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Abstract 
Swim turns are a component of competitive swimming where considerable 

advantage can be gained or lost. This thesis investigates underwater dolphin and flutter 

kicking techniques and their application to exits following the turn in freestyle 

swimming. Five separate investigations were conducted to examine the kinetics and 

kinematics of each underwater kicking technique and are presented in expanded journal 

manuscript form. Studies one, two and three involved the comparison of freestyle turns 

when using flutter and dolphin kicking wall exit techniques. The results obtained 

indicated that freestyle turns using flutter kicking were faster than dolphin kicking in 

age-group swimmers. For this group, significant and equal improvements were made to 

flutter and dolphin kick turn performances following six weeks of dolphin kick and 

dolphin kick turn training. However, no difference in turn times were observed between 

kicking conditions by older and more highly skilled swimmers. Study four involved a 

kinematical comparison of maximal underwater free-swimming dolphin and flutter 

kicking. Results showed dolphin kick to be a superior underwater free-swimming 

technique. Greater foot width, increased ankle range of movement and greater vertical 

displacement of the ankle and foot during kicking were shown to be highly predictive of 

faster underwater dolphin kicking. Investigation five compared the drag forces and 

kinematics between the dolphin and flutter kicking techniques while subjects were 

towed at velocities representing those experienced following wall turn push-off. Results 

favour the dolphin kick as a superior underwater technique at these higher velocities. 

Increased underwater dolphin kicking efficiency, as measured by decreased net towing 

force, was found to be associated with larger kick amplitude – rate ratios, and higher 

kick amplitude – streamline length ratios.  
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Chapter 1   
Introduction 

Background 

The modern era of swimming demonstrates such evenness in performance that 

many of the swimmers competing in a final have a realistic chance of winning. 

Consequently, coaches and their swimmers spend hours training and exploring 

techniques to swim faster. Until recently, the pursuit of swimming excellence has placed 

greater emphasis on improving stroke mechanics and physiological development with 

relatively little importance placed on turns and turning technique.  

The time it takes to complete an event is the ultimate measure of a swimmer’s 

performance (Hay, 1987). Total swim time can be considered the sum of the times taken 

starting, stroking and turning and determines whether a swimmer will win or lose a race 

(Hay, Guimaraes & Grimston, 1983). Gains or losses in either of these three race 

components can therefore significantly affect a swimmer’s performance. Turning has 

been shown to comprise approximately 20 %, and up to 36 %, of total race time, 

depending on race length, during freestyle events in short course pools (Thayer & Hay, 

1984). Moreover, turning time has been shown to correlate positively with final event 

time (Chow, Hay, Wilson & Imel, 1984). Maglischo (1993) stated that improved turns 

could decrease sprint race times by at least 0.2 s per length with the possibility of even 

greater decreases in swim times in longer races due to the greater number of turns 
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involved. A long-course 1500 m freestyle race consists of one start and 29 turns. Time 

gains of 0.2 s per turn could therefore equate to a significant reduction of 5.8 s in total 

race time for this event.  

Despite the relative importance of turns in the overall performance for 

competitive swimming, relatively few studies have addressed the techniques used in 

turning. Hay (1988) cited the absence of simple, convenient and versatile methods for 

studying turning techniques as the cause for the limited number of such studies. Of the 

152 papers published in the proceedings of the first four International Symposia on the 

Biomechanics of Swimming, only two were devoted to the topic of turns (Hay, 1988). 

Until recently, the paucity of turn research has led to swimming turns being developed 

predominantly through intuition, experience, and trial and error adjustments to existing 

techniques. This can be evidenced by the volume of varying instructional literature on 

swimming turns that has been published by coaches over the years (Cox, 1981; Edson, 

1988; Eggert, 1992; Freeney, 1993; Furniss, 1984; Hamlin, 1984; Hines, 1993; 

Rutemiller, 1995; Rutemiller & Whitten, 1996; Snowberger, 1988; Todd, 1988; 

Trembly, 1982; Trembly, 1983; Weber, 1976). Consequently, knowledge of the best 

method and the mechanics of performing the freestyle turn have evolved sporadically 

through time. However, technological advancements and new theoretical knowledge has 

impacted on the development of new techniques and allowed accurate scientific 

investigation of these technique innovations. These advancements, in combination with 

the necessity for swimmers to continually improve, suggest that ideal swim techniques 

are yet to be discovered and developed.  
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Early research on the performance of swimming turns typically focussed on 

comparison of the time taken to perform different turning motions (Fox, Bartels & 

Bowers, 1963; King & Irwin, 1957; Scharf & King, 1964). More recent investigations of 

swimming turns have incorporated wall kinetics by using force platforms as well as a 

greater variety of kinematic measures to examine turn performance (Blanksby, 

Gathercole & Marshall, 1996; Blanksby, Hodgkinson & Marshall, 1996; Blanksby, 

Simpson, Elliott & McElroy, 1998; Blanksby, Skender, Elliott, McElroy & Landers, 

2004; Daniel, Klauck & Bieder, 2002; Gathercole, 1994; Hodgkinson, 1994; 

Hodgkinson & Blanksby, 1995; Lyttle, Blanksby, Elliott & Lloyd, 1999; Lyttle & 

Mason, 1997; Nicol & Kruger, 1979; Takahashi, Yoshida, Tsubakimoto & Miyashita, 

1983). It is becoming clear from these investigations that several kinetic and kinematic 

parameters play critical roles in turn performance. Optimising the force applied to the 

wall, reducing drag during the streamlined glide and the utilisation of an effective 

underwater kick style and technique will lead to turn times being reduced. However, 

further turn kinetic and kinematic investigations are required to conclusively identify 

critical elements of freestyle turn performance.  

Akin to technique improvements achieved in other sports, coach intuition and 

trial and error have been the main means used to derive many of the techniques currently 

used by competitive swimmers. This is further evidenced by the variation in turning 

techniques demonstrated by today’s swimmers. One such variation is the use of an 

undulatory double-leg kicking action before the commencement of stroking, following 

the freestyle tumble turn. An increasingly common label used to describe this technique 

is ‘dolphin kicking’. However, dolphin kicking has traditionally referred to the kick 

performed during butterfly swimming and is kinematically and kinetically very different 
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to that used in freestyle and other stroke turns where the arms are not used. Although 

this naming duplication may bring about confusion among swimming circles, the term 

dolphin kicking is used throughout this thesis to refer to underwater undulatory double-

leg kicking, unless stated otherwise.             

Little doubt exists that for many swimmers, the underwater dolphin kick used in 

backstroke starts and turns has reduced race times. Despite the use of dolphin kicking 

following freestyle turns by some swimmers, debate exists regarding the effectiveness of 

this technique. Moreover, a modest amount of scientific research has been conducted to 

confirm whether this wall exit strategy is superior to the more traditional flutter kick.  

Lyttle, Blanksby, Elliott and Lloyd (2000) investigated the merits of different 

underwater gliding and kicking techniques during tethered towing of 16 experienced 

adult male swimmers. No significant difference in net drag force between three 

underwater kicking techniques (prone freestyle, prone dolphin and lateral dolphin) was 

observed when towed at velocities between 1.6 and 3.1 m.s-1. Despite a trend by many 

swimmers favouring the adoption of prone underwater dolphin kicking, the authors were 

forced to conclude that swimmers should adopt the technique at which they are most 

proficient when exiting the wall following a turn (Lyttle et al., 2000).  

The only study conducted into free-swimming kicking to have previously 

compared flutter and dolphin kicking techniques was conducted by Sheeran (1980). This 

investigation used waterproofed electrogoniometers to examine the range of motion in 

the knee and ankle articulations of 14 male university level swimmers during 

performance of the front flutter, back flutter and dolphin kicking techniques. Results 

indicated dolphin kicking produced significantly (p<0.05) larger range and degree of 
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maximum flexion of the knee than during flutter kicking. No significant differences 

were observed in the range of movement of the ankle despite the dolphin kicking trials 

producing a considerably larger range (13 %), and greater flexion and extension 

maximums (Sheeran, 1980). However, application of these findings to support the 

adoption of dolphin kicking turn exits is limited due to insufficient detail regarding the 

kicking velocity and kick position relative to the water surface (on or under).  

In the pursuit of improved swimming performance, hydrodynamic theory and the 

results of aquatic animal research have been increasingly applied by sport biomechanists 

to human swimming. Pelagic fish research indicates that almost entirely regardless of 

shape and size, creation of an undulatory transverse wave that progresses along the body 

to the tail is the most effective swimming movement (Wu, 1971). The heaving and 

pitching of the body and caudal fin (tail fin) cause masses of water to be set into rotation 

such that specific wakes known as vortices are generated. The result from these 

movements and creation of vortices is a thrust that propels the animal forward 

horizontally (Triantafyllou & Triantafyllou, 1995; Ungerechts, Persyn & Colman, 1999; 

Videler, 1993). Research has shown that pelagic fish and dolphin swimming velocity 

increases with increased tail beat frequency (Jayne & Lauder, 1995; Ungerechts, Daly & 

Zhu, 1998). Furthermore, studies have shown that tail beat amplitudes do not exceed 

greater than 25 % of body length for dolphins (Ungerechts et al., 1998) and values 

approximating 20 % in other fish species (Hertel, 1966). These findings suggest optimal 

undulatory kick amplitudes and frequencies may exist for the production of maximal 

undulatory swimming velocity. Many aquatic animals are optimally designed for 

movement through water. Hence, more efficient human swimming techniques may be 

developed through the application of knowledge obtained from investigating their 
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movements (Lyttle, 1999; Ungerechts et al., 1998). If humans are to adopt an undulatory 

swimming technique for part of an event then it is possible that optimal kicking 

amplitudes and frequencies may also exist.  

It is noted that reference to and comparison between humans and certain aquatic 

species in this thesis are not intended to infer similar or identical aquatic movement 

relationships. Rather, it is proposed that comparison may identify possible mechanisms 

that may lead to improved human swimming techniques. Therefore, this thesis does not 

implicitly advocate humans adopt various aquatic specie movement patterns and that 

careful evaluation of this analogy should be exercised by the reader and swimming 

science in general.  

The majority of previous undulatory kicking studies in humans have been 

conducted at the water surface or within butterfly swimming. Consequently, this limits 

the application of findings to underwater undulatory swimming (UUS). Also, there are 

relatively few investigations examining UUS kinematics in humans other than during 

fin-swimming. Arellano, Pardillo and Gavilan (2000) used a comparative approach to 

determine critical kinematic elements of UUS by examining the performance differences 

between international and national standard swimmers. Comparative analysis between 

the groups indicated that the international standard group performed UUS with 

significantly higher mean horizontal velocity, kick frequency, maximal knee flexion, 

and kick amplitude per horizontal distance (amplitude/horizontal displacement of the 

kick). Further, Arellano et al. (2000) found the percentage of kick amplitude relative to 

body height was 34.31 % and 36.58 % for the international and national groups, 

respectively. This indicates that the national standard group kicked with larger 
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amplitude while swimming significantly slower. Correlation analysis within the 

international standard group revealed numerous significant relationships between the 

mean velocity of the centre of mass (CM) and several kinematic measures. In contrast, 

no relationship was found between the mean velocity of the CM and kick amplitude. 

This finding indicates that kick amplitude is unrelated to UUS velocity and contrasts 

with the findings from previous surface dolphin (Barthels & Adrian, 1971) and flutter 

kicking studies (Alley, 1952; Thrall, 1960).  

Despite Arellano and co-workers (2000) identifying differences between groups 

of varied swimming ability and demonstrating significant relationships between the 

mean velocity of the CM and several kicking kinematic measures, the relative 

importance of individual kicking kinematic measures to kick velocity were not 

determined. Hence, further investigations incorporating regression analysis is required 

to determine the relative importance of various kinematic parameters to kicking velocity 

and thus, enable UUS techniques to be optimised.  

In summary, the relative paucity of literature examining freestyle turns and 

underwater kicking presents both contrasting and inconclusive findings. Despite recent 

efforts by a small number of researchers, optimal underwater kicking style and 

technique when exiting the wall following turns in freestyle swimming has not been 

scientifically verified. In addition, no studies have attempted to examine and determine 

optimal underwater kicking kinematics in relation to wall exit following the turn. 

Investigations focussing on the kinetic and kinematic comparison of wall exit 

techniques will clarify the current confusion associated with varying freestyle turning 

techniques and assist coaches and swimmers pursue new levels in performance. 
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Statement of the problem 

The purpose of the present work was to generate knowledge of underwater 

dolphin and flutter kicking techniques and their use during wall exit following the turn 

in freestyle swimming. This was undertaken by an applied, evolutionary approach that 

sought practical outcomes for application in coaching to improve swimming 

performance. More specifically, this series of studies sought to investigate and quantify 

the following sub-problems.   

Study 1:  

This study sought to compare the biomechanical and performance characteristics 

of a modified freestyle tumble turn which used a dolphin kick off the wall with the 

traditional freestyle turn that incorporates a flutter kick off the wall, in age-group 

swimmers. This population was chosen to provide a wider variety of performance scores 

in the hope that this would enable clearer identification of the areas contributing to good 

performance. The following sub-problems were examined in this investigation: 

• Are levels of performance similar between a modified freestyle tumble turn which 

used a dolphin kick off the wall with the traditional freestyle turn that incorporates 

a flutter kick off the wall? 

• Do turn measures preceding the kicking phase vary between dolphin and flutter 

kicking wall exit techniques? 

• What are the performance measures that contribute to faster dolphin kick turns? 
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Study2:  

The results of Study 1 revealed an unexpectedly superior flutter kicking ability 

and the inability of age-group swimmers to adapt quickly and with skill to the dolphin 

kick turn strategy. Subsequently, results showed the traditional flutter kick method of 

exiting from the freestyle turn to be significantly faster than turns with a dolphin kick 

exit. The observed difference in turn performances was considered most likely due to 

the swimmers possessing more mature flutter kicking movement patterns, rather than 

the effectiveness of each kicking strategy. For that reason, the following sub-problems 

were examined using age-group swimmers in this investigation: 

• Does dolphin kicking and dolphin kicking turn practice improve dolphin kicking 

turn performance? 

• Are levels of performance similar between dolphin kick and flutter kick turns 

following dolphin kicking and dolphin kicking turn practice? 

Study3:  

Studies 1 and 2 demonstrated that flutter kick exits from the wall contribute to 

significantly lower 5 m freestyle turn RTTs in age-group swimmers. This was evidenced 

both before and after specific dolphin kick training. However, large performance 

variation exhibited during these investigation limited accurate comparison of the two 

wall exit techniques. Hence, a replication of Study 1 using higher calibre swimmers was 

deemed necessary. The following sub-problems were therefore examined in this 

investigation: 
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• Are levels of performance similar between dolphin kick and flutter kick turns by 

high calibre swimmers? 

• Do turn measures preceding the kicking phase vary between dolphin and flutter 

kicking wall exit techniques performed by high calibre swimmers? 

Study4:  

Study 3 demonstrated no difference in turn 5 m out-times between the dolphin 

and flutter kicking turn technique styles for high calibre swimmers. However, 

considerable advantages were observed for individual swimmers in relation to each turn 

technique style. With this observation, the aim of this investigation was to examine 

maximal free-swimming underwater kicking styles and to identify technique and 

anthropometric characteristics that are predictive of fast underwater kicking. Hence, the 

following sub-problems were examined using high calibre swimmers: 

• Are levels of performance similar between maximal free-swimming underwater 

dolphin and flutter kicking? 

• What performance measures are associated with fast underwater dolphin and 

flutter kicking? 

• What anthropometric characteristics are associated with fast underwater dolphin 

and flutter kicking? 

• What affect does modifying kick frequency and amplitude have on underwater 

dolphin kicking proficiency? 
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Study5:  

Study 4 showed free-swimming underwater dolphin kick to be superior to that of 

flutter and two, unpractised modified dolphin-kicking techniques. However, maximal 

underwater free-swimming kicking velocity is lower than the velocities associated with 

wall push-off following the turn. Identification of key elements of efficient underwater 

kicking at those velocities experienced following the turn may serve to improve overall 

turn performance through appropriate underwater kick technique selection and / or 

improvement. Therefore, this investigation aimed to quantify differences in underwater 

kick styles and to identify technique and anthropometric characteristics that are 

predictive of efficient underwater kicking while towed at velocities representing those 

experienced during freestyle turn wall exits. Hence, this study examined the following 

sub-problems using high calibre swimmers: 

• Are levels of performance similar between underwater dolphin and flutter kicking 

during towing at velocities representing those experienced during freestyle turn 

wall exits? 

• What performance measures are associated with proficient underwater dolphin 

and flutter kicking at those velocities experienced during freestyle turn wall exits? 

• Are anthropometric characteristics are associated with proficient underwater 

dolphin and flutter kicking at those velocities experienced during freestyle turn 

wall exits? 
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Delimitations 

This thesis was delimited to the application of dolphin and flutter-kicking wall 

exits following freestyle tumble turns. The specific investigations into underwater 

dolphin and flutter kicking kinetics and kinematics were delimited to the lower 

extremity of the body. This project was also constrained to a biomechanical analysis 

without consideration of the physiology associated with the turns and underwater 

kicking techniques. 

Limitations 

The ability to generalise the findings of this work to the broader swimming 

community is limited to the subject populations analysed in each study. Similarly, the 

modest subject numbers in some studies limits interpretation of the statistical analyses 

with respect to statistical power. 
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Chapter 2   
Literature Review 

 

The focus of the thesis was to examine underwater kicking techniques and their 

application to exits following the freestyle turn, with the overall aim to improve 

freestyle turn performance. To achieve this, a review of relevant literature was 

conducted to explore the known factors that are likely to contribute to turn performance. 

Therefore, this literature review represents an overview of information relevant to the 

topic of consideration. In particular, this review focuses on previous freestyle turn 

research and appropriate aspects of swimming hydrodynamics. A secondary purpose of 

this review was to assist the development of procedures for the measurement of selected 

factors that may contribute to improved wall exit following the turn.  

Freestyle turn definition 

Any swimming race requiring the competitor to swim further than the pool 

length necessitates a change of direction. This act of changing direction in the water is 

known as a turn. Specific turn techniques exist for all the competitive strokes and 

medley stroke changes. The turn techniques currently used are not only considered 

generally the most efficient, but must comply with the rules of the stroke as set by FINA 

(The Federation Internationale de Natation Amateur), the international governing body 

of swimming. Freestyle swimming is simply that; free style. According to FINA, 
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“Freestyle means that in a event so designated the swimmer may swim any style, except 

that in individual medley or medley relay events, freestyle means any style other than 

backstroke, breaststroke or butterfly” (FINA, 2002-2005, pp.118). 

The variations seen between stroke definitions and rules are also seen in the 

rules governing the turns for each stroke. Generally, the nature of the stroke is 

incorporated into the turn. For example, breaststroke requires the hands to mirror each 

other while swimming. Not surprisingly, the breaststroke turn and finish require both 

hands to touch the wall simultaneously and symmetrically. Freestyle has no specific 

stroke rules; hence the action of turning during freestyle simply requires some part of 

the swimmer touching the wall upon completion of each length and at the finish (FINA, 

2002-2005, pp.118).  The FINA rules for freestyle swimming also state: 

Some part of the swimmer must break the surface of the water throughout the 

race, except it shall be permissible for the swimmer to be completely submerged during 

the turn and for a distance of not more than 15 metres after the start and each turn. By 

that point, the head must have broken the surface (FINA, 2002-2005, pp.118). 

Therefore, the unrestricted nature of freestyle swimming allows for variation in turn 

techniques to exist and be developed.   

Freestyle turn technique 

While the most common freestyle turn technique used today is the tumble turn, 

this was not always the case. The rules of freestyle swimming once required all 

competitors to touch the wall using their hand prior to turning. This turn technique, 

known as the ‘open turn’, started with a rotation around the longitudinal axis of the body 
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during the touch, followed by rotations around the transverse and frontal axes until a 

lateral body position for push off is achieved (Nicol & Kruger, 1979). Alteration to the 

freestyle turn rule saw the development and experimentation with the flip or tumble 

turn. According to Ward (1976), the flip/tumble turn for freestyle was first used in 

competition during 1936 due to a change in the rules of swimming. Nicol and Kruger 

(1979) describe this tumbling action as movement around of the body around a nearly 

horizontal transverse axis, followed by a twisting rotation around the longitudinal axis 

of the body after the push off.  

Execution of a tumble turn requires a swimmer complete a series of complex 

movements to allow them to change direction. Descriptions of tumble turn technique 

and performance are found to vary slightly within the literature. Costill, Maglischo and 

Richardson (1992) describe the process of performing a flip/tumble turn using five 

separate movement phases. These phases will be used for the purpose of explanation 

within this review. Note also, that the following explanation is a description only with 

no attempt made to illustrate optimal turn performance at this time. The five turn phases 

are the approach; the turn; the push-off; the glide; and the pull-out. The approach to the 

turn refers the final stroke/s and the preparing of body position for the turn. Maintaining 

swim velocity is considered an important component of the approach to the turn.   

According to Costill et al. (1992), the turn phase incorporates the somersault 

change of direction movement. To achieve this, the swimmer keeps the opposite arm in 

the water at the hip when beginning the final arm stroke. Forward rotation of the body is 

initiated by flexion of the head and a simultaneous small dolphin kick, during the final 

arm stroke. The legs are drawn to the chest by flexing the hips and knees. This 
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movement causes a decrease in the moment of inertia around the axis of rotation, 

allowing the swimmer to somersault more easily. It is desirable for the arms to be in an 

extended position at the completion of the flip in preparation for good streamlining 

during the push-off. The swimmer should also execute a slight twist by turning the head 

to the side during the second half of the somersault. This allows the feet to be planted on 

the wall with the toes facing out and up in the same direction as the swimmers’ body.  

The push-off phase involves foot contact with the wall, leg extension and the 

exit from the wall. Costill et al. (1992) suggest the swimmer rotate towards a prone 

position while extending the legs powerfully. The push-off should be made horizontally 

and is completed by using the legs to rotate the body into a prone position after wall 

contact is lost. The glide phase involves the swimmer maintaining a streamlined 

position until race-swimming velocity is approached. Several kicks may be employed at 

this time after which the swimmer is ready to pull the head up through the surface using 

the first arm stroke. The first arm stroke designates the beginning of the final turn phase, 

the pull-out. This arm stroke should be half completed when the head breaks through the 

water surface, after which normal swimming can be resumed. The freestyle turn 

description above is derived from one of many that can be obtained from the literature 

or coaching manuals. Similarly, freestyle turns can be described and explained from a 

mechanical perspective. Figure 2.1 represents a theoretical model of the mechanical 

factors considered to contribute to freestyle turn performance (Lyttle, 1999). From this 

model it can be seen that average velocity out from the wall can play an important role 

in overall turn performance. The free nature of freestyle swimming permits the adoption 

of any swim style or modification. Therefore, the wall exit phase represents one area of 

turn performance where improvements could be made.  



 

Figure 2.1. Contributing factors in a tumble turn. 

Note 1. Ht = Height; XSA = Cross-sectional area; SA = Surface area 

Note 2. Reprinted with permission from Lyttle (1999); originally adapted from Hay’s (1992) model of turning and modified from Gathercole (1995). 
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Measurement of turn performance 

Appropriate definition and measurement is necessary to accurately quantify 

swim turn performance. Methods of defining, and subsequently quantifying, turn 

performance vary within the literature. Interpretation differences in the commencement 

and completion of the turn bring about this variation. The timing of the arm stroke has 

been used to represent the turn in some studies (Chow et al., 1984; Hay et al., 1983). 

Using this method, Chow et al. (1984) defined commencement of the turn as the 

horizontal distance between the vertex of the head of the swimmer and the wall at the 

instant of last hand entry before initiating the turn. Similarly, turn completion was 

defined as the horizontal distance between the vertex of the head of the swimmer and 

the wall, at the instant of first hand entry during the first stroke after turning. This 

approach was believed to have a greater practical relevance as performances could be 

recorded from an above water position as viewed by spectators (Chow et al., 1984).  

Arbitrary distances have also been used to define turn commencement and 

completion (Blanksby et al., 1998; Blanksby, Gathercole et al., 1996; Blanksby, 

Hodgkinson et al., 1996; Fox et al., 1963; King & Irwin, 1957; Lyttle et al., 1999; Lyttle 

& Mason, 1997; Newble, 1982; Scharf & King, 1964; Takahashi, Sakata, Tsubakimoto 

& Ae, 1983; Thayer & Hay, 1984). Early studies (King & Irwin, 1957; Scharf & King, 

1964) defined turn commencement as the moment the swimmer’s hand touched the wall 

(once a rule requirement) and turn completion as the instant the swimmer’s hand 

reached a mark located 5 yd (4.57 m) from the wall. Fox et al. (1963) however, 

considered a freestyle turn to commence 3 ft 10 in (1.17 m) from the wall and end as the 

feet left the wall. More recently, turns have been defined as pre-determined distances in 
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and out from the wall. Several fixed distances ranging from 3 m in to 6.5 m (Thayer & 

Hay, 1984) to 7.5 m in until 7.5 m out (Lyttle & Mason, 1997) have been employed and 

reported in relation to turn analysis. An important consideration in determining the fixed 

distances when defining the turn is whether these distances encompass all of the turn 

movement phases.   

The 7.5 m in until 7.5 m out distances adopted by Lyttle and Mason (1997) were 

employed to encompass the turn preparation, rotation, gliding and stroke preparation 

phases of the turn. However, it is likely that fixed distances that are too large may 

encompass larger amounts of stroke swimming and do not accurately reflect turning 

performance. Conversely, fixed distances that are too small may not completely 

encapsulate the results emanating from the time spent on the wall (Blanksby, Gathercole 

et al., 1996). Although 2.5 m in and 2.5 m out distances would most closely incorporate 

the turning motion, measures such as peak wall exit velocity, swim resumption distance 

and velocity could not be obtained when this distance is used. Blanksby, Gathercole et 

al. (1996) suggest 5 m in and 5 m out are convenient distances over which to study 

turns. Also, coaches can time swimmers as they pass the backstroke flags inwards and 

outwards from the wall as these are located 5 m from the wall of the pool. Turn 

technique changes could therefore be made and assessed using time comparisons for this 

5 m round trip time (RTT). Several other turn investigations have also favoured 5 m 

RTT as a criterion definition of turn performance (Blanksby, Gathercole et al., 1996; 

Blanksby et al., 1998; Blanksby et al., 2004; Lyttle et al., 1999; Newble, 1982; 

Takahashi & Sakata et al., 1983). 

Although the use of arm stroke timing to define turn performance may provide a 

specific measure of a swimmer’s individual turn, comparisons between swimmers is 
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limited due to individual variations in turning distances that result from different turn 

initiation and stroke resumption distances (Lyttle, 1999). Conversely, the use of fixed 

and rationally chosen distances to define turn performance enables direct comparison 

between swimmers to be made. Therefore, fixed distances appear to be the most 

objective measures of turn performance and well suited for use in comparing variations 

in turn techniques.  

Irrespective of the method used for objectively defining turn performance, early 

turn research relied almost exclusively on the time taken to complete whole turning 

motions as the criterion measure of performance (Fox et al., 1963; King & Irwin, 1957; 

Scharf & King, 1964). Fox et al. (1963) investigated the open and closed freestyle turn 

by comparing total turn time and the energy expenditure for each. The performances of 

six male subjects were examined to determine the relationship between both turns and to 

ascertain which was faster and more energy efficient. The closed turn was found to be 

significantly faster despite no significant difference in the energy cost between the two 

turns being observed. The crude measurement methods utilised in these early 

investigations (hand held stopwatches and tape measures) was quickly superseded with 

the introduction of cinematography and more recently, videography. The introduction of 

these forms of measurement resulted in an increase in the accuracy of turn performance 

measurement.   

Much of the early turn research was focussed on comparison of different turning 

techniques. Schiessel (1966), as cited in Ward (1976), is reported to be the first research 

investigating freestyle flip turns. Schiessel (1966) reported results that favoured the pike 

turn as a superior flip turn technique. Assessment of the validity and reliability of 

Schiessel’s work remains questionable, as the experimental design and methodology 
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employed were not published. Despite the findings of Schiessel (1966), Ward (1976) 

saw reason to further investigate the pike and tuck variations of turning.  

Ward (1976) conducted a cinematographical comparison of the pike (legs 

extended) and tucked (legs bent) freestyle turns using flip turn novices to determine 

which was the faster method. Fourteen subjects were selected and matched according to 

sex, body size, swim speed and subjective turn ability, and then divided into pike and 

tuck turn groups. Each group was instructed in each turn technique for a total of ten 

sessions each lasting 10 - 15 minutes in duration. Filming involved each pair of 

swimmers alternating the performance of their turn until ten trials each were completed. 

Time taken for the swimmer’s head to pass a vertical plane while approaching the wall 

until the feet contacted the wall (time in), and the time from initial wall contact to the 

head passing the vertical plane while exiting the turn (time out) were measured from the 

film. Total turn time was computed from the summation of time-in and time-out. 

Statistical analysis revealed that the tuck turn was significantly faster than the pike turn, 

for time-in, time-out and total turn time. The findings of Ward (1976) directly 

contrasted with the results presented by Schiessel (1966). Ward (1976) stated however, 

that highly skilled swimmers, trained in each turn, may prove contrary to his findings 

and warranted further investigation. 

The research of Adler (1979) focussed on the exit phase of the flip turn by 

comparing the one-arm pull with double arm pulls out (as in butterfly) from the turn. 

Fifty club swimmers aged 10 - 16 years were tested over 30 feet (9.14 m) using a one-

arm pull out from a push start. The distance the head surfaced from the wall and the 

time to 30 feet was recorded. Four weeks following the introduction and mandatory use 

of the double arm pull during training, identical testing procedures were repeated using 
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the double arm pull. Results showed a time gain of 0.3 s over 30 feet and an increase in 

head surface distance of 1 foot 6 inches (0.46 m). Repeating the tests identically after 

three months saw further improvement in time of 0.462 s over 30 feet and head surface 

distance of 2’ 4” (0.71 m). 

Beckett (1985) cited weaknesses in the methodology used by Adler (1979) as a 

reason for performing a similar study. To determine whether the one-arm or two-arm 

pull out was faster, Beckett (1985) examined the push-off and pull-out phases 

separately. Twenty-four male and twenty-four female subjects aged 13-18 years were 

chosen from competitive and non-competitive swimming backgrounds. The duration of 

training was four weeks and consisted of explanation, demonstration and practice 

sessions. During this period, subjects were instructed to use the two-arm method on all 

freestyle sets in training or class. The non-competitive swimmers were instructed to 

practise both the two-arm and one-arm pull out methods.      

Testing was conducted over two days. Day one involved an all out one- and two-

arm pull out from a stationary start (no push) followed by the resumption of normal 

stroking past the finish point. Day two testing timed the combined push off and pull out 

method. Three all out efforts at each trial were performed with a five-min rest between 

trials. All time measurements were taken with an Automatic Performance Analyser, 

Model 741, with an accuracy of one-thousandth of a second (Beckett, 1985). Results 

supported Adler’s (1979) claim that the two-arm pull out was superior to the one-arm 

pull out. Mean performance time was faster for subjects utilising the two-arm pull out in 

both the push and pull and the pull out only trials. Statistical significance (p<0.05) was, 

however, shown in the test examining the pull out phase only. Despite Beckett’s (1985) 

claims, the pull out only condition eliminates the influence of leg power, the glide and 
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somersault speed. Hence, it is speculative, based on this result to generalise the benefit 

of a two-arm pullout. The acceleration gained by using a two-arm pull out from a 

stationary position may not have the same advantage when the body is already travelling 

at a high velocity from the push. This may explain the non-significant result shown in 

the push off and pull trials. 

The investigations of Adler (1979) and Beckett (1985) were limited due to 

measurement and experimental design problems by today’s standards. Despite their 

findings, the double arm pull out following the turn has not been adopted as a 

conventional turn technique or further explored. The incidence of subject shoulder pain 

and soreness reported by Adler (1979) and Beckett (1985), as a result of performing the 

double arm pull, is thought to have contributed to the disregard of this technique. 

Increased activity in turn research combined with increased measurement 

accuracy has seen researchers favour the breakdown of turn time analysis into various 

movement phases (Chow et al., 1984; Takahashi and Sakata et al. 1983; Wakayoshi, 

Nomura, Takahashi, Mutoh & Miyashita, 1992).  Takahashi and Sakata et al. (1983) 

determined five, separate freestyle turn phases: turn preparation, rotation, wall contact, 

glide and stroke preparation. They then contrasted turn performances by eight trained 

and 27 untrained swimmers over a 10 m distance (5 m in to 5 m out). Comparison of 

time for each phase indicated highly significant differences in four of the five phases 

between the trained and untrained swimmers. No significant difference was observed in 

wall contact phase times and is likely to be attributed to the large variations exhibited by 

the untrained swimmers. 
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Comparison of turn times between swimmers during competitions has also been 

investigated and reported in the literature (Arellano, Brown, Cappaert, & Nelson, 1994; 

Chow et al., 1984).  Chow et al. (1984) recorded and examined the turning techniques 

employed by all finalists in 19 individual swimming events at the 1982 Brisbane 

Commonwealth Games. Turn performance was captured using two 16 mm motion-

picture cameras and analysis consisted of seven performance measures. No arbitrary 

distances were selected to define a turn for the purpose of this study. Instead, the timing 

of the arm stroke was used to signify initiation and completion of the turning motion. 

Distance-in was defined as the horizontal distance from the vertex of the head and the 

pool wall, at the instant the swimmer’s forward hand entered the water during the last 

stroke before initiating the turn. Time-in was recorded as the duration from the point of 

distance-in to first contact with the wall. Distance-out was defined as the horizontal 

distance from the vertex of the head and the pool wall, at the instant the swimmer 

completed the first stroke following the turn. Time-out was recorded as the time elapsed 

from the moment the swimmer first made contact with the wall to the point of distance-

out. Average velocity-in, velocity-out and total turn time were subsequently derived 

from these measurements.   

  Chow et al. (1984) observed significant differences between male and female 

swimmers in most of the distance and velocity measures, with males exhibiting larger 

mean values than females in all instances. The generally taller males were thought to 

have recorded larger distances-in and -out on the basis of their physical size and 

subsequent pool position in relation to turn initiation and completion. Also, it was 

postulated that if the male swimmers possessed greater strength in the lower limbs, 

greater horizontal impulse could be generated during wall push-off and result in greater 
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distance-out and velocity-out values. Therefore, known gender differences in body size 

(Mazza, Ackland, Bach, & Cosolito, 1994) and lower body power (Miyashita, 

Takahashi, Troup & Wakayoshi, 1992) between males and females appear likely to 

contribute to variation in turning performances, and warrant consideration in turning 

studies (Lyttle, 1999).  

Analysis of the freestyle events demonstrated mean values for distance-in and 

average velocity-in tended to decrease as race distance increased, for both male and 

female events. This finding was suggested to result from an increase in approach 

velocity to the turn due to increased swimming velocities in the shorter events (Chow et 

al., 1984). It was also hypothesised that swimmers in the longer events may attempt to 

conserve energy by not executing their turns with maximal effort. In contrast, Hay et al. 

(1983) concluded that the opposing influences of approach velocity and vigour of 

turning effectively offset each other and distance-in does not vary significantly with race 

distance.  

For the longer freestyle events (1500 m for males and 800 m for females), 

significant negative correlations were found to exist for average velocity-out with total 

event time and the order of finishing (Chow et al., 1984). That is, the greater the average 

velocity-out, the less the race time and the higher the placing. Not surprisingly (Thayer 

& Hay, 1984), the correlation between total turn time and event time for the men’s 

freestyle events increased with an increase in race distance (Chow et al., 1984).    

Thayer and Hay (1984) assessed the turn performances of male swimmers during 

competitions by using arbitrary distances to define turn performance. These set distances 

were based upon earlier work (Hay et al., 1983) that identified consistent turn start and 



Chapter 2: Literature Review 

 27 

completion distances, based on arm stroke timing, over all freestyle race distances. Total 

turn distance was set at 9.5 m for freestyle events and comprised distance-in and 

distance-out lengths of 3 and 6.5 m, respectively. Turn time was defined as the time 

from the swimmer’s head reaching the distance-in mark to the head reaching the 

distance out mark. Freestyle swim results showed turn times increased systematically 

with increases in race distance and the percentage of total race time spent turning ranged 

from 20.5 % for the 50 yard (45.72 m) event through to 36.5 % for the 1000 (914.4 m) 

yard event.  

Arellano et al. (1994) also demonstrated an increase in freestyle turn times with 

increased race distance, when using arbitrary distances to define turn performance. Their 

investigation examined the performances of elite male and female competitors in the 50, 

100 and 200 m freestyle events at the 1992 Barcelona Olympic Games. Total turn 

distance was set at 15 m and comprised equal distance-in and distance-out lengths of 7.5 

m. Turn time-in, time-out and total turn time increased with an increase in race distance 

from 100 to 200m, for both male and female swimmers. The percentage of total race 

time spent turning also increased from 14.42 % for males and 14.75 % for females in the 

100 m event to 21.69 % and 22.02 % in the 200 m event, respectively.  

The uses of different methods for defining turn performance (arm stroking 

versus fixed distances) and variations within these methods make comparison between 

the investigations described above somewhat difficult and inappropriate. Nonetheless, 

the findings of these investigations highlight the importance of turning and the effect 

that improved freestyle turn performance may have on total swim performance.  
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The kinetics of swim turn performance  

While early studies in turn research consisted primarily of time-based 

assessment (Beckett, 1985; Chow et al., 1984; Fox et al., 1963; King & Irwin, 1957; 

Scharf & King, 1964; Ward, 1976), more recent investigations have incorporated wall 

kinetics by using force platforms to examine turn performance (Blanksby et al., 1998; 

Blanksby et al., 2004; Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson et al., 

1996; Daniel et al., 2002; Gathercole, 1994; Hodgkinson, 1994; Hodgkinson & 

Blanksby, 1995; Lyttle et al., 1999; Lyttle & Mason, 1997; Nicol & Kruger, 1979; 

Takahashi, Yoshida et al., 1983). Measurement of wall kinetics during turning has 

enabled both comparison of turn techniques (Nicol & Kruger, 1979) and elucidation of 

critical aspects of optimal wall contact during turning (Blanksby et al., 1998; Blanksby 

et al., 2004; Blanksby, Gathercole et al., 1996; Lyttle et al., 1999). The current literature 

presents kinetic investigations into turns from all the competitive swimming strokes, 

and for different strokes, ranging from untrained to trained, age-level to elite swimmers.  

