62] T. C. Lin and K. H. Yae. Linearization of the Dynamics of Closed-Chain 

Mechanical Systems. Mechanics Based Design of Structures and Machines, 25 

(1):21-40, 1997. 

[63] L. Ljung. System identification: theory for the user. Prentice-Hall, Upper 

Saddle River, NJ, USA, 1999. ISBN 0-138-81640-9. 

[64] J. Luh, M. Walker, and R. Paul. Resolved-acceleration control of mechanical 

manipulators. IEEE Transactions on Automatic Control, 25(3):468-474, June 

1980. 

[65] U. Mackenroth. Robust Control Systems. Springer, 2004. 



REFERENCES 136 

[66] R. V. Mayorga, N. Milano, and A. K. C. Wong. A simple bound for the 

appropriate pseudoinverse perturbation of robot manipulators. In Proceedings 

of the IEEE International Conference on Robotics and Automation, volume 2, 

pages 1485-1488, 1990. 

[67] S. Megahed. Principles of Robot Modeling and Simulation. John Wiley & 

Sons, 1993. 

[68] R. H. Middletone and G. C. Goodwin. Adaptive computed torque control 

for rigid link manipulators. In 25th Proceedings of the IEEE Conference on 

Decision and Control, volume 25, pages 68-73, Dec. 1986. doi: 10. 1109/CDC. 

1986.267156. 

[69] A. P. Murray, F. Pierrot, P. Dauchez, and J. M. McCarthy. A planar quater­

nion approach to the kinematic synthesis of a parallel manipulator. Robotica, 

15(04):361-365, 1997. 

[70] Y. Nakamura and H. Hanafusa. Inverse kinematic solutions with singular­

ity robustness for robot manipulator control. Journal of dynamic systems, 

measurement, and control, 108(3):163-171, 1986. 

[71] J. P. Norton. Introduction to Ident~fication. Academic Press, 1986. 

[72] N. Ogihara and N. Yamazaki. Generation of human bipedal locomotion by a 

bio-mimetic neuro-musculo-skeletal model. Biological Cybernetics, 84:1, 2001. 

[73] P. V. Overschee and B. D. Moor. N4SID: Subspace algorithms for the identifi­

cation of combined deterministic-stochastic systems. Automatica, 30(1):75-93, 

1994. 

[74] P. V. Overschee and B. D. Moor. Subspace Ident~ficiation for Linear Systems. 

Kluwer Academic Publishers, 1996. 

[75] J. Peters and S. Schaal. Learning operational space control. In Proceedings of 

Robotics: Science and Systems, Philadelphia, USA, August 2006. 



REFERENCES 137 

[76J J . Peters and S. Schaal. Learning to Control in Operational Space. The 

International Journal of Robotics Research, 27(2):197, 2008. 

[77J J. Peters, M. Mistry, F. Udwadia, R. Cory, J. Nakanishi, and S. Schaa. A uni­

fying methodology for the control of robotic systems. In 2005 IEEE/RSJ In­

ternational Conference on Intelligent Robots and Systems (IROS 2005), pages 

1824- 1831,2005. 

[78] L. E. Pfeffer, O. Khatib, and J. Hake. Joint torque sensory feedback in the con­

trol of a puma manipulator. IEEE Transactions on Robotics and Automation, 

5(4):418-425, Aug. 1989. doi: 10.1109/70.88056. 

[79J F . Pfeiffer and J . Holzl. Parameter identification for industrial robots. In 

Proceedings of the 1995 IEEE International Conference on Robotics and Au­

tomation, volume 2, 1995. doi: 10. 1109/ROBOT. 1995.525483. 

[80] R. Pintelon and J. Schoukens. System Ident~fication: A Frequency Domain 

Approach. Wiley, 2004. 

[81] P. Poignet and M. Gautier. Extended kalman filtering and weighted least 

squares dynamic identification of robots. Control Engineering Practice, 9(12): 

1361-1372, 2001. 

[82] M. H. Raibert and J. J. Craig. Hybrid position/force control of manipulators. 

Journal of Dynamic Systems, Measurement, and Control, 102:126-133, June 

1981. 

