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ABSTRACT 

Falls and their injury outcomes have count distributions that are highly skewed toward the 

right with clumping at zero, posing analytical challenges. Different modeling approaches 

have been used in the published literature to describe falls count distributions, often without 

consideration of the underlying statistical and modeling assumptions.  This paper compares 

the use of modified Poisson and negative binomial (NB) models as alternatives to Poisson (P) 

regression, for the analysis of fall outcome counts.  Four different count-based regression 

models (P, NB, zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB)) were 

each individually fitted to four separate fall count datasets from Australia, New Zealand and 

United States. The finite mixtures of P and NB regression models were also compared to the 

standard NB model. Both analytical (F, Vuong and bootstrap tests) and graphical approaches 

were used to select and compare models. Simulation studies assessed the size and power of 

each model fit. This study confirms that falls count distributions are over-dispersed, but not 

dispersed due to excess zero counts or heterogeneous population.  Accordingly, the P model 

generally provided the poorest fit to all datasets. The fit improved significantly with NB and 

both zero-inflated models. The fit was also improved with the NB model, compared to finite 

mixtures of both P and NB regression models.  Although there was little difference in fit 

between NB and ZINB models, in the interests of parsimony it is recommended that future 

studies involving modeling of falls count data routinely use the NB models in preference to 

the P or ZINB or finite mixture distribution.  The fact that these conclusions apply across four 

separate datasets from four different samples of older people participating in studies of 

different methodology, adds strength to this general guiding principle. 

 

Keywords: Fall count data, regression modeling, model fit, simulation study, negative 

binomial, zero-inflated models, finite mixture models 
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1. Introduction 

Falls can have common and serious consequences for older people (Robertson et al., 

2005). With an ageing population, the rise in the number of falls and the cost of their 

treatment is predicted to lead to a huge burden on the individual and the community (Moller, 

2005). Falls epidemiology data describing the magnitude of, and trends in, the problem has 

largely been descriptive in nature (Boufous et al., 2006; Boufous et al., 2004). It is important 

that good statistical models are used to generate accurate and reliable information to guide 

policy decisions in relation to priority setting and intervention investments to tackle the fall 

injury problem. As with other areas of public health, there has been an increased interest in 

statistical modeling of injury count data, including falls outcomes, in recent years (Chin and 

Quddus, 2003; Lord et al., 2004; Lord et al., 2005; Robertson et al., 2005).   

 

Datasets of the number of fall and fall-related injury have the form of discrete count data 

characterized by a large proportion of zero counts, with the remaining values being highly 

skewed toward the right.  This is because fall incidents are relatively rare and most people 

will not sustain a serious injury if do they fall.  Moreover, falls can also be recurrent events, in 

that over a period of time an individual may experience one or more falls (Williamson et al., 

1996; Stalenhoef et al., 2002), and this recurrence aspect needs to be incorporated into 

appropriate statistical models of fall counts. In a very recent systematic review (Donaldson et 

al., 2009), fewer than one-third of the 83 reviewed papers used appropriate statistical 

methods to analyse falls as a recurrent event.  

 

To further progress falls epidemiology, there is a need for a unified and justified approach 

to the use of appropriate statistical models for these data, taking into account the large 

proportion of zero counts and the possibility of recurrent falls. A number of published studies 

have incorrectly assumed a normal distribution when modelling falls count data and used 

Student’s t test, linear regression, or analysis of variance, as has been highlighted elsewhere 

(Robertson et al., 2005). Other analysts have argued that falls count data does not meet the 
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usual normality assumption required of many standard statistical tests and have therefore 

relied on a transformation to induce normality (Slymen et al., 2006).  This can be problematic 

in that transformations often do not yield normally distributed data and can make the 

interpretation of regression coefficients difficult because they are not estimated on the 

original scale (Byers et al., 2003).  

 

An alternative, more common, approach has been to assume a Poisson (P) model which 

is better suited to fall count processes and has become quite widespread in public health to 

model the number of events or rates (Mwalili et al., 2008), especially when there are few 

incidents and hence, many observed zeros (Shankar et al., 1997). However, if the number of 

observed zeros far exceeds the expected number of zeros (equivalent to requiring that the 

mean is equal to the variance), then one of the key features of the P structure is violated.  

Often, falls count data exhibit more variability than the nominal variance under the P model, a 

condition called over-dispersion (in that the sample variance exceeds the mean). Such over-

dispersion in count data can occur because of excess zeros, unexplained heterogeneity, or 

temporal dependency (Cameron and Trivedi, 1998). With regards to recurrent events, the P 

model assumes that such events occur independently of each other. This assumption is 

violated for fall outcomes, as a major risk factor for a subsequent fall is a previous fall 

(Donaldson et al., 2009; Hill et al., 1999).  