Swim turns are currently categorised as one of two types. Namely, a pivot turn 

preceded by a double hand touch evidenced in breaststroke and butterfly, or a 

somersault (tumble) turn as seen in freestyle and backstroke (Lyttle, 1999). With respect 

to turn kinetics, Lyttle and Mason (1997) noted marked differences in the force profiles 

of butterfly and freestyle turns. In addition, Blanksby et al. (1998) reported mean wall 

(foot) contact time (0.39 s) during breaststroke turns to be lower than that found for 

freestyle tumble turns by age-group swimmers (0.58 s) (Gathercole, 1995). Due to the 

varied turn techniques and kinetics in breaststroke and butterfly relative to freestyle, 

kinetic studies investigating these turn types are beyond the scope of this thesis and 

therefore, will not be explored in this review.   



Chapter 2: Literature Review 

 29 

The majority of studies investigating turn kinetics have focussed on freestyle  

(Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson et al., 1996; Lyttle et al., 

1999; Lyttle & Mason, 1997; Nicol & Kruger, 1979; Takahashi & Yoshida et al., 1983), 

while only one study is known to have examined backstroke turn kinetics (Blanksby et 

al., 2004). A change to the backstroke rules by FINA resulted in the backstroke turn 

evolving to include a forward somersault from a prone position, not unlike the freestyle 

turn. In consideration of the scope of the present work, a variety of these kinetic turn 

investigations will be explored.   

Kinetics during freestyle turns 

The first study to measure wall push-off kinetics during swim turns was 

conducted by Nicol and Kruger (1979). They attempted to achieve greater accuracy 

when analysing freestyle turns by using a time measuring device and a waterproofed 

two-dimensional (2D) force platform. Five trained university level swimmers (four 

females and one male) performed three trials with each of the following techniques: 

push off with glide only; freestyle flip turn; open freestyle turn; and a flip turn with glide 

only. Mean velocity was calculated from time measurements between the 6 m and 3 m 

mark before reaching the wall. In and out times of the swimmer from the measured 

intervals from the wall were recorded along with the horizontal impulse during push off 

and the length of glide after push off.  

Conversion of kinetic energy from forward movement, allowing the body to 

rotate, had no effect on maintaining velocity in and out of the tumble turn (Nicol & 

Kruger, 1979). Conversely, the need for the leading arm to touch the wall prior to 

rotation and push off decreased forward swimming velocity in the open turn. As a result, 
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the time taken to perform the open turn was increased by the inability to incorporate 

little or no forward swimming velocity into the out going velocity of the turn. No 

significant differences between the impulses relative to the push off and flip turn were 

reported. Despite this, a 15% decrease in the length of glide following the flip turn was 

observed. Nicol and Kruger (1979) cited greater resistance just after push off, caused by 

incomplete body rotation after the flip turn, as the likely cause of this decreased glide 

length. Another explanation may be increased resistive hydrodynamic flow, caused by 

the swimmer’s approach, travelling in the opposite direction to the push off. The 

conclusion made by Nicol and Kruger (1979), however, was that the flip turn is an 

advantageous turn technique compared to the open turn. 

Takahashi, Yoshida et al. (1983) investigated the relationship between the force 

generated against the wall during a turning motion and the horizontal velocity of the 

swimmer after turning. Three highly trained and three recreational male swimmers of 

mean height 171.0 cm and weight 70.7 kg were asked to perform under two conditions; 

a maximal push and glide from the wall, and a flip (tumble) turn and glide from the wall 

that was preceded by a ten meter freestyle swim approach. Three trials for each 

condition were performed from which turn force on the wall, right knee joint angle and 

horizontal swim velocity (maximal push and glide trials only), were measured.  

Takahashi, Yoshida et al. (1983) reported the highly trained swimmers spent less 

time in contact with the wall and produced greater propulsive impulses and peak forces 

than the recreational swimmers, during the tumble turn. Despite substantial differences 

in these force measures between the groups, secondary analysis of the raw data by Lyttle 

(1999) determined these differences to be statistically non-significant (p>0.05). Tumble 

turn trials containing greater impulse and peak forces were accompanied with decreased 
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wall contact time (WCT) and greater maximum knee flexion. Wall exit velocity was not 

obtained from the tumble turn trials due to measurement constraints. Therefore, the 

relationships between wall contact measures and exit velocity were not determined.     

The freestyle turn force profiles reported by Takahashi, Yoshida et al. (1983) 

differ from those reported in more recent research (Blanksby, Gathercole et al., 1996; 

Lyttle & Mason, 1997).  Takahashi, Yoshida et al. (1983) showed a mean force-time 

curve representing total wall contact to comprise a large initial peak that almost 

immediately decreased to zero. This impact spike was followed by a 0.08 s period of 

zero force, which was then followed by a tri-modal pattern of peaks that approximated 

two-thirds of the initial impact peak force. Force variations in the main push-off phase 

(tri-modal; 0.3 s) were subjectively attributed to the complicated motion of the turn 

(Takahashi, Yoshida et al., 1983). Actions such as initial foot contact, sculling the 

hands, stretching the arms and rotating the trunk were postulated as contributing factors. 

The period of zero force observed by Takahashi, Yoshida et al. (1983) can only be 

attributed to a break in contact between the swimmer and the wall (force plate). The bi- 

or tri-modal force-time curves reported by Blanksby, Gathercole et al. (1996) and Lyttle 

& Mason (1997) indicate no break in wall contact. Different turning techniques 

exhibited by current swimmers are a likely explanation for the differences observed in 

force-time curves between these investigations.  

Force-time curves from the maximal push and glide trials indicated that force 

increased in two increments (bi-modal) to a mean peak of 833 N at 0.07 s before 

cessation of foot contact (Takahashi, Yoshida et al., 1983). The trained swimmers 

demonstrated higher mean impulse, greater maximal knee flexion and higher exit 

velocity values than the recreational swimmers. In addition, a significant (p<0.05) 
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positive relationship between the initial velocity of the swimmer’s waist and the impulse 

generated against the wall was shown when calculated for all swimmers (n=6). Peak 

force during push-off from the static start occurred at an included knee joint angle of 

approximately 120o (60o of knee flexion). Similar ranges of knee angle (120 – 140o) 

have been reported to correspond with peak force during vertical jumping (Ae, 1982, as 

cited in Takahashi and Yoshida et al., 1983) and a comparable range of knee extension 

(114 – 125o) found during maximal isokinetic contractions for dynamic peak torque 

(Thorstensson, Grimby & Karlsson, 1976). The knee angle corresponding with peak 

force during the tumble turn was not reported. In summary, the findings of Takahashi, 

Yoshida et al. (1983) suggest static start and tumble turn performance differences 

between trained (skilled) and untrained (less skilled) swimmers can be observed from 

wall kinetic and kinematic data.  Further, greater impulse applied to the wall during 

static starts resulted in greater wall exit velocity. This relationship was considered likely 

to apply to tumble turns also (Takahashi, Yoshida et al., 1983).    

Blanksby, Hodgkinson et al. (1996) employed the use of a 2D strain gauge force 

plate to measure the freestyle turn kinetics of 10 male and 9 female, national level 

freestyle swimmers. Data were collected during 50 m freestyle sprint performances in a 

short course pool via two underwater video cameras and wall mounted force platform. 

Each subject performed three swim trials from which peak perpendicular force, total 

impulse, wall contact time (WCT) and 50 m, 5 m and 2.5 m round trip times (RTTs) 

were recorded.  

Significant gender differences observed in 11 of the 14 variables measured 

resulted in male and female performances being considered separately. Results revealed 

significant (p<0.05) negative correlations between peak forces and both 5 m and 2.5 m 
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RTTs by the female group (r5m RTT = -0.77; r2.5m RTT = -0.84). This relationship implies 

that higher peak force applied to the wall during freestyle turns contributes to faster turn 

times. Further, WCT was positively correlated (p<0.05) to the 5 m and 2.5 m RTTs (r5m 

RTT = 0.76; r2.5m RTT = 0.81), implying increased WCT resulted in slower turn 

performance. In contrast, no such relationships were evidenced between wall kinetics 

and RTTs for the male swimmers.  

Blanksby, Hodgkinson et al. (1996) performed multiple stepwise regression 

analyses to determine the predictive capabilities of the measured variables to RTTs. 

Results showed increased peak force to be the sole variable included in the stepwise 

regression equation to predict 2.5 m RTT for females and the only kinetic variable in the 

equation to predict 5 m RTT. No kinetic variables were added to the predictability of 

either of the 50 m regression equations for the females. In contrast, impulse was the only 

kinetic variable entered in both equations that predict 50 m RTT for males, with no 

kinetic measures present in the 5 m and 2.5 m RTT prediction equations. Variations in 

turning kinetics between genders were not explained by the authors. However, Lyttle 

(1999) believes this result simply highlights the differences between elite male and 

female swimmers. Further, he added that the low subject to independent variable ratio 

present in this investigation strongly limits the application of these findings to elite 

swimmers in general. Tabachnick and Fidell (1989) recommend a minimum subject to 

independent variable ratio of 5:1 for conducting multiple regressions, with higher ratios 

needed for stepwise regression.   

Wall kinetics during freestyle turns performed by age-group swimmers have also 

been examined. Blanksby, Gathercole et al. (1996) used a 2D underwater force plate and 

two submerged video cameras to investigate numerous kinetic and kinematic features 
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from tumble turns performed by 17 male and 19 female (11 – 13 years) swimmers. Each 

subject completed 3 x 50 m maximum effort freestyle swims in a 25 m pool on a 3-min 

departure time. The wall kinetic features consisted peak perpendicular force, total 

impulse and WCT. A discriminant analysis revealed no significant differences (p<0.05) 

between the male and female performances for 5 m RTT. Hence, all subjects were 

pooled into one group with a sample size of 36. For the kinetic measures, Pearson 

product-moment correlation coefficients revealed a significant, positive relationship 

between the 5 m RTT and WCT. This finding implies that decreasing WCT results in 

decreased turn times. Furthermore, significant and negative correlations were shown for 

peak force and impulse with 5 m RTT. Therefore, increased peak force and impulse 

during wall contact resulted in decreased turn times.  

  Blanksby, Gathercole et al. (1996) conducted a stepwise multiple regression 

analysis procedure to determine the best possible predictors of the 5 m RTT. Significant 

independent variables were added to the model when a variable was deemed to add 

predictability to the regression equation at p<0.05. Results of the stepwise regression for 

5 m RTT indicated that the best predictors in order of importance were: peak force; 

swim resumption distance; turn start distance; and height. These five variables were 

found to account for 55 % of the total variance in 5 m RTT (r = 0.775). Peak force was 

the best single predictor of 5 m RTT accounting for 33 % of the variance, suggesting 

that increased peak force applied to the turning surface contributes appreciably to 

improved turn performance. A poor subject to independent variable ratio in this 

investigation once again limits the stepwise regression results to the present population 

sample. 
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Despite similarities in freestyle and backstroke turning motions, Blanksby, 

Gathercole et al. (1996) recorded substantially higher peak perpendicular force (693.4 + 

228.1 vs. 228.8 + 69.6 N) and impulse (177.2 + 50.2 vs. 55.6 + 12.4 Ns) during freestyle 

turns than those observed during backstroke turns (Blanksby et al., 2004), for age-group 

swimmers. Wall contact times, however, were shown to be similar (backstroke: 0.59 + 

0.16 s; freestyle: 0.58 + 0.20 s) between the two strokes. Age-group swimmers are 

notorious for swim turn performance variation. Hence, poor judgement during the 

backstroke turns is a likely explanation for these differences in wall kinetics. 

Prematurely rolling to the front in the backstroke turn could potentially cause a slowing 

down and subsequent loss of momentum to generate force on the wall (Lyttle, 1999). A 

dearth of research investigating backstroke turns currently prevents verification of a 

similar pattern existing between freestyle and backstroke turns in elite swimmers.  

Walker (1996) is believed to have conducted the first turn investigation using a 

3D underwater force platform. Seventy-three age-group swimmers each had two 

freestyle turn performances recorded, from short course swims at race pace, using three 

above water and two underwater video cameras. Turn kinetics were obtained via an 

unspecified, wall mounted, 3D force platform. However, the reported findings were 

descriptive only and were based on trends associated with an average swimmer’s turn. 

Nonetheless, Walker (1996) noted that faster turn performance was subjectively 

associated with increased impulse applied to the wall in the horizontal direction and 

minimising forces in the lateral and vertical directions. Greater than minimal lateral or 

vertical forces applied to the wall during push-off were hypothesised to result in a less 

than optimal direction of travel (straight line towards the other pool end) and therefore 

cause an increase in turning time (Walker, 1996). Despite the noted trends in findings, 
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the lack of methodological description and statistical inference renders these findings 

anecdotal and of minimal use.  

Lyttle and Mason (1997) examined the kinetic and kinematic parameters 

affecting freestyle turns performed by three elite male swimmers. Turn kinematics from 

the approach, push-off and glide phases were analysed using the Kinex Swimming 

Analysis System. A turning board instrumented with four Kistler tri-axial force 

transducers (3D), mounted on the pool wall, and was used to measure peak 

perpendicular force, total impulse and WCT from each performer over a minimum range 

of seven maximal swim trials. During their investigation, Lyttle and Mason (1997) 

developed a method for separating swimmer wall contact forces from a known bow 

wave force effect. Consequently, WCT was defined as the time from the beginning of an 

initial increase in vertical and horizontal forces and finished when a zero perpendicular 

force was reached.  

Due to the small subject population (n=3), Lyttle and Mason (1997) limited their 

analysis to descriptive statistics of means and standard deviations. For reasons that were 

unexplained, vertical and horizontal (lateral) forces were not separately analysed or 

reported. Profiling of the perpendicular forces recorded during freestyle turning 

indicated a bi- or tri-modal force curve resulting from foot contact (peak force: 1345.3 + 

236.5 N; impulse: 247.3 + 29.0 Ns), which lasted approximately 0.3 s. Average WCT 

during this investigation was demonstrated to be an average of 0.18 s shorter than those 

reported in pervious studies (Blanksby, Gathercole et al, 1996; Nicol and Kruger, 1979; 

Takahashi, Yoshida et al., 1983). This observed difference was mainly attributed to the 

separation of bow wave forces from swimmer contact force. From their findings, Lyttle 

and Mason (1997) hypothesised that there may be an optimal trade-off between the 
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impulse achieved during wall push-off and the time spent on the wall, in order to 

achieve a faster wall exit velocity. 

More recently, Lyttle et al. (1999) investigated selected freestyle turn kinetic, 

hydrodynamic and kinematic variables from turns performed by 30 experienced male 

swimmers. Wall kinetics consisting of peak perpendicular force, total impulse and push-

off time were recorded via a vertically mounted 2D force plate. This study varied 

uniquely from those preceding it by measuring the time-spent pushing-off (active 

portion of wall contact), in addition to total WCT. The push-off time represented the 

period from first forward displacement of the hips after wall contact until the feet left 

the wall (Lyttle et al., 1999). Each swimmer’s centre of gravity (CG) acceleration and 

wall exit velocity were calculated from underwater videography, while hydrodynamic 

peak drag force and drag impulse were calculated from the kinetic and kinematic data 

using a derivative of Newton’s second law.  

 Lyttle et al. (1999) conducted a stepwise multiple regression analysis procedure 

to determine the optimal combination of kinetic and hydrodynamic variables that best 

predicted faster push-off velocity. The CG velocity of the swimmer was used as the 

criterion variable and significant independent variables were added to the model when a 

variable was deemed to add predictability to the regression equation at p<0.05. Results 

from this procedure indicated that the best predictors in order of inclusion were: push-

off time, peak drag force; and peak propulsive force. These three variables were found 

to account for 64 % of the total variance in push-off velocity (R = 0.80). This finding 

and the relevant correlations suggest longer wall push-off time; smaller drag force and 

higher peak perpendicular force result in a higher final wall exit velocity for the 
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swimmer. However, the relationships between these variables are considered critical, 

such that, their effect should be examined in combination rather than individually.  

Beta weightings from the stepwise regression analysis revealed peak drag force 

as the most influential variable for predicting the swimmer’s final push-off velocity. 

This further highlights the importance of drag in turning technique. The application of 

higher peak force (second highest beta weighting) is therefore, only likely to contribute 

to higher push-off velocities if drag force is not appreciably increased simultaneously 

(Lyttle et al., 1999). For example, the production of higher peak push-off force and the 

corresponding instantaneous velocity would cause the resulting drag force to be 

increased exponentially. Also, Lyttle et al. (1999) noted that the proportion of total 

WCT spent pushing-off might be a crucial factor in determining final push-off velocity. 

A high WCT could negatively affect overall turn velocity if a low percentage of time on 

the wall is spent pushing. Conversely, a low WCT incorporating a rapid push-off might 

not allow sufficient time to develop optimal impulse. Thus, an optimal combination of 

low peak drag force, high peak propulsive force and a wall push-off time of sufficient 

period to develop this force are required to achieve a high push-off velocity (Lyttle et 

al., 1999). Furthermore, the authors proposed that it might be advantageous to gradually 

develop push-off force after planting the feet on the wall. This strategy is thought to 

allow peak force to be achieved closer to leaving the wall, without the prior 

development of excessive drag.  

Primarily, comparison of freestyle turn kinetics studies indicates the magnitude 

of peak propulsive force and impulse increase, and WCT decreases from age-group to 

recreational and then elite level swimmers, respectively (see Table 2.1). The 

substantially higher peak force and impulse reported by Takahashi, Yoshida et al. (1983) 
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for three highly trained swimmers are considered a likely result of the initial spike and 

tri-modal force application pattern observed in this investigation. As can be expected, 

adult swimmers (elite and recreational) demonstrate considerably larger peak force and 

impulse wall kinetics than age-group swimmers, due to increased body weight and 

greater lower body strength (Miyashita et al., 1992). In addition, the lower WCT for the 

elite swimmers indicated that these swimmers could develop high amounts of force in a 

shorter period of time. Notwithstanding the need to optimise WCT, Lyttle et al. (1999) 

suggest that higher proportions of WCT spent pushing off is also likely to result in faster 

push-off velocity and maximise the use of elastic energy and muscle pre-stretch 

mechanisms.  

The sizeable standard deviations relative to mean scores observed for the age-

group swimmers, for all kinetic measures, are indicative of larger variation in turn 

performance. This greater variation is attributed to lower skill levels, as experienced 

swimmers are more likely to have fine-tuned their turn performances. Nonetheless, large 

variation in turn performances by age-group swimmers make this population ideal for 

discriminating between and identifying critical features of good turn technique.  
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Table 2.1.  Summary of the previous freestyle kinetic turn studies (Adapted from 
Lyttle et al., 1999). 

Study Subject 
Population 

Peak Force (N) WCT (s) Impulse (Ns) 

Blanksby, 
Gathercole 
et al. (1996) 

36 competitive 
age-group 
swimmers 
(19 female, 17 
male) 
 

693.4 + 228.1 0.58 + 0.20 177.2 + 50.2 

Hodgkinson 
& Blanksby 
(1995) 
 

10 National 
level males 

1303.3 + 228.5 0.38 + 0.07 290.2 + 48.1 

Lyttle et al. 
(1999) 

30 experienced 
adult males 
 

* 1189.6 ± 246.0 0.32 ± 0.04 * 204.0 ± 54.9 

Lyttle & 
Mason 
(1997) 
 

3 International 
level males 
 

1345.3 + 236.5 
 

0.29 + 0.05 
 
 

247.3 + 29.0 
 
 

Nicol & 
Kruger 
(1979) 

5 University 
trained 
swimmers 
(4 female, 1 
male) 
 

---- 0.51 + 0.11 217.0 + 28.0 

Takahashi, 
Yoshida et 
al. (1983) 

3 highly trained 
males 
 
3 recreational 
level males 

1711.7 + 379.1 
 
 

1068.0 + 191.4 
 

0.36 + 0.06 
 
 

0.48 + 0.06 

301.8 + 41.5 
 
 

223.6 + 6.14 

Note: * Calculated only during the time of push-off. 

In summary, the findings from freestyle turn studies across several levels of 

swimming proficiency indicate the presence of trends in kinetic parameters with respect 

to turn performance. Generally, development of higher peak propulsive force and 

impulse during wall contact (Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson 
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et al., 1996; Takahashi and Yoshida et al., 1983), minimising vertical and lateral wall 

forces (Walker, 1996), in combination with lower WCT (Blanksby, Gathercole et al., 

1996; Blanksby, Hodgkinson et al., 1996; Lyttle & Mason, 1997; Takahashi and 

Yoshida et al., 1983) produces faster freestyle turn times. Furthermore, the latest 

research indicates that higher push-off velocities from freestyle turns are achievable 

when combinations of low peak drag force; high peak propulsive force and an increased 

wall push-off time are optimised (Lyttle et al., 1999). That is, when turning, gradual 

development of wall force so that peak force occurs later in the push-off  (when the 

swimmer is more streamlined) decreases the effect peak drag force has on wall exit 

velocity (Lyttle & Benjanuvatra, 2004). Finally, empirical data for 3D force profiles in 

freestyle turns, across all swimming proficiencies, are not reported. 

Wave Forces during Turns  

Kinetic analysis during turning has been made possible due to the development 

of waterproof force platforms. When mounted vertically at the end of a pool, wall 

contact forces produced by the swimmer can be profiled. However, early turn kinetic 

research (Blanksby et al., 1995; Nicol and Kruger, 1979; Takahashi, Yoshida et al., 

1983) failed to consider that such force profiles not only incorporated the forces applied 

by the swimmer, but additional forces due to waves and turbulence created by the 

approaching swimmer. Failure to separate wave and turbulence forces from the 

swimmer’s applied force would not allow measures such as the swimmer’s impulse and 

time on the wall to be precisely quantified (Lyttle, 1999). The likelihood that these wave 

and turbulent forces masked the forces applied by the swimmer is therefore considered a 

major limitation to their reported findings.  
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Lyttle and Mason (1997) recognised the presence of a bow wave effect from 

force profiles in their kinetic analysis of freestyle and butterfly turns. Consequently, they 

developed an analysis technique in an attempt to separate the bow wave from swimmer 

contact forces. A manual trigger was activated during trials that subjectively coincided 

with swimmer wall contact. This trigger was found to coincide with sharp increases in 

lateral and vertical directional forces, from which wall contact was defined. Lyttle and 

Mason (1997) reported these hypothesised wave forces contributed up to 500 N of pre-

contact force. However, the magnitude of this force is dependent on the size of the force 

plate used (Lyttle, 1999).  

Further, but unsuccessful attempts to separate wave and turbulence forces from 

swimmer contact forces have also been made. Blanksby et al. (1998) used a signal 

processing approach and reported the bow wave frequency to be similar to that of the 

force generated by the swimmer. However, they concluded total elimination of the bow 

wave effect could not be obtained without a loss of swimmer wall contact force data.  

Roesler (2002) attempted to quantify the bow wave effect using two 500 x 500 x 180 

mm underwater force platforms positioned vertically on the pool wall, as close together 

as possible. Five swimmers each performed nine turns on the lane centred force 

platform, while wall kinetics were recorded simultaneously on both platforms. Despite 

only brief methodological discussion and no statistical details described, Roesler (2002) 

reported an observed bow wave force of nearly one tenth of the maximum registered 

force occurring in all measurements. The second platform also indicated a wave force 

effect of smaller magnitude due to its position in relation to the turning swimmer.  

The most recent attempt to quantify the bow wave effect was performed by 

Blanksby et al. (2004). They explored several methods of quantifying the bow wave 
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force effect using pressure transducers attached to the force plate. Despite this approach, 

their efforts were unable to accurately measure wave force due to changes in static 

pressure caused by varying wave heights. Investigations using metal grids attached to 

the front of the force plate indicated grids with smaller holes resulted in lower wave 

force being transmitted through to the force plate. From this method it was estimated 

that the bow wave force represented approximately 10 % of the kinetic profile, although 

this is dependent on the size of the force plate used (Blanksby et al., 2004). 

Clearly, past and future investigation into the kinetics of turning is not without 

limitation due to the inability to separate bow wave and turbulence forces from 

swimmer wall contact forces. Without further technological developments or equipment 

modifications, the present options available to the researcher in relation to turn kinetic 

analysis are to either ignore the bow wave effect (Blanksby et al., 1998) or subjectively 

attempt to eliminate it (Lyttle & Mason, 1997). 

The kinematics of swim turn performance  

As for swim turn kinetics, the current literature presents investigations of 

selected turn kinematics for each of the competitive swimming strokes (Blanksby et al., 

2004; Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson et al., 1996; Huellhorst, 

Ungerechts & Willimczik, 1988; Lyttle et al., 1999; Lyttle & Mason, 1997; Takahashi, 

Yoshida et al., 1983). Due to the use of different turning strategies to that of a tumble 

turning motion, kinematic turning studies for breaststroke and butterfly have not been 

implicitly explored and are referred to only where findings are deemed applicable to 

freestyle turn performance.  



Chapter 2: Literature Review 

 44 

Kinematics during freestyle turns 

Early freestyle turn research consisted primarily of time-based measures (Adler, 

1979; Fox et al., 1963; King & Irwin, 1957; Scharf & King, 1964; Ward; 1976). More 

recent technological advancements have allowed a variety of kinematic measures to be 

examined and with greater accuracy. Therefore, this section of freestyle turn kinematics 

will focus primarily on those alternate kinematic measures, not previously discussed in 

this review. While many recent kinematic investigations incorporate turn kinetics also, 

further reference to the kinetic aspects of these investigations are not made unless 

deemed appropriate.  

In addition to the timing and distance measures employed by early turn research, 

more recent turn investigations have explored additional kinematic parameters such as:  

joint angles (Takahashi, Yoshida et al., 1983); body segment lengths (Blanksby, 

Gathercole et al., 1996; Blanksby, Hodgkinson et al., 1996); depth displacement 

information (Mason & Pilcher, 2002); and velocity characteristics of wall push-off 

(Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson et al., 1996; Huellhorst et al., 

1988). Takahashi, Yoshida et al. (1983) attached an electrogoniometer to each subject’s 

right knee to measure knee joint angle changes (angle between the shank and thigh) 

during wall push-off. During freestyle tumble turn trials, the three highly trained 

swimmers recorded mean maximal knee flexion (means ± SD) of 76.33 o ± 24.98 o 

compared with 42.33 o ± 8.33 o demonstrated by the recreational swimmers. A similar 

trend in maximal knee flexion was observed during the push-off only trials (highly 

trained: 55.66 o ± 12.86 o; recreational: 49.00 o ± 8.00 o). The higher peak forces and 

impulse recorded for the trained swimmers indicates greater wall push-off forces were 
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generated from shallower knee angles. Peak wall force was reported to occur at an 

included knee joint angle of approximately 120o (60o of knee flexion) (n = 6). 

   The superior turn performances and shallower knee flexion angles 

demonstrated by the trained swimmers indicates that wall contact with straighter legs 

may be beneficial. Blanksby, Gathercole et al. (1996) explored this theory by examining, 

among other variables, the degree of maximum tuck during wall contact from tumble 

turns performed by 17 male and 19 female age-group swimmers. The degree of 

maximum tuck was defined as the point when the hip was at its minimum distance from 

the wall during foot contact and was expressed as a percentage of the trochanteric height 

(tuck index). Results from a Pearson correlation coefficient matrix indicated significant 

(p<0.05) negative correlations between the tuck index and 50 m time, 5 m RTT and 2.5 

RTT (Blanksby, Gathercole et al., 1996). This finding indicates that that the larger the 

tuck index (straighter legs), the faster the time will be. However, Blanksby, Gathercole 

et al. (1996) noted that the association between tuck index and trip times is stronger as 

the RTT decreases due to the turning component representing a higher fraction of the 

time. The authors hypothesised that a higher tuck index results in the swimmer 

travelling less distance during each turn and therefore, covering the trip distances faster. 

Despite the significant correlations between tuck index and RTTs, tuck index did not 

feature in a multiple stepwise regression as a predictor of the 5 m RTT (Blanksby, 

Gathercole et al., 1996). It is likely an optimal tuck index exists as close to full 

extension of the legs will not provide sufficient force generation from the push-off.  

Blanksby, Hodgkinson et al. (1996) examined tuck index during their 

investigation of freestyle turns by nine elite female and ten elite male swimmers. For 

males, a higher tuck index was related to decreased 5 m RTT and significantly (p<0.05) 
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related to decreased 2.5 m RTT. Multiple stepwise regression analyses showed tuck 

index, which recorded significant relationships with greater distance in and peak force, 

to be the sole best predictor of 2.5 m RTT for men (Blanksby, Hodgkinson et al., 1996). 

Blanksby et al. (2004) also demonstrated higher tuck indexes produced greater peak 

propulsive forces during backstroke turns by age-group swimmers. Despite lacking 

significance, Blanksby, Hodgkinson et al. (1996) also reported negative relationships 

between tuck index and trip times, for the females. Therefore, it appears that an 

increased tuck index (straighter legs) can result in a swimmer covering less distance-in 

and out from the turn. Provided sufficient force can be generated with the legs in a 

straighter position, turn times can be reduced.   

Mason and Pilcher (2002) examined whether the maximum depth and the 

corresponding distance from the wall were important characteristics of start and turn 

performance at the Sydney 2000 Olympics. All freestyle event semi-finals and finals 

were analysed using two underwater video cameras. Pearson product-moment 

correlation coefficients indicated no relationships existed for maximum depth and 

distance with total turn time. Therefore, the assumption that better turn performers have 

a tendency to spend more time and greater distances underwater would also result in 

greater maximum depth was unsubstantiated by these findings.   

While it is clear that several kinematic parameters play critical roles in turn 

performance, comprehensive assessment of turn kinematics is lacking. Hence, further 

turn kinematic investigations are required to conclusively quantify critical elements of 

freestyle turn performance.  
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Reliability of turn performance and measurement 

Only one investigation has been performed to specifically explore the reliability 

of swim turn performance and kinetic measurement. Blanksby, Gathercole and Marshall 

(1995) examined the reliability of an underwater 2D strain gauge force plate via 

repeated freestyle tumble turns. One elite male swimmer performed 10 x 50 m maximal 

freestyle swims (short course) on two separate days to determine the intra-individual 

reliability of the kinetic data. The peak perpendicular force, total impulse and wall 

contact time were measured. The deviation from the mean for the 10 trials, when 

expressed as a percentage for peak force (day 1 - 24.4%; day 2 - 20.4%), WCT (day 1 - 

18.5%; day 2 - 17.6%) and impulse (day 1 - 17.6%; day 2 - 11.8%) did not show 

significant variation across the 10 trials on both occasions (Blanksby et al., 1995).  

The reliability of swim turn performance was assessed using three elite male 

swimmers who each performed the same 10 x 50 m protocol on two separate days. 

During these trials, only 50 m, 5 m and 2.5 m RTTs were recorded. A Spearman 

Browne split-halves method of analysis indicated no significant difference existed 

between the 10 trials (Blanksby et al., 1995). Also, mean 5 m RTT for swimmer 1 was 

the only measure to vary by more than 5 % across the two test days. The findings of 

Blanksby et al. (1995) support the common biomechanical practice that three trials are 

sufficient to provide realistic data, representative of normal performance. Therefore, 

reliable turn performance kinetics can be observed in elite swimmers from as few as 

three trials.  

The reliability of turn performance in age-group swimmers is not known. 

However, the usually large variability demonstrated in age-group performance indicates 

that poor reliability would be observed. Nonetheless, performance variation is often 
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desirable when attempting to discriminate between the relative importances’s of selected 

performance variables. Hence, selecting the best trial from a series of trials would also 

appear an appropriate method for turn performance analysis within this population. 

Hydrodynamics and freestyle tumble turn performance 

During turning, a swimmer aims to change direction with a minimal loss of 

speed and time. Optimising propulsion during wall approach, contact, and exit have 

been clearly demonstrated to improve turn performance. In addition to optimising 

propulsion, minimising the resistance to motion experienced by the swimmer due to 

travelling through water is highly beneficial. This resistance to motion is known as 

hydrodynamic drag. By minimising the hydrodynamic drag experienced by a swimmer, 

forward velocity from propulsive forces can be maximised.  Hay (1992) stated that drag 

is a major determinant of swim turn performance and that optimising the balance 

between propulsion and drag is necessary for improved turn performance. 

Total drag 

The total drag experienced by a swimmer results from a complex combination of 

factors. The relationship between these factors can be expressed mathematically as: 

FD = (ρv2 ACD) / 2 

Where FD is the total drag force, ρ is the density of the water, v is the velocity of 

the swimmer relative to the flow, A is the cross-sectional area of the swimmer in the 

direction of travel, and CD is the coefficient of drag, which is an empirical constant 

(Cappaert & Gordon, 1998). 
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The coefficient of drag (CD) is a function of the water flow characteristics 

determined by the object’s shape and attitude and is therefore considered an indicator of 

good or poor technique (Cappaert and Gordon, 1998). The CD depends on the shape of 

the body, the roughness of the surface and the state of the flow of the fluid (Ungerechts, 

1983b). Whether laminar or turbulent, the flow of fluid is difficult to measure and is 

therefore estimated on the basis of the Reynolds number (Re). Ungerechts (1983b) 

describes the non-dimensional Re as a mathematical representation of the ratio of 

inertial to viscous forces on rigid bodies and characterises the state of flow as laminar or 

turbulent.   

The mathematical equation for the Reynolds number is expressed as: 

Re = vl / v 

Where v = swimming velocity, l = length of the body and v = viscosity of the 

water.  

Numerous experiments with rigid bodies of different shapes over a wide range of 

Re values have shown that the CD is a function of Re (Ungerechts, 1983b). Clarys 

(1979) determined the dependence of CD from Re. Experiments with swimmers towed in 

rigid form demonstrated the flow of fluid around a rigid human body to be totally 

turbulent with total drag remaining high. 

Types of drag 

Karpovich (1933) derived three separate drag components likely to be 

experienced by swimmers from the plane and ship building literature documented by 

Froude in 1874 and Lanchester in 1908. These components were; skin friction, eddy 
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resistance and wave making resistance. These components are now commonly 

recognised as frictional, form and wave drag (Rushall, Holt, Sprigings & Cappaert, 

1994). Larsen, Yancher and Baer (1981) stated that for free surface penetrating bodies 

such as ships, wave and form drag have been estimated to comprise between 80 and 82 

% of total drag resistance. While frictional drag is estimated to represent between 18 and 

20 % of total drag resistance. It is considered that traditional fluid dynamic theory may 

not apply to human swimming given the non-streamlined nature of the human body 

(Clarys, 1979; Gadd, 1963). Furthermore, Clarys (1979) reported significantly higher 

drag values for self-propelling bodies than for those recorded when passively towed. As 

a consequence, the relative contributions of the frictional, form and wave drag 

components to total drag force for humans are rather complex and have not been 

demonstrated (Lyttle, 1999).  

If freestyle turns are to be explored with the aim of enhancing performance, a 

thorough understanding of the frictional, form and wave drag components acting on a 

swimmer is required. These components will now be explored, firstly in general fluid 

dynamic terms, then in further detail with relation to both active and passive human 

swimming.  

Frictional drag 

When two surfaces slide, or attempt to slide over one another, the force limiting 

their motion is known as friction (Hay, 1992). In swimming, the component of friction 

recorded when water passes over the surface of the body and limits their motion relative 

to each other is known as frictional drag. The mechanism behind this phenomenon 

relates to the viscosity characteristics and the flow of the fluid (Clarys, 1979), and the 
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nature of the skin surface (Rushall et al., 1994). That is, frictional drag occurs and 

retards a swimmer’s motion as a result of turbulent flow caused by the contact of the 

fluid with the skin. The water particles in direct contact with the skin (boundary layer) 

swirl violently in a tangle of microscopic eddy’s (Rushall et al., 1994) and are reduced 

to a relative velocity of zero (Clarys, 1979). This velocity gradation between the 

boundary layer and the still water exerts a tangential shearing pressure on each surface 

of the swimmers body and gives rise to the frictional drag resistance (Clarys, 1979). 

Rushall et al. (1994) claim the secret to minimising frictional drag is to maintain laminar 

flow, a condition where the fluid passes smoothly over the skin surface allowing the 

body to slide through the water.  

A major factor affecting the magnitude of frictional resistance is surface 

smoothness. Surface irregularities and natural roughness are enough to spoil laminar 

flow and cause turbulent flow. Improved knowledge and increased emphasis placed on 

reducing frictional drag by scientists, coaches and swimmers have spawned several 

innovations in swimming performance. The wearing of latex caps provide a smoother 

surface than a head of hair, as do tighter swim suits made of sheer fabric with minimal 

seams and edges. Rushall et al. (1994) indicate these adaptations are recognised ways 

that reductions in frictional drag can be achieved. van Manen and Rijken (1975) 

demonstrated that a typical female swimming suit worn in the 1970’s added 

approximately 9 % to the total body drag estimated from towing trials with and without 

the suit worn. The removal of body hair has been shown to decrease the physiological 

cost of swimming at maximal velocity compared to an unshaven condition (Sharp & 

Costill, 1990; Sharp, Hackney, Cain & Ness, 1988) and significantly reduce the rate of 
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velocity decay during a prone glide following a maximal underwater push-off (Sharp & 

Costill, 1989).  

While minimising the production of turbulent boundary layer flow against the 

skin is ideal for reducing frictional drag, a perfectly smooth surface is not considered 

optimal. According to Rushall et al. (1994), a surface with a fine texture is able to hold a 

thin film of water that is then carried along as part of the swimmer. This results in a less 

turbulent boundary layer as friction between layers of water on water is considerably 

less than very smooth skin and water (Imhoff & Pranger, 1975; as cited in Rushall et al., 

1994). Recent advancements in technology have enabled swimming suit design to 

exploit this phenomenon. Benjanuvatra, Dawson, Blanksby and Elliott (2002) found 

swimmers wearing full-length Fastskin™ swimsuits produced passive drag values that 

were significantly less than normal swimsuits, during towing at velocities between 1.6 

and 2.8 m.s-1.  