[83J M. A. Rakha. On the Moore-Penrose generalized inverse matrix. Applied 

Mathematics and Computation, 158(1):185-200, 2004. 

[84J M. S. Saleem and I. A. Sultan. Feasibility of subspace identification for bipeds 

- an innovative approach for kino-dynamic systems. In J. Zaytoon, J.-L. Fer­

rier, J. Andrade-Cetto, and J. Filipe, editors, Proceedings of the Fourth In­

ternational Conference on Informatics in Control, Automation and Robotics, 



REFERENCES 138 

volume ICSO, pages 133- 140, Angers, France, May 2007. ISBN 978-972-8865-

82-5. 

[85] M. S. Saleem and I. A. Sultan. Robotics, Automation, and Control, chapter 

Model-free subspace based dynamic control of mechanical manipulators. 1-

Tech Education and Publishing, Vienna, Austria, October 2008. ISBN 978-

953-7619-18-3. 

[86] M. S. Saleem and I. A. Sultan. Model free operational space dynamic control 

of serial manipulators. Advanced Robotics, 2009. Manuscript submitted for 

publication. 

[87] M. S. Saleem, I. A. Sultan, and A. A. Khan. Analytical kinematics framework 

for the control of a parallel manipulator. In J. Filipe, J. A. Cetto, and J.-L. 

Ferrier, editors, Proceedings of the 6th International Conference on Informatics 

in Control, Automation and Robotics, volume 2, pages 280-286, Milan, Italy, 

July 2009. 

[88] V. D. Sapio and O. Khatib. Operational space control of multibody systems 

with explicit holonomic constraints. In Proceedings of the 2005 IEEE Inter­

national Conference on Robotics and Automation, April 2005. 

[89] L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipulators. 

Springer, second edition, 2000. 

[90] R. Shi and J. F. MacGregor. A framework for subspace identification methods. 

In Proceedings of the 2001 American Control Conference, volume 5, pages 

3678-3683, 2001. doi: 10.1109/ ACC.2001.946206. 

[91] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer-Verlag, 

Secaucus, N J , USA, 2007. 

[92] S. Singh. Adaptive model following control of nonlinear robotic systems. IEEE 

Transactions on Automatic Control, 30(11):1099-1100, 1985. 



REFERENCES 139 

[93] J. J. E. Slotine and W. Li. On the adaptive control of robot manipulators. 

International Journal of Robotics Research, 6(3):49-59, 1987. 

[94J M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and contml. 

John Wiley & Sons, 2005. 

[95J W. Stadler and P. Eberhard. Jacobian motion and its derivatives. Mechatron­

ics, 11(5):563-593, 2001. 

[96J A. Stenman. A Model on demand: Algorithm, analysis, and applications. PhD 

thesis, Department of Electrical Engineering, Linkoping University, Sweden, 

1999. 

[97J 1. A. Sultan and J. G. Wager. Simplified theodolite calibration for robot 

metrology. Advanced Robotics, 16(7):653-671, 2002. 

[98J A. Swarup and M. Gopal. On robustness of decentralized control for robot 

manipulators. Robotics and Autonomous Systems, 11(2) :109-112, 1993. 

[99J J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and H. Van Brussel. 

Optimal robot excitation and identification. IEEE Transactions on Robotics 

and Automation, 13(5):730-740, 1997. 

[100] J. Swevers, W. Verdonck, B. Naumer, S. Pieters, and S. Biber. An Exper­

imental Robot Load Identification Method for Industrial Application. The 

International Journal of Robotics Research, 21(8):701, 2002. 

[lOlJ J . Swevers, W. Verdonck, and J. De Schutter. Dynamic Model Identification 

for Industrial Robots. IEEE Control Systems Magazine, 27(5):58-71, 2007. 

[102] M. Sznaier, H. Rotstein, J. Bu, and A. Sideris. An exact solution to continuous­

time mixed.Yt2/ £00 control problems. IEEE Transactions on Automatic Con­

trol, 45(11):2095-2101, November 2000. doi: 10.1109/9.887633. 



REFERENCES 140 

[103] M. Takegaki and S. Arimoto. A new feedback method for dynamic control 

of manipulators. ASME Journal of Dynamic Systems, Measurements , and 

Control, 102:119-125, 1981. 