 

The negative binomial (NB) model has a built-in dispersion parameter that can account 

for situations where the variance is greater than the mean (Chin and Quddus, 2003). A 

number of studies have therefore argued for the NB model as an alternative to the P model 

when count data are over-dispersed in relation to the mean (Bliss and Fisher, 2003; Byers et 

al., 2003; White and Bennetts, 1996). Such a modeling approach can also be appropriate 

when count data are recurrent (Glynn and Buring, 1996). The NB model explicitly accounts 

for the heterogeneity by modeling the Poisson mean as a Gamma random variable and 

introducing an extra dispersion parameter (Johnson et al., 2005; Lord, 2006).  
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Although P and NB models have been the most common choices to date, it is possible 

that they could still fail to fit a set of data with a lot of zeros because of zero-inflation, over-

dispersion, or both (Deng and Paul, 2005).  As an extension of standard P and NB models, 

zero-inflated count models have gained considerable recognition as an alternative means of 

handling count data with a preponderance of zeros (Lambert, 1992; Gupta et al., 1996; Li et 

al., 1999; Lord et al., 2004; Lord, 2006). For this type of count data, more zeros are observed 

than would be predicted by a normal P or NB process (Park and Lord, 2009; Lord et al., 2007; 

Warton, 2005). It is generally believed that data with excess zeros come from two sources or 

two distinct distributions, hence the apply-named dual state process. The underlying 

assumption of this two-state process gives a simple two-component mixture distribution with 

the first state having only zeros, while the other state leads to a standard P or NB count 

model. In general, the zeros from the first state are called structural zeros and those from the 

P or NB models are called sampling zeros or non-structural zeros. 

 

In recent years, there has been considerable interest in regression models based on 

zero-inflated count models. Much of this interest stems from the seminal paper of Lambert 

(1992) though this type of model appears to have originated in the econometrics literature. 

Mullahy (1986) first formulated the zero-inflated Poisson (ZIP) regression model and such 

models have since been applied in many topic areas: the number of defects in a 

manufacturing process (Lambert, 1992); the abundance of rare species (Welsh et al. 1996); 

road accident frequencies (Shankar et al., 1997; Shankar et al., 2003; Qin et al., 2004; 

Kumara and Chin, 2003; Lee and Mannering, 2002); dental caries epidemiology (Bohning et 

al., 1999); pharmaceutical utilization and expenditure (Street et al., 1999); early growth and 

motor development (Cheung, 2002); and physical activity (Slymen et al., 2006). 

 

In addition to zero-inflated models, there are many further extensions to the classical P 

and NB models, such as finite mixture models. These finite mixture models are particularly 

useful for heterogeneous populations that incorporate a combination of counts and 

continuous representation of population heterogeneity. For a mathematical derivation and 
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discussion of the application of finite mixture models, readers are referred to McLachlan and 

Peel (2000). Most recently, Park and Lord (2009) have proposed finite mixtures of P and NB 

models for analyzing motor vehicle crash data.   

 

The modelling considerations raised above have significant implications for the 

description of falls data and published studies have used a variety of statistical approaches.  

To our knowledge, a full range of P and modified P (i.e. NB and zero-inflated) models have 

not been formally compared in terms of their applicability to falls data.  Although Robertson et 

al. (2005) used the NB model in their consideration of statistical models for falls intervention 

trials, they compared it to two survival analysis models (the Andersen-Gill and marginal Cox 

regression) and not directly to other count distributions. 

 

The aim of this paper is therefore compare the applicability of statistical count 

distributions to falls count data and to provide a clear rationale for future falls distribution-

modeling approaches.  In doing so, this study provides defensible guidance on how to 

appropriately model falls data in studies aiming to describe trends in injury numbers and 

rates. The paper has five objectives: to (1) overview the rationale for, and use of, P, NB, ZIP 

and zero-inflated negative binomial (ZINB) models; (2) to apply the four models to real-world 

falls count data and to compare how well the various models approximate this; (3) to formally 

compare the four models; (4) to report a statistical simulation experiment as a means of 

assessing the size and power of the model fit; and (5) to compare the NB model with finite 

mixtures of P or NB estimated using the same data. 

2. Methods 

A description of the data used in the example is first presented, so that the relevant 

features of the four regression models can be later described in the specific context of these 

data. 
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2.1 Description of falls data  

Four sets of falls count data were obtained from published peer-reviewed studies and 

from personal communication with data owners. Two datasets were obtained from peer-

reviewed randomized, controlled studies of falls in older people with published falls count 

data (Sydney, Australia: Voukelatos et al. (2007), Atlanta, United States: Wolf et al. (2003) 

respectively). A third dataset was obtained from a published prospective cohort study 

(Melbourne, Australia: Hill et al. (1999)). The fourth dataset from the Otago Exercise 

Programme in New Zealand was provided by the first author (Clare Robertson, personal 

communication) (Robertson et al., 2001). These four datasets were chosen to compare the 

modelling fits across a variety of data, generated from slightly different samples of older 

people from three different countries. We only used falls count data from the control groups 

of the randomized trials, to ensure consistency across all datasets.   

Table 1 presents the four fall count distributions used in this study and shows the number 

of observed falls in the relevant study samples. In each study, over dispersion occurred with 

the variances exceeded the mean number of falls by a large amount. However, the 

improvement of the mean function could eliminate the over-dispersion (Miaou and Song 

2005). Also the proportion of zeros does not appear to be over-represented given the sample 

mean of the data (Zorn 1998). It can be happen for falls count data where the number of falls 

may not exhibit excess zeros.  

