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Abstract 

Analysing current phenomena and forecasting future ones have always been 
at the centre of human preoccupations, with strong economical and political 
impacts. Today, needs becoming too complex and involving too many pa­
rameters do not allow the construction of analytical models . Therefore, data 
analysis, as an alternative, is gaining in importance. 

In data analysis measurements are collected. Then an analysis is carried 
out, in order to extract information, or to forecast the behaviour of unknown 
data. 

While in analytical modelling the result is verified against measurements 
after being constructed, in data analysis, the model is built on the data: that 
is, results should be optimised to give the best accuracy: one wants the "best" 
fitting parameters, or the most accurate forecasts. Therefore it is natural to 
reformulate data analysis problems as mathematical optimisation problems, 
and solve them using adapted tools. 

Recent technological progress has boosted the development in both fields: 
cheaper storing devices allow the collection of large amounts of data, while 
faster processing power enable the implementation of powerful algorithms. 
Consequently, while a considerable amount of research exists in both fields, 
the application of one to solve the problems arising in the other is still in a 
developmental stage. 

The research presented in this thesis is two-fold: on the one hand, ma­
jor data mining problems are reformulated as mathematical programming 
problems. These problems should be carefully designed, since from their for­
mulation depends the efficiency, perhaps the existence, of the solvers. On the 
other hand, optimisation methods are adapted to solve these problems, most 
of which are nonsmooth and nonconvex. This part is delicate, as the solution 
is often required to be good and obtained fast. Numerical experiments on 
real-world datasets are presented and analysed. 
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Introduction 

Mathematical optimisation was always motivated by practical purposes. It 
has applications in almost every field of interest. Building accurate mathe­
matical models and problems, selecting and applying adapted optimisation 
algorithms and efficiently using theory is in itself a challenging task. 

In the area of data analysis, information is collected on the field and 
interpreted for various purposes later on. Here again, almost every task 
can be rewritten as a mathematical programming problem. Unfortunately 
accurate models are too complex to be solved, and it is often necessary to 
simplify the models, or design heuristic methods. 

There are several reasons for this trend: data analysis problems are usu­
ally very difficult to solve, and involve complex structures that cannot be 
handled correctly by the most common optimisation techniques. On the 
other hand, more sophisticated methods are too demanding for current com­
puters to solve problems of reasonable size. 

Unfortunately this is a never ending problem: as the computing power 
will increase, data analysis models will become more accurate, but also harder 
to solve. Databases will increase in size, thereby increasing the difficulty, and 
optimisation methods will still not be efficient in solving these problems. 

Therefore there is a necessity to study more precisely the structure of the 
problems encountered in data analysis, and to develop new algorithms more 
adapted to these specific types of problems. 

The task of finding a common structure for data analysis is not a simple 
one: the field is very broad, englobing several distinct objectives such as: 

• Analysing information collected during a particular situation, in order 
for example to find the cause of a problem or an event, or to interpret 
the reasons for a trend; 

• Using the recorded information to build forecasting models. 

However, a good understanding of the types of the problems can lead not 
only to more adapted solvers, but also to the development of more accurate 
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Introduction 

models. Formulating these problems in mathematical terms is difficult, as 
the models need to be both accurate and simple. 

The goal of this thesis is two-fold. On the one hand, under the view 
of existing approaches to data mining, a general common structure to a 
class of such problems is found. Using the knowledge of this structure, an 
optimisation algorithm is adapted to solve data analysis problems in general. 
Although this algorithm does not address all the issues generated by these 
problems, it does provide a very efficient way to solve them. 

On the other hand, better methods for responding to the demands of data 
analysis are elaborated and tested on real-world datasets. 

This thesis is divided in three parts. In the first part, the methodology 
is considered. Chapter 1 presents the different approaches to data analysis. 
A specific attention is given to optimisation based models, and a discussion 
on the advantages and drawbacks of these methods is proposed. 

In chapter 2, the different existing optimisation solvers are reviewed. In 
view of solving data analysis problems, the most appropriate ones are se­
lected, and their limitations are discussed. 

The second part is devoted to computational considerations. The struc­
ture of the problems is used to adapt the methods selected in chapter 2 to 
our needs. In chapter 3, a new class of functions is introduced. The class of 
piecewise partially separable functions is very broad, and is particularly rep­
resentative of large scaled problems. An algorithm to solve these problems 
is proposed, and results of numerical experiments on test problems from the 
literature are presented, to show the efficiency of these methods. 

In chapter 4, this class of function is linked with the problems modelling 
data analysis tasks. In general, these problems have a similar structure which 
corresponds perfectly to the class of piecewise partially separable functions. 
In particular, two problems are examined, and the algorithm presented in 
chapter 3 is adapted to these. These two problems are chosen because they 
will be used in the models developed in the next part. 

The final part focuses more on data analysis itself. Attention is given to 
the construction of models, and to the way they can be evaluated. The practi­
cal tools developed in the previous part are put into action, to efficiently solve 
the problems. The first task examined is the one of classification, or building 
forecasting methods. In chapter 5, a classification algorithm is developed. 
This method presents the advantage of having few theoretical limitations. 
However, it is difficult to implement practically. The implementation pro­
posed in this thesis is tested on large scale datasets, and results are given to 
show that this algorithm is efficient. 

Chapter 6 gives more attention to the task of clustering, that is splitting 
a dataset into several smaller ones, in order to find its underlying structure. 
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Introduction 

The modelling of the clustering problem is a particularly hard one, as its 
purpose is not clearly delimited. Two approaches are proposed. The first one 
is designed for obtaining an accurate result , without any prior knowledge on 
the dataset. The other one is more focused on time efficiency. 

In chapter 7, a feature selection method is presented. Preprocessing the 
dataset before solving the problem is very important, as it is often ill-scaled 
and contains useless and noisy information. While a large number of prepro­
cessing methods exist, very few of them are based on optimisation. A feature 
elimination scheme adapted to optimisation based data analysis method is 
necessary for obtaining an accurate result. Moreover unlike most existing 
methods, the scheme presented in this thesis is designed to work for cluster­
ing. 

A fundamental discussion is carried out in chapter 8, on how to evaluate 
the quality of clustering. In particular, attention is given to a common belief 
that a good clustering method should separate a labelled dataset according 
to the labels, thus acting as a classification method. It is shown in this 
chapter that this is not necessarily true, and that the underlying structure 
of the dataset may be based on other criteria. 

A fairly new direction is examined in chapter 9, where the structure of a 
set of points is studied more carefully. Once a dataset has been divided into 
smaller clusters, it may be interesting to have some algorithm finding the 
intrinsic properties of these clusters. In this chapter, an algorithm to find an 
ellipsoidal envelope of the set is presented. An application of this algorithm 
for eliminating noisy points from the dataset is developed and applied. 
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Chapter 1 

Data analysis 

1.1 Introduction 

The second half of the last century witnessed an unprecedented development 
of the technology. Increasingly sophisticated electronic measurement devices, 
combined with larger and cheaper storage capacity, permitted the collection 
of very large data at a high rate. Major scientific projects, like the human 
genome, will rely heavily on the data collected by experts for many years. 
Today, hardly any political or financial decision is made without the help of 
some sort of data, and wars are declared on the basis of "intelligence data". 
However, mistakes are made. For this reason, the art of extracting non­
trivial information from data is bound to take a major importance in the 
near future. This is the purpose of data analysis. 

1.1.1 Definitions and notations 

The information usually takes a very distinct form: for a given individual, a 
set of characteristics or features are measured or evaluated. These measure­
ments are carried out on a number of instances. 

For each individual, the set of values of all the characteristics is called a 
record, or an observation and the set of all the records is called a dataset or 
database. 

Some obstacles to the measurements are: 

• the cost of a particular measurement technique may restrict the number 
of measures taken; 

• the precision of the measurements can not always be ensured, and mea­
surement errors are likely to appear 
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Data analysis 

In [181, page 4, example 4], the author gives an excellent example which 
helps explain the different concepts in data analysis. The following example 
is largely inspired from this. 

Example 1: Suppose one decides to collect information about a particular 
sickness. On a number of patients doctors can input material such as age, 
gender, height, weight., social and professional categories, diet, colour of the 
eyes, ... and whether the person is sick. 

In this case, the material collected for one patient constitutes a record, 
while "age", "gender" or "diet" are features 

The collected information must be coded in order to be stored in com­
puters. Such coded information is called data. This task may be a delicate 
one, as several difficulties can appear: 

• Most measurements can be stored under different units (time can be 
stored in centuries, years, minutes, seconds, microseconds, ... ) 

• Some more abstract information has to be made suitable for a· com­
puter format (a colour may take many different variations that may be 
difficult to code). 

Example 2: In the case of the dataset presented in example 1, the height 
can be recorded in centimetres, metres, feet, etc ... Meanwhile, the weight 
can be recorded in kilogrammes, pounds, or stones. Although these records 
will in reality represent the same entities, a height in centimetres will "vary" 
more from one record to another than a weight in stones, while a height in 
metres will "vary" less than a weight in kilogrammes 

Some of the characteristics may also not be very easy to record very 
accurately: how to describe numerically the profession or the diet of a person? 

At this stage, a dataset can be represented as a table, where the columns 
are the features and the rows are the records. 

The purpose of storing information is to enable researchers to find some 
underlying characteristics. The process of extracting non-trivial information 
from data is called data analysis or data mining. The fields of data analysis 
can be divided into several categories, among which: 

• Preparing the dataset for the application of some algorithms. 

• Comparing the existing data, in order to find the similarities and dif­
ferences. 

• Building forecasting models from the existing data, in order to assign 
a new record to one of several categories. 
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Data analysis 

We focus on three particular aspects of data analysis: classification, clus­
tering, and preproceasing. In the next section we will give a brief glance 
at each of these prohlems. Then, for each of them, the existing research 
directions and solutions will be discussed. 

1.1.2 Classification (supervised learning) 

The supervised classification problem is one of the most widely studied in the 
field of data analysis. It may be necessary to be able to guess a character­
istic using the features. A dataset is separated into several groups (classes) 
according to one of its features. The goal of supervised classification is to 
elaborate an algorithm to assign a new observation to one or several of the 
classes. 

One can distinguish between single-class classification, where each record 
may only belong to one class, and multi-class classification, where a record 
may belong to several classes. 

Example 3: Let us come back to example 1 on the previous page. The 
current test to check whether the patient is sick could be very expensive. In 
that case, it is interesting to devise a method to assess whether the patient 
is sick or not according to the other features. 

In this case, the feature "Sick or not" represents the class. Obviously here 
the dataset consists of only two classes, and each record can only belong to 
one class. 

1.1.3 Clustering (unsupervised learning) 

The clustering problem is a less definite one than the supervised classification 
problem. It consists of finding "clusters", that is to group the records by 
similarity. 

The following definition can be found in [104]: 

Cluster Analysis is the organisation of a collection of patterns 
(usually represented as a vector of measurements, or a point in 
a multidimensional space) into clusters based on similarity. In­
tuitively, patterns within a valid cluster are more similar to each 
other that they are to a pattern belonging to a different cluster. 

Example 4: Let us consider the dataset from the example 1 on the preceding 
page, examining only the patients who are sick. 
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Then the clusters are likely to reflect the different causes of the disease. 
For example, one might find that people who are sick can be divided into the 
following clusters: 

• Elderly people, 

• Smokers/Drinkers, 

• Miners, 

• Children growing up in the city. 

This would help elaborate an adapted therapy for each of these types of 
patients. 

Notice however that the problem of clustering is very protean and several 
solutions may appear sliitable, as they would separate the datasets according 
to different but acceptable criteria. 

Example 5: Instead of grouping the patients according to the cause of the 
disease like in example 4 on the previous page, the clustering algorithm may 
also group them according to the effects it takes: 

• Loss of weight, high fever 

• Gain of weight, extreme fatigue 

Both criteria are acceptable and both are useful for developing adapted reme­
dies or for prevention. 

1.1.4 Preprocessing 

As highlighted on page 6, a number of factors might influence the algorithms 
of data analysis. Prior to applying a clustering or a classification algorithm, 
it is thus necessary to perform preprocessing. When the characteristic can be 
numerically encoded (as are distances, weights, age, etc . .. ), different units 
in which the data is entered might induce different behaviours of the classifi­
cation or clustering algorithms. Indeed, most of the data analysis techniques 
involve some sort of comparison between the different characteristics, for e~ch 
particular record, and the results of these comparisons depend strongly on 
the scales for each characteristic. 
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Example 6: Suppose one wants to compare the infiuences of the sickness 
011 the weight of a person and on her body temperature. The temperature is 
measured in Celsius degrees, and its value may vary by 2 or 3. If the weight 
is measured in stones its value may change by 3.5. In this case the variations 
are quite comparable. However, if the weight is measured in kilogrammes, 
the change could be of 20, which would give more importance to the weight 
changes than to the temperature ones. 

One way to limit the fluctuations of the results is by rescaling the dataset: 
each feature is reduced to a particular scale in order to enable their compar­
ison. 

Another problem encountered in data analysis is the feature selection. 
The choice of the data collected is usually made by humans. Aside from 
financial considerations, it may seem that the most information is recorded, 
the best it is. This will result in the record of much useless or redundant 
information. 

Example 7: Before the modern days of data mining, people used to believe 
that the colour of the hair could be associated with witchery. Good feature 
selections would have helped them correct this misjudgement. 

Being able to sort the data through feature selection in order to eliminate 
uninformative features is capital, as these features not only slow down the 
programs, but also may bring some noise and alter the results. 

In the rest of this chapter we will give a review of the existing methods 
used in data analysis. 

1.2 Clustering (unsupervised learning) 

The literature about clustering is abundant and dense. The clustering prob­
lem appears in a large variety of fields, and was therefore often studied sepa­
rately, under various forms and with different vocabulary. It is not our goal 
here to carry out the monumental task of giving an exhaustive overview of 
the clustering techniques. Excellent starting points for such a review are 
the report [104] and the book [147] . We also can refer to an older but good 
introduction such as [182]. 

We will give here a brief overview of clustering by giving the outlines of 
the main clustering approaches, and explain more in details the methods we 
believe are of interest . 
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1.2.1 Mathematical formulation 

The clustering problem, notwithstanding its multifariousness, can be formu­
lated mathematically. 

A dataset can be represented as a finite set of points in the n-dimensional 
space lRn. The clustering problem can then be reduced to the following 
partitioning problem. 

Given a finite set A = {aI, ... ,an} C lRn, find AI, ... ,Aq such that: 

Several other rules are usually added, depending on the problem: 

• If the number q of clusters is fixed in advance, in some cases no empty 
cluster is required 

Ak =f. 0, Vk = 1, ... , q. 

• In the case of hard clustering (as opposed to fuzzy clustering), there 
should be no overlapping between the clusters: 

Our work will concentrate on the hard clustering problem. 
The purpose of clustering being to group points by similarity. It is nec­

essary to elaborate a tool to evaluate the similarity between two points. Let 
us consider a mathematical definition of the similarity (see [182]). 

Similarity is used to compare two records, and therefore should be a ' 
function of two vectors into the ordered space lR: S : JR'fL X JR n ~ JR. Consider 
the following list of axioms. 

• The similarity is the same for any identical pair (x is as similar to x as 
y is to y): 

S(x,x) = So E lRU{+oo},Vx E lRn 

• A pair of elements cannot be more similar than an identical pair: 

S(x , y):S so,V(x,y),V(x,y) E lRn x lRn 

• If two elements are as much similar as they can, they are identical: 

S(x, y) = So =} x = y, V(x, y) E lRn x lRn 
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• Symmetry: x is as similar to y as y is to x: 

S(x, y) = s(y, x), V(x, y) 

Definition 1. We will call similarity a function S : JRn X JRn ---+ JR which 
satisfies all these axioms. 

It is possible to write a dissimilarity function: 

• If So E JR, d(a, b) = So - s(a, b), 

• If So = +00, d(a, b) = s(~,b). 

If the dissimilarity function follows the rule: 

• d(x, z) :::; d(x, y) + d(y, z) 

then it is a metric function. 
In this context metrics can be used as a dissimilarity measure. Metric 

functions are a widely studied class of functions, and people are usually 
more comfortable with measuring the dissimilarity than the similarity (that 
is point out the differences between two items, instead of their resemblance). 
Therefore most clustering algorithms are based on the minimisation of the 
dissimilarity. This is the approach adopted in this thesis. 

Remark 1: It should be emphasised that the distance used for the minimi­
sation should not necessarily be a metric distance. In fact, the distance is 
dependent on the dataset and the clustering goals. 

For example, it is quite common in telecommunications to consider the 
pathloss between an antenna and a user. This pathloss is expressed under 
the form: d(a, b) = a In(llb - al12 + /3), for some a > 0, /3 > o. As this is a 
concave function, it is clearly not a metric. 

Inasmuch as an inappropriate distance would lead to meaningless results, 
for each application, or each dataset, a proper distance function has to be 
specified by an expert. 

Remark 2: Most clustering algorithms actually try to emulate the "visual 
categorisation" done by the brain in 2-dimensional clustering: suppose one 
can represent the records on a euclidean plan. Then the brain will naturally 
try to group the points according to patterns based on geometrical consider­
ations (such as the Euclidean distance). 

The figure 1.1(a) shows a dataset, and figure 1.1(b) on the next page 
shows its natural clustering. In figure 1.1, one can see how the points "close 
to one another" are grouped together. Notice however that point A is closer 
to point C from another cluster than to point B from its own cluster. 
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Data analysis 

(b) "natural" clustering of this 
dataset 

Figure 1.1: Visual categorisation and clustering in 2 dimensions 

Remark 3: The difficulty of the clustering problem can easily be grasped 
when a 2-dimensional example is considered: the number of clusters con­
tained in the dataset represented on figure 1.2 is not obvious, and probably 
depends on the type of information sought. 

. .... . ~ 

._ :.... : .1 

Figure 1.2: The number of clusters in this dataset is not obvious 

As distance functions, most methods use the Minkowski metric: 

d(x ,y) = IIx - YII;, 
where 

(1.1 ) 
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Remark 4: For p = 2 and 'Y = 1 this function is the Euclidean distance. 

• 

The advantage of such distance functions is multiple: 

1. Minkowski metrics, particularly for p E {l, 2, oo} are based on geomet­
rical considerations and therefore comply with remark 2 on page 11; 

2. Minkowski metrics are well known and are often less computationally 
demanding than less usual distance functions. 
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(a) Clusters are defined by the Euclidean metric 
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(b) Clusters are defined by a distance to a central 
plane 
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• • • .. 

•• 

• • 
• 
• 

• • . .. • • 
• • • 

• 

• 
• 

Figure 1.3: Datasets defined by clusters defined by different dissimilarity 
measures 

Figure 1.3 presents two datasets. The one presented on figure 1.3(a) 
clearly consists of two clusters, which can take the form of balls. Clearly by 
defining two central points for these clusters, it is possible to characterise 
this dataset fairly well. 

Contrariwise, it is difficult to say how many point-based clusters the set 
depicted on figure 1.3(b) has. Its description by means of such clusters cannot 
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clarify its structure. At the same time this structure can be described by 
three straight lines (hyperplanes). 

1.2.2 Optimisation problem 

Consider the problem of finding q clusters in the dataset A, containing m 
observations and n features . The clustering problem can be presented as 
an optimisation problem, where the objective is to maximise the similarity 
of the points inside each cluster. A common method is to assimilate each 
cluster with its centre. We obtain the following formulation: ([32, 33, 182]): 

q 

minimise r.p(C,x) = 1 A '" '" d(Xi, a) 
card ~~ 

i=l aEAi 

subject to 
C E C . - ( I q) lRnxq ,x2 - X , ... , x E . 

(1.2) 

where C = {AI, ... , Aq} is a set of clusters, C is the set of all possible 
q-partitions of the set A and Xi is the centre of the cluster Ai, 1 < i ::; q. 

This formulation presents an important drawback: the variables of the 
problems are clusters, or sets of points. It is therefore extremely difficult to 
devise algorithms to solve such problems. However, it can be rewritten as 
the following mathematical programming problem: 

, 1 m q .. 

minimise 'ljJ(x, w) = cardA L L wijd(xJ
, a

2
) 

i=l j=l 

subject to 
x = (Xl, ... ,xq

) E lRnxq
, 

q 

L Wij = I, 1 ::; i ::; m, 
j=l 

Wij = 0 or 1, 1 ::; i ::; m, 1 ::; j ::; q 

(1.3) 

where Wij is the association weight of pattern ai with cluster j, given by 

W .. = {I if pattern i is allocated to cluster j, VI ::; i ::; m, 1 ::; j ::; q, 
2J 0 otherwise 

This problem is a conventional optimisation problem. However it is very 
heavy, as it is a mixed problem (it has both integer and real variables), and 
contains a very large number of variables (this number depends on the size of 
the set A, which can reach several millions) . It may nevertheless be reduced 
to the following nonconstrained nonsmooth problem: 
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minimise ~ 4 ~ min d(x, a) 
car . ~ l~s::;q 
subject to 

(1.4) 

( 1 q) JRnxq x , .. . ,x E , 

This formulation has several advantages: the number of variables is in­
dependent from the number of instances in the dataset. Furthermore, .it is 
a nonconstrained problem. Nevertheless, the objective function is noncon­
vex (for q > 1) and nonsmooth, containing a large number of local minima. 
Most usual optimisation algorithms do not efficiently solve this problem, for 
several reasons: 

• Due to the nonsmoothness of the function, the application of smooth 
descent algorithms such as Newton's method and its variations are not 
adapted 

• The potentially large number of variables (real world datasets· may 
contain hundreds of features) does not allow the application of global 
techniques. 

Remark 5: It must be noted that the formulation (1.4) gives some freedom: 
not only the function d does not have to be a metric, but also the variable 
x does not have to be in JRn. In [37] an objective function was introduced 
where the "centres" are not points, but hyperplanes, and thus the variables 
belong to JRn+l. 

1.2.3 k-Methods 

General scheme 

The k-means method is one of the oldest, yet still one of the most popular 
clustering methods. It was introduced by MacQueen in 1965 ([138]), and 
since then many variations have been developed. A generalisation of this 
method is presented here, and its efficiency is discussed. 

The k-methods are grounded on the convexity of metric distance func­
tions, and can thus be applied to any convex dissimilarity measure. 

Algorithm 1.1 on the next page presents a general version of the k­
methods. It is easy to see that the k-algorithms terminate: there are a 
finite number of ways to assign the points into q clusters. As the stopping 
criterion ensures that no repeat is possible, the algorithm terminates after a 
finite number of steps. The cOllvergence of the algorithm is studied in [177]. 

15 



Data analysis 

Algorithm 1.1: The k-methods 
Step 1 Initialisation: 

Select an initial solution x~, ... , 1;~, set i f- 0 
repeat 

Step 2 i f- i + I 
Step 3 Cluster assignment: 

Step 4 

Find clusters Ai, ... ,A~ such that for any I :::; I :::; q, 

At = {a E A : d(xl- 1
, a) :::; d(x~-l, a), VI:::; p:::; q}. 

Cluster update: 
For each cluster i solve the convex optimisation problem: 

minimise L d(x, a) 
aEA! 

subject to 
x E IRn

, 

until 3j E {I, ... , i-I} : {Al, ... , A~} = {Ai, ... , An 

(1.5) 

The particularity of this algorithm is that it is based on the solution of the 
problem (1.5), which is a convex problem of relatively small size. Moreover 
this problem is usually smooth (when the distance function is smooth), and 
thus there are many methods to find the global minimum. 

The problem with this algorithm is that it strongly relies on an efficient 
solver for the convex minimisation problem. Indeed, in most cases, when a 
theoretical solution to this problem is not known and a local algorithm has to 
be applied, the k-algorithm is practically not viable. Some interesting cases 
worth mentioning are: 

• The k-means algorithm (see [138]), solving the problem for d(x, y) = 
1 

Ily - xll~, where IIlb is the Euclidean norm: IIxll2 = (I:~=l xD 2. For 
such distance the solution of the problem (1.5) is the barycentre of the 
set At. 

• The k-median algorithm (see [38]), solving the problem for d(x, y) = 

lIy - xiiI, where 11111 is the I-norm: IIxlll = I:~=llxil· For such distance 
the solution of the problem (1.5) is the median of the set At. 

• The k-planes algorithm, introduced in [37]. For this method, the vari­
ables are hyperplanes (x E JRTI+l) , and the distance used is d(x, a) = 

((l,a) - b)2, where x = (l,b),l E JRTI,b E JR. For this method, the 
analytical solution can be obtained as the solution of a linear system. 
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Although the k-methods seem quite general and lead to a local solution 
for any kind of distance, in practice only the k-means and the k-median 
are fast enough for being applied. Even the k-planes algorithm, for which 
an analytical solution to the convex problem is calculated, cannot be applied 
successfully on real-world datasets, as solving a linear system at each iteration 
appears too expensive. 

Notwithstanding the popularity of the k-means method, it has been shown 
([25]) that these methods also rely strongly on the initial point, which trans­
lates in them often terminating on shallow local minima. 

Improvements 

To reduce the influence of the initial points on the k-means algorithm, many 
improvements have been proposed (see [35, 66, 90, 182]). They can arguably 
be divided into two categories: 

1. The search for a well-chosen initial point, 

2. The combination with other search methods. 

The search for a combination has been particularly proficient. Most al­
gorithms are based on the application of k-means starting from a number of 
initial points, chosen randomly according to some probabilistic distribution. 

On the other hand, the search for an analytical initial point is a hard 
task, as little is known about the structure of the dataset. Once again most 
approaches are based on some statistical considerations. Two approaches 
worth mentioning have been proposed by Hansen and Mladenovic in [87] 
and [89] (see also [86, 88]) . 

• The j-means method is a variant of the k-means algorithm where the 
cluster assignment step 3 is modified as follows: one of the cluster 
centres is replaced by one of the observations. The selection of the 
centre and the observations is based on the best improvement of the 
value of the function (1.4). . 

• The other one is based on a combination between k-means and a Vari­
able Neighbourhood Search. Variable Neighbourhood Search ([88]) is 
a metaheuristic algorithm adding perturbations to a local search algo­
rithm. 

An approach proposed in [124J uses an incremental implementation of the 
k-means algorithm: at iteration i , the method solves the k-means N times 
(each observation being an initial point) for finding the optimal solution for 
i clusters. 
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In [89], the authors compare these three methods. They all clearly im­
prove the k-means algorithm. The combination between k-means and VNS is 
best aIllong them. Nevertheless, while the k-means method is an extremely 
fast procedure, these methods are computationally more expensive. 

1.2.4 Optimisation methods 

WhelL the number of clusters is larger than one, the objective function (1.4) 
is nOllsl11ooth. Most classical methods can therefore not be used to solve 
this problem. Moreover the number of variables depends on the number of 
features and on the number of clusters. It can be very large, and consequently 
make problem (1.4) not solvable through global methods. 

Several methods have however been applied on this problem. A good 
review for these algorithms is given in [86]. 

Among these methods we can find: 

• Dynamic Programming and Branch and Bound methods,which only 
perform well for a reduced number of features and few clusters (see 
[105]), but get worse for larger problems ([64, 84, 118]). 

• IVIetaheuristics, such as Tabu Search ([4]), Simulated Annealing ([40, 
178, 183]) and Genetic Algorithms ([169]). These methods were suc­
cessfully applied to solve Problem (1.4). Nevertheless, even for small 
problems, these methods may be more than thousands times slower 
than the k-means methods (see [5]). 

• A Variable Neighbourhood approach was developed in [88], and an 
iuterior point search in [65]. 

In a general manner, numerical experiments have shown that while some 
heuristic methods may reach good solutions, they demand too much compu­
tational effort to be effective. The solution of the problem is out of reach 
for global deterministic methods, and general purpose local descent methods 
are generally slower than the k-means method without guaranteeing a better 
solution. 

Remark 6: It should be noted that the k-methods can be considered as 
local optimisation methods, as it has been shown that they converge towards 
a local solution for a particular function. For instance, the k-means method 
converges towards a local minimum of the function: 

minimise L min Ilx - all~ 
t 

aEA 

subject to 
x E JRn 
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1.2.5 Other methods 

Many nOll-optimisation based clustering methods exist. Among these can be 
mentioned: 

• Hierarchical methods. These methods are based on iteratively divi­
sion or merge of clusters. Their drawbacks is that the results strongly 
depends on eventual errors during the previous iterations. 

• Self organising maps. Self Organising Maps are one of the most 
popular clustering methods. They are based on the distribution of 
the data into 2-dimensional cells represented by a vector. Very little 
theoretical information about these methods is known, and convergence 
only exists for I-dimensional data. For more information, see [56, 67, 
68 , 69, 73, 96, 115, 116, 117, 155]. 

1.2.6 Evaluation of the clustering 

The main criterion to evaluate the quality of the clusters is a function mea­
suring the similarity. Assuming that the dissimilarity measure is adapted to 
the problem and the dataset under consideration, the average dissimilarity 
within the clusters, as described in (1.4) is a good indicator. . 

However the selection of an adapted dissimilarity measure is a perilous 
task, and because no automatic selection procedure exists, it can often lead 
to inaccurate results. Other techniques for evaluating a clustering method 
exist. We present two of them in this section. 

Structure of clusters 

One possible way to evaluate the quality of unsupervised classification is to 
check the distribution of the points within the clusters. To this effect, the 
notion of structure of clusters has been introduced in [24]. The goal is to 
check how "deep" the points are in the clusters. 

Suppose that we work with a dataset which contains N observations. A 
clustering method has been applied to this dataset and k centres of clusters 
have been obtained. Consider a point a from the dataset which belongs to 
the l-th cluster (with the centre xl). For this point we determine a value c(a) 
which can be found as follows: 

d(a, x') 
c(a) = . min d(a, xj)" 

J=l, ... ,k 
jil 

(1.6) 
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From the definition of clusters it is easy to conclude that c( a) E [0, 1 J. Very 
often a grid for c(a) such as 0.1, 0.2, ... ,lis used, and intervals are considered 
rather than the exact value for each c(a). For example, 

c(a) E [('i - 1) * 10-1
, 'i * 10-1

), 'i = 1, ... ,9, c(a) E [0.9, IJ (1.7) 

or 
c(a) E [0, i * 10-1

) i = 1, ... ,9, c(a) E [0, 1J. (1.8) 

The value c( a) for each point describes how "deep" this point is inside the 
cluster. It should underlined that different values of c(a) do not represent the 
radii for some spheres centred at the centres of the corresponding clusters. 
They rather represent some levels of confidence that the chosen point belongs 
to this cluster but not another one. It is possible that some points which are 
not "deep" enough inside the corresponding cluster move to another cluster 
(change their membership). It could happen, for example, 

• if we change the dissimilarity measure; 

• if we change the location of points (another accuracy to represent num­
bers in the computer); 

• if we change the value for some internal parameters for the optimisation 
methods. 

If c( a) = 1 or close to 1 there are two centres such that the distances between 
the point and these two centres are (almost) the same. In this case some 
changes within the data may change the membership of the point (the point 
is "unstable" inside the cluster). If c( a) is close to 0 the level of confidence 
for the point to keep its membership is high (the point is "stable"). 

Suppose that we obtain two different clustering results. First we can 
compare the value of cluster function in the centres of corresponding clusters. 
The systems of clusters with the lowest value of cluster function is better 
from the point of view of cluster function. Second, we check the structure of 
corresponding clusters by means of (1.6). If for the first clustering result, for 
most of the points a the values c( a) are smaller than for the second clustering 
result, we assume that the first collection of the centres is preferable to 
the second one in the sense of the structure of the clusters (by means of 
(1.6)). The most important is to investigate the points a with the values 
c(a) E [0.9,1]. It is possible that this two approaches do not coincide. 
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Classes and clusters: purity 

The notion of purity (see for example [63]) is used in the literature for evalu­
ation of accuracy of clustering methods. It requires classes in a dataset to be 
known in advance, but not used during the learning process. Assume that 
we have a dataset A composed of the classes {D1 , ... , Dl } and we apply a 
clustering procedure for finding clusters {CJ , •.. , Cd in this dataset. 

The purity of a set of clusters {C1 , ... , Cd is calculated as follows: 

(1.9) 

Let us illustrate this notion in the simplest case where a dataset A con­
tains only 2 classes {D1,D2}. Suppose that 4 clusters {C1,C2 ,C3,C4 } have 
been found in this dataset. 

If the majority of points from the j-th cluster (j = 1, ... ,4) is in the 
i-th class (i = 1,2), we assign the whole j-th cluster to the i-th class. 
When all the clusters are assigned to one of the classes, the percentage of the 
correctly classified points for the test set is considered as the classification 
accuracy. 

The validity of the notion of purity relies on the expectation that for a 
labelled dataset, a good clustering method should divide the dataset into clus­
ters corresponding to its classes. Stated differently, the classes in a labelled 
dataset are the only valid clusters. This is very arguable, as other clusters 
may arise in a dataset, and in case the dataset is not well constructed, these 
clusters may even make more sense than the actual classes. 

1.3 Classification (supervised learning) 

Unlike the clustering problem, the classification problem can be clearly stated. 
Given some labelled observations, one tries to devise a set of rules to assign 
a label to a new observation. In other terms, the classification algorithm is 
given a training set, where the labels are known, and the output should be 
a decision rule on a new observation, for which the label is not known in 
advance. 

The labels are also called classes. 
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Here again, the literature is abundant, and an exhaustive list of classifica­
tion algorithms is beyond the scope of this work. An excellent introduction 
to classification techniques as well as a good list of references can be found in 
[145] . Below we give a brief presentatioll of the main directions and a review 
on the application of optimisation to classification. 

1.3.1 Evaluation of the algorithm 

It is fairly easy to evaluate a classification algorithm. Indeed, it suffices to 
check whether it labels observations well or not. 

In order to allow a comparison of algorithms, a number of standard 
datasets are used in the data mining community. The datasets can be found 
on repositories such as [150, 170]. 

The algorithm is applied on a training set. Obviously, the evaluation 
cannot be performed on the training set itself. Because the labels of the 
points of this set are known and used by the algorithm, it is simple for this 
algorithm to get the rules to classify correctly these observations. 

To evaluate the quality of a classification algorithm it is thus necessary to 
apply the obtained classification rules to a test set, for which the labels are 
known, but not used during the learning process, but only as a verification 
during the classification process. 

In practice, two major techniques are used 

• The training and test sets are given separately. The comparison of the 
different algorithms is thus made on the same samples. 

• The test set is not given. In that case, the n-fold cross validation is 
applied 

The n-fold cross validation is a simple process: the dataset is divided 
randomly into n groups. The learning process is then applied n times, each 
time a different subgroups being the test set and the rest being the training 
set. The accuracy of the algorithm is then the average accuracy over the n 
experiments. 