The magnitude of the frictional drag that a given body experiences is reported to 

be dependent on the velocity of the flow relative to that of the body, and the total body 

surface area (Hay, 1992). The relationship between a swimmer’s velocity and the 

frictional drag incurred is reported to vary from linear (Sheehan & Laughrin, 1992; 

Rushall et al., 1994) to a power of 1.7 – 1.92 (Karpovich, 1933). A linear relationship 

implies a relatively minor effect on performance as velocity increases. However, 

frictional (surface) drag is only active when the surface causes turbulent flow as the 

fluid follows the object form. Once the flow of fluid separates from the body, surface 

drag is minimised. Poor hydrodynamic shape due to numerous asperities and angular 

changes on the human surface cause many pockets of fluid separation to occur. This 

abundance of turbulent pockets covering a swimmer’s surface therefore negates the 
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formation of frictional drag. Thus, only those portions of the body surface that entertain 

frictional flow are responsible for frictional surface drag and not the total body surface 

area. Therefore, if a swimmer's total surface area were included in calculations of 

resistance, inferential errors would result. Despite the low contribution of frictional 

resistance to total drag resistance, consideration and minimisation of frictional drag has 

been demonstrated to enhance swim performance and is likely to also apply to turning 

motions.   

Form drag 

As the name implies, form drag is the component of drag resistance that relates 

to the ‘form’ a body adopts while moving through a fluid (Costill et al., 1992). The 

mechanism behind this phenomenon relates to the shape (cross-sectional area) of the 

body and to a lesser extent, the density of the water (Rushall et al., 1994). When a 

swimmer moves through water, the fluid layers are deflected around the body of the 

swimmer. The boundary layers of fluid follow the contour of the body until the flow is 

either greatly slowed due to a pressure increase or accelerated due to a pressure 

decrease. At this event, turbulent (eddy) flow is generated and the boundary layers of 

flow separate from the body (Farell, 1971). Differences in water pressure between the 

turbulent areas associated with boundary layer separation and the non-turbulent flow 

area immediately preceding the swimmer result in generation of a pressure gradient. 

This pressure gradient causes a resistive force to act perpendicular to the body’s frontal 

surface area, subsequently retarding the forward motion of the swimmer (Rushall et al., 

1994).    
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The velocity at which the swimmer is travelling and the body cross-sectional 

area presented to the on-coming flow governs the magnitude of resistive form drag. 

Form drag is known to increase by the square of the velocity (Karpovich, 1933; Rushall 

et al., 1994; Sheehan & Laughrin, 1992). However, any attempt to reduce a swimmer’s 

form drag by decreasing velocity is considered counter productive to the aim of 

increasing forward velocity. Unlike uniformly shaped objects, turbulence and pressure 

gradients are generated behind and around a number of body parts during swimming 

(Lyttle, 1999). This is particularly so for regions where the body suddenly changes shape 

such as the head, shoulders, elbows, hips, knees and feet (Clarys, 1979). Therefore, to 

reduce form drag a swimmer should maintain their body position with minimal 

inclination (Costill et al., 1992; Maglischo, 1993) and accentuate streamlining at every 

opportunity (Rushall et al., 1994). Streamlining is a process where the disturbance an 

object causes to the flow of a fluid is minimised (Bartlett, 1997). In swimming, good 

streamlining involves minimising excessive vertical and lateral movements to therefore 

decrease the cross-sectional area exposed to the on-coming flow of fluid. Kolmogorov 

and Duplischeva (1992) demonstrated that swimmers of similar body size (height and 

mass) could have drastically different active drag values. Similarly, Clarys, Jiskoot and 

Lewillie (1973) found body inclination to increase the frontal surface area of the 

swimmer and contribute to increased drag during passive towing studies. These findings 

suggest that good streamlining and body positioning can significantly increase 

swimming velocity by decreasing resistance.  

Rushall et al. (1994) articulate that if a swimmer’s action or body position 

creates an increased cross-sectional area then progress through the water will be 

retarded. This concept applies equally to body position during the wall push-off and 
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glide from a turn. Therefore, any attempt to modify turning technique should 

accommodate streamlining for performance optimisation.     

Wave drag 

Wave drag is the component of drag resistance that results from a swimmer 

creating waves, wakes and turbulence (Rushall et al., 1994). The mechanism behind this 

form of resistance is a loss (transfer) of energy from the propulsive work of the 

swimmer to the creation of wave systems (Barthels, 1977; Rushall et al., 1994). Any 

accentuated vertical and lateral body movements during swimming cause pressure 

differences in and the displacement of fluid into waves. These, waves consist of masses 

of water lifted up against the force of gravity (Videler, 1993) and result in disturbances 

to the water’s surface (Clarys, 1979). The wave drag results predominantly from 

turbulence at the air-water interface (Costill et al, 1992; Maglischo, 1993) and has been 

shown to become progressively less important with increasing depths (Hertel, 1966; 

Lyttle, Blanksby, Elliott & Lloyd, 1998) 

Wave drag depends on, among other things, the swimmer’s velocity, body shape 

and movements in proximity to the water surface (Hay, 1992). Wave-making resistance 

was first thought to vary as the fourth power of velocity (Peabody, 1917; as cited in 

Karpovich, 1933). On the basis of more recent investigations, wave drag is now 

considered to increase with the cube of velocity (Sheehan & Laughrin, 1992; Maglischo, 

1993; Rushall et al., 1994). Hence, wave drag is considered the worst form of drag 

because its contribution to resistance increases dramatically with increased swimmer 

velocity (Rushall et al., 1994).  
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Pioneering work into ship design by Froude (1874) and his contemporaries 

demonstrated that, among other things, the length of an object was related to wave drag. 

They originated a dimensionless number, known as the Froude number, as the ratio 

between the inertial forces due to flow interference and gravitational forces (Larsen et 

al., 1981). The equation for the Froude number is expressed mathematically as 

Fl = v / √gl 

Where Fl is the Froude number, v is the velocity of the object, g is the 

gravitational constant, and l is the length of the object.   

Wave drag is often expressed as a function of the Froude number (Bartlett, 1997) 

and application of this principle forms the basis of modern ship design (Larsen et al., 

1981).  In swimmers, the maximum Froude number that a swimmer can achieve is 

reported to be between approximately 0.42 (Larson et al., 1981) and 0.45 (Videler, 

1993).  Maximal Froude numbers in this range are limiting in that the required stroking 

power of a swimmer increases to the fifth or six power of the velocity (Larsen et al., 

1981). Hence, large increases in stroke length or power will only result in small 

increases in velocity, as a consequence of increased wave drag (Larson et al., 1981; 

Videler, 1993). 

The relationship between a body’s Froude number and wave drag indicates that 

taller swimmers will produce less wave drag. According to Larsen et al. (1981), this 

implies that fast young swimmers achieve higher swimming velocities primarily by 

growing longer.  Maintaining a stretched body position during swimming enables the 

swimmer to achieve greater average length and therefore decrease their instantaneous 

Froude number and wave drag, respectively (Larsen et al., 1981). Elimination of 

unnecessary vertical and lateral movements is also considered essential for minimising 
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resistive forces due to wave drag (Rushall et al., 1994). Hence, movements such as 

‘smashing’ the arms into the water from the recovery (Costill et al, 1992), lateral leg 

sway caused by a lateral arm recovery (Maglischo, 1993), excessive lifting of the head 

when breathing in freestyle (Rushall et al., 1994) and pushing off the wall at the air-

water interface (Lyttle, 1999) should be minimised. 

It is well established that amphibian movement in proximity to the air / water 

interface creates surface waves and that the energy required for their creation increases 

the energy costs for propulsion (Hertel, 1966; Prange & Schmidt-Nielson, 1970; 

Williams & Kooyman, 1985). Attempts to quantify the relationship between depth of 

movement and energy loss due to wave drag were pioneered by Hertel (1966). He 

investigated the coefficient of drag experienced by a spindle shaped object, with a 

relative thickness of 18 %, when towed at varying depths of immersion. The absence of 

wave drag was observed when the immersion depth of the axis of the spindle was 

approximately equal to three times the diameter of the spindle (see Figure 2.2).  

Maximum wave drag was observed when the object was located directly under the water 

surface, at an immersion depth equal to approximately 0.5 times the diameter of the 

spindle. Comparison of minimum and maximum drag force values indicated a fivefold 

increase in total drag force (Blake, 1983; Hertel, 1966).  



Chapter 2: Literature Review 

 58 

 

Figure 2.2 Drag on a streamlined body (largest diameter, d) as a function of the 
submerged depth (h) (adapted from Hertel, 1966). 

Webb, Sims and Schultz (1991) demonstrated a significant positive relationship 

between water depth and distance travelled from fast-start performances of rainbow 

trout.  They postulated that approximately 70 % of the mechanical work used to propel a 

fish in deep water is dispersed as waves when the dorsal (upper) surface of the trout is 

just out of the water. Their calculations indicated that energy dispersion of waves was 

reduced to zero at relative depths in excess of 3 times the maximal depth (vertical 

height) of the fish. Therefore, wave drag appears to be maximised when an object is 

immersed directly beneath the water surface (Hertel, 1966; Webb et al., 1991). 

Larsen et al. (1981) applied fundamental fluid mechanics knowledge, obtained 

from boat design research, to swimming performance and determined the following. The 

contribution of wave drag to total drag becomes negligible at a depth equivalent to a 

depth-to-length ratio of 0.2 to 0.4. Gliding at depths of greater than approximately 0.2 of 

the swimmer’s length, in order to reduce wave drag during glide phases in swimming, 

are therefore suggested (Larsen et al., 1981). Lyttle (1999) calculated that a swimmer 

with a reach height of 2.5 m, travelling at a depth of 0.5 m underwater would fall within 

this range.  
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The literature presents conflicting findings for the resistive force (drag) 

experienced by swimmers when towed at various depths and velocities. Lyttle et al., 

(1998) reported significantly higher drag at the surface than 0.2, 0.4 and 0.6 m 

underwater. Furthermore, the drag at 0.2 m deep was significantly higher than 0.4 and 

0.6 m depths for towing velocities between 2.2 and 3.1 m.s-1. For the 0.4 and 0.6 m 

depths, however, no significant differences were revealed. In contrast, Jiskoot and 

Clarys (1975) found significantly higher drag forces 0.6 m underwater than at the 

surface. Given that wave drag increases with the cube of swimming velocity, the low 

glide velocities (1.5 – 1.9 m.s-1) used by Jiskoot and Clarys (1975) may not have been 

fast enough to produce a substantial wave drag.   

Larsen et al. (1981) also indicated that the depth of the water limits the 

maximum velocity a body could travel in a fluid, due to a fixed surface effect (the 

bottom). The equation for calculating the velocity maximum a body can reach with 

respect to the water depth is expressed mathematically as 

Vmax =  √gH 

Where Vmax is the maximum velocity, g is the acceleration of gravity, and H is 

the water depth from the surface to the bottom.    

Therefore, the limiting velocity a swimmer can travel at a pool depth of 1 m is 

slightly above 3 m.s-1, and at a pool depth of 2 m, this limiting velocity increases to 

approximately 4.5 m.s-1 (Lyttle, 1999).  Larsen et al. (1981) claim that gliding velocities 

after starts and turns are 50 to 60 % higher than swimming velocities and are therefore 

limited by swimming pool depth. They postulate that for swimming times to be 

minimised, pool depths should be between 15 and 20 feet (4.57 and 6.09 m) deep. This 
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phenomenon has implications for gliding and kicking following starts and turns whereby 

strategy and technique modifications that position the swimmer closer to the pool 

bottom may in fact increase drag. Consequently, technique modification to optimise 

start and turn wall exit techniques must accommodate this effect.  

Despite unquestionable evidence indicating that drag limits a swimmer’s motion, 

there are instances where drag may be beneficial to the swimmer. Swimsuit maker 

SPEEDO® claims to have incorporated ‘gripper’ fabric in the arms of their latest suit, 

the Fastskin™. The gripper fabric is claimed to increase sensory feel and grip on the 

water. This effect of increasing arm surface friction on swimmer performance is 

presently anecdotal and unsubstantiated by independent research. Form drag also 

contributes to hydrodynamic lift, particularly when accentuated on the hands and arms, 

and is essential in some strokes (Rushall et al., 1994). Further, Mason, Tong and 

Richards (1992) identified an intra-stroke period of centre of gravity acceleration 

unrelated to any obvious propulsive action of the swimmer, during butterfly swimming. 

They concluded that as a swimmer decelerates after the completion of the arm pull a 

wave of water generated by the swimmer surges forward and is used as a source of 

propulsion.  

The contribution of friction, form and wave drag to total drag resistance in 

swimming is dependent on swim velocity (Toussaint, 2002). The reported exponential 

relationships between drag and velocity suggest that a doubling of swimming velocity 

would result in twice as much frictional drag, four times as much form drag, and an 

eight-fold increase in wave drag (Rushall et al., 1994). Toussaint (2002) suggests that at 

a constant velocity of 1 m.s-1 the relative contributions to total drag will be: frictional 

drag ≈ 3 %, form drag ≈ 95 % and wave drag ≈ 2%. These contributions to total drag are 
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reported to change to ≈ 3 %, 77 % and 20 %, respectively at a velocity of 2 m.s-1. Wave 

drag and form drag are also believed to be inter-related, as increases in wave drag are 

also accompanied by increases in form drag, making their effects particularly noticeable 

(Rushall et al., 1994). Frictional drag is considered independent from wave and form 

drag (Larsen et al., 1981; Videler, 1993). However, these relationships are calculated 

primarily from traditional fluid mechanics theory developed from shipbuilding. 

Determination of the relationships between these drags and the human form are yet to be 

clearly established.  

The contribution of added water mass to drag 

A final consideration to the factors that contribute to drag resistance experienced 

by swimmers is the resistive effect produced by the acceleration of water mass. 

Theoretical fluid dynamics shows there is an acceleration dependent resistance known 

as the added mass concept. The mechanism behind this concept relates to acceleration of 

masses of water that remains in contact with the body segments that are causing 

propulsion and subsequently lead to an increase in the energy cost (Colman, Persyn & 

Ungerechts, 1998; Klauck, 1998).   

The majority of research investigating resistance in swimming has been 

conducted using constant velocities and extrapolated over a wider range. Studies using 

this quasi-static approach have examined lift and drag coefficients for the hand, or arm 

and hand (Berger, de Groot & Hollander, 1995; Berger, Hollander & de Groot, 1993; 

Remmonds & Bartlett, 1981; Sanders, 1996; Schleihauf, 1979; Wood, 1979). The 

findings from these investigations, combined with underwater film analysis of the arm 

stroke, have enabled calculation of the hand and arm propulsive forces present during 
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swimming (Payton & Bartlett, 1995; Schleihauf, 1979; Schleihauf, Gray & De Rose, 

1983). However, measurement of propulsive and resistive forces in swimming using 

these methodologies only provides information about the velocity dependent resistance. 

Resistance due to acceleration and deceleration of the swimmer are therefore considered 

equivalent or have been neglected (Klauck, 1998; Ungerechts, 1983b).  

Pai and Hay (1988) found that, for a cylinder oscillating about a transverse axis 

normal to the flow of fluid, ‘added mass’ and ‘vortex shedding’ effects contributed 

substantially to the force. However, these effects were shown to be considerably smaller 

at lower frequencies of oscillation in which the accelerations are smaller. Sanders (1996) 

attempted to develop a model for estimating forces produced by a swimmer’s hand by 

extending the Schleihauf (1979) model to include coefficients that accounted for the 

effect of acceleration in the direction of flow. Applying these coefficients to data 

obtained from three-dimensional video analysis of a swimmer’s hand indicated that 

forces contributed by the effective masses contributed up to 35 % of the total forces 

during the periods of greatest acceleration.  Sanders (1996) concluded that the effect of 

accelerations of a swimmer’s hand should be considered when seeking accurate 

estimates of the forces in swimming. Similarly, Bixler and Schloder (1996) 

demonstrated using computational fluid dynamics that hand acceleration may increase 

the propulsive drag force by as much as 40 % from that calculated using a quasi-static 

approach.  

Klauck (1998) demonstrated the added water mass to range between 30 – 70 kg 

from measurement of swimmers during time dependent acceleration towing trials. 

Velocity and acceleration dependent components of the water resistance were derived 

from time dependent velocity curves, allowing estimation of the added mass for each 
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swimmer. No explanation for the substantial variation shown in the magnitude of the 

added water mass between individual swimmers was given. The present author 

postulates that variations in swimmer size (frontal area and body length) and body 

position during towing are likely to have contributed to the variation shown in added 

water masses.  

More recently, Coleman et al. (1998) investigated the effect of added water mass 

on a single swimmer’s global centre of mass (mass of swimmer and added water mass) 

while performing an underwater dolphin kick. Differences in the acceleration and 

deceleration patterns for the added mass compared with the swimmer’s centre of mass 

were observed. Less variation in the intra-cycle velocity for the global centre of mass 

was thought to account for these differences (Coleman et al., 1998).  

The use of fluid mechanics has allowed greater insight into areas of swimming 

performance that traditionally have hampered a clearer understanding (Lyttle, 1999). 

Continued application of fluid mechanics principles and investigation into the forces 

experienced during swimming performance is likely to yield advancement in technique 

and performance. Turning motions in swimming require the swimmer to change 

direction and accelerate from the wall using a push-off. Therefore, the acceleration of 

the added mass is likely to contribute to resistive forces experienced during and after 

wall push-off following a turn.    

When considering resistances that result from swimming actions, it is prudent to 

consider all forms of drag and whether any have been affected. Due to the increasing 

importance of drag as velocity increases, the high velocities experienced by a swimmer 

following the turn indicates that minimising drag resistance during turning motions is 
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paramount. If turn technique changes are to be attempted, the effect on resistive drag has 

to be considered in order to enable a performance improvement. Any attempt to move 

faster through the water by producing more effort, and that effort results in greater 

amounts of unproductive movements, desired potential velocity benefits are likely to be 

offset by increases in added resistance (Rushall et al., 1994). With respect to drag 

reduction in swimming, Rushall et al. (1994) suggest that reductions in wave drag are of 

the highest importance, followed by form drag, then frictional drag.  

Passive and active drag 

Several authors highlight the importance of the glide, underwater kicking and 

stroke resumption phases following wall push-off from a turning motion (Blanksby, 

Gathercole et al., 1996; Lyttle & Benjanuvatra, 2004; Lyttle & Mason, 1997; Sanders & 

Byatt-Smith, 2003). The drag associated with each of these phases can be classified as 

either passive or active. Passive drag results when a rigid body moves through water 

such as the streamlined glide following wall push-off in the turn. Alternatively, active 

drag results from movements produced by the swimmer, usually when attempting to 

increase propulsion from kicking or stroking (Lyttle, 1999). Despite a lack of empirical 

knowledge regarding the relationships between the components of drag and swimming 

velocity, the quantity of research into active and passive drag in swimming is 

substantial. Consequently, a review of literature on this topic has been synthesised. 

Moreover, the following review is focussed on the information considered pertinent to 

the present work: Underwater kicking following the turn in freestyle swimming.   

In swimming, the measurement of passive drag is usually performed by towing a 

swimmer in a fixed streamlined position. A swimmer is streamlined when the frontal 
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area striking the water during forward movement is minimised (Sanders & Stewart, 

1992). Hence, passive drag is considered an indicator of gliding aptitude as it has been 

shown to vary with body position and inclination (Chatard, Bourgoin & Lacour, 1990; 

Chatard, Lavoie, Bourgoin & Lacour, 1990; Clarys et al., 1973; Clarys & Jiskoot, 1975; 

Costill, 1966; Karpovich, 1933; Kent & Atha, 1971; Kolmogorov & Duplishcheva, 

1992; Kolmogorov, Rumyantseva, Gordon & Cappaert, 1997). Generally, the results of 

the many passive drag investigations demonstrate reliable findings (Chatard & Bourgoin 

et al., 1990; Chatard, Lavoie et al., 1990; Clarys, 1979; Hollander, de Groot, van Ingen 

Schenau, 1987; Karpovich, 1933; Kolmogorov & Duplishcheva, 1992; Kolmogorov et 

al, 1997).    

Several methods have been used to estimate/measure active drag. These methods 

include indirectly estimating active drag from calculations based on changes in oxygen 

consumption (di Prampero, Pendergast, Wilson & Rennie, 1974; Holmer, 1974), by 

mathematically extrapolating force measurements from towed swimming (Clarys, 1979) 

and calculated from previously developed lift and drag coefficients combined with hand 

orientations measured from film analysis (Schleihauf et al., 1983). The development of 

the Measure of Active Drag (MAD-system) first enabled researchers to directly measure 

active drag during swimming (Hollander et al., 1986). More recently, Kolmogorov and 

Duplishcheva (1992) calculated active drag as a function of power output. Active drag 

values across these methods have yielded inconsistent findings. Indirect measurement 

methods suggest active drag is larger than passive drag (Clarys, 1978a; Clarys, 1978b; 

Clarys, 1979; di Prampero et al., 1974). Measurement of active drag using the MAD 

system however, showed active drag during front crawl swimming to be closer to 

previously reported passive drag values (Hollander et al., 1987; Hollander et al., 1986). 
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Further, Kolmogorov and Duplishcheva (1992) reported active drag values for freestyle, 

backstroke and butterfly to be significantly lower than for passive drag. The authors 

however, attributed this finding to the out-of -water recovery used in these strokes. The 

contrasting findings with respect to measurement of active drag further highlight the 

uncertainty regarding the relationship between passive and active drag in swimmers. 

This relationship therefore remains equivocal (Benjanuvatra, Blanksby & Elliott, 2001; 

Lyttle, 1999).   

Traditional exits from a swimming turning motion incorporate both gliding 

(passive) and kicking (active) components. Lyttle (1999) states that at similar depths, 

the frictional component of drag remains the same for both active and passive drag, 

while the form and wave drag components vary depending upon whether the drag 

originates from passive or active movements. Therefore, to optimise turn exits, clearer 

understandings of the factors that contribute to passive and active drag are required. 

Hence, selected passive and active drag studies are reviewed and summarised. 

Passive drag studies 

The significance of passive drag to turn exits is highlighted by Chatard, 

Bourgoin et al. (1990) who claim that gliding during the start and turns corresponds to 

approximately 10 – 25 % of the total event, depending on the stroke and race distance. 

Minimising the deleterious effect of passive drag during gliding is therefore likely to 

decrease swim times. Empirical testing is required to determine the hydrodynamic drag 

experienced by a swimmer. This is due to problems in quantifying the flow 

characteristics around the human body, which in turn, render it difficult to estimate the 

effect of depth and velocity on drag, from hydrodynamic theory (Lyttle et al., 1998). A 
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popular method for investigating drag forces in swimming has been to tow swimmers 

and measure the tension and force in the towing device as a representation of the 

swimmer’s resistance.   

Numerous studies have investigated the passive drag experienced by swimmers 

at various velocities, depths and body positions. With the exception of the data 

presented by Ria, Bernard, Falgairette & Roddier (1987), passive drag studies have 

shown that increased glide velocities correspond with increasing passive drag values 

(Alley, 1952; Benjanuvatra et al., 2001; Benjanuvatra et al., 2002; Clarys & Jiskoot, 

1975; Clarys et al., 1973; Clarys et al., 1974; Counsilman, 1955; di Prampero et al., 

1974; Jiskoot & Clarys, 1975; Karpovich, 1933; Kent & Atha, 1971; Maiello, Sabatini, 

Demarie, Sardella & Dal Monte, 1998; Miyashita & Tsunoda, 1978; Strojnik, Bednarik 

& Strumbelj, 1999; van Manen & Rijken 1975). Hence, an increase in velocity will lead 

to a concurrent increase in passive drag force, providing all other factors remain 

constant. The impact drag has on swimming performance is further emphasised given 

the reported exponential relationship between velocity and passive force (Karpovich, 

1933; Rushall et al., 1994). The direct relationship between passive drag force and 

towing velocity has also been consistently demonstrated across a variety of glide 

positions (Counsilman, 1955; di Prampero et al., 1974; Karpovich, 1933; Lyttle et al., 

1998; Maiello et al., 1998) and towing depths (Lyttle et al., 1998; Maiello et al., 1998). 

Swimmer passive drag forces have been examined through a variety of glide and 

body positions, with a prone horizontal glide position (with the arms and legs extended) 

investigated most commonly (Alley, 1952; Benjanuvatra et al., 2001; Benjanuvatra et 

al., 2002; Chatard, Bourgoin et al., 1990; Chatard, Lavoie et al., 1990; Clarys, 1979; 

Clarys, 1985; Clarys et al., 1973; Clarys et al., 1974; Clarys & Jiskoot, 1975; 
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Counsilman, 1955; di Prampero et al., 1974; Jiskoot & Clarys, 1975; Karpovich, 1933; 

Kent & Atha, 1971; Kolmogorov & Duplishcheva, 1992; Kolmogorov et al., 1997; 

Lyttle et al., 1998; Maiello et al., 1998; van Manen & Rijken 1975; Miyashita & 

Tsunoda, 1978; Ria et al., 1987; van Tilborgh, Daly & Persyn 1983; Maiello et al., 

1998). Whereas, the supine glide (Karpovich, 1933), the lateral and rolling glide 

positions (Counsilman, 1955; Lyttle et al., 1998) and longitudinally angled glides 

(Clarys, 1979; Clarys, 1985; Clarys & Jiskoot, 1975) have been explored to a lesser 

extent. More recently, investigators have examined the effect of drafting swimming 

(swimming directly behind another swimmer) on passive drag (Chatard, Chollet & 

Millet, 1998; Chatard & Wilson, 2003) and the impact of wearing swimming suits 

designed to decrease drag have upon passive drag (Benjanuvatra et al., 2002; Roberts, 

Kamel, Hedrick, McLean & Sharp, 2003).   

Differences in passive drag have also been reported for changes in head position 

(Alley, 1952; Karpovich, 1933; Kent & Atha, 1971; Miyashita & Tsunoda, 1978), arm 

and hand position (Maiello et al., 1998) and at various body inclinations (Alley, 1952; 

Clarys et al., 1973; di Prampero et al., 1974; Clarys & Jiskoot, 1975; Karpovich, 1933). 

With the exception of the report of Clarys and Jiskoot (1975), positional changes from a 

prone horizontal glide (streamline) position have consistently produced greater passive 

drag forces. Clarys and Jiskoot (1975) reported significantly less resistance occurred for 

a 45o lateral glide position compared to the prone position, for towing velocities of 1.5 

and 1.6 m.s-1. However, significant differences in drag were not observed between the 

two glide positions for towing velocities above 1.6 m.s-1 and were reversed at the fastest 

velocity (1.9 m.s-1). Given the subjective opinion of some coaches, that lateral 

streamlined glide wall exits produce faster turn exits, Lyttle et al. (1998) suggest there 
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may be a learning effect associated with the lateral position. That is, the ability to 

perform and maintain lateral streamline gliding may improve with practise, which may 

partially account for the contrasting finding by Clarys and Jiskoot (1975).  

Measurement of passive drag at different depths has also revealed contrasting 

results. Hydrodynamic studies of streamlined objects indicate that drag is greatest 

immediately below the water surface, and decreases with greater depth (Blake, 1983; 

Hertel, 1966; Larsen et al., 1981). The findings from recent investigations of the effect 

of passive drag upon swimming performance (Benjanuvatra et al., 2002; Lyttle et al., 

1998; Maiello et al., 1998) are in agreement with this previously developed fluid 

dynamic theory. Conversely, Clarys et al. (1974), Jiskoot and Clarys (1975) and Clarys 

(1979) demonstrated greater drag at 0.6 m underwater than that recorded at the surface. 

Attempting to explain this finding, Jiskoot and Clarys (1975) suggested that the 

combined frictional and eddy resistance when immersing the body in water was greater 

than the extra wave making resistance resulting from a partially submerged body. 

However, given that wave drag increases with the cube of swimming velocity, the low 

glide velocities used by Jiskoot and Clarys (1975) may not have been fast enough to 

create substantial wave drag. Also, the absence of information and subsequent lack of 

definition regarding towing depth may indicate variability in methodologies, which is 

likely to have contributed to the inconsistent findings in these earlier studies.  

Maiello et al. (1998) investigated the passive drag on the surface and 0.5 m 

underwater at two separate water velocities, in a swimming flume at water velocities of 

1.76 & 1.91 m.s-1. Eleven female swimmers performed prone streamline gliding and 

five separate upper body positions at each depth and velocity. Results indicated lower 

underwater passive drag values for all body positions, and at both velocities, compared 
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with the surface trials. Despite the fact that no statistical procedures were applied to the 

data in order to establish statistical significance of the observed differences, this study 

indicates that greater economy is achieved by a swimmer from gliding at 0.5 m 

underwater compared with at the surface, due to reduced passive drag. Lyttle et al. 

(1998) and Benjanuvatra et al. (2002) have since published data in support of this 

finding by demonstrating that a statistically significant difference exists between surface 

and underwater passive drag values in swimmers. These recent studies that have 

explored passive drag during swimming suggest that the increased frictional and form 

drag created by submerging the body is negated by a greater reduction in wave drag.       

Changes in water temperature have also been shown to contribute to drag 

measured when towing swimmers (Clarys, 1979; Clarys & Jiskoot, 1975). Increased 

water temperature leads to lower water density and viscosity, which in turn, decreases 

passive drag values (Videler, 1993). This finding may affect any comparison of absolute 

drag values, both within and between drag investigations. Therefore, maintenance of a 

constant pool water temperature throughout towing and other swimming studies is 

necessary to uphold the internal and external validity of the findings.  

The majority of early passive drag studies examined swimmer resistance at 

velocities representative of free-swimming velocities (range: 0.31 – 2.13 m.s-1).   

However, velocities ranging between 1.9 – 3.1 m.s-1 are more closely associated with 

the gliding velocities experienced by swimmers following a start or wall push-off from a 

turn (Albrand & Walter, 1975; Benjanuvatra et al., 2001; Blanksby, Gathercole et al., 

1996; Larsen et al., 1981; Lyttle et al., 1999). Hence, the application of passive drag 

findings from studies that used velocities designed to reflect free-swimming to the 

specific velocities found during the turn glide phases is limited. Furthermore, 
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insufficient descriptions of methodological and statistical procedures limit interpretation 

of the validity of the findings from these investigations.  

Lyttle et al. (1998) sought to address this disparity by measuring swimmer drag 

at towing velocities more representative of the glide during starts and turns. They 

examined drag forces when towing 40 experienced male swimmers of similar body 

shape, mass and height through water at pre-determined depths and velocities. Swimmer 

depth was defined using the mid-line of the frontal plane when towed in a prone, 

streamlined position. A load cell was used to measure drag at the surface, 0.2, 0.4 and 

0.6 m below the surface and at selected velocities ranging between 1.6 and 3.1 m.s-1.  

During towing, swimmers wore caps and maintained a prone, streamlined position, with 

the hands overlapping, head between the extended arms, and the feet together and 

plantar flexed. Practice trials were permitted at different velocities and depths, while 

towing depths and velocities were randomised during testing. During the towing trials, 

the depth level, degree of streamlining and whether a horizontal position was assumed 

were assessed via real time images from underwater video. Swimmers were given this 

feedback and test trials were repeated if the swimmer was not within ± 0.05 m of the set 

depth, or was not in a horizontal position. Water temperature was maintained at 28o C (± 

0.6 o C). 

Significantly (p<0.05) higher passive drag was observed at the surface than for 

each increasing depth, across all towing velocities (Lyttle et al., 1998). No significant 

differences in drag were observed between the 0.2, 0.4 and 0.6 m depths for the two 

slowest velocities (1.6 & 1.9 m.s-1). Whereas, the drag at 0.2 m was significantly higher 

than the drag recorded at the 0.4 and 0.6 m depths for the remaining velocities (2.2 – 3.1 

m.s-1). The 0.4 and 0.6 m depths revealed no significant difference in drag force. These 
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findings concur with previous hydrodynamic studies that showed the highest drag force 

for a streamlined cylindrical body is recorded just below the water surface (Hertel, 

1966) and that the coefficient of drag decreases rapidly as a body increases in depth 

(Larsen et al., 1981).  

The findings by Lyttle et al. (1998) are in agreement with previous passive drag 

investigations that demonstrate increasing passive drag values with increased towing 

velocity (Alley, 1952; Benjanuvatra et al., 2001; Benjanuvatra et al., 2002; Clarys & 

Jiskoot, 1975; Clarys et al., 1973; Clarys et al., 1974; Counsilman, 1955; di Prampero et 

al., 1974; Jiskoot & Clarys, 1975; Karpovich, 1933; Kent & Atha, 1971; Maiello et al., 

1998; Miyashita & Tsunoda, 1978; van Manen & Rijken 1975). However, Lyttle et al. 

(1998) unexpectedly demonstrated a linear, rather than exponential relationship from 

drag force-velocity curves over the velocity range tested. This varies from the 

relationships demonstrated in hydrodynamic studies using streamlined objects (Hertel, 

1966; Larsen et al., 1981). Passive drag findings from other non-streamlined human 

form studies were inconclusive as they showed either a linear or exponential trend (Kent 

& Atha, 1971; Clarys, 1979; Jiskoot & Clarys, 1975). Many of these investigations into 

drag during swimming have questionable methodologies or fail to accurately report the 

degree of association (linear or exponential). Extrapolating the drag force data to zero or 

investigating the drag at higher velocities may in fact reveal an exponential relationship 

for passive drag values with increased towing velocity. Nonetheless, over a velocity 

range representing turn push-off and glides for club to elite level swimmers, Lyttle et al. 

(1998) demonstrated a linear increase in passive drag force with an increase in glide 

velocity. 
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A reduction in passive drag during gliding following a turn will translate directly 

to faster turn times. With the exception of Lyttle et al. (1998), the application of findings 

from earlier studies that have examined passive drag to turn performance is limited due 

to the majority of these investigations being performed either at the water surface or at 

lower velocities than those experienced following a turn.  From their findings, Lyttle et 

al. (1998) mathematically modelled an optimal glide path for maximising a swimmer’s 

horizontal glide velocity from wall push-off following a turn (see Figure 2.3). 

Calculated from the theoretical deceleration times and glide distances, this optimal path 

consisted of the swimmer pushing off the wall at 3.1 m.s-1, approximately 0.4 m 

underwater and maintaining this depth for a glide distance of approximately 1 m (in 

approximately 0.4 s). Thereafter, gradual ascent over a further 1 m distance, at a rate of 

0.1 m in depth per 0.2 s, at which time the swimmer would resume stroking at the 

surface at 1.6 m.s-1 (Lyttle, 1999).      
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Figure 2.3. Optimal glide depth vs. glide distance, time and resultant velocity (From 
Lyttle, 1999, p. 114). 
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Human morphology and passive drag 

Experiments with water mammals have examined the relationship between the 

morphological characteristics of the body and its efficiency of movement through water 

(Clarys, 1979). Similarly, fundamental hydrodynamic theory, developed from ship 

building research, indicates drag force is determined partly by body form (Larsen et al., 

1981). Several investigations have reported the influence of body form on the passive 

drag experienced by a swimmer (Benjanuvatra et al., 2001; Chatard, Bourgoin et al., 

1990; Chatard, Lavoie et al., 1990; Clarys, 1978a, 1978b, 1979, 1985 & 1986; Clarys, 

Jiskoot, Rijken & Brouwer, 1974; Lyttle et al., 1998; Miyashita & Tsunoda, 1978; Ria et 

al., 1987; van Manen & Rijken 1975; van Tilborgh et al., 1983). From these 

investigations, numerous body form parameters have been found to influence passive 

drag. However, the findings of these investigations exhibit conflicting results.   

The effect of human body form on swimming passive drag was pioneered by 

Clarys and associates (Clarys, 1978a, 1978b, 1979, 1985 & 1986; Clarys et al., 1974). 

Using data obtained from the extensive work of Clarys, Lyttle (1999) detailed a series of 

body form parameters, based upon fundamental hydrodynamic principles, to provide a 

link between swimming and the form parameters used in ship design (see Table 2.2). To 

date, several body form parameters have been consistently shown to influence passive 

drag. In particular, these parameters include body cross-sectional area, height and weight 

(Benjanuvatra et al., 2001; Chatard, Bourgoin et al., 1990; Chatard, Lavoie et al., 1990; 

Clarys, 1978a, 1978b & 1979; Ria et al., 1987; van Tilborgh et al., 1983). However, 

several investigations present conflicting findings regarding other body forms and 

passive drag. Early investigations by Clarys (1978a & 1978b) demonstrated a non-

significant relationship between the passive drag force and body surface area.  These 
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data were supported by several subsequent investigations (Clarys, 1979, 1986; Lyttle et 

al., 1998; Miyashita & Tsunoda, 1978). These results suggest frictional resistance is 

proportionately low in human hydrodynamics, which is in direct contrast to fundamental 

hydrodynamic principles (Gadd, 1963; Karpovich, 1933).  

Clarys (1978a) suggested that fluid flow around a towed human body is turbulent 

and that the frictional drag component, which is predominantly a function of laminar 

flow, is likely to be minimised. This was alleged to account for a lack of relationship 

between surface area and passive drag (Clarys, 1978b & 1986). Conversely, a number of 

investigations have reported strong relationships between body surface area and passive 

drag (Chatard, Bourgoin et al., 1990; Chatard, Lavoie et al., 1990; Ria et al., 1987; van 

Tilborgh et al., 1983). Fundamental hydrodynamic principles indicate that for 

streamlined and geometric bodies, increases in frictional drag are directly related to 

increases in the wetted body surface area (Gadd, 1963). It is possible that the use of total 

body surface area may inappropriately represent the wetted body surface area of a 

swimmer when towed at the water surface (only partially submerged). The findings from 

Lyttle et al. (1998) refute this theory as their study demonstrated that body surface area 

did not have a significant influence on passive drag when the body was towed at the 

water surface and at depths of 0.2, 0.4 and 0.6 m.      