  

Table 1 also shows that the number of falls has a definite peak at no falls (i.e. zero counts) 

and decays rapidly after one or more falls.  In particular, the structure of all distributions with 

a relatively high number of single falls and fewer very abundant falls is typical of all study 

datasets.  Further examination of the data from the Sydney study, as an example, shows that 

it is over-dispersed, with mainly zero-counts (76% of the 337 study participants) and a sharp 

decay in the number of falls thereafter. The other datasets have a similar picture, but with a 

relatively lower frequency of no falls. Table 1 also shows the falls per 100 person years, 

which are estimated from the frequency of falls and follow up time.  The Australian and New 
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Zealand falls rates are similar, ranging from 81 to 94 falls per 100 person years, compared to 

a higher rate among more frail older people in the Atlanta study. 

 
Table 1: Distribution of falls count from four published studies  

 
 Data source and study 

 
 

Recorded number of 
falls 

Sydney 
Voukelatos 
et al. (2007) 

Melbourne 
Hill et al. 

(1999) 

New 
Zealand 

Robertson 
et al. (2001) 

Atlanta  
Wolf et al. 

(2003) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

256(76.0)* 

54(16.0) 

14(4.2) 

10(3.0) 

1(0.3) 

2(0.6) 

0 

0 

0 

0 

0 

49(51.0)* 

25(26.0) 

13(13.5) 

2(2.1) 

4(4.2) 

3(3.1) 

0 

0 

0 

0 

0 

64(53.3)* 

33(27.5) 

16(13.3) 

3(2.5) 

1(0.8) 

0 

0 

0 

1(0.8) 

1(0.8) 

1(0.8) 

56(39.7)* 

43(30.5) 

20(14.2) 

10(7.1) 

5(3.5) 

5(3.5) 

2(1.4) 

0 

0 

0 

0 

Total (number of 
people in each study) 

337 96 120 141 

Total number of falls 126 88 105 170 

Total person years 155.5 96.0 111.8 130.2 

Falls per person year 0.81 0.92 0.94 1.31 

Mean 0.37 0.92 0.88 1.21 

Variance 0.65 1.61 2.46 2.04 

Sample 
characteristics 

60+ years 

community 

dwelling 

relatively 

well  

70+ years 

female 

community 

dwelling 

relatively 

well, no fall 

in previous 

12 months   

80+ years 

community 

dwelling 

relatively 

well  

70+ years 

congregate 

living, 

transitionally 

frail  

      * Data are the number (percent) of falls of this count in each individual dataset 
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2.2 The Models 

Poisson and negative binomial models 

To set the scene for the subsequent development and comparison of models, it is 

necessary to introduce some notation here. Let [ ] ′= nxx ..,,.........1x denote the number of 

falls experienced by an individual within a given interval of time. The NB models the number 

of falls before a specified total number of falls is reached in a group of people. It can also be 

thought of as modelling the total number of people required before a specified number of falls 

is recorded or observed, thus motivating its name as the reversal of the binomial model. The 

NB model is commonly expressed in terms of its parameters µ and k such that 

( )
( ) ( ) ,.........2,1,0,0,

1
)( =>








+








+Γ+Γ

+Γ
== jk

k
k

kkj
kjjxP

kj

i µ
µµ

µ
 

where µ is the average number of falls in a given time interval for each individual and 

k represents the degree of over-dispersion. The dispersion parameter represents the degree 

by which the variance of the number of falls differs from its mean. The variance of the NB 

model is ( )kµµσ += 12  and hence increasing values of k  correspond to decreasing levels 

of dispersion. For ,∞→k  the model converges to the P model !)( jejxP j
i µµ−==  which 

has a null dispersion (the variance equals the mean). When both μ and k are positive (>0), 

the variance of the NB model is larger than the mean and the model can be applied to data 

with over dispersion.  

Zero inflated models 

The zero-inflated models are developed by adding a binary logit model as a mixing 

distribution in which two sets of data are combined in the proportions φ  and ,1 φ−  

respectively. Let [ ] ′= nyy ..,,.........1y denote the number of falls, such that 0=iy  with 
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probability φ  and )(~ ii xPy , i>0, with probability φ−1 . The mixed distribution of ‘zero-falls’ 

and ‘one or more falls’ becomes: 

,.......2,1)()1()(
)0()1()0(

==−==
=−+==

jjxPjyP
xPyP

ii

ii

φ
φφ

 

where 10 <<φ  is the probability of being an extra zero. For 0=φ , these equations reduce 

to the ordinary P and NB models. If we consider the NB model, the expression of the ZINB 

model can be written as: 

( )
( ) ( ) ,.......2,10;0;

1
)1()(

0;0;)1()0(

=>>





















+








+Γ+Γ

+Γ
−==

>>







+

−+==

jk
k

k
kkj

kjjyP

k
k

kyP

kj

i

k

i

µ
µµ

µφ

µ
µ

φφ

 

The ZIP model is identical to ZINB but with a P probability.  

,.......2,1;0;
!