1.3.2 Non-optimisation based approaches 

Here again, many approaches exist for data classification. Such methods 
include: 

• Statistical approaches, which tend to be very sensitive to the size of 
the data: when the data is too small, their performance may be altered; 
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• Machine learning methods. These met.hods are based on the elab­
oratioll of the classification rules as a tree. It has been shown in [145] 
that these methods may perform very well on the training data, but 
very bad on test data. They may also be unpractical, as they are very 
memory-consuming; 

• Neural networks. The neural network approach is based on an anal­
ogy with the brain. The training data is processed one by one, and the 
clas~ific:ation rules are corrected or refined progressively. The draw­
back of these methods is that the classification rules are not explicit, 
and therefore it is difficult to evaluate whether they will fail. 

1.3.3 Optimisation methods in supervised learning 

Intuitively, the classification problem is an optimisation problem: the goal is 
to minimise the number of misclassified points (or to maximise the nurnber 
of well-classified points). 

Mathematically the formulation of the problem takes usually the follow­
ing shape: the classification rule is formulated as a function depending on 
a number of parameters. Then the objective function of the problem de­
pends on the misclassified points, and the variables of the problem are the 
parameters. 

In the following subsections, we will introduce various types of optimisa­
tion problems for supervised learning. Most of these problems are based on 
the connected problem of separating two sets A and B. Mathematically, this 
problem is formulated as follows. 

Find f : IRT!. ~ IR such that: 

{ 
f(a) < 0 \fa E A 
f(b) > 0 \fb E B, 

or, without loss of generality, such that: 

{ 
f(a) < -1 \fa E A 
f(b) ~ 1 \fb E B, 

(1.10) 

The difficulty of solving this problem is that usually only subsets A E A 
and B E B are known. This problem in general is a feasibility problem: find 
a solution satisfying a given set of constraints. Feasibility problems can often 
be converted to optimisation problem by the creation of a penalty function. 
The functioll is positive for non feasible solutions, and zero otherwise. Often 
these functions represent a "distance" to the feasible set, to ease the task of 
the optimisation method. These functions are called error functions. 

23 



Data analysis 

In the caoe of the problem (1.10), the variable is a function. This problem 
is hardly solvable as such, and most optimisation-based classification methods 
actually rest.rict t.he function f to a special class. 

1.3.4 Linear separability 

Figure 1.4: Linear separation of sets 

Linear Separability is a set-separation technique, where the separat.ing 
function is affine. 

Let A and B be given sets containing m and p n-dimensional vectors, 
respectively: 

A = {al, ... ,am},ai E lRn,l:::; i:::; m, 
B = {b\ . .. ,lJP}, Oi E lRn, 1 :::; j :::; p. 

The sets A and B are linearly separable if there exists a hyperplane {x, y}, 
with x E lRn, y E lRl such that 

1. for any j E {I, ... ) m} 
(x,aj

) -y < 0, 

2. for any k E {I, ... ,p} 

The sets A and B are linearly separable if and only if co A n co B = 0. 
In [30] the problem of finding this hyperplane is formulated as the follow­

ing optimisation problem: 

minimise f(x, y), subject to (x, y) E lRn+1 (1.11) 
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where 

1 m 1 p 

j(x, y) = - Lmax (0, (x, ail - y + 1) + - Lmax (0, -(x, l;1) + y + 1) 
m p 

i = 1 j = 1 

is the error function. 
The authors describe an algorithm for solving problem (1.11). They show 

that the problem (1.11) is equivalent to the following linear program: 

1 m 1 p 

minimise - L ti + - L Zj 

m i=1 P j=1 

subject to 
ti ~ (x, ail - y + 1, 1 ::; i ::; m, 

Zj ~ -(x, l;1) + y + 1,1 ::; j ::; p, 
t > 0, Z ~ 0, 

where ti represents the error for the point ai E A and Zj represents the error 
for the point bi E B. 

The sets A and B are linearly separable if and only if 1* = j(x*, y*) = ° 
where (x*, y*) is the solution to the problem (1.11). It is proved that the 
trivial solution x = 0, Y E 1R cannot occur. 

1.3.5 Support vector machine 

Support Vector Machine (SVM) is essentially an extended linear separability 
technique. First proposed in [191] (see also (192]), it is nowadays one of the 
most popular classification methods. A good introduction can be found in 
[42] (see also [193, 194] for comprehensive reviews). 

Linear support vector machines 

When two sets A and B are linearly separable, it is quite clear that the 
minimum of problem (1.11) is 0, and that the solution is not unique. In order 
to select the "best" among these solutions, a new problem is constructed, 
where the linear separation is set as a constraint . 

The linear separability can be written without loss of generality as follows: 

(1.12) 

where Pk E Au B is an observation, and 

Zk = { 
-1 if Pk E A 
1 if Pk E B 
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The goal of SVM is to maximise the margin between the separating plane 
and the points. This margin is represented by l/lIxll , and therefore the goal 
of the problem is to minimise ~lIxIl2, subject to (1.12). 

Writing the Lagrangian of this problem, using Ak as Lagrange multipliers, 
we obtain: 

1 K K 

L = 211xl12 - LAkZk((X,Pk) - y) + LQ:k. 
k=l k=l 

By differentiating with respect to x and Y I we obtain: 

K 

X = LAkZkPk 
k=l 

K 

LAkZk = 0, 
k=l 

which can be substituted in (1.13) to get: 

K 1 
LD = LAk -"2 LAkA/YkYI(Pk,PI). 

k=l k,l 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

The hyperplane is then found by minimising (1.16) subject to (1.15) and 
the positivity of the AkS. 

The vectors in A and B for which the Lagrange multipliers are nonzero 
are called the support vectors. 

In the non linearly separable case, no feasible solution exists to the initial 
problem. A variation is therefore written, taking into account errors f.k > 0 
as: 

(1.17) 

If f.k 2: 1 then the point Pk is misclassified. In order to reduce the number 
of misclassified points, the new objective is 

The linear support vector machine is a more elegant way of linearly sep­
arating two sets than the method presented in section 1.3.4, because it ac­
tually selects the "best" (according to some criterion) feasible separating 
hyperplane. One should expect that by taking a hyperplane as far as possi­
ble from any point, it improves the chances of separating the sets A and B 
as well. 
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Figure 1.5: Nonlinear separation through support vector machine 

Nonlinear support vector machines 

Sometimes, the separating function is highly nonlinear. In such a case, the 
space D can be mapped by a function rp : D ----? H, where (in general) 
dim (H) 2: dim(D). 

Due to the shape of the problem to solve (see function (1.16)), it isnot 
necessary to know rp, but only the function K : D ----? JR such that: 

K(x, y) = (rp(x), rp(y)). 

The function K is called a Kernel function. 
Classical types of kernel functions are: 

• K (x, y) = ((x, y) + l)P 

• K(x, y) = e-lIx-yIl2/2cr2 

• K(x, y) = tanh(K(x, y) - 0") 

Nonlinear support vector machines can be considered as statistical meth­
ods. They need to be provided with a particular distribution (Kernel func­
tion), which task is difficult, in practice, to apply rigorously. Choosing the 
kernel function is a particularly difficult task when this function is very com­
plex. 

Considering the problem (1.10) suppose that it is known that f E F, 
where F is a family of functions. Then, one can define the set 

<I> = {( rp : JR n ----? JR m) : (x 1--+ (w , rp (x) )) E F} , 

and deduce an associated function K . Then SVM provide an elegant and 
efficient method for solving the set-separation problem. 
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In reality, it is very rarely possible to apply this scheme, as the conditions 
necessary for it are: 

• The family :F should be known; 

• It should be possible to deduce from it the set <P (in the case it even 
exists); 

• The function J( should be explicitly derived from <P. 

The practical application of SVM is based on arbitrary choices of K, 
which may range fro111 a "wild guess)) to the judgement of an expert. 

1.3.6 Polyhedral separability 

Figure 1.6: Polyhedral separation of sets 

The concept of h-polyhedral separability was developed in [8]. The sets 
A and Bare h-polyhedrally separable if there exists a set of h hyperplanes 
{Xi, Yi}, with 

such that 

1. for any j E {I, . . . , m} and i E {I ... , h} 
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2. for any k E {I, ... ,p} there exists at least one i E {I, ... , h} such that 

(Xi, bk
) - Yi > O. 

It is proved in [8] tha.t the sets A and Bare h-polyhedrally separable, for 
some h ~ p if and only if 

co (A) n B = 0. 
The problem of polyhedral separability of the sets A and B is reduced to 

the following problem: 

minimise f(x, y)subject to(x, y) E lR(n+l)xh (1.18) 

where 

f(x,y) ~ ~max [0, max {(Xi, aj
) - Yi + I}] 

nL ~ l<i<h 
j=l --

1 P [ . ] + - ~ max 0, min {-(x\ bk
) + Yi + I} 

p ~ 1:::;i9 

is an error function. 

N otel: This function is nonconvex piecewise linear. 

It is proved in [8] that Xi = 0, 1 ~ i ~ h, Y E lR cannot be the optimal 
solution. 

Let {x i ,1/i}, 1 S; i S; h be a global solution to the problem (1.18). The 
sets A and Bare h-polyhedrally separable if and only if f(x, y) = O. If there 
exists a nonempty set I C {I, . .. ,h} such that Xi = 0, i E I, then the sets A 
and Bare (h - III)-polyhedrally separable. 

In [8] an algorithm for solving problem (1.18) is developed. The calcula­
tion of the descent direction at each iteration of this algorithm is reduced to 
a certain linear programming problem. 

1.3.7 Classification via clustering 

Independently from linear and polyhedral separability, the problem of sep­
arating two sets can be studied using the clustering approach (see [145] for 
references on the application of unsupervised learning for classification). 

Suppose we are given two sets of points A and B. Then the structure of 
each of these sets can be studied separately. From the structure of the two 
sets, a separating function can then be deduced. 

Suppose we formulate the clustering problem under its (1.4) form. 
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Separating two sets 

An approach for separating two sets of points A = {ai} and B = {bi} based 
all clustering was proposed in [24]. For each set , the clustering problem 
is solved, respectively 'with qA and qB clusters. The solutions obtained are 
X = {x1, . .. , X~A , x1, . . . , xi:} . The separating function is then: 

(1.19) 

If the point y belongs to a cluster of the set A then it belongs to the set 
A. Otherwise it belongs to the set B. 

This technique can be seen as a form of piecewise linear separation of the 
sets: each pair of centres is separated by a line. The separation between the 
centres of the set A and those of the set B is thus piecewise linear (see figure 
1.7). 

.' 

/ 
/ 

/ 
\ 

\ 
\ 

\ 

Figure 1.7: Piecewise linear separation using clustering 

The advantage of this technique is that it does not restrict the search 
to only a convex polyhedron, and thus allows both the sets A and B to be 
nonconvex. One disadvantage, however, is that it only considers the sets 
separately. 

1.3.8 Max-min separability 

Max-min separability is a generalisation for the polyhedral separability in­
troduced in [23]. 
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Figure 1.8: Max-min separability. 

Definition and properties 

Let H = {hI,' .. ,hi} , where hj = {xj , Yj}, 1 :s; j :s; l with x j E JRn, Yj E JR l , 

be a finite set of hyperplanes. Let 1 = {1. ... ,l}. Consider any partition of 
this set F = {11' ... , 1r} such that 

Jk =f 0, 1 :s; k :s; r; 
1k n Jj = 0; 

r 

Let I = {1 , ... ,r}. A particular partition 1r = {11' ... , 1r} of the set 1 
defines the following max-min-type function: 

(1.20) 

Let A, B c JRn be two disjoint sets, that is A n B = 0. 

Definition 2. The sets A and B are max-min separable (piecewise linearly 
separable) if there exist a finite number of hyperplanes {xj , Yj} with x j E JRn, 
Yj E JR!, j E J = {1, .. . , l} and a partition F = {J1 , ... , Jr } of the set 1 
such that 

1. for all i E I and a E A 
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2. for any b E B there exists at least one i E I such that 

Remark 7: It follows from definition 2 that ifthe sets A and B are max-min 
separable then cp(a) < 0 for any a E A and cp(b) > 0 for any b E B, where the 
function cp is defined by (1.20). Thus the sets A and B can be separated by 
a function represented as max-min of linear functions. Therefore this kind 
of separability is called max-min separability. 

Remark 8: Linear and polyhedral separabilities can be considered as par­
ticular cases of the max-min separability. If I = {I} and J1 = {I} then 
we have the linear separability and if I = {I, ... ,h} and Ji = {i}, i E I we 
obtain the h-polyhedral separability. 

Proposition 1. (see [23J). The sets A and B are max-min separable if and 
only if there exists a set of hyperplanes {x j , Yj} with x j E lRn

, Yj E lR!, j E J 
and a partition Jr = {J1 , ... , Jr} of the set J such that 

1. for any i E I and a E A 

min {(xj , a) -Yj}::::; -1; 
JEJi 

2. for any b E B there exists at least one i E I such that 

Proposition 2. (see [23J). The sets A and B are max-min separable if and 
only if there exists a piecewise linear function separating them. 

Remark 9: It follows from proposition 2 that the notions of max-min and 
piecewise linear separability are equivalent. For this reason, max-min sepa­
rability is also called piecewise linear separability 

Proposition 3. Assume that the set A can be represented as a union of sets 
A i ,l ::::; i ::::; q : 

and for any 1 ::::; i ::::; q 
B n co Ai = 0. (1.21) 

Then the sets A and B are max-min separable. 
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Corollary 1. (see [23)). The sets A and B are max-min separable if and 
only if they are disjoint: An B = 0. 

In the next proposition it is shown that in most cases the number of 
hyperplanes necessary for the l].lax-min separation of the sets A and B is 
limited. 

Proposition 4. (see (23)). Assume that the set A can be represented as a 
union of sets Ai, 1 :S i :S q and the set B as a union of sets B j , 1 :S j :S d 
such that 

q d 

A = U Ai and B = U B j 

i=l j=1 

and 
co Ai n co B j = 0, \7'1 :S i :S q, 1 :S j :::; d. (1.22) 

Then the number of hyperplanes necessary for the separation of the sets A 
and B is at most q. d . 

Remark 10: The only cases where the number of hyperplanes necessary is 
large are when the sets Ai and Bj contain a very small number of points. 
This situation appears only in the particular case where the distribution of 
the points is like a "chessboard". 

Error function 

Given any set of hyperplanes {xj , Yj}, j E J = {I, .. . ,l} with xj E lRn
, Yj E 

lR1 and a partition jT = {J1 , ... , Jr } of the set J, we say that a point a E A 
is well separated from the set B if the following condition is satisfied: 

max min { (x j , a) - Yj} + 1 :S O. 
tEl JEJi 

Then we can define the separation error for a point a E A as follows: 

max [0, max min {(x j , a) - Yj + I}]. 
tEl JEJi 

(1.23) 

Analogously, a point b E B is said to be well separated from the set A if 
the following condition is satisfied: 

min max { - (x j 
, b) + Y j } + 1 :S O. 

tEl JEJi 

Then the separation error for a point b E B can be written as 

max [0, min max {-(xj
, b) + Yj + I}]. 

lEI JEJi 
(1.24) 
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Thus, an averaged error function can be defined as 

f(x,y) = 1 m [ . ] - 2:= max 0, m?X min { (xJ , ak
) - Yj + 1 } 

'Tn tEl JEJi 
k=1 

1 P [ . ] + - 2::: max 0, min max {-(xJ, bt
) + Yj + I} 

P lEI JEJi 
t=1 

(1.25) 

where x = (x\ . .. , xl) E lRlxn, Y = (Y1,"" Yl) E lRl . 
It is clear that f(x, y) ;:::: 0 for all x E lRlxn and Y E lRl . 

Proposition 5. (see [23]). The sets A and B are max-min separable if and 
only if there exists a set of hyperplanes {x j , Yj}, j E J = {I, ... , l} and a 
partition Jr = {JI, ... , Jr} of the set J such that f(x, y) = O. 

Proposition 6. (see [23]). Assume that the sets A and B are max-min 
separable with a set of hyperplanes {x j , Yj}, j E J = {I, ... , l} and a partition 
r = {J1 , ... , Jr} of the set J. Then 

1. x j = 0, j E J cannot be an optimal solution; 

2. if 

(a) for any tEl there exists at least one b E B such that 

~ax {-(x j , b) + Yj + I} = ~in~ax {-(x j , b) + Yj + I}, (1.26) 
JEJt lEI JEJi 

(b) there exists J = {J1, ... , Jr } such that Jt C Jt , Vt E I, Jt is 
nonempty at least for one tEl and x j = 0 for any j E Jt , tEl. 

Then the sets A and B are max-min separable with a set of hyperplanes 
{x j , Yj}, j E JO and a partition 1= {II,' . . ,lr} of the set JO where 

r 

It = Jt \ Jt , tEl and JO = U Ii. 
i=l 

Remark 11: In most cases, if a given set of hyperplanes with a particular 
partition separates the sets A and B, then there are other sets of hyperplanes 
with the same partition which will also separate the sets A and B (see figure 
1.8). The error function (1.25) is nonconvex and if the sets A and Bare 
max-min separable, then the global minimum of this function f(x*, Y*) = 0 
and the global minimiser is not unique (see figure 1.9). 
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Figure 1.9: Several piecewise linear separators for the same sets 

The family of piecewise linear functions is particularly attractive for solv­
ing the set separation problem. Indeed, since only approximations of the sets 
A and B are known, it is in any case impossible to find exactly the separating 
function. Furthermore, it is well known that it is possible to approximate 
any continuous function as close as wanted using a piecewise linear function. 
Therefore, it seems natural to consider this family for set separation. 

Unfortunately, the optimisation problem generated is not as simple as 
the Support Vector Machines, and the problem of selecting the best of two 
separating functions still has to be considered. Both these methods seem to 
present advantages and disadvantages, but the max-min separability seems 
to show more potential for improvements. 

1.4 Preprocessing 

Most algorithms usually work better under certain conditions. Consequently, 
the data should be preprocessed in order to fit these conditions the best 
possible. Since the data is not known beforehand, the processing techniques 
should be as general as possible. 
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1.4.1 Scaling 

One most common preprocessing need is the scaling. Indeed, it is commonly 
admitted that polythetic algorithms (The features are simultaneously con­
sidered) work best. Hence, the necessity not to have any dominating nor any 
dominated feature is clear. In such a case, the result would depend only on 
the dominating feature. 

Example 8: The results of most algorithms on the dataset presented on 
figure 1.10 strongly depend on the preprocessing on this dataset: in the 
case 1.10(a), the dataset is ill-scaled, and the points Al and A2 have strong 
chances to be attributed to the wrong clusters (or classes). In contrast, the 
problems are much easier to solve on the same dataset with a good scaling, 
like in 1.lO(b). 

In most cases selecting the best scaling is not easy: the shapes of the 
clusters or classes are not known in advance, and it could be quite easy to 
worsen a situation. 

Here we give three scaling techniques commonly used. figure 1.11 presents 
the results of these scaling techniques on the ill scaled dataset shown on figure 
1.10(a) . Notice that all ofthem give a satisfactory scaling in this simple case. 

Scaling by average 

The principle of this scaling is to obtain a dataset for which the average of 
each feature is the same (usually 1). This scaling is described in Algorithm 
1.2. 

Algorithm 1.2: Scaling by average 

folr each feature to 
Step 1 Let p, = card(A) La. 

aEA 

Step 2 For each a E A let a' = ~. 

One of the possible drawbacks of this approach is that it depends on the 
"zero" for each feature. For example, the fact that the temperature can be 
measured in Fahrenheits, in Celsius or in Kelvins may give totally different 
results, as these scales present different o. 

It may be necessary for this scaling algorithm to take into account the 
features with means o. In this case, a slight modification of the algorithm 
can easily solve this problem. 
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x 
x 

feature 2 feature 2 

(a) ill-scaled dataset (b) well scaled dataset 

Figure 1.10: Two different sealings for the same dataset 

Scaling by average and variance 

The idea behind this scaling is that we do not only want all the features to 
have the same average, but also that the repartition of the points around it 
is similar. Algorithm 1.3 presents it more in details. 

The problem of this algorithm is that the repartition of the points may 
be disturbed. 

37 



(a) mean-scaled 
dataset 

Data analysis 

featme 2 

(b) variance-scaled 
dataset 

(c) max-min-scaled 
dataset 

Figure 1.11: Effects of various scalings on a dataset 

Algorithm 1.3: Scaling by average and variance 
for each feature do 

1 
Step 1 Let /-L = card (A) La. 

a E A 

Step 2 

Step 3 

aEA 

a-/-L 
For each a E A let a' = --. 

(]" 

Scaling in an interval 

It may be that some applications necessitate scaling all the features within 
the same interval, to keep the repartition intact. Algorithm 1.4 presents the 
pseudo-code for this algorithm. 

Algorithm 1.4: Scaling in an interval 

Step 1 

Step 2 

for each feature do 

l Let 0!1 = min a and 0!2 = max a. 
aEA a.E A 

a 
For each a E A let a' = ---

The drawback of this method is that it is very sensitive to measurement 
errors or erroneous points. 

1.4.2 Feature selection 

Another major issue for the quality of algorithms is the pertinence of the 
features. Selecting a smaller set of features sufficient to solve the given data 
analysis problem is important for two reasons: 
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• The presence of noisy features is likely to influence the quality of the 
results given by the algorithms. While not bringing any useful infor­
mation, a feature may increase the dissimilarity between observations 
ill reality close to one another . 

• In most optimisation problems in the data analysis field the number 
of variables is proportional to the number of features. More generally, 
the complexity of the problems encountered in data analysis presum­
ably depends on this number. Hence reducing it without loss of useful 
information is expected to accelerate the algorithms and increase the 
accuracy. 

Most feature selections are based on statistical considerations, and the 
features are usually eliminated according to a correlation between observa­
tiolls and features (see [36, 82]). In [110], an approach based on evolutionary 
algorithms has been developed, while [9, 20] present solutions based on op­
timisation techniques. 

1.4.3 Dataset reduction 

Nowadays, the datasets used in data analysis are often extremely large, count­
ing millions of observations. In some cases, data started to be collected as 
early as the 70's (for example the ADRAC database). In other cases, like in 
the Stock Market, information is added daily. 

Although the more information the better, algorithms are seldom able to 
deal with such large numbers of data, and it may be a judicious choice to 
design an algorithm working well on a subset of the data than a "quick and 
dirty" algorithm, able to work on the whole dataset, but providing deceiving 
results. 

Even though the number of variables of most optimisation problems we 
consider in data analysis does not depend on the number of observations in 
the dataset, too large datasets do influence the efficiency of the algorithms. 
Particularly when the number of variables is large, it is necessary to evaluate 
the objective functions many times. The computational effort for these eval­
uations is directly related to the number of records in the dataset. Therefore, 
it is often advantageous to apply a dataset reduction scheme before solving 
the problem. 

Additionally, a large number of records in the dataset often leads to ob­
jective functions having a large number of local minima, many of them not 
very deep, and therefore not acceptable at all. Decreasing the number of 
observations is a way to reduce the difficulty of solving the problems. 
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Au alternative which has been explored recently is to elaborate some 
datasets which somehow "summarise" the original datasets. The c-cleaning 
dataset (see [24]) is a method providing such reduced datasets, as shown in 
algorithm 1.5. 

Algorithm 1.5: c-clealling procedure 
input : A very large dataset A. 
output : A not so large dataset B . 

Step 1 Initialisation: 
Select c > O. Set Al = A and i = 1 
repeat 

Step 2 Select bi E Ai 

Step 3 Let Abi - {a E Ai : d( a, bi ) < c} 
Step 4 Set wi - card(Abi) 
Step 5 Let Ai+1 - A \ Abi 
Step 6 Set i - i + 1 

until Ai = 0 

Depending on c, the set B is much smaller than the set A. Varying c 
allows to get a balance between the size of the dataset and the accuracy of 
the representation. The weights Wi are very important, as they enable the 
modification of the objective functions accordingly. 

The c-cleaning procedure should provide a good approximation for the 
function (1.4). It has been shown in [181] that if we use the genera(ised 
cluster function 

_ 1 mB 

j(x) = - '" Wi min d(x, b) 
m ~ l<s<q 

i=l - -

(1.27) 

instead of the original function j, we get, for all x E lRn
, I/(x) - f(x)1 < c. 

The minimisation of data analysis functions for datasets with weights has 
been studied in [78]. 

Notice that the selection ofthe representatives bi in step 4 of the algorithm 
can be different. For example it is possible to take the barycentre of the set 
Bi · 

although the final dataset depends on the order in which the observations 
are processed, results of numerical experiments show that the order does not 
influence the results very strongly. 
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1.5 Test datasets 

In this section we present all the test datasets that will be used for numerical 
experiments in this thesis. 

1.5.1 Supervised learning 

Letters The dataset was introduced by David Stale. It is based on various 
fonts representation. The dataset consists of 20000 observations, 26 
classes, 16 numerical attributes. There are samples of 26 capital let­
ters, printed in different fonts. 20 fonts have been considered and the 
location of the corresponding samples has been distributed randomly 
within the dataset (see [145]). 

Pen-based recognition of handwritten digits (Pendigits) This dataset 
was introduced by E. Alpaydin and Fevzi Alimoglu. It contains 10 
classes, 10992 observations, 16 attributes. All input attributes are in­
tegers between 0 and 9. 

The dataset has been created by collecting 250 samples from 44 writers. 
The samples written by 30 writers are used for the training set and the 
digits written by the other 14 are used for writer independent testing. 
These writers are asked to write 250 digits in random order inside boxes 
of 500 by 500 tablet pixel resolution. The first ten digits are ignored 
because most writers are not familiar with this type of input device, 
but subjects are not aware of this (see [145]). 

1.5.2 Unsupervised learning 

Fisher's iris dataset This dataset contains 50 samples of 4 measurements 
for 3 types of irises (4 features, 150 observations). The initial goal is 
to establish rules to differentiate between the types of irises. (see [72]). 

Image segmentation dataset This database contains information about 
7 outdoors images, segmented to obtai!). a classification of every pixel. 
Each instance is a 3x3 region. The dataset contains 19 features, 2310 
observations [150]. 

The travelling salesman problem - TSPLIB1060 2 features, 1060 ob­
servations [170]. 

The travelling salesman problem - TSPLIB3038 2 features, 3038 ob­
servations [170]. 
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Heart disease database 13 features, 364 observations [145]. 

Diabetes database 8 features, 768 observations [145]. 

Australian credit cards database 14 features, 690 observations [145]. 

No. of No. of 
Database training test attributes classes 

Shuttle control 43500 14500 9 7 
Letter recognition 15000 5000 16 26 
Landsat satellite image 4435 2000 36 6 
Pendigits 7494 3498 16 10 
Page blocks 4000 1473 10 5 

Fisher's iris dataset 150 4 
Image segmentation dataset 2310 19 
TSPLIB1060 1060 2 
TSPLIB3038 3038 2 
Heart disease 364 13 
Diabetes 768 8 
Australian credit cards 690 14 

Table 1.1: Datasets in use in this thesis 

1.6 Summary 

A large choice of methods is available for the most common data analysis 
techniques. The variability between these methods mostly stands on their 
efficiency, their applicability and their portability. 

While statistical and heuristic methods are to this day the fastest methods 
to apply, they do not provide a large freedom of application: if one method 
works for a particular dataset, there is not guarantee that it will be successful 
on another dataset. 

Statistical methods are more efficient on large datasets, and may not 
give very good results when the number of records is small. Moreover, for 
a long period these methods were based on particular distributions. Today, 
much more efficient and portable statistical methods are designed with no 
assumption on the distribution of the points in the database. 

Heuristic methods are less limiting on the number of records. However, 
they suffer from the same problem as classical statistical algorithm: they are 
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not very portable, and a method working well in one case may completely 
fail in other (not necessarily more complex) cases. 

Because optimisation based methods are not limited in the number of 
variables, nor by a particular black-box scheme, they give more freedom to 
the expert. The same method can be applied to various fields, under various 
conditions, just by changing the error fuuction. 

However, they necessitate a good optimisation solver. The problems aris­
ing in data mining are very demanding, and most current general-purpose 
optimisation methods may require too much resource to be applied "out of 
the box". Therefore it is necessary to develop new methods, or to adapt 
the methods to the types of error functions that arise in classification and 
clustering. 
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Optimisation methods 

2.1 Generalities 

2.1.1 Presentation 

Definition of the problem 

The field of optimisation is very large and has many applications. Its purpose 
is to find the "best" solution to a given problem under particular circum­
stances, by choosing suitable values for a set of given variables. 

It is possible to find excellent reviews for optimisation. Classical results 
of mathematical analysis provided in [49, 59, 60, 171] are unequalled. Good 
generalist presentations about optimisation can be found in [54, 74, 94, 95, 
97, 98, 157, 160, 161]. Most results presented in this chapter are detailed 
in these. Proofs of theorems and of the termination of algorithms will be 
omitted, as they can be easily found in the literature. 

In mathematical programming, each variable takes a numerical value and 
the list of variables can consequently be written as a vector x E A c Rn, 
where n is the number of variables. The vector x is also called a a feasible 
solution. 

The quality of a given set of variables is measured with a function q : 
A ---7 R. The higher the value of the function q the better the quality of 
the parameters. The goal of optimisation becomes to maximise the quality. 
The function q is also sometimes called fitness function . Alternatively, it is 
possible to define a cost function c : A ---7 R. The goal of optimisatIon is 
then to minimise the cost. Clearly the two problems are equivalent, as the 
cost can be defined as the opposite to the fitness: c = -q. By convention, 
most optimisation procedures are designed to minimise. 
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A very general formulation of the optimisation problems is then: 

minimise f (x) 
subject to 

xEC 

The function f is also called objective function. 

Reformulation of the continuous optimisation problem 

(2.1 ) 

In the case of constraint optimisation, the set C is usually defined by a set of 
inequalities and/or a set of equalities. The general continuous optimisation 
problem can then be rewritten: 

minimise f (x) 
subject to 

gi (x) ::; 0, \7'1::; i ::; ni 
hj(x) = 0, \7'1::; j ::; ne 

x E ]Rn. 

(2.2) 

If ne = ni = ° then problem (2.2) is an unconstrained problem, otherwise 
it is a constrained problem and the functions gi, 1 ::; i ::; ni and hj, 1 ::; j ::; ne 
are called the constraints of the problem. Notice that the convexity of 
an unconstrained problem only depends on the convexity of the objective 
function. 

Remark 12: There exists a very large number of techniques which study 
the problem of taking constraints into account. 

For a smooth programming problem, the most efficient among these tech­
niques is based on Karush-Kuhn-Tucker theorem (see theorem 1 on the fol­
lowing page). 

This theorem is difficult to generalise to the nonsmooth case, and there­
fore other methods have to be employed. Among such methods one of the 
simplest is to incorporate the constraints into the objective function using a 
penalty function p such that: 

f = { p(x) = 0 if x E C; 
p(x) > 0 if x ~ C 

Usually the problem is then reduced to the following unconstrained prob­
lem: 

minimise f(x) + Ap(X) 

where A » 0 is a penalty parameter. 
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Theorem 1 (Karush-Kuhn-Tucker). Considering problem 2.2 on the previ­
ous page, where f, gi and h j are all differentiable. Then if x* E lRn is a local 
minimizer, there exists Ui E lR +) Vj E lR such that: 

i=l j=l 

Definition 3. The function 

ni nj 

L : (u, V, x) f-+ f(x) + L Uigi(X) + L vjhj(x) 
i=l j=l 

is called the Lagrangian . 

The most difficult type of problems is the one where the properties of the 
function and of the domain cannot be exploited, that is nonsmooth nonconvex 
optimisation. 

2.1.2 Notions of mathematical analysis 

Convexity 

Convexity plays an important role in optimisation. 

Definition 4. A set A is convex if for any x, YEA, for any t E [0,1] 

tx+ (l-t)y E A. 

Definition 5. Consider the function f : C -----t lR. The set 

epi(J) = {(x, y) E C x lR: y 2: f(x)} 

is called the epigraph of the function f. 

Definition 6. A function f is convex if its epigraph is convex. 

Proposition 7. A function f is convex if for any x, y, for any t 

tf(x) + (1 - t)f(y) 2: f(tx + (1- t)y. 
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Global vs local minimum 

Consider a function f : V I -t JR. 

Definition 7. A vector x is considered a global minimiser of f on VI if 

f(x) ::; f(y), Vy E V f · 

f(x) is the global minimum for f on VI. 

Definition 8. A vector x is considered a local minimiser of f on VI if ~c: > 0 
such that: 

f(x) ::; f(y), Vy E V f n B(x, c:) . 

f(x) is a local minimum for f on Vj. 

. ! . . 
-1--- '-- "--- - -----r----- . -- --r -------:-r· 

-- T-- . --r -.. · I ·--l·~ 
- ----j---- - ,,' ,-----f--· .. · ,' .. --.. _-

I ' , 
I 

~-"~"-- . ! .~ ..... -, .. ~q .. 

-X.l.-j.~ .,.- _ X 3 
! 

~ i . 

" !; 

;:. ' :: 

Figure 2.1: Function having 8 local minima and only one global one 

The function represented on figure 2.1 has 8 local minima: Xi, 1 ::; i ::; 8. 
For instance, Xl is clearly a local mini miser , since in its neighbourhood the 
function is minimal at Xl' However, because f(X2) < f(Xl), Xl is not a global 
minimum. 

The point X6 is the only global minimum of the function f. 
In the case of convex optimisation; any local minimum is also a global 

minimum. However this is not necessarily true when f or V j are not convex. 
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Finding a local minimum is easier than finding a global minimum, as it is 
sufficient to verify the local properties of the fuuction around a vector x to 
know whether it is a solution or not. Accordingly, many efficient methods 
have been developed for the convex optimisation problem, and most of these 
methods can be applied to find a local solution to the general problem 2.2. 

Although it is sometimes important to reach the global solution, in many 
practical problems it is satisfactory enough to find a "deep" local minimum. 
This, however, raises the question of deciding whether a local minimum is 
"deep" enough, and more generally to be able to evaluate the depth of a local 
minimum. These questions are in turn related to the problem of knowing the 
global minimum. 

For instance, on figure 2.1, although it is not a global minimiser, the 
point X2 is likely to be a satisfactory enough solution for practical purposes. 
Nonetheless the only reason we can assess that is because we know the global 
minimum of the function and can compare the function values. On the other 
hand, the point Xg is likely to be dismissed as a good solution. However, 
deciding whether intermediate points like Xs or X7 are satisfactory is a difficult 
task. 