In general, the relationship between body shape and passive drag has typically 

been shown to increase with increasing glide velocity (Clarys, 1979; Lyttle et al., 1998). 

In addition, body cross-sectional area, height and weight have been significantly related 

to passive drag force in swimmers (Benjanuvatra et al., 2001; Chatard, Bourgoin et al., 

1990; Chatard, Lavoie et al., 1990; Clarys, 1978a, 1978b & 1979; Ria et al., 1987; van 

Tilborgh et al., 1983). Furthermore, significantly lower passive drag forces have been 
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observed in hyper flexible swimmers (Chatard, Lavoie et al., 1990), indicating that by 

increasing the degree of joint flexibility, a swimmer may be able to achieve a more 

streamlined glide position and decrease resistive passive drag. Despite identification of 

the above associations, the relationships between human morphology and passive drag 

remain unclear and require further empirical testing.  

Table 2.2.  Human morphology equivalents of fundamental hydrodynamic 
parameters. 

Hydrodynamic 
parameters 

Human morphology Equivalents Drag 
component 

Body length Body height Wave drag 

Wetted area Body surface area (wetted) Frictional drag 

Mid-ship section Greatest body cross-section Form drag 

Buoyancy Hydrostatic weight, body volume, body 
density 

Form drag 

Length/Breadth ratio Body height/Biacromial breadth Form drag 

Length/Depth ratio Body height/Thorax depth Frictional drag 

Length/Thickness ratio Body height/Greatest body cross-section Form drag 

Length/Surface ratio Body height2/Body surface area Frictional drag 

Slenderness degree Body height/Body volume1/3 Wave drag 

Breadth/Depth ratio Biacromial breadth/Thorax depth Form drag 

From Lyttle (1999, pp. 60), originally adapted from Clarys et al. (1974, p.188) and Clarys (1979, p.21). 

Active drag studies 

Active drag results from movements produced by the swimmer, usually when 

attempting to increase propulsion from kicking or stroking. The majority of studies that 

have examined active drag have attempted to determine the drag created by a swimmer 
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during freestyle swimming (Alley, 1952; Cappaert, Kolmogorov, Walker, Skinner, 

Rodriguez & Gordon, 1996; Clarys, 1979 & 1985; Clarys et al., 1973; Counsilman, 

1955; di Prampero et al., 1974; Glazkov & Dementyev, 1977; Hollander et al., 1986; 

Holmer & Haglund, 1978; Huijing, Toussaint & Clarys, 1988; Kemper, Verschuur, 

Clarys & Jiskoot, 1983; Kolmogorov & Duplishcheva, 1992; Kolmogorov et al., 1997; 

Kugovnik, Bednarik, Strumbelj & Kapus, 1998; Moghadam, Mehrvar & Pazouki, 1996; 

Niklas et al., 1993; Toussaint, de Groot, et al., 1988; Toussaint & Hollander, 1994; 

Toussaint, Hollander, et al., 1988; Toussaint, de Looze, Van Rossem, Leijdekkers & 

Dignum, 1990; Takagi, Shimizu, Kodan, Onogi & Kusagawa, 1997). Whereas 

measurement of active drag for the other strokes (Kolmogorov & Duplishcheva, 1992; 

Kolmogorov et al., 1997), during kicking (Benjanuvatra et al., 2002; Lyttle et al., 2000) 

and when various swimming suits are worn (Benjanuvatra et al., 2002; Toussaint, et al., 

1989; Toussaint et al., 2002), have been explored to a lesser degree. Aside from 

methodological issues, the findings from studies that have examined active drag during 

stroking bear little significance to the present work that is focused upon underwater 

kicking following the turn in freestyle swimming. Therefore, the following review is 

limited to brief descriptions of the measurement of active drag and is focussed upon 

those studies considered pertinent to the current project.  

A variety of methods have been used to examine active drag during swimming. 

Alley (1952) and Counsilman (1955) incorrectly determined active drag as the 

difference between the total effective propulsive force during active movements and the 

prone passive drag force, for a given velocity.  This method falsely assumed that the 

passive drag during prone streamlining is equivalent to the active drag created during 

stroking. di Prampero et al. (1974) pioneered a method of indirectly determining active 
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drag through changes in the rate of oxygen consumption (VO2), recorded from 

swimming at constant velocities with different drag loads. Known weights attached to 

the swimmer via a rope and pulley system were incrementally added to swimmers 

moving at constant velocity. Changes from baseline resting VO2 were recorded and 

expressed as a function of active drag. Despite other active drag studies employing this 

method (Holmer & Haglund, 1978; Niklas et al., 1993), this method is complicated and 

may be likely to exhibit poor reliability.     

The extensive work by Clarys and associates (Clarys et al., 1973; Clarys, 1978a, 

1978b & 1985; Kemper et al., 1983) determined active drag by estimating the effective 

drag produced during towed swimming. This method involved towing participants, 

while swimming, through a range of velocities and measuring the force in a towing 

carriage. A net positive force indicated that the swimmer generated higher active drag 

forces than the propulsive forces produced while swimming at a given velocity. A net 

zero force indicated the propulsive force equalled the resistive force. That is, the 

swimmer needed to be able to maintain the velocity of the towing carriage for this to 

occur. A net negative force demonstrated that the swimmer produced more propulsive 

force than the amount of active force created due to stroking. A curve was then fitted to 

the forces recorded at each of the towing velocities and extrapolated to zero velocity.  

The extrapolated force at zero velocity was added to the original curve to obtain the 

swimmer’s active drag. Though widely recognised and used or adapted in various other 

drag studies (Glazkov & Dementyev, 1977; Takagi et al., 1997; van Manen & Rijken, 

1975), this method assumes that the velocity range tested is representative of the drag-

velocity effects at lower towing velocities (Lyttle, 1999).  
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Hollander et al. (1986) developed the Measure of Active Drag (MAD-system) 

that first enabled researchers to directly measure active drag during swimming. This 

system used a dynamometric approach where swimmers applied force against 

underwater paddles, during the underwater pull-phase of front crawl stroking (see Figure 

2.4). A uni-directional strain gauge force transducer contained at one end of the system 

was used to record force in the direction of the travelling swimmer. Hence, at constant 

swimming velocity, the mean propulsive force applied to the paddles is considered 

equivalent to the average drag force. Despite repeated trials on a single subject 

demonstrating system reliability (Hollander et al., 1986) and its use in several 

subsequent investigations (Huijing et al., 1988; Niklas et al., 1993; Toussaint, de Groot 

et al., 1988; Toussaint & Hollander, 1994; Toussaint, Hollander et al., 1988; Toussaint 

et al., 1990), the MAD-system is limited to investigations involving arm-stroking only.  

 

Figure 2.4.  Schema of the Measurement of Active Drag (MAD) system (From 
Hollander et al., 1986, p. 23)  

Kolmogorov and Duplishcheva (1992) calculated active drag as a function of 

power output. In this method, a hydrodynamic body creating a known additional drag is 

attached behind the swimmer. The maximal velocity when swimming with the 

hydrodynamic body is then compared with maximal free-swimming velocity. From 
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these velocities, and the assumption that the swimmer is capable of delivering a constant 

mechanical power output (Kolmogorov & Duplishcheva, 1992), the active drag force is 

calculated. Errors due to intra-cycle velocity fluctuations have been modelled to 

represent between 6 – 8 %.  

Active drag values derived during swimming have yielded inconsistent findings 

across a range of investigations. Indirect methods of estimating active drag have shown 

active drag to be larger than passive drag (Clarys, 1978a, 1978b & 1979; di Prampero et 

al., 1974), while the use of mathematical models (Moghadam et al., 1996) to calculate 

active drag force have demonstrated substantially higher values than the MAD-system 

(Hollander et al., 1986) or from film analysis (Schleihauf et al., 1983). Front crawl 

active drag values using the MAD-system have been shown to be closer to previously 

reported passive drag values (Hollander et al., 1986; Hollander et al., 1987). Conversely, 

active drag values for freestyle, backstroke and butterfly have been reported to be 

significantly lower than for passive drag (Kolmogorov & Duplishcheva, 1992). These 

contrasting findings observed across active drag investigations are likely to be due, in 

part, to the various research designs and methods used to calculate active drag.  

Few investigations have been located that report the active drag created during 

kicking (Alley, 1952; Lyttle et al., 2000; Thrall, 1960). Alley (1952) compared the 

active drag effects for one elite male swimmer who used typical and reduced amplitude 

flutter kicking techniques. Both kicks were regulated by an audible signal to ensure the 

same six beat kick frequency, however, the difference in amplitude between the two 

kick actions was not reported. Attaching a web belt to the swimmer and measuring the 

force exerted at given velocities as they swam away from the apparatus enabled 

calculation of surplus propulsive force. The towing force was measured over a range of 
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velocities, each of which was greater than maximal free-swimming velocity recorded for 

the associated stroke type. This was achieved by measuring the force required to tow the 

swimmer toward the apparatus while kicking. The results indicate that for velocities 

ranging up to the swimmer’s maximal kicking velocity for each kicking action, net force 

benefits for the typical flutter kick were consistently higher than the reduced amplitude 

flutter kicking action (Alley, 1952). Similarly, the typical flutter kick required a smaller 

towing force than the reduced amplitude flutter kick for velocities exceeding their 

maximal free-kicking velocities. Therefore, this case study indicates that a typical flutter 

kick provides a net force benefit over a reduced amplitude flutter kick, for the velocity 

range tested.  

Thrall (1960) examined the effect that the size and shape of the feet and kick 

frequency have on the propulsive force during flutter kicking. Free-swimming velocities 

were obtained from three male intercollegiate swimmers who each performed a typical 

flutter kick (6 beat kick), a reduced amplitude flutter kick (2 beat kick), and from kick 

trials performed while using wide and narrow fins (with the same effective surface area). 

Baseline drag data were also obtained from six towing velocities ranging from  0.91  

m.s-1 to 2.42 m.s-1 conducted while the subjects were in a prone streamlined gliding 

position, and also when wearing the narrow and wide fins. Towing force data were then 

recorded from trials consisting of each of the four kicking conditions, at these same six 

towing velocities.  

Thrall (1960) defined the effective propulsive force of the kick as the difference 

between the towing force and the passive drag, at any given velocity. Despite this 

questionable approach to determining propulsive force, descriptive analyses indicated 

that participant’s attained greater free-swimming velocity and greater effective 
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propulsive force during typical flutter kicking than when using the reduced amplitude 

flutter kick (Thrall, 1960). The fin swimming conditions produced a mean increase in 

both the free-swimming velocity and the effective propulsive kick force for both kicking 

styles. This finding indicates that swimmers who have greater foot surface area may 

have the potential for greater kicking aptitude.   

The kicking studies by Alley (1952) and Thrall (1960) were performed at the 

water surface and only represent the performances of one and three subjects, 

respectively. Kicking following the glide phase from turns creates active drag forces 

under the water surface. Given the recent findings of Lyttle et al. (1998) and 

fundamental hydrodynamic theory (Hertel, 1966; Larsen et al., 1981) regarding effects 

of depth on passive drag force, an examination of active drag during underwater kicking 

was necessitated.  

The study by Lyttle et al. (2000) represents the first study that examined the 

active drag experienced during underwater kicking. Sixteen experienced male swimmers 

of similar body shape were towed along the length of a 25 m pool at a depth of 0.5 m 

underwater, at each of five different velocities (1.6; 1.9; 2.2; 2.5 & 3.1 m.s-1), using a 

mechanical winch system. These velocities were deliberately chosen to represent the 

push-off and glide velocities demonstrated by club and elite level swimmers following a 

turn (Lyttle et al., 2000). Towing depth was defined from the lateral view by using the 

mid-line of the body and controlled using a two-pulley system that was fixed to the pool 

wall. At each velocity, subjects performed prone and lateral streamlined glides, prone 

freestyle and dolphin kicking, and lateral dolphin kicking.  
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All kicking trials were performed with maximal effort and no limitation was 

placed on kick amplitude. Net force was recorded during each trial using a uni-

directional load cell. For the prone and lateral streamlined trials, the net force consisted 

solely of the negative passive drag forces. Whereas during the kicking trials, net force 

consisted of the total propulsive force measured during kicking minus the active drag 

force created during the kicking action. Hence, a positive net force would indicate that a 

swimmer was accelerating as a result of kicking.  

Lyttle et al. (2000) found no difference in net towing force between the prone 

and lateral streamlined glides at all of the velocities tested. Similarly, neither kick 

strategy resulted in a significant advantage over the other. However, trends in the data 

indicated the prone dolphin kick consistently produced lower net forces than the 

freestyle and lateral dolphin kick conditions. Results from 2-way repeated measures 

ANOVA revealed significant velocity-by-towing condition interactions (Lyttle et al., 

2000). At the lower velocities (1.9 & 2.2 m.s-1), post-hoc comparisons revealed the 

streamline positions recorded significantly higher net forces than the kicking conditions, 

indicating a benefit to the swimmer from kicking at these velocities. When towed at 2.2 

m.s-1, net forces in the prone streamline position were not significantly different from 

the kicking conditions, suggesting that there is no advantage for the swimmers to kick at 

this velocity. No post-hoc comparisons were performed at the 2.5 m.s-1 velocity due to 

no significant differences being observed between any of the towing conditions. A 

reversal of these trends was demonstrated at the highest velocity (3.1 m.s-1) where the 

prone streamline position produced significantly lower net forces than kicking. This 

indicated that kicking at this velocity was detrimental to the swimmer.  At no time did 
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any swimmer produce a positive net force at any velocity, indicating they were not able 

to kick faster than the towing speed.  

Based on the results from an earlier investigation, Lyttle et al. (1998) modelled 

an optimal glide path for maximising a swimmer’s horizontal glide velocity from wall 

push-off following a turn (see Figure 2.3). The findings from this more recent work 

enabled preferred kicking resumption velocity to be determined by identifying the 

highest velocity at which underwater kicking produces less net drag force than the 

streamline position (this velocity has been defined as the cross-over velocity). In 

consideration of this finding and the earlier proposed optimal glide path, Lyttle et al. 

(2000) suggested a hypothetical optimal glide and kicking path for maximising 

horizontal velocity from wall push-off to the resumption of stroking, following a turn 

(see Figure 2.5). Within this adapted wall exit strategy, Lyttle et al. (2000) determined 

that for experienced male swimmers, kick resumption should occur between the 

velocities of 2.2 and 1.9 m.s-1 as it is beneficial to kick rather than maintain a 

streamlined glide at velocities below this range. This velocity range was found to 

coincide with the period just after which swimmers should begin to ascend to the 

surface and equates to between approximately 1.1 and 1.5 m, or between 0.45 and 0.65 

s, of gliding (see Figure 2.5). The authors state however, that this model is speculative 

and relies on the relationships between the glide and kicking positions, as well as the 

cross-over velocity, remaining constant.  
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Optimal Streamlined Glide Path 
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Figure 2.5. Hypothetical optimal streamlined gliding and kicking path (From Lyttle, 
1999, p. 129)  
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Sanders and Byatt-Smith (2003) mathematically modelled a formula to assess 

wall exit strategies based on deceleration rates from streamline gliding. Application of 

this model to the turns of experienced swimmers indicated that in many cases, kicking is 

initiated too soon. It was found that flexion of the knees during preparation for kicking 

was notably detrimental to horizontal velocity. Additionally, kicking failed to restore 

velocity equivalent to that which would have been sustained had swimmers maintained 

a streamlined glide without the kick (Sanders & Byatt-Smith, 2003). Despite the fact 

that their article contained no statistical analyses and failed to report the kick styles used 

(flutter or dolphin), Sanders and Byatt-Smith (2003) suggest that kicking too early 

following the turn is common, reduces velocity and wastes energy unnecessarily.  

The findings from Lyttle et al. (2000) and Sanders & Byatt-Smith (2003) 

highlight the importance of selecting the optimum time to initiate underwater kicking 

following the start and turn. When kicking too soon after wall push-off, the extra drag 

generated by deviating from a streamline position is likely to counter any propulsive 

force from kicking (Lyttle & Benjanuvatra, 2004). On the contrary, inappropriately 

delaying the initiation of underwater kicking will not allow the swimmer to maximise 

the full benefits underwater kicking can provide. Current research shows that most 

swimmers should wait for approximately 1 s before initiating underwater kicking (Lyttle 

et al., 2000; Sanders & Byatt-Smith, 2003). Despite many swimmers preferring to use 

underwater dolphin kick following the turns, underwater kicking styles have not been 

investigated conclusively. From measurements of active drag during towing, Lyttle et al. 

(2000) were unable to determine the most efficient underwater kicking style (flutter, 

prone and lateral dolphin) and concluded that swimmers should choose the technique at 

which they are most proficient. Although their investigation demonstrated a trend 
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favouring the prone dolphin kick, the magnitude (large, small) and speed (fast, slow) of 

kicking was not delimited or investigated. Hence, the superior underwater kicking style 

and technique for use following turns remains unknown, and is in need of further 

investigation. 

Human morphology and active drag 

Like the results from passive drag investigations, studies examining the 

relationship between body form and active drag reveal contrasting findings. A variety of 

methods have also been used to determine active drag in swimming. These methods 

include indirect calculation (Clarys, 1978a, 1978b, 1979 & 1986), direct measurement 

using the MAD-system (Huijing et al., 1988; Toussaint et al., 1990), estimations based 

on the additional hydrodynamic body technique (Kolmogorov and Duplishcheva, 1992; 

Kolmogorov et al., 1997) and computational techniques (Cappaert & Gordon, 1998). 

Not surprisingly, it is likely that much of the disparity in the data arising from an 

exploration of the relationship between human morphology and active drag due to the 

variety of study designs and methods used in these investigations.  

Using an indirect method of calculating active drag (extrapolating the drag force 

curve to zero velocity), Clarys and associates (1978a, 1978b, 1979 & 1986) 

demonstrated little association between body form parameters and active drag force. For 

example, despite demonstrating similar passive drag values, active drag during front 

crawl swimming was found to be much lower for Olympic level compared with non-

swimmers (Physical education students). Collectively, these authors concluded that due 

to a lack of a significant relationship between body form parameters and active drag 

force, body shape exerts very little influence on the drag created when swimming. 
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Further, they stated that active drag is a consequence of changes in body shape caused 

by the movement of body segments, and is therefore largely dependant upon swimming 

technique. Kolmogorov and Duplishcheva (1992) and Kolmogorov et al. (1997) also 

concluded that individual swimming technique has a greater influence on active drag 

than body shape. This conclusion was made from data collected using the additional 

hydrodynamic body technique to estimate hydrodynamic drag across a variety of 

swimmers (varying genders and performance levels) and strokes. Although Kolmogorov 

and Duplishcheva (1992) and Kolmogorov et al. (1997) failed to statistically compare 

active drag data with anthropometric measures, they reported a non-significant 

correlation between the active and passive drag force coefficient, and a large variance in 

the active drag force coefficient between subjects. 

In contrast, Huijing et al. (1988) used the MAD-system to calculate active drag 

and found significant correlations to exist between numerous anthropometric variables 

and active drag. These variables included maximum body cross-sectional area, body 

mass, height and various body widths, lengths and circumferences. This finding was not, 

however, corroborated by Toussaint et al. (1990) who also used the MAD-system to 

quantify active drag. Their investigation differed from those conducted previously in 

that changes in active drag were investigated over a 2.5-year period. This longitudinal 

study examined the active drag of four male and nine female adolescents during 

freestyle swimming at different but constant velocities ranging between 0.8 to 1.6 m.s-1. 

Toussaint et al. (1990) found that for any given velocity, no difference in active drag 

was observed despite swimmers demonstrating an 11 % increase in height, 37 % 

increase in weight and a 16 % increase in body cross-sectional area. Significant 

increases were also observed in the length/depth, length/thickness and width-depth body 
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form ratios, indicating the swimmer’s bodies became more streamlined with age. In 

addition, only selected anthropometric parameters were found to correlate with active 

drag, although these relationships were not consistent across the different testing 

sessions.    

Toussaint et al. (1990) postulated that the lack of change in active drag over the 

duration of the study was due to a decrease in wave-making resistance. These authors 

reasoned that in accordance with Froude number theory, increased swimmer height 

resulted in a decrease in the Froude number, which subsequently resulted in decreased 

wave-making resistance. This hypothesis was supported by presenting the same drag 

data against the Froude number, which effectively corrected for the change in height. 

These new data confirmed that an increase in drag had occurred but was masked by 

changes in height. Toussaint et al. (1990) reported a 14 % improvement in swimming 

performance (~10 s reduction in average 100 m time) indicating changes in stroke 

mechanics; increased skill and streamlining ability were present. Therefore, the lack of 

change in active drag may have resulted from changes in swimming technique, as 

indicated in other investigations (Clarys, 1986; Kolmogorov & Duplishcheva, 1992, 

Kolmogorov et al., 1997; Toussaint, Beelen, et al., 1988).     

Despite investigations being conducted by numerous authors (Cappaert & 

Gordon, 1998; Clarys, 1978a, 1978b, 1979 & 1986; Huijing et al., 1988; Kolmogorov 

and Duplishcheva, 1992; Kolmogorov et al., 1997; Lowensteyn, Signorile & Glitz, 

1994; Toussaint et al., 1989; Toussaint et al., 1990), a consistent relationship between 

body form and active drag during swimming has not been established. Trends evident in 

these findings suggest swimming technique plays a greater role in active drag than body 

form measures, although this concept remains equivocal. The variety of methods used to 
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determine active drag is likely to have contributed to the disparity in findings. In 

keeping with the findings presented for passive drag, the majority of investigations 

examining the relationship between body form and active drag have been conducted 

predominantly during stroking, and at the water surface. Subsequently, information is 

lacking regarding the affect body form has on active drag during underwater swimming 

and kicking. Further research is therefore needed in this area.    

Underwater kicking and freestyle turns   

While research into turns can be dated back to the 1950s (King & Irwin, 1957), 

this area of study has progressed marginally in comparison to the volume of research 

that has investigated aspects of stroking. Blanksby (1999) cited difficulty in measuring 

key variables underwater, the lack of underwater viewing windows and an absence of 

underwater force platforms as probable reasons for this dearth of inquiry. However, 

technological advancements, in conjunction with several authors highlighting the 

importance of turns in overall swim performance (Maglischo, 1993; Thayer & Hay, 

1984), has resulted in greater interest and the steady development of turning research. 

One aspect of swimming turns that remains relatively unexplored is the underwater kick 

phase in freestyle swimming. Despite some researchers focusing on underwater kicking, 

determination of optimal underwater kicking strategies and techniques for use during 

freestyle turns remains equivocal.    

Early swim kicking studies were conducted at the water surface and by either 

isolating the kick or from within whole stroke swimming (Alley, 1952; Barthels & 

Adrian, 1971; Bucher, 1975; Cavill, 1973; Jensen & McIlwain, 1979; Kelly, 1973; 

Sheeran 1980; Ungerechts, 1983a). Application of the findings from within-stroke 
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kicking studies to the present work is potentially limited due to the arm stroke often 

governing the kick rate and amplitude. Similarly, application of the findings from 

surface kicking-only studies to the current investigation is likely to be limited due to 

altered hydrodynamic effects. That is, variations in drag due to increased wave 

resistance generated at the surface (Hertel, 1966; Larsen et al, 1981; Lyttle et al, 1998) 

and an inability to apply propulsive force when the feet break the water surface are 

likely to restrict the relevance of findings to kicking underwater. In addition, provision 

of insufficient methodological and statistical detail in the published reports limits the 

validity of findings from some of these investigations. For the purpose of this review, 

reference to the results from surface and in-stroke kicking studies is therefore confined 

to those results deemed pertinent to the present investigation and are considered with 

respect to the limitations identified.  

For many years, freestyle swimmers have executed a bi-lateral, single leg 

vertical kicking action (flutter kicking) following the turn and prior to resuming the 

stroke. This kick technique represents that used during stroking and was widely 

considered to be beneficial only in bringing the swimmer to the surface where stroking 

could be resumed. Hence, little thought was given to potential propulsive benefits that 

may be obtained from the underwater kick phase following freestyle turning. As a 

consequence of the pursuit of performance excellence, two variations in underwater 

kicking styles are currently used in competitive freestyle swimming. These include 

traditional flutter kicking and prone or lateral dolphin kicking. 
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Underwater flutter kicking    

Until recently, studies investigating flutter kicking in isolation (without arm 

stroking) were performed at the water surface. Alley (1952) explored active drag effects 

from a normal and reduced amplitude flutter kick, while Thrall (1960) examined the 

effect that the size and shape of the feet, kick frequency and kick amplitude have on the 

propulsive force of flutter kicking. The methodologies used in these investigations were 

detailed earlier in this review (see Chapter 2: Active drag studies). Findings from these 

studies indicate that larger amplitude flutter kicks produce greater free-kicking velocity 

and require a smaller towing force than reduced amplitude kicks. This was evidenced at 

velocities above and below maximal free-kicking speed (Alley, 1952; Thrall, 1960). 

Thrall (1960) used the addition of fins to increase the effective size of the feet and found 

a mean increase in mean free-kicking velocity and the effective propulsive force of the 

kick.  

Fujiwara and Ogita (1997) investigated of the effect of foot frontal area and 

lower limb flexibility on maximal effort flutter kicking undertaken at the water surface. 

Their findings support those of Thrall (1960) in that foot frontal area was highly 

correlated with distance per stroke (kick) and swimming velocity (Fujiwara & Ogita, 

1997). On the contrary, no relationships were found between knee angle and ankle 

extension with stroke rate, distance per stroke and kicking velocity. Fujiwara and Ogita 

(1997) concluded that during surface flutter kicking, larger foot frontal area would 

induce a higher propelling efficiency compared to increasing the flexibility of the lower 

limbs. 

It is not known how applicable the findings from Alley (1952), Thrall (1960) and 

Fujiwara & Ogita (1997) are to underwater swimming. This is due, in part, to the 
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hydrodynamic differences between surface and underwater swimming, and lack of 

studies examining underwater flutter kicking. As described earlier, Lyttle et al. (2000) 

examined the active drag experienced during underwater kicking from a variety of 

kicking techniques that included prone flutter kicking. All kicking trials were performed 

with maximal effort, although no limitation was placed on the amplitude or frequency of 

the kicks. A towing net force benefit (indicating that swimmers created less active drag 

when kicking than during streamline gliding) was shown during the prone flutter 

kicking at velocities up to 2.2 m.s-1. This indicated that swimmers created less active 

drag when kicking than during streamline gliding at the same velocity. Despite not 

measuring maximal free-kicking velocities, 2.2 m.s-1 appears in excess of the velocity 

any swimmer could achieve from underwater kicking only. Hence, this finding concurs 

with the earlier described surface kicking studies (Alley, 1952; Thrall, 1960) and 

indicates that positive benefits can be obtained when flutter kicking above maximal 

free-kicking velocities.  

There is an obvious lack of published research in the area of underwater flutter 

kicking kinematics. Although it appears clear that kick frequency and amplitude affect 

surface kick velocity, their effect on underwater flutter kicking is not known. Therefore, 

closer examination of underwater flutter kicking kinematics is essential to determine 

optimal underwater kicking technique. This knowledge could then be applied to the kick 

phase following turns and lead to improved turn performance. 

Underwater undulatory swimming (dolphin kicking)    

Surprisingly, the introduction of underwater dolphin kicking to freestyle turns 

evolved from changes to backstroke starts and turn technique. This modification to 
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backstroke swimming reached an extreme level at the Seoul Olympics in 1988 where 

significantly faster times resulted from the use of an underwater undulatory swimming 

(UUS) motion, prior to surfacing following the start and turns. Despite modification to 

the rules of swimming by FINA restricting the maximum underwater swimming 

distance following starts and turns to 15 m for all strokes, this distance is anecdotally 

considered adequate for swimmers to gain an advantage (Arellano et al., 2000). It is now 

widely known that UUS, also referred to in swimming as underwater dolphin kicking, 

enables many swimmers to maintain velocity equal to or greater than that of backstroke. 

Further, Vorontsov and Rumyantsev (2000) claim underwater kicking is, at the least, no 

slower than surface stroking, whereas UUS has been reported to possibly be the second 

fastest stroke to freestyle (Blanksby, 1999). Despite anecdotal evidence supporting the 

use of UUS following starts and turns, this area of human swimming has only recently 

gained attention from researchers.  

Underwater undulatory swimming in aquatic animals 

Pelagic fish research indicates that a transverse wave progressing along the body 

from head to tail is the most effective swimming movement, almost entirely regardless 

of shape or size (Wu, 1971). Consequently, numerous attempts have been made to 

determine the mechanisms of propulsion from this undulatory swimming technique. 

Any active swimming body propels itself by transferring momentum from their moving 

parts to the surrounding water, while the rate of transfer of momentum determines the 

amount of thrust generated (Ungerechts et al., 1998). When some fish perform 

undulatory swimming, water masses are set into rotation from the heaving and pitching 

of the body and caudal fin (fluke in dolphins). These rotating masses of water are known 

as vortices (Arellano et al., 2000; Ungerechts et al, 1998; Ungerechts et al., 1999). A 



Chapter 2: Literature Review 

 96 

schematic representation of vortex generation relative to a swimming dolphin is 

presented in Figure 2.6.  

 

Figure 2.6. Wake of swimming dolphin with vortices (from Ungerechts et al., 1998, 
p. 4).  

Numerous authors have described varying theories on the production of thrust 

from vortex generation (Arellano, 1999; Arellano et al., 2000; Colman et al., 1998; 

Colwin, 1984; Triantafyllou & Triantafyllou, 1995; Ungerechts et al, 1998; Ungerechts 

et al., 1999; Ungerechts, Persyn & Colman, 2000; Videler, 1993). Ostensibly, thrust is 

obtained by either cancelling out the vortex rotation at each fluke reversal point or by 

the creation of a propulsive jet from a combination of clockwise and counter clockwise 

vortices (Ungerechts et al., 1998).   

Ungerechts et al. (1998) stated that the kinetic energy of a vortex is dependent on 

the mass of water and the square of the velocity of the rotating water. Hence, it can be 

postulated that larger and more rapid undulatory movements should produce greater 

transfer of energy into vortices and therefore, increased swimming velocity. Aspects of 

this theory have been investigated and supported in aquatic animal research. For 

example, fish species that swim with lateral undulations almost universally increase tail-

beat frequency as swimming velocity increases (Jayne & Lauder, 1995). Similarly, 

dolphin swimming velocity increases with increased vertical tail-beat frequency 

(Ungerechts et al., 1998).   
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Various techniques have been used to examine the relationships between 

undulatory swimming and swimming velocity in certain aquatic animal species. Videler 

and Kamermans (1985) reported a dimensionless expression for velocity in terms of 

body lengths per tail beat period (L/T) and used this value for inter-specific comparison 

of swimming performance between species. They found that dolphins, which advance 

approximately 0.9 body lengths per tail-beat (L/T), swim with higher efficiency 

compared with the performance of other fish species (Mackerel, 0.8 L/T; Trout, 0.6 L/T; 

Eel, 0.55 L/T).  

Similarly, a dimensionless Strouhal number that represents the ratio of unsteady 

and steady motion has been applied to UUS. The Strouhal number represents the time 

taken for a water particle to traverse the length of the body with respect to the time to 

complete one cycle, and is defined by the equation:  

S = f L / u 

Where S is the Strouhal number, f is the cycle frequency, L is the characteristic 

length and u is the velocity (Ungerechts et al., 1998).  

Videler and Kamermans (1985) examined the differences between the up-stroke 

and down-stroke in slow swimming dolphins. It was found that the down-stroke 

generates more propulsive thrust than the up-stroke. The authors attributed this finding 

to increased drag on the body during the up-stroke. However, they postulated that thrust 

from the up- and down-strokes would become more balanced at higher velocity. Further, 

Videler and Kamermans (1985) found the up-stroke and down-stroke for dolphins 

swimming at slow velocity to be equal in duration. This finding was in contrast to 

earlier dolphin research that found the up-stroke to be performed more quickly than the 
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down stroke (Purves, 1963, as cited in Ungerechts, 1983a; Ungerechts, 1983b). 

Comparison of findings between these investigations is limited, however, due to 

insufficient detail being presented in the published reports regarding swimming speed.  

Ungerechts et al. (1998) noted that although dolphin swimming velocity 

increases with tail beat frequency, tail beat amplitude and frequency are independent. 

They reported dolphin tail beat amplitudes do not exceed greater than 25 % of total body 

length. Tests on other fish species indicate average specific amplitudes (kick 

amplitude/body length) represent values approximating 0.2 or 20 % (Hertel, 1966). This 

suggests optimal kick amplitudes exist for certain aquatic animals that swim with an 

undulatory motion.   

Underwater undulatory swimming in humans 

As for flutter kicking, studies investigating dolphin kicking in isolation (without 

arm stroking) were first performed at the water surface. Barthels and Adrian (1971) 

investigated slow and maximal surface dolphin kicking as performed by four university 

level swimmers using a combination of electrogoniometry and electromyography 

(EMG). Hip, knee and ankle flexion and extension patterns were recorded 

simultaneously with each of three pairs of lower extremity antagonistic muscles: rectus 

abdominis and lumbar erector spinae; rectus femoris and biceps femoris; and tibialis 

anterior and medial gastrocnemius. Although the analysis was confined to descriptive 

interpretation, the authors noted that greater joint amplitudes were synonymous with the 

increase in velocity from slow to sprint kicking. However, they noted kick frequency 

appeared to affect velocity more than hip, knee and ankle joint amplitudes. On the basis 

of muscle activity patterns recorded in the lower leg, Barthels and Adrian (1971) 
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concluded that the development of greater ankle plantar flexion capacity appears to 

contribute more to increasing movement velocities while dolphin kicking than lower leg 

strength development.   

Jensen and McIlwain (1979) modelled lower extremity forces during dolphin 

kicking from the performances of two international calibre swimmers. Joint moments of 

force were estimated from hip, knee and ankle displacement data that were obtained 

from film analysis of the dolphin kicking trials. Analyses were also confined to 

descriptive interpretation, while kick amplitude and frequency, velocity, and position 

relative to the surface (on or below) were not reported. Examination of the up-stroke 

and down-stroke joint moment curves indicated the existence of a co-ordinated timing 

pattern that followed a sequence from hip to knee to ankle (Jensen & McIlwain, 1979). 

Jensen and McIlwain (1979) concluded that reaction forces provide propulsion for the 

swimmer during the down-stroke, as evidenced by an increase in forward velocity, and 

resistance during the up-stroke.  

The quantum of research published by biologists on the mechanics of fish 

motion is much greater than that reported on human swimming (Videler, 1993). Given 

that many aquatic animals display morphological and functional attributes that appear to 

refect the optimal design characteristics required for movement through water, it is 

believed that investigation of their form and movement may provide information to 

inform the development of strategies to improve the efficiency of human swimming 

(Lyttle, 1999; Ungerechts et al., 1998). Ungerechts (1983a, 1983b, 1985 & 1987) and 

Ungerechts et al. (1998) have led the way in applying aquatic animal movement 

mechanics to human swimming. During the early 1980s, Ungerechts (1983a) compared 

the undulatory movement patterns of the rear body parts of dolphins and dolphin kicking 



Chapter 2: Literature Review 

 100 

during butterfly swimming in humans. Human up-stroke and down-stroke dolphin kick 

amplitudes and the duration for the up- and down-strokes were found to be statistically 

similar. Conversely, the duration for the up-stroke in dolphins was significantly faster 

than the down-stroke. The faster up-stroke observed in dolphins was considered most 

likely due to the substantially greater muscle masses used in the up-stroke than those 

involved in the down-stroke. Furthermore, Ungerechts (1983a) postulated that a 

powerful down stroke might risk the uptake of air bubbles and prove less hydro-

dynamically favourable.  

The tail and lower leg movement frequencies were similar for both dolphins and 

humans (Ungerechts, 1983a). Despite this, the up-stroke of the dolphin fluke was 

performed significantly faster than the up-stroke of the swimmer’s feet, at equal 

movement velocities (Ungerechts, 1983a). Notwithstanding anatomical differences, 

direct comparison of undulatory movements of the two species is compromised in this 

study because the up- and down-stroke durations in the human swimmers would 

invariably have been constrained by the timing and role of counterbalancing force 

generation of the butterfly arm stroke.  

Following continued research on dolphin swimming, Ungerechts et al. (1998) 

presented a review paper, which applied the hydrodynamics of fish swimming to human 

swimming. The authors stated that despite obvious differences in body form, all fast 

swimming vertebrates prefer oscillation of the tail and the phase coupling of heaving 

and pitching of semi-lunate shaped flukes and suggest human swimmers should also 

adopt this motion during swimming (Ungerechts et al., 1998). Moreover, they support 

the use of undulatory motion principles and emphasised the need for increased swimmer 

flexibility, especially in the ankle. In addition, Ungerechts et al. (1998) noted a human 
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swimmer has less ability to set water into rotation than dolphins (due to the shape of 

their feet and ankles). They suggested that human swimmers can increase the amount of 

water set into rotation by using a whip-like action to emphasize the reversal action of the 

kick thereby incorporating the principles associated with phase coupling of heaving and 

pitching. Specifically, increased ankle flexibility is thought to cause a larger phase shift 

between the motion of the shank and foot, which produces greater rotational momentum 

(Ungerechts, 1987). 

There are relatively few investigations examining UUS in humans. Shimonagata, 

Taguchi and Taba (1997) investigated the wave motions during underwater dolphin 

kicking by seven skilled and two unskilled butterfly swimmers. Each subject performed 

underwater dolphin kicking at three subjective velocities (fast, medium and slow) during 

which, muscle activation (seven selected muscles) was recorded via EMG and video 

images were captured using underwater video (60 Hz). Shimonagata et al. (1997) 

reported swimming velocities ranging between 1.06 m.s-1 to 1.65 m.s-1 for the skilled 

swimmers and from 0.53 m.s-1 to 0.70 m.s-1 for the unskilled swimmers. However, the 

kicking depth was not specified. Based on previous drag research (Hertel, 1966; Lyttle 

et al., 1998) depth may have affected the resistive drag and subsequent swim velocities 

between trials and swimmers. Skilled swimmer hand-to-ankle phase analysis and 

muscle activation patterns demonstrated a harmonic wave action that moved across the 

entire length of the body. Conversely, the unskilled swimmers demonstrated a 

constrained motion and failed to transfer oscillations from hand to hip. No relationship 

between kick amplitude and velocity was reported. 