)1()(

;0;)1()0(

=>−==

>−+==
−

−

j
j

ejyP

eyP
j

i

i

µµφ

µφφ
µ

µ

 

3. Model estimation framework  

For each of the four model types, the maximum likelihood estimation (MLE) method was 

used to estimate µ, k and φ  parameters and their corresponding standard errors and 

confidence limits for the falls count data, as relevant. The MLE was chosen, compared to 

other estimators, because it has properties of consistency, asymptotic normality and 

minimum variance for large samples. The MLE method was used to fit the falls data by 

applying a generalised linear model from underlying P, NB or zero-inflated families (Venables 

and Ripley, 2002).  The models were fitted to the data using macros with the VGAM and 

PSCL packages written in R. 
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3.1 Model estimation results 

Table 2 gives the values of the estimated parameters of the various modeled falls 

distributions. The smaller value of k̂  for the Sydney study shows that the distribution is more 

dispersed in this study than in the others. A lower value of φ̂  indicates that the distributions 

are not zero-inflated when the ZINB model is fitted. Also none of the φ̂  parameters are 

significant for the ZINB, which indicates that the ZINB does not work. However, the data 

have excess zeroes in relation to fitting the ZIP model. 

Table 2: Estimated parameters of the four fitted statistical models as fitted to 

falls count datasets. (95% confidence intervals are in parentheses.) 

Data source and 
study 

Model 
µ̂  k̂  φ̂  

Sydney  
Voukelatos et al. 
(2007) 
 
 

Melbourne 
Hill et al. (1999) 
 
 
 

New Zealand 
Robertson et al. 
(2001) 
 
 

Atlanta 
Wolf et al. (2003) 
 
 

P 

NB 

ZIP 

ZINB 
 

P 

NB 

ZIP 

ZINB 
 

P 

NB 

ZIP 

ZINB 
 

P 

NB 

ZIP 

ZINB 

 

0.37 (0.31-0.45) 

0.37 (0.30-0.47) 

0.96 (0.73-1.26) 

0.42 (0.06-3.18) 
 

0.92 (0.74-1.13) 

0.92 (0.70-1.21) 

1.42 (1.07-1.88) 

0.93 (0.39-2.22) 
 

0.88 (0.72-1.06) 

0.88 (0.66-1.15) 

1.42 (1.10-1.84) 

0.88 (0.66-1.15) 
 

1.21 (1.04-1.40) 

1.21 (0.99-1.47) 

1.59 (1.31-1.94) 

1.21 (0.99-1.47) 

 

- 

0.47 (0.22-0.72) 

- 

0.58 (0.00-4.08) 
 

- 

1.14 (0.25-2.02) 

- 

1.17 (0.00-3.41) 
 

- 

0.80 (0.34-1.26) 

- 

0.80 (0.22-1.38) 
 

- 

1.70 (0.60-2.80) 

- 

1.70 (1.05-2.35) 

 

- 

- 

0.61 (0.51-0.70) 

0.12 (0.02-0.95) 
 

- 

- 

0.35 (0.22-0.52) 

0.01 (0.00-1.00) 
 

- 

- 

0.39 (0.26-0.53) 

0.01 (0.00-1.00) 
 

- 

- 

0.24 (0.15-0.38) 

0.01 (0.00-1.00) 

 

Note : P=Poisson model, NB=negative binomial model, ZIP=zero-inflated Poisson model, 

ZINB= zero-inflated negative binomial model 
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The fitted models are also visualized in Figure 1.  As expected, the zero counts are 

under-estimated and the single (one) fall count is over-estimated by fitting a P model.  

Overall, the NB and ZINB models provide the best fit for each dataset.  

[Insert Figure 1 about here] 

4. Model accuracy  

The most common criterion for evaluating the performance of a statistical model is its 

accuracy in terms of fitting the data. Let if denote the observed frequency of ith fall and if̂  

denote the fitted frequency. The error is defined as iii ffe ˆ−=  and the percentage error is 

iii fep 100= . Percentage errors have the advantage of being scale independent, so they 

are frequently used to compare model performance between different data series (Hyndman 

and Koehler, 2006). The most widely used measures of accuracy are:  

1. The Mean Squared Error (MSE) ( )2
iemean= , which is the average of all the squared 

errors ((Makridakis et al., 1998) 

2. The Root Mean Squared Error (RMSE) = MSE , which is often preferred to the MSE as 

it is on the same scale as the data  

3. The Mean Absolute Error (MAE) = ( )temean= , which is less sensitive to extreme values 

than both the MSE and RMSE 

4. The Mean Absolute Percentage Error (MAPE) ( )ipmean= , which is most commonly 

recommended because it has also many desirable properties including reliability, ease of 

interpretation, clarity of presentation, support of statistical evaluation, and the utilization of 

most of the information about the error (Hyndman and Koehler, 2006).  
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4.1 Model accuracy results 

Table 3 shows the comparison of the fit of the four models to the published data 

according to these four accuracy measures.  Smaller values of each of measures indicate 

more accurate, reliable and confident models. According to the MSE, RMSE and MAE 

results, the NB model provides the best fit for all four sets of falls data.  However, there was 

little difference in fit between the ZINB and NB models. When considering the models with 

respect to MAPE, the NB and ZINB models both appeared to offer substantial improvements 

in fit over the standard P model, improvements not matched by the ZIP model.  
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Table 3: Mean square error (MSE), root mean squared error (RMSE), mean 

absolute error (MAE) and mean absolute percentage error (MAPE) of the 

models fitted to four fall distributions 

 
Data source and study Model Model accuracy measures 

MSE RMSE MAE MAPE 

Sydney  
Voukelatos et al. (2007) 
 