Moreover, the fWlction can be noisy, that is a slight random perturbation 
can be introduced due to measurement errors. Figure 2.2 presents a noisy 
version of the function from figure 2.1. 

~~~ r=Tl -T~ - : 
__ 1_ - _. _ _' _. _._ .. _ 

'-'-' t._.__ ,'-'-", · .... +H.l 
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· ·-·-- I ·- ···~ .. -; 
. - --~I .... - --:-.. · 

-~ 
I 
i 
I .... 'i' 
I 

-- i " 
j 

i 
I 

. ..l ......... .... .. I-----,,-j-j , 
! 
I 

.. ·"·1-.. •·• -

1 

i 

Figure 2.2: Noisy function 
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Lipschitz continuity 

Definition 9. A function f is said to be Lipschitz continuous if 

3L E JR, 'v'(x, y) E V f : If(y) - f(x)1 ~ LilY - xII · 

The smallest L for which f verifies this is called the Lipschitz constant of f. 

Definition 10. A function f is said to be locally Lipschitz on V if it is 
lipschitz on any bounded subset 15 E V 

2.2 Analytical considerations 

Differentiability is a very powerful tool of mathematical analysis. Notwith­
standing the efficiency of the optimisation methods based on this tool, few 
practical problems of optimisation have a smooth structure. This considera­
tion means much research effort has to be done on the generalisation of the 
notion of gradient. Here we will present two major contributions: the Clarke 
sub differential and the quasidifferential in the sense of Demyanov-Rubinov. 

2.2.1 Preliminaries 

Consider a function f defined on an open set D C IR'n. 

Definition 11. A function h is called positively homogeneous if 

h(Ax) = Ah(x), 'v'x E IR'n, 'v'A > O. 

Definition 12. A convex positively homogeneous function is called sublinear. 
A concave positively homogeneous function is called superlinear. 

Let us denote P (resp. Q) the set of all sublinear (resp. superlihear) 
functions defined on IRn. 

Definition 13. 

Qp = {u linear: u(x) ~ p(x), 'v'x E IRn} 

is the subdifferential of the function pEP. Similarly 

8q = {u linear: u(x) ;:::: q(x), 'v'x E IRn} 

is the superdiJJeTential of the function q E Q. 
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The informatioll provided by the directional derivatives is very useful in 
the field of optimisatioll. Indeed, they allow one to know whether a direction 
is descending or ascending. However the set of all directional derivatives 
is infinite in the multidimensional case. For smooth functions, it can be 
represented by one vector: the gradient. In the nonsmooth case, we need to 
create tools that a.pproximate these sets. 

Consider the (Dini or Hadamard) directional derivative as a function of 
the direction: f~ ('It). Assume the continuity of the function f~. 

Definition 14. A continuous sublinear function p defined on ]Rn and such 
that 

p(g) ~ f~(g), \;/g E ]Rn 

is called an upper convex approximation (u.c.a) of the function f at the point 
x. 

Definition 15. A continuous superlinear function q defined on ]Rn and such 
that 

q(g) ~ f~(g), \;/g E ]Rn 

is called an lower concave approximation (l. c. a) of the function f at the point 
x. 

Definition 16. (see [146]) A function f is said to be semismooth at x if it 
is locally Lipschitz continuous at x and the limit 

exists for every 9 E ]R n. 

lim (v, g) 
VEBf(x+ag'), 

g'-+g, 
a-+O 

In order to consider generalisations of the gradient, the following defini­
tion is capital (see [171]). 

Definition 17. Suppose f is a convex function. Then a linear function 
dominated by f is called a subgradient of f of f at x E ]Rn. The set of the 
subgradients of f at x 

is called the subdifferential of f at x. 

The notion of sub gradient is extremely important in convex analysis. A 
large majority of practical methods to minimise convex functions revolves 
around this notiOll . 
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2.2.2 Clarke subdifferential 

The Clarke sub differential is one of the simplest generalisations of the notion 
of gradient. This notion has been studied for example in [48, 49}. It has been 
developed for locally Lipschitz functions. It is known that these functions 
are continuous almost everywhere. 

Definition 18. The Clarke subdifferential is defined as follows: 

8f(x) = co {lim "Vf(Xi) : Xi ~ X and Xi E D f }. (2.3) 
t ..... oo 

Note 2: The Clarke sub differential of a convex function coincides with its 
sub differential. 

Proposition 8. 0 E 8f(x) if and only if X is a stationary point. In partic­
ular, if the point X E lR,n is a minimum of the function f then 0 E a f . 

Proposition 9. The steepest descent at point X E lR,n is the direction gO E lR,n 

such that: 

IIlll = min {lIgjj} 
gE8f(x) 

Definition 19. The generalised directional derivative is the limit: 

f
o( ) l' f(y + ag) - f(y) 

x,g = lmsup 
Q ..... o+, a 
y-+x 

Note 3: The generalised derivative always exists, and 

fO(x, g) = max (v, g). 
vE8/(x) 

(2.4) 

Definition 20. The function f is said Clarke regular if it is differentiable 
with respect to any direction 9 E lR,n and its directional derivatives and 
generalised derivatives are equal. 

An explicit method to calculate the Clarke generalised gradient of a 
Clarke regular function is available (see [48J). However the class of Clarke 
regular functions is very restrictive. 
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Example 9: The following function f : lR? -----t R is not Clarke regular 

f(x) = IXII-lx21 · 
Indeed, for XO = (0,0) and 9 = (0,1), f'(XO , g) = - 1 while fO(xO , g) = l. 

The Clarke subgradient of this function at XO is 

8 f (xO) = co {( 1, -1), (1, 1), ( -1, 1), ( -1, -1) } 

The major drawback of the Clarke generalised gradient is that for non 
Clarke regular functions, there exists no explicit calculus. 

2.2.3 Demyanov-Rubinov quasidifferential 

Let f be a locally Lipschitz continuous function . 

Definition 21. The function f is called quasidifferentiable at a point x if 
it is directionally differentiable and there exists compact, convex sets f1.f(x) 
and 8f(x) such that: 

j'(x, g) = max (v, g) + l~in (v, g). 
vEfl/(x) VEa/(3:) 

The pair D f (x) = [£2f (x) , 8 f (x)] is called a quasi differential of the function 
fat x. 

Note 4: The quasidifferential is not unique. 

Remark 13: For a convex function, the pair [8f(x), {O}], where 8f(x) is 
the Clarke subdifferential at x, is a quasidifferential at x . 

Similarly, for a concave function, the pair [{ O}, 8 f (x) J is a quasi differential 
at x. 

Proposition 10. If the point x is a local minimiser of f on lR,n 

- 8f(x) c £2f(x) 

A point verifying (2.5) is called inf-stationary point 

Proposition 11. If a point x is not inf-stationary, then the direction: 

where 

° V
O + W O 

9 = -llvo+woll' 

IIvo + w011 = !}laX min IIv + wll , 
alex) {lJ(x) 

is the direction of steepest descent. 

(2.5) 
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The class of quasiclifferential functions is very broad. A particular family 
of quasidifferentiable functions contains the functiolls with the following form: 

f(x) = F(X,gl(X), ... ,gdx)), (2.6) 

where F(x, Yl, ... , Yk) is continuously differentiable and the functions gi , 1 :S 
i :S k are quasidifferential (and semismooth). This is particularly useful if 
the functions gi can be concave or convex, as this means for instance that 
difference of convex (DC) functions are quasidifferentiable. 

f(x) = h(x) - f2(X), 

where hand h are convex, and the pair [af, 8fl, where 

is a quasidifferential of this function. 

Example 10: The function given in example 9 is quasidifferentiablc, as a 
difference of convex functions: 

A quasidifferential of this function at (0,0) is: 

{ 
gf(O, O) = co {(I, -1), (1, I)} 
8f(0,0) =co {(-1,1),(-1,-1)} 

2.3 Descent methods 

The descent methods are certainly the most popular family of optimisation 
techniques. They are based on a very simple idea: keep going down until 
it is not possible anymore. In the case of convex functions, these methods 
reach the global minimum, but in the general case they only converge to a 
stationary point (which mayor may not be a local minimum). 

Their popularity is due to their ability to reach good practical solutions 
in very acceptable time. 

Algorithm 2.1 presents a generic descent algorithm. 
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Algorithm 2.1: A generic descent method 
Step 1 select an initial i:iolution Xo, ... ,Xo, set k = 0 

repeat 
Step 2 Find a descent uirection dk 

Step 3 Find a descent step Ok and set Xk+l f- Xk + Okdk 

Step 4 k f- k + 1 
Step 5 until Stopping C'riterion 

2.4 Numerical methods 

Interesting problems of optimisation are the ones presenting complicated 
objective functions. This means that it may be difficult or impossible to 
calculate the gradient, the sub differential or a quasidifferential. For this 
reason, many practical situations require so-called finite elements methods. 

The idea behind these methods is as follows: instead of being exactly 
calculated, the desired object is closely approximated, using only values of 
the objective function. 

Mathematically, ill order to approximate h(x), where h can be the gradi­
ent, the subgradient or a quasidifferential, a family of functions g>. is defined, 
so that 

g>.(x) ~ h(x). 

2.4.1 Cutting planes method 

The cutting planes method was first independently proposed by Cheney and 
Goldstein in [47] and by Kelley in [108]. It is based on a well known property 
of convex functions (see [171]): a convex function is the upper envelope of 
all the linear functions it dominates 

Theorem 2. Consider a convex function f defined on ]Rn and the set U of 
linear functions on ]Rn. The function f can be defined exactly using the set 

Uf = {u E U : u(x) :s; f(x), \/x E ]Rn} 

as follows: 
f(x) = sup {u(x) : u E Uf } ,\/x E ]Rn 

This property of convex functions gave rise to the following idea: when 
convex, the objective function can be approximated by a set of linear func­
tions, and the problem is reduced to a linear programming problem. At each 
iteration of the cutting planes algorithm, the reduced problem is solved, giv­
ing a lower approximation of the actual minimum, and the approximating 
set is adequately updated. 
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The cutting planes method presents several drawbacks. 

• the choice of the initial points is crucial, as the algorithm may not 
converge. 

• the method only works on convex functions, and may not be successful 
in finding even a stationary point of a nonconvex function 

• at each iteration it is required to evaluate a subgradient of the function. 
Despite the Clarke regularity of convex functions, it may be a difficult 
task. 

• the convergence of the method has been shown to be very slow in some 
cases (see [197]) 

Notice that finite elements approximations of the subgradients cannot be 
applied here, since the piecewise linear approximation of the function may 
not be dominated by the objective function anymore. 

2.4.2 Bundle methods 

Bundle methods were first proposed by Lemarechal in 1978 in [122] and 
further developed by Kiwiel in [113]. An excellent presentation of this method 
can be found in [95]. Other good reviews include [135, section 5] and [139] 
(see also [134, 137, 140]). Numerical experiments are presented for example 
in [114]. 

These methods are an improvement of the Cutting planes method, ad­
dressing some of its issues. In order to ensure the convergence and to improve 
the efficiency, a quadratic term is added to the local linear approximation of 
the curve, in order to keep the search local. 

The bundle methods require a very large amount of memory to store'the 
information. In practice, it is not possible to keep all information, and a 
balance should be found between efficiency and memory. These methods 
also necessitate the solution of a quadratic subproblem, and the choice of 
the quadratic approximation is not simple. All these issues are thouroughly 
discussed in the literature (see [135, 139]). 

2.4.3 Discrete gradient method 

Notwithstanding the importance of sub differentials and quasidifferentials in 
the domain of nonsmooth analysis, these tools are difficult to calculate. Con­
sequently some research has been oriented at constructing approximations 
(see [60, 61]). The most successful of them is certainly the discrete gradient, 
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proposed by Bagirov in 1992 in [10]. We describe here these tools and a 
corresponding nonsmooth optimisation method. 

Definition of the discrete gradient 

The discrete gradients allow the construction of continuous approximations 
to the sub differential a1lCl the quasidifferential. They have been studied in 
[10, 11, 12, 13] as approximations of sub differentials and in [19, 22] as ap­
proximations of quasidifferentials. 

Excellent and thorough reviews can be found in [16, 19]. 
Define operators Hi : lR,n ~ lR,n for 1 ::; i ::; n, ° ::; j ::; n by the formula 

HJ' {(91, ... ,gJ"0, ... ,0) 
ig = (gl, ... ,gi-l, 0, gi+l, ... ,gj, 0, ... ,0) 

That is 

if j < i, 
if j ~ i. 

H! _ H!-1 = { (0, ... ,0, gj, 0, ... ,0) if 1 ::; j ::; n, j =1= i, 
t 9 t 9 ° ·f . - . 1 J - z. 

(2.7) 

(2.8) 

Let e((3) = ((3el, (32 e2 , . .. , (3n en ), where (3 E (0,1]. For x E lR,n we consider 
the vectors 

x{ - x{ (g, e, z, A, (3) = x + Ag - z(A)Hi e((3), 

where 9 E SI, e E G, i E I(g, a), Z E P, A > 0, ° ::; j ::; n, j =1= i. 
It follows from (2.8) that 

X~-1 _ x~ = { (0, ... ,0, z(A)ej((3), 0, ... ,0) if 1 ::; j ::; n, j =1= i, 
t t 0 if j = i. 

(2.9) 

(2.10) 

It is clear that Hpg = 0 and x?(g, e, z, A, (3) = x + Ag for all i E I(g, a). 

Definition 22. The discrete gradient of the function f at the point x E lR,n 

is the vector ri(x, g, e, z, A, (3) = (ri, ... , r~) E lR,n, 9 E SI, 'i E I(g, a), with 
the following coordinates: 

rio = f(X{-I(g, e, z, A, (3)) - f(x{ (g, e, z, A, (3)) 1 < . < . -I- . 

J z(A)ej((3) , - J - n, J I Z, 

n 

f(x?(g, e, z, A, (3)) - f(x) - 2: q(Agj - Z(A)ej((3)) 
j=I,#i . 

r~ = Agi 
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For any j =1= i, the discrete gradient is a typical finite elements evaluation. 
The coordinate r~ allows the following equation to be satisfied for any 9 E 

51, e E G, i E I (g, ex), Z E P, >. > 0 and (3 > o. 

f(x + >.g) - f(x) = >.(ri(x, g, e, Z, >., (3), g). 

Approximations of the sub differentials and the quasidifferentials 

The generalised gradient and the quasidifferentials can be approximated by 
sets of discrete gradients. 

Consider a family of sets C(x, c) of set valued mappings depending on 
c > o. We consider the following definition (see [199]). 

Definition 23. The limit of the family C(x, c) is defined by: 

C X = 11m Vk: Vk E x ,Ck ,x -----t X,Ck -----t 0 () {
. C( k ) k k-+oo k-+OO} 

k---->oo 

Definition 24. A family C f (x, c) is a continuous approximation to the sub­
differential 8 f (x) if 

• Cf(x, c) is Hausdorff continuous with respect to x for all c > o. 

• the set 8 f (x) is the convex hull of the limit of the family C f (x, c), that 
is 

8f(x) = co CLf(x) 

Consider the following sets: 

Dof(x, z, >., (3) = clco {ri(x, g, e, Z, >., (3) : 9 E 51, e E G, i E l(g, ex)}. 

It is possible to find sequences >'c ~ 0, (3c ~ 0, ZC' such that the sets 
Dof(x, z, >., (3) constitute a continuous approximation of the sub differentials. 

For constructing the quasidifferential of the functions of type 2.6, it is 
possible to use the gradient of the function F and the structures of the 
functions gi. 

{ 
8F "" 8F . . } Dd(x, z, >., (3) = co ox + ~ a.v\ v~ E DOYi(X, z, >., (3), i E 11(X) , 

iEh Y~ 

{
8F "" 8F . . } Dd(x, z, >., (3) = co ox + ~ a.w\ w~ E DOYi(X, z, >., (3), i E 12(x) , 

iEI2 Y~ . 
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{I, _ {' E I : ~ > 0i ' 
12 - 'l E 1 . a < 0 . 

Yi 

In particular, if the function is a difference of convex (J = h - h), then 
its quasidifferential can be approximated by the pair 

[Doh (x, z, A, (3), -Doh(x, z, A, (3)]. 

The method 

Descriptions of this method can be found in [14, 15, 18, 21] 
The function 1 is assumed to be semismooth. 
The discrete gradient method is a descent method. Therefore, the main 

step in this method is the search for the descent direction. Two algorithms 
are given, one based on the sub differential, the other one based on the qua­
sidifferentials. 

Algorithm 2.2 presents the method for finding a descent direction with 
approximations of the sub differentials. It is based on two main steps: 

• calculation of a discrete gradient with respect to a given direction . 

• search for the direction of the next discrete gradient. 

At each iteration, the approximation of the subdifferential is extended by 
adding a new discrete gradient. 

It is shown that the algorithm terminates, and either the latest discrete 
gradient computed is a descent direction, or 0 E D, where D is the approxi­
mation of the sub differential. 

If the function 1 is a difference of convex, then the discrete gradients can 
be applied for approximating the quasidifferentials. We note 1 = 11 - 12, 
where hand 12 are convex functions. The method for finding the descent 
direction relies on the following proposition: 

Proposition 12. Consider two convex and compact sets A and B and the 
vectors Vo E A and Wo E B such that: 

Ilvo - w011 = max min Ilv - wll > o. 
wEB vEA 

max(v, l) - max(w, l) ~ -6. 
vEA wEB 
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Algorithm 2.2: DG: finding a descent direction: Clarke subdif­
ferentials version 

Let Z E P, A > 0, f3 E (0,1]' the number c E (0,1) and a small enough number 
8 > 0 be given. 

Step 1 choose any gl E BI,e E e,i E I(gl,a). 

Step 2 set Do(x) <- 0 and k <- 1 
repeat 

Step 3 Calculate a discrete gradient 

Step 4 

Step 5 

construct the set Ddx) = co {Dk-1(X) U {11k}} 
Calculate the vector IIwk ll = min {llwll : wE Dk(x)}. 

if 

then 

l II First stopping criterion 
stop I I w ~ 0 and wE af(x): x considered stationary 

else 
wk 

Calculate the search direction by gk+1 = -llwk II· 
if 

then 

l II Second stopping criterion 
stop. I I 9 is a descent direction 

until One of the stopping criteria is satisfied 

(2.11) 

(2.12) 
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Then 
Be A+S8 

As a corollary, if A = 0 h (x) and B is a continuous approximation of 
8!l (x), then a sufficient cOlldi Lioll for a point x to be inf-stationary of the 
function f is 

IlvO - w011 < 8 

Unfortunately this result cannot be generalised to the case when contin­
uous approximations to both 8h(x) an o!l(x) are used. To our knowledge, 
no known condition exists for a point to be inf-stationary when continuous 
approximations are used. 

Algorithm 2.3 presents the discrete gradient method using the sub differ­
entials. The version based on quasidifferentials is very similar. 

Algorithm 2.3: Discrete gradient method 
Let sequences 15k > 0, Zk E P, Ak > 0, f3k E (0, 1], 15k ~ +0, zk ~ +0, Ak ~ 
+0, f3k ~ +0, k ~ +00 and numbers Cl E (0,1), C2 E (0, Cl] be given. 

Step 1 choose any starting point xO E lRn 

and set k = o. 
Step 2 set s = 0 and x~ = xk. 

repeat 
Step 3 apply algorithm 2.2 for the 

calculation of a descent direction at 

Step 4 

Step 5 

Step 6 

x = x~, 15 = 15k, Z = Zk, A = Ak, f3 = f3k, C = Cl. As a result we get the set 
Dm(x~) and an element v~ such that 

case Ilv~11 ~ 15k 

l II x~ cannot be improved: the step size is reduced 
set x k+l 

f--- xk and k f--- k + l. 
case f(x~ + Ak9~) - f(x~) ~ -CIAkllv~ll· I I 9~ is a descent 

direction 

l Ie; X~+1 be the result of a line search starting from x~ in the direction 

98 • 

set S f--- S + l. 
until k = kmax 

Step 4 in algorithm 2.2 require to solve a quadratic optimisation problem, 
which can be formulated as the minimal distance between a point (the origin) 
and a polyhedron (the convex hull of all discrete gradients). This specific 
problem has been studied, and solutions have been proposed for instance by 
Wolfe in [198] (see also [75]). 
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The numerical experiments presented in [16] show that the discrete gra­
dient is an efficient method for finding a stationary point. Furthermore, due 
to the gradual reduction of the search radius of the direction search, this 
method avoids many non minimal stationary points and even shallow local 
minima. Finally, its derivative-free nature is practically advantageous over 
bundle methods. 

2.4.4 Other methods 

Among the other methods of nonsmooth local optimisation can be mentioned: 

• NeIder-Mead simplex method ([151]). This method, one ofthe·old­
est nonsmooth methods, is based on the update of a simplex according 
to the values of the function at its end points. It has been shown that 
it does not always converge to a local solution (see [142, 143]), and 
several variations have been proposed in [43, 109, 187] . 

• Trust region methods. Trust region methods are proposed as an 
alternative to descent methods, where a local approximation of the 
objective function is a simpler function. Various types of local approxi­
mations have been proposed (See [53, 62, 74, 80, 91, 123, 141, 148, 149]). 
The most efficient trust region method for nonsmooth optimisation is 
Powell's method (see [162, 163, 164, 165, 166]). Here only values of 
the objective function are used: It is shown in [166] that this method 
performs well for problems with less than 160 variables. 

2.5 Global methods 

Objective functions usually have many local minima, some of them sensibly 
higher than the global one. For such functions, local algorithms may reach 
a local yet unsatisfactory solution. 

Another large family of methods in the field of optimisation is the one of 
the global methods: these methods guarantee a convergence towards a global 
solution. 

These methods cannot rely on local characteristics of the functions any­
more. Most of them are designed to work with particular types of functions, 
such as Lipschitz continuous functions. 

The most popular global optimisation method is the Branch and Bound 
technique. This technique has been widely studied (see [85, 99, 107, 152, 
168]), and is based on the idea of dividing the domain in sub domains , and 
to find lower bounds to the function over each subdomain. These lower 
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bouuds allow the elimination of some of these sub domains by comparison 
with existing solutions. Then the algorithm is applied over each remaining 
sllbdomain. 

Another global optimisation technique is the Cutting angle method. This 
method is based on the notion of abstract convexity, developed and stud­
ied in [156, 172, 174, 119, 120, 180]. The cutting angle method is then 
a generalisation of the cutting planes method for abstract convexity (see 
[6,7,17,156,174,175,176] 

2.6 Heuristic methods: simulated annealing 

A great majority of heuristic methods is based on the evaluation of randomly 
generated points. For this reason, the solution obtained for two different runs 
of the same algorithm can be different. It is almost impossible to obtain the­
oretical results on the convergence of these methods. The main difficulty in 
the construction of a heuristic method resides in the way random points are 
generated. The best results are usually obtained when the previous knowl­
edge is used to generate the new points. 

As a rule, heuristic methods work better for discrete optimisation, where 
the generation of new points is easier (the feasible set may even be finite in 
the case of constraint programming). However, many heuristic methods can 
also be applied to continuous optimisation. It is usually possible to define 
families of heuristic methods. Such families are called metaheuristics. We 
present here one of the most popular ones. 

The simulated annealing method is based on an analogy with the natural 
process of crystal cooling: molecules subjected to a slow decrease of temper­
ature reach the form a pure crystal, which corresponds to a state of minimal 
energy. This process has been modelled in 1953 in [144] using a Monte-Carlo 
method. The idea of applying an analogy with this model to optimisation 
was then developed independently by Kirkpatrick in 1983 in [112] and Cerny 
in 1985 in [46]. It has since then gained a great popularity, and has been 
widely studied (see for example [1, 2, 31, 34, 39, 51, 55, 57, 71, 76, 77, 101, 
102, 103, 106, 132, 173, 179, 189, 190, 196]). 

Many good introductions to this method have been written, for instance, 
see [195], and [202, chapter 2] for an exhaustive review ofthe literature on the 
subject. For a good introduction to the application of simulated annealing 
algorithms to continuous optimisation refer to [131]. 

Algorithm 2.4 presents a general version of the simulated annealing. Sev­
eral parameters need to be selected. Their choice is crucial for the efficiency 
of the method. 
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Algorithm 2.4: Simulated annealing algorithm 
Step 1 select an initial point xO, set k r- 0. 
Step 2 select an initial temperature TO. 

repeat 
Step 3 sample a point xk+l from the distribution Dk(.)' 
Step 4 sample a uniform number p E [0,1] and set: 

Step 5 

Step 6 

set tk+l = Uk(tk) 
record the best value met. 

until Stopping criterion is met 

if P < A (yk xk+1 t ) _ k , , k 

otherwise 

• Ak is the probability of acceptance of a point. While in the early itera­
tions (for "high temperature"), the tolerance should be quite large, and 
most points can be accepted, the algorithm should gradually restrict it 
to finally only accept descent steps. 
The most commO:IJ.ly used function is the so called Metropolis function. 

k k+l _. { ef(yk)-f(xk+
1

) } 
Ak(y ,x ,tk) - mm 1, tk . 

• Dk is the distribution of the points at the iteration k. This is a cru­
cial function. Most continuous algorithms are based on the uniform 
generation of a random direction fA E lR,n and of a random step size 
Sk E (0, Smax) , although the step size is sometimes fixed. Constraint 
programming problems may require difficult to generate feasible points. 

• Uk is the rate of evolution of the temperature. It is usually a decreasing 
function such as tk+l = O'.tk , where 0 < 0'. < 1. The rate of descent 
must be slow enough to ensure a satisfactory convergence, although too 
slow a rate would compromise the efficiency. 

• the stopping criterion can be determined differently. Instances of ap­
plicable criteria are: 

1. the number of iterations has exceeded a certain limit, 

2. the "temperature" is lower than a certain value. 

In a general manner, despite the good results it obtains in discrete opti­
misation, the simulated annealing method meets some difficulties for solving 
continuous problems. 
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The simulated annealing method is a heuristic, and therefore there are 
numerous difficulties in clearly assessing the quality of the solutions it reaches. 
The convergence of the method has been studied by Locatelli among others 
(see [127, 128, 129, 130] and references therein). 

2.7 Hybrid methods 

Hybrid methods are the most recent family of optimisation method. Their 
apparition owes to the fact that current global methods are not applicable 
using current technology for solving real world large problems 

Often in practical situations local methods are the only alternative. In 
order to improve the chances of getting a good solution, these methods are 
usually run several times starting from several initial points (either randomly 
chosen, or otherwise deduced from analytical considerations). Unfortunately 
it is seldom possible to ensure the quality of the solution thus obtained. 

On the other hand, global and even heuristic methods are too time and re­
source consuming to be reasonable options, even though they may guarantee 
to reach at least a good practical solution. 

An ideal method should combine the economical efficiency of a local 
method with the qualitative efficiency of a global (or heuristic) one. For 
this purpose hybrid methods have been designed. 

A number of combinations have been proposed, most of which can fall in 
one of the following categories: 

1. the global search is used to escape from the results reached by the local 
method. 

2. the global search is inserted inside the local search in order to improve 
the search properties of the local method. 

3. the global method is applied as a preprocessor, in order to generate a 
set of starting points for the local method. 

A method of the latter category has been applied for instance in "[125]. 
The following subsections bring more light over the other two categories. 

2.7.1 Global method as an escape method 

This type of hybrid method is very simple. Its core idea lies on the fact that 
a global minimum is also necessarily a local one. A descending sequence of 
local minima is constructed by applying at each iteration the local method, 
starting from a point obtained by the global one. 
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Algorithm 2.5: Hybrid method of type 1 
Step 1 select an initial point Xo. Set k +-- 0 

repeat 
Step 2 set k +-- k + 1. 
Step 3 

Step 4 

find a local minimum Xk by applying the local method starting from Xk-l' 
apply the global method on the problem 

minimise !k(X) = min{J(x), !(xd 
subject to 

x E JRn
. 

until a point Xk E lRn such that !(Xk) < !(Xk) is reached, or the stopping 
criterion of the global method is satisfied. 

until !(Xk) = !(Xk) 

This hybrid method has been implemented for instance in [23, 28, 201]. 
Algorithm 2.5 shows the mains steps of this type of methods. 

Its great advantage is that it uses the convergence properties of the global 
method. If this method guarantees the convergence to a global minimum, 
then it is easy to see that algorithm 2.5 will stop when the function fk(X) is 
flat. For this reason, such methods work very well on small problems. 

However this method may become very time consuming, as the global 
method is applied on a problem of the same size as the original one. At 
least on one occasion (when the function fk"' is flat) is it necessary to run 
the global method until its stopping criterion is met. This means that this 
hybrid method may not be suitable for very large problems. 

2.7.2 Global method as an improvement of the local 
search 

This type of hybrid method is usually more complex to implement, as they 
are inserted in the local algorithm. For this reason they often are method­
dependent. Such hybrid methods based on the simplex algorithm can be 
fuundin ~2, 93,121, 167, 20~. 

Such a hybridisation based on descent methods has been developed in 
[26, 27]. This method relies on a multidirectional search rather than the 
usual line search. Algorithm 2.6 on the following page presents this hybrid 
method. 

The step lengths specified in step 5 are usually computed using the bounds 
of the feasible set. The size of the problem (2.13) is exactly the cardinality 
of the set X k . This size can be as small as necessary (in practice 2 or 3). 

Although no guarantee of reaching the global solution can be given, this 
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Algorithm 2.6: Multidirectional search descent algorithm 
Step 1 :,ielect an initial point Xo and set k f- O. 

repeat 
Step 2 find a descent direction dk at point Xk as well as a set of other directions 

Dk· 
Step 3 Bet k f-- k + 1 
Step 4 carry out a line search, reaching Xk 

Step 5 For each direction d ED, find a maximum step length Sd and set 
:J.:d = Xk + Sd 

Step 6 let Sk be the convex hull of the points Xk{xk, Xd, dE D}. 

Step 7 use the global method to solve the problem: 

minimise f (y) 
Subject to 

y E Sk 

Step 8 let Xk be the solution of this problem 
until the stopping criterion of the local method is met 

algorithm works well in practice. 

2.8 Large scale optimisation 

(2.13) 

Many real world problems involve a very large number of parameters to be 
selected. Most of these problems can be rewritten as mathematical program­
ming problems. Unfortunately the state of the art optimisation algorithms 
are not applicable to such kinds of problems. 

On the other hand, the objective functions of such problems present a 
particular structure. For instance this is extensively used in linear program­
ming softwares like CPLEX ([100]), where the size of the problem is reduced 
by an aggressive preprocessing. 

Nonlinear problems are much more complex, and an automatic analysis 
of the function and the constraints seems no longer possible. Nevertheless 
a few studies have been carried out to deal with the structures of the large 
dimensional problems. 

The basis of most ideas in this domain is the fact that when the number of 
parameters is very large, the proportion of pairs of parameters that influence 
one another is small. In the smooth case, this translates to the Hessian of 
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the objective function being a sparse matrix. It was studied for example in 
[81, 186J . Another idea, proposed for example in [41, 44, 45, 126, 153, 154], 
is based Oll the construction of approximations of the Hessian of the fUllction 
using previous knowledge. 

M ueh less has been done for nonsmooth functions. To the best of our 
knowledge, only variants of the latter method has been adapted (see [83]). 
This is particularly necessary for bundle methods, in order to reduce the 
memory overflow specific to these methods. 

2.9 Choice of the method utilised 

The problems arising in data mining require a method able to solve high­
dimensional problems. Therefore out of the box global methods and heuristic 
methods are not suitable for our research. On the other hand, because these 
problems are nonconvex, it is necessary to select a method dealing efficiently 
with nonconvex problems. 

Functions in data classification and clustering are seldom differentiable. 
Smooth methods of optimisation are not a good choice for such kind of prob­
lems, as their behaviour may be quite unpredictable. 

The efficiency of the discrete gradient method to leave a shallow local 
minimum has been shown by numerical experiments in [16, 17J. Moreover, 
it has a better capacity to solve nonsmooth high dimensional problems than 
Powell's or Nelder-Mead's methods (see [29J for comparisons), while the non 
regularity of the objective functions disqualifies the cutting planes and bundle 
Methods as good alternatives. Therefore this method will be used in the rest 
of this thesis. 

The version of the discrete gradient method selected is based on Clarke 
subdifferentials rather than quasidifferentials. Although quasidifferentials 
constitute a much better local approximation of the function, and many 
objective functions in data analysis can be rewritten as difference of convex, 
the stopping criterion for quasi differentials (a! (x) c fl.! (x)) is rather difficult 
to implement numerically. On the other hand the stopping criterion for 
the Clarke generalised gradient (0 E 8f(x))) is much simpler to evaluate 
with the incrementally constructed discrete gradient set (see algorithm 2.2 
on page 59). We believe that little change will be necessary to apply. the 
work presented in this thesis to the quasidifferentials based discrete gradient 
method. 

Because the discrete gradient method is a local solver, it is necessary 
to assess the results it reaches. For comparison of their quality, the hybrid 
methods described in algorithms 2.5 based on the DG and on simulated an-