One emerging area of study into human UUS has been developed in competitive 

fin-swimming (Baly, Favier, Durey & Berton, 2002; Colman et al., 1998; Gautier, Baly, 
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Zanone & Waiter, 2004; Luk, Hong, Chu & Li, 1999; Tamura, Nakazawa, Sugiyama, 

Nomura & Torii, 2002; Zamparo, Prendergast, Termin & Minetti, 2002). Fin-swimming 

is a sport of speed usually practiced on or under the water surface, in which performance 

is based on whole-body oscillations while wearing a mono or pair of large fins (Gautier 

et al., 2004). Experienced human swimmers fitted with masks and fins have 

demonstrated a constant stride length (body lengths per tail beat) of 0.5 L/T, while 

swimming at various velocities underwater (Videler & Kamermans, 1985). Colman et 

al. (1998) analysed the movement of one international level swimmer performing sub-

maximal UUS with and without fins. Estimation of the mass of water added to the 

swimmer’s mass was determined using a dye visualisation system. Acceleration of the 

total body centre of mass (CMglobal) was observed during the kick down-stroke and at 

the end of the kick up-stroke (Colman et al., 1998). The authors hypothesised that the 

even velocity of the CMglobal could explain why flexible butterfly swimmers demonstrate 

faster swimming when kicking below the water surface than during the stroke. Research 

by Luk et al. (1999) also demonstrated peak horizontal velocity of the CMglobal to 

coincide with maximum downward velocity of the fin during underwater undulatory fin-

swimming. Notably, the different kick frequencies and amplitudes used in fin-

swimming are likely to bear little application to UUS without fins due to the significant 

increase in surface area and the greater flexibility demonstrated by the dolphin-like fluke 

(fin).  

Recently, Arellano et al. (2000) used a comparative approach to determine 

critical kinematic elements of UUS by examining the performance differences between 

different levels of swimmers. Nineteen (12 male, 7 female) internationally ranked senior 

and junior swimmers and 13 (7 male, 6 female) national age-group swimmers each 
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performed two trials of maximal UUS, over a distance of 15 m. Data were obtained for 

more than 7.5 m from wall push-off to ensure the velocity of the body was obtained via 

swimming propulsion only. Trials were also performed at a depth of 0.5 m deep and no 

restriction was placed on the kick amplitude. Numerous kinematic measures were 

obtained via a 2D analysis of recorded underwater video images (50 Hz) to facilitate 

comparison between the groups.  

For all swimmers, horizontal velocity of the CM was observed to increase during 

the down-stroke with maximal values occurring prior to completion of this movement 

phase (Arellano et al., 2000). This finding is in agreement with previous underwater 

undulatory fin-swimming (Colman et al., 1998; Luk et al., 1999) and animal UUS 

studies (Videler & Kamermans, 1985). With the exception of mean vertical velocity of 

the CM and kick amplitude, correlation analysis within the international level subject 

group demonstrated significant relationships between the mean velocity of the CM and 

all other velocity measures; kick horizontal displacement and the maximum knee 

flexion angle.  This finding suggests kick amplitude is unrelated to UUS velocity and 

contrasts with the findings from surface dolphin (Barthels & Adrian, 1971) and fluter 

kicking studies (Alley, 1952; Thrall, 1960).  

Comparative analysis between groups indicated that for a full kick cycle (one 

consecutive up- and down-stroke) the international level swimmers demonstrated 

significantly higher mean horizontal velocities for the centre of mass, hip and toe 

(Arellano et al., 2000). In addition, the international group performed with significantly 

higher kick frequency, maximal knee flexion, and kick amplitude per horizontal 

distance (amplitude/horizontal displacement of the kick).  Kick amplitudes, however, 

were not significantly different between the groups despite the international group being 
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taller. When normalised for height, Arellano et al. (2000) found the percentage of kick 

amplitude related to body heights were 34.31 % and 36.58 % for the international and 

national groups, respectively. This indicates that relative to their height, the national 

group kicked with larger amplitude while swimming significantly slower. This finding 

and the fact that dolphin tail beat amplitudes do not exceed 25 % of their body length 

(Ungerechts et al., 1998) suggest that optimal underwater kicking amplitudes may exist 

for human UUS.  

Limitations of the study design used by Arellano et al. (2000) restrict the ability 

to utilise their data in the determination of optimal UUS technique. That is, the 

identification of critical technique characteristics is limited due to morphological and 

other likely differences between the subject groups. Consequently, performance 

comparison was likely to favour the taller (Larsen et al., 1981; Toussaint et al., 1990), 

older and most likely heavier and stronger international swimmers and therefore, not 

necessarily reflect a more ideal technique. For this reason, future UUS studies should 

examine relatively homogeneous subject populations.  

More recently, Arellano, Pardillo & Gavilan (2003) investigated the usefulness 

of an adapted Strouhal number in evaluating human underwater undulatory swimming.  

The equation for the adapted Strouhal number is: 

StN = Ap – p f / U 

Where StN is the Strouhal number, Ap – p is the tail-beat peak-to-peak amplitude 

(the distance from the peak of the tail fluke up-stroke to the peak of the down-stroke), f 

the stroke frequency (Hz) and U the swimming velocity (Fish & Rohr, 1999, as cited in 

Arellano et al., 2003). 
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Nineteen (12 male, 7 female) international and 13 (7 male, 6 female) national 

age-group swimmers were examined performing two 15 m maximal effort UUS sprints 

at a minimum depth of 1 m. The kinematic variables used in the analysis included the 

velocity of the CM and feet, kick frequency, amplitude and horizontal length, and 

calculated Strouhal numbers. All analysed variables showed significant differences 

(p<0.01) between both groups except for kick amplitude (Arellano et al., 2003). 

Arellano et al. (2003) reported better swimmers to have lower Strouhal numbers and 

significantly higher velocities of the CM, despite both groups using similar amplitude 

kicks. The lower Strouhal numbers observed for the better underwater undulatory 

swimmers is not unexpected given that performance improvement would result in an 

increase to the equation denominator (velocity), which in turn has a lowering effect on 

the Strouhal number. Hence, for this purpose, Strouhal numbers simply indicate UUS 

efficiency and do not provide insight into optimal UUS technique.  

Most recently, Lyttle and Keys (2004) sought to discriminate between large 

amplitude, slow underwater dolphin kicking and small amplitude, fast underwater 

dolphin kicking using computational fluid dynamics (CFD).  Data input into the CFD 

model was performed using kinematic information obtained from one elite male 

swimmer performing each of the two kicking patterns and from accurately mapping 

(3D) the swimmer’s body shape using a Cyberware WBX whole body laser scanner. 

Pilot testing indicated the CFD model provides valid and reliable results that are in 

agreement with previous empirical testing of passive drag. Comprehensive results of the 

dynamic CFD modelling and comparisons are still to be published (Lyttle & Keys, 

2004).   
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Flutter kicking vs. dolphin kicking 

Despite a recent increase in research investigating freestyle turns and underwater 

kicking techniques, only one study was found in the literature that directly compared 

flutter and dolphin kicking kinematics (Sheeran, 1980). Sheeran (1980) examined the 

range of motion in the knee and ankle articulations of 14 male university level 

swimmers during performance of the front flutter, back flutter and dolphin kicking 

techniques. Waterproofed electrogoniometers were attached to the knee and ankle of 

each swimmer to measure the range, maximum flexion, maximum extension and the 

mean mid-point of the range. Other methodological details were not detailed fully and 

therefore it was not possible to determine factors such as the kicking velocity and kick 

position relative to the surface (on or under).  

For the knee joint, dolphin kicking produced significantly (p<0.05) larger range 

and degree of maximum flexion than during flutter kicking (Sheeran, 1980). At the 

ankle, no significant difference was observed between the kick styles despite the dolphin 

kicking trials producing a considerably larger range (13 %), and greater flexion and 

extension maximums. Unfortunately, this investigation described the differences in joint 

kinematics only and therefore, conclusion cannot be drawn regarding the superior 

kicking technique with respect to velocity.  

As discussed previously, Lyttle et al. (2000) compared the relative merits of 

underwater flutter and dolphin kicking during active towing. This investigation 

demonstrated that neither kick style had a significant advantage over the other, although 

there was a trend for the dolphin kick to consistently produce lower net towing forces 

(Lyttle et al., 2000). During this investigation participants were instructed to kick 

maximally without limitation placed on kick amplitude or frequency. As no kinematic 
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analysis was applied to the individual kicking techniques used, the effect that variations 

in kick style have on net towing force remains unknown.  

In conclusion, no study was found in the literatures that have directly compared 

the use of flutter and dolphin-kicking during freestyle turn performance. Moreover, 

comparative kicking studies reported to date are nominal and lack detailed kinematic 

analysis (Lyttle et al., 2000; Sheeran, 1980). Therefore, as a consequence of this 

shortfall, comparison of underwater flutter and dolphin kicking is one area in need of 

greater attention from researchers in order to empirically determine the superior 

underwater kick method.  

Review summary 

Performance in competitive swimming is measured by total race time and is 

made up of the sum of the times taken starting, stroking and turning. Therefore, gains or 

loses in either of these three race components can significantly affect a swimmer’s 

performance. In the freestyle turn there are chances to improve performance through 

maximising wall contact and reducing drag throughout the push-off and glide phase 

(Lyttle & Benjanuvatra, 2004; Sanders & Byatt-Smith, 2003). In addition, minimising 

drag and optimising propulsion during the underwater kicking phase, prior to stroke 

resumption, could achieve performance improvements. However, a comparative lack of 

studies investigating underwater kicking techniques, specific to turn exits, means there 

is limited scientific evidence upon which underwater kick selection and technique can 

be based.  

Methods of defining and subsequently quantifying turn performance were found 

to vary within the literature. Differences in the definition of the commencement and 
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completion of the turn bring about this variation. Fixed arbitrary distances appear to be 

the preferred method for measuring turns as they provide an objective measure of turn 

performance, suitable for comparing variations in turning techniques. The set distances 

of 5 m in and 5 m out (5 m round trip time) have been used most commonly in recent 

investigations (Blanksby et al., 1998; Blanksby et al., 2004; Blanksby, Gathercole et al., 

1996; Lyttle et al., 1999; Takahashi, Sakata et al., 1983). Despite a growing body of 

knowledge pertaining to this area of interest, the majority of freestyle turn investigations 

have focussed predominantly on total turn time comparisons and describing the kinetics 

of wall contact.  

Various authors highlight the importance of optimal force applied to the wall 

during turns (Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson et al, 1996; 

Lyttle et al., 1999) and the need to reduce deleterious drag during the streamlined glide 

following push-off from the turn (Lyttle & Benjanuvatra, 2004; Sanders & Byatt-Smith, 

2003). Specifically, higher push-off velocities from freestyle turns are achievable when 

combinations of low peak drag force; high peak propulsive force and an increased wall 

push-off time are optimised (Lyttle et al., 1999). However, empirical data of 3D forces 

in freestyle turns are lacking across all swimming proficiencies and warrant further 

investigation. Although it is apparent from the literature that several kinematic 

parameters play critical roles in turn performance, a comprehensive body of knowledge 

pertaining to turn kinematics is yet to be established. Therefore, further investigations 

examining turn kinematics are required to conclusively quantify critical elements of 

freestyle turn performance.  

The effect of hydrodynamic factors upon swimming turn proficiency has 

received little attention from investigators despite the importance of streamlining during 
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and after wall push-off. Although some conflict exists between findings, previous 

measurements of passive drag indicate that body position, glide depth and glide velocity 

affect the magnitude of the resistance (Benjanuvatra et al., 2002; Clarys & Jiskoot, 

1975; di Prampero et al., 1974; Lyttle et al., 1998; Maiello et al., 1998). In particular, 

passive drag decreases with greater glide depth to 0.4 m deep, after which significant 

reduction in drag is not found (Lyttle et al., 1998). Active drag values measured during 

swimming have yielded inconsistent findings across investigations. Trends in the results 

suggest swimming technique plays a greater role in active drag than body form measures 

(Clarys, 1986; Kolmogorov & Duplishcheva, 1992, Kolmogorov et al., 1997; Toussaint, 

de Groot et al., 1988), although this concept remains equivocal. Few investigations are 

known to report the active drag created during kicking only. Consequently, findings are 

inconclusive and further examination of active drag during kicking is required.    

The current body of scientific knowledge regarding optimal underwater kicking 

style and technique is insufficient to enable specific conclusions to be drawn. 

Subsequently, swimmers in elite competition currently use a large range of underwater 

turning strategies with very little scientific rationale applied in their selection (Lyttle & 

Keys, 2004). Research indicates that undulatory swimming is most efficient for certain 

species of aquatic animal (Wu, 1971) and that swimming velocity increases with 

increased tail beat frequency (Jayne & Lauder, 1995; Ungerechts et al., 1998). 

Furthermore, tests indicate that tail beat amplitudes do not exceed greater than 25 % of 

total body length for dolphins and kick amplitude/body length ratios average 

approximately 20 % in other fish species (Hertel, 1966). It is apparent from limited 

research conducted into swimming kicking that kick amplitude, kick frequency and 

ankle flexibility are related to kick velocity (Alley, 1952; Barthels & Adrian, 1971; 
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Thrall, 1960; Ungerechts et al., 1998). However, optimal kicking amplitudes and 

frequencies for underwater kicking are yet to be elucidated. In addition, the relationships 

between anthropometry and underwater kicking proficiency are not clear. Hence, there 

exists a need to examine and compare technique related kinematics between underwater 

swimming styles so that factors contributing to optimal underwater kicking may be 

elucidated. Moreover, a need exists to explore underwater flutter and dolphin kick 

kinematics at speeds representing those velocities experienced following wall push-off 

during turning.   

By investigating the use of flutter and dolphin kicking following the turn and 

underwater kicking across a range of velocities, deficiencies in current knowledge will 

be addressed. Clearer understanding of the relative merit of each underwater kick style 

will therefore enable coaches and swimmers to select and refine turn wall-exit technique 

to improve freestyle turn times.   
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Chapter 3 
Study 1: Traditional and Modified 

Freestyle Tumble Turns by 
Age-Group Swimmers 

Modified manuscript of 
“A comparison and analysis of traditional and modified  

freestyle tumble turns by age-group swimmers” 
Journal of Human Movement Studies, 38(2), 93-108. (2000). 

Introduction 

Improved training methods, increased international competition and 

biomechanical improvements of strokes, starts and turns have all contributed to 

improved swimming performance over time. In addition, advances in equipment 

technology and facility design that have enhanced methods of measuring performance 

and improved the swimming environment have also contributed to improved swimming 

performances, respectively. Underwater force plates, windows for obtaining underwater 

video, wave reducing lane ropes and deck level pools of greater depth are examples of 

this. Furthermore, rule changes, such as the new backstroke turn where less distance is 

swum and decreased wave drag caused by the head submerging in breaststroke, have 

also caused reductions in swim times. One technique development is the modification of 

the freestyle tumble turn to incorporate underwater dolphin kicks after the start and 

following each turn in order to improve swimming performance. 
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Maglischo (1993) estimated that improving turns can decrease a sprint race time 

by at least 0.2 s per pool length and that greater improvements in race time could occur 

in longer races where more turns are involved. Despite their importance to overall 

swimming performance, there is limited research directed to swimming turns. Limited 

availability of underwater force platforms and technical difficulties associated with high 

speed film analysis, which gather kinetic and kinematic data in water respectively, are 

considered the major factors which have limited research in this area (Blanksby, 

Gathercole et al., 1996; Hay, 1988). 

All swimming turns are comprised of the transfer from normal stroking during 

the wall approach (time-in), the time spent actually turning and the time from push-off 

to normal stroking resumption (time-out). Time-out can be minimised by increasing the 

impulse applied to the wall during push-off (Blanksby, Hodgkinson et al., 1996; Chow 

et al., 1984; Lyttle et al., 1999; Nicol & Kruger, 1979; Takahashi, Yoshida et al., 1983), 

and by minimising resistive drag during the glide (Maglischo, 1993). Blanksby, 

Gathercole et al. (1996) emphasised the need to maintain a streamlined position for an 

appropriate length of time to optimally utilise the velocity off the wall and ensure a 

smooth transition from the glide to the commencement of stroking. Blanksby, 

Gathercole et al. (1996) also stated that it was an advantage to have more extended 

lower limbs (greater tuck index), decreased wall contact time, high peak force on the 

wall and to optimise the push off glide in decreasing turn times. 

Modifications have been made to the backstroke start and these were 

demonstrated to extreme at the Seoul Olympics in 1988 where a swimmer travelled 

most of the first length underwater and broke a world record. Significantly faster times 

were produced due to the utilisation of underwater dolphin kicking prior to surfacing 
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and resuming backstroke swimming. Subsequent modifications to the rules of 

backstroke by FINA (Federation Internationale De Natation Amateur) have resulted in 

the distance that this technique may be performed underwater being reduced to 15 m. A 

similar change was made to freestyle starts and turns by FINA at a technical conference 

held on the 5th January 1998. This change stated that the head of the swimmer must 

break the surface of the water not more than 15 m after the start and each turn. Despite 

restrictions placed on the distance travelled underwater during freestyle, the use of 

underwater dolphin kicking following the turn is within the rules of the stroke.  

The concept underlying the modification of the freestyle turn by dolphin kicking 

underwater is to increase propulsion without undue resistance in the period between 

rapid acceleration from the push-off the wall and the subsequent ‘break out’ into the 

stroke resumption. With turning comprising a large proportion of some freestyle races, 

the potential time gain from modifications to the turn can be appreciable. Research to 

date has not verified whether freestyle tumble turns which incorporate underwater 

dolphin kicks off the wall improve turn performance over that achieved from the 

traditional freestyle turns in which flutter kicking is used. Despite many swimmers using 

underwater dolphin kicking when exiting the wall in freestyle races, the use of 

underwater dolphin kicking as a superior method of exiting from the turn is yet to be 

empirically demonstrated. Hence, the purpose of this study was to compare the 

biomechanical and performance characteristics of a modified freestyle tumble turn 

which used a dolphin kick off the wall with the traditional freestyle turn that 

incorporates a flutter kick off the wall, in age-group swimmers.  
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Methodology 

Sample 

This study used male and female age group competitors from the UniSwim club 

at the University of Western Australia. The group comprised 20 males of mean height 

(±SD), 152.9 ± 10.5 cm; mass, 43.05 ± 8.9 kg; and age, 11.2 ± 1.3 yrs; and 17 females 

of mean height, 154.4 ± 9.09 cm; mass, 41.9 ± 7.8 kg; and age, 11.4 ± 1.3 yrs. The 

subjects who volunteered regularly participated in swimming training for three sessions, 

each of 1.5 hours duration, per week. The mean 50 m short course freestyle swim time 

for this group was recorded to be 40.69 ± 3.62 s.   

Data Collection 

Approval from the University of Ballarat and the University of Western 

Australia Human Research Ethics Committees and informed consent from all 

participants was obtained prior to commencement of the investigation. The warm up 

preceding the 50 m swim test trials consisted of a 200 m freestyle swim followed by 3 x 

50m freestyle swims. In addition, two to three practice turns were carried out on the 

force plate to ensure familiarity. Data were collected from groups of eight swimmers 

with each swimmer performing 4 x 50 m maximal freestyle efforts from a push start on 

a 6-min departure interval in a 25 m pool. Subjects were randomly assigned which turn 

type to attempt (flutter kick or dolphin kick) for their first two test trials and then 

completed the remaining two test trials with the alternate variation. Practise trials were 

deliberately excluded from the warm-up to obtain performance data relative to each 

swimmer’s current ability at each turn type. The test trial 50 m swim times were hand 

timed and video images of all subjects were recorded and stored for analysis. Absolute 
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peak forces (XYZ) and wall contact times (WCT) were calculated from data obtained 

via an underwater force plate. 

Supplementary 25 m flutter kick and dolphin kick time trial tests were 

administered to 22 of the 37 participating subjects. These subjects performed one 

dolphin kick and one flutter kick time trial at maximum velocity on their front, arms 

fully extended while holding a kickboard with the chin remaining at water level. Kick 

order was randomly assigned and hand held stopwatches were used to record the 25 m 

times. This was carried out to investigate whether swimmers were more proficient at 

dolphin or flutter kicking. 

Instrumentation 

A Kistler (Type 9253A11) waterproof force plate (600 mm length x 400 mm 

width x 140 mm thick), was mounted vertically at the pool end to measure the forces (X 

= horizontal, Y = vertical, Z = perpendicular to the wall) generated by the swimmers on 

the wall. The plate was positioned in the centre of the lane at water level and reached 

below the surface to a depth of 600 mm. Force was sampled at 200 Hz and the signals 

were sent via an 8 channel Kistler amplifier (Type 9861A) and stored for analysis via an 

AP30 software system (Pearce, 1996).  

A National Panasonic M4 S-VHS video camera was fitted with a Vivitar 0.42x 

ultra wide-angle lens and positioned in a viewing window 10.5 m lateral to the 

swimmer’s approach to the wall and 5 m distant from the turning end of the pool. An 

exposure time of 1000.s-1 was used with the camera set to record at 25 frames.s-1 with 

the images viewed at 50 fields.s-1. All video images were passed through a For.A VTG-

33 video timer where digital numbering was imprinted before being recorded on a 
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Panasonic VCR (model AG-7350-E). A 10 m horizontal scaling device was marked in 

100 mm sections and positioned 800 mm below the surface of the water. The device 

extended from the leading edge of the force plate to the 10 m mark (see Figure 3.1). The 

10 m scale reference allowed the position of the subject image to be referenced to the 

position of the scale in the same area as the image, thus negating possible image 

distortions from use of a wide angle lens. 

Force 
Plate

Computer

Video Camera

Scaling pole
50m 

Timing 
desk

25m

5.0m
 

Figure 3.1. Schema for equipment set-up. 

Data analysis 

This study compared two turn techniques (dolphin and flutter) using 5 m RTT as 

the criterion performance measure. Both turn techniques incorporated a considerable 

portion of swimming which is independent of the technique used. To compare the two 

turn techniques, it was also deemed necessary to examine for variation in the turning 

events preceding the initiation of kicking. The turn measures preceding the kicking 
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phase which may have varied include: average swim velocity in, WCT, peak force in the 

X, Y and Z directions, wall exit velocity and kicking resumption distance, velocity and 

time. These measures were therefore recorded for comparison between the two turn 

techniques. 

Wall contact analysis involved the calculation of absolute peak forces (N) in the 

X, Y and Z directions, and WCT (s). Determination of foot contact with the plate was 

made in accordance with the method adopted by Lyttle and Mason (1997). That is, foot 

contact was deemed to occur with sharp increases in X and Y directional forces. Peak 

force was the highest level recorded after the feet had contacted the plate while WCT 

was measured from first contact to departure of the feet from the plate. Despite some 

studies (Blanksby, Hodgkinson et al., 1996; Chow et al., 1984; Takahashi, Yoshida et 

al., 1983) showing increasing the impulse applied to the wall can reduce time out from 

the wall; impulse was not used in the present study.  

The impulse produced by a swimmer on the wall can be developed in two 

different ways; high force with larger contact time or lower force with smaller contact 

time. The contribution of force and time are often masked within the resultant impulse. 

For example, some high jumpers have demonstrated decreased time of contact with the 

ground at take-off while still producing greater impulse (Bobbert, Mackay, 

Schinkelshoek & Huijing, 1986). Importantly, Blanksby, Gathercole et al. (1996) 

reported that swimmers with faster round trip times (RTTs) demonstrated significantly 

higher peak forces and decreased WCTs. Subsequently, peak force and WCT were 

considered appropriate measures of wall contact.   
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Blanksby et al. (1998) reported an inability to eliminate a bow wave effect being 

recorded by the underwater force plate during the breaststroke turn. There is likely to be 

similar contamination of the force readings obtained in the current study, due to a bow 

wave effect during a freestyle tumble turn. It is should be noted however, that it is likely 

that the bow wave effect generated during a freestyle turn is not quite the same as that 

generated during breaststroke and butterfly. The significance of this bow wave effect in 

the present study is considered minimal due to the relative nature of comparison within 

each subject’s performance.  

A scaled grid on the video monitor screen, constructed from the image of the 10 

m underwater reference structure, enabled the calculation of distance using the vertex of 

the swimmers head as a reference. Average swim velocity was calculated while 

swimmers travelled between the 10 m and 5 m markers on the way in to the wall.  The 5 

m RTTs were calculated from the time taken for the vertex of the head to pass the 5 m 

mark on the way in and out from the wall.  Wall exit velocity, leg and arm resumption 

distances (initiation of kicking and arm stroking, respectively), leg and arm resumption 

velocities and times and the distance and time until the head surfaced were calculated 

from the underwater video. All velocities were determined over a displacement of 30 cm 

prior to the commencement of wall exit, leg and arm resumption occurring. The 

resumption of kicking was defined as the first foot movement to break from a 

streamlined position while the resumption of arm stroking was defined as the first 

downward motion of the hand. The cessation of dolphin kicking was defined as the 

moment the feet began to separate into flutter kick.  
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Statistical analyses  

The trial recording the fastest 5 m RTT while performing a tumble turn and 

flutter kick exit was chosen as the criterion turn to determine whether any gender 

differences existed. This was examined via an analysis of variance (ANOVA). The 

supplementary 25 m flutter kick and dolphin kick time trial scores were compared using 

a paired sample t-test. Further statistical analyses comprised a comparison of the swims 

that produced the fastest 5 m RTTs for the dolphin kick and flutter kick trials, within 

each subject. Summary statistics (mean, SD) for all variables were calculated for the 

entire data set. A paired-sample t-test was applied separately on each variable between 

the two turn techniques across each subject. The difference between the scores obtained 

from each subject’s two performances was calculated by subtracting the flutter kick trial 

results from the dolphin kick trial results.  

Group Means (±SD) of the fastest 33 % and the slowest 33 % dolphin kick turn 

trials using the 5 m RTT as the criterion measure were computed for all performance 

measures and the mean difference recorded. Finally, an ANOVA was carried out on the 

averages of the fastest 33 % versus the slowest 33 % dolphin kick turn trials using all 

measures. This was performed in an attempt to identify those measures that contribute to 

faster dolphin kick turns. 

Digitising a single trial 10 times was also performed to determine digitiser 

consistency. Alpha correlation coefficients were used to compare the recorded trip time 

at each of the four set distance marks (10, 7.5, 5, 2.5 m), in and out from the wall. In 

addition, separate alpha correlation coefficient analyses were performed on each of the 

grouped distance, time and velocity measures. Results from the reliability analyses 
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indicated all standardised alpha coefficients to be greater than 0.995 (refer Appendix E). 

Therefore, high digitiser consistency was demonstrated. The statistical analysis package 

SPSS (version 10.0.5, 1999) was used for all statistical data analyses. 

Results  

An ANOVA revealed no significant differences (p>0.05) for the flutter kick 5 m 

RTT between the 20 males and 17 females. Consequently, all subjects were pooled into 

one group with a sample size of 37. Comparison of the supplementary 25 m flutter kick 

and dolphin kick time trial scores using a paired sample t-test was performed to 

determine the dolphin kicking ability of the group compared to flutter kicking. Results 

from the supplementary 25 m kicking time trials revealed significant differences 

(p<0.05) between the dolphin kick (mean 30.68 ± 4.07 s) and flutter kick (mean 26.73 ± 

2.60 s) times, suggesting that subjects in the present study were less proficient at 

performing 25 m kickboard assisted dolphin kicking than flutter kicking.  

Examination of means for each subject’s dolphin and flutter kick turn trial scores 

indicated significant differences (p<0.05) in 6 of the 15 performance measures (see 

Table 3.1). For the dolphin kick, these measures were; slower 5 m RTT, greater arm 

resumption distance and time, slower arm resumption velocity, greater surface distance 

and time than during the flutter kick trials.  

An ANOVA performed on the measures of the fastest 33 % and the slowest 33 

% dolphin kick turns indicated significant differences (p<0.05) between the groups in 8 

of the 18 performance measures (see Table 3.2). For the fastest 33 %, these measures 

were: faster 5 m RTT and average swim velocity, greater peak Z force, faster wall exit, 

kick resumption and arm resumption velocities, smaller arm resumption time and 
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shorter time spent dolphin kicking. However, no significant differences were found 

between WCT, peak X and Y force, kick resumption distance and time, arm resumption 

distance, surface distance and time, the number of dolphin kicks and the distance 

travelled dolphin kicking.     

Table 3.1. Comparison of Means (± SD) for age-group swimmer variables (n=37).  

 Dolphin kick 
(n=37) 

Flutter kick 
(n=37) 

Difference 
(n=37) 

5m RTT (s) 8.53 ± 0.90 8.10 ± 0.67 0.42* 
Ave. swim velocity in (m.s-1) 1.19 ± 0.11 1.21 ± 0.09 -0.03 
WCT (s) 0.67 ± 0.21 0.62 ± 0.19 0.06 
Peak force Z (N) 564.64 ± 166.68 553.13 ± 148.85 11.51 
Peak force Y (N) 52.98 ± 27.63 52.52 ± 28.16 0.46 
Peak force X (N) 39.33 ± 14.52 40.67 ± 14.39 -1.34 
Wall exit velocity  (m.s-1) 1.84 ± 0.24 1.86 ± 0.28 -0.02 
Leg resumption distance (m)  2.36 ± 0.40 2.17 ± 0.30 0.20 
Leg resumption velocity (m.s-1) 1.38 ± 0.28 1.47 ± 0.27 -0.09 
Leg resumption time (s) 0.48 ± 0.21 0.40 ± 0.22 0.08 
Arm resumption distance (m) 3.64 ± 0.63 2.76 ± 0.61 0.88* 
Arm resumption velocity (m.s-1) 1.04 ± 0.25 1.26 ± 0.25 -0.22* 
Arm resumption time (s) 1.69 ± 0.63 0.86 ± 0.52 0.83* 
Surface distance (m) 3.66 ± 0.75 2.92 ± 0.67 0.74* 
Surface time (s) 1.66 ± 0.72 0.98 ± 0.53 0.68* 
Number of dolphin kicks 2.46 ± 1.07   
Dolphin kick distance (m) 1.57 ± 0.67   
Dolphin kick time (s) 1.46 ± 0.60   

* Denotes significant difference (p<0.05) using paired t-test. 
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Table 3.2. Comparison of group means (± SD) of the fastest 33 % dolphin kick turn 
trials and the slowest 33 % dolphin kick turn trials using 5 m RTT as the 
dependent variable. 

 Fastest 33 % Slowest 33 % Difference 

5m RTT (s) 7.59 ± 0.48 9.50 ± 0.59 -1.90* 
Ave. swim velocity in (m.s-1) 1.29 ± 0.10 1.10 ± 0.58 0.19* 
WCT (s) 0.56 ± 0.18 0.72 ± 0.21 -0.16 
Peak force Z (N) 695.83 ± 148.39 443.75 ± 55.71 252.08* 
Peak force Y (N) 62.97 ± 34.33 43.74 ± 20.54 19.25 
Peak force X (N) 44.54 ± 11.62 41.51 ± 17.20 3.03 
Wall exit velocity  (m.s-1) 1.95 ±0.25 1.70 ± 0.16 0.25* 
Leg resumption distance (m)  2.44 ± 0.41 2.28 ± 0.46 0.16 
Leg resumption velocity (m.s-1) 1.47 ± 0.24 1.17 ± 0.25 0.30* 
Leg resumption time (s) 0.44 ± 0.22 0.53 ± 0.27 -0.09 
Arm resumption distance (m) 3.77 ± 0.59 3.67 ± 0.74 0.10 
Arm resumption velocity (m.s-1) 1.21 ± 0.19 0.85 ± 0.14 0.35* 
Arm resumption time (s) 1.53 ± 0.42 2.06 ± 0.75 -0.54* 
Surface distance (m) 3.95 ± 0.66 3.56 ± 0.85 0.39 
Surface time (s) 1.65 ± 0.56 1.82 ± 0.93 -0.17 
Number of dolphin kicks 2.42 ± 0.90 2.58 ± 0.99 -0.17 
Dolphin kick distance (m) 1.59 ± 0.52 1.69 ± 0.67 -0.10 
Dolphin kick time (s) 1.29 ± 0.42 1.79 ± 0.63 -0.50* 

* Denotes significant difference (p<0.05) using an ANOVA. 

Discussion 

The supplementary 25 m flutter kick and dolphin kick time trial tests were 

administered to examine the participants’ proficiency at dolphin kicking compared with 

flutter kicking. Significant differences (p<0.05) were observed between the dolphin kick 

(mean 30.68 ± 4.07 s) and flutter kick (mean 26.73 ± 2.60 s) 25 m times. The mean 

difference of 3.95 s indicates that subjects in the present study were slower at 

performing the dolphin kick technique and are therefore less likely to perform well at a 

freestyle tumble turn using dolphin kicks off the wall. However, the validity of this test 
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is considered questionable in that the use of kick boards may have over restricted the 

movements required for good underwater kicking and therefore misrepresented 

underwater kicking proficiency.  

Little difference in average swim velocity between the dolphin kick and flutter 

kick turn trials indicated that subjects were swimming equally on approach to the turn. 

Similarly, little difference in WCT was observed between the dolphin kick and flutter 

kick turn trials (mean dolphin trial WCT = 0.06s longer). Consequently, WCT prior to 

dolphin kicking push-off did not affect peak force in the Z, Y and X directions when 

compared with their flutter kick turns. The mean peak Z force for the dolphin and flutter 

kick turns were 553.13 N and 564.64 N, respectively. No significant difference in the 

peak Z force between the techniques was shown. These peak Z force values are slightly 

lower than those reported by Blanksby, Gathercole et al. (1996) who reported mean peak 

Z force values of 693.35 N in their investigation of turning forces by age-group 

swimmers. Younger, shorter and lighter subjects used in the present study are a likely 

explanation for this variance. 

The mean peak forces in X and Y for the dolphin kick trials (40.67 N and 52.52 

N) showed no significant difference from those recorded during the flutter kick trials 

(39.33 N and 52.98 N). These figures represent approximately 5 to 10 % of peak Z 

force, indicating the majority of wall contact force was directed correctly to affect the 

change in horizontal direction. Despite the absolute values of peak force being used in 

the analysis, preliminary investigation with regard to force direction, indicated very little 

difference in the raw values of peak Y force between the dolphin and flutter kick trials. 

This indicated greater upwards force was not produced during the push-off in an attempt 

to obtain greater depth for dolphin kicking. 
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In the present study, mean WCTs for the dolphin and flutter kick trials (0.62 s 

and 0.67 s, respectively) were slightly greater than those reported by Blanksby, 

Gathercole et al. (1996) (0.58 s). The difference in WCT between studies reflects the 

slight variation in swimmer population. No difference observed in peak force and WCT 

between the dolphin kick and flutter kick turn techniques caused no difference in 

velocity after push-off between the two techniques. The resumption of kicking took 

place 0.20 m further from the wall during the dolphin kick trials. The velocity at which 

this occurred was 0.09 m.s-1 less than the flutter trials and occurred 0.08 s later. None of 

these differences were significant which further supports the notion that the two 

techniques did not significantly differ from the approach to the wall, during the turn and 

push-off, and to the resumption of kicking.  

Recent turning studies have used the 5 m RTT and the criterion measure for turn 

performance (Blanksby et al., 1998; Blanksby, Gathercole et al., 1996; Blanksby, 

Hodgkinson et al., 1996). By doing so, only the features that contribute directly to the 

turn are measured. Results in the present study reveal the subjects performing the 

dolphin kick turn had significantly slower 5 m RTTs compared with the traditional 

flutter kick turn. Subjects performing the dolphin trial recorded a mean time that was 

0.42 s slower for the 5 m RTT. Only 9 of the 37 subjects recorded faster dolphin kick 

trial 5 m RTTs. A likely explanation for the slower dolphin mean times is the 

significantly (p<0.05) slower arm resumption velocity (0.22 m.s-1) exhibited during the 

dolphin trial. This slower velocity at arm resumption was also combined with a 

significantly (p<0.05) greater arm resumption distance (0.88 m) and time (0.83 s). 

Therefore, during the dolphin trials, the swimmers travelled significantly further and for 

a longer time before commencing to stroke and their mean velocity was significantly 
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(p<0.05) slower than their flutter kick trial. Only eight of the 37 subjects resumed 

stroking during the dolphin trials at a velocity equal to or greater than their average 

swim velocity. This compares with 18 of the 37 subjects resuming stroking during the 

flutter trials at or above their average swim velocity, highlighting the need for these 

swimmers to refine this section of the race.  

Whilst dolphin kicking, it was observed that most subjects were fully submerged 

but did not execute the transition from dolphin kicking to arm stroking optimally. 

Surfacing prior to completion of dolphin kicking or commencing arm stroking prior to 

surfacing was evident among some swimmers. A lack of experience and skill at 

performing the dolphin turn technique is a probable cause. Consequently, the decreased 

horizontal velocity will increase 5 m RTT. The use of competent age-group but not high 

calibre swimmers was chosen to provide a wider variety of performance scores. It was 

hoped that this would enable clearer identification of areas contributing to good 

performance. Unfortunately, the unexpected superior flutter kicking ability and the 

inability of these swimmers to adapt quickly and with skill to the dolphin kick turn 

strategy limited the study. That is, swimmers performed better at what they were most 

familiar with: flutter-kicking turns. In addition, dolphin kicking for use during turns 

could be a difficult skill to learn and might be slowed because of confusion between 

underwater dolphin kicking and the dolphin kicking used in butterfly stroking. The 

failure of dolphin kicking to impress is evidence that the analogy of swimmers to marine 

dolphins is incorrect. Nonetheless, the wide differential of results also highlights basic 

skill deficiencies, which require coach attention and that it cannot be automatically 

assumed that the dolphin technique will be a superior swim style for this population. 
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The average distance travelled prior to surfacing (0.74 m) and the time taken to 

surface (0.68 s) also were significantly greater for dolphin kicking than in the flutter 

kick trials. This extra distance and time was not unexpected if numerous dolphin kicks 

are employed by the swimmer. As indicated, the arm resumption velocity for the 

dolphin kick trials was 0.15 m.s-1 slower than the average swim velocity. Velocity at 

arm resumption for the flutter kick trials occurred at a velocity slightly above (0.05 m.s-

1faster) the average swim velocity. It is considered essential for optimal performances 

that arm stroking is resumed when horizontal velocity is near that of average swim 

velocity following a turn (Blanksby, Gathercole et al., 1996). Therefore, these swimmers 

judged the arm resumption velocity quite successfully. The resumption of stroking 

during the dolphin trials occurred at a slower velocity than for average swimming and 

therefore contributed to the increased 5 m RTT. These swimmers spent excessive time 

dolphin kicking underwater before stroke resumption. Skill at self-selection of the 

optimal moment at which to resume swimming is important. Perhaps greater familiarity 

with the dolphin kick task would be addressed by means of a training study. 