 
 
Melbourne 
Hill et al. (1999) 
 
 
 
New Zealand 
Robertson et al. (2001) 
 
 
 
Atlanta 
Wolf et al. (2003) 
 

P 

NB 

ZIP 

ZINB 

 

P 

NB 

ZIP 

ZINB 

 

P 

NB 

ZIP 

ZINB 

 

P 

NB 

ZIP 

ZINB 

287.4 

4.7 

21.1 

5.1 

 

41.8 

3.2 

8.7 

3.2 

 

41.4 

7.6 

12.6 

7.6 

 

56.3 

3.4 

23.2 

3.4 

17.0 

2.2 

4.6 

2.3 

 

6.5 

1.8 

2.9 

1.8 

 

6.4 

2.8 

3.6 

2.8 

 

7.5 

1.8 

4.8 

1.9 

11.6 

1.7 

3.3 

1.8 

 

5.4 

1.3 

2.5 

1.3 

 

4.2 

2.4 

2.5 

2.4 

 

6.0 

1.6 

3.7 

1.6 

0.6 

0.4 

0.4 

0.4 

 

0.7 

0.5 

0.7 

0.5 

 

0.6 

0.8 

0.9 

0.8 

 

0.5 

0.2 

0.4 

0.2 

 Note : P=Poisson model, NB=negative binomial model, ZIP=zero-inflated Poisson model, 

ZINB= zero-inflated negative binomial model 

5. Comparing models 

Four criteria were used to compare and select among considered models: likelihood ratio, 

F test, Vuong statistic and bootstrap test. The likelihood ratio test is well understood and is 

not discussed further. The basic criterion of the F and bootstrap tests is to compare two 

models where one model should be nested with the other model (i.e. when one model is an 
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extension to the other). For example, the P model is nested within the NB model and there is 

therefore a need to test if there is over-dispersion due to heterogeneity. Another test is 

whether the dispersion parameter is necessary by comparing the P versus NB and ZIP 

versus ZINB models. In addition, as the P and NB models are nested within the ZIP and 

ZINB models, respectively, these models were tested for over dispersion due to excess 

zeros. Vuong’s statistic has been used repeatedly as a goodness of fit measure to justify the 

selection of zero inflated models (Greene, 2000; Vuong, 1989).  

5.1 The F-ratio test 

Two nested models were considered.  Using the notation of Shen and Faraway (2004), 

the large/full model is denoted by  ,Ω  while the smaller/null model is denoted byω  and 

results from a linear restriction of the parameters of .Ω  For example, the null model ω  is 

!
)(:0 j

ejxPH
j

i
µµ−

==  

and the full model Ω  is 

( )
( ) ( )

kj

iA k
k

kkj
kjjxPH 








+








+Γ+Γ

+Γ
==

µµ
µ

1
)(:  

The only difference between these two models is the non-zero dispersion parameter .k  

The F statistic is used to test the hypothesis that the dispersion parameter k differs between 

two models.  

( )
pnqpF

pnRSS
qpRSSRSSF −−

Ω

Ω

−
−−

= ,~
/

/ω  

where ( )∑ =
−=

n

i ii ffRSS
1

2ˆ is the residual sum of squares; p = number of parameters in the 

full model; q = number of parameters in the null model and n = number of observations.  In 

any particular case, it is necessary to determine which models represent the null and 

alternative hypotheses, to fit them and then compute the test statistic. However, The F test 
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cannot be used for testing the two models where the number of parameters is exactly the 

same.  

5.2 The Vuong test 

The Vuong test is based on the t statistic and has reasonable power in count data 

applications (Greene, 2000). The Vuong statistic (V-statistic) is computed as  

 

mS
NmV =  

 

where m is the mean of [ ])()(ln 0 jxPjxPm iiA ===  where )( jxP iA = and )(0 jxP i = are 

the density functions of the full and null models and mS and N are the standard deviation and 

sample size respectively (Vuong, 1989). For example, if to compare the ZIP and P models, 

AP and 0P are the density functions of the ZIP and P models respectively. The advantage of 

the Vuong test is that the entire distribution is used for comparison of the means, as opposed 

to just the excess zero mass (Shankar et al., 2003). A p-value less or equal to 0.05 for the 

Vuong statistic favors the full model, while a p-value greater than 0.05 indicates that the 

models are indistinguishable. The intuitive reasoning behind this test is that if the processes 

are not statistically different, then the mean ratio of their densities should equal one. The 

Vuong test can also be used to distinguish between the NB and ZIP, and NB and ZINB 

models as well (Shankar et al., 2003). 

 

5.3 The bootstrap procedure 

The idea behind bootstrapping a test statistic is to draw a large number (B) of random 

samples, which obey the null model (say P model) and, as far as possible, to re-assemble 

the real sample, and then compare the observed test statistic to the test statistics calculated 

from the bootstrap samples.  The bootstrap p-values are estimated by the proportion of 

bootstrap statistics that are more extreme than the observed test statistic.  
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Although there are many ways to use the bootstrap for hypothesis testing, Walters and 

Campbell (2005) proposed a procedure for hypothesis testing to compute a bootstrap p value 

corresponding to the observed value of a test statistic T. In the falls count data, this study 

suggests a test procedure based on the following test statistic 

[ ]
2

1

ˆˆ1∑
=

Ω−=
n

i
i

w
i ff

n
T  

where w
if̂ and Ω

if̂   are the fitted frequencies of falls data under the null and full models.  