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nealing and 2.6 based on DG and cutting angle method will also be applied 
in some occasions. The latter method as well as DG are part of the com­
mercial software CIAO-CO (see [188]). Finally come comparisons will also 
be carried out with the commercial software LCD (see [158]), based on the 
branch and bound method. 
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Chapter 3 

Solving large scale nonsmooth 
optimisation 

3.1 Introduction 

Supervised and unsupervised learning problem formulations usually present a 
recurrent difficulty: the size of the problems depend on the number of features 
in the dataset. Additionally, since the goal of data analysis is to extract 
information from the datasets, restricting the features is not always advisable. 
This leads to large scale problems of nOllsmooth nonconvex optimisation. 

As a rule, large scale problems present a sparse structure: Most param­
eters are pairwise independent. Furthermore, the parameters can usually be 
separated in different independent groups of parameters. We will see in this 
thesis that very few, if any, data analysis problems derogate from that rule. 

In case the objective function is smooth, this translates to the Hessian 
being a sparse matrix. In such a case, matrix calculus can be applied (see 
section 2.8 for references). 

In the general case, though, the Hessian no longer exists, and it is nec­
essary to explore new directions for developing adapted algorithms. In this 
chapter we will study large scale optimisation problems. We will introduce 
the class of piecewise partially separable functions, and present an algorithm 
for their minimisation. This method is based on the discrete gradient method 
(see section 2.4.3). Results of numerical experiments on test functions will 
be presented. 
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3.2 Piecewise partially separable functions: 
definition and examples 

Let f be a scalar function defined on an open set Do C lRn containing a 
closed set D ~ lR n. 

Definition 25. The function f is called partially separable if there exists a 
family of n x n diagonal matrices Ui , 1 SiS M such that the function f can 
be represented as follows: 

M 

f(x) = L fi(UiX), 
i=l 

Without loss of generality we assume that the matrices Ui are binary, 
that is they contain only 0 and 1. It is also assumed that the number 'mi of 
non-zero elements in the diagonal of the matrix Ui is much smaller than n. 

In other terms, the function f is called partially separable if it can be 
represented as the sum of functions of a much smaller number of variables. 
If M = nand diag (Ui ) = ei, then the function f is separable. 

Remark 14: Any function f can be considered as partially separable if we 
take !VI = 1 and Ul = I, where I is the identity matrix. However, we consider 
situations where M > 1 and mi « n, 1 SiS M. 

Example 11: . Consider the following function 

n 

f(x) = Lmin{lxil, IXll}· 
i=l 

This function is partially separable. Indeed, in this case M = n, mi = 2, 
Ul l = 1, Ufi = 1, all other elements of Ui are zeroes for all 1 SiS nand 
fi(UiX) = min{lxil, IXll}· 

Definition 26. The function f is said to be piecewise partially separable 
(ppsf) if there exists a finite family of closed sets D l , ... , Dm such that 
U::l Di = D and the function f is partially separable on each set Di,l < 
is m. 

Example 12: All partially separable functions are piecewise partially sepa­
rable. 
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Example 13: COllsider the following function 

The function I is piecewise partially separable. It is clear that the functions 
n 

'Pj(x) = 2:: IXi - xjl, 1 :; j :; n 
i=l 

are partially separable with M = n, mi = 2 and Ur - U!j = 1 for all 
1 < i :; n. In this case the sets Di , 1 :; i :; n are defined as follows: 

Di = {x E JRn : 'Pi(X) ~ 'Pj(x), 1:; j :; n,j =J i}. 

The piecewise partial separability of the function I follows from the fact that 
the maximum of partially separable functions is piecewise partially separable, 
which will be proved later on in proposition 17. 

3.2.1 Chained and piecewise chained functions 

One of the interesting and important classes of partially separable functions 
is the one of the so-called chained functions. 

Definition 27. The function f is said to be k-chained, k ~ n, if it can be 
represented as follows: 

n-k+l 

f(x) = 2:: li(Xi, ... , Xi+k-l), 

i=l 

where fi : JR k --t JR. 

For example, if k = 2, the function I is: 

n-l 

f(x) = I: fi(Xi, XHl), 

i=l 

where Ii : JR2 --t JR. 

Remark 15: Any k-chained function is partially separable. Indeed for k­
chained functions M = n - k + I, mi = k and the matrices Ui , 1 :; i :; M 
are defined as follows: 

Ur = I, i :; j :; i + k - 1 

and all other elements of Ui are zeros. 
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Proposition 13. Any separable function is I-chained. 

Definition 28. The function f is said to be piecewise k-chained if there 
exists a finite family of closed sets D1 , ... ,Dm such that U:l Di = D and 
the function f is k-chained on each set D i , 1 ~ i ~ m. 

Remark 16: Any piecewise k-chained function is piecewise partially sepa­
rable. This directly follows from remark 15. 

The following is an example of piecewise 2-chained function. 

Example 14 (Chained Crescent I function ([140]): 

where 

f(x) = max {h (x), h(x)} 

n-l 

h(x) = L (x; + (Xi+l - 1)2 + Xi+! - 1) , 
i=1 
n-l 

h(x) = L (-x; - (Xi+l - 1)2 + Xi+! + 1) . 
i=l 

Both fl and hare 2-chained functions. We define two sets as follows: 

Dl = {x E lRn :h(x) ~ h(x)}, 
D2 = {x E lRn 

: h(x) ~ h(x)}. 

It is clear that the sets D1 , D2 are closed, f (x) = h (x) for x E Dl and 
f(x) = h(x) for x E D2· Furthermore Dl U D2 = D. Thus the function f is 
piecewise 2-chained. 

3.2.2 Piecewise separable functions 

Definition 29. The function f is said to be piecewise separable if there 
exists a finite family of closed sets D 1 , ... ,Dm such that U:l Di = D and 
the function f is separable on each set Di , 1 ~ i ~ m. 

Proposition 14. Any piecewise separable function is piecewise I-chained. 

Proof. Since any separable function is I-chained (proposition 13) the proof 
is straightforward. 0 

Corollary 2. Any piecewise separable function is piecewise partially separa­
ble. 
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Proposition 15. All separable functions are piecewise separable. In this 
case m = 1. 

Example 15: All piecewise linear functions are piecewise separable. A func­
tion f : D ---7 ]R 1 is said to be piecewise linear if there exists a finite family 
of closed sets Q1, ... , Qp such that Uf=l Qi = D and the function f is linear 
on each set Qi, 1 ::; i ::; p. Since any linear function is separable the function 
f is piecewise separable and in this case m = p . 

Example 16: One of the simplest piecewise separable functions is the fol­
lowing maximum function: 

f(x) = max x~. 
l::;i::;n 

Here m = nand 

Di = {x E]Rn: x~ 2: x;, 1::; j::; n,j # i}. 

f(x) = x; for any x E D i . It is clear that U::l Di = ]Rn. It should be noted 
that the function f is neither separable nor piecewise linear. 

3.3 Properties of piecewise partially separa­
ble functions 

In this section we study some properties of piecewise partially separable 
functions. 

Proposition 16. Let hand h be partially separable functions defined on the 
closed set D c ]R n . Then the function f (x) = h (x) + h (x) is also partially 
separable on D. 

Proof. Since the functions hand h are partially separable there exist fam­
ilies of matrices Ul, 1 ::; i ::; M1 and UJ, 1 ::; j ::; M2 such that 

Consider the following sets: 

Ml 

h(x) = I.: hi(U/X) , 
i=l 
M2 

h(x) = I.: hj(U}x). 
j=l 

1= {i E {I, ... , Md : ul # U}, Vj E {I, ... , M2 }} , 

J = {j E {I, ... , M2 } : UJ # ul ) Vi E {I, ... , Md} , (3.1) 
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H = {(i,j),i E {I, ... , MI},j E {I, ... , l\dd : ul = UJ}. 

It is clear that for any i E I there is no j E {I, ... , Nh} such that (i, j) E H 
and similarly for any j E J there is no i E {I, ... , M I } such that (i, j) E H. 
Then the function f can be represented as follows 

(i,j)EH iEI jEJ 

This function is partially separable: that is 

M 

f(x) = L lk(Vkx), 
k=1 

where !VI = NIl + M2 - card (H), the matrices Vk , 1 ::::; k :s; M can be defined 
as follows: 

We define three sets of indices: 

K1 = {1::::; k::::; card (H) (i,j) E H }; 
K 2 = {card(H)+1::::;k::::;M1 iEI}; 
K3 = {NIl + 1 ::::; k :s; MI + M2 - card (H) j E J }, 

and let 

and 
_ { fli(Ulx) + 12j(UJx) k E K I; 
fk(VkX) = hi(U/X) k E K 2 ; 

12j(UJx) k E K3 · 

Here card (H) stands for the cardinality of the set H. 
o 

We say that two partially separable functions hand 12 have the same 
structure if I = J = 0, where I and J are defined by equation (3.1) on the 
preceding page. These functions are more interesting from a practical point 
of view. In this case the function f has the same structure as hand 12 and 

f(x) = L (JIi(Ulx) + 12j(UJx)). 
(i,j)EH 

For example, if hand 12 are k-chained then the function f is also k-chained. 
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Proposition 17. If f and 9 are piecewise partially separable (piecewise k­
chained, piecewise separable) continuous functions defined on the closed set 
D, then 

1. h(x) = af(x), a E Rl is piecewise partially separable (piecewise k­
chained, piecewise separable); 

2. h(x) = f(x) +g(x) is piecewise partially separable (piecewise k-chained, 
piecewise separable); 

3. h(x) = max(f(x), g(x)), h(x) = min(f(x) , g(x)) and h(x) = If(x)1 are 
piecewise partially separable (piecewise k-chained, piecewise separable). 

Proof. 1. The proof is straightforward. 

2. Since the functions f and 9 are piecewise partially separable there exist 
families of closed sets 

ffil 

D! 1 < i < ml U D! = D ~, - - , ~ 

i=1 

and 
ffi2 

DJ, 1 ~ j ~ m2, U DJ = D 
j=1 

such that the function f is partially separable on the sets Dr and the 
function 9 is partially separable on the sets DJ. We define a family of 
sets Qij, 1 ~ i ~ ml, 1 ~ j ~ m2 where 

It is clear that 

i,j 

and the sets Qij are closed. Since the sum of partially separable func­
tions is partially separable we get that f + 9 is partially separabl~ on 
each set Q ij . 
The proof for piecewise k-chained and piecewise separable functions is 
similar. 
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3. Consider the following two sets: 

Pl = {.r ED: f(x) ;::: g(x)}, P2 = {x ED: g(x) ;::: f(x)}. 

It is clear that PI UP2 = D. Since the functions f and 9 are continuoLls 
the sets PI and P2 are closed. We define the following families of sets: 

These sets are closed. It can be easily shown that 

h( x) = f (x), x E Q}, 1 :=:; i :=:; ml and f is partially separable on each 
set Qf. Similarly h(x) = g(x), x E Qj,l :=:; j :=:; m2 and 9 is partially 
separable on each set Qj. Then we get that the function h is piecewise 
partially separable. 

Since h(x) = min(J(x), g(x)) = - max( - f(x), -g(x)) then we get that 
h is piecewise partially separable. h(x) = If(x)1 = max(J(x) , - f(x)) 
and both f and - f are piecewise partially separable it follows that the 
function h is also piecewise partially separable . . 

Again the proof for piecewise k-chained and piecewise separable func­
tions is similar. 

o 

The problem of computation of Hessians of twice continuously differen­
tiable partially separable functions was discussed by many authors (see, for 
example, [3, 52] and section 2.8 on page 66 for more references). 

N ow let us assume that the function f is partially separable and the 
functions fi' 1 :=:; i :=:; M are directionally differentiable. Then the function f 
is also directionally differentiable and 

M 

f'(x, g) = ~ f:(Uix, Uig). (3.2) 
i=l 

It follows from this formula that if f separable then 

n 

f'(x, g) = ~ f:(Xi, gi) (3.3) 
i=l 
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if gi > 0, 
if g'i = 0, 
if 9i < O. 

and fI+(Xi), fI-(Xi) are the right and left side derivatives of the function fi 
at the point Xi. 

Below we study the Lipschitz continuity and directional differentiability 
of piecewise partially separable functions. 

Let f be a piecewise partially separable function defined on the closed 
convex set D c IR n, that is there exists a family of closed sets D j, 1 ::; j ::; m 
such that U;:l Dj = D, f(x) = /j(x), X E D j and the functions fj are 
partially separable on D j. 

Proposition 18. Let f be continuous and each function /j be locally Lips­
chitz continuous on Dj , 1 ::; j ::; m. Then the function f is locally Lipschitz 
continuous on D. 

Proof. We take any bounded subset D cD. Then there exists a subset of 
indices {jl, ... , jp} c {I, ... , m} such that 

co D n Djk i- 0, 1 ::; k ::; p. 

Let Ljk > 0 be a Lipschitz constant ofthe function fjk on the set co D n Djk , 
1 < k ::; p. Let 

Now we take any two points x, y E D. Then there exist indices jkl' j k2 E 

{jll ... ,jp} such that X E Djkl and y E Djk2 · If kl = k2 = k then it is clear 
that . 

If(x) - f(y)1 = Ifk(X) - fk(y)1 ::; Lkllx -yll ::; Lollx - yll· 
Otherwise we consider the segment [x, y] = ax + (1 - a)y, a E [0,1] joining 
these two points and define the following set: 

Z[x,y] = {z E [x, y] : :31 l , 12 E {I, ... ,p} : Z E Djll n DjI2 }· 

It is clear that in this case the set Z[x,y] is not empty. Then there exists a 
sequence of points {Zl' ... , ZN} c Z[x,y] , N ::; P such that 

• {x, Zl} C Djkl ; 

• {zN,y}CDjk2 ; 

• Vi E {I, ... , N - I}, :31i E {I, ... ,p} : {Zi, ZHl} C DJt.. 
t 
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Then taking into account the continuity of the function f we have: 

N-l 

If(y) - f(x)1 = f(y) + I:U(Zi) - f(Zi)) - f(x) 
i=l 

N-l 
= lik2(y) + I:Uji(Zi) - h

i
+

1 
(zd) -likl (x) 

i=l 

N-l 

::;lfjk2(y) - fjk2(ZN)1 + I: Ih,(Zi) - hi (zi+dl 
i=l 

+ llikl (zr) -likl (x)1 
N-l 

::;Ljllly - zNII + I: Lji IIZi - Zi+lll + Ljk1llz1 - xII 
i=l 

Then, as all Zi are aligned on the segment [x, y], we get 

If(y) - f(x)1 ::; LollY - xii· 

Since points x and yare arbitrary it follows that the function f is locally 
Lipschitz continuous. 0 

Corollary 3. Assume that all conditions of proposition 18 are satisfied. 
Then the function f is Clarke subdifferentiable . 

Proposition 19. Assume that for any two points x, y E D the set Z[x,y] is 
finite and all functions fj, 1 ::; j ::; m are directionally differentiable. Then 
the function f is also directionally differentiable . 

Proof. We take any point x · E D and any direction 9 =f:. 0 such that x + 
ag E D, a E [0, a] for some a > O. By the definition 

f '( ) - l' f(x + ag) - f(x) x,g - 1m . 
0-++0 a 

Assume that x E nkEK D k , where K C {I, .. . , m}. Let y = x + ag E D. 
Since the set Z[x,y] is finite there exists a finite sequence of numbers aI, ... , az 

such that ai E (0, a) and x + ajg E Dkj n Dkj+1' 1 ::; j ::; land 

• [x,x+alg] C Dkl'kl E K; 

79 



Solving large scale nonsmooth optimisation 

• [x + O'.[g, y] C D k1 + 1 ; 

• Vi E {I, ... , l - 1} : [x + O'.ig, X + O'.i+1g] C D ki+ 1 • 

This implies that the segment [x, x + O'.1g] C Dlw Thus 

l' (x, g) = f~l (x, g). 

It follows that if the fUllction f is piecewise partially separable then its direc­
tional derivative can be calculated using (3.2) and if this function is piecewise 
separable then its directional derivative is calculated using (3.3). 0 

In general piecewise partially separable functions are not regular.' The 
following example demonstrates it. 

Example 17: Consider the function 

This function is piecewise separable. However it is not regular. Indeed, for 
the direction 9 = (1,1) at the point x = (0,1) we have 

f'(x, g) = 0 and fO(x, g) = 2, 

that is f'(x, g) < fO(x, g). 

This example shows that in general for the sub differential of piecewise 
partially separable functions a full calculus does not exist. Therefore in 
many cases the computation of their subgradients is a quite difficult task. 

3.4 Minimisation of piecewise partially sepa­
rable functions 

In this section we will develop an algorithm for minimising one class of piece­
wise partially separable functions. 

We will consider the following unconstrained minimisation problem 

minimise f(x) subject to x E ]Rn 

where the objective function f is as follows 

M 

f(x) = '" max min fijk(:J:) ~ JEJ· kEK· 
i=l • J 

(3.4) 

(3.5) 
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and functions fijk, 1 ::; i ::; !Vi, j E Ji , k E K j are partially separable, that is 
there exists a family of' n x n matrices Uijkt , 1 ::; t ::; Alijk such that 

M;jk 

fijk(x) = L f;jk(UijktX). 
t=l 

The function f is piecewise partially separable. If all functions fijk are l­
chained (separable) then the function f is piecewise l-chained (piecewise 
separable) . 

Particular cases of this function are the following: 

1. The case when the sets Ji , 1 ::; i ::; M are singletons 

M 

f(x) = ~ min fik(X). 
~kEK-
i=l • 

(3.6) 

The clustering function (1.4) serves as an example for this type of 
functions when Ki = K, Vi E {I, ... , M} and the functions fik are 
separable. 

2. The case when Ai = 1 

f(x) = maxminfij(x). 
~EI JEJi 

(3.7) 

As we can see from example 17 even for very simple cases this type of 
functions may not be regular and therefore sometimes the computation of 
their subgradients is quite difficult. Therefore, methods based on function 
evaluations only seem better alternatives to solve problem (3.4). 

We will develop a new modified version of the discrete gradient method 
(see section 2.4.3 on page 55) for solving problem (3.4). Numerical experi­
ments have shown that the first two steps (steps 3 and 4 of algorithm 2.2 on 
page 59) take most of the CPU time used by the method. We will introduce 
a new scheme for the calculation of discrete gradients of piecewise partially 
separable functions represented as a sum of max-min functions. To calculate 
the discrete gradients we use only values of the objective function. Since the 
calculation of the objective function in the problem (3.4) can be expensive, 
such a scheme will allow one to significantly reduce the number of objective 
function evaluations. 
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3.4.1 Remarks on the discrete gradient 

The structure of the discrete gradient method, presented in section 2.4.3, is 
suitable for being adapted to minimise piecewise partially separable func­
tions. The following preliminary remarks on the discrete gradient will be 
used in this adaptation. 

Remark 17: It follows from definition 22 on page 56 that for the calculation 
of the discrete gradient I'i(X, g, e, Z, A, {3), i E 1(g, a) we define a sequence of 
points 

o i-I HI n 
Xi , ... , Xi , Xi , ... , Xi . 

For the calculation of the discrete gradient it is sufficient to evaluate the 
function f at each point of this sequence. 

Remark 18: The discrete gradient is defined with respect to a given direc­
tion 9 E 8 1 , We can see that for the calculation of one discrete gradient 
we have to calculate (n + 1) values of the function f: at the point X and ' 
at the points x{ (g, e, z, A, ;3), 0 :::; j :::; n, j =I- i. For the calculation of the 
next discrete gradient at the same point with respect to any other direction 
gl E 8 1 we have to calculate this function n times, because we have already 
calculated cp at the point x. 

Remark 19: One can see from (2.10) on page 56 that two successive points 
of the sequence . 

o i-I HI n 
Xi , ... , Xi , Xi , ... , Xi 

differ by one coordinate only. More precisely, the point xk can be obtained 
from the point X k - 1 by changing only the k-th coordinate. 

3.4.2 Calculation of the discrete gradients of the sum 
of max-min functions 

We take any point X E IRn and any direction 9 E 81 , Remark 17 implies 
that for the calculation of the discrete gradient of f at X with respect to the 
direction 9 first we have to define the sequence 

o i-I HI n 
Xi , ... , Xi , Xi , ... , Xi . 

It follows from remark 19 that each new point xP differs from xp
-

1 by one co­
ordinate only. In order to calculate the discrete gradient we have to evaluate 
the function f at all these points. 
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The functions fijk are partially separable and they can be represented as 

Mijk 

fijk(X) = L flik(UijktX). 
t=l 

We will call fi~k core functions. The total number of these functions is 

!vi 

No = LL L Mijk . 
i=l jEJi kEJ(j 

For one evaluation of the function f we have to compute these functions 
No times. Since for one evaluation of the discrete gradient we compute the 
function f n + 1 times the total number of computations of core functions 
for one evaluation of the discrete gradient is 

Nt = (n + l)No. 

For p E {I, ... , n} we introduce 

Q~k = {t E {I, ... ,Mijk } : Uf;t = I} , 
Qijk _ {{ }. pp _ } 

p - tEl, ... , Mijk . Uijkt - 0 . 

It is clear that M ijk = card (Q~k) + card (cnk
). One can assume that 

card (Q~k) « card CCt,;k). For example, if all functions /ijk are I-chained 
then 

card( Q~k) ::; I and card CQ;k) ~ n - l - l. 

If these functions are separable then 

card(Q~k) = 1 and card CQ;k) = n - 1. 

Then the function fijk can be calculated at the point xP as follows: 

that is we compute only functions ffjk' t E Q~k at the point xP and all other 
functions remain the same as at the point xp -

1 . Thus in order to calculate 
the function f at the point xP we compute 

!vi 

Ns = LL L card(Q~k) 
i=l jEJi kEKj 
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times the core functions at this point. Since card (Q~k) « Jl"lijk one can 
expect that Ns « No. 

If all functions fijk, 1 ::::; 'l ::::; M, j E Ji , k E K j are l-chained then 

M 

Ns = l I: I: card (Kj). 
i=l jEJi 

If all these functions are separable then 

M 

Ns = I: I: card (Kj ). 

i=l jEJi 

Thus in order to compute one discrete gradient at the point x with respect 
to the direction g E 8 1 we have to compute the function f at the points x 
and x + >..g using formula (3.5) and at all other points xf, 1 ::::; p < n, p =I i 
it can be computed using the simplified scheme (3.8). In this case the total 
number of computations of core functions is 

Nts = 2No + (n -l)Ns 

which is significantly less than Nt when n is large. 
Now we consider one special case of functions (3.5). 

Functions represented as a sum of minimum functions 

We consider the following functions: 

(3.9) 

where k = {I, ... , K}, xk E lR,n, x = (Xl, ... , x K ) E lR,Kxn and the functions 
fik are separable 

n 

fik(X) = I: fijk(XJ). 
j=l 

The function (3.9) can be derived from the function (3.5) when 

Ji = {I}, 1 ::::; i ::::; M, K j = {I, ... , K}. 

In order to calculate one discrete gradient of the function (3.9) we have to 
evaluate functions fijk Nf K(n + 1) times. However the use of the simplified 
scheme reduces this number to 2M K + n - 1. 
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3.5 Numerical experiments 

A number of numerical experin~ents have been carried out using large scale 
nonsmooth optimisation problems. 

3.5.1 Test problems 

The following test problems have been used in numerical experiments. The 
description of chained problems can be also found in [83, 133, 136]. We 
consider unconstrained minimisation problems. Below f* stands for the min­
imum value of function f. 

Chained problems 

Problem 1 (Chained LQ function). 

n-l 

f(x) = 2.: max { -Xi - XH1, -Xi - Xi+1 + (X~ + X~+l - I)} ,f* = -(n-l)J2. 
i=l 

Problem 2 (Chained CB3 I function). 

n-l 

f(x) = 2.: max {xi + X~+l' (2 - Xi)2 + (2 - Xi+l)2, 2e-Xi +X
i+l} ,f* = 2(n-l). 

i=l 

Problem 3 (Chained CB3 II function). 

f(x) = max {~(xt + X;+l)' ~((2 - X;)2 + (2 - x;+d2
), 2 ~ e-x;+x,+, } , 

f* = 2(n - 1). 

Problem 4 (Nonsmooth generalization of Brown function 2). 

n-l 

f(x) = 2.: (IXilx;+1+1 + IXi+1l x;+l) ,f* = O. 
i=l 

Problem 5 (Chained Mifflin 2 function). 

n-l 

f(x) = 2.: (-Xi + 2(X7 - x~+l - 1) + 1.751x~ + X~+l - 11) ,f* varies. 
i=l 
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Problem 6 (Chained Crescent I function). 

{

n-l n-l } 

f(x) = max B (x; + (Xi+l - 1)2 + Xi+l - 1) 'B (-x; - (Xi+l - 1)2 + Xi+l + 1) , 

f* = O. 

Problem 7 (Chained Crescent II function). 

n-l 

f.(x) = Lmax {x; + (Xi+l - 1)2 + Xi+l - 1, -x; - (Xi+! - 1)2 + Xi+l + I}, f* = O. 
i=l 

Problem 8 (Chained Wood function). 

k 

f(x) - L[100(x~j_l - X2j)2 + (X2j-l - 1)2 + gO(X~i+l - X2i+2)2 + (X2i+l - 1)2 
j=l 

+ 10(x2j + X2j+! - 2)2 + (X2j - X2i+2)2/10], 
k = (n - 2)/2, 

f* = O. 

Problem 9 (Chained Powell singular function). 

k 

f(x) = L [(X2j-l + 10x2j)2 + 5(X2i+l - X2i+2)2 + (X2j - 2X2i+l)4 + 10(X2j-l - X2i+2)4] : 
j=l 

k = (n - 2)/2, 
f* = O. 

Piecewise partially separable problems 

Problem 10 (PPSF CB3 I function). 

n 

f(x) = L max {xt + x7, (2 - Xi? + (2 - Xl)2, 2e-Xi+X1
} ,f* = 2n. 

i=l 

Problem 11 (PPSF CB3 II function). 

f(x) ~ max {t,(xt + xD, t,((2 - Xi)' + (2 - Xl)'), 2 t,(e-x ,+x
,) } ,f. ~ 2n. 
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Problem 12 (PPSF Nonsmooth generalization of Brown function 2). 

n 

f(x) = L (IXiIXI+l + IXllxr+l) ,1* = O. 
i=l 

Problem 13 (PPSF Broyden function). 

n 

f(x) = L 1(3 - 2Xi)Xi - Xl - X2 + 11 7
/
3

, f* = O. 
i=l 

The objective functions are smooth in Problems (8), (9) and they are 
piecewise partially separable in Problems (10)-(13). The latter functions are 
modifications of corresponding test functions. 

The code has been written in C++ and numerical experiments have been 
carried out in PC Intel Pentium 4, 1.6 MHz. Their results are presented in 
tables 3.1-3.4. In these tables we use the following notations: 

• n is the number of variables; 

• t the CPU time in seconds; 

• Nf the number of evaluations of core functions when the simplified 
scheme is applied; 

• Ns the number of objective function evaluations when the simplified 
scheme is applied; 

• Ng the number of objective function evaluations without application of 
the simplified scheme; 

• XO and x* are the initial point and the mini miser , respectively. 

We consider that starting from the point XO the algorithm succeeds if for 
the final point x the inequality 

is true. Otherwise we say that it fails. Here the tolerance 0 = 10-4
. 

In the numerical experiments for each problem and n we ran the algorithm 
starting from 100 randomly chosen points. In the tables we present average 
values oft, N f , Ns and Ng/Ns · In the column "Failed" we present the number 
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J(xo) - J(x*) 
n t N f Ns Ng/Ns Failed min max 

Chailled 2000 44.30 3.23e7 1.62e4 1800.0 0 1.27e05 1.43e05 
LQ 1500 23.60 1. 84e7 1.23e4 1310.0 0 9.34e04 1.07e05 

1000 11.40 9.28e6 9.2ge3 859.0 0 6.32e04 7.27e04 
800 8.31 6.66e6 8.34e3 686.0 0 4.84e04 5.80e04 
500 5.18 4.10e6 8.21e3 416.0 0 2.9ge04 3.76e04 
300 3.26 2.38e6 7.95e3 244.0 0 1.7ge04 2.22e04 
100 1.76 7.58e5 7.66e3 79.0 0 5.24e03 8.65e03 
50 1.31 3.02e5 6.17e3 39.9 0 2.33e03 4.47e03 
10 0.34 1.lOe4 1.22e3 5.6 0 2.54e02 1.00e03 

Chained 2000 81.20 3.26e7 1.63e4 1380.0 0 2.73e09 7.80e09 
CB31 1500 49.00 2.13e7 1.42e4 963.0 0 1.86e09 6.71e09 

1000 25.60 1. 14e7 1. 14e4 633.0 0 9.85e08 4.3ge09 
800 18.70 8.2ge6 1.04e4 511.0 0 2.28e08 4.23e09 
500 9.25 4.20e6 8.42e3 309.0 0 3.2ge08 3.13e09 
300 3.56 1.81e6 6.04e3 163.0 0 1.17e08 2.26e09 
100 0.75 3.93e5 3.97e3 49.2 0 2.95e06 9.50e08 
50 0.37 1.6ge5 3.46e3 24.6 0 9.48e04 6.97e08 
10 0.03 1.44e4 1.60e3 3.0 0 3.96e03 3.55e08 

Chained 2000 40.20 2.07e7 1.03e4 1250.0 0 2.92e09 7.65e09 . 
CB3II 1500 18.2 1.06e7 7.04e3 806.0 0 2.01e09 5.76e09 

1000 8.22 5.1ge6 5.1ge3 488.0 0 9.61e08 4.42e09 
800 5.72 3.62e6 4.53e3 385.0 0 7.16e08 3.84e09 
500 2.93 1.87e6 3.76e3 243.0 0 3.73e08 2.9ge09 
300 1.50 9.44e5 3.16e3 150.0 0 5.76e07 2.3ge09 
100 0.50 2.37e5 2.3ge3 54.0 0 1.05e07 1.40e09 
50 0.29 9.83e4 2.01e3 26.2 0 1.1ge05 1.06e09 
10 0.02 1.03e4 1.15e3 3.9 0 4.38e03 2.42e08 

Table 3.1: Results for piecewise chained functions 

of failures of the algorithm. We also present the minimum and maximum 
values of the difference f(xO) - f(x*) in order to demonstrate how far the 
initial points are from the solution. 

Figures 3.1 and 3.3 show the dependence of Ns on the number of variables 
n for piecewise chained and piecewise partially separable functions, respec-
tively and figures 3.2 and 3.4 show the dependence of Ng/Ns on the number 
of variables n for these functions. 

As one can see from tables 3.1 - 3.4 the proposed algorithm allows us to 
solve all problems with a given accuracy except problem 4 (with n = 2000), 
Problem 6 (with n = 1000,2000), problem 7 (with n = 100 - 2000) and 
problem 13 (with n = 800,1000,1500,2000). However, it should be noted 
that all problems have been solved with accuracy c = 10-2

. In the numerical 
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J(xo) - J(x*) 
n t N f Ns Ng/Ns Failed min max 

Chained 2000 76.60 1.7ge7 8.94e3 1850.0 5 8.86e02 9.37e02 
generalised 1500 32.30 7.76e6 5.18e3 1360.0 0 6.56e02 7.0ge02 
Brown 2 1000 15.30 3.83e6 3.84e3 874.0 0 4.35e02 4.77e02 

800 9.75 2.50e6 3.12e3 689.0 0 3.4ge02 3.77e02 
500 4.91 1.15e6 2.30e3 425.0 0 2.14e02 2.42e02 
300 3.24 5.78e5 1. 93e3 250.0 0 1.28e02 1.45e02 
100 1.57 1.38e5 1.3ge3 82.1 0 4.02e01 4.9ge01 
50 2.48 5.56e4 1. 14e3 40.3 0 1.86e01 2.64e01 
10 0.03 4.53e3 5.03e2 6.6 0 2.3geOO 5.87eOO 

Chained 2000 10.70 8.84e6 4.42e3 1840.0 5 1.27e05 1.43e05 
Crescent I 1500 5.51 4.72e6 3.15e3 1350.0 3 9.48e04 1.0ge05 

1000 2.45 2.23e6 2.23e3 875.0 0 6.26e04 7.05e04 
800 1.71 1.56e6 1.95e3 692.0 0 4.87e04 5.72e04 
500 0.99 8.62e5 1. 73e3 428.0 0 2.93e04 3.60e04 
300 0.62 4.54e5 1.52e3 256.0 0 1. 78e04 2.30e04 
100 0.30 1.1ge5 1.20e3 82.9 0 5.37e03 8.04e03 

50 0.23 5.18e4 1.06e3 40.5 0 2.33e03 4.47e03 
10 0.03 5.78e3 6.42e2 6.7 0 2.83e02 9.95e02 

Chained 2000 25.80 2.15e7 1.08e4 1760.0 100 1.27e05 1.41e05 
Crescent II 1500 11.20 1.07e7 7.17e3 1250.0 99 9.40e04 1.06e05 

1000 4.45 5.14e6 5.15e3 779.0 100 6.20e04 7.23e04 
800 2.83 3.62e6 4.53e3 606.0 98 4.96e04 5.86e04 
500 1.30 1. 84e6 3.6ge3 361.0 99 3.01e04 3.64e04 
300 0.70 8.95e5 2.9ge3 207.0 97 1.76e04 2.25e04 
100 2.48 2.53e5 2.55e3 71.2 61 5.11e03 8.56e03 

50 0.50 1.25e5 2.55e3 39.1 0 2.31e03 4.46e03 
10 0.26 7.51e3 8.34e2 6.0 0 2.61e02 9.23e02 

Table 3.2: Results for piecewise chained functions 
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f(xo) - f(x*) 
n t Nt Ns Ng/Ns Failed min max 

Chained 2000 85.20 7.18e7 3.5ge4 1700.0 0 4.6ge05 5.16e05 
Mifflin 1500 63.50 6.73e7 4.4ge4 1140.0 0 3.48e05 3.91e05 

1000 22.50 2.83e7 2.83e4 708.0 0 2.2ge05 2.68e05 
800 14.00 1.83e7 2.2ge4 549.0 0 1. 84e05 2.11e05 
500 6.13 8.08e6 1.62e4 331.0 0 1. 13e05 1.33e05 
300 3.15 3.73e6 1. 25e4 198.0 0 6.61e04 8.37e04 
100 1.60 7.97e5 8.05e3 75.0 0 1.76e04 3.10e04 

50 1.65 3.37e5 6.88e3 40.0 0 8.5ge03 1.81e04 
10 0.91 1.3ge4 1.54e3 6.0 0 9.15e02 3.84e03 

Chained 2000 62.00 4.27e7 2.14e4 1290.0 0 3.31e08 3.86e08 
Wood 1500 34.20 2.44e7 1.63e4 844.0 0 2.4ge08 3.05e08 

1000 19.20 1.26e7 1.26e4 466.0 0 1.62e08 1.9ge08 
800 14.00 8.77e6 1.lOe4 345.0 0 1. 22e08 1.72e08 
500 13.20 4.3ge6 8.7ge3 201.0 0 7.7ge07 1. 11e08 
300 10.40 2.25e6 7.51e3 117.0 0 4.20e07 6.5ge07 
100 11.40 6.1ge5 6.25e3 40.6 0 1.08e07 2.77e07 

50 11.10 2.73e5 5.57e3 22.7 0 4.35e06 1.28e07 
10 0.29 2.75e4 3.05e3 3.7 0 5.70e04 3.18e06 

Chained 2000 24.10 1.53e7 7.64e3 1040.0 0 1.48e08 1.88e08 
Powell 1500 13.90 9.13e6 6.0ge3 658.0 0 1.lOe08 1.52e08 
singular 1000 8.89 5.2ge6 5.30e3 402.0 0 7.1ge07 1.01e08 

800 13.00 4.13e6 5.17e3 325.0 0 5.08e07 8.58e07 
500 6.42 2.52e6 5.04e3 219.0 0 3.36e07 5.68e07 
300 5.72 1.67e6 5.58e3 142.0 0 1.78e07 3.67e07 
100 5.69 5.40e5 5.45e3 44.4 0 4.33e06 1.36e07 

50 5.44 2.24e5 4.58e3 21.6 0 1.26e06 7.62e06 
10 0.21 3.7ge4 4.22e3 3.3 0 2.4ge04 1. 77e06 

Table 3.3: Results for piecewise chained functions 
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J(xo) - J(x*) 
n t N f Ns Ng/Ns Failed min lnax 

PPSF 2000 51.20 3.87e7 1.94e4 854.0 0 3.82e06 8.07e10 
CB31 1500 27.50 2.1ge7 1.46e4 605.0 0 2.80e06 7.70e10 

1000 12.90 1.07e7 1.07e4 384.0 0 1.88e06 2.93elO 
800 9.26 7.85e6 9.82e3 298.0 0 1.4ge06 3.9gelO 
500 4.93 4.26e6 8.53e3 178.0 0 9.11e05 2.00elO 
300 2.71 2.28e6 7.63e3 103.0 0 5.17e05 1.8ge10 
100 1.57 5.24e5 5.2ge3 30.5 0 1.33e05 5.91e09 
50 2.26 2.01e5 4.0ge3 15.5 0 6.04e04 3.07e09 
10 0.04 1.50e4 1.67e3 3.3 0 3.00e03 9.64e07 

PPSF 2000 24.40 2.12e7 1.06e4 777.0 0 3.74e06 9.08e10 
CB3 II 1500 11 .70 1.08e7 7.20e3 540.0 0 2.76e06 6.83e10 

1000 5.62 . 5.35e6 5.36e3 341.0 0 1. 84e06 2.67elO 
800 4.14 3.98e6 4.98e3 261.0 0 1.47e06 3.80e10 
500 2.24 2.17e6 4.35e3 163.0 0 9.04e05 2.08e10 
300 1.29 1.31e6 4.36e3 97.1 0 5.08e05 1.93e10 
100 0.86 9.97e5 1.01e4 29.8 0 1.36e05 3.98e09 
50 0.25 1.9ge5 4.05e3 15.6 0 7.76e04 2.0ge09 
10 0.02 1.08e4 1.1ge3 3.4 0 3.68e03 4.93e08 

PPSF 2000 79.60 3.74e7 1. 87e4 975.0 3 5.00e02 1.32e03 
generalised 1500 39.80 1.94e7 1.30e4 724.0 0 4.01e02 9.97e02· 
Brown 2 1000 16.30 8.22e6 8.23e3 473.0 0 2.47e02 6.5ge02 

800 10.70 5.38e6 6.74e3 376.0 0 1. 97e02 5.27e02 
500 5.10 2.40e6 4.81e3 232.0 0 1. 24e02 3.23e02 
300 3.60 1.24e6 4.13e3 138.0 0 7.74e01 1.98e02 
100 2.98 2.74e5 2.77e3 45.9 0 2.28e01 6.68e01 
50 2.89 1.01e5 2.07e3 23.0 0 1.23e01 3.41e01 
10 0.02 6.21e3 6.8ge2 4.7 0 1.50eOO 6.7geOO 

PPSF 2000 54.50 6.18e7 3.0ge4 525.0 93 1.25e07 2.21e07 
Broyden 1500 19.10 2.44e7 1. 63e4 329.0 82 8.85e06 1.72e07 

1000 8.41 1.16e7 1.16e4 199.0 32 6.25e06 1.lOe07 
800 5.59 7.9ge6 1.00e4 164.0 8 5.05e06 8.75e06 
500 2.48 3.32e6 6.66e3 109.0 0 2.62e06 5.73e06 
300 1.32 1.58e6 5.2ge3 70.9 0 1. 75e06 3.35e06 
100 0.57 2.96e5 2.9ge3 26.5 0 5.27e05 1.36e06 
50 0.62 1.26e5 2.56e3 14.0 0 2.3ge05 6.85e05 
10 0.06 1.60e4 1. 78e3 3.1 0 1.05e04 1.95e05 

Table 3.4: Results for piecewise partially separable functions 
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Figure 3.1: Average number of function evaluations for piecewise chained 
functions 

experiments we restricted the maximum number of discrete gradients which 
can be calculated at each iteration to 200. In all these problems in order to 
calculate solutions with higher accuracy we have to significantly increase this 
number. But in this case the CPU time may increase substantially. 

Results for CPU time reported in the tables demonstrate that the algo­
rithm is quite fast to find solutions with the given accuracy in problems up 
to 2000 variables. 

The numbers presented in columns for the minimum and maximum values 
of the difference f(xO) - f* show that randomly chosen initial points are not 
close to the solutions for almost all problems and all n. Therefore one can 
assert that the number of objective function evaluations Ns is moderate for 
all problems and n. We can also see from figures 3.1 and 3.3 that the number 
Ns is almost a linear function of the number of variables for all problems for 
which the algorithm was successful. 

The ratio Ng / Ns increases as the number of variables increases. Figures 
3.2 and 3.4 demonstrate that this ratio is a linear function of the number of 
variables and Ng / Ns ~ om where a = 0.30 -;- 0.95. 
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Figure 3.2: Average ratio of the number of function evaluations for general 
scheme to simplified scheme for chained functions 

3.6 Conclusion 

In this chapter we have developed an algorithm for solving one class of large 
scale nOllsmooth optimisation. This class contains piecewise partially sepa­
rable functions. These functions have many practical applications including 