Comparison of the differences between the fastest 33 % and slowest 33 % 

dolphin kick turn trials indicated a significant 5 m RTT difference of 1.90 s between the 

groups. The fastest 33 % recorded a mean WCT of 0.16 s less than the slowest 33 % as 

well as a significantly greater mean peak Z force (252.08 N) during push-off. Blanksby 

et al. (1998) studied the turning technique of 23 age group breaststrokers. They reported 

that 5 m RTTs decreased when peak forces off the wall were increased. Several studies 

have also reported a relationship between shorter WCT, higher peak Z force and 

decreased RTT (Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson et al., 1996; 

Takahashi, Yoshida et al., 1983). The combination of longer WCT and lower peak Z 
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force at push-off exhibited by the slowest 33 % dolphin kick turn trials in the present 

study has contributed to the slower mean wall exit velocity (0.25 m.s-1) and 5 m RTT 

(1.9 s) for this group.   

Despite the wall exit velocity and the resumption of kicking occurring at 

significantly slower horizontal velocities between the fastest and slowest 33 % groups 

(0.25 m.s-1 and 0.30 m.s-1, respectively), the differences in the distance travelled dolphin 

kicking (0.10 m) and the number of dolphin kicks (0.17) between the two groups were 

similar. That is, both groups travelled the same distance using the same number of 

dolphin kicks. However, the time-spent dolphin kicking varied significantly (p<0.05) 

between the groups (0.5 s). Hence, the fastest 33 % performed their dolphin kicks with 

an average velocity of 1.23 m.s-1 compared to 0.94 m.s-1 recorded by the slowest 33 %. 

These results equate to kick frequencies of 1.88 kicks.s-1 and 1.44 kicks.s-1 for the 

fastest and slowest 33 % groups, respectively. This result indicates that the swimmers 

who recorded the faster dolphin kick turns possess the ability to dolphin kick at a faster 

rate and produce greater propulsion. Reasons why some swimmers are able to perform 

more efficient dolphin kicking were not investigated in the present study. Further 

investigation into this concept is warranted. 

Conclusion 

The significantly faster flutter than dolphin kick 25 m kick times indicated that 

this sample of age-group swimmers possessed superior ability at this kicking technique. 

No difference existed between dolphin and flutter kicking turns for the approach to the 

wall, during wall contact and push-off, and to the resumption of kicking. Therefore, and 

not surprisingly, results showed the traditional flutter kick method of exiting from the 
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freestyle turn to be significantly faster than turns with a dolphin kick exit. The observed 

difference in turn performances was therefore most likely due to the swimmers 

possessing more mature flutter kicking movement patterns, rather than the effectiveness 

of a given kicking strategy. That is, performances were best in what they were most 

familiar. Despite this and the dolphin kick turn technique being performed by the 

subjects for the first time during the warm up and trials, 9 of 37 subjects recorded faster 

dolphin kicking RTTs. This indicates that the use of dolphin kick turns may be an 

individually suited skill and necessitates further investigation by means of a training 

study. The large range of dolphin performance variability demonstrated in the use of 

age-group swimmers also indicates that future research be directed towards a more 

homogeneous group of swimmers with higher skill. Consideration of these ideas will 

assist in endorsing the adoption of a modified dolphin kick turn as a means of improving 

swim performance.  
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Chapter 4  
Study 2: Practice and Performance of a 

 Modified Freestyle Tumble Turn 
by Age-Group Swimmers. 

Introduction 

Swimming turns are an integral part of a swimmer’s performance (Beckett, 

1985; Newble, 1982) and often determine who will win an event (Adler, 1979; 

Carpinter, 1968; Chow et al., 1984; Thayer & Hay, 1984; Ward, 1976). Despite a lack of 

documented research into swimming turns (Hay, 1988; Blanksby, Gathercole et al., 

1996), greater attention has recently been focussed on this aspect of swim performance 

(Blanksby et al., 1998; Blanksby et al., 2004; Blanksby, Gathercole et al., 1996; 

Blanksby, Hodgkinson et al., 1996; Daniel et al., 2002; Hodgkinson & Blanksby, 1995; 

Lyttle et al., 1999; Lyttle & Mason, 1997). Underwater force plates and videography 

have been two developments that have facilitated greater interest in the investigation of 

swimming turns (Blanksby, Hodgkinson et al., 1996; Nicol & Kruger, 1979; Takahashi, 

Yoshida et al., 1983).  

Recent swim turn investigations have used 5 m round trip time (RTT) as the 

criterion turn performance measure (Blanksby et al., 1998; Blanksby et al., 2004 

Blanksby, Gathercole et al., 1996; Blanksby, Hodgkinson et al., 1996;). This distance is 

considered to adequately represent the three main phases of a turn: the approach, the 

tumble turn and wall contact, and the exit from the turn. Key elements of the traditional 
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tumble turn technique that decrease turn times have been identified as more extended 

lower limbs (greater tuck index), decreased wall contact times, high peak forces on the 

wall and an optimised push-off glide (Blanksby, Gathercole et al., 1996). These authors 

also emphasised the need to maintain a streamlined position for an appropriate length of 

time to optimally utilise the speed off the wall and ensure a smooth transition from the 

glide to the commencement of stroking.  

Coaches and swimmers constantly strive to enhance performance by modifying 

or developing swimming techniques. One technique modification to freestyle swimming 

is to incorporate underwater dolphin kicks after the start and following each turn. The 

use of underwater dolphin kicks following the dive start and each turn during freestyle 

races is a performance technique that is now used by many swimmers. However, 

validation of this technique as a superior method of exiting from the turn remains to be 

shown. Further, the key elements of this turn technique are yet to be identified. To 

endorse the use of the modified turn technique, individuals should be trained in this turn 

technique style before a legitimate comparison can be made between the effectiveness of 

the two techniques. Hence, the purpose of this study was to examine and compare the 

biomechanical and performance characteristics of a modified freestyle tumble turn and 

the more traditional freestyle tumble turn before and after six weeks of dolphin kick and 

dolphin kick turn practice. 
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Methods 

Sample 

Subjects volunteered from a sample of convenient age-group competitors from 

the Uniswim club at The University of Western Australia (Mean ± SD 50 m short 

course freestyle time 40.34 ± 3.18 s). The group comprised nine males of mean height 

(±SD) 150.64 ± 10.37 cm; mass, 41.25 ± 8.08 kg; and age, 11.02 ± 1.19 yrs; and 13 

females of mean height, 155.28 ± 9.29 cm; mass, 40.57 ± 7.15 kg; and age, 11.69 ± 1.29 

yrs. The subjects were enrolled to participate in swimming training for three sessions 

per week, each of 1.5 hours duration.  

Data collection 

Approvals from the University of Ballarat and the University of Western 

Australia Human Research Ethics Committees and informed consents from all 

participants were obtained prior to commencement of the trials. The 50 m swim test 

trials were conducted in accordance with the procedures described in Chapter 3. 

Participants completed 4 x 50 m maximal swim efforts (two with dolphin turn, two with 

flutter turn) before undertaking dolphin kick turn training and following six weeks of 

dolphin kick turn training.  

The six-week training period included specific dolphin kick and dolphin kick 

turn practice. During this time, subjects were given 5 - 10 min per training session to 

learn, practise and refine their skill at dolphin kicking and dolphin kick turns. 

Attendance at a maximum of 18 training sessions, three per week, was possible 
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throughout the intervention period. Practices were conducted during each regular 

training session warm-up, and included instruction and feedback from coaches.  

Participants were instructed to practice dolphin kicking underwater with the 

arms extended and one hand placed on the other in a streamlined position. The head was 

to be placed between the upper arms and instructions were given to squeeze the arms 

against the ears. The kick was to be performed with “loose” ankles while generating a 

wave like action with the legs, beginning from the hips. Forceful flexion and extension 

of the knees was required with the legs remaining together and synchronised at all times. 

Specific instructions regarding the speed and size of kicks were not given with 

swimmers encouraged to adopt their own natural kick technique they felt produced their 

fastest underwater kick velocity. Participants were required to perform between two and 

five dolphin kicks using the technique explained above, following wall push off and 

prior to the resumption of stroking. Feedback was given to reinforce correct or incorrect 

performance technique during the practice trials. Subject attendance was recorded over 

the six-week training period. 

Instrumentation   

The instrumentation used in the present investigation was identical to that 

described in Chapter 3.  

Data analysis 

This study also compared dolphin and flutter kicking turn techniques using 5 m 

RTT as the criterion performance measure. The methods of raw data collection 

treatment used in Chapter 3 were also used to treat data in the present investigation. In 
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addition, turning events preceding the initiation of kicking were measured and treated as 

covariates to control for pre-kick variation between techniques. The turn measures 

preceding the kicking phase which may have varied include: average swim velocity in, 

WCT, peak force in the X, Y and Z directions, wall exit velocity and kicking resumption 

distance, velocity and time. High digitiser reliability (alpha correlation coefficients > 

0.995) was demonstrated for this method of analysis in the preceding chapter and was 

assumed to persist in this investigation.   

Statistical analyses  

Each subject’s fastest 5 m RTT for the dolphin kick and flutter kick turn trials 

were chosen for analysis. Summary statistics (mean, SD) for all pre- and post-test 

dolphin kick and flutter kick turn variables, and the difference between each kick 

variable measure, were calculated. Performance differences due to gender were 

examined by comparing each swimmer’s fastest 5 m RTT (pre-test trial) for both a turn 

and flutter kick exit. This was examined via an independent t-test (alpha level p<0.05). 

Preliminary analysis involved comparing dolphin kick and flutter kick 5 m RTTs 

using multivariate-repeated measures ANOVA. Kick type and time (pre- and post) were 

entered as fixed factors with type III sums of squares and an alpha level of p<0.05. Due 

to the small sample, all performance trials (dolphin, flutter, pre- and post-training) were 

combined into a sample of n=88 cases. This larger sample facilitated identification of 

the contribution of performance variables occurring before the resumption of kicking. 

This approach was deemed necessary to enable greater statistical power to be achieved. 

A Pearson product-moment correlation co-efficient matrix was constructed to 

identify the relationships between the variables preceding the resumption of kicking and 
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5 m RTT. A multiple stepwise regression analysis was then conducted using 5 m RTT 

as the criterion measure. Selected performance variables measured before to the 

resumption of kicking were used in this analysis to identify their contribution to 5 m 

RTT.  

A univariate repeated measures ANOVA, using those variables found to 

contribute to 5 m RTT as covariates, was conducted to determine whether dolphin kick 

turns improved by comparison with flutter kick turns following six weeks of dolphin 

kick and turn training. Kick type and time were entered as fixed factors while subject 

was treated as a random factor. Type I sums of squares and an alpha level of p<0.05 

were used. Bonferroni pairwise comparisons were conducted to adjust the observed 

significance level for the fact that multiple comparisons were made (SPSS, 1999). All 

data were analysed using an SPSS Statistical Analysis Package (version 10.0.5, 1999). 

Results 

An independent t-test revealed no significant gender difference (p<0.05) for the 

flutter kick 5 m RTT before the experimental condition. Consequently, all subjects were 

pooled to form a sample size of 22. Summary statistics (mean, SD) for all pre- and post-

test dolphin kick and flutter kick turn variables, and the differences between each kick 

variable measure, are presented in Table 4.1. The mean number of training sessions 

attended during the training period was 7.86 ± 3.24 (minimum 2, maximum 12) out of a 

possible 18. Excluding those participants with low attendance from the analysis was 

considered, however, the effect this would have had on the statistical degrees of freedom 

was deemed to be more limiting than the effect of retaining them.  
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A significant multivariate difference (p=0.04) existed between the dolphin kick 

and flutter kick turn types. No significant difference (p=0.066) was observed between 

the pre- and post-test results for 5 m RTT. The interaction between kick type and time 

was also non-significant (p=0.320), indicating that dolphin kick turns did not improve 

significantly more than flutter kick turns following dolphin kick and dolphin kick turn 

training. The Mauchly test of sphericity for kick type, test time and the interaction 

between kick type and time were all found to be non-significant. Therefore, the 

assumption of sphericity for these data was not violated. This result supported the 

decision to further explore the data in univariate form (n=88) with the inclusion of 

selected covariates.  

Significant negative correlations were found between 5 m RTT and average 

swim velocity-in, peak force Z and Y, wall exit velocity and leg resumption velocity. 

Significant positive correlations were found between the 5 m RTT and WCT and leg 

resumption time (see Table 4.2). No significant correlations existed between the 5 m 

RTT and peak force X and leg resumption distance.  

A multiple stepwise regression analysis was conducted to determine 

performance variables measured during the turn and prior to the resumption of kicking 

that best predict 5 m RTT. Due to the high degree of multi co-linearity shown between 

average swim velocity-in and 5 m RTT (r = -0.859), and because average swim velocity-

in was measured prior to the start of measurement of RTT, average swim velocity-in 

was omitted from the regression analysis. Measures were added to the model when a 

variable was determined to add predicability to the regression equation at an alpha level 

of p<0.05. The results of the stepwise regression for 5 m RTT are presented in Table 

4.3. The best pre-kick predictors for 5 m RTT in order of importance were: peak force 
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Z, wall exit velocity, leg resumption velocity and WCT. These variables were found to 

account for 46% of the variance in 5 m RTT. A lack of patterning and the appearance of 

normality in the residual plots supported the decision to pool all performance trials into 

a sample of n = 88.  

The univariate repeated measures ANOVA indicated significant (p<0.05) effects 

in all four covariates. The adjusted marginal means for 5 m RTT by kick type (dolphin 

and flutter) and test time (pre- and post) are plotted in Figure 4.1. When statistically 

controlling for the covariates, a significant difference (p=0.02) was observed between 

the dolphin kick and flutter kick turn types for 5 m RTT. Similarly, a significant 

difference (p=0.02) was observed in 5 m RTT over time. The interaction between kick 

type and time was found to be non-significant. This indicated that the dolphin kick turns 

did not improve significantly more than flutter kick turns following dolphin kick turn 

training.  

 



 

Table 4.1. Pre- and post-test dolphin kick and flutter kick means (± SD) for age-group swimmers (n=22).  

 Pre-test Post-test 

Variable Dolphin kick  Flutter kick  Difference  Dolphin kick  Flutter kick  Difference  

5 m RTT (s) 8.34 ± 0.80 8.09 ± 0.60 0.25 8.11 ± 0.74 7.96 ± 0.78 0.15 

Average swim velocity in (m.s-1) 1.20 ± 0.12 1.20 ± 0.09 0 1.23 ± 0.11 1.24 ± 0.12 -0.01 
WCT (s) 0.62 ± 0.18 0.55 ± 0.18 0.06 0.56 ± 0.17 0.58 ± 0.18 -0.02 

Peak force Z (N) 558.05 ± 156.84 561.75 ± 167.88 -3.70 551.86 ± 145.89 549.00 ± 136.52 2.85 

Peak force Y (N) 59.41 ± 31.24 56.26 ± 34.69 3.15 48.96 ± 24.07 53.40 ± 27.18 -4.44 
Peak force X (N) 43.62 ± 16.15 41.61 ± 13.44 2.01 45.83 ± 20.23 41.71 ± 14.22 4.12 

Wall exit velocity  (m.s-1) 1.82 ± 0.26 1.82 ± 0.29 0 1.86 ± 0.24 1.89 ± 0.27 -0.03 

Leg resumption distance (m)  2.30 ± 0.44 2.13 ± 0.30 0.17 2.39 ± 0.32 2.28 ± 0.30 0.11 
Leg resumption velocity (m.s-1) 1.39 ± 0.28 1.53 ± 0.29 -0.14 1.36 ± 0.28 1.51 ± 0.28 -0.15 

Leg resumption time (s) 0.45 ± 0.19 0.39 ± 0.25 0.07 0.45 ± 0.15 0.40 ± 0.22 0.06 

Arm resumption distance (m) 3.51 ± 0.63 2.73 ± 0.46 0.78 3.66 ± 0.67 3.22 ± 0.37 0.44 
Arm resumption velocity (m.s-1) 1.11 ± 0.22 1.29 0.26 -0.18 1.12 ± 0.16 1.12 ± 0.19 0.00 

Arm resumption time (s) 1.55 ± 0.58 0.81 ± 0.32 0.73 1.61 ± 0.53 1.15 ± 0.33 0.46 

Surface distance (m) 3.57 ± 0.72 2.91 ± 0.67 0.66 3.77 ± 0.75 3.29 ± 0.46 0.48 
Surface time (s) 1.55 ± 0.64 0.97 ± 0.47  0.57 1.71 ± 0.58 1.25 ± 0.34 0.46 

Number of dolphin kicks 2.45 ± 1.06   2.27 ± 0.63   

Dolphin kick distance (m) 1.56 ± 0.71   1.40 ± 0.45   
Dolphin kick time (s) 1.37 ± 0.57   1.28 ± 0.46   

Training sessions    7.86 ± 3.24   



 

Table 4.2. Pearson product-moment correlations for all variables preceding the resumption of kicking and 5 m RTT. 

 5 m 
RTT 

Av. 
swim 
vel. in 

WCT Peak 
force  

Z 

Peak 
force  

Y 

Peak 
force  

X 

Wall 
exit vel. 

Leg R 
dis. 

Leg R 
vel. 

Leg R 
time 

5 m RTT (s) 1 -.859* .237* -.554* -.321* -.127 -.503* -.150 -.404* .232* 
Average swim velocity in (m.s-1)  1 -.026 .458* .196 .123 .551* .229* .281* -.131 
WCT (s)   1 -.186 -.080 -.161 .082 .119 -.027 .100 
Peak force Z (N)    1 .261* .292* .435* .255* .239* -.073 
Peak force Y (N)     1 .182 .309* .424* -.008 .278* 
Peak force X (N)      1 .211* .084 -.033 -.028 
Wall exit velocity  (m.s-1)       1 .408* .251* .083 
Leg resumption distance (m)         1 -.265* .812* 
Leg resumption velocity (m.s-1)         1 -.420* 
Leg resumption time (s)          1 

Note. Vel. = velocity; Dis. = distance; R = resumption 

* Denotes significance (p<0.05) 
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Table 4.3. Stepwise regression equation and results for prediction of 5 m RTT 

Variable Regression 
coefficient 

Beta weight R squared Adjusted 
 R-squared 

Peak force Z -1.6E-03 -0.321 0.307 0.299 
Wall exit vel. -0.898 -0.319 0.392 0.378 
Leg resumption vel. -0.661 -0.242 0.447 0.427 
WCT 0.822 0.197 0.483 0.458 

Constant: 11.138 
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Figure 4.1.  Plot of adjusted 5 m RTT means for kick type and test time 

Discussion 

This study examined the use of a modified freestyle tumble turn which involved 

a dolphin kick off the wall (dolphin kick turn) compared to the traditional freestyle 

tumble turn (flutter kick turn), before and after six weeks of dolphin kick and dolphin 

kick turn practice. The relatively small sample size and the poor attendance level at 
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training throughout the six-week intervention period affected the interpretations of the 

present study. Subsequently, the present findings are limited to the sample population.  

Participants in the present study recorded approximately 20 % lower horizontal 

peak forces (555 N) during the turn than those reported by Blanksby, Gathercole et al. 

(1996) for age group swimmers (693 N). A difference in mean age between participants 

of the two studies (current study, 11.41 ± 1.28 yrs, Blanksby, Gathercole et al., 1996, 13 

yrs ± 9 months), and the subsequent differences in mass and strength, are considered 

likely reasons for the difference in horizontal peak force. The effect of age on wall 

horizontal peak force has been illustrated in turning studies with older, more 

experienced swimmers by Lyttle et al. (1999) and Takahashi et al. (1982) who reported 

considerably higher horizontal peak forces, ranging from 1189 N (Lyttle et al., 1999) to 

1711 N (Takahashi et al, 1982). 

Previous research indicates that reductions in passive drag during the glide phase 

following a turn could be achieved by gliding at a depth greater than 0.4 m (Lyttle et al., 

1998). The absolute values of mean peak Y force did not indicate that subjects pushed 

off the wall with a greater upward force in an attempt to obtain greater depth for dolphin 

kicking than for flutter kicking. Mean peak Y and X forces during push-off were shown 

to represent approximately 5 to 10 % of the mean peak Z force. Therefore, it appears the 

majority of wall contact force was directed appropriately to effect the required change in 

horizontal direction.  

Nicol and Kruger (1979) examined the horizontal impulse exerted during a push 

off the wall following tumble and open freestyle turns. Comparison of impulse relative 

to the push-off and tumble turns showed no significant differences. This finding allowed 
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Nicol and Kruger (1979) to associate differences between gliding length following the 

turn with greater resistance immediately after leaving the wall. Measurement of wall 

turning forces in the present study indicated similar (non-significant) horizontal peak 

forces between the dolphin kick and flutter kick turns at both the pre- and post-test times 

(range: 549 - 561 N). Similarly, differences in peak Y forces (range: 49 - 59 N) and peak 

X forces (range: 41 - 45 N) measured during the turn were minimal (non-significant) 

between the pre- and post dolphin kick and flutter kick turns. This result allowed a 

similar assumption to that of Nicol and Kruger (1979) to be made. That is, any observed 

difference in RTT between the two turn techniques may be associated with events other 

than wall contact forces. 

The present study demonstrated WCTs ranging from 0.56 to 0.62 s. While 

similar to those shown by Blanksby, Gathercole et al. (1996), the present results are 

substantially longer than those reported in previous studies (Lyttle & Mason, 1997; 

Nicol & Kruger, 1979; Takahashi, Yoshida et al., 1983). Lyttle et al. (1999) stated that 

although a high WCT may not directly affect the final push-off velocity, it could 

negatively affect overall turn speed. Therefore, it is considered that the poorer turn 

performances demonstrated by age group swimmers could partly be attributed to the 

greater duration of the WCT.  

Ostensibly, the modified dolphin kick turn and the more traditional flutter kick 

turn should not vary until the point where kicking is resumed. Despite little difference 

observed in wall force and WCT between technique trials, consideration for any 

differences in WCT and wall force between the dolphin and flutter kick turns was 

critical to allow differences in performance to be attributed only to technique type. 

Consequently, an adjustment for variation in performance prior to the resumption of 
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kicking was necessary for valid statistical comparison between the two turn exit 

techniques. Regression of those performance variables measured before the resumption 

of kicking with 5 m RTT and using those variables shown to be highly predictive as 

covariates in further analysis achieved this.   

Horizontal peak force was the best single predictor (r = -0.554) of 5 m RTT, and 

accounted for 30 % of the variance. Blanksby, Gathercole et al. (1996) also reported 

horizontal peak force as the best predictor of 5 m RTT for freestyle tumble turns by age-

group swimmers. Similarly, Lyttle et al. (1999) found that higher peak force during push 

off results in higher instantaneous acceleration that, in turn, results in higher push off 

velocity. However, this was thought to only apply if drag force is not increased 

simultaneously. The present findings demonstrate a significant relationship between 

wall exit velocity and 5 m RTT. Therefore, it may be deduced that high horizontal peak 

force resulting in high wall exit velocity will ultimately result in lower RTTs. 

The second-ranked predictive factor was wall exit velocity (r = -0.503; Adjusted 

R2 = 38 %). A significant negative correlation indicated that greater the wall exit 

velocity would result in faster 5 m RTT. Differences in the definition and method used 

to calculate wall exit/push-off velocity limits the comparison of this result with previous 

research. However, attempts to increase wall exit velocity should not be at the expense 

of increasing the drag experienced by the swimmer (Lyttle et al., 1999). 

Leg resumption velocity was the third-ranked predictive factor (r = -0.404; 

Adjusted R2 = 42 %). This indicated that resuming the kick sooner and therefore at 

higher velocity resulted in faster 5 m RTT. Lyttle et al. (2000) concluded that initiating 

the kick too early in the glide would result in an increase in active drag and prematurely 
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slow the swimmer. Conversely, gliding too long before kicking would adversely 

decelerate the swimmer, requiring energy to be used accelerating back to free swimming 

velocity. For reasons unexplained by the present data, subjects consistently delayed the 

resumption of kicking when performing the dolphin kick trials. The optimal selection of 

the moment to resume kicking following the turn would appear to be critical to 

maximising turn performance.  

The fourth and final predictive factor included in the regression equation was 

WCT (r = 0.237; Adjusted R2 = 46 %). This significant positive correlation indicated 

that decreased WCT resulted in faster 5 m RTT as found by Blanksby, Gathercole et al. 

(1996) and Blanksby, Hodgkinson et al. (1996). These findings suggest lowering WCT 

will contribute to a lower RTT. However, insufficient time to develop an optimum 

impulse will reduce the potential to increase wall exit velocity (Lyttle et al., 1999) and 

subsequently lead to an increase in RTT.  

Lyttle et al. (1999) proposed that an optimal combination of low peak drag force, 

high peak propulsive force and sufficient wall push-off time were critical elements for 

achieving high push-off velocity following the turn. The present study identified high 

horizontal peak force, high wall exit velocity, high leg resumption velocity and low 

WCT as significant contributors to faster 5 m RTT. These findings suggest that those 

swimmers who optimise these factors during a turning motion will maximise 

performance by producing faster 5 m RTTs. Due to the significant impact these 

measures can have on 5 m RTT turn performance, it was deemed necessary to adjust for 

any pre-kick differences that may have existed between the dolphin and flutter kick trial 

performances. For that reason, the measures of horizontal peak force, wall exit velocity, 
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leg resumption velocity and WCT were included as covariates in a univariate repeated 

measures ANOVA, to compare 5 m RTTs for the two kicking techniques.  

Univariate analysis revealed a significant difference (p=0.02) between the 

dolphin kick and flutter kick turns for 5 m RTT. This indicated that the dolphin kick 

method of exiting the wall following a tumble turn is not as good as flutter kick for this 

population. Significant difference (p=0.02) in 5 m RTTs between the pre- and post-test 

trials, irrespective of turn type, suggested that overall turn performance improved 

following six weeks of dolphin kick and dolphin kick turn training. This result was not 

surprising considering the potential for rapid improvements in performance that can be 

noted in age-group competitors. 

The statistically adjusted 5 m RTT means for pre- and post-test dolphin kick 

trials showed improved performance over time. This supports the notion that training, 

specific to the dolphin kick turn task, would improve dolphin kick turns. A similar 

reduction in the adjusted 5 m RTT means for the pre- and post-test flutter kick trials also 

occurred. No significant interaction (p=0.475) between kick type and time was 

observed. Therefore, dolphin kick turns did not improve significantly more when 

compared with flutter kick turns following six weeks of dolphin kick turn training. 

Hence, the improvements made in the dolphin kick turns were similar to those 

improvements made in the flutter kick turns.   

Dolphin kick rates in the present study were 1.79 kick.s-1 and 1.77 kicks.s-1 for 

the pre-test and post-test trials, respectively. In addition, participants travelled 0.16 m 

less and spent 0.09 s less time dolphin kicking during the post-test trials, while 

recording faster 5 m RTT. While dolphin kicking might not be best for freestyle 
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swimming turns, the improvements demonstrated in this investigation should benefit 

butterfly, medley, and most probably backstroke events. 

Despite the present results supporting flutter kick as the superior method of 

exiting the turn, 8 of the 22 subjects recorded faster dolphin kick 5 m RTTs during the 

pre-test trials. Likewise, 8 of the 22 subjects recorded faster dolphin kick trial 5 m RTTs 

than flutter kick trials during the post-test trials. Of these, only four subjects recorded 

faster dolphin kick than flutter kick 5 m RTTs at both the pre-test and post-test trials. 

This result highlights the intrinsic variation that can be observed in the performances of 

age-group swimmers and that the efficient use of dolphin kick turns may be a technique 

only suited to certain swimmers. Further research involving larger sample sizes and a 

greater range of swimming ability is needed to allow conclusions to be made regarding 

the greater swimming population. The variations in amounts of training experienced by 

the subjects could have inflated the error terms in the statistical analyses. Future studies 

should attempt to ensure that subjects receive the same full-training experience for true-

effects to be revealed. 

Conclusions 

On the basis of the results, and within the limitations of this study, it was shown 

that significant and equal improvements occurred in dolphin kick and flutter kick 5 m 

RTTs following six weeks of dolphin kick and dolphin kick turn practice. Therefore, the 

introduction of minimal turning practice for age-group swimmers is likely to result in 

significant reductions in turning times and should be noted by coaches and swimmers 

alike. Despite specific dolphin kick turn training; the flutter kick technique remained the 

superior method of exiting the wall, based on 5 m RTT, following a freestyle tumble 
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turn for this population. Determination of the best underwater kick method to use 

following a turn appears unlikely with this age swimming population due to the 

presence of underdeveloped turning skill levels. Future turn exit research that intends to 

determine critical elements of performance should therefore be conducted on swimmers 

with mature movement patterns and greater ability to consistently reproduce 

performances. 
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Chapter 5  
Study 3: Traditional and Modified 

Freestyle Tumble Turns by 
Skilled Swimmers 

Modified manuscript of 
“Traditional and modified exits following tumble turns by skilled  

swimmers”. South African Journal for Research in Sport,  
Physical Education and Recreation, 22(1), 41-55. (2000). 

Introduction 

The importance of turns in swimming events is becoming increasingly evident. 

During some events, turning can comprise over a third of the total event time and is 

often a factor in determining final placing’s (Huellhorst et al., 1988). Despite swimming 

turns being an integral part of competitive performance (Beckett, 1985; Newble, 1982) 

and influencing who will win an event (Adler, 1979; Carpinter, 1968; Ward, 1976), 

attention to this aspect of swim performance has only re-emerged in recent years. 

Early research by Fox et al. (1963) focussed on comparing the time taken to 

perform different turn techniques. They found the energy expenditure between the open 

and closed turn (tumble turn) was similar but that the tumble turn was significantly 

faster. Studies have also investigated whether modifications such as ‘piked’ versus 

‘tuck’ turns (Ward, 1976), and a double arm pull off the wall turn (Adler, 1979; Beckett, 
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1985) were faster methods of performing the tumble turn. Nicol and Kruger (1979) 

compared the swimming speeds and impulses generated by the freestyle flip turn and the 

open turn. No significant differences were evident between the two techniques for return 

swimming velocity, impulse and duration of impulse. However, complete turn time for 

the freestyle flip turn was significantly shorter than those of the open turn and resulted 

from differences in wall approach swimming times. 

The availability of underwater force plates has lead to the collection of kinematic 

and kinetic data that affect turn performance (Blanksby, Gathercole et al., 1996; Chow 

et al., 1984; Huellhorst et al., 1988; Lyttle & Mason, 1997). Takahashi et al. (1983) 

investigated the propulsive forces generated by swimmers during a flip turn and during a 

push-off the wall and glide. Analysis of the force profiles revealed no significant 

differences in peak force and duration of push-off between the two conditions. Total 

impulse was, however, significantly higher for the flip turn (Takahashi et al., 1983). 

Lyttle and Mason (1997) highlighted the difficulty in comparing turn studies due 

to differences in the operational definitions of when the turn commenced and finished. 

Hay and Guimaraes (1983) and Chow et al. (1984) defined turn commencement as the 

last hand entry before the wall (distance-in) to the end of the first stroke taken after the 

turn (distance-out). Fixed arbitrary distances of 3 m in to 6.5 m out (Thayer & Hay, 

1984), 7.5 m in to 7.5 m out (Newble, 1982) and 5 m in to 5 m out (Blanksby, 

Gathercole et al., 1996) have also been used. Despite these differences, key elements of 

the current freestyle tumble turn have been identified. Time out can be minimised by 

increasing the impulse applied to the wall during push-off (Blanksby, Gathercole et al., 

1996; Blanksby, Hodgkinson et al., 1996; Chow et al., 1984; Takahashi et al., 1983). 

Blanksby, Gathercole et al. (1996) also stated that it was an advantage to have more 
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extended lower limbs (greater tuck index), decreased wall contact time (WCT), high 

peak force on the wall to optimise the push-off and glide in decreasing turn times.  

Previous turn research has attributed decreases in round trip time (RTT) to 

improvements in those measures occurring prior to and during wall contact (Blanksby, 

Gathercole et al., 1996; Blanksby, Hodgkinson et al., 1996; Chow et al., 1984; 

Takahashi et al., 1983). While the importance of having more extended lower limbs 

(greater tuck index), decreased WCT and high peak force on the wall with decreasing 

turn RTT is recognised, the technique events occurring during ‘time out’ from the turn 

have been neglected and warrant investigation. Isolating the events following wall push-

off allows the importance of the glide, the timing and duration of underwater kicking 

and the timing of stroke resumption in decreasing turn times to be quantified. 

Specifically, the effect of using different kicking techniques following wall push-off 

could be examined.  

Arellano et al. (1996) developed a system for automatic timing of the swimming 

start. Trials using this system and the start performances of nine male (mean age 16.2 

years) swimmers with more than five years competitive experience were conducted. 

Swim start performance was measured from the block to a distance of 10 m using four 

different conditions; start and glide without propulsion, start and freestyle kicking, start 

and butterfly kicking and start and freestyle swimming. Results showed superior water 

time (WT, the time from the instant of hand entry to 10 m) and total start time (ST, the 

time from the starting signal to 10 m) for the start and butterfly kicking trials (mean WT 

= 3.774 s, mean ST = 4.997 s) than the start and flutter kicking trials (mean WT = 3.924 

s, mean ST = 5.131 s).  
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The findings of Arellano et al. (1996) highlight the need to further evaluate the 

use of undulatory movements during the underwater or swimming phases of the 

competitive strokes that occur during starts and turns. Despite many swimmers currently 

employing dolphin kicks during the exit phase of the turn during freestyle races, 

evidence regarding whether this technique modification is a superior method of exiting 

from the turn is not available. The findings of investigations in Chapters 3 and 4 

demonstrated that flutter kick exits from the wall contribute to significantly lower 5 m 

freestyle turn RTTs in age-group swimmers. This was evidenced both before and after 

specific dolphin kick training. However, the large performance variation exhibited by 

these swimmers was considered a limitation with respect to accurate comparison of the 

two wall exit techniques. Hence, a replication of study one using more highly skilled 

swimmers was proposed. Therefore, the purpose of this study was to compare the 

biomechanical and performance characteristics of modified (dolphin kick exit) and 

traditional (flutter kick exit) freestyle tumble turns using swimmers of higher calibre 

than those measured in Chapters 3 and 4, respectively.  

Methodology 

Sample 

Participants in the present study were members of the Swimming Victoria Junior 

Development Squad who attended a training camp at the University of Ballarat Aquatics 

Laboratory. Entry to the squad is based on swimmers having placed in the top 10 at the 

National Age Championships during that year. The group comprised eight males of 

mean height, 178.9 ± 7.03 cm; mass, 70.8 ± 6.59 kg; and age, 16.88 ± 2.42 years; and 
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five females of mean height 169.5 ± 3.30 cm; mass, 61.0 ± 5.56 kg; and age 15.0 ± 1.22 

years.    

Data collection 

Approval from the University of Ballarat Human Research Ethics Committee 

and informed consent from all participants was obtained prior to commencement of the 

trials. Data collection took place at the School of Human Movement and Sport Sciences 

Aquatics Laboratory, University of Ballarat, Australia. The warm up consisted of a 200 

m freestyle swim and 3 x 50m freestyle swims. Two to three practice turns were carried 

out on the force plate to ensure familiarity with the test protocol. As this investigation 

comprised a replication of the study reported in Chapter 3 using swimmers of higher 

calibre, 50 m swim trial data were collected using similar procedures.  

The swim trial that produced the fastest 5 m RTT for the dolphin kick and flutter 

kick turn techniques was chosen for analysis in this investigation. Despite using this 

measure to select better overall turn performances, the 5 m RTT as a criterion for 

comparing wall exit performance is potentially limiting. That is, a 5 m RTT incorporates 

a considerable portion of swimming and other turning manoeuvres that can vary in 

addition to variation due to using different wall exit strategies. Consequently, when 

isolating different kicking techniques used following the turn, variations over 5 m RTT 

could mask any differences that could occur as a result of the kicking phase. However, 

the investigations using age-group swimmers in Chapters 3 and 4 indicated that using 

different kicks during the out-phase of the turn do not affect time-in, WCT and other 

initial conditions prior to kick resumption when exiting the wall. Hence, the time taken 

from kick resumption to the 5 m mark following the turn represents an ideal criterion to 
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compare the two turn techniques. Nonetheless, selection of the same time and velocity 

to resume kicking during both technique trials was considered unlikely to occur. 

Therefore, 5 m out-time, or the time it takes a swimmer to travel from last foot contact 

on the wall to the 5 m mark following the turn, was considered to represent a more 

precise criterion to examine whether there was an advantage in using dolphin or flutter 

kicking following the turn.   

Chapters 3 and 4 indicated that variation in dolphin and flutter-kicking turns 

only occurred following kick resumption. With skilled swimmers, variation between 

dolphin and flutter kicking turn techniques was also expected to be evident following 

kick resumption only. However, turning performance measures prior to the resumption 

of kicking were measured again to ensure that the same findings apply to this group of 

skilled swimmers and that differences in the two turning styles were isolated to turn 

kicking technique. Those turning measures that may vary prior to kick resumption 

included; average swim velocity-in, WCT, peak force in the X, Y and Z directions, wall 

exit velocity and kicking resumption distance, velocity and time. When these events 

took place, with regards to turning time, were also considered important and 

subsequently examined for differences between the turn techniques. The performance 

measures recorded following the resumption of kicking (i.e. post-kick measures) 

included; arm resumption distance, velocity and time, and surface distance and time. 