Two quantities are chosen to carry out the bootstrapping: a test statistic and a null model for 

the data under the null hypothesis. The B bootstrap values of the test statistic 

BjTj ,......,1,* =  are generated from the data under the null model.  The achieved 

significance level, )(* Tp , is estimated by calculating the proportion of the bootstrap values 

which are > T , the value of the test statistic from the original falls data.  

( )∑
=

≥=≥=
B

j
j TTI

B
TTPTp

1

*** 1)()(  

The null model would be rejected if a small proportion of the *T statistics are > T , yielding a 

small value of the  )(* Tp . 

5.4 Comparison of the fitted models 

The p-values from the likelihood ratio, F, Vuong and bootstrap tests for comparing each 

pair of models are shown in Table 4.  For example, comparing the NB and ZINB models for 

the Sydney data gives an F test with an estimated p value of 0.56, indicating that the two 

models are indistinguishable.  In the interests of parsimony, the conclusion is that there is no 

need for the ZINB model with its extra parameter. Conversely, the P versus ZIP model 

comparisons all indicate that the four distributions have excess zeros.  The reason for this 

finding is that the ZIP model can support a dual state process with excess zeros (Miaou, 

1994). However, the ZIP versus ZINB and NB versus ZINB comparisons indicate that there is 
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no dispersion due to excess zeros. These excess zeros are more likely to arise when 

applying the NB model with small means than from the ZINB model (Warton, 2005). 

According to the Vuong test, the NB model was statistically valid (p = 0.48), compared to 

alternative forms including ZINB model. The higher p value for the NB and ZINB models in 

the other datasets shows that there is no difference between models of higher order. The F-

ratio p values did not appear in Table 4 because of the same number of parameters for NB 

and ZIP models.  
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Table 4: Goodness of fit (likelihood ratio test (LRT), F-ratio (F), Vuong statistic (V) and bootstrap (BS)) p-values for comparing 

four fitted models to published falls count data 

Models Sydney  
Voukelatos et al. (2007) 

 

Melbourne  
Hill et al. (1999) 

 

New Zealand  
Robertson et al. (2001) 

 

Atlanta  
Wolf et al. (2003) 

 

LRT F V BS LRT F V BS LRT F V BS LRT F V BS 

 

P vs NB 

P vs ZIP 

P vs ZINB 

NB vs ZIP* 

NB vs ZINB 

ZIP vs ZINB 

 

<0.001 

<0.001 

<0.001 

0.88 

1.00 

0.04 

 

<0.001 

<0.001 

<0.001 

- 

0.56 

<0.001 

 

- 

0.01 

- 

0.15 

0.48 

- 

 

<0.001 

<0.001 

<0.001 

0.44 

0.61 

<0.001 

 

<0.001 

<0.001 

<0.001 

0.76 

0.95 

0.01 

 

<0.001 

<0.001 

<0.001 

- 

0.75 

<0.001 

 

- 

0.04 

- 

0.12 

0.50 

- 

 

<0.001 

<0.001 

<0.001 

0.45 

0.68 

<0.001 

 

<0.001 

<0.001 

<0.001 

0.52 

1.00 

<0.001 

 

<0.001 

<0.001 

<0.001 

- 

0.88 

<0.001 

 

- 

0.01 

- 

0.10 

0.45 

- 

 

<0.001 

<0.001 

<0.001 

0.62 

0.95 

<0.001 

 

<0.001 

<0.001 

<0.001 

0.35 

0.68 

0.04 

 

<0.001 

<0.001 

<0.001 

- 

0.78 

<0.001 

 

- 

0.06 

- 

0.33 

0.33 

- 

 

<0.001 

<0.001 

<0.001 

0.47 

0.89 

<0.001 

Note : P=Poisson model, NB=negative binomial model, ZIP=zero-inflated Poisson model, ZINB= zero-inflated negative binomial model 
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6. Simulation framework 

Simulation studies are increasingly being used in the public health literature for a wide 

variety of situations (Vaeth and Skovlund, 2004).  There are several advantages of 

simulations compared with collecting and/or analyzing real data (Burton et al., 2006; 

Demirtas, 2007). Firstly, a large number of samples of representative falls data can be 

created rather than being restricted to using only one (or just a few) dataset and this enables 

the distributions of statistical parameters to be estimated (the estimators). This is important 

because more reliable information would be obtained from a distribution of values than based 

on a single value. A second advantage of simulations enables the studying of phenomena 

that are too complex to describe and solve analytically.  
 

6.1 Data generating process for size and power of the test 

A bootstrap test was used to investigate the size and power within a simulation 

framework. The simulation approach provides estimates of statistical power and size that are 

derived from empirically derived distributions based on replications of simulated data 

generated from particular models of interest (Mooney, 1997; Wilkinson, 1999). Within the 

context of model selection, power and size estimates are based on the proportion of 

replications that indicate acceptable fit, with greater numbers of replications resulting in 

smaller confidence intervals (high power) around the estimates. With an existing asymptotic 

theory, the estimated power from the simulation was used to determine the performance of 

model selection criteria. 