applications in data mining and information retrieval. The algorithm for 
minimisation of these functions is the modification of the discrete gradient 
method. It has been shown that the calculation of discrete gradients can be 
significantly accelerated. We present results of numerical experiments which 
demonstrate that the proposed algorithm is effective for solving many large 
scale nonsmooth optimisation problems up to 2000 variables. 

As it was pointed out above in this chapter the discrete gradient method 
consists of three major steps: the computation of the discrete gradients, the 
computation of a descent direction by solving a certain quadratic program­
ming problem and a line search. The simplified scheme proposed in this 
chapter allows one to significantly accelerate the computation of the discrete 
gradients. However, the acceleration of two other steps taking into the struc­
ture of large scale problems may lead to a more efficient algorithm and its 
application to a broad class of large scale nonsmooth optimisation problems. 
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Chapter 4 

Minimisation algorithms for 
data analysis problems 

4.1 Introduction 

Optimisation based formulations of data analysis problems present very gen­
erally the same shape: due to the discrete nature of the sets of n-dimensional 
points representing the datasets, the objective functions are usually based on 
a set of operators, such as: 

sum over the elements of the dataset ; 

maximum or minimum over the elements of the dataset; 

product over the elements of the dataset. 

In the case of the sum, the maximum and the minimum, it has been shown 
in proposition 17 on page 76 that these functions conserve the partial piece­
wise separability. Functions taking the form of a product are encountered 
very seldom, and can be transformed using the logarithm operator. 

4.2 Solving the Max-Min separation problem 

In this section we discuss an algorithm for minimisation of the error fUriction 
(1.25) on page 34. 
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4.2.1 Statement of problem 

The problem of the max-min separability is reduced to the following mathe­
matical programming problem: 

minimise f (:c, y) 
subject to 

(x, y) E R(n+l)xl 

where the objective function f has the following form: 

f(x, y) = ft(x, y) + h(x, y) 

and 

1 m [ . 1 h(x, y) = - L max 0, II.1axmin {(xJ , ak
) - Yj + I} , 

m tEl JEJi 
k=I 

1 P [ . 1 h (x, y) = - L max 0, min max { - (xJ , bt
) + Yj + I} . 

P tEl JEJi 
t=l 

(4.1) 

(4.2a) 

(4.2b) 

The problem (4.1) is a global optimisation problem. However, the number 
of variables in this problem is large and the global optimisation methods 
cannot be directly applied to solve it. Therefore we will discuss algorithms 
for finding local minima of the function f. 

The functions hand hare nonconvex piecewise linear. These functions 
are Lipschitz continuous and consequently sub differentiable in the sense of 
Clarke (see definition 18 on page 51). Moreover, both functions are semis­
mooth (see definition 16 on page 50). Therefore the function f is also subd­
ifferentiable. The function ft contains the following max-min functions: 

and the function h contains the following min-max functions: 

The differential properties of max-min functions are studied, for example, in 
[58, 160]. The functions !.{JIb 1 :::; k :::; m and !.{J2t, 1 :::; t :::; p are not regular 
(see definition 20 on page 51). Then the functions h, h and consequently the 
function f are not regular, too. Therefore the calculation of subgradients of 
the function f is a difficult task. This implies that the methods of nonsmooth 
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optimisation which use subgradients at each iteration seem not to be effective 
for solving problem (4.1). 

In the paper [111] optimisation problems with twice continuously differ­
entiable objective functions and max-min constraints were considered and 
these problems were converted to problems with smooth objective and con­
straint functions. However, tllis approach cannot be applied to the problem 
(4.1), because the function f contains not only max-rin-type functions but 
also min-max-type functions. 

In order to provide an efficient algorithm for minimising the error func­
tion, the scheme presented in section 3.4 on page 80 will be applied. 

4.2.2 Differential properties of the objective function 

Proposition 20. The function f is semismooth. 

Proof. The sum, the maximum and the minimum of semismooth functions 
are semismooth (see [146]). A linear function, as a smooth function, is semis­
mooth. Thus the function f which is the sum of functions represented as the 
maximum of 0 and max-min of linear functions, is semismooth. 0 

4.2.3 Calculation of the discrete gradients of the ob­
jective function 

Due to their piecewise linearity, it is quite clear that functions II and 12 de­
fined in (4. 2a) and (4. 2b) on the preceding page are piecewise separable. The 
objective function of problem (4.1), as their sum, is thus piecewise separable. 

The scheme proposed in section 3.4.2 can therefore be applied on this 
function. 

The objective function f depends on (n + l)l variables where l is the 
number of hyperplanes. The function II cOlltains max-min functions i.plk 

where 
'¢ljk(X, Y) = (xj , ak) - Yj + 1, j E Ji , i E I. 

We can see that for every 1 < k :S m, each pair of variables {x j , Yj} appears 
in only one function 'l/Jljk. 

For a given 1 :S i :S (n + l)l we set 

li - 1 J qi = n + 1 + 1, di = i - (qi - 1) (n + 1) 
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We define by X the vector of all variables {xi) Yi}) 1 ~ j ::; l: 

where 
Xi = Xd: ~f 1 ~ di ~ n, 

Yqi If di = n + l. 
We use the vector of variables X to define a sequence 

X o Xt-l XHI X(n+!)l J( ) R(n+l)l t ) . . . ) t ) t , ... , t , t E g, a ,g E 

as in remark 17 on page 82. It follows from (2.10) that the points xf-1 

and X; differ by one coordinate only. This coordinate appears in only one 
linear function 'ljllqi k . It follows from the definition of the operator HI that 
Xi = X:-l and thus this observation is also true for xi+!. Then we get 

Moreover the function 'l/Jlqi k can be calculated at the point X: using the value 
of this fUllction at the point X;-l,i ;::: 1: 

'l/J (Xi) - 'l/JIQik(Xi-
1

) - Z(A)a~iei(,B) if 1 < di ~ n, (4.3) 
lqi k 

t - 'l/JIQ;k(Xi-1) + z(A)ei(,B) if di = n + l. 
In order to calculate the function h at the point X:, i ;::: 1 first we have 

to calculate the values of the functions 'l/Jlq;k for all ak E A, 1 ~ k ~ musing 
(4.3). Then we update h using these values and the values of all other linear 
functions at the point X;-1 according to (4.2a) . Thus we have to apply a 
full calculation of the function II using the formula ( 4.2a) only at the point 
X? = X +Ag. 

Since the function h has a similar structure as 11 we can calculate it in 
the same manner using a formula similar to (4.3). 

Thus for the calculation of each discrete gradient we have to apply a full 
calculation of the objective function I only at the point X? = X +Ag and this 
function can be updated at the points Xf, i ;::: 1 using a simplified scheme. 

We can conclude that for the calculation of the discrete gradient at a 
point X with respect to the direction gO E 81 we calculate the function f at 
two points: X and X? = X + AgO. For the calculation of another discrete 
gradient at the same point X with respect to any other direction gl E 8 1 we 
calculate the function f only at the point: X + Agl. . 

Since the number of variables (n+1)l in the problem (4.1) can be large this 
algorithm allows us to significantly reduce the number of objective function 
evaluations during the calculation of a discrete gradient. 
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On the other hand the function II contains max-min-type functions and 
their computation can be simplified using an algorithm proposed in [70]. The 
function h contains min-max-type functions and a similar algorithm can be 
used for their calculation. 

Results of numerical experiments show that the use of these algorithms al­
lows one to significantly accelerate the computation of the objective function 
f and its discrete gradients. 

4.3 Solving the clustering problem 

Problem (1.4) on page 15 is a nonsmooth optimisation problem. It is very 
difficult to adapt the simplified scheme to the general form of these func­
tions, since the dissimilarity measure can take any form. We will present 
here a scheme for minimising the cluster function when the dissimilarity is 
measured using a Minkowski metric (see formula LIon page 12). Since the 
objective functions in these problems are represented as a sum of minimum of 
norms they are Lipschitz continuous. Moreover they are piecewise partially 
separable functions, and the scheme presented in section 3.4 on page 80 can 
be applied. 

4.3.1 Differential properties of the objective functions 

Since function f from (1.4) is locally Lipschitz continuous they are subdif­
ferentiable. 

Proposition 21. The function f is semismooth. 

Proof. The sum and the minimum of semismooth functions are semismooth 
(see [146]). A norm as a convex function is semismooth. Then the function 
f which is the sum of functions represented as the minimum of nor~s is 
semismooth. 0 

The objective function is clearly piecewise partially separable, as the sum 
of minima of smaller functions. 

4.3.2 Calculation of the discrete gradients of the ob­
jective function of the clustering problem 

The objective function f of the problem (1.4) depends on n x q variables 
where q is the number of clusters. This function is represented as a sum of 
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min-type flUlctions 
m 

f(x) = L 'l/Ji(X) 
i=l 

where 

with () = ~, and 
n 

7]ij(X) = L Ixt - a~"p. 
u=l 

It should be noted that the functions 7]ij are separable. We can see that for 
every 1 :S i :S m, each variable xj appears in only one function 7]ij. 

For a given 1 ::; k ::; nq we set 

lk -lJ Tk = -n- + 1, dk = k - (Tk - l)n. 

We define by X the vector of all variables xj, 1 :S j :S q: 

where 
X rk 

k = x dk · 

We use the vector of variables X to define a sequence 

X o Xt-l X t+1 X nq t J( ) lRnq 
t' ... , t , t , ... , t , E g, a , 9 E 

as in remark 17. It follows from (2.10) that the points xt-1 and xt differ 
by one coordinate only (0 :S k :S nq, k =J. t). For every 1 ::; i :S m this 
coordinate appears in only one function 'T/irk. It follows from the definition 
of the operator H that Xf = X;-l and thus this observation is also true for 
Xf+l. Then we get 

'T/ij(Xt) = 7]ij(Xt-1 )Vj =J. Tk 

which means that when we change the k-th coordinate of the point X only 
one function (namely the function 7]irk) changes its value. 

Moreover the function 'T/irk can be calculated at the point xt using the 
value of this function at the point xt-1

, k ;::: 1: 
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Because T/ is separable, only one term in the Sllm changes. Thus we need 
to add the new term, and subtract the old one. For p = 2, (4.3) can be 
simplified as follows 

In order to calculate the function f at the point X t
k

, k ~ 1 first we have to 
calculate the values of the functions T/irk for all ai E A, 1 ~ i ~ musing 
(4.3). Then we update f using these values and the values of all other 
functions T/ij,j #- rk at the point X:- l according to (1.4). Thus we have to 
apply a full calculation of the function f using the formula(1.4) only at the 
point X? = X + )..g. Hence for the calculation of each discrete gradient we 
have to apply a full calculation of the objective function f only at the point 
X? = X +)..g and this function can be updated at the points Xf, k ~ 1 using 
a simplified scheme. 

We can conclude that for the calculation of the discrete gradient at a 
point X with respect to the direction gO E 8 1 we calculate the function f at 
two points: X and X? = X + )..go. For the calculation of another discrete 
gradient at the same point X with respect to another direction gl E 8 1 we 
calculate the function f only at the point: X + )..gl . 

Since the number of variables nq in the problem (1.4) can be large this 
algorithm allows one to significantly reduce the number of objective function 
evaluations during the calculation of a discrete gradient. 
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Chapter 5 

Classification using Max-Min 
separability 

In this chapter we present an application of the max-min separation to solve 
data supervised classification problems. Numerical experiments on real world 
datasets are presented. 

5.1 Supervised data classification via max­
min separability 

We are given a dataset A containing a finite number of points in 1Rn. This 
dataset contains d disjoint subsets AI, ... ,Ad where Ai represents a training 
set for the class i. The aim of supervised data classification is to establish 
rules for the classification of new observations using these training subsets of 
the classes. This problem is reduced to d set separation problems. 

Each of these problems consists in separating one class from the rest of 
the dataset. To separate the class i from all others, we separate sets Ai 
and U#i A j , with a piecewise linear function by solving problem (1.25) on 
page 34. 

One of the important questions in supervised data classification is the 
estimation of performance measure. Different performance measures are, dis­
cussed in [185]. When the dataset contains two classes the classification 
problem can be reduced to only one separation problem, therefore the classi­
fication rules are straightforward. We consider that the separation function 
obtained from the training set, separates the two classes. 

When the dataset contains more than two classes we have more than 
one separation function. In our case for each class i of the dataset A we 
have one piecewise linear function !Pi separating the training set Ai from all 
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other training points UUi A.i· We approximate the training set Ai using the 
following set 

Ai = {a E lRn 
: 'Pi(a) < a}. 

Thus we get the sets AI, ... , Ad which approximate the training sets AI, ... ,Ad, 
respectively. Then for each i E {1, ... ,d} we can consider the following two 
sets: 

Figure 5.1: Classification using max-min separability 

These two sets define the following four sets (see figure 5.1): 

1. A? n (lRn\A?) 

2. (lRn\A?) n A? 

3. A? n A? 
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If a new observation a belongs to the first set we classify it in class i, if it 
belongs to the second set we classify it not to be in class i. If this point 
belongs to the third or fourth set in this case if !.pi(a) < minl::;j::;d,#i !.pj(a) 
then we classify it in class i, otherwise we classify it not to be in class i. 

In order to evaluate the classification algorithm we use two performance 
measures. First we present the average accuracy (a2c ill tables 5.1 and 5.2) 
for two classes classification (when one particular class is separated from all 
others) and the multi-class classification accuracy (amc in tables 5.1 and 5.2) 
as described above. First accuracy is an indication of separation quality and 
the second one is an indication of multi-class classification quality. 

5.2 Results on large datasets 

5.2.1 Datasets 

The datasets used are the Shuttle control, the Letter recognition, the Landsat 
satellite image, the Pen-based recognition of handwritten and the Page blocks 
classification databases. 

5.2.2 Results and discussion 

Our algorithm has been implemented in C++ on a Pentium 4 1.7 GHz. We 
took X O = 0 E lR(n+l)1 as a starting point for solving each separation problem 
(1.25) . The parameters in the calculation of the discrete gradient for all 
iterations k and all separation problems were chosen as follows: zk(A) = 

At, t = 3 -7 3.5, Ak+l = O.5Ak' Ao = 0.9,,tJk = 1. At each iteration of the 
discrete gradient method the line search is carried out by approximation of 
the objective function using univariate piecewise linear function (see [14]). 
In each separation problem (1.25) all Ji , i E I have the same cardinality. 

Results of numerical experiments are presented in tables 5.1 and 5.2. In 
these tables Jet eval and DC eval show respectively the average number of 
objective function evaluations and of discrete gradient evaluations required 
to solve an optimisation problem. 

From the results presented in these tables we can see that the use of the 
max-min separability algorithm allows us to achieve a very high classification 
accuracy for both training and test phases. Results on training sets show 
that this algorithm provides a very high quality of separation between two 
sets. In our experiments we used only large-scale datasets. Results on these 
datasets show that a few hyperplanes are sufficient to separate efficiently 
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sets with large numbers of points. Since we use a derivative-free method 
to solve problem (1.25) the number of objective functioll evaluations is a 
significant characteristic for estimation of the complexity of the max-min 
separability algorithm. Results presented in tables 5.1 and .5.2 confirm that 
the proposed algorithm is effective for solving classification problems on large-
scale databases. 

ilaining Test 
III lJil a2e arne a2e arne fct eval DG eval 

Shuttle control dataset 

1 1 97.61 97.22 97.53 97.00 925 615 
2 1 99.44 97.56 99.41 97.42 2148 1676 
3 1 99.61 97.57 99.59 97.50 1474 968 
2 2 99.68 99.06 99.68 99.07 2723 2196 
3 2 99.75 99.67 99.73 99.53 2663 2079 
3 3 100.00 99.87 99.97 99.84 2108 1493 

Letter recognition dataset 

1 1 88.44 84.09 88.61 85.42 628 336 
2 1 94.09 90.29 93.86 92.52 1646 926 
3 1 96.29 96.03 96.12 95.08 2902 1707 
2 2 95.73 94.15 95.53 94.76 2950 1816 
3 2 97.47 97.25 97.18 95.20 3778 2382 
3 3 97.59 96.69 97.25 94.56 4017 2544 

Landsat satellite image dataset 

1 1 85.63 68.46 84.83 83.35 990 606 
2 1 94.52 94.22 92.89 90.30 3178 2075 
3 1 94.83 91.52 93.10 89.05 4082 2618 
2 2 95.02 93.78 93.49 89.50 3951 2556 
3 2 94.96 93.80 93.61 89.65 4125 2625 
3 3 95.79 91.00 94.07 82.30 4687 2991 

Table 5.1: Results of numerical experiments with Shuttle control, Letter 
recognition and Landsat satellite image datasets 

106 



Classification using Max-Min separability 

Training Test 

III IJil a2e a1/l.C a2c arne fct eval. DG. eval. 

Pen-based recognition of handwritten dataset 

1 1 97.27 96.74 96.43 92.37 1597 1146 
2 1 99.31 99.44 98.33 96.14 2607 1852 
3 1 99.79 99.92 98.89 96.20 3040 2220 
2 2 99.80 99.95 98.99 96.03 3083 2306 
3 2 99.83 99.87 99.12 95.88 1806 1268 
3 3 99.73 99.88 98.96 95.80 2693 1966 

Page blocks dataset 

1 1 96.57 92.30 92.29 81.26 5234 3511 
2 1 96.93 94.63 93.10 87.17 4359 2840 
3 1 97.22 95.28 92.71 86.08 4865 3197 
2 2 97.45 95.50 93.09 85.54 5737 3618 
3 2 97.45 95.83 93.39 85.61 5289 3189 
3 3 97.95 96.28 93.85 85.95 4918 3224 

Table 5.2: Results of numerical experiments with Pen-based recognition of 
handwritten and Page blocks datasets 

5.3 Restrictions to the current model 

The piecewise linear separation is a very powerful tool which has a number of 
advantages over the other separation methods. More general than the linear 
and the polyhedral separations (of which it can be seen as a generalisation), 
it does not require any assumption made on the distribution of the points, 
like the Support Vector Machines. If one had to make an analogy between 
these two methods, one could see the piecewise linear separation as a linear 
approximation of the separating function, which as rough as it may be, is 
certainly preferable to an erroneous hand-made approximation proposed in 
the SVM. It has been shown that the only condition for two sets to be 
piecewise linearly separable is that they have to be disjoint. 

Nevertheless, a number of improvements are needed for this method to 
be even more powerful. The optimisation problem associated with the piece­
wise linear separation is a complicated one, with a nonconvex, nonsm~)Oth 
objective function, with a large number of local minima when the number of 
hyperplanes is large enough. Global methods of optimisation are generally 
not efficient to solve this problem for real world large scale datasets, and 
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therefore only local methods like the discrete gradient method can be used. 
It is crucial to be able to find a good initial point, in order to avoid this 
method to get trapped in a shallow local minimum. Such initial points must 
be guessed from the structure of the dataset, and one idea may be to use the 
piecewise linear separation via clustering presented in section 1.3.7. 

The other crucial point is the guess of the number of hyperplanes needed 
for the separation. If not enough hyperplanes are used, then the separation 
will be ineffective. If too many hyperplanes are computed, the problem be­
comes very large, and the number of local minima increases without use for 
it. For the problem of clustering, we will present an approach (see section 6.3 
on page 111) where incremental algorithms are developed to evaluate auto­
matically how many clusters are needed. An incremental solution seems to 
carry much hope in the case of the piecewise linear separation, as this solu­
tion also solves the problem of the initial point. However the cluster function 
(1.4) only contains mins of functions, and adding a new centre to an existing 
solution can not increase the function value. Meanwhile, the Maxmin sep­
arability function (1.25) contains max, and adding a new hyperplane may 
increase the value of the function, making it more difficult to obtain a con­
vergent algorithm. 

5.4 Conclusion 

In this chapter the max-min separability has been presented. It has been 
proved that this method can successfully discriminate disjoint finite sets of 
points, using a max-min of linear functions. 

One main application of this algorithm is the data classification, and nu­
merical experiments were carried out on large size real world dataset, demon­
strating the effectiveness of this algorithm. 

The max-min classification offers advantages over other nonlinear Sepa­
rating methods such as the support vector machine, in that they are not 
based on any assumption over the distribution of the points in the plane. 

Nevertheless, this method necessitates a number of improvements. Firstly, 
the number of hyperplanes is usually not known in advance. It is therefore 
necessary to develop a method to find automatically the number of hyper­
planes. Problem (1.25) is a global optimisation problem. When the number 
of hyperplanes is higher than 1, it is nonconvex. As most global methods are 
computationally not effective for solving this problem in large scale datasets, 
a local algorithm was developed, and therefore it is crucial to compute a 
good starting point, in order to improve the computational efficiency and 
the classification accuracy. 
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Chapter 6 

Solving the clustering problem 

6 .1 Introduction 

The clustering problem as formulated in (1.4) in section 1.2 on page 9 has 
been widely studied. For small datasets (containing few clusters and few 
features), it may be possible to apply global optimisation methods, but in 
general it is not possible. The piecewise partial separability of the objective 
function of this problems allows us to apply a scheme on the discrete gradient 
method, in order to find very efficiently a local minimum of this function. 

Unfortunately there can be no guarantee that a "false" solution, under 
the form of a shallow local minimum, will be avoided. Therefore it is crucial 
to design techniques which ascertain that at least a good solution will be 
reached. 

In this chapter we will describe two techniques. These techniques differ 
in their approach of the problem, and we will discuss the advantages and 
disadvantages of both. 

6.2 A class of sum-min functions 

6.2.1 Functions represented as the sum of minima of 
convex functions 

Consider finite dimensional vector spaces lR,n and lR,7n. Let A c lR,n be a 
finite set and let k be a positive integer. Consider a sum of minima of convex 
functions (SMC) F defined on (lR,7n)k by 

(6.1) 
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where x ~ <(Ji(X, a) is a convex function defined on ]Rill (1 ~ i ~ k, 
a E A) . We do not assume that this function is smooth. Let us denote the 
class of functions of the form (6.1) by F. 

This class offunctions is a subclass ofthe cluster function (1.4) on page 15, 
where the dissimilarity is convex. Notwithstanding noticeable exceptions (as 
ill the design of telecommunication networks), this is generally the case. 

6.2.2 Some properties of SMC functions 

Let. F E F, that is F has the form (6.1). Then F enjoys the following 
properties: 

• F is quasi differentiable (see section 2.2.3 on page 52). Moreover, F 
is DC (the difference of convex functions). Indeed, we have (see for 
example [60, p. 108]): 

F(x) = JI(x) - h(x), 

where 
k 

JI(x) = ~ ~ <(Ji(Xi, a) 
aEA i=l 

h(x) = ~ .Elax L <(Jj(Xj, a). 
2-1, ... ,k 

aEA j-fi 

Both JI and h are convex functions. The pair DF(x) = (8JI(x), -8h(x)) 
is a quasidifferential of F at a point x. Here 8 f stands for the convex 
sub differential of a convex function f. 

• Since F is DC, it follows that this function is locally Lipschitz. 

• Since F is DC it follows that this function is semi-smooth. 

• Since F is locally Lipschitz, it is sub differentiable in the sense of Clarke 
(see section 2.2.2 on page 51). 

• Since F is semismooth, the discrete gradient method can be applied. 

• The function F is a piecewise partially separable function (see chapter 3 
on page 70). As a sum of minimum functions, the scheme described in 
section 3.4 on page 80 can be applied. Such a schell1e has been detailed 
for Minkowski metrics (see equation (1.1) on page 12) in section 4.3 on 
page 99. 
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6.3 Step by step approach to clustering 

Basis of the approach 

Although the optimisation problem (1.4) on page 15 is in general nonconvex, 
it should be noticed that there is convexity when only one cluster is sought. 
In this case, the solution reached by the discrete gradient method is the 
optimal one. 

On the other hand, in practical situations, it is often impossible to fix 
the number of clusters in advance. This means that several options should 
be tried until a satisfactory solution is reached. 

The core idea of the step by step approach is to combine these two facts 
by adding the clusters one by one, while updating the sets of existing clusters. 

The method 

Algorithm 6.1: An algorithm for solving the clustering problem 
Step 1 Initialisation. Select a tolerance c > O. 

Select a starting point xO = (x~, ... ,x~) E JRn and solve the minimisation 
problem (1.4) for q = 1. 
Let xh E JRn be a solution to this problem and fh be the corresponding 
objective function value. 
Set k = O. 
repeat 

Step 2 set k +- k + 1 
Step 3 Computation of the next cluster centre. Select a starting point 'l E lRn 

and solve the following minimisation problem: 

where 

m 

minimise Jk (y) 
subject to 

y E JRn 
(6.2) 

Jk(y) = l:)nin {lIxh 
- aill;,.··, IIx k* - aill;, lIy - aill;} . (6.3) 

i=l 

Step 4 Refinement of all cluster centres. Let yk+1,* be a solution to problem 
(6.2). Take x k +1,O = (xh, ... ,xk*, yk+l,*) as a new starting point and 
solve the problem (1.4) for q = k + 1. Let x k +1 ,* be a solution to problem 
(1.4) and fk+l,* be the corresponding objective function value. 

Step 5 until Stopping criterion: 
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Algorithm 6.1 on the preceding page presents an iterative method for 
solving the clustering problem. In Step 1 the centre of the entire set A 
is calculated with respect to a given norm. In this case the problem (1.4) 
is a convex programming problem. In Step 3 we calculate the centre of 
the next (k + 1)-th cluster, assuming the previous k cluster centres to be 
known and fixed. It should be noted that the number of variables in problem 
(6.2) is n which is substantially less than if we calculate all cluster centres 
simultaneously. In Step 4 the refinement of all k + 1 cluster centres is carried 
out. One can expect that the starting point Xk+l ,O calculated in Step 3 
is not far from the solution to problem (1.4). Therefore it takes only a 
moderate number of iterations to calculate it. Such an approach allows one 
to significantly reduce the computational time for solving problem (1.4). 

It is clear that jk* ~ 0 for all k ~ 1 and the sequence {jk*} is decreasing, 
that is, 

fHh ::; jk*, Vk > l. 

The latter implies that after k > 0 iterations the stopping criterion in step 5 
will be satisfied. 

One of the important questions when one tries to apply algorithm 6.1 
is the choice of the tolerance E > o. Large values of E can result in the 
appearance of large clusters whereas small values can produce small and 
artificial clusters. Results presented in [24] show that appropriate values for 
E are E E [10-1, 10-2]. 

An algorithm for solving problems (1.4) is discussed in section 4.3 on 
page 99. This algorithm is based on the partial piecewise separability of the 
objective function. Since the function (6.3) has a very similar shape, it is 
also possible to apply this method to solve problem (6.2). This algorithm is 
a local one, hence the choice of a good initial guess for problem (6.2) is very 
important. An algorithm for finding such an initial guess is described below. 
It should be noted that starting points in problem (1.4) are predetermined 
in algorithm 6.1. 

6.3.1 An algorithm for finding the initial points in prob­
lem (6.2) 

The main idea behind step 3 in algorithm 6.1 is that a new cluster is added 
to preexisting ones. 

In [87] an improvement for the k-means algorithm, j-means, is given, 
to avoid so-called degenerated solutions, where one cluster is empty: the 
furthest point from all cluster centres is taken as a new centre. This leads to 
an interesting idea, however it needs to be further improved: often real-world 
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datasets contain erroneous records which can be quite far from the rest of 
the dataset. Taking such an erroneous point as an initial guess may lead to a 
shallow local minimum. In figure 6.1, the point PI is the furthest point from 
the cluster centres. However jf this point is chosen as the centre of a cluster, 
this cluster will consist of only Pl' Moreover this initial set of centres, being 
also a local solution, will not be improved. The point P2 is closer to. the 
centres, however it would induce a much better cluster. 

00" II ,,~ 

, '< 

~. ... ).. ~ 

P,. 
..$. : ....... : .... 

"Pie 

Figure 6.1: An example of a dataset containing an erroneous point 

Algorithm 6.2 allows one to avoid this difficulty. 

Algorithm 6.2: An algorithm for finding the initial point in prob­
lem (6.2). 

Step 1 Initialisation. Let C1, . .. , Cq- 1 , q ~ 2 be the preexisting centres and p > 0 a 
tolerance. Let Al = A, and i = 1. 
repeat 

Step 2 Let C be the furthest point in Ai from the centres C1 , ... , Cq- 1 . 

Step 3 Find the set 

C = {a E A; : IIC - all < min IICj - all} . 
lSJSq-1 

Step 4 Set AH1 = Ai \ {C}, i = i + 1 
until card(C) > p 

Remark 20: Since A contains a finite number of points the initial guess 
will be found after a finite number of steps. If the tolerance p is too small 
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then the initial guess may be an erroneous point, but if p is large then no 
init.ial point can be found. Results of numerical experiments show that the 

tolerance p should be chosen in [0.1 ~, 0.4 ~l 

6.3.2 Results of numerical experiments 

To verify the effectiveness of the proposed approach a number of numerical 
experiments with real-world data sets have been carried out on a Pentium-4, 
1.7 GHz, PC. The datasets used in numerical experiments are Fisher's iris 
dataset, the image segmentation dataset, TSPLIB1060 and TSPLIB3038. 

In order to implement the discrete gradient algorithm (algorithm 2.3 on 
page 60) we have to select the sequences {c5d, c5k > 0, {Zk}, Zk E P, {Ak}, Ak > 
0, {!3d, 13k E (0,1]. In the numerical experiments we chose these sequences 
as follows: c5k = 10-9

, 13k = 1 for all k, Zk (A) = N\ 0: E [1.5, 4], Ak = dk AO, d = 
0.5, AO = 0.9. We take Amin E (0, AO)' If Ak < Amin then algorithm 2.3 
terminates. In order to get a solution with high accuracy one has to take 
Amin very small, for example Amin ~ 10-5 . Larger values of Amin may lead 
to more inaccurate solutions, however algorithm 2.3 calculates such solutions 
very quickly. In our numerical experiments, unless specified otherwise, we 
set Amin large. 

In the numerical experiments we also take Cl = 0.2 and C2 = 0.001. The 
starting point for solving problem (6.2) is generated by algorithm 6.2 and 
the starting point for solving problem (1.4) is generated in algorithm 6.1. In 
algorithm 6.2 we fix the parameter p = Tm where r E [0, 0.5]. q 

For the image segmentation dataset we take Amin = 10-5
. For all other 

datasets this parameter is Amin = 0.01. 
In the numerical experiments we consider the squared Euclidean norm, 

that is 1=2 and p = 2. 
In order to provide comparison with the best known solutions from the 

literature we calculate 10 clusters for iris dataset and 50 clusters for all other 
datasets. 

Algorithm 6.1 is a deterministic one. However, it requires the selection 
of the parameter p, which determines the starting points. To see how this 
parameter influences the results, numerical experiments have been carried 
out for ri = 0.05i, 0 < i ~ 10. 

We present the results of the numerical experiments in tables 6.1-6.4. In 
these tables k represents the number of clusters. We give the best known 
function value /opt from the literature corresponding to k clusters ([87, 89]) 
and the % error Ebest and Emean of respectively the best value and the average 
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value obtained by the proposed algorithm. The error E is calculated as 

E = (J - !opt) . 100% 
!opt 

where J is the function value obtained by the algorithm. A negative error 
means that the proposed algorithm improved the best known solution. We 
also give the average number of calculations of norms for reaching the so­
lutions. Ns and N g represent the average number of norm evaluations for 
finding k clusters using the simplified and general schemes as described in 
section 4.3 on page 99, respectively. In the tables we give the values of Ns 
and the ratio Ng / N s . Finally, in these tables we present the average CPU 
time (t) and its standard deviation (O"t). 

Results presented in tables 6.1-6.4 show that for Fisher's iris, TSPLIB3038 
and TSPLIB1060 datasets the proposed algorithm allows one to calculate ei­
ther the best known solution or a solution which is very close to the best one. 
For image segmentation dataset the results for large numbers of clusters are 
not so good. This can be explained by the existence of erroneous points. 
These results demonstrate that if the algorithm gets stuck in a shallow mini­
mum then it may affect the next iterations. However, results for this dataset 