The number of dolphin kicks, the distance travelled and the time spent kicking, were 

also recorded.  
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Instrumentation 

The same model and settings reported in Chapter 3 for the underwater force 

plate, video camera and VCR were used for the collection of data in the present 

investigation. An identical 10 m scaling device was also used. The methods of raw data 

treatment used in the previous work were also used to treat data in the present 

investigation. The exception to this was the exclusion of 5 m RTT and the inclusion of a 

measure representing 5 m out-time. No reliability analyses were performed due to the 

use of similar analysis procedures and the high digitiser consistency demonstrated in 

Chapter 3.   

Statistical analyses 

 A paired sample t-test was conducted to compare the two 50 m freestyle swim 

times for the trials using flutter kick wall exits to examine consistency of performance. 

Summary statistics (mean, SD) for the dolphin kick and flutter kick turn variables were 

calculated. Flutter kick trial results were subtracted from the dolphin kick trial results to 

obtain the difference between the mean scores for each turn measure.  

Preliminary analyses, via a series of paired sample t-tests, were conducted to 

examine whether the performance measures recorded prior to the resumption of kicking 

varied significantly for the dolphin and flutter kick trials. Similar analyses were 

performed on those measures recorded following the resumption of kicking between the 

dolphin and flutter trials.  

To further clarify the degree of similarity or variation between the two wall exit 

kicking techniques it was important to examine the degree of cumulative difference up 

to the point of the turn when kicking was resumed. A Pearson product-moment 
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correlation coefficient matrix was constructed to identify the relationships between the 

variables preceding the resumption of kicking and 5 m out-time. A multiple stepwise 

regression analysis was then conducted using the 5 m out-time as the dependent 

variable. The performance variables measured before the resumption of kicking were 

used in this analysis to identify the contribution of these variables to 5 m out-time. 

Those performance variables found to contribute significantly to 5 m out-time where 

then used as covariates to account for any variation in performance that may have 

existed prior to the resumption of kicking.   

A repeated measures ANOVA, using those variables found to contribute to 5 m 

out-time as covariates, was conducted to determine whether a significant difference 

existed between the dolphin kick and flutter kick 5 m out-times. Kick type was entered 

as a fixed factor while subject was treated as a random factor. Type I sums of squares 

were used for this procedure while an alpha level of p<0.05 was used for all statistical 

analyses. Bonferroni pairwise comparisons were conducted to adjust the observed 

significance level for the fact that multiple comparisons were made (SPSS, 1999). 

Results  

No significant difference (p>0.05) between each swimmer’s first and second 50 

m freestyle swim times (28.59 ± 1.65 s and 28.62 ± 1.73 s, respectively) for the trials 

using flutter kick wall exits. Summary statistics (mean, SD) for all pre- and post-dolphin 

kick and flutter kick turn variables, and the differences between each kick variable 

measure are presented in Table 5.1.  

Examinations of the scores for each subject’s dolphin and flutter kick turn trial 

performances revealed no significant differences in the pre-kick measures recorded up 
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to and including push-off (see Table 5.1). These measures were: average swim velocity-

in, WCT, peak Z, Y and X force and wall exit velocity. Therefore, the measures 

recorded prior to and including push-off during the turn were similar for the two 

techniques. Also, no significant differences were observed for leg kick resumption 

distance and time, between the two techniques. However, kick resumption velocity was 

significantly slower (p=0.03) for the dolphin kick turn trials. Thus, no statistical 

difference was observed between the two techniques for all performance variables 

measured prior to and at kick resumption except for kick resumption velocity, which 

was 0.17 m.s-1 slower during the dolphin kick trials. 

Table 5.1. Comparison of means (± SD) for swimmer variables (n=13). 

  Dolphin kick 
(n=13) 

Flutter kick 
(n=13) 

Difference 
(n=13) 

 Ave. swim velocity in (m.s-1) 1.65 ± 0.10 1.62 ± 0.12 0.03 

 WCT (s) 0.44 ± 0.12 0.49 ± 0.13 -0.05 

 Peak force Z (N) 892.15 ± 246.82 864.82 ± 252.95 27.33 

Pre-kick Peak force Y (N) 120.95 ± 42.18 110.69 ± 44.52 10.26 

measures Peak force X (N) 75.72 ± 39.79 60.57 ± 20.39 15.15 

 Wall exit velocity  (m.s-1) 2.58 ± 0.37 2.57 ± 0.33 0.01 

 Leg resumption distance (m)  2.77 ± 0.19 2.70 ± 0.27 0.07 

 Leg resumption velocity (m.s-1) 1.90 ± 0.23 2.07 ± 0.26 -0.17* 

 Leg resumption time (s) 0.44 ± 0.01 0.41 ± 0.18 0.03 

 Arm resumption distance (m) 4.69 ± 1.27 4.11 ± 0.51 0.58* 

 Arm resumption velocity (m.s-1) 1.55 ± 0.13 1.57 ± 0.21 -0.02 

 Arm resumption time (s) 1.58 ± 0.70 1.24 ± 0.29 0.34* 

Post-kick  Surface distance (m) 5.36 ± 1.36 4.92 ± 0.66 0.44 

measures Surface time (s) 2.02 ± 0.74 1.77 ± 0.42 0.26 

 Number of dolphin kicks 3.0 ± 1.78 - - 

 Dolphin kick distance (m) 2.23 ± 1.31 - - 

 Dolphin kick time (s) 1.34 ± 0.76 - - 

 5 m out-time (s) 1.80 ± 0.21 1.82 ± 0.21 0.02 

* Denotes significance (p<0.05) using paired sample t-test 
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Significant differences were found in two of the five post-kick measures (see 

Table 5.1). Arm resumption distance and time occurred significantly further from the 

wall and later, respectively, following the dolphin kick turns when compared with the 

flutter kick trials. No differences were observed between arm resumption velocity for 

each subject’s dolphin kick and flutter kick trials (group mean 1.57 m.s-1 and 1.55 m.s-1, 

respectively). Hence, swimmers in this study swam with equal horizontal velocity at the 

commencement of stroking during the dolphin kick and flutter kick trials. Whilst there 

was no statistically significant difference for surface distance and time between the two 

turn techniques, in the dolphin trials the swimmers surfaced 44 cm further from the wall 

and 0.26 s later, than during the flutter kick trials. 

A Pearson product-moment correlation matrix outlining those variables that 

shared common variance following the turn and preceding the resumption of kicking 

can be found in Table 5.2. Significant negative correlations were found between 5 m 

out-times with peak force Y and X, wall exit velocity and leg kick resumption velocity. 

There was no significant correlation for the 5 m out-time with average swim velocity-in, 

WCT, peak force Z, and leg kick resumption distance and time. A multiple stepwise 

regression analysis was conducted to predict 5 m out-time. Significant independent 

variables were added to the model when a variable was determined to add predictability 

to the regression equation at an alpha level of p<0.05 (see Table 5.3). The best pre-kick 

predictors for 5 m out-time in order of importance were: wall exit velocity and peak Y 

force. These variables accounted for 59% of the variance in 5 m out-time. The relatively 

low percentage of variation (59%) in 5 m out-time explained by these variables is 

expected as this analysis did not account for the spontaneously selected distance and 

time, for resumption of kicking and stroking, in which large variations could exist. 



 

Table 5.2. Pearson product-moment correlations for all variables preceding the resumption of kicking and 5 m out-time 

 5 m 
out-
time 

Av. 
swim 

Vel. in 

WCT Peak 
force  

Z 

Peak 
force  

Y 

Peak 
force  

X 

Wall 
exit 
Vel. 

Leg R 
Dis. 

Leg R 
Vel. 

Leg R 
time 

5 m out-time (s) 1 -.366 .140 -.353 -.483* -.542* -.653* -.221 -.604* .364 
Average swim velocity in (m.s-1)  1 .087 -.102 .544* .073 .294 .025 .152 -.334 
WCT (s)   1 -.486* -.169 -.418* -.037 -.117 .326 .037 
Peak force Z (N)    1 -.109 .288 .344 .130 .174 .019 
Peak force Y (N)     1 .296 .065 .197 .245 -.195 
Peak force X (N)      1 .449* .130 .242 -.172 
Wall exit velocity  (m.s-1)       1 .136 .574* -.229 
Leg resumption distance (m)         1 -.152 .789* 
Leg resumption velocity (m.s-1)         1 -.408* 
Leg resumption time (s)          1 
Note. Vel. = velocity; Dis. = distance; R = resumption 

* Denotes significance (p<0.05) 

 



Chapter 5: Traditional and Modified Freestyle Tumble Turns by Skilled Swimmers 

 158 

Repeated measures ANOVA (using those variables identified in the regression 

equation as covariates) was conducted with 5 m out-time as the dependent variable. 

Results from the repeated measures ANOVA indicated significant effect in both 

covariates used (see Table 5.4). These variables were wall exit velocity and peak Y 

force. The adjusted marginal means for 5 m out-time by kick type were 1.809 ± 0.013 s 

and 1.812 ± 0.013 s, for the dolphin kick and flutter kick trials, respectively. Inclusion 

of the covariates in the comparison analyses also demonstrated no significant difference 

(p=0.880) between the dolphin kick and flutter kick turn types for 5 m out-time. 

Table 5.3. Stepwise regression equation and results for prediction of 5 m out-time. 

Variable Regression 
coefficient 

Beta weight R squared Adjusted 

 R-squared 

Wall exit velocity -0.368 -0.625 0.427 0.403 
Peak Y force -2.11E-03 -0.442 0.621 0.588 

Constant: 3.003 

Table 5.4. Summary of repeated measures ANOVA. 

Source Type 1 SS df Mean 
square 

F Sig. 

Wall exit velocity 0.445 1 0.445 14.259 0.003 
Peak Y force 0.203 1 0.203 6.437 0.026 
Between subject error 0.376 12 3.133E-02   
Kick  4.541E-05 10 4.541E-05 0.024 0.880 
Within subject error 1.903E-02 10 1.903E-03   

Discussion 

The participants were elite age-group competitors who could perform repeated 

effort swims consistently. Consistency of performance was regarded as integral to the 
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comparison of the two turn techniques in order to credit any change in turn performance 

to the proposed technique variation. This consistency was demonstrated by the results of 

a comparison between each swimmer’s first and second 50 m freestyle swim times 

(28.59 ± 1.65 s and 28.62 ± 1.73 s, respectively) for the trials using flutter kick wall 

exits. The trials incorporating the flutter kick exits were chosen for comparison as these 

swims were representative of the turning technique most commonly used by each 

swimmer. Therefore, consistency would more likely be demonstrated. 

As found previously (Blanksby et al., 2004), the mean peak Y and X forces 

during push-off were shown to only represent approximately 5 to 15 % of the mean peak 

Z force. This result indicates that the majority of wall contact force was directed 

effectively for the required change in horizontal direction. Despite the mean peak Y 

force recorded for the dolphin trials averaging 10 N (9 %) more than the flutter trials, 

the absolute values of peak Y force did not indicate that subjects pushed off the wall 

with greater vertical force in an attempt to obtain greater depth for dolphin kicking.  

Lyttle and Mason (1997) reported an average freestyle turn WCT of 0.29 ± 0.05 

s and peak Z force of 1345.3 ± 236.5 N for three adult male swimmers of a national 

calibre (open age). These adult results represent substantially higher values than those 

recorded in the present study of younger age groups where WCT times of 0.44 ± 0.12 s 

and 0.49 ± 0.13 s and peak Z forces of 892.2 ± 246.8 N and 864.3 ± 252.9 N were 

recorded for the dolphin kick and flutter kick trials, respectively. These differences are 

attributed to differences in swimming ability, age, height and mass of the participants in 

the present study. Comparable force analysis techniques, allowing for the presence of 
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pre-touch forces due to a bow wave, enabled valid comparison of WCT between the two 

studies. 

As indicated above, direct comparison of technique differences between the 

dolphin kick turn and the flutter kick turn cannot occur until the actual point where 

kicking is resumed. Events leading up to this point could mask any variations but the 

current study revealed little difference between the techniques leading up to the point of 

kick resumption. Appropriate selection of the time to resume kicking is a voluntary skill 

that is related to experience. Irrespective of kick type, participants in the present study 

were shown to select non-significantly different time and distance from the wall to 

resume kicking for the two kicking techniques. However, the velocity at which kicking 

resumed during the dolphin kick trials was significantly less (0.17 m.s-1) than during the 

flutter kick trials. A change in streamlining while preparing to initiate dolphin kicking 

could have resulted in a slowing down prior to the resumption of kicking during the 

dolphin trials. The period from resumption of kicking to 5 m out could therefore be 

isolated to allow direct comparison between the two kicking techniques.  

The ability to maintain wall exit velocity at greater than free-swimming velocity 

for a longer period before commencing stroking is critical in completing a faster turn. 

Appropriate selection of kicking resumption time and velocity is important to utilise the 

benefits from the wall push-off. Resuming the kick too early negates the streamlined 

glide and momentary rest advantage while delaying kicking resumption requires extra 

energy to accelerate back to free-swimming velocity (Blanksby, Gathercole et al., 1996). 

Those swimmers who decelerate less following a turn need to have generated this 

velocity without producing detrimental increases in drag. Figure 5.1 represents a plot of 

mean velocity at wall exit, kick resumption and stroke resumption for the dolphin kick 
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and flutter kick trials. Despite travelling 0.58 m further, and spending 0.34 s longer 

when kicking during the dolphin trials, the velocities at which arm resumption occurred 

for both wall exit techniques were similar (dolphin 1.55 ± 0.13 m.s-1 and flutter 1.57 ± 

0.21 m.s-1). The change in velocity from the resumption of kicking to the resumption of 

stroking during the flutter trials was equal to a decrease of 0.50 m.s-1 and occurred over 

a distance of 1.41 m and 0.83 s. This represents an average deceleration of 0.60 m.s-2, as 

indicated by the line slope representing the flutter kick phase in Figure 5.1.  
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Figure 5.1. Dolphin kick versus flutter kick mean velocity at wall exit, kick 
resumption and stroke resumption. 

From the resumption of kicking to the resumption of stroking during the dolphin 

trials there was a velocity decrease of 0.35 m.s-1 that occurred over a distance of 1.92 m 

and a time of 1.14 s. Thus, average deceleration was 0.31 m.s-2, as indicated by the slope 

of the line representing the dolphin kick phase in Figure 5.1. Hence, velocity above that 
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of free-swimming was maintained for longer during the kicking phase of the dolphin 

trials. Therefore, while dolphin kicking after a turn did not increase velocity, it slowed 

the swimmer more gradually than flutter kicking. This could be due to better 

streamlining and greater propulsion from the dolphin kick technique.  

The number of kicks and rate of dolphin kicking could also influence dolphin 

kick turn performance. The mean number of dolphin kicks executed during the dolphin 

trials was 3.0 ± 1.78 kicks. This number of kicks equates to a dolphin kick rate of 2.24 

kicks.s-1. The mean number of dolphin kicks executed in Chapters 3 and 4 were 2.46 ± 

1.07 and 2.45 ± 1.06, respectively.  These numbers of kicks equate to dolphin kick rates 

of 1.68 and 1.79 kicks.s-1. The likely explanation for this difference in dolphin kick rates 

is differences associated with age dependent factors such as greater strength, proficiency 

and practice. However, the faster kick rate observed in the present study may be linked 

with greater underwater dolphin kick efficiency. This, in turn, may have contributed to 

the non-significant difference observed between the dolphin and flutter kick turning 

techniques.  

Generally, the preferred time to resume stroking following a start or turn should 

be when the horizontal velocity has decreased to equal that of free swimming velocity. 

The velocity at which arm resumption commenced during the present investigation was 

similar for both the dolphin and flutter kick trials (1.55 ± 0.13 m.s-1 and 1.57 ± 0.21  

m.s-1, respectively). These values were slower than the mean free-swimming velocity-in 

of 1.64 ± 0.11 m.s-1) (see Figure 5.1). Hence, both groups tended to wait too long to 

resume arm stroking. Therefore, improved 5 m out-times are possible by more 

accurately selecting stroke resumption velocity through coaching and training. Despite 
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this weakness, velocity above that of free swimming was maintained for longer when 

using the dolphin kick technique (see Figure 5.1). That is, if stroking had resumed when 

kicking velocity reached that of free swimming, the use of dolphin kicking would have 

remained advantageous because of the decreased deceleration (see Figure 5.1).   

The time spent gliding; kicking and stroking to 5 m-out following the turn for 

the dolphin and flutter kick techniques are presented in Figure 5.2. Time spent kicking 

during the dolphin trials was shown to be greater and comprised 63.3 % of the time to 5 

m-out compared with 45.6 % during the flutter kick trials. Despite little difference 

shown between the total times to 5 m-out, the technique methods used to achieve this 

result were different. That is, subjects remained submerged and engaged in kicking for a 

significantly longer period during the dolphin trials.  

Valid statistical comparison of the dolphin kick and flutter kick turn methods 

required adjustment for any cumulative variation in performance before the resumption 

of kicking. Hence, those performance variables that were highly predictive of the 5 m 

out-time prior to kicking were identified from a stepwise regression analysis. The most 

predictive variables were wall exit velocity and peak Y force. Inclusion of these 

variables as covariates in a repeated measure ANOVA allowed adjustment for possible 

variations between the two techniques, prior to kicking resumption. Once statistically 

controlled for pre-kick performance variation, no significant difference was observed 

between the dolphin kick and flutter kick turn types for 5 m out-time. While the 

difference between the 5 m out-time means for the two turn techniques appear to vary 

only slightly (dolphin 1.80 s and flutter 1.82 s) and represent an improvement of only 

one percent over this distance, it could be significant in the context of a swimming race. 

Six of the 13 subjects recorded faster dolphin kick 5 m out-times than flutter kick 5 m 



Chapter 5: Traditional and Modified Freestyle Tumble Turns by Skilled Swimmers 

 164 

out-times, while two subjects recorded the same 5 m out-time for the two techniques. 

These findings suggest that, for approximately half of the swimmers in the present 

study, the dolphin kick turn was a superior method of exiting the wall and resuming 

swimming during a 50 m maximal freestyle effort in a 25 m pool.  
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Figure 5.2. Schema of the time spent gliding, kicking, and stroking to 5 m out 
following the turn for the dolphin and flutter kick wall exit techniques. 

Conclusion 

This study showed that a tumble turn which used a dolphin kick off the wall was 

not significantly faster for 5 m out-time than when using a flutter kick off the wall. 

Neither did one technique result in a superior 50 m total time. The time spent kicking 

during the dolphin trials was significantly greater and comprised 63.3 % of the time to 5 

m-out compared with 45.6 % during the flutter trials. During the underwater kicking 

phase of the turn, deceleration was less during the dolphin kick than in the flutter kick 



Chapter 5: Traditional and Modified Freestyle Tumble Turns by Skilled Swimmers 

 165 

trials. Consequently, velocity above that of free-swimming was maintained for longer 

during the kicking phase of the dolphin turn trials. Whether one technique is universally 

superior to the other, and individual swimmers are better suited to one technique rather 

than the other, requires further investigation. 
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Chapter 6  
Study 4: A Comparison of Lower Extremity 

Kinematics during Free-Swimming 
Underwater Kicking Techniques 

Introduction 

To improve performance, a swimmer must optimise all aspects of the event they 

are contesting. An optimal outbound turning technique requires maximising the distance 

achieved from the wall push-off by minimising the deceleration caused by drag forces 

(Lyttle et al., 2000). Therefore, selection of the appropriate time spent gliding, kicking 

and when to resume stroking (Blanksby, Gathercole et al., 1996; Carpinter, 1968; Lyttle 

& Benjanuvatra, 2003; Sanders & Byatt-Smith, 2003) and selection of the most 

effective kicking style (Lyttle et al., 2000) appears critical to reducing total turn time.  

Anecdotal evidence suggests that free-swimming underwater dolphin kick is 

faster than underwater freestyle (flutter) kick. Subsequently, many swimmers adopt this 

technique following the start and turns in freestyle races. Lyttle et al. (2000) investigated 

net drag forces during tethered swimming from which inference regarding the 

effectiveness of these kicking styles following the start and turn was made. They 

reported no significant difference in drag between a prone freestyle kick, prone dolphin 

kick or a lateral dolphin kick, when towed at velocities 1.6, 1.9, 2.2, 2.5 and 3.1 m.s-1, 

respectively. Underwater kicking kinematics and the relative individual strengths of 

each swimmer’s kicking styles were not measured.  
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Previously, investigations into flutter or dolphin kicking kinematics have been 

made by either isolating the kick or from within the whole stroke, at the water surface 

(Barthels & Adrian, 1971; Bucher, 1975; Cavill, 1973; Fujiwara & Ogita, 1997; Kelly, 

1973; Sheeran, 1980; Ungerechts, 1983a). More recent studies have explored kicking 

kinematics underwater, independently from the stroke (Arellano, Gavilan & Garcia, 

1998; Shimonagata et al., 1997). Arellano et al. (1998) performed a comparison of the 

underwater undulatory movements (dolphin kick) in two separate body positions, prone 

(ventral) and on the back (dorsal). No significant differences were reported between the 

two kicking techniques for kick frequency, length, mean velocity and most joint angles. 

Significantly larger angles were observed at the shoulder at the start of knee extension 

and the knee at the end of knee extension for the ventral kicking technique.  

Shimonagata et al. (1997) explored body oscillations and the temporal 

relationships of body parts during underwater dolphin kick using kinematic and 

electromyographic analysis. Data were recorded from three separate subjective swim 

velocities (fast, medium and slow) with results indicating the undulatory dolphin kick 

oscillations of the skilled swimmers travelled sequentially from the hand to the ankle. 

Oscillations from hand to hip were constrained in the unskilled swimmers as was 

determined by body segment phase angles and muscle activity patterns. Despite these 

findings, Shimonagata et al. (1997) failed to quantify the significance of upper body 

movements to underwater kicking performance. The significance of upper body 

movements to underwater dolphin kicking performance is presently unknown due to a 

lack of research. Contrary to the observations of Arellano et al. (1998) and Shimonagata 

et al. (1997) who investigated and reported whole body movements, current coaching 

practice suggests that limiting vertical upper body movement and kicking from the hips 



Chapter 6: A Comparison of Lower Extremity Kinematics During Underwater Kicking Techniques 

 168 

down will produce a faster underwater dolphin kick speed. Therefore, closer attention to 

the lower extremity in human underwater dolphin kicking appears warranted.  

Alley (1952) reported large amplitude surface freestyle kicks to be superior to 

small amplitude freestyle kicks, while being towed at greater than free-kicking 

velocities. This finding indicates that larger kick amplitudes relate highly with increased 

kicking proficiency. Dolphin kick rates observed in the earlier work in this series 

(Chapters 3, 4 and 5) suggest underwater dolphin kick proficiency may be linked with 

kick style. Swimmers’ usually select their kick amplitude, frequency and the subsequent 

kick amplitude - rate ratio based on what they feel provides maximal velocity. If larger 

kick amplitudes prove to be more efficient, optimal kick amplitude must exist beyond 

which efficiency begins to decrease. It is possible that the optimal kick amplitude may 

be a function of body length. Aquatic animal research has indicated that dolphin tail beat 

amplitudes do not exceed values greater than 25 % of their body length (Ungerechts et 

al., 1998). Therefore, the relationship between human anthropometry and absolute kick 

amplitude and frequency may provide insight into the optimal kick kinematics required 

for maximal underwater kick velocity.  

Despite the investigations mentioned above, no known research has been 

conducted to examine the kinematic differences between free-swimming underwater 

dolphin and flutter kicking styles. Similarly, no research has attempted to quantify 

components of fast underwater kicking technique based on kinematic and a variety of 

anthropometric measures. Hence, the purpose of this investigation was to examine free-

swimming underwater kicking styles and to identify technique and anthropometric 

characteristics that are predictive of fast underwater kicking.  
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Methodology 

Sample 

Subjects comprised 11 males of mean (±SD) height, 177.49 ± 8.13 cm; mass, 

68.89 ± 10.71 kg; and age, 15.72 ± 3.58 yrs; and 6 females of mean height, 166.78 ± 

4.02 cm; mass, 56.50 ± 6.08 kg; and age, 14.83 ± 1.17 yrs. Mean (±SD) personal best 50 

m short course freestyle times for the male and female participants were 25.83 ± 1.29 

(range 24.10 – 28.60) and 28.67 ± 0.27 (range 28.31 – 29.00), respectively. All male 

participants in this study had previously recorded a 100 m freestyle short course time of 

less than 60 s, while all female participants had previously recorded a 100 m short 

course time of less than 65 s. All participants were considered skilled and to possess 

adequate experience in dolphin and flutter kicking based on their swim times and the 

training required to perform at such levels.  

Data collection 

Participants were paired to form two equal lines from fastest to slowest, based 

on their 50 m short course freestyle personal best time. Every second pair was then 

switched across the lines at which time each participant was given a number according 

to their line and position (odd and even). Once in this order, the odd numbered 

participants were assigned to perform dolphin kick trials first and the even numbered 

participants were assigned to perform flutter kick trials first.  

Each participant was then physically number coded and the hip knee and ankle 

joints were highlighted with pen markings on the right side of the body, using 

procedures identified by Plagenhoef (1971). The right foot was also land marked at the 
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distal head of the fifth metatarsal. The distance between the hip (trochanterion) and the 

knee (femur/tibia joint line) markings was measured and recorded as thigh length. An 

example of participant land marking is presented in Figure 6.1. All participants wore 

swim caps during the test trials. 

 

Figure 6.1.  Participant with number coding and landmarking. 

Warm-up 

Prior to the data collection trials, a warm-up was undertaken consisting of a 400 

m freestyle swim. Following the freestyle swim, 4 x 10 m underwater dolphin kick and 

4 x 10 m underwater flutter kick swims, building to 100% max velocity by the fourth 

swim, were performed.  
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Underwater natural dolphin kick and flutter kick trials 

Natural dolphin kick was defined as a participant’s normal underwater dolphin 

kick technique in a prone position. Data collection trials began with participants 

assembling mid-pool, in order, where they were reminded to maintain their assigned 

kick order. Participants were required to attain maximum velocity in each swim trial. 

Using a push start from the bottom, participants were instructed to build underwater 

kick velocity and reach maximum velocity by the time they crossed a floor marker 

placed 7 m meters from the pool wall. Maximum kick velocity was to be maintained 

from this point through to the end of the pool. Each participant performed their 

randomly assigned kick type for their first two trials and then completed the remaining 

two trials with the other kick. A departure time of 15 seconds was used between 

participants who each repeated their kick trials every six minutes. Each kick trial was 

performed at a depth greater than 40 cm from the surface to eliminate the effects of 

surface wave drag (Lyttle et al., 1998). Swim depth was subjectively assessed via a 

video monitor and trials perceived to be performed less than 40 cm from the surface 

were repeated or discounted from the analysis. In most cases, where a swimmer failed to 

swim below the desired depth during their first trial, swim depth was rectified during the 

second trial. This eliminated the need for extra trials and potential fatigue effects that 

could influence performance. Side-on video images of all test trials were recorded and 

stored for analysis.   

Modified underwater dolphin kick trials 

Modified underwater dolphin kick trials were included in this investigation to 

examine the effect that kick amplitude and frequency have on kicking proficiency. 

Following completion of the underwater natural dolphin kick and flutter kick trials, 



Chapter 6: A Comparison of Lower Extremity Kinematics During Underwater Kicking Techniques 

 172 

participants were given 10 minutes instruction and practice at performing two modified 

underwater dolphin kicking techniques. Both modified dolphin kick techniques were 

performed in a prone position. The first of these techniques, ‘small dolphin’, involved 

using a small kick action with a high frequency. Specifically, participants were 

instructed to practise and then perform the small dolphin kick according to the following 

criteria: a fast kick; a small kick amplitude; small vertical movement of the feet; using 

maximum effort; at maximum velocity; with the arms extended (hands locked) and 

upper body held in a streamlined position. The second modified underwater dolphin 

kick technique, ‘large dolphin’, involved using a large kick action with a slower 

frequency. Specifically, participants were instructed to practise and then perform the 

large dolphin kick according to the following criteria: a large kick amplitude; large 

vertical movement of the feet; using maximum effort; at maximum velocity; with the 

arms extended (hands locked) and upper body held in a streamlined position. Two 

underwater dolphin kick trials using the small kick technique and two using the large 

kick technique were then performed according to their randomly assigned order. All 

modified kicking trials were performed and recorded using the methodology of the 

underwater natural dolphin and flutter kick trials. Participants were also required to 

perform the modified underwater kicking trials at maximal velocity. 

Anthropometric tests 

A level two-trained Kinanthropometrist recorded the following anthropometric 

measures, in accordance with the definitions and measurement procedures used by 

Norton and Olds (1996), from each participant within a two-week period following the 

swimming trials; standing and sitting height, tibiale laterale, tibiale mediale-sphyrion 

tibiale, trochanterion-tibiale laterale, trochanterion, foot length, biacromiale, transverse 
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chest, bi-iliocristale, and body mass. Foot breadth was also recorded as maximal foot 

width while weight bearing. 

Instrumentation 

A Rosscraft Centurion anthropometry kit was used for the collection of all 

anthropometric measurements. Height was recorded using a portable stadiometer to an 

accuracy of 0.1 cm and Avery Berkel electronic scales were used to record weight to an 

accuracy of 0.01 kg.  

Trials were recorded using a Panasonic MS5 S-VHS video camcorder set to 

record at 50 Hz. An exposure time of 500.s-1 was used and the video images were 

recorded on a Panasonic VCR (model AG-7350-E). The field of view was set to record 

the hip to foot complex over a minimum of two complete kick cycles. The camera was 

positioned in an underwater viewing window 5.4 m lateral to the swimmer’s path and 

5.0 m from the end of the pool. A schema of the equipment set-up is presented in Figure 

6.2. 

Camera positions placed further from an object being filmed minimises the risk 

of perspective error (Cureton, 1939). Poor image quality associated with underwater 

videography required each swimmer to remain relatively close to the camera during 

trials in this study (see Figure 6.2). This positioning, combined with the difficulty 

ensuring all swimmers remained the correct distance from the camera when free 

swimming, were considered potential causes of measurement error. For example, 

variation in swim plane of 25 cm relative to the reference (calibration) structure 

positioned 5.4 m from the camera equates to a perspective error of 4.6 %. Consequently, 
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horizontal thigh length was digitised and used as the known calibration length for each 

participant trial. Detailed justification for using this method is presented in Appendix D.   

Video Camera

25m

5 m

Start Line
7 m mark

7 m
12 m

5.
4 

m

 

Figure 6.2:  Schema for equipment set up. 

Data analysis 

Two-dimensional analysis via a Peak Motus 32 (Version 6.1) motion analysis 

system was used to digitise the lower extremity (single leg hip to foot segment) over one 

complete kick cycle. A kick cycle was defined as the period in which the ankle (lateral 

malleolus) travelled through one full up and down movement. This was determined 

qualitatively by visually identifying successive vertical ankle maxima from the video 

footage. A complete kick cycle nearest to the centre of the digitising screen was chosen 

for analysis. In view of current coaching practices for underwater dolphin kicking, 

investigation in the current study was de-limited to the lower extremity. Subsequently, 

hip (trochanterion), knee (femur/tibia joint line), ankle (lateral malleolus) and the foot 
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(head of 5th metatarsal) were the landmarks digitised from which the following measures 

were computed for one kick cycle: time (s); horizontal hip displacement (cm) and 

velocity (cm.s-1); vertical displacement of the hip, knee, ankle and foot (cm); and joint 

angle range of movement of the knee and ankle (degrees). Ten frames before and after 

each kick cycle were also digitised to eliminate end-point smoothing errors. All digitised 

data were then smoothed using a Butterworth filter with a Jackson-Knee optimal 

prescribed cut-off of 0.1 (Peak Motus 32, 2001). An example of a digitised frame with 

segment overlays is presented in Figure 6.3. A kick amplitude-rate ratio was calculated 

by dividing the vertical displacement of the foot (cm) by the time per full kick cycle (s). 

Further, adapted Strouhal numbers were calculated in accordance with the method used 

by Arellano et al. (2000). This dimensionless number represents the ratio of unsteady 

and steady motion and low values have been shown to indicate better performance, 

when applied to underwater dolphin kicking in humans (Arellano et al., 2000).  The 

equation for the adapted Strouhal number is: 

StN = Ap – p f / U 

Where StN is the Strouhal number, Ap – p is the tail-beat peak-to-peak amplitude 

(the distance from the peak of the tail fluke up-stroke to the peak of the down-stroke), f 

the stroke frequency (Hz) and U the swimming velocity (Fish & Rohr, 1999, as cited in 

Arellano et al., 2003). 
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Figure 6.3. Swimmer with digitised landmarks and segmental overlays. 

Statistical analyses 

A two-way repeated measures ANOVA was used to analyse the data using 

horizontal kick velocity as the criterion measure. Gender and kick type (2 levels) were 

used in the model as between and within participant factors, respectively.  Type III sums 

of squares, Bonferroni adjustment and an alpha level of p=0.05 were used. Violation of 

any statistical assumptions was tested using Box’s M, Levene’s and Mauchly’s 

sphericity tests, while normality was assessed via examination of the residual plots. 

Greenhouse-Geisser corrections were used on the degrees of freedom where the critical 

assumption of sphericity was not met (Jaccard, Becker, & Wood, 1984). The different 

kick types were partitioned into three planned comparisons to examine kick velocity 

between the natural dolphin kick and each of the other three underwater kicking 

techniques. 

 Separate two-way repeated measures ANOVA’s were performed on each 

kinematic variable for the natural dolphin and flutter kick trials. Natural dolphin was 

selected for this procedure, as it is more representative of a maturely developed skill and 

not manufactured as in the small and large dolphin swims. Gender and kick type (2 
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levels) were again used as between and within participant factors, respectively, with 

type III sums of squares and an alpha level of p=0.05. This analysis was performed to 

identify those performance measures that differed significantly between the two kick 

techniques. Procedural assumptions, normality and any corrections were assessed and 

applied, if necessary, as described above.  

A Pearson product-moment correlation matrix was constructed to identify the 

relationship between variables for the natural dolphin kick trials. A multiple stepwise 

regression analysis was then conducted on the kick technique data that produced the 

fastest underwater kick velocity (natural dolphin), using horizontal velocity of the hip as 

the dependent variable. Measures were added to the model when a variable was 

determined to add predictability to the regression equation at an alpha level of p<0.05. 

This was performed to determine the overall predictive characteristics of the kinematic 

variables measured from underwater natural dolphin kicking and the anthropometric 

data.  

Digitising a single trial 10 times was performed to assess digitiser reliability. 

Separate alpha correlation coefficient tests were performed on each of the following 

grouped variable measures: hip, knee, ankle and foot vertical displacements; maximum, 

minimum and mean horizontal hip velocities; and knee and ankle range of movements. 

The reliability analysis results demonstrated standardised alpha coefficients of greater 

than 0.997 for each grouped variable measure. Thus, high digitiser consistency was 

indicated. All data analyses were performed using an SPSS Statistical Analysis Package 

(version 10.0.5, 1999).  
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Results  

The means and standard deviations for anthropometric measurements are listed 

in Table 6.1. Means and standard deviations for each of the measured kinematic 

variables by kick type are presented in Table 6.2. Box’s M, Levene’s and Mauchly’s 

sphericity tests revealed no statistical procedural assumptions were violated. Similarly, 

Kolmogorov-Smirnov and Shapiro-Wilks statistics and inspection of residual plots 

indicated no normality assumptions were violated. Results indicated that a significant 

difference existed in horizontal kick velocity across all four underwater kick techniques. 

No kick by gender interactions were evident, however, the between subject effect of 

gender was shown to be significant (p=0.006) for horizontal hip velocity.  

Table 6.1.   Anthropometrical means (±SD) for male and female participants.  

 Mean ±±±±SD 

Anthropometric measures (cm) Male  

(n=11) 

Female  

(n=6)  

Standing height  177.49 ± 8.13 166.78 ± 4.02 
Sitting height  91.32 ± 5.20 85.60 ± 2.46 
Trochanterion  92.25 ± 4.92 86.21 ± 4.03 
Trochanterion-tibiale laterale 45.55 ± 2.67 42.93 ± 2.27 
Tibiale laterale 46.70 ± 2.47 43.28 ± 1.99 
Tibiale mediale-sphyrion tibiale 38.99 ± 1.64 36.83 ± 0.98 
Foot length 26.97 ± 0.58 24.98 ± 0.63 
Foot breadth 10.10 ± 0.53 9.20 ± 0.13 
Biacromiale 38.96 ± 3.28 36.07 ± 1.86 
Bi-iliocristale 29.30 ± 6.06 25.98 ± 0.89 
Transverse chest 27.72 ± 1.50 25.63 ± 1.22 
Anterior-posterior chest depth 19.56 ± 1.77 17.74 ± 0.93 

 



 

Table 6.2.  Means and standard deviations for each of the measured kinematics variables by kick type (n=17). 