 

The idea behind the simulation approach for calculating size and power was derived from 

Davidson and MacKinnon (2006).  Real data from the published falls distributions were fitted 

to the null and full models to obtain the estimated parameters. With application of the 

estimated parameters, simulated datasets produced from the null model can be used to 

calculate the size of the test and those corresponding to the full model used to calculate the 

power of the test. A bootstrapping test (as outlined in Section 5) was used to calculate the p- 

 20 



values. The empirical power of a test was determined as the proportion of p-values from 

each simulated sample in which the null model is rejected at the actual significance level, 

when the null model is false. The size was calculated as the proportion of p-values from 

testing the null model on each simulated sample that are less than the actual significance 

level, when the null model is true. Simulations were run on a bi-processed Pentium 4 

machine with a 3.20 GHz processor and 2.0 Gb RAM memory. The software used was R 

version 2.8.1 (R Development Core Team, 2004), operating on a Windows XP professional 

platform. 

 

6.2 Simulation results 

The initial models used to start the simulation process were taken to be the estimated 

models based on real falls data, to ensure realistic results. One hundred sets of falls data 

were simulated and the bootstrapping procedure was applied 100 times to each data set to 

obtain the significance levels of the test.  

The rejection criteria of the bootstrap test for the four models at 1%, 5% and 10% 

significance levels are shown in Table 5.  The bootstrap test performed satisfactorily for each 

model, although the actual size was slightly different from the simulated model size.  For 

example, the actual size superseded the simulated size at 10% significance levels for all 

datasets, except for Atlanta, when the NB versus ZINB models were considered.  In addition, 

there was a difference between actual and simulated sizes at the 5% significance level for 

the New Zealand data when the P and ZINB models were compared.  Table 5 also shows 

the big gap between actual and estimated powers at 1%, 5% and 10% level of significance 

for all databases when the NB and ZINB models are considered.   

 
 
 
 
 

 21 



Table 5: Simulated estimates (based on 100 simulation replications) of the size 
and power of the test to compare four models fitted to published falls count 

data 
 

Data 
source and 
study 

Comparison 
of models 

Simulated model size Simulated model power 

( ) αα =<PPr  ( ) ββ −=> 1Pr P  

01.0=α  05.0=α  10.0=α  01.0=β  05.0=β  10.0=β  

Sydney  
Voukelatos 
et al. (2007) 
 
 
 
Melbourne 
Hill et al. 
(1999) 
 
 
 
New 
Zealand 
Robertson 
et al. (2001) 
 
 
 
Atlanta 
Wolf et al. 
(2003) 
 

P vs NB 

P vs ZIP 

P vs ZINB 

NB vs ZIP 

NB vs ZINB    

ZIP vs ZINB  

 

P vs NB 

P vs ZIP 

P vs ZINB 

NB vs ZIP 

NB vs ZINB    

ZIP vs ZINB  

 

P vs NB 

P vs ZIP 

P vs ZINB 

NB vs ZIP 

NB vs ZINB   

ZIP vs ZINB 

 

P vs NB 

P vs ZIP 

P vs ZINB 

NB vs ZIP 

NB vs ZINB    

ZIP vs ZINB  

 

0.01 

0.01 

0.00 

0.00 

0.01 

0.01 

 

0.01 

0.00 

0.02 

0.00 

0.02 

0.02 

 

0.04 

0.00 

0.06 

0.00 

0.02 

0.00 

 

0.02 

0.06 

0.00 

0.00 

0.01 

0.08 

0.07 

0.04 

0.02 

0.00 

0.06 

0.02 

 

0.04 

0.08 

0.04 

0.03 

0.10 

0.10 

 

0.06 

0.02 

0.14 

0.02 

0.08 

0.02 

 

0.02 

0.10 

0.02 

0.03 

0.03 

0.08 

0.10 

0.09 

0.05 

0.00 

0.12 

0.04 

 

0.08 

0.16 

0.12 

0.06 

0.14 

0.10 

 

0.08 

0.02 

0.14 

0.02 

0.14 

0.06 

 

0.06 

0.14 

0.05 

0.07 

0.12 

0.08 

1.00 

1.00 

1.00 

1.00 

1.00 

0.48 

 

0.88 

0.80 

0.76 

0.08 

0.00 

0.24 

 

1.00 

0.90 

0.96 

0.08 

0.02 

0.38 

 

0.96 

0.92 

1.00 

0.84 

0.00 

0.92 

1.00 

1.00 

1.00 

0.98 

0.34 

0.66 

 

0.98 

0.96 

0.90 

0.28 

0.10 

0.48 

 

1.00 

1.00 

1.00 

0.28 

0.12 

0.54 

 

0.96 

0.96 

1.00 

0.56 

0.06 

0.92 

1.00 

1.00 

1.00 

0.94 

0.39 

0.74 

 

0.98 

1.00 

0.94 

0.41 

0.14 

0.64 

 

1.00 

1.00 

1.00 

0.50 

0.16 

0.70 

 

1.00 

0.96 

1.00 

0.42 

0.14 

1.00 

Note : P=Poisson model, NB=negative binomial model, ZIP=zero-inflated Poisson model, 

ZINB= zero-inflated negative binomial model 
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7. Comparison of finite mixture models with standard and zero inflated P and 
NB models.  