show that the algorithm in most cases reaches a solution which is close to the 
best one. It should be noted that the problem of finding 50 clusters in the 
image segmentation dataset has 950 variables which is challenging for many 
global optimisation techniques. 

The results for the error of average values presented in these tables show 
that for Fisher's iris, TSPLIB3038 and TSPLIB1060 datasets the results 
obtained by the proposed algorithm do not strongly depend on the initial 
point (that is values of p) and they are always close to the best solutions. 
The results for the image segmentation dataset are more dependent on the 
initial point. This is an indicator of the existence of erroneous points in this 
dataset, and shows that if a dataset does not have a good cluster structure 
the proposed algorithm may lead to different solutions starting from different 
initial points. 

The results for the number Ns show that one can calculate a large number 
of clusters using a reasonable number of norm evaluations. The ratios Ng / Ns 
demonstrate that the simplified scheme allows one to significantly reduce 
the computational effort. This complexity reduction becomes larger as the 
number of clusters or the number of features increase (see also figures 6.2, 
6.4, 6.6 and 6.8). 

The results presented in the tables show that the clustering problem can 
be solved by the algorithm within a reasonable CPU time. CPU time depends 
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k fopt Ebest Emea.n Ns Ng/Ns t at 

2 152.348 0.00 0.00 1.43. 105 3.63 0.10 0.02 
3 78.851 0.00 0.00 3.22.105 5.00 0.20 0.03 
4 57.226 0.00 0.00 5.83.105 5.95 0.34 0.05 
5 46.446 0.00 0.68 8.73.105 7.33 0.49 0.05 
6 39.040 0.00 0.00 1.21 . 106 8.23 0.65 0.04 
7 34.298 0.00 0.86 1.57.106 9.31 0.82 0.05 
8 29.989 0.00 0.11 2.03.106 10.62 1.04 0.07 
9 27.786 0.00 2.11 2.46. 106 11.86 1.23 0.09 

10 25.834 0.52 1.78 3.00.106 13.04 1.47 0.07 

Table 6.1: Results for Fisher's Iris dataset 

on the parameter Amin. Small values of Amin lead to a better solution, however 
much more CPU time is required, as in the case of the image segmentation 
dataset. The result for at show that the CPU time does not strongly depend 
on starting points (see also figures 6.3, 6.5, 6.7 and 6.9). 

Number of 
norm 
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Number of Variables 
8 

~-~ 
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Figure 6.2: Evolution of the computational effort for Fisher's iris dataset 
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k !opt E best Emean Ns Ng/Ns t crt 

2 3.5606.107 -0.01 2.08 8.14.106 20.69 19.43 3.12 
3 2.7416.107 -0.02 4.90 1.86. 107 27.31 40.05 6.93 
4 1.9456.107 -0.03 15.82 3.60· 107 33.70 69.37 12.92 
5 1.7143.107 -0.03 13.16 5.45.107 40.41 98.53 22.23 
6 1.5209· 107 -0.03 16.36 7.73.107 47.34 131.88 32.67 
7 1.3404.107 0.33 10.50 1.04. 108 54.77 169.15 47.53 
8 1.2030· 107 2.28 14.29 1.30.108 62.96 205.52 49.40 
9 1.0784.107 1.36 9.28 1.61 . 108 70.12 248.53 70.28 

10 9.7952.106 1.51 8.72 1.90.108 77.12 289.24 74.52 
20 5.1283.106 -0.01 8.76 2.48.108 111.15 897.46 198.27 
30 3.5076.106 5.62 10.21 3.33.108 184.89 1815.14 255.73 
40 2.7398.106 9.96 13.52 3.50.108 207.80 2396.03 247.34 
50 2.2248.106 15.26 19.30 3.65.108 231.72 3011.10 241.75 

Table 6.2: Results for Image Segmentation dataset 

k !opt Ebest Emean Ns Ng/Ns t crt 

2 3.1688.109 0.00 0.00 1.78.106 1.69 0.74 0.17 
3 2.1763.109 0.00 1.51 4.31.106 2.24 1.65 0.19 
4 1.4790.109 0.00 0.03 6.62.106 2.82 2.48 0.14 
5 1.1982· 109 0.00 0.21 9.56.106 3.35 3.50 0.16 
6 9.6918.108 0.00 0.05 1.26.107 3.90 4.56 0.16 
7 8.3966.108 1.73 1.91 1.52.107 4.54 5.53 0.11 
8 7.3475. 108 0.00 0.75 1.94· 107 5.20 6.99 0.32 
9 6.4477.108 0.00 0.44 2.34.107 5.94 8.41 0.40 

10 5.6025.108 0.00 0.68 2.78.107 6.73 9.98 0.37 
20 2.6681.108 0.00 0.90 3.40.107 10.07 29.35 1.04 
30 1.7557.108 0.27 1.55 4.32.107 16.56 61.04 1.35 
40 1.2548.108 -0.08 1.48 5.45.107 24.70 104.74 1.72 
50 9.8400.107 0.62 1.63 6.82.107 33.88 158.03 3.83 

Table 6.3: Results for TSPLIB3038 dataset 
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Figure 6.3: Improvement in the computational effort for Fisher's iris dataset 

k !opt Ebest Emean Ns Ng/Ns t crt 

10 1. 75484 . 109 0.00 0.18 1.39.107 6.00 4.61 0.42 
20 7.91794· 109 0.32 3.01 1.77.107 8.74 13.62 1.08 
30 4.81251 . 109 1.29 3.76 2.46.107 14.03 29.02 1.48 
50 2.55509 . 109 1.36 2.46 4.48.107 28.12 81.90 3.72 

Table 6.4: Results for TSPLIB1060 Dataset 

6.4 Simultaneous clustering 

Step by step clustering is a very interesting method, as it tackles the problem 
of finding the number of clusters, and generates a good initial guess for each 
of the problems to be solved. However, it may sometimes be necessary to 
solve the clustering problem very quickly. In such a case, this method, which 
requires the resolution of many mathematical programming problems, may 
not be the best option. 

In this section we will study the selection of initial points for the clustering 
problem. When the time efficiency is an issue, it is often advantageous to use 
the E cleaning (see section 1.4.3 on page 39), and to minimise the generalised 
cluster function (1.27). Initial points for this function will therefore be the 
subject of a particular attention. 

We will present a selection of starting points for the discrete gradient 
method. Very few results exist in the literature for E-cleaned datasets. In 
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Figure 6.4: Evolution of the computational effort for Image segmentation 
dataset 

order to evaluate the results reached starting from these points, we will apply 
the hybrid method between DG and the cutting angle method (DG+CAM) 
(see section 2.7.2 on page 65), and the commercial software GAMS (LGO 
solver), (see [79, 158]. LGO is based on the branch and bound method. 

These methods were applied to the minimisation of the cluster function 
for various types of dissimilarity measures: the Minkowsky metric (Norm 1), 
and the skeleton function, which is a variation of the Bradley-Mangasarian 
function ([37]) 

We report results of numerical experiments and analyse these results . 

6.4.1 Minimisation of SMC functions 

Consider function F defined by (6.1): 

1 '" . F(Xl,' .. , Xk) = N ~ mm(<Pl(xl, a), <P2(X2, a), .. . <Pk(Xk, a)), 
aEA 

Xi E JRn; i = 1, ... ,k. 

where A c JRn is a finite set. This function depends on n x k variables. In 
real-world applications n x k is a large enough number and the set A contains 
some hundreds or thousands of points. III such a case function F has a huge 
amount of shallow local minimisers that are very close to each other. " The 
minimisation of such functions is a challenging problem. 
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Figure 6.5: Improvement in the computational effort for Image segmentation 
dataset 

This version of the CIAO-GO software (Centre for Informatics and Ap­
plied Optimisation-Global Optimisation) allows one to use four different 
solvers 

1. DG, 

2. DG multi start, 

3. DG+CAM, 

4. DG+CAM multi start. 

Working with this software users have to input 

• an objective function (for minimisation), 

• an initial point for optimisation, 

• upper and low bounds for variables, 

• constraints and a penalty constant (in the case of constrained optimi­
sation), constraints can be represented as equalities and inequalities, 

• maximal running time, 

• maximal number of iterations. 
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Figure 6.6: Evolution of the computational effort for TSPLIB 3038 dataset 

"Multi start" option in CIAO-GO means that the program starts from the 
initial point chosen by a user and also generates 3 additional initial points. 
The final result is the best obtained result. The additional initial points are 
generated by CIAO-GO from the corresponding feasible region. 

As a global optimisation technique we use the General Algebraic Mod­
elling System (GAMS), see [79] for more information. We use the Lipschitz 
global optimiser (LGO) solver [158] from Pinter Consulting Services [159]. 

6.4.2 Minimisation of the generalised cluster function 

In this section we discuss applications of DG, DG+CAM and the LGO solver 
for minimisation of generalised cluster functions. We propose several ap­
proaches for selecting initial points. 

Remark 21: Unfortunately, for the c-cleaning procedure, it is very difficult 
to know a priori the value for c which allows one to remove a certain pro­
portion of observations. In our experiments we had to try several values for 
c before we found suitable ones. 

Initial points 

Consider a set A c Rn that contains N points. Assume that we want to 
find k clusters in A. In this case an initial point is a vector x E Rnxk. The 
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structure of the problem under consideration leads to different approaches to 
the choice of initial points. We suggest the following four approaches. 

k-meansLn initial point The k-meansLn method is a variation of the k­
methods (see section 1.2.3 on page 15), which makes use ofthe speed of 
the k-means version. In order to obtain a solution quickly, for norm L n , 

the barycentre of the points is found instead of step 4 of algorithm 1.1. 
This method is faster than the classical k-methods (although not so 
effective), and can be seen as a quick way to improve a random initial 
solution. The k-meansLn method is represented in algorithm 6.3. 

We apply this algorithm on the original dataset A and then the result 
point x E lRnxk is considered as an initial point for minimisation of the 
generalised cluster function generated by the dataset B. 

Uniform initial point In our experiments we apply a scaling procedure 
before solving the problems. The selected method is the mean scaling 
described in subsection 1.4.1 on page 36. This means that for each 
feature, the average value over the whole dataset is 1. In such a case 
we can choose the point x = (1,1, ... ,1) E lRnxk"as initial guess. We 
shall call it the uniform initial point. 

Ordered initial point Recall that Wj indicates the cardinality of the set 
of points Abi E A, which are represented by a point lJ.i E B (see sec-
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Figure 6.8: Evolution of the computational effort for TSPLIB 1060 dataset 

tion 1.4.3 on page 39. It is natural to consider the collection of the 
heaviest k points as an_initial vector for the minimisation of gener­
alised cluster function f. To formalise this, we rearrange the points 
so that the numbers Wj,j = 1, ... , mB decrease and take the first k 
points from this rearranged dataset. Thus, in order to construct an 
initial point we choose the k observations with the largest values for 
weights Wj from the dataset B. 

Uniform-ordered initial point This initial point is a combination of the 

Algorithm 6.3: KmeansLn : a quick variation of the K-methods 
Step 1 Initialisation: 

Select all initial solution x~, ... , x~, set i=O 
repeat 

Step 2 i <- i + 1 
Step 3 Cluster assignment: 

Find the clusters Ai, ... , A~ such that for any 1 ::; l ::; q, 

Ai = {a E A : d(xi -
1 a) < d(Xi - 1 a) VI < P < q}. I I ' - p" - -

Step 4 Cluster update: 
For each cluster find the barycentre. 

until 3j E {l, ... ,i-I}: {AL···,A~} = {A{, ... ,An 
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Uniform and the Ordered initial points. It contains the heaviest k - 1 
observations and the barycentre of the set (each coordinate is 1). 

6.4.3 Numerical experiments with the generalised clus­
ter function 

For the numerical experiments we use two types of datasets, namely the 
original dataset A and a small dataset B obtained by the procedure described 
in section 1.4.3. We compare results obtained for B with the results obtained 
for the entire original dataset A. 

Datasets 

The numerical experiments were carried out on the Letters dataset and the 
Pendigits dataset. 

Both Letters and Pendigits datasets have been used for testing different 
methods of supervised classification (see [145] for details). Since we use these 
datasets only for construction of generalised cluster function, we consider 
them as datasets with unknown classes. 
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Numerical experiments: description 

We are looking for three and four clusters in both Letters and Pendigits 
datasets. For both datasets, the dimension of the optimisation problems 
is equal to 48 in the case of 3 clusters and 64 in the case of 4 clusters. We 
consider two small sub-databases ofthe Letters dataset (Letl, 353 points, ap­
proximately 2% of the original dataset; and Let2, 810 points, approximately 
4% of the original dataset) and two small sub-sets of the Pendigits dataset 
(Penl, 216 points, approximately 2% of the original dataset; and Pen2, 426 
points, approximately 4% of the original dataset). 

We apply local techniques (the discrete gradient method and a hybrid 
(described in section 2.7.2 on page 65) between the discrete gradient and 
cutting angle methods) and a global technique (LGO solver) to the min­
imisation of the generalised cluster function. Then we need to estimate the 
results obtained. We can use different approaches for this estimation. One 
of them is based on the comparison of the values of the cluster function con­
structed with respect to the centres obtained in the original dataset A and 
with respect to the centres obtained in its small sub-dataset B. We compare 
the cluster function values starting from different initial points in original 
datasets and their approximations, using the following procedure. 

Let A be an original dataset and B be its small sub-dataset. First, the 
centres of clusters in B should be found by an optimisation technique. Then 
we evaluate the cluster function values in A using the obtained points as the 
centres of clusters in A. Using this approach we can find out how the results 
of the minimisation depend on initial points and how far we can go in the 
process of dataset reduction. 

Results for the local optimisation methods 

First of all we have to point out that we have two groups of initial points 

• Group 1: Uniform initial point and k-meansL l initial point, 

• Group 2: Ordered initial point and Uniform-ordered initial point. 

Initial points from Group 1 are the same for an original dataset and for all 
its reduced versions. Initial points from Group 2 are constructed according 
to their weights. Points in original datasets have the same weights which are 
equal to 1. 

Remark 22: Because the weights can vary for different reductions of the 
dataset, the Ordered initial points for Let1 and Let2 do not necessarily co­
incide. The same is true for the Uniform-ordered initial points. The same 
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observation applies to the Pendigits dataset <weI its reduced versions PenI 
and Pen2. 

Our next step is to compare results obtained starting from different initial 
points in the original datasets and in their approximations. In our experi­
ments we minimise the generalised cluster function. This function coincides 
with the cluster function for original datasets since each point has the same 
weight which is equal to 1. In the case of reduced datasets we produce our 
numerical experiments with the corresponding approximations of the original 
datasets and calculate two different values: the cluster function value and 
the generalised function value. The cluster function value is the vah.Ie of 
the cluster function calculated in the correspollding original dataset accord­
ing to the centres found in the reduced dataset. The generalised cluster 
function value is the value of the generalised cluster function calculated 
in the reduced dataset according to the centres found in the same reduced 
dataset. Normally a cluster function value (calculated according to the cen­
tres found for reduced datasets) is larger than a generalised cluster function 
value calculated at the same centres and the corresponding weights, because 
optimisation techniques have been actually applied to minimise the gener­
alised cluster in the corresponding reduced dataset. In Table 6.5-Table 6.8 
we present the results of our numerical experiments obtained for DG and 
DG+CAM starting from the Uniform initial point. 

It is also very important to remember that a better result in a reduced 
dataset is not necessarily better for the original one. For example, in the case 
of the Penl dataset, 3 clusters, the Uniform initial point the generalised func­
tion value is lower for DG+CAM than for DG, however the cluster function 
value is lower for DG than for DG+CAM. vVe observe the same situation in 
some other examples. 

Cluster Generalised cluster 
Dataset Size function value function value 

Pen 1 216 6.4225 5.5547 
Pen2 426 6.3844 5.8132 

Pendigits 10992 6.3426 6.3426 

Let 1 353 4.3059 3.3859 
Let2 810 4.2826 3.7065 

Letters 20000 4.2494 4.2494 

Table 6.5: Results for DG, uniform initial point, 3 clusters 
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Cluster Generalised cluster 
Dataset Size function value function value 

Penl 216 5.7962 4.8362 
Pen2 426 5.7725 5.0931 

Pendigits 10992 5.7218 5.7218 

Letl 353 4.1200 3.1611 
Let2 810 4.0906 3.5040 

Letters 20000 4.0695 4.0695 

Table 6.6: Results for DG, uniform initial point, 4 clusters 

Cluster Generalised cluster 
Dataset Size function value function value 

Penl 216 6.4254 5.5546 
Pen2 426 6.3843 5.8131 

Pendigits 10992 6.3426 6.3426 

Letl 353 4.3059 3.3859 
Let2 810 4.2828 3.7061 

Letters 20000 4.2494 4.2494 

Table 6.7: Results for DG+CAM, uniform initial point, 3 clusters 

Our actual goal is to find clusters in the original datasets, therefore it is 
important to compare cluster function values calculated in original datasets 
according to obtained centres. Centres can be obtained from our numeri­
cal experiments with both types of datasets: original datasets and reduced 
datasets. It is one of the possible ways to test the efficiency of the proposed 
approach: substitution of original datasets by their smaller approximations. 

Tables 6.9-6.14 represent cluster function values obtained in our numeri­
cal experiments starting from the k-meansL1 , Ordered and Uniform-ordered 
initial point. We do not present the obtained generalised function values be­
cause this function can not be used as a measure of the quality of clustering. 

Recall that reduced datasets are approximations of corresponding original 
datasets. Decreasing the number of observations we reduce the complexity 
of our optimisation problems but obtain less precise approximations. There­
fore, our goal is to find a balance between the reduction of the complexity 
of optimisation problems and the quality of obtained results. In some cases 
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Cluster Gelleralised cluster 
Dataset Size function value function value 

Penl 216 5.7943 4.8353 
Pen2 426 5.7718 5.0931 

Pendigits 10992 5.7218 5.7218 

Letl 353 4.1208 3.1600 
Let2 810 4.0909 3.5020 

Letters 20000 4.0695 4.0695 

Table 6.8: Results for DG+CAM, uniform initial point, 4 clusters 

Cluster function value Cluster function value 
Dataset Size 3 clusters 4 clusters 

Pen1 216 6.4272 5.8063 
Pen2 426 6.3840 5.7704 

Pendigits 10992 6.3409 5.7217 

Let1 353 4.3087 4.1241 
Let2 810 4.2816 4.1013 

Letters 20000 4.2495 4.0726 

Table 6.9: Cluster function: DG, k-meansL l initial point 

(mostly initial point from Group 2, see Remark 22 for more information) the 
results obtained on larger approximations of original datasets (more precise 
approximations) are worse than the results obtained on smaller approxima­
tions of original datasets (less precise approximations). For example, Pen1 
and Pen2 for initial point from Group 2 (3 and 4 clusters). 

Summarising the results of the numerical experiments (cluster function, 
local and improvecllocal techniques, 4 special kinds of initial points) we can 
draw out the following conclusions 

1. DG and DG+CAM applied to the same clatasets produce almost iden­
tical results if initial points are the same, 

2. DG and DG+CAM applied to the same clata::;ets starting from different 
initial points (4 proposed initial points) produce very similar results in 
most of the examples, 

3. in some cases the results obtained on smaller approximations of original 
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Cluster function value Cluster function value 
Dataset Size 3 clusters 4 clusters 

Penl 216 6.4278 5.8063 
Pen2 426 6.3841 5.7723 

Pendigits 10992 6.3409 5.7217 

Let1 353 4.3087 4.1262 
Let2 810 4.2824 4.1014 

Letters 20000 4.2495 4.0726 

Table 6.10: Cluster function: DG+CAM, k-meansL1 initial point 

Cluster function value Cluster function value 
Dataset Size 3 clusters 4 clusters 

Penl 216 6.4188 5.8226 
Pen2 426 6.6534 5.9047 

Letl 353 4.3228 4.2049 
Let2 810 4.3843 4.1112 

Table 6.11: Cluster function: DG, ordered initial point 

Cluster function value Cluster function value 
Dataset Size 3 clusters 4 clusters 

Penl 216 6.4171 5.8201 
Pen2 426 6.6536 5.9047 

Letl 353 4.3228 4.2045 
Let2 810 4.3843 4 .. 1107 

Table 6.12: Cluster function: DG+CAM, ordered initial point 
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Cluster function value Cluster function value 
Dataset Size 3 clusters 4 clusters 

Penl 216 6.4188 5.7921 
Pen2 426 6.6514 5.8718 

Letl 353 4.2910 4.1225 
Let2 810 4.2828 4.1129 

Table 6.13: Cluster function: DG, uniform-ordered initial point 

Cluster function value Cluster function value 
Dataset Size 3 clusters 4 clusters 

Penl 216 6.4171 5.7945 
Pen2 426 6.6492 5.8715 

Letl 353 4.2905 4.1233 
Let2 810 4.2828 4.1130 

Table 6.14: Cluster function: DG+CAM, uniform-ordered initial point 

datasets are better than the results obtained on larger approximations 
of original datasets. 

Results for the global optimisation LGO solver 

Now we present the results obtained by the LGO solver (global optimisation). 
We use the Uniform initial point. The results are in Table 6.15. 

In almost all the cases (except Pendigits 3 clusters) the results for reduced 
datasets are better than for original datasets. It means that the cluster 
function is too complicated for the solver as an objective function and it 
is more efficient to use generalised cluster functions generated on reduced 
datasets. It is beneficial to use reduced datasets in the case of the LGO 
solver from two points of view: 

1. computations with reduced datasets allow one to reach a better min­
imiser; 

2. computational time is significantly less for reduced datasets than for 
original datasets. 
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Dataset Size Cluster function value Cluster function value 
3 clusters 4 clusters 

Pen1 216 6.4370 5.8029 
Pen2 426 6.4122 5.7800 

Pendigits 10992 6.3426 7.1859 

Letl 353 4.3076 4.1426 
Let2 810 4.2829 4.1191 

Letters 20000 5.8638 4.2064 

Table 6.15: Cluster function: LGO solver 

It is also obvious that the software failed to reach a global minimum. 
We suggest that the LGO solver has been developed for a broad class of 
optimisation problems. However, the solvers included in CIAO-GO are more 
efficient for minimisation of the sum of minima of convex functions, especially 
if the number of components in sums is large. In all the experiments, a limit 
of two hours of computational time has been given. This software may have 
given a better solution if given more time. Nevertheless, the local algorithms 
starting from well chosen initial points are much more efficient. 

6.4.4 Skeletons 

Introduction 

The problem of grouping (clustering) points by means of skeletons is not so 
widely studied as it is in the case of cluster function based models. There­
fore, we would like to start with some examples produced in not very large 
datasets (no more than 1000 observations). In this subsection we formulate 
the problems of finding skeletons mathematically, discuss applications of the 
discrete gradient method and the hybrid method described in section 2.7.1 
between the discrete gradient method and the simulated annealing method to 
finding skeletons with respect to 11·111 and and give graphical implementations 
of the obtained results (for examples with no more than 3 features) . 

Skeleton of a finite set of points 

We now consider a version of Bradley-Mangasarian function (see remark 5 on 
page 15), where the distances to hyperplanes are used instead of the squares 
of these distances. Assume that lR,n is equipped with a norm II· ". Let A be a 
finite set of points. Consider vectors lr, ... , lk with Illill* = maxllxll=l (l, x) = 1 
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and numbers Ci (i = 1, ... , k) . Let Hi = {x : (li, x) = cd and H = UiHi . 
Then the distance between the set Hi and a point a is d (a, Hd = I (li, a) - Ci I 
a.nd t.he distance between the set H and a is 

d(a, H) = m~n I(li, a) - Cil. (6.4) 
1 

The deviation of X from A is 

The function 

Lk((ll, Cl), ... , (lk' Ck)) = L mln I (li' a) - cil (6.5) 
aEA 

is of the form (6.1). Consider the following constrained min-sum-min prob­
lem 

min L min I(li, a) - cilsubject to Illjll = I, Cj E 1R (j = 1, ... , k) (6.6) 
aEA 

A solution of this problem will be called a k-skeleton of the set A. The 
function in (6.6) is called the skeleton function. 

More precisely, k-skeleton is the union of k hyperplanes {x: (li' x) = Ci}, 
where ((h, Cl), ... , (lk, Ck)) is a solution of (6.6). If the skeletons are known, 
each point is assigned to the cluster with the nearest skeleton. It is difficult 
to find a global minimiser of (6.6), so sometimes we can consider the union 
of hyperplanes that is formed by a local solution of (6.6) as a skeleton. 

Clusters constructed according to skeletons, obtained as a result of the 
skeleton function minimisation are called skeleton-based clusters. 

The concept of shape of a finite set of points will be introduced and stud­
ied in chapter 9 on page 165. By definition, the shape is a minimal (in a 
certain sense) ellipsoid, which contains the given set. A technique to find 
an ellipsoidal shape is proposed in this chapter. In many instances the geo­
metric characterisation of a set A can be viewed as the intersection between 
its shape, describing its external boundary, and its skeleton, describing its 
internal aspect. 

Preliminary experiments 

The search for skeletons can be done by solving the constrained minimisation 
problem (6.6). 
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Both algorithms are designed for solving unconstrained problems so we 
use a penalty function in order to convert problem (6.6) to an unconstrained 
minimisation one. The corresponding unconstrained problem has the form: 

k 

minimise L mjn I(li, aq
) - bil + Rp L IIlliliI - 11, 

qEQ i=l 

subject to 
(6.7) 

(ll' b1 ) E lRn
+1, ... , (lk' bk) E JRn+1 

where lip is a penalty parameter. 
Finally, the algorithms were applied starting from 3 different initial points, 

and the best solution found was selected. The 3 different points used in the 
example are: 

• PI = { 

• P2 = { 

• P3 = { 

li = JAr (1, ... , 1) 
bi = 1 

li = (1, 0, .. , 0) 
bi = 1 

li = v'~-1 (0,1...,1) 
bi = 1 

The problem has been solved for different sets of points, selected from 
3 different well known datasets: the Heart disease database , the Diabetes 
database and the Australian credit cards database, see also [145] and ref­
erences therein. Each of these datasets was submitted first to the feature 
selection method described in [25]. 

The value of the objective function was considerably decreased by both 
methods (see tables 6.16 and 6.17). However, the discrete gradient method 
often gives a local solution which is very close to the initial point, while the 
hybrid gives a solution which is further and better. In the tables the distance 
considered is the Euclidean distance between the solution obtained and the 
initial solution, and the value considered is the value of the objective function 
at this solution. 

The different examples show that although sometimes the hybrid method 
does not improve the result obtained with the discrete gradient method, in 
some other cases the result obtained is much better than when the discrete 
gradient method is used. However the computations times it induces are 
much greater than the simple use of the discrete gradient method. The 
diabetes dataset has 3 features, after feature selection (see [25]). This allows 
us to plot graphically some of the results obtained during the computations. 
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DC method hybrid method 
Initial point value distance value distance 

1 22.9804 10.668 6.11298 7.98738 
Class 1 2 25 .5102 2.81543 13.2263 5.91397 

3 6.lO334 4.40741 6.10334 4.40741 

1 0.473317 5.00549 0.473317 5.00549 
Class 2 2 3.029 2.14784 0.222154 2.13944 

3 6.87897 6.06736 4.73828 6.74424 

computation time 54 sec 664 sec 

Table 6.16: Australian credit card database with 2 hyperplanes skeletons 

DC method hybrid method 
Initial point value distance value distance 

1 28.5856 6.78624 28.1024 6.79326 
Class 1 2 39.3925 11.4668 28.2417 11.7711 

3 33.2006 3.09434 31.4624 2.31922 

1 22.2806 2.3755 22 .2806 2.3755 
Class 2 2 30.346 56.7222 19.5574 8.76914 

3 23.0529 1.61649 22.9495 1.76052 

computation time 212 sec 1521 sec 

Table 6.17: Diabetes database with 3 hyperplanes skeletons 
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Figure 6.10: 2nd class for the diabetes database, with 2 hyperplanes 

We can observe that the hybrid method does not necessarily give an 
optimal solution. Even with the hybrid method the initial point is very 
important. The figures 6.10 and 6.11, however, confirm that the solutions 
obtained are usually very good, and seem to represent correctly the set of 
points. The set of points studied here is constituted by a big mass of points, 
and some other points spread around. It is interesting to remark that the 
hyperplanes intersect around the same place - where the big mass is situated 
- and take different directions, to be the closest possible to the spread points. 
This is particularly clear in the case of three hyperplanes, on figure 6.11. 

Numerical experiments with large datasets: description 

We are looking for three and four clusters in both Letters and Pendigits 
datasets. The dimension of the optimisation problems is equal to 51 in the 
case of 3 skeletons and 68 in the case of 4 skeletons. We use the same sub­
datasets as in section 6.4.3 (PenI, Pen2, Letl, Let2). 

Remark 23: It is possible to construct the generalised skeleton function by 
using the same idea as for the generalised cluster function. 

We apply local techniques (DG and DG+CAM) for minimisation of the 
generalised skeleton function. Then we use a procedure which is similar 
to the one we used for the cluster function to estimate the obtained results. 
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Figure 6.11: 2nd class of the diabetes database, with 3 hyperplanes 
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Skeleton function values 
DG DG DG+CAM DG+CAM 

N" Dataset Size multi multi 

Pen1 216 2137.00 1287.58 1832.97 1320.00 
3 Pen2 426 735.00 735.47 735.47 735.47 

Pendigits 10992 567.20 567.20 567.20 566.55 

Pen1 216 1223.16 1315.68 1194.65 1180.79 
4 Pen2 426 1360.16 946.74 1322.46 946.74 

Pendigits 10992 905.56 905.56 905.56 661.84 

Table 6.18: Skeleton function: pendigits 

First, we find skeletons in original datasets (or in reduced clatasets). Then we 
evaluate the skeleton function values in original datasets using the obtained 
skeletons. 

For the skeleton function the problem of constructing a good initial point 
has not been studied yet . Therefore, in oUI numerical experiments as an 
initial point we choose a feasible point. We also use the" multi start" option 
to compare results obtained starting from different initial points. 

Numerical experiments with large datasets: results 

In this subsection we present the results obtained for the skeleton function. 
Our goal is to find the centres in original datasets, therefore we do not present 
the generalised skeleton function values. Table 6.18 and Table 6.19 present 
the values of the skeleton function evaluated in the corresponding original 
clatasets (Pendigits and Letters respectively) according to the skeletons ob­
tained as optimisation results reached in datasets from the first column of 
the tables. We use two different optimisation methods: DG and DG+CAM 
and two different types of initial points: "single start" (DG or DG+CAM) 
and "multi start" (DGMULT or DG+CAMMULT). 

The most important conclusion to the results is that in the case of the 
skeleton function the best optimisation results (the lowest value of the skele­
ton function) have been reached in the experiments with the original datasets. 
It means that the proposed cleaning procedure is not as efficient in the case 
of skeleton function as it is in the case of the clustering fu.nction. However, 
in the case of the clustering function the initial points for the optimisation 
methods have been chosen after some preliminary study. It can happen that 
an efficient choice of initial points leads to better optimisation results for 
both kinds of datasets: original and reduced. 
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Skeleton function values 
DC DC DG+CAM DG+CAM 

Ns Dataset Size multi mult.i 

Letl 353 1548.30 1548.30 1545.58 1545.58 
3 Let2 810 2201.75 1475.77 2171.01 1608.14 

Letters 20000 1904.71 1904.71 1904.71 964.37 

Let1 353 1566.69 1566.69 1531.99 1531.99 
4 Let2 810 2030.20 2030.20 1892.31 1892.31 

Letters 20000 964.37 850.14 850.14 850.14 

Table 6.19: Skeleton function: letters 

Recall that (6.6) is a constrained optimisation problem with equality con­
straints. This problem is equivalent to the following constrained optimisation 
problem with inequality constraints 

minimise L min I (li' a) - Ci I 
~ 

aEA 

subject to (6.8) 
IIijil 2: 1 

Cj E 1R (j = 1, ... ,k). 

In our numerical experiments we use both formulations (6.6) and (6.8). 
In most of the experiments the results obtained for (6.6) are better than 
for (6.8) but computational time is much higher for (6.6) than for (6.8). 
It is recommended, however, to use the formulation (6.8) if, for example, 
experiments with (6.6) produce empty clusters. 

Other experiments 

The hybrid method described in section 2.7.1 on page 64 was applied on both 
the generalised cluster function and the skeleton function. This method is 
based on improvements of the local minima reached by the discrete gradient 
method by the simulated annealing. Therefore it acts a a (non exhaustive) 
listing of local minima. 

In both cases, the same behaviour was observed: the results show that 
the hybrid method only reaches results comparable with the local method, 
yet the algorithm had to leave up to 50 local minima. This can only be 
explained by a large amount of local minima in the objective function, each 
close to one another. 
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6.5 Conclusion 

6.5.1 Optimisation 

In this chapter, two different methods have been developed to solve the clus­
tering problem. This problem can depend 011 a very large number of variables, 
hence only a few methods can be applied. One of them is an adapted ver­