[104] K. K. Timmons and J. C. Ringelberg. Approach and Capture for Autonomous 

Rendezvous and Docking. In 2008 IEEE Aerospace Conference, pages 1-6, 

2008. 

[105] P. Tomei. Adaptive PD controller for robot manipulators. IEEE Transactions 

on Robotics and Automation, 7:565-570, 1991. 

[106] P. Tona and J. M. Bader. Efficient system identification for model predictive 

control with the ISIAC software. In 1st International Conference on Infor­

matics in Control (ICINCO), Setubal, Portugal. Springer, 2004. 

[107] M. W. Walker. Adaptive control of manipulators containing closed kinematic 

loops. IEEE Transactions on Robotics and Automation, 6(1):10-19, 1990. 

[108] C. W. Wampler. Manipulator inverse kinematic solutions based on vector 

formulations and damped least-squares methods. IEEE Transactions on Sys­

tems, Man, and Cybernetics, 16(1):93-101, Jan. 1986. doi: 10. 1109/TSMC. 

1986.289285. 

[109] J. M.-C. Wang. Gaussian process dynamical models for human motion. Mas­

ter's thesis, Graduate Department of Computer Science, University of Toronto, 

2005. 

[110] H. J. Warnecke, R. Neugebauer, and F. Wieland. Development of Hexapod 

Based Machine Tool. CIRP Annals-Manufacturing Technology, 47(1):337- 340, 

1998. 

[111] J. Wen, K. Kreutz-Delgado, and D. Bayard. Lyapunov function-based control 

laws for revolute robot arms. IEEE Transactions on Automatic Control, 37: 

231- 237, 1992. 



REFERENCES 141 

[112] P. Wenger, D. Chablat, and M. Zein. Degeneracy Study of the Forward Kine­

matics of Planar 3-RPR Parallel Manipulators. Journal of Mechanical Design, 

129:1265, 2007. 

[113] E. Wernholt. On Multivariable and Nonlinear Ident~fication of Industrial 

Robots. PhD thesis, Department of Electrical Engineering, Linkoping Uni­

versity, SE-581 83 Linkoping, Sweden, 2004. 

[114] L. L. Whitcomb, A. A. Rizzi, and D. E. Koditschek. Comparative experiments 

with a new adaptive controller for robot arms. IEEE Transactions on Robotics 

and Automation, 9(1):59-70, February 1993. doi: 10.1109/70.210795. 

[115] D. E. Whitney. Resolved motion rate control of manipulators and human 

prostheses. IEEE Transactions on Man Machine Systems, 10(2):47-53, June 

1969. doi: 10. 1109/TMMS. 1969.299896. 

[116] P. T. Wolkotte. Modelling human locomotion. Technical report, Institute of 

Electronic Systems, Aalborg University, January 2003. 

[117] B. R. Woodley. Model free subspace based £00 control. PhD thesis, Department 

of Electrical Engineering, Stanford University, January 2001. 

[118] B. R. Woodley, J. P. How, and R. L. Kosut. Subspace based direct adaptive 

£00 control. International Journal of Adaptive Control and Signal Processing, 

15(5):535-561, July 2001. ISSN 1099-1115. doi: 10.1002/acs.688. 

[119] M. Xie. Fundamentals of Robotics, volume 54 of Machine perception and 

artificial intelligence. World Scientific, 2003. 

[120] K. Yamane, Y. Nakamura, M. Okada, N. Komine, and K. Yoshimoto. Parallel 

Dynamics Computation and £00 Acceleration Control of Parallel Manipula­

tors for Acceleration Display. Journal of Dynamic Systems, Measurement, and 

Control, 127:185, 2005. 



REFERENCES 142 

[121] Y. Zhang, H. Tian, Q. Wang, and W. Qiang. Servo control in joint space of 

biped robot using nonlinear £00 strategy. In D. Jiang and A. Wang, editors, 

Proceedings of SPIE, volume 4077, pages 386-391, May 2000. doi: 10.1117/ 

12.385618. 


	Muhammad Saad Saleem Thesis Part 1
	Muhammad Saad Saleem Thesis Part 2
	Muhammad Saad Saleem Thesis Part 3