 
 

The Poisson and NB mixture models with a fixed number of components (K=2,3) were 

estimated with the expectation-maximization (EM) algorithm within a maximum likelihood 

framework and with Markov Chain Monte Carlo (MCMC) sampling within a Bayesian 

framework (Stasinopoulos and Rigby, 2007; Leisch, 2004). Models were compare using a 

penalised-likelihood approach for model selection: Akaike’s information criterion (AIC) and 

the Bayesian information criterion (BIC) (Park and Lord, 2009; Warton, 2005).  

 

AIC and BIC values for comparing P and NB mixtures to the NB model are shown in 

Table 6. Based on these criteria, the NB model appears to be the better model than either 

the P and NB mixture models (K=2, K=3) for describing falls count data.  
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Table 6: Comparison of the negative binomial model against the Poisson 

and negative binomial mixture models: Log Likelihood (LL),  Akaike’s 

information criterion (AIC) and  Bayesian information criterion (BIC) of the 

models selection to four fall distributions 

Data source and study Model Model selection criteria 

LL AIC BIC 

Sydney  
Voukelatos et al. (2007) 
 
 
 
 
Melbourne 
Hill et al. (1999) 
 
 
 
 
New Zealand 
Robertson et al. (2001) 
 
 
 
 
Atlanta 
Wolf et al. (2003) 
 

NB 

FMP2 

FMP3 

FMNB2 

FMNB3 

 

NB 

FMP2 

FMP3 

FMNB2 

FMNB3 

 

NB 

FMP2 

FMP3 

FMNB2 

FMNB3 

 

NB 

FMP2 

FMP3 

FMNB2 

FMNB3 

 

- 267.9 

- 267.2 

- 267.2 

- 267.9 

- 267.9 

 

- 127.3 

- 126.8 

- 126.8 

- 127.3 

- 127.1 

 

- 143.4 

- 143.1 

- 142.5 

-143.5 

-143.5 

 

- 212.6 

- 211.7 

- 211.7 

- 212.0 

- 212.6 

539.9 

540.5 

544.5 

545.8 

551.8 

 

258.6 

259.7 

263.6 

264.6 

270.2 

 

290.8 

292.3 

295.0 

297.1 

303.1 

 

429.3 

429.5 

433.5 

434.0 

441.3 

547.5 

551.9 

563.6 

564.9 

582.4 

 

263.7 

267.3 

276.5 

277.4 

290.7 

 

296.4 

300.6 

308.9 

311.0 

325.3 

 

435.2 

438.3 

448.2 

448.8 

464.9 

Note: NB=negative binomial model, FMP2=Finite mixture Poisson (K=2), FMP3=Finite 

mixture Poisson (K=3), FMNB2=Finite mixture negative binomial (K=2), FMNB3=Finite 

mixture negative binomial (K=3)   
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8. Conclusions 

There are several well-developed potential statistical models for analyzing falls count 

data but, to date, there has been little guidance on which is the most appropriate approach to 

use, and there are many published studies that have used incorrect statistical models for 

analyzing over-dispersion and recurrent fall events (Donaldson et al., 2009). Robertson et al. 

(2005) compared the NB model to two survival analysis models using two datasets, and 

concluded that the NB model was as appropriate as other statistical techniques (e.g. survival 

analysis methods), but was easier to use for analysis of falls trial data. Our study has further 

contributed to the field by directly comparing four different count-based regression models for 

analyzing falls data from four real-world studies conducted in Australia, New Zealand and the 

United States.  In an attempt to identify the best models for analyzing falls count data, the 

four different counts were compared.  

This study has shown that when applied to falls count data, use of the NB model gives 

better performance than the P, ZIP and ZINB models based on its superior statistical fit 

across all datasets. The NB model fit was also better than that achieved with finite mixture of 

P and NB regression models. Given the characteristics of the falls data, the study has also 

confirmed that falls count distributions are over-dispersed, but not dispersed due to excess 

zero counts or heterogeneous population.  Although there was little difference in fit between 

NB and ZINB models, in the interests of parsimony it is recommended that future studies 

involving modeling of falls count data routinely use the NB models in preference to the others 

tested in this study.  The fact that this conclusion holds true for four separate datasets from 

four different samples of older people participating in studies of different methodology, adds 

strength to this general guiding principle. 

Although the NB model provided the best fit to the four sets of falls count data, this model 

may not necessarily be suitable for other count data. For example, the FMP and FMNB 

models might be useful where data are drawn from heterogeneous populations such as in 

crash data involving different vehicles at specified intersections (Park and Lord, 2009). In the 
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case of falls counts, the data are likely to be more homogenous because the falls occur in 

individual people and so finite mixture models are not so appropriate. 
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FIGURE LEGENDS 

Figure 1. Actual and fitted falls count data from published studies: (a) Sydney, Australia 
(Voukelatos et al., 2007); (b) Melbourne, Australia (Hill et al., 1999). (c) Otago, New Zealand 
(Robertson et al., 2001) and (d) Atlanta, United States (Wolf et al., 2003)  
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