sion of the discrete gradient method presented in section 4.3. Because this 
method is a local one, it is necessary to design techniques to generate good 
starting points. 

The first method proposed is an incremental one: clusters are added one 
by one until a stopping criterion verifying that the result is satisfactory is 
met. This method has been tested on real world datasets, and results show 
that it can reach a good solution within a reasonable CPU time. The results 
also show that the simplified scheme allows one to improve significantly the 
efficiency of the solver. 

The other method proposed is more focused on the speed. When speed is 
a strong issue, it is often necessary to work on a dataset processed through 
c-cleaning. four initial points for the discrete gradient method have been 
proposed. For comparison, numerical experiments have been carried out 
using commercial softwares LGO and CIAO-GO. 

The LGO software failed most of the time to reach even a good solution. 
This is due to the fact that the objective function has a very complex struc­
ture. This method was limited in time, and may have reached the global 
solution, had it been given a limitless amount of time. Nevertheless, it shows 
that global solvers cannot reach a satisfactory solution within an acceptable 
time. 

Contrariwise, the local method reached a good solution for at least one of 
the initial points. The hybrid method was able to reach a good solution for 
all the initial points. For comparison, both these methods were run starting 
from randomly chosen initial points, giving unsatisfactory results. 

This shows that for such types of functions, presenting a complex struc­
ture and many local minima, most global methods will fail. However; well 
chosen initial points will lead to a deep local minimum. Because the local 
methods are much faster than global ones, it is more advantageous to start 
the local method from a set of carefully chosen initial points to reach a global 
minimum. 

The application of the combination between the discrete gradient and 
the cutting angle methods appears to be a good alternative, as it is not very 
dependant on the initial point, while reaching a good solution in a limited 
time. 
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The second experiment was carried out over the skeleton function. This 
function having been less studied in the literature, it is harder to draw defi­
nite conclusions. However, the experiments show very clearly that the local 
methods once again strongly depend on the initial point. Unfortunately it is 
harder to devise a good initial point for this objective function. 

6.5.2 Clustering 

From the clustering point of view, two different similarity functions have 
been minimised. The first one is a variation of the widely studied cluster 
function, where the points are weighted. The second one is a variation of 
the Bradley-Mangasarian function, where distances from the hyperplanes 
are taken instead of their square. 

The c-cleaning procedure has been tested on various datasets. Numerical 
experiments have been carried out for different values of epsilon, leading to 
very small (2% and 4% of the original size) datasets. 

For the generalised cluster function, this method proves to be very suc­
cessful: even for very small datasets, the function value obtained is very 
satisfactory. When the method was solved using the global method LGO, 
the results obtained for the reduced dataset were almost always better than 
those obtained for the original dataset. The reason is that the larger the 
dataset, the larger amount of local minima for the objective function. When 
the dataset is reduced, what is lost in measurement quality is gained by 
the strong simplification of the function . Because each point in the reduced 
dataset acts already as a centre for its neighbourhood, minimising the gener­
alised cluster function is equivalent to group these "mini" clusters into larger 
clusters. 

It has to be noted that there is not a monotone correspondence between 
the value of the generalised cluster function for the reduced and the original 
dataset. It may happen that a given solution is better than another one for 
the reduced dataset, and worse for the original. Thus we cannot conclude 
that the solution can be reached for the reduced dataset. However, the 
experiments show that the solution found for the reduced dataset is always 
good. 

For the skeletons function, however, this method is not so successful. 
Although this has to be taken with precautions, as the initial points for this 
function could not be devised so carefully as for the cluster function, one can 
expect such behaviour: the reduced dataset is actually a set of tiny cluster 
centres. The skeleton approach is based on the assumption that the clusters 
in the dataset can be represented by hyperplanes, while the cluster approach 
assumes that the clusters are represented by centres. 
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Solving the clustering problem 

The experiments show the significance of the choice of the initial point 
to reach good clusters. While random points did not allow any method to 
reach a good solution, all initial points selected upon the structure of the 
dataset lead the combination DG-CAM to the solution, while incrementally 
constructed ones were enabling the local method to reach a good solution. 

Since for the cluster function we are able to provide some good initial 
points, but not for the skeleton function, unless the structure of the dataset 
is known to correspond to some skeletons, we would recommend to use the 
centre approach. 

Finally the comparison between the results obtained by the two different 
methods has to be relativised: experiments having shown the importance of 
initial points, it is difficult to draw definitive conclusions from the results 
obtained for the skeleton approach. 
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Chapter 7 

A feature selection algorithm 

7.1 Introduction 

Among various preprocessing tasks, the selection of relevant features is a 
particularly important problem, because it is goal dependent: a feature may 
be significant when the goal is to find clusters, but be noisy when one wants 
to classify the data into known classes. As a rule, when the data is collected, 
the choice is to be as exhaustive as possible, thereby creating datasets with 
a large number of features, many of which will probably be irrelevant for a 
given task. Not only a useless feature complicates the problem by adding 
more parameters and variables, and slowing down the programs, but the 
quality of the solution obtained may also suffer from the noise introduced 
by these features in the data. The feature selection problem may also be 
cost-orientated: often some measurement are very expensive, and it may 
be interesting to get, from a first small set of data, an evaluation of which 
features are not needed. 

The clustering (unsupervised learning) problem requests finding a small 
(comparatively with the number of records) number of groups of similar 
data in a dataset. This problem is a very flexible one, and usually several 
solutions may be acceptable. This means that applying a feature selection for 
clustering is particularly challenging: how to carry out a problem-dependent 
task when the given problem is so imprecise? 

In this chapter we present a feature selection algorithm which can be 
applied for both supervised and unsupervised classification. This approach 
is based on nonsmooth optimisation and clustering (and its applications to 
supervised learning, as described in subsection 1.3.7 on page 29). The re­
sults of numerical experiments show that the proposed algorithm for feature 
selection works efficiently on the datasets used in the numerical experiments. 
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7.2 A feature selection approach 

7.2.1 Unsupervised learning 

Consider the dataset pictured on figure 7.1. This dataset is constituted of 
two almost distinct sets of points. If one projects this dataset on each of 
the features, the results obtained are pictured on figure 7.2. It is quite clear 
that feature 1 discriminates very well between the groups, while feature 2 
is almost inefficient. Therefore it can be deduced that the second feature of 
this dataset is redundant. 
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Xx x 
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Feature 1 

Figure 7.1: A sample dataset containing two almost distinct groups 

Comparing the centres of these two sets of points, and their projections, 
the same deduction can be made: while the two centres have almost the 
same value for feature 2, their value differs much for feature 1. Therefore we 
can conclude that the more a coordinate varies between centres, the more 
significance it has in the dataset. 

The basis of this approach is to divide the dataset into small groups by 
finding their centres, and comparing these centres coordinate-wise. If the 
variation is small for a given feature, then it is considered that this feature 
is uninformative. 

The feature selection approach presented in this section is based on the 
idea that the set of centres found during the clustering phase represent the 
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(a) Projection along the first feature 

(b) Projection along the second feature 

Figure 7.2: Projections of the dataset along its features 

sets under consideration. Algorithm 7.1 presents this method. 

Algorithm 7.1: Feature selection for unsupervised learning 
Step 1 Divide the dataset in q clusters, by minimising function (1.4) The centres 

obtained are {xl, ... ,xq}. 
repeat 

Step 2 Order the features using the following rule: 

f11. <F fv ¢:> max xJi' - min xti' > max ~i' - min x} 
l~j~q " l~i~q " l~j~q " l~i~q v 

Step 3 Remove the "lowest" features according to <F', under a given threshold 
and divide the dataset in n clusters using the remaining features 

until the structure of the clusters has changed beyond a certain tolerance 
Step 4 the latest feature removed, as well as all the remaining ones, are informative. 

The main step in this algorithm is Step 2. The features are ordered by 
informativeness. It is considered that if for a given coordinate the centres vary 
much, the feature is informative. Conversely, if there is little variation for a 
given coordinate, the feature is uninformative. By evaluating the variation 
in the coordinates it is possible to order the features by informativeness. 
In Step 3 it is then verified that by removing the less informative features 
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the structures of the clusters is not modified. In case of modification, the 
features are considered as informative. 

The number n does not need to be very large. In our experiments we 
took 2 or 3 clusters, in order to keep the calculations fast enough. Although 
most datasets contain a larger number of clusters, experiments show that it 
is sufficient to keep this number low for the feature selection. 

7.2.2 Supervised learning 

In the case of supervised classification, the algorithm is very similar (see al­
gorithm 7.2). Instead of comparing all the centres, the comparisoll is carried 
out only between clusters of different classes, and the stopping criterion is 
based on the classification accuracy. It can be seen that while the clusters 
of a same class may have a similar value for a given coordinate, the coor­
dinate may be very different in another class. In that case, the feature is 
very informative for the classification problem, but useless for the clustering 
problem. 

Algorithm 7.2: Feature selection for supervised learning 
Step 1 Divide each class i of the dataset in n clusters, by minimising function (1.4) 

The centres obtained are {XiI, ..• , Xil1 }. 

repeat 
Step 2 Order the features using the following rule: 

lu <p Iv ¢:} max x
f
kj 

- min xlfi > max xkj - min xli 
l$j$n " I$i$n U l$j$n fv l$i$n.f." 
l$k$nc l'lk l$k$nc l'lk 

Step 3 Remove the "lowest" features according to <p, under a given threshold 
and divide the dataset in n clusters using the remaining features 

until The classification accuracy got wo'rse 
Step 4 the latest feature removed, as well as all the remaining ones, are informative. 

7.3 Numerical experiments 

7.3.1 Unsupervised learning 

In our study we use two test datasets: the Pendigits dataset and the Letters 
dataset. We use two methods: the discrete gradient method (DG), and a 
hybrid method between the discrete gradient and the simulated annealing 
methods (HM) (see subsection 2.7.2 on page 65). 
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In our llumerical experiments DG and HM. For the Pendigits dataset we 
apply the following techniques to obtain a rough division of the dataset: 

1. 2 clusters, reduced dataset (Pen02, 216 points), HM; 

2. 3 clusters, original dataset, DG. 

There are 2 non-informative features (the same features for both cases): 2, 
13. 

For the Letters dataset we use the following constructions: 

1. 2 clusters, reduced dataset (Let02, 353 points), HM; 

2. 3 clusters, original dataset, DG. 

In the first case we eliminate 5 features (6, 9, 12, 14, 16), in the second 
case we eliminate 7 features (6, 9, 10, 11, 12, 14, 16). For this dataset we 
choose 5 features to eliminate (6, 9, 12, 14, 16). 

We apply DG (the initial point is the point obtained by the HM) to the 
whole dataset after feature elimination and compare the obtained clusters 
with the results without feature elimination (in this case we remove the 
coordinates corresponding to the set of the eliminated features). 

Features Changes of centres 
Dataset nc eliminated (norm II . 111 distance) 

Pendigits 3 2, 13 .03, .05, .06 
10992 4 2, 13 .09, .08, .04, .14 

Letters 3 6,9,12,14,16 .62, .34, .07 
20000 4 6,9,10,11,12,14,16 .34, .76, .07, .67 

Table 7.1: Feature elimination 

In Table 7.1 we compare the centres obtained in the datasets after feature 
elimination and the centres obtained in the original datasets (when the cen­
tres in the original datasets have been obtained we remove the coordinates 
which correspond to the eliminated features). 

In the table, the changes of centres are represented in terms of distance 
(according to I-norm) between the final centres and the projection of the 
initial centres over the set of selected features. 

We obtain almost the same clusters for the datasets before and after 
feature elimination. Therefore, we can conclude that the eliminated features 
are not significant in the sense of clustering and such a procedure of feature 
elimination for unsupervised classification is quite efficient. 
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Norm 1 11 7 26 6 16 22 17 20 14 24 32 1 23 10 19 12 2 29 28 25 27 18 3 21 5 4 9 8 31 13 30 15 

Norm 2 26 6 1 17 16 11 14 22 24 10 20 2 7 23 19 28 25 27 29 3 32 18 12 21 8 4 13 9 30 5 31 15 

Table 7.2: classification after the first step of the algorithm. 

7.3.2 Supervised learning 

The main interest of the application of this method to supervised learning 
is for very small datasets, when classical statistical methods are ineffective. 
In some areas, measuring information is extremely costly, and an algorithm 
permitting to eliminate from a small sample the measurements that are in­
effective is very useful. 

The algorithm has been applied on a biomarkers dataset, measuring the 
presence level of various types of chemical elements inside different environ­
mental bodies (such as grass, soil, etc . .. ). The observations are the bodies, 
while the features are the levels of chemical elements. For reasons of confi­
dentiality, this dataset cannot be published. 

The dataset under consideration in this subsection contains 32 features 
and 29 observations. The dataset is divided into 3 classes (Cow Dung, Grass 
and Soil), and algorithm 7.2 is applied, for two norms (Euclidean and 1 
norms), in order to compare. Because one cluster was found per class, the 
clustering problem is convex, and therefore the discrete gradient method can 
reach the global minimum. 

By comparing the results for different norms, it is possible to establish 
levels of information: we can consider a group of features F1 to be more 
informative that a group of features F2 if for all the norms: 

ii <, ij, Vii E F1 , VIi E F2 

By dividing the set of features into smaller groups following that rule, it 
is possible to create levels of information. 

It is shown in these results that not only this method is a good feature 
elimination method, but also it generates a very robust ordering of the fea­
tures by degree of information. 

The tables present the result, exposing the features from the least infor­
mative to the most informative. Three different results are presented. Table 
7.2 is the first ordering of the features, when no feature has yet been elim­
inated. Table 7.3 presents the same ordering, after a few iterations of the 
algorithm. Finally table 7.4 presents the order in which the features have 
been eliminated. 

In table 7.4, for each norm, two features were selected, and the level 1 of 
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Norm 1 22 20 17 2 32 23 25 1 29 4 28 27 3 21 18 5 9 13 8 30 31 15 

Norm 2 11 2 25 23 1 19 28 29 32 12 18 3 27 21 9 30 8 4 13 5 31 15 

Table 7.3: intermediate classification 

Norm 1 11 6 7 19 26 12 16 24 10 14 20 17 22 23 32 25 29 1 28 21 27 2 18 3 5 4 31 9 13 8 

Norm 2 26 17 22 6 11 20 7 16 14 24 10 23 19 1 25 29 27 28 3 12 32 18 21 2 5 13 8 9 31 4 

Table 7.4: order of elimination. 

information is thus not present in this table . The informative features found 
by the algorithm are {15,30} for each norm. These features are thus consid­
ered as the set of informative features, and be the first level of information. 

It is possible to find 5 levels of features: 

• Level 1 composed from the selected features {15,30} 

• Level 2 composed from the features {4,5,8,9,13,31} 

• Level 3 composed from the feature {21} 

• Level 4 composed from the features {3,18} 

• Level 5 composed from the remaining features. 

These results were compared in [50J with another feature selection tech­
nique based on a totally different idea, the FDM. This methods also divides 
the features in levels. The features of the first level of the FDM are dis­
tributed among the levels 1-3 of the presented method. Of these three levels, 
only one feature (feature 30) is not present in the first level of the FDM. This 
shows that the algorithms obtain very similar results on this dataset. 

Remark 24: In the case of the level 4, the rule is not strictly applied, but 
the two features 3 and 18 seem important enough for each parameter to be 
considered as forming a 4-th level. A strict application of the rule would 
lead to only 4 levels, the last one being the union of the levels 4 and 5. 
Table 1 shows that this definition gives a good idea of the degree of interest 
each feature can have. One may want to work with only the first 3 levels (9 
features instead of 32). The feature selection algorithm can then be applied. 

7.4 Conclusion 

Several feature selection approaches for supervised classification have been 
developed recently. These approaches are mostly based on a fact that the 
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researchers have some information about the class distribution. In the case 
of unsupervised learning this kind of information is not available and there­
fore these a.pproaches are not applicable. The area of feature selection for 
unsupervised learning is not broadly studied. 

In this chapter we developed some feature elimination methods for clus­
tering (unsupervised learning). The proposed procedure has been tested on 
two real-world datasets. The experiments show that the procedure to elim­
inate noisy features is efficient. This procedure involves application of HM, 
therefore it require an appropriate cleaning procedure in the case of large­
scale datasets. 

The approach presented in this chapter works very well in the case of 
clustering models based on the minimisation of the cluster function. It is 
possible that for some other clustering models this approach is not very 
efficient. Therefore the development of new feature selection approaches for 
unsupervised learning is very important and needs to be continued. 

It is also shown in this chapter that this method works well also in the case 
of classification, even in extreme cases (very small datasets). It is noticeable 
that thi::; method is very robust, and does not depend strongly on the norm. 
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Chapter 8 

Study of the relations between 
clusters and classes 

8.1 Introduction 

An important characteristic of methods for supervised and unsupervised clas­
sification is their accuracy. There are different approaches to classification 
accuracy that can be used for comparison different classifiers (see for exam­
ple, [145]) . We mention here only n-fold cross-validation. This approach is 
very popular, however it cannot always give a good comparison of classifiers 
(see [25] for discussion). For example, the classification accuracy obtained 
for the same dataset in the case of nl-fold cross-validation and n2-fold cross­
validation are not necessarily the same if nl ::j:. n2. The estimation of accuracy 
of clustering methods is much more difficult than classification methods. 

Due to the more fuzzy character of clustering, devising a measure for the 
quality is difficult. In section 1.2.6 on page 19, two techniques were proposed. 
One is based on the structure of the clusters, measuring how "deep" points 
are inside the clusters, while the other one is evaluating the clusters according 
to the "purity", that is the proportion of the most represented class in the 
cluster. In this chapter we show that comparison of classes and clusters is 
not always appropriate, hence this comparison cannot be used for assessment 
of a clustering technique. Indeed, it is possible that the points have been 
grouped by this technique according to some other characteristic rather than 
the classes. A simple and interesting example of such a case can be found in 
[104]. 

In this chapter we show that a similar situation can appear in a real-world 
datasets. We consider two real-world datasets with classes ( "Pendigits" and 
"Letters") and compare classes and clusters for these datasets. 
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1 2 3 4 5 6 7 8 9 10 size % class 

1 470 0 0 0 0 107 2 1 1 0 581 80.89 
2 1 1122 334 5 1 1 0 0 6 1 1471 76 .27 
3 0 15 634 26 0 13 0 123 146 31 988 64.17 
4 0 0 2 1051 5 28 0 79 0 1 1166 90.13 
5 11 0 1 . 29 1049 3 1 0 1 0 1095 95.79 
6 247 0 0 0 0 989 0 12 0 0 1248 79.24 
7 183 0 0 0 1 0 625 0 3 0 812 76.'97 
8 8 0 82 32 0 2 191 715 0 2 1032 69.28 
9 69 2 1 0 0 0 0 0 962 0 1034 93.03 
10 66 5 89 1 0 0 236 125 23 1020 1565 65.17 

size 1055 1144 1143 1144 1056 1143 1055 1055 1142 1055 
44.54 98.07 55.46 91.87 99.33 86.52 59.24 67.77 84.23 96.68 

Table 8.1: Pendigits: Repartition of the classes in the clusters obtained by 
step by step clustering 

We examine clusters in the framework ofthe point-based clustering model. 
In this model we can use different optimisation techniques for the search for 
clusters. We also apply the notions of cluster function and the structure of 
clusters (see [24]) in order to check the quality of clusters obtained by this 
technique. The goal of this investigation is two-fold. First we show that the 
clusters and classes are very different in these datasets. We also compare 
different optimisation techniques for real world datasets. 

8.2 Pendigits 

8.2.1 Classes and centres 

The experiments are first carried out on the Pendigits dataset. Although 
this dataset is quite large, it is usually well handled by most classification 
methods. The first experiment is to carry out a step by step clustering (see 
section 6.3 without any knowledge of the classes and compare these clusters 
with the classes. Table 8.1 shows the number of points from each class in 
each cluster. 

As a result it is noticeable that a great majority of points in each cluster 
belongs to the same class. This means that the clusters seem to coincide 
with classes. The purity is 78.58%. 

The second experiment carried out is to find for each class one centre. 
The points obtained are then considered as cluster centres and the same 
analysis as previously is applied. Table 8.2 presents the results. 
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1 2 3 4 5 6 7 8 9 10 size % class 

1 561 0 0 0 0 142 14 1 0 0 718 78.13 
2 0 nOl 325 9 2 1 0 0 7 1 1446 76.14 
3 0 37 651 18 0 12 1 126 148 31 1024 63.57 
4 0 0 3 1060 9 79 0 34 0 1 1186 89.37 
5 42 0 0 11 1043 25 3 0 0 0 1124 92.79 
6 157 0 0 0 0 876 0 8 0 0 1041 84.14 
7 67 0 0 0 1 0 613 0 0 0 681 90.01 
8 6 0 75 45 0 8 180 770 0 2 1086 70.9 
9 154 1 0 0 0 0 0 0 968 0 1123 86.19 

10 68 5 89 1 1 0 244 116 19 1020 1563 65.25 

size 1055 1144 1143 1144 1056 1143 1055 1055 1142 1055 
53.17 96 .24 56.95 92.65 98.76 76.64 58.1 72.98 84.76 96.68 

Table 8.2: Pendigits: Repartition of the classes in the clusters defined by 
class centres 

A similar - but more expectable - observation is made about this table: 
the correspondence between clusters and classes is very strong. The purity 
is 78.81%. 

The class centres are used as an initial point to the local optimisation 
method to find a local minimum to the cluster function. In the case of 
Pendigits the solution obtained is the same as the one reached by the step 
by step method. 

Because the same result was reached by two different methods, it can be 
expected that it is a very good local minimum. For comparison, the objective 
function value for a solution reached by the k-means method was more than 
2% larger. 

The conclusion of this is that even by applying a clustering method with­
out any knowledge of classes, the solution obtained is the one which corre­
sponds at best to the classes. The classification accuracy is relatively high. In 
the Pendigits dataset the classes and cluster seem to be perfectly equivalent. 

Indeed when the number of clusters is increased to 20 (twice the number 
of classes) for the step by step clustering, the purity becomes 87%. This 
result, obtained by a method which does not use any knowledge of classes, 
is comparable to most specifically designed methods presented in [145]. 

8.2.2 Classes and cluster structures 

Figure 8.1 represents the structure of the clusters. The darker the square the 
larger amount of points are present in the layer. All the clusters present a 
similar structure: the points are deep, showing a good clustering. 
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Figure 8.1: Structures of the clusters of pendigits 

Cluster structures have been presented in [24] (see section 1.2.6 on page 19). 
They constitute a tool to evaluate the quality of the clustering. The Pendig­
its dataset has been shown to present a strong correlation between clusters 
and classes. It may be interesting to consider a deeper relation, by fin~ing 
the layers of the clusters. 

Figure 8.2 shows the depth of the classes in each cluster. Each disk 
represents one cluster, and each slice of this disk represents one class. The 
darker one circle is, the larger the proportion of points from this class is 
inside the corresponding layer. 

Table 8.3 shows the repartition of the ma.in class and the other points 
in each cluster. All the clusters present the same characteristic: although 
the points of each clusters are quite deep for all the clusters the main class 
is deeper than the others. This means that not only the cluster centres 
represent the classes well, but also the "misclassified points" do not belong 
so strongly to the cluster. 

Table 8.4 shows the average depth of each class inside each cluster. The 
results presented in this table confirm that in ea.ch cluster the predominant 
class is the deepest. 

8.2.3 Summary 

• The relationships between classes and clusters are very explicit 

• The points are "deep" inside the clusters, and therefore the clustering 
is considered of high quality 

• The correctly classified points are deeper. 
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Figure 8.2: Structures of the clusters in pendigits 

Cluster [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [O.4,0.fi) [0.5 ,0.6) [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1] 

1 Main class 0 0 6.8 22.12 18.72 16.17 11.06 11 .27 6.17 0 
Other classes 0 0 0 0 0 3.6 37.83 18.01 24.32 0 

2 Main class 0 0.08 5.97 22.01 26.73 18.36 13.72 8.55 3.83 0 
Other classes 0 0 1.43 14.61 27.79 16.61 15.47 9.74 7.73 0 

3 Main class 0.31 11.35 18.61 23.34 17.5 12.77 6.46 5.36 2.52 0.31 
Other classes 0 0 2.25 6.49 16.94 12.42 6.49 15.53 19.2 0 

4 Main class 0 1.23 10.56 17.6 21.4 13.32 14.93 8.65 7.61 0 
Other classes 0 0 0 0 0 0 0.86 12.17 38.26 0 

5 Main class 0 5.71 22.11 25 .64 20.59 13.34 7.14 3.62 1.42 0 
Other classes 0 0 0 0 0 0 0 10.86 19.56 0 

6 Main class 0 4.24 23.55 19.61 18.7 12.84 8.08 5.66 3.74 0 
Other classes 0 0 0 0 0.77 3.47 10.42 22.39 33.59 0 

7 Main class 0 7.68 26.08 26.24 19.36 13.44 4.32 1.76 0.96 0 
Other classes 0 0 0.53 0 0 1.6 6.95 16.57 28.34 0 

8 Main class 0 0 0.97 11.74 20.27 17.34 13.28 10.48 14.82 0 
Other classes 0 0 0.31 3.47 10.72 13.56 14.51 26 .81 16.71 0 

9 Main class 0 0.1 4.67 17.15 23 .38 22.03 14.55 9.04 5.5 0 
Other classes 0 0 0 0 0 0 1.38 15.27 36.11 0 

10 Main class 0 0.49 13.23 26.17 23 .62 18.82 8.43 4.7 3.13 0 
Other classes 0 0 0 0.18 1.28 6.42 14.67 22.2 26.42 0 

Table 8.3: Pendigits:Repartition of the classes by cluster layers 
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1 2 3 4 5 6 7 8 9 10 

1 0 .55 0.76 0.77 0.87 0.91 
2 0.99 0.51 0.56 0.91 0.98 0.88 0.96 0.56 
3 0.81 0.41 0.84 0.88 0.83 0.5 0.78 
4 0.85 0.53 0.93 0.93 0.87 0.85 
5 0.92 0.91 0.91 0.41 0.99 0.97 0.99 
6 0.82 0.45 0.89 
7 0.86 0.26 0.38 0.88 
8 0.93 0.81 0.86 0.97 0.62 0.63 0.76 
9 0.87 0.96 0.99 0.54 

10 0.86 0.9 0.77 0.98 0.76 0.86 0.94 0.47 

Table 8.4: average depth for each class in each cluster 

8.3 Letters 

The experiments described and applied on the Pendigits dataset in the previ­
ous section are here applied on the Letters dataset . The results are presented 
and discussed. 

8.3.1 Classes and centres 

The Letters dataset contains 26 classes. Therefore 26 clusters are found using 
the step by step algorithm. The size of the intersection of each cluster with 
each class is then evaluated. Table 8.5 presents the results. 

Unlike for the Pendigits dataset, where each cluster is strongly associ­
ated with a class (and where all classes are represented by one cluster), the 
repartition of the classes in the clusters of the Letters dataset is much more 
scattered. The purity is very low: 28.25%. 

Table 8.6 presents the repartition of the classes when the cluster centres 
considered are one centre per class. It is noticeable that here again the 
repartition of the points is very disseminate. The purity is 23.94%. 

Finally these class centres are used as an initial point for the local algo­
rithm to minimise the cluster function. While in the case of the Pendigits 
dataset the result of this experiment was similar to the solution found by 
step by step clustering, this time the centres are quite far apart and another 
solution is reached. Once again, the repartition, shown in table 8.7 is very 
diffuse. 

A possible interpretation of these results could be that the clustering 
algorithm does not reach meaningful clusters. The number of clusters is 
fairly large, and the cluster function possess a very large number of local 
minima. Its minimisation is a very difficult task, even for a powerful method 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 242 0 140 0 0 0 0 0 0 0 0 0 187 0 0 0 1 0 0 0 0 0 104 34 0 0 708 34 
2 123 0 90 0 0 0 7 0 0 0 0 35 107 0 0 0 81 0 0 0 0 0 97 41 95 0 676 18 
3 16 84 32 69 27 40 62 2 67 34 36 71 15 53 32 25 39 44 15 0 59 10 21 40 47 9 949 8 
4 0 276 0 0 17 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 3 301 91 
5 115 50 125 63 61 11 103 0 111 0 28 74 79 16 43 73 111 1 74 0 0 15 0 5 83 57 1298 9 
6 0 21 7 3 274 2 0 0 0 91 0 8 7 0 0 0 11 125 1 0 105 157 68 0 0 6 886 30 
7 0 0 0 155 0 171 0 159 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 485 35 
8 0 28 6 24 3 27 31 116 4 24 1 30 6 29 18 5 0 16 0 76 35 2 5 36 33 0 555 20 
9 . 0 0 0 31 0 40 0 44 0 0 0 14 0 0 0 0 0 0 0 25 37 0 0 0 0 0 191 23 
10 0 0 0 0 0 0 0 0 0 291 0 0 0 0 0 0 0 212 0 0 2 198 0 0 0 0 703 41 
11 3 0 15 3 0 1 0 8 3 0 567 1 0 0 4 5 0 0 1 0 0 0 0 3 0 2 616 92 
12 0 56 0 43 0 36 88 0 93 0 0 32 0 153 134 0 45 0 0 0 66 0 21 99 14 0 880 17 
13 0 28 0 40 0 27 85 0 169 1 0 35 23 266 138 13 8 7 0 0 45 14 70 150 3 15 1137 23 
14 23 66 52 69 52 27 80 13 65 45 44 76 66 11 120 34 55 76 16 18 20 50 34 66 111 26 1315 9 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 324 0 0 0 0 0 0 0 0 0 0 324 100 
16 104 55 98 72 33 1 89 0 114 0 1 93 116 0 1 5 122 0 30 0 0 2 0 1 98 12 1047 11 
17 0 7 0 0 4 0 1 0 4 0 59 0 1 0 0 60 0 0 350 0 0 0 0 0 4 190 680 51 
18 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 158 1 0 229 0 0 0 0 0 0 190 588 38 
19 0 0 0 2 8 127 0 239 18 26 13 1 0 6 0 1 0 1 0 327 26 0 8 1 0 1 805 40 
20 0 10 0 34 10 251 11 203 9 27 21 20 1 7 2 1 0 1 1 304 41 3 17 8 0 2 984 30 
21 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 169 0 0 0 0 0 174 97 
22 15 26 41 40 79 7 0 2 0 84 1 92 44 0 0 2 69 119 2 0 126 127 87 3 . 0 12 978 12 
23 0 68 0 3 163 5 0 2 0 137 0 9 3 0 0 0 4 146 0 2 28 174 40 0 0 0 784 22 
24 0 7 0 50 0 9 148 0 123 0 1 119 16 210 187 9 128 2 4 0 54 5 123 249 23 2 1469 16 
25 93 16 142 28 39 1 53 4 25 2 17 29 97 2 104 46 112 36 29 0 0 39 41 37 255 52 1299 19 
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 168 100 

size 734 803 748 734 775 783 758 792 805 764 789 739 768 753 783 761 787 786 755 752 813 796 736 773 766 747 
32 34 18 21 35 32 19 30 20 38 71 16 24 35 23 42 16 26 46 43 20 24 16 32 33 25 

Table 8.5: Letters: Repartition of the classes in the clusters obtained by step by step clustering 

00 
eo+-
~ 
Q.. 
'< 
o ..., 
eo+-
~ 
ct ., 
(t) a o· 
~ 
rJl 

0' 
(t) 
eo+-

~ 
(t) 

= (') 

= rJl 
eo+­
ct ., 
rJl 

Il' 
~ 
Q.. 

(') .... 
Il' 
rJl 
rJl 
(t) 
rJl 

~ 

I:Jl 
~ 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ·21 22 23 24 25 26 

1 113 1 50 0 9 0 0 0 1 0 0 0 36 0 16 15 0 0 12 0 0 1 6 3 4 16 283 39 
2' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 242 100 
4 220 2 273 7 8 0 84 0 5 0 0 59 77 0 19 17 165 1 11 0 0 8 8 14 179 22 1179 23 
5 17 112 13 0 320 1 0 0 0 77 0 0 18 0 0 0 16 127 14 0 0 194 0 0 0 16 925 34 
6 5 0 7 1 0 0 8 0 0 0 0 0 0 0 0 7 1 0 0 0 0 0 0 0 0 1 30 26 
7 33 5 54 27 0 0 78 0 38 0 0 5 36 0 4 2 34 0 5 0 0 0 0 0 54 0 375 20 
8 3 39 5 11 10 17 28 0 123 1 16 2 1 9 11 57 30 5 23 0 11 0 0 7 13 19 441 27 
9 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 100 
10 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 50 
11 0 5 3 0 0 6 0 0 0 28 0 0 0 0 0 0 1 2 0 0 0 1 0 0 0 0 46 60 
12 0 3 1 6 19 0 0 0 0 346 0 44 5 0 0 0 51 177 6 0 22 86 2 0 0 0 768 45 
13 15 0 5 4 0 0 0 0 0 44 0 3 37 0 0 0 2 28 35 0 0 0 0 0 5 0 178 24 
14 15 0 31 6 0 1 18 0 42 1 455 0 0 2 3 92 131 0 37 0 2 0 0 7 1 64 908 50 
15 0 0 0 0 0 4 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 92 
16 0 0 0 0 0 0 0 0 0 5 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 77 
17 0 21 0 26 0 28 40 15 2 1 0 1 0 44 43 0 0 0 0 0 23 0 1 30 2 4 281 15 
18 42 76 78 299 20 216 219 188 312 28 28 128 134 457 473 53 27 83 3 32 399 82 215 372 247 54 4265 11 
19 13 72 10 39 56 25 46 0 111 0 136 3 1 96 41 262 43 0 138 3 0 0 0 8 25 77 1205 21 
20 1 0 0 4 0 1 0 0 0 0 0 50 10 0 0 16 54 0 15 0 0 0 0 0 1 31 183 29 
21 140 165 194 157 116 7 96 1 139 40 39 142 205 76 115 74 207 118 54 0 13 54 63 110 198 89 2612 7 
22 0 44 0 120 41 471 135 586 32 110 115 181 0 48 11 18 9 6 3 717 126 7 42 41 37 9 2909 24 
23 0 0 2 24 5 6 0 2 0 4 0 19 8 2 0 0 5 1 0 0 190 0 46 0 0 44 358 53 
24 9 15 10 0 171 0 0 0 0 15 0 0 5 0 0 147 6 201 347 0 2 358 66 0 0 225 1577 22 
25 108 1 12 0 0 0 5 0 0 0 0 0 195 0 0 1 0 0 4 0 0 0 282 83 0 76 767 36 
26 0 0 0 3 0 0 1 0 0 60 0 32 0 19 47 0 5 37 48 0 25 5 5 98 0 0 385 25 

size 734 803 748 734 775 783 758 792 805 764 789 739 768 753 783 761 787 786 755 752 813 796 736 773 766 747 
29 30 36 40 41 60 28 73 38 45 57 24 26 60 60 .34 26 25 45 95 49 44 38 48 32 30 

Table 8.6: Letters: Repartition of the classes in the clusters defined by class centres 
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Study of the relations between clusters and classes 158 

like the step by step method. 
However neither the improved class centres 110r the class centres them­

selves seem to represent the classes well. Moreover the value of the function 
at the point reached by the step by step method is sensibly lower than the 
one at the other points. . 

The distribution of the points of the dataset in clusters independent from 
their class may be due to the fact that some more information is contained 
in the dataset (for example the font ofthe letters), and this information may 
bring some noise for an eventual classification. 

The latter interpretation is confirmed by the fact that when the number 
of clusters is decreased to 4, thus making the problem easier to solve, the 
repartition of the classes remains scattered. 

8.3.2 Classes and cluster structures 

Figure 8.3 shows the structure of the clusters. These clusters present gen­
erally a similar structure: the majority of points is deep inside the cluster. 
This shows that the clustering created clusters of high quality. 

Experiments show that the distribution of the classes inside the clusters 
is very diffuse for the Letters dataset. This means of course that the classes 
do not represent the most obvious point-based clustering of this dataset. Let 
us consider the structures of the clusters and examine the distributions of 
the classes among the layers. 

Figure 8.4 and table 8.8 show the distribution of the classes in each cluster. 
Clearly there are several types of clusters. Some of them contain only points 
from a few classes. The majority of the clusters, however, contains points 
belonging to many classes. In a general manner, it can be noticed that the 
repartition in layers for all the classes present in the cluster is quite similar. 
This result emphasises the conclusion that a cluster cannot be associated 
with a particular class in the Letters dataset. 

Cluster [0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1] 

1 Main class 0 0 0 2.06 25.61 29.33 13.63 9.91 5.78 0 
Other classes 0 0 0 0.21 15.02 16.95 16.3 16.52 21.67 0 

2 Main class 0 0 0.81 16.26 24.39 6.5 28.45 10.56 4.06 0 
Other classes 0 0 0 0.36 2.71 10.3 19.16 20.79 19.71 0 

3 Main class 0 0 0 0 1.19 15.47 32.14 20.23 17.85 0 
Other classes 0 0 0 0.11 1.15 8.67 14.68 18.26 26.47 0 

4 Main class 0 0 0 6.15 19.56 18.11 11.95 10.5 17.02 0 
Other classes 0 0 0 0 0 0 0 4 24 0 
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5 Main class 0 
Other classes 0 

6 Main class 0 
Other classes 0 

7 Main class 0 
Other classes 0 

8 Main class 0 
Other classes 0 

9 Main class 0 
Other classes 0 

10 Main class 0 
Other classes 0 

11 Main class 0 
Other classes 0 

12 Main class 0 
Other classes 0 

13 Main class 0 
Other classes U 

14 Main class 0 
Other classes 0 

15 Main class 0 
Other classes 0 

16 Main class 0 
Other classes 0 

17 Main class 0 
Other classes 0 

18 Main class 0 
Other classes 0 

19 Main class 0 
Other classes 0 

20 Main class 0 
Other classes 0 

21 Main class 0 
Other classes 0 

22 Main class 0 
Other classes 0 

23 Main class 0 
Other classes 0 

24 Main class o 

o 
o 
o 
o 

o 
o 
o 
o 

o 6.4 21.6 13.6 16.8 18.4 0 
0.17 2.89 7.33 12.36 17.81 25 .31 0 

o 2.55 6.2 14.23 27 25.91 0 
0.16 1.63 8.49 11 .27 20.09 25.81 0 

o 11 .69 45.61 26.9 12.28 2.33 0.58 0 0 
o 0 0 6.36 22 .61 37.26 16.87 11.78 0 

o 
o 

o 
o 

0.86 5.17 19.82 25.86 18.1 16.37 0 
1.13 12.3 16.85 16.17 16.62 17.53 0 

o 25 40.9 13.63 4.54 9.09 6.81 0 0 
o 21.08 10.88 7.48 8.84 16.32 5.44 16.32 0 

o 
o 
o 
o 
o 
o 
o 
u 
o 
o 

o 
o 

1.37 7.9 23.02 27.49 13.74 14.43 0 
4.85 12.13 11.4 17.71 23.05 18.68 0 

1.76 16.22 19.57 20.28 14.99 8.81 10.58 0 
o 0 0 0 6.12 14.28 22.44 0 

o 21.56 26.79 26.14 9.8 3.26 4.57 0 
o 2.33 4.67 12.37 20.08 20.22 20.63 0 

0.37 1.5 9.02 22 .55 24.06 14.28 12.4 0 
o 0.11 1.95 8.49 13.31 19.51 25.02 0 

o 
o 

o 
o 

o 0.83 16.66 24.16 26.66 0 
1.08 7.78 17.65 22 .25 25 .77 0 

0.3 23.45 11.72 13.88 13.27 12.65 12.34 8.33 0 
000000000 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 0 4.91 18.85 17.21 15.57 20.49 0 
0.32 0.75 6.81 14.91 14.27 19.02 21.4 0 

o 
o 

o 0 18.85 38.28 25.42 10.28 0 
5.75 10 14.24 14.24 14.24 18.18 0 

o 12.66 19.65 16.15 25 .32 11.35 6.98 0 
0.27 0.27 7.52 14.76 17.27 19.49 22.84 0 

o 
o 
o 
o 

o 4.58 22.32 26.6 20.48 15.59 0 
0.2 3.34 6.69 15.06 20.08 23.84 0 

0.32 2.96 20.39 22 .03 20.72 16.77 0 
0.14 4.41 17.05 18.67 17.79 17.94 0 

7.1 20.71 32.54 17.75 14.2 5.91 1.77 
0000000 

o 
o 

o 
o 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 

o 
o 

o 2.36 17.32 22.04 31.49 0 
1.52 9.87 16.68 20.79 26.43 0 

1.72 12.06 13.21 22.41 25.28 12.64 0 
0.49 2.45 10.49 22.62 30.49 12.95 0 

o 3.61 10.04 21.28 21.68 23.69 0 
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Other classes 0 0 0 0.24 1.55 6.31 11.88 23.52 27.95 0 

25 Main class 0 0 0 0 0.39 3.92 7.45 15.68 43.92 0 
Other classes 0 0 0 0.19 3.16 7.27 13.4 20.3 28.06 0 

26 Main class 0 5.35 14.88 20.83 17.85 9.52 10.71 9.52 4.16 0 
Other classes 0 0 0 0 0 0 0 0 0 0 

Table 8.8: PenJigits:Rcpartition of the classes by cluster layers 

Table 8.9 presents the average depth of each class in each cluster. All 
the classes are at the same depth inside the clusters. Moreover this depth -
generally between 0.3 and 0.8 - shows that the points are quite far from the 
boundary of each cluster. An interesting case is the 8-th cluster: most classes 
of the dataset are very deep inside the cluster. This can be seen as a strong 
belonging to the clusters, and it can be concluded that although the cluster 
is strongly constituted, it does not permit discrimination between classes. 

8.4 Conclusion 

The main conclusion to this research is that clusters do not necessarily coin­
cide with classes. Several factors can cause such results. 

• The chosen clustering model does not match the classification structure. 
(For example, it is possible that some classes in Letters dataset are not 
point based, while it is the point based model we use for clustering.) 

• The dataset contains a high proportion of noisy records and/or possible 
mistakes, which may have appeared, for example, at the stage of data 
collection; 

• Some characteristics link points more strongly than their belonging to 
classes. 

The notion of purity cannot always be used for evaluation of accuracy 
of clustering methods. If the purity is high enough, we can conclude that 
the chosen clustering method is efficient for the dataset under consideration. 
However, we can not make any conclusion regarding the efficiency of cluster­
ing methods, if purity is low. In such a case the classes and clusters do ' not 
coincide. There can be different reasons for this: either the applied clustering 
technique does not work very well, or there might be some other "hidden" 
characteristics, which link the records together and which are independent 
from the classes. 

The purity can then be seen as a measure of the quality of the dataset 
rather than of the cluster method. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 114 O. 97 0 0 0 15 0 0 0 0 48 107 0 0 3 92 0 2 0 0 2 108 63 109 0 760 15 
2 242 0 183 0 0 0 0 0 0 0 0 0 192 0 3 0 7 0 0 0 0 0 85 42 94 0 848 28 
30000000000000000000000000000 
40000000000000000000000000000 
50000000000000000000000000000 
6 19 90 37 54 36 36 61 1 72 41 25 68 15 59 45 36 44 46 26 0 63 23 31 43 45 16 1032 8 
7 32 41 24 llO 35 10 71 1 84 0 21 89 57 11 20 8 51 9 12 0 9 25 1 5 78 13 817 13 
8 0 223 1 1 344 0 0 0 0 26 0 21 0 0 0 2 89 2 0 58 131 71 0 0 2 953 36 
9 1 51 26 39 21 41 65 101 23 42 11 60 26 32 49 23 13 51 1 79 49 12 18 67 74 2 977 10 
10 0 0 0 160 0 178 0 181 0 0 0 0 0 0 0 0 0 0 0 0 169 0 0 0 0 0 688 26 
11 79 29 76 65 18 3 73 0 100 0 1 72 100 0 0 1 80 0 9 0 4 1 1 2 84 6 804 12 
12 0 0 0 0 0 1 0 0 0 385 0 0 0 0 0 0 0 307 0 0 6 300 0 0 0 0 999 38 
13 3 0 25 3 0 13 0 12 7 0 364 2 0 2 4 13 0 0 7 0 0 0 0 5 0 15 475 76 
14 0 0 0 0 0 0 1 0 0 0 299 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 301 99 
15 0 53 0 70 22 72 69 20 79 0 0 37 0 133 125 0 40 0 45 15 107 0 22 56 10 0 975 13 
16 0 90 0 30 0 25 99 0 175 0 0 45 19 283 130 15 13 6 0 0 38 16 77 151 23 14 1249 22 
17 94 57 III 55 66 11 73 9 55 25 38 60 108 7 176 55 101 79 38 0 5 53 58 72 134 67 1607 10 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 326 0 0 0 0 0 0 0 0 0 0 326 100 
19 146 54 135 32 49 0 75 0 70 0 0 64 103 11 36 101 154 3 88 0 0 19 4 3 62 63 1272 12 
20 0 3 0 0 5 o· 0 0 0 0 0 0 0 0 0 168 0 0 374 0 0 0 0 0 0 285 835 44 
21 0 8 0 31 10 238 12 196 9 22 20 18 1 6 2 0 0 1 1 313 40 2 17 8 0 1 956 32 
22 0 1 0 5 6 137 0 270 15 32 9 2 0 6 1 1 0 1 0 343 26 0 11 2 0 2 870 39 
23 3 49 27 23 162 10 0 1 0 190 0 61 22 0 0 0 61 192 6 2 171 205 103 0 0 41 1329 15 
24 1 54 6 56 1 8 144 0 116 1 1 III 17 203 192 10 129 2 3 0 68 7 129 254 53 4 1570 16 
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 100 
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 141 0 0 0 0 0 0 214 355 60 

size 734 803 748 734 775 783 758 792 805 764 789 739 768 753 783 761 787 786 755 752 813 796 736 773 766 747 
32 27 24 21 44 30 18 34 21 50 46 15 25 37 24 42 19 39 49 45 21 37 17 32 17 38 

Table 8.7: Letters: Repartition of the classes in the clusters defined by improving the class centres 
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Figure 8.3: Structures of the clusters for the letters dataset 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 0.63 - 0.68 - 0.6 - 0.97 - - 0.86 0.84 -
2 0.59 - 0.74 - - 0.91 - - 0.87 0.65 - - 0.73 - - 0.87 0.82 0.83 -
3 0.87 0.73 0.8 0.77 0.82 0.9 0.72 0.91 0.75 0.89 0.84 0.78 0.85 0.71 0.87 0.81 0.83 0.85 0.9 - 0.85 0.9 0.88 0.76 0.73 0.92 
4 - 0.67 - - 0.92 - - 0.89 - - 0.93 - - 0.96 
5 0.83 0.82 0.74 0.79 0.86 0.95 0.74 - 0.77 - 0.88 0.8 0.72 0.89 0.88 0.88 0.8 0.98 0.86 - - 0.89 - 0.89 0.71 0.9 
6 - 0.88 0.86 0.89 0.79 0.93 - - 0.87 - 0.91 0.92 - 0.9 0.720.95 - 0.85 0.77 0.85 - - 0.94 
7 - - 0.74 - 0.41 - 0.61 -
8 - 0.83 0.93 0.76 0.88 0.67 0.7 0.71 0.79 0.68 0.94 0.72 0.79 0.62 0.75 0.92 - 0.79 - 0.68 0.6 0.73 0.83 0.71 0.77 -
9 - 0.45 - 0.29 - 0.43 - - 0.91 - - 0.89 0.71 -
10 - - 0.68 - - 0.61 - - 0.91 0.8 
11 0.92 - 0.85 0.92 - 0.93 - 0.88 0.84 - 0.59 0.96 - - 0.83 0.95 - - 0.94 - - 0.85 - 0.97 
12 - 0.84 - 0.6 - 0.81 0.71 - 0.7 - 0.89 - 0.55 0.62 - 0.74 - 0.9 - 0.86 0.75 0.89 -
13 - 0.9 - 0.77 - 0.7 0.85 - 0.77 0.99 - 0.88 0.92 0.69 0.78 0.83 0.94 0.92 - - 0.79 0.85 0.83 0.79 0.91 0.74 
140.88 0.81 0.83 0.83 0.74 0.81 0.770.76 0.82 0.8 0.840.81 0.69 0.8 0.83 0.75 0.78 0.81 0.83 0.91 0.86 0.76 0.8 0.78 0.77 0.78 
15 - - 0.52 -
16 0.83 0.87 0.72 0.68 0.86 0.95 0.77 - 0.74 - 0.95 0.78 0.65 - 0.970.93 0.75 - 0.88 - - 0.96 - 0.93 0.65 0.91 
17 - 0.95 - 0.9 - 0.92 - 0.95 - 0.9 0.9 0.7 - 0.7 - - 0.75 0.65 
18 - 0.87 - - 0.93 - - 0.78 0.95 - 0.6 - 0.69 
19 - - 0.98 0.86 0.79 - 0.78 0.8 0.9 0.8 0.99 - 0.93 - 0.78 - 0.91 - 0.7 0.77 - 0.89 0.97 - 0.89 
20 - 0.93 - 0.82 0.83 0.73 0.84 0.69 0.83 0.88 0.77 0.89 0.95 0.81 0.95 0.97 - 0.970.98 0.73 0.82 0.85 0.74 0.78 - 0.91 
21 - - 0.98 - - 0.38 -
22 0.9 0.9 0.84 0.77 0.82 0.95 - 0.91 - 0.85 0.99 0.74 0.76 - - 0.970.69 0.8 0.99 - 0.73 0.82 0.8 0.96 - 0.87 
23 - 0.84 - 0.92 0.74 0.88 - 0.97 - 0.71 - 0.82 0.89 - - 0.83 0.69 - 0.97 0.9 0.7 0.83 -
24 - 0.93 - 0.73 - 0.78 0.83 - 0.85 - 1 0.84 0.91 0.73 0.77 0.73 0.81 0.95 0.92 - 0.89 0.71 0.86 0.76 0.91 0.8 
25 0.81 0.77 0.78 0.82 0.72 0.91 0.86 0.92 0.83 0.93 0.79 0.84 0.8 0.9 0.88 0.68 0.82 0.84 0.66 - - 0.83 0.770.77 0.83 0.7..i 
26 - 0.5 

Table 8.9: average depth for each class in each cluster · 
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Chapter 9 

Shape of a finite set of points 

9.1 Introduction 

Although the general definition of data analysis is generally quite broad, in 
practice only a few fields, such as clustering or classification, have received 
much attention. 

It may sometimes be necessary to extract information from data without 
needing to subdivide it, for example when an explanation for a phenomenon is 
sought. In this chapter, we develop an algorithm to study the shape of data. 
We assume that points have been obtained using a clustering algorithm such 
as those presented in chapter 6 on page 109, and study each cluster separately 
(in other terms, the centre of each set has been found). We develop an 
algorithm to find a geometrical object containing a finite set of points. In 
this research we focus on a special class of geometrical objects: the ellipsoids. 

In this algorithm an auxiliary procedure to eliminate noisy points is de­
veloped. This procedure, itself based on ellipsoidal shapes and cluster struc­
tures, is quite important, and has many practical applications. 

Our algorithm requires the solution of a sequence of optimisation prob­
lems. We use the discrete gradient method to solve these problems. 

9.2 Geometrical approximation for a finite set 
of points 

9.2.1 Sets and shapes 

Suppose that we have a finite set of points 
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Shape of a finite set of points 

Our task is to find a shape containing the set. We would like to construct a 
geometrical object from a certain class which contains this finite set. 

We propose an approach to filld ellipsoidal approximations for given sets. 
III order to describe this algorithm we need some definitions. 

Definition 30. An ellipsoid which includes the finite set of points A is called 
a shape of the set A. 

Definition 31. A shape is suitable if at least one of the points from the set 
A is on the boundary of this geometrical body (shape). 

vVe present several approaches to find suitable shapes for the finite set. 
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9.2.2 Positive definite symmetric matrix approach(PDSMA) 

Any ellipsoid can be described by a centre and a positive definite matrix. Let 
11-1+ be the set of positive definite matrices. In order to find a suitable shape 
we intend to determine a positive definite symmetric matrix NI, such that: 

Vi E {I, ... N}, 

where there exists an aj E A such that lie - ajilM = I, c is the centre of the 
finite set obtained by an appropriate method, and 

II;rll~'I = (x, Mx) . 

As an approximation of the set A we then consider the object 

(9.1) 

9.2.3 Positive diagonal matrix approach(PDMA) 

It is reasonable to only consider the subset D+ C M+ of positive diagonal 
matrices. In order to find a suitable shape we intend to determine a positive 
definite diagonal matrix D = diag (d1 , ... , dn ), such that: 

Vi E {I, ... N} 

where there exists an aj E A : lie - aj liD = I, c is the centre of the finite set 
obtained by an appropriate method, and 

j = 1,2. 

As an approximation of the set A we then consider the set 

{x E m,n : lie - XliD ~ I} . (9.2) 



Shape of a finite set of points 

Figure 9.1: The structure for L = 5 for a shape of a finite set 

Remark 25: The PDSMA is a generalisation of the PDMA for the Eu­
clidean norm, but the dimension of the problem appearing in the PDMA is 
significantly less. 

9.2.4 Structures 

Once a shape has been found for A, we would like to study the distribution 
of the points within this shape. Let LEN. We want to divide the shape into 
L layers from the centre to the boundary, and analyse the distribution of the 
points within these layers. Figure 9.1 shows an illustration of the division of 
an ellipse into 5 layers. The points represent the finite set approximated by 
the ellipse. 

Remark 26: In this structure card (SdL)) 2: 1. 

Definition 32. The point aio is isolated if: 

and 

Very often the set we would like to study consists of two parts. The first 
part contains a lot of points which are close to each other (the so called solid 
part). The other part contains few points spaced out around the solid part. 
The points from the spaced out part could be interpreted as noise. We can 
use these structures in order to create an algorithm to separate the solid part 
from the points considered to be noisy. 
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9.3 Algorithm 

We propose a new algorithm to find an ellipsoidal shape for the finite set of 
points. This algorithm has three phases. 

Algorithm 9.1: Finding the shape of a set of points 
Step 1 Find the centre of the set 
Step 2 Eliminate some isolated points that are considered as noise 
Step 3 Find the ellipsoidal shape 

In the following subsections we will explain each step more precisely. 

9.3.1 Find the centre 

To find the centre of the set A we solve the clustering problem (1.4) on 
page 15. 

9.3.2 Elimination of the isolated points 

A point which is too far from the rest of the points, and will thus induce 
some noise in the process of finding the shape has to be eliminated from the 
set A. For that, we need to find a shape in which such a point is isolated. 
This means that for such a shape, most of the points will be near the centre, 
while the ones to be eliminated will be on the boundary of this ellipsoid. 

To find such an ellipsoid, we need the points to be globally the furthest 
possible from the boundary of the shape, i.e. closer to the centre c. This 
leads naturally to the optimisation problem of determining Nf such that: 

minimise Lila - cilM 
aEA 

such that 
max lIa - cilM = 1; M E M+. 
aEA 

(9.3) 

To eliminate the noise, we have to solve the problem (9.3) repeatedly 
until the noisy data has been removed. Let L E IN, and apply the following 
algorithm. 

III our examples, the points were eliminated with both L = 10 and L = 5 
before the next step. 
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Algorithm 9.2: An algorithm for eliminating noise 
Step 1 Set Au ~ A and it-O 

repeat 
Step 2 solve (9.3) 

if S d L - 1) = 0 then 
L A+1 = Ai\SdL) 

Step 3 Set i = i + 1 
until A.i = Ai - 1 

9.3.3 Finding the shape 

Once no more noise exists, we can determine the shape. Now we want the 
boundary of the ellipsoid to be as close to the group of points as possible. 
We obtain the following optimisation problem for M: 

maximise Lila - CliM 
aEA 

such that 
max IIa - CliM = 1, I'vf E J\J+. 
aEA 

(9.4) 

The restriction on the set of positive definite symmetric matrices could be 
implemented using the Cholesky factorisation (for details see [184]) . It means 
that there exists a unique lower triangular n x ndimensional matrix G with 
a positive prime diagonal gi,i > 0, i = 1, ... , n, such that !VI = GGT . Thus 
there exists a bijection between the set of positive definite symmetric matrices 
and the set of lower triangular matrices with positive leading diagonals. 

9.4 Numerical experiments: comments and 
descriptions 

9.4.1 Subsets 

The algorithm was applied on the Diabetes dataset. This dataset contains 
2 classes (500 observations in the first class and 268 observations from the 
second class). All features (1-8) are continuous. After application of a feature 
selection algorithm, we obtain the subset (1,2,8) of the most informative 
features. 

We present some results for different sets of points. We find 3 clusters 
in the first class and 3 clusters ill the second one (Sets 1-6). We also study 
each class more precisely (Sets 7 and 8). 
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9.4.2 Point elimination 

We present some results obtained by the algorithm for noise elimination. We 
use the structures of the order L = 10 and L = 5. 

Set Initial size Number of iterations Points eliminated 

1 137 3 119;127;51 
2 226 6 156;13;46;80;181;77;85;104;43 
3 66 2 19 
'1 85 2 44 
5 137 2 42 
6 117 1 none 
7 500 1 none 
8 268 1 none 

Table 9.1: Point elimination for symmetric definite positive matrices 

Set Initial size Number of iterations Points eliminated 

1 137 3 119,127 
2 226 6 156;13;46;80;181;77;85;104 
3 66 2 19 
4 85 2 44 
5 137 1 none 
6 117 1 none 
7 500 1 none 
8 268 1 none 

Table 9.2: Point elimination for diagonal matrices 

Remark 27: No actual elimination occurs during the last iteration. 

Remark 28: The results for elimination obtained by diagonal and positive 
definite symmetric positive matrices are slightly different, but in the case of 
diagonal matrices we have much fewer variables in the optimisation problem. 
It is therefore reasonable to use diagonal matrices in the elimination process. 

Remark 29: If no point is eliminated in a set, the elimination may need to 
be refined by running the algorithm with another value of L. 
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9.4.3 Shape of the sets 

For each set after point elimination we fonnd a suitable shape and the repar­
tition of the points within tltis new shape. We present results for the three 
biggest. sets in our example (Sets 2,7 and 8). 

Set 810(1) 810(2) 810(3) 810(4) 810(5) 810(6) 810(7) 810(8) 810(9) 810(10) 

2 5 16 24 23 10 4 3 21 80 31 
7 30 112 139 74 42 26 32 19 12 14 
8 4 11 35 70 52 31 30 19 8 8 

Table 9.3: The repartition ofthe points using SlO(k) structures, k = 1, . .. , 10. 

In the case of the Set 2, we observe that many points are close to the 
boundary of the suitable shape, and therefore the repartition of the points 
is quite regular. For the Sets 7 and 8 we could not obtain such results. It is 
possible that we still have some noisy points. 

9.5 Conclusion 

In this chapter, an algorithm to find the shape of a finite set of points has 
been developed. This algorithm is based on the solution of several nonsmooth 
optimisation methods. 

U sing the shape, it is possible to eliminate a number of noisy points from 
the dataset. This may be very useful to obtain more accurate results. 

This research should be applied to other types of shapes, and it could 
be interesting to study the intersections of various shapes. The intersection 
between the shapes and the skeletons as a characterisation of the sets should 
also be studied. 
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Conclusion 

In this thesis, tools for addressing data analysis goals have been developed. 
The research has taken two different, complementary directions. 

It has been observed that the optimisation based approach to data anal­
ysis is one of the most promising. The modularity of the methods gives 
the experts more freedom compared to other approaches. However, these 
methods are based on large-scale mathematical programming problems with 
nonsmooth, nonconvex objective functions, and the vast majority of general 
purpose softwares were unable to solve these problems. 

Based on one of the most adapted algorithms, the discrete gradient method, 
an approach particularly adapted to data analysis optimisation problems has 
been designed. First, theoretical considerations on piecewise partially sepa­
rable functions have been presented, and an algorithm has been developed to 
minimise these function. Numerical results have shown that this algorithm 
is very efficient, and notably that for this class of functions it improves the 
speed of original discrete gradient method. This algorithm has then been 
successfully applied to several problems of data analysis. 

Although the algorithm proposed addresses a number of issues, it is a de­
scent method, which can only guarantee termination on a stationary point. 
Unfortunately global methods are not applicable to problems on large scale 
datasets. In order to obtain a satisfactory solution it is necessary to de­
sign techniques that provide a good initial guess, thereby ensuring that the 
solution reached is good. 

The first problem to which this optimisation method has been applied 
is the one of supervised learning of data. There exists an extremely large 
number of solutions to this problem, some of which are based on optimisation. 
The most popular among these is the so-called Support Vector Machine, 
which maps the data via a nonlinear projection over a larger dimensional set 
before attempting to separate it using a linear function. Notwithstanding the 
popularity or the efficiency of this technique, we suggest one limitation: the 
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nonlinear mapping has to be specified by the user and therefore it may halJpeU 
that the Support Vector Machine does not reach a good solutioll . 011 the 
other haud, another approach, based on piecewise linear separation of sets, 
seemed rather promising, although based on a more complex optimisR.tion 
problelll. 

We used the algorithm developed previously on this problem, and adapted 
tllis set-separating approach to a multi-class classification method. N umeri­
cal experiments on large scale datasets show that this method is very efficient 
and deserves to be further improved. In particular, a method to obtR.in the 
number of planes necessary in the linear function should be provided . . 

Another problem on which we applied our method is the one of unsuper­
vised learning. The most common -and arguably the best- approach is 
the one which consists of minimising the average dissimilarity among clus­
ters. This is a very complex nonsmooth, nonconvex optimisation problem. 
Two approaches for solving this problem are proposed. 

The first approach is based on an incremental algorithm: the clusters are 
added one by one, and at each iteration, all the clusters are fixed while the 
added cluster is placed. Then the clusters are refined. This method is very 
efficient , as it constructs the points step by step, and always ensures t.hat the 
optimisation method is given a good initial guess. 

The second approach is better suited for larger datasets and for situa­
tions where a quick (but good) solution is privileged over a better one. In 
particular, this approach does not minimise over the whole dataset but on a 
summary of it , specifically the "c-cleaned" version. Several initial points are 
proposed, and 3 different minimisation methods are applied. The numerical 
experiments show that the initial points ensure that all three methods reach 
a good solution. An interesting observati0l1 is that when a general-purpose 
optimisation software is applied, it reaches better solutions over the cleaned 
dataset t.han over the original one, because the latter generates a too heavy 
problem for these softwares. 

The algorithm is also applied on the minimisation of "skeletons", but the 
results show that it is not so efficient. In particular, the combination with the 
c-cleaning does not provide as good results as for the point-based clllstering. 

Very few methods for preprocessing the data for unsupervised learning 
have been designed so far. In this thesis, a new method, based on the clus­
tering algorithm designed previously, is proposed. Tllis method is applied on 
test datasets, and it is shown that it works well. Moreover it can easily be 
adapted to supervised learning, which is very useful in the case 6f dat~sets 
of small size. 

The penultimate chapter examines the common belief that clustering a 
labelled dataset should necessarily comply with the distribution into classes. 
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This belief has given rise to a measure of the quality of clusters called purity. 
However, it is shown here that it is not necessarily true. While for SOllle 
datasets, the results obtained strongly correspond to the classes - which 
certainly show that the clustering method is very good - in some other 
cases, there is absolutely no relationship between these two. Although in 
these cases, other measures for the quality of the clustering give satisfactory 
results, the purity is very low. Hence the purity may be a measure of the 
quality of the dataset rather than one of the clustering method. 

Finally, a new type of data analysis problem has been examined: discov­
ering the geometrical properties of a set of points. An algorithm for finding 
an ellipsoidal shape has been proposed and applied on a test dataset. The re­
sults are promising, and in particular, this algorithm can be used to eliminate 
successfully noisy points from the dataset. 

Further research 

The version of the discrete gradient method presented in this thesis is an 
important step in the application of this method to solve data analysis prob­
lems. The computational cost can be drastically reduced when the scheme 
is applied. 

It is necessary to continue the research in this direction, and to enhance 
even more the efficiency of the method. In the future, the size of datasets 
will increase, and we have seen that it may be advantageous to solve several 
optimisation problems (£01' example in the step by step clustering method). 
Two directions can (and should) be followed for this purpose . 

• The main bottleneck of the method is now on step 4 of the algorithm 2.2 
on page 59. It consists of solving a smooth quadratic problem: the 
minimal distance between the origin and a polyhedron. This task is 
carried out by applying Wolfe's method. While this method is (Iuite 
efficient, it does not use the previous knowledge about the polyhedron 
which is available in the algorithm. A new method using this knowledge 
would probably improve the efficiency of the overall method . 

• The other improvement can be carried out on the line search (step 
5). While this step is not itself very time consuming, the quality of 
its results is directly related to the number of iterations, that is the 
number of times the discrete gradients are computed and the Wolfe 
algorithm applied. Improving the line search could lead to a substantial 
improvement. 
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The discrete gradient method based on quasidifferentials has not been 
applied throughout this thesis. Using the quasidifferentials has advantages, 
inasmuch as it provides a more accurate approximation to the function than 
the subdifferential. However there is no formal proof of termination for this 
algorithm. Applying the simplified scheme to this version of the discrete gra­
dient method may nevertheless prove worthwhile, since it may require fewer 
iterations, and therefore less computationally expensive than the subdifi'er­
ential version. 

From the point of view of data analysis the algorithms presented in this 
thesis all gave promising results on test datasets. The supervised learning 
method based on piecewise linear separation provides a theoretical security: 
if the number of hyperplanes is large enough, then the separating functions 
should separate the classes correctly. Moreover any separating surface can be 
approximated by a piecewise linear function. Following the results presented 
in this thesis, a method should be devised to find the number of hyperplanes 
necessary. Moreover, a good initial point should be provided to the local 
minimisation algorithm. 

An idea which may lead to a solution to this problem is by constructing 
the separating function step by step, adding hyperplanes one by one, possibly 
using the classification through clustering in conjunction with the step by 
step clustering. 

The clustering methods should be further tested, using other dissimilarity 
functions. In particular, it may be interesting to modify the problem in 
order to take into account the dissimilarity between clusters. (That is take 
a combination of two criteria: the average similarity with the cluster centre, 
and the average dissimilarity from the other cluster centres). 

Finally, the shapes of clusters open the door to a new research direc­
tion, which should be studied. Many improvements can be studied for this 
research: 

• Studying the shapes as ellipsoids may be too restrictive, and other types 
of shapes should be studied. In particular, the intersections between 
various shapes should give more accurate approximation of the envelope 
of the sets. 

• The point elimination procedure should be further studied. In par­
ticular, experiments should be carried out to see how this elimination 
influences the results of clustering and classification methods 

• One interesting application of the ellipsoidal shapes is to the recom­
bination of features: using the ellipsoid, it is possible to see how the 
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featurei:i iuteract with each other, and to process the dataset by mul­
tiplying each observation by the resulting matrix. Experiments should 
be made to see whether this improves the results of classification and 
clustering algorithms. 
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B 
bundle methods, 55 

C 
characteristic, 5 
Clarke generalised gradient, 52 
Clarke regular, 51 
Clarke subdiffel'ential, 51, 51-52 
class, 7, 21 
classification, 7, 21-35 
clustering, 7-8, 9-19 

Mathematical formulation, 10-14 
constraints, 45 
convex function, 46 
convex set, 46 
core function, 82 
cost function, 44 
cutting planes, 54-55 

D 
data preprocessing, 8-9, 35-43 
database, 5 
dataset, 5 
DC, 53 
Demyanov-Ru binov quasidifferential, 

52-53 
descent methods, 53 
difference of convex, 53 
directional derivative 

generalised, 51 
discrete gradient method, 55-59 

E 
epsilon cleaning, 39-40 
error function, 23 

F 
feasible solution, 44 
feature, 5, 6 
feature selection, 9, 38- 39 
finite elements, 54 
fitness function, 44 
fuzzy clustering, 10 

G 
generalised cluster function, 40 
global minimiser, 47 
global minimum, 47 

H 
hard clustering, 10 

I 
inf-stationary point, 52 

K 
k-means, 15-18 
k-methods, 15-18 
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Karush-Kuhn-Tucker, 46 

L 
lagrangian, 46 
learning 

supervised, see classification 
unsupervised, see clustering 
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optimisation methods, 44-67 
optimisation problem, 45 
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piecewise linear separability, 31 
piecewise linear separability, 32 
piecewise partially separable function, 

70 
positively homogeneous function, 49 
preprocessing, see data preprocessing 

Q 
quasidifferentiable, 52 
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R 
record, 5, 6 
regular 

Clarke, 51 

S 
scaling, 9, 36--:38 

Index 

semislllooth, 50 
shape, 165 
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subclifferential, 49, 50 
subgraclient, 50 
suitable shape, 165 
superclifferential, 49 
supervised learning, see classification 
support vector machine, 25 
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U 
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