 Underwater kick technique 

Kinematic features Flutter Natural Dolphin Small Dolphin Large Dolphin 

Time per kick cycle (s) 0.46 ± 0.03 0.49 ± 0.05 0.43 ± 0.06 0.63 ± 0.07 
Kick frequency (kicks.s-1) 2.28 ± 0.18 2.15 ± 0.29 2.47 ± 0.39 1.65 ± 0.20 
Horizontal displacement hip (cm) 57.94 ± 6.80 68.86 ± 11.67 57.47 ± 10.79 84.21 ± 15.83 
Horizontal velocity hip (cm.s-1) 131.47 ± 15.23 145.94 ± 19.86 140.05 ± 19.58 135.21 ± 16.42 
Vertical displacement hip (cm) 6.46 ± 2.21 9.01 ± 1.65 7.20 ± 2.25 14.75 ± 2.25 
Vertical displacement knee (cm) 17.75 ± 3.30 22.55 ± 3.41 18.85 ± 3.99 30.87 ± 5.36 
Vertical displacement ankle (cm) 37.11 ±3.41 35.91 ± 5.42 32.09 ± 7.10 50.33 ± 7.61 
Vertical displacement foot (cm) 47.89 ± 4.67 46.66 ± 6.75  42.43 ± 8.36 61.54 ± 8.96 
Knee range of movement (degrees) 59.32 ± 6.91 72.59 ± 6.23 66.26 ± 8.98 82.07 ± 7.43 
Ankle range of movement (degrees) 33.95 ± 6.44 42.93 ± 9.43 37.49 ± 8.81 48.58 ± 10.96 
Kick amplitude-rate ratio 107.16 ± 15.62 98.37 ± 15.06 102.78 ± 18.60 99.61 ± 13.51 
Strouhal number 0.84 ± 0.10 0.68 ± 0.09 0.74 ± 0.07 0.75 ± 0.09 
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Planned comparison within the repeated measures ANOVA and inspection of the 

means showed horizontal kicking velocity (as indicated by horizontal hip velocity) to be 

significantly faster for the natural dolphin kick compared with each of the other three 

underwater kicking techniques (see Table 6.3). For separate two-way repeated measures 

ANOVAs on each kinematic variable for the natural dolphin and flutter kick trials (see 

Table 6.4), significant differences were observed between the natural dolphin and flutter 

kick techniques in 9 of the 12 parameters measured from one complete kick cycle (up- 

and down-stroke). For the dolphin kick technique, these were: greater horizontal hip 

displacement and velocity; greater vertical displacement of the hip, knee and ankle; 

increased range of movement at the knee and ankle; a larger kick amplitude-rate ratio; 

and a higher Strouhal number. The time taken to complete one kick cycle and kick 

frequency (number of kicks per second) was not significantly different between the two 

underwater kick techniques.   

Table 6.3.  Mean horizontal hip velocity and planned comparison difference between 
the kicking techniques.   

Kick type Mean horizontal 
hip velocity (cm.s-1) 

Planned comparison Sig. (p) 

Natural dolphin 144.88 - - 
Flutter 129.23 Nat. dol. > flutter 0.000 
Small dolphin 139.61 Nat. dol. > small dol. 0.005 
Large dolphin 134.15 Nat. dol. > large dol. 0.000 

Note: Nat = natural; dol = dolphin. 
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Table 6.4.  Summary results of separate ANOVA on performance variables by kick 
type (dolphin and flutter) and gender. 

Variable Source Mean 
square 

F Sig. (p) 

Time per kick cycle Kick Type 
Kick x Gender 
Gender 

3.297E-03 
8.994E-03 
2.310E-04 

2.069 
5.613 
0.086 

0.171 
0.032* 
0.773 

Kick frequency Kick Type 
Kick x Gender 
Gender 

4.039E-02 
0.277 

1.112E-03 

1.062 
7.279 
0.016 

0.319 
0.902 
0.000* 

Horizontal displacement hip  Kick Type 
Kick x Gender 
Gender 

702.918 
305.916 

1549.414 

37.365 
16.341 
14.791 

0.000* 
0.001* 
0.002* 

Horizontal velocity hip  Kick Type 
Kick x Gender 
Gender 

1654.252 
100.044 

8238.716 

50.418 
3.049 
21.610 

0.000* 
0.101 
0.000* 

Vertical displacement hip  Kick Type 
Kick x Gender 
Gender 

45.775 
2.350 
7.878 

17.469 
0.897 
2.114 

0.001* 
0.359 
0.167 

Vertical displacement knee  Kick Type 
Kick x Gender 
Gender 

157.527 
10.195 

190.261 

24.212 
1.567 
19.305 

0.000* 
0.230 
0.001* 

Vertical displacement ankle Kick Type 
Kick x Gender 
Gender 

18.867 
39.585 

412.923 

6.432 
13.495 
16.382 

0.023* 
0.002* 
0.001* 

Vertical displacement foot Kick Type 
Kick x Gender 
Gender 

18.315 
47.981 

799.975 

4.146 
10.860 
19.735 

0.060 
0.005* 
0.000* 

Knee range of movement  Kick Type 
Kick x Gender 
Gender 

1187.913 
91.557 
9.508 

40.331 
3.108 
0.175 

0.000* 
0.098 
0.681 

Ankle range of movement  Kick Type 
Kick x Gender 
Gender 

528.738 
49.125 

104.971 

16.467 
1.530 
1.088 

0.001* 
0.235  
0.314 

Kick amplitude-rate ratio Kick Type 
Kick x Gender 
Gender 

480.866 
77.513 

4184.463 

6.629 
1.069 
28.670 

0.021* 
0.318 
0.000* 

Strouhal Number Kick Type 
Kick x Gender 
Gender 

0.159 
0.006 

4.060E-04 

42.084 
1.462 
0.029 

0.000* 
0.245 
0.867 

* denotes significant difference between dolphin and flutter underwater kick techniques 
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Significant (p<0.05) gender differences between the natural dolphin and flutter 

underwater kick techniques were observed. The males demonstrated significantly: 

higher kick frequency; greater horizontal hip displacement and velocity; greater vertical 

displacement of the knee, ankle and foot; and larger kick amplitude-rate ratios than the 

females. No significant gender differences were observed for: time per kick cycle; 

vertical displacement of the hip; and range of movement of the ankle and knee; and 

Strouhal number. The presence of significant kick by gender interactions from the 

comparison of natural dolphin and flutter kick trials indicates any kinematic differences 

between kick types is not constant across the males and females. Significant (p<0.05) 

interactions were observed for time per kick cycle, horizontal hip displacement and 

vertical displacement of the ankle and foot.   

Natural dolphin was shown to be a significantly faster (horizontal hip velocity) 

method of underwater kicking. Therefore, all further analyses were conducted on data 

from this kick technique in an attempt to identify parameters that contribute to fast 

underwater dolphin kick velocity. A Pearson product-moment correlation matrix 

relating horizontal hip velocity to the kinematic and anthropometric measures for the 

natural dolphin trials is presented in Table 6.5.    

The best kinematic predictors of horizontal kick velocity in order of importance 

were: horizontal hip displacement, time per kick cycle and kick frequency. As the 

calculation of velocity is determined by dividing displacement over time, the highly 

predictive nature of horizontal hip displacement and time per kick cycle were not 

unexpected. Consequently, a multiple stepwise regression on the kinematic measures 

was repeated with horizontal hip displacement and time per kick cycle omitted from the 

analysis. Results from this procedure revealed vertical displacement of the ankle (larger 



Chapter 6: A Comparison of Lower Extremity Kinematics During Underwater Kicking Techniques 

 183 

kick amplitude) and range of movement of the ankle accounted for 65% (Adjusted R2 = 

0.65) of the variance in horizontal kick velocity. The best anthropometric predictor of 

horizontal kick velocity (horizontal hip velocity) during the natural dolphin kick trials 

was foot width, which accounted for 57% (Adjusted R2 = 0.57) of the variance in 

horizontal kick velocity.       

Table 6.5.  Correlations of kinematic and anthropometric variables with horizontal 
hip velocity for natural dolphin kick trials. 

Variables Correlations 

Time per kick cycle  .017 
Kick frequency  -.125 
Horizontal displacement hip  .825* 
Vertical displacement hip  .226 
Vertical displacement knee  .559* 
Vertical displacement ankle  .676* 
Vertical displacement foot  .675* 
Knee range of movement  -.026 
Ankle range of movement  .252 
Kick amplitude-rate ratio .714* 

Standing height  .540* 
Sitting height  .494* 
Mass .468* 
Trochanterion  .564* 
Trochanterion-tibiale laterale .508* 
Tibiale laterale .580* 
Tibiale mediale-sphyrion tibiale .529* 
Foot length .756* 
Foot breadth .722* 
Biacromial .414 
Biiliocristale .310 
Transverse chest .494* 
Anterior-posterior chest depth .629* 
Strouhal number -.413 (p=0.09) 

* denotes significant correlation at the 0.05 level of confidence. 
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Lastly, kinematic and anthropometric measures were assessed for predictability 

of horizontal kick velocity. Horizontal hip displacement and time per kick cycle were 

again omitted from the analysis. Results from this procedure indicated that the 

combination of foot width, ankle range of movement, vertical displacement of the foot 

and vertical displacement of the ankle, accounted for 87% (Adjusted R2 = 0.869) of the 

variance in horizontal kick velocity (see Table 6.6).  

Table 6.6. Multiple stepwise regression equation and results for prediction of 
horizontal swim velocity when swimming underwater natural dolphin 
kick, using selected kinematic and all anthropometric measures. 

Variable Regression 
coefficient 

Beta 
weight 

R squared Adjusted 

 R-squared 

Foot width 26.314 0.686 0.596 0.569 
Ankle range of movement 1.270 0.510 0.709 0.667 
Vertical displacement foot 5.487 1.858 0.842 0.805 
Vertical displacement ankle -5.748 -1.496 0.901 0.869 

Constant: -216.509. 

Discussion 

Data collection and treatment in the present investigation was limited to two-

dimensional analyses. It is possible that the vertical oscillations of human legs during 

underwater dolphin kicking are not linear but include some curvilinear motion. 

Therefore, interpretations of the findings from this investigation should be considered 

within the context of this limitation.  

Underwater free-swimming velocity was compared between four separate 

underwater kick styles: natural dolphin; flutter; small dolphin and large dolphin. A 

significant difference was found to exist across all four-kick techniques for velocity, 
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suggesting variations in efficiency between the styles. Significant gender differences 

were observed across the four kick styles and are believed to be representative of normal 

differences in swimming ability rather than a male-female gender imbalance. Because 

males generally swim faster than females, the same trend is likely to occur in underwater 

kicking ability. Comparisons revealed the natural dolphin kick to be a significantly 

faster method of underwater kicking than flutter and small and large dolphin kicking 

techniques. However, it is acknowledged that the small and large dolphin kick 

techniques measured within this study were manufactured and did not represent mature 

movement patterns. Consequently, swimmers in this investigation performed best at 

what they had practised. Since Chapter 4 showed that dolphin kicking performance 

changed with practice, one could assert that there would be a good possibility of 

improvement in the smaller and larger kicking conditions if they were practiced. With 

practice, one or both might emerge as even better than the current best form. 

Furthermore, the superiority of unpractised modified dolphin kicking techniques to 

flutter kicking warrants their further investigation.   

The present investigation also represents the first kinematic comparison of 

underwater dolphin and flutter kicking techniques. A marked difference was observed 

between the two underwater kick techniques with significant difference shown in seven 

of the ten kinematic parameters measured. Appreciably, underwater dolphin kicking was 

shown to be significantly faster than underwater flutter kicking, despite exhibiting 

similar kick frequencies. Assuming analysis of one leg flutter kick is representative of 

total lower body movement during that form of kicking, the difference in underwater 

kick velocity between the two techniques appears due to greater vertical displacement of 

the hip, knee, ankle and greater range of movement at the knee and ankle. Sheeran 
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(1980) also found a significant difference in knee range of movement between flutter 

and dolphin kicking, using electrogoniometers. However, significant difference between 

the two kick styles was not shown for ankle range of movement. Sheeran (1980), 

however, failed to note whether kicks were performed at the surface or underwater. 

Therefore, this omission limits the comparison of results and subsequent strength of 

conclusions regarding knee and ankle range of movement for flutter and dolphin 

kicking.  

Significantly greater vertical displacement of the hip, knee, and ankle observed 

for the dolphin kick trials indicates that kick amplitude relates strongly with increased 

whole body, horizontal underwater kick velocity. This finding supports the earlier work 

of Alley (1952) who reported large amplitude surface freestyle kicks to be superior to 

small amplitude freestyle kicks. However, optimal underwater flutter kicking amplitudes 

are also yet to be identified and reported. Further, it is not known whether an underwater 

flutter kick with similar kick amplitude to that of the dolphin kick would produce a 

similar kicking velocity.  

The absence of kick by gender interaction for horizontal hip velocity (criterion 

measure) and the presence of kick by gender interactions observed for several other 

kinematic measures suggest the reasons for differences in kick types for horizontal 

velocity are not the same for males and females. That is, males and females possessed 

technique variations within each kick type. These variations are possibly due to 

anatomical or strength differences. Low subject numbers in the present study prevents 

accurate discrimination between genders being performed for anthropometry, while 

strength measures were not obtained. Future research may well consider a larger sample 
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and incorporate strength testing to assist discriminating between genders for underwater 

kicking performance. 

Many investigations of the physical characteristics of successful male swimmers 

have shown them to have relatively large feet (Bloomfield & Sigerseth, 1965; Carter, 

1966; Carter & Ackland, 1994). The stepwise multiple regression procedures in the 

present study found that foot breadth was the best predictor of underwater natural 

dolphin kick horizontal swim velocity, accounting for 57% of the variance (adjusted R2 

= 0.569). A significant positive correlation was also found between foot breadth and 

horizontal swim velocity (r = 0.722). This result indicates that those swimmers who 

possess wider feet are more likely to dolphin kick underwater with greater velocity. 

Grimston and Hay (1985) reported foot cross sectional area to be significantly related to 

stroke length for 12 male college swimmers in events ranging 50 to 1000 yards (45.7 to 

914.4 m). Similarly, Vervaecke and Persyn (1979) found length, breadth and the surface 

of the sole of the foot to differ significantly between the top 25 % and lower 25 % of 

performers during tethered breaststroking. Foot dimension is determined almost 

exclusively by genetic factors (Bouchard, Demirjian, & Malina, 1980) and cannot be 

developed through training. Results in the present study further support the concept 

proposed by Grimston and Hay (1985) that selection of competitive swimmers might 

well focus on genetically determined structural factors.   

Ankle flexibility is widely regarded to play an important role in kicking velocity 

(Cureton, 1930; Engesvik, 1992; Hull, 1990; Maglischo, 1993; Robertson, 1960). In 

contrast, Mookerjee, Bibi, Kenney and Cohen (1995) investigated the relationship 

between isokinetic strength, flexibility and flutter kicking velocity in female college 

students and found no significant correlation between flutter kicking times and plantar 
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and dorsiflexion. Ankle range of movement was the second factor included in the 

stepwise regression equation in the current investigation. However, when assessed in 

isolation, a non-significant correlation (r = 0.252) was found between ankle range of 

movement and horizontal swim velocity. This result does not support Barthels and 

Adrian (1971) who suggested the development of flexibility for greater plantar flexion 

proves more beneficial than the development of lower leg strength when dolphin 

kicking. Ungerechts et al. (1998) also speculated increased ankle flexibility with the 

potential for greater efficiency of oscillatory swimming motion.  

A focus of this investigation was to examine the concepts of free-swimming 

underwater kick frequency and amplitude. Despite a paucity of research, previous work 

in this series (Chapter 3) showed the fastest 33 % of dolphin kickers demonstrated a 

mean underwater dolphin kick frequency of 1.88 kicks.s-1 compared to 1.44 kicks.s-1 for 

the slowest 33 %. Arellano et al. (2000) also demonstrated higher underwater dolphin 

kick frequencies for better-performed swimmers. However, morphological differences 

and differences in swimming abilities (international vs. national age-group level 

swimmers) between groups were likely to have confounded this finding. In the present 

study, the absence of kick frequency from the regression equation for underwater natural 

dolphin kick horizontal velocity indicates that kick rate is of lesser importance than 

other variables. While kick rate appears to have minimal bearing on underwater human 

dolphin kick velocity, a dolphin’s swimming velocity increases with tail beat frequency 

and becomes more asymmetric as velocity increases (greater emphasis on the down 

beat) (Ungerechts et al., 1998). This contrast provides evidence to suggest a weakness in 

analogising human dolphin kicking to the swimming action of marine dolphins. 
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Despite obvious differences in structural design between dolphins and humans, 

oscillatory movement patterns observed in dolphin swimming may provide possible 

application to human swimming. Ungerechts et al. (1998) reported that dolphin tail beat 

amplitudes do not exceed values greater than 25 % of their body length, while values 

approximating 20 % in have been reported for other fish species (Hertel, 1966). These 

findings suggest optimal undulatory kick amplitudes and frequencies could exist for the 

production of maximal undulatory swimming velocity. Swimmer dolphin kick 

amplitude (vertical foot displacement) in the present study was found to represent 27.5 

% of standing height. In contrast, Arellano et al. (2000) reported dolphin kick amplitude 

percentages related to body heights of 34.31 % and 36.58 % for international and 

national level swimmers, respectively. The results of Arellano et al. (2000) suggest that 

faster underwater dolphin kicking is generated from smaller kick amplitudes relative to 

height. However, comparison between the current study and that of Arellano et al. 

(2000) does not support this theory as swimmers in the current investigation kicked with 

slower velocity while using smaller kick amplitude relative to height ratios. This is yet a 

further feature that distances human dolphin kicking from the oscillatory propulsive 

movements of mammalian dolphins. 

The use of kick amplitude relative to standing height percentages in humans 

does not allow appropriate comparison to values recorded in some aquatic animals. That 

is, this measure is not representative of true swimming body length as the arms are 

usually extended above the head during underwater kicking. Hence, the calculation of 

kick amplitude to streamlined height ratios would provide comparative measures with 

other aquatic swimmers. Furthermore, streamlined height could be measured as easily as 

that of standing height, from which coaches could determine individual swimmer 
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optimal kick amplitude heights, should they be found to exist. With few studies 

investigating the relationship between underwater kick amplitude relative to body 

height, further research to determine optimal underwater dolphin kick amplitudes is 

warranted.  

Arellano et al. (2003) reported better swimmers to have lower UUS Strouhal 

numbers. Further, a significant and negative correlation was found between Strouhal 

number and velocity of the CM (r = -0.639).  In contrast, the current study demonstrated 

a lower and non-significant relationship between Strouhal number and horizontal hip 

velocity for UUS (r = -0.413, p = 0.09). However, the relationships between kick 

amplitude; kick frequency and swimming velocity, from which the Strouhal number is 

derived, cannot be determined from this function. Hence, its use in determining optimal 

UUS technique appears limited.  

Vertical displacement of the knee, ankle and foot were all significantly 

correlated with horizontal swim velocity, whereas vertical hip displacement was not 

(r=0.226). This result, combined with non-inclusion in the stepwise regression equation, 

indicates that vertical displacement of the hips is of lesser importance to horizontal 

dolphin kicking velocity. This result contrasts with the observations of Shimonagata et 

al. (1997) and Arellano et al. (1998) who reported increasing amplitude, whole body 

wave motions travelling from hand to foot during underwater dolphin kicking by skilled 

swimmers. The present findings support current coaching trends in underwater dolphin 

kicking where swimmers are instructed to minimise upper body movements and kick 

from the hips down.  
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The combination of foot width, ankle range of movement and vertical 

displacement of the foot and ankle were shown to account for 87 % of the variance in 

horizontal swim velocity when underwater natural dolphin kicking. These data indicate 

that, when combined appropriately, optimising these parameters would produce faster 

underwater dolphin kicking velocity. Therefore, coaches should not neglect the potential 

benefits that may be gained by increasing the vertical displacement the foot and ankle 

travel during underwater dolphin kicking.   

The relative merits of underwater dolphin or flutter kick and the application of 

kick style to strategy following the turn is of interest to both swimmer and coach. The 

present work has enabled superior kick style and important technique characteristics 

during free-swimming underwater kicking to be identified. The relationship and transfer 

of the present findings to velocities greater than free-swimming are not known. Lyttle et 

al. (2000) reported between 2.2 and 1.6 m.s-1 as the optimal velocity to resume kicking 

following a turn. Also, net drag forces during towing revealed no significant difference 

between underwater kick styles despite dolphin kick consistently producing better net 

forces than flutter kick. To further quantify differences between underwater kicking 

styles and identify technique characteristics conducive to efficient kicking at velocity 

higher than free-swimming, kinetic and kinematic analyses of underwater kicking at 

velocity ranges experienced following the turn warrant investigation.  

Conclusion 

Minimising the deceleration caused by drag force and maximising the distance 

obtained following a wall push-off is critical to optimising the outbound phase of a turn. 

Selection of the appropriate underwater kicking technique is equally important. The 
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results of this study indicate that for this sample, free-swimming underwater dolphin 

kick is superior to that of flutter and two, unpractised modified dolphin-kicking 

techniques. Greater foot width and greater vertical displacement of the ankle and foot 

were shown to be highly predictive of faster underwater dolphin kick. Therefore, 

increased vertical movement of the foot and ankle during kicking are deemed important 

considerations for coaches and swimmers. Further research is required to quantify 

differences in underwater kick styles and to identify technique and anthropometric 

characteristics suited to efficient underwater kicking, at velocity ranges experienced 

following the starts and turns.  
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Chapter 7  
Study 5: Kinetic and Kinematic Analysis of 

Underwater Gliding and Kicking 

Introduction 

To increase turn efficiency a swimmer must use the increased velocity gained 

from the wall push off to their advantage. Inappropriate selection of and inefficiencies in 

underwater kick style, technique and kick resumption time can all contribute to less than 

optimal turn exit performance due to energy losses caused by increased drag.  

Numerous investigations have explored drag resistance in water either by 

mathematical estimation or from towing swimmers through a variety of positions, stroke 

techniques and velocities (Benjanuvatra et al., 2002; Clarys, 1985; Clarys & Jiskoot, 

1975; Counsilman, 1955; Glazkov & Dementyev, 1977; Hollander et al., 1986; 

Karpovich, 1933; Kent & Atha, 1971; Kolmogorov & Duplishcheva, 1992; Maiello et 

al., 1998; Toussaint, et al., 1989; van Tilborgh et al., 1983). Until recently, however, the 

relative merits of different streamlined gliding and kicking techniques and selection of 

the correct time for stroke resumption following the turn were unknown. Lyttle et al. 

(2000) theoretically and empirically determined that the optimal glide and kicking paths 

consist of swimmers pushing off from the wall at and maintaining a glide depth of 

approximately 0.4 m. This equates to a glide time of 0.4 s over the first 1 m travelled, 

after which swimmers should ascend gradually to the surface and begin stroking at race 

pace. Lyttle et al. (2000) also proposed for experienced swimmers that kick resumption 
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should occur between the velocities of 2.2 and 1.9 m.s-1 that represents between 

approximately 1.1 and 1.5 m or between 0.45 and 0.65 s of gliding. Despite a trend by 

many swimmers towards adoption of the prone dolphin kick, no significant difference 

was observed between three underwater kicking techniques (prone freestyle, prone 

dolphin and lateral dolphin), suggesting swimmers should adopt the technique in which 

they are most proficient (Lyttle, 1999).  

Assessment of underwater kicking proficiency for many swimmers may be 

difficult to ascertain, particularly at higher velocities. Further, knowledge of critical 

components of efficient underwater kicking technique at velocities higher than those 

achieved during swimming are yet to be determined. A previous study in this series 

indicated free-swimming underwater dolphin kick to be superior to flutter kicking 

(Chapter 6). Results from that investigation also suggest that particular anthropometric 

attributes contribute to efficient dolphin kick. However, maximal underwater free-

swimming kicking velocity is lower than the velocities associated with wall push-off 

following the turn. Identification of key elements of efficient underwater kicking at 

those velocities experienced following the turn may serve to improve overall turn 

performance through appropriate underwater kick technique selection and / or 

improvement.  

Hence, there is a need to explore the kinematics of underwater kicking at 

velocities commensurate with competitive swim turn exits in order to identify proficient 

underwater kicking mechanics and subsequent efficiency. Therefore, the primary aim of 

this investigation was to examine underwater kicking styles and to identify technique 

and anthropometric characteristics that are predictive of efficient underwater kicking 

while towed at velocities representing those experienced during freestyle turn wall exits.   
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Methodology 

Sample 

Eighteen experienced male swimmers volunteered as participants. The average 

number and duration of training sessions currently participated in, average years spent 

competing at State and National levels, and average personal best times for long-course 

50 m freestyle, are presented in Table 7.1. Unlike Lyttle et al. (2000), selection of 

participants with specific body shapes and dimensions to minimise variation in drag 

resulting from differences in body form was not conducted. Conversely, a variety of 

body shapes and sizes were desired to assist in identifying if any anthropometrical 

relationships exist with efficient underwater dolphin and flutter kicking. However, to 

investigate the potential influence body form may have on total drag force; the three 

body form measures used by Lyttle et al., (2000) were selected to represent the three 

components of drag. These measures were chest girth (form drag), surface area 

(frictional drag) and a slenderness index (wave drag). The inclusion of these variables as 

covariates in some statistical analyses were performed in an attempt to co-vary for 

differences in drag due to variations in body size, while maintaining some 

anthropometric variation between participants. The means, SDs and ranges for 

participant age, anthropometric and body form measures are presented in Table 7.2.  
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Table 7.1. Means (±SD) and ranges for the number and duration of training 
sessions, years spent competing at State and National level, and long-
course 50 m freestyle time. 

 Mean ±±±± SD Range 

Training sessions per week 6.67 ± 2.59 1.0 - 11.0 
Training session duration (hrs) 2.00 ± 0.51 1.0 - 2.5 
State Competition (years) 6.17 ± 1.79 4.0 - 10.0 
National Competition (years) 3.50 ± 1.76 1.0 - 6.0 
50 m Freestyle Time (s) 25.96 ± 0.79 24.80 - 27.50 

Table 7.2. Means (±SD) and ranges for age and anthropometric measures.  

 Mean ±±±± SD Range 

Age (yrs) 18.06 ± 2.24 15.0 - 22.0 
Mass (kg) 75.52 ± 7.19 57.0 - 86.8 
Height (cm) 180.95 ± 4.99 173.1 - 190.1 
Streamlined Height (cm) 246.62 ± 6.88 236.0 - 259.0 
Trochanterion to Tibialis lateralis length (cm) 45.04 ± 2.12 42.05 - 49.75 
Tibialis Lateralis to floor length (cm) 49.06 ± 2.12 45.45 - 53.45 
Trochanterion to floor length (cm) 94.10 ± 4.00 88.4 - 103.2 
Foot length (cm) 27.25 ± 1.00 25.55 - 29.05 
Foot width (cm) 10.14 ± 0.37 9.50 - 10.80 
Biacromial breadth (cm) 42.17 ± 1.50 39.65 - 44.65 
Anterior-Posterior (A-P) chest depth (cm) 20.48 ± 1.06 18.8 - 23.35 
Chest girth (cm) 99.66 ± 5.36 85.8 - 109.1 
Waist girth (cm) 78.25 ± 3.59 71.2 - 84.55 
Gluteal girth (cm) 94.44 ± 3.98 82.45 - 100.45 
Calf girth (cm) 37.73 ± 2.30 32.95 - 42.55 
Body surface area (m2) 1.70 ± 0.10 1.46 - 1.85 
Slenderness index (cm/kg1/3) 42.87 ± 1.10 41.30 - 45.73 

Data collection 

Data collection occurred over a two-week period at the University of Western 

Australia’s School of Human Movement Studies. Approval from the University of 

Ballarat and the University of Western Australia Human Research Ethics Committees 
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and informed consent from all participants was obtained prior to commencement of the 

trials.  

Anthropometric Measurements 

All participants were measured for anthropometric dimensions in accordance 

with the measurement procedures used in Chapter 6. In the present investigation, 

however, these assessments took place on the same day as the swim test trials. These 

measurements included: standing and sitting height, tibiale laterale, tibiale mediale-

sphyrion tibiale, trochanterion-tibiale laterale, trochanterion, foot length, biacromiale, 

transverse chest, bi-iliocristale, foot breadth and body mass. In addition, streamlined 

length was measured and recorded as total body length from the toes to fingertips, while 

lying prone with the arms extended above the head (torpedo position). 

Towing Trials 

Many of the participants used in this study had previously participated in similar 

studies and were familiar with the towing task. However, several familiarisation trials 

were given and test trials repeated until the desired body position and depth were 

obtained for each trial condition.  

Before swim testing, each participant was physically number coded and land 

marked in accordance with the procedures outlined in Chapter 6. That is, the hip, knee 

and ankle joint centres were land marked with pen markings on the right side of the 

body, using procedures identified by Plagenhoef (1971). The distal head of the fifth 

metatarsal of the right foot was also land marked. The distance between the hip 

(trochanterion) and the knee (femur/tibia joint line) markings was measured and 

recorded as thigh length.  
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At separate test session times, each participant was towed at three separate 

velocities (1.6, 1.9 and 2.2 m.s-1), along the length of a 25 m pool at a depth of 0.5 m. 

Previous research by Lyttle et al. (1999) revealed no significant difference in passive 

drag between the depth of 0.4 and 0.6 m. Hence, a towing depth as close to 0.5 m as 

possible was chosen for the towing trials.   

Lyttle et al. (2000) found that net drag force, measured during towing, was 

significantly reduced from that recorded in a passive streamlined glide when kicking 

was employed at towing velocities of 1.6, 1.9 and 2.2 m.s-1. No significant differences 

between kicking and gliding were observed at a towing velocity of 2.5 m.s-1, while net 

drag forces during kicking were found to be significantly greater than gliding at  3.1  

m.s-1. Lyttle (1999) defined the highest velocity at which kicking produces less net force 

than the streamlined position as the ‘cross-over’ velocity, that is, a swimmer would 

create more active drag than propulsion if an equal or greater negative net force were 

recorded during kicking than in the streamlined glide position. Lyttle et al. (2000) found 

the optimal range to resume kicking (cross-over velocity) to be between 1.9 and  2.2 

m.s-1. Lyttle et al. (2000) also stated that the cross-over velocity at which kicking 

becomes detrimental would occur at higher towing velocities as swimming proficiency 

increased. Subsequently, towing velocities of 1.9, 2.2 and 2.5 m.s-1 were used in the 

present study to ensure adequate range of towing velocity to accommodate variances in 

swimming proficiency.  

Towing velocity was randomised, as was the order of tow type (glide, dolphin 

and flutter kick) between participants. Towing depth was monitored using the procedure 

developed by Lyttle et al. (2000) where images from an underwater video camera, 

positioned perpendicular to the swimmer’s line of motion, were observed to ensure the 
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desired depth (between 40 and 60 cm) and body position throughout the towing trial. 

Feedback from the video image regarding depth was provided to swimmers following 

each trial. Trials performed outside this range were repeated. All trials were performed 

with maximal kicking effort and participants were encouraged to use their natural 

underwater kicking technique with no limitations placed on the rate or amplitude of the 

kicks. 

Instrumentation 

The towing device used in the present study was developed at The University of 

Western Australia’s School of Human Movement Studies. This device was first used 

and published as a technical note by Lyttle et al. (1999). The towing device system was 

designed to quantify the drag experienced by the swimmer at pre-determined velocities 

and depths. This was achieved by towing swimmers along the length of a 25 m pool 

using a servo controlled mechanical winch. Velocity was controlled via a variable 

control unit, adjustable to 0.05 m.s-1. Horizontal depth was controlled throughout each 

trial via a system of adjustable pulleys, while a waterproofed load cell containing four 

strain gauges measured the drag forces resisting towing. A voltage-to-frequency 

converter transformed the amplified strain gauge voltage signal to a frequency signal 

that was then transmitted to a Realistic FM receiver/demodulator on the pool deck. 

Following conversion back to a voltage signal, each signal was collected at 200 Hz for 

10 s on a PC computer, and processed using the AP30 force analysis program (Pearce, 

1996). A detailed description of the towing device is presented in Appendix C.  

Two-dimensional analyses of the underwater kicking were performed in 

accordance with the procedures used in Chapter 6.  All raw video derived data were 
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smoothed using a Butterworth filter with a Jackson-Knee optimal prescribed cut-off of 

0.1 (Peak Motus 32, 2001). The following measures were computed for one kick cycle: 

time (s); horizontal hip displacement (cm) and velocity (cm.s-1); vertical displacement 

of the hip, knee, ankle and foot (cm); and joint angle range of movement of the knee and 

ankle (degrees). In addition, a kick amplitude / streamline height percentage ratio was 

calculated by dividing the vertical displacement of the 5th metatarsal by the streamline 

height and multiplying by 100. High digitiser reliability (alpha correlation coefficients > 

0.997) was previously demonstrated for this method of analysis (Chapter 6). 

Statistical analyses 

Descriptive statistics (Means, SD) for the net forces recorded at each velocity for 

the streamlined glide, flutter and dolphin kicking conditions were calculated. The net 

force difference between the prone streamlined glide and the flutter and dolphin kick 

conditions were calculated for each subject by subtracting the flutter and dolphin net 

forces from the net force recorded during streamline gliding. Mean net force difference 

for each kick condition was then calculated. 

Two-way repeated measures ANOVA was used to determine the effect of 

towing velocity and condition on net drag force (criterion measure). With significant 

(p<0.05) towing velocity / condition main effects and interaction evident, separate one-

way ANOVAs were conducted on the towing conditions for each towing velocity. Post-

hoc pairwise comparisons were performed following significant univariate one-way 

ANOVA results to determine towing condition the differences. Bonferroni adjustments 

for multiple comparisons and an alpha level of p<0.05 were used. 
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As a significant effect for dolphin kick was shown at all three towing velocities, 

further analyses were confined to this kick technique. Participants were ranked and 

divided into two groups (upper 50 % and lower 50 %) based on their dolphin kick raw 

drag force results for each of the three towing velocities. Separate independent groups t-

tests were then performed between the upper and lower groups to determine if raw drag 

force significantly differed, at each towing velocity. Assumptions of normality and 

homogeneity of variance were screened using the Shapiro-Wilks and Levene’s statistics. 

These assumptions were not violated.  

The presence of significant upper and lower group differences in raw drag force 

prompted investigation of the possible contributions of anthropometric differences 

between groups. Separate pairwise comparison ANOVAs were performed on each 

anthropometric variable between the groups, for each of the three towing velocities. 

Type III sums of squares, Bonferroni adjustments for multiple comparisons and an alpha 

level of p=0.05 were used. With significant differences observed between groups on 

numerous anthropometric measures, particularly at the higher velocities, a Pearson 

product-moment correlation matrix was then constructed to identify relationships 

between all measured anthropometric variables, across all participants (n = 18).  

Separate pairwise comparison ANCOVAs were performed on each kinematic 

variable between the groups, for each of the three towing velocities. Chest girth, body 

surface area and a slenderness index were run simultaneously in the analyses as 

covariates. Type III sums of squares, Bonferroni adjustments for multiple comparisons 

and an alpha level of p=0.05 were also used. To identify those kinematic variables that 

differed between the groups there was a need to account for differences in body 

dimensions between groups. The inappropriateness of including multiple, highly 



Chapter 7: A Kinematic and Kinetic Analysis of Underwater Gliding and Kicking 

 202 

correlated variables as covariates in ANOCOVA (Tabachnick & Fidell, 1989) led to the 

inclusion of the three body form measures, representing the three forms of drag, as 

covariates in these analyses. This was performed to obtain clearer distinctions between 

dolphin kick technique kinematics, while controlling for differences in anthropometric 

dimensions between the groups. All statistical data analyses were conducted using an 

SPSS Statistical Analysis Package (version 11.5.1, 2002). 

Results  

The means and standard deviations for the net forces recorded at each velocity 

for the streamlined glide, flutter and dolphin kicking conditions are listed in Table 7.3. 

The net force difference between the prone streamlined glide and the flutter and dolphin 

kick conditions are listed in Table 7.4.  

Table 7.3  Means (± SD) for the net force (N) recorded at each towing velocity and 
condition (n = 18) 

Velocity Glide Flutter Dolphin 

1.9 m.s-1 -82.64 ± 14.12  -67.04 ± 14.88 -56.18 ± 14.80 
2.2 m.s-1 -115.23 ± 17.30 -110.32 ± 21.11 -99.55 ± 22.07 
2.5 m.s-1 -143.02 ± 16.75 -143.68 ± 21.39 -132.27 ± 21.81 

Table 7.4.  Net force difference (N) between prone streamlined glide and the flutter 
and dolphin kick conditions (n = 18). 

Velocity Flutter kick  Dolphin kick 

1.9 m.s-1 15.59 26.46 
2.2 m.s-1 4.92 15.68 
2.5 m.s-1 -0.66 10.7 
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Results from the two-way repeated measures ANOVA revealed significant 

velocity-by-towing condition interactions [F (4, 68) = 8.05; p = 0.000]. Separate one-

way ANOVAs conducted on each towing velocity revealed significant (p<0.05) 

differences between the towing conditions across all three towing velocities (see Table 

7.5). At 1.9 m.s-1 velocity towing, underwater dolphin kicking produced significantly 

less net towing force than the flutter kicking and streamlined glide conditions. This 

result indicates a clear advantage in using dolphin kicking compared to either flutter 

kicking or streamline gliding at this velocity. For the 2.2 m.s-1 and 2.5 m.s-1 velocities, 

flutter kicking net force was not significantly different from the streamlined glide 

condition, indicating no benefit to swimmers in flutter kicking at these velocities. 

Conversely, dolphin kicking net force remained significantly less than that produced 

during streamline gliding and flutter kicking while being towed at 2.2 m.s-1 and  2.5  

m.s-1. This finding indicates a significant net drag reduction benefit to swimmers was 

obtained through dolphin kicking at these velocities.  

Table 7.5. One-way ANOVA and pairwise comparison tests for the towing 
conditions at each separate towing velocity. 

Velocity One-way ANOVA Significant pairwise comparisons 

 F value df p (p<0.05) 

1.9 m.s-1 46.399 2,34 0.000 Streamlined glide > flutter kick 
    Streamlined glide > dolphin kick 
    Flutter kick > dolphin kick 

2.2 m.s-1 18.398 2,34 0.000 Streamlined glide > dolphin kick 
    Flutter kick > dolphin kick 

2.2 m.s-1 8.940 2,34 0.001 Streamlined glide > dolphin kick 
    Flutter kick > dolphin kick 
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With a significant advantage demonstrated by dolphin kicking at all three towing 

velocities, further analyses were conducted on this kick technique in an attempt to 

identify critical features. Raw force was assumed to differ across each velocity due to 

the velocity drag relationship. Therefore, comparison between velocities was not 

performed. Participant classification of upper or lower 50 % of dolphin drag force was 

used again.  Separate independent t-tests between the groups indicated significantly 

lower dolphin kicking raw drag forces for the upper 50 % group at all three towing 

velocities (see Table 7.6).  

Table 7.6. Group means ± SD and independent t-test results between the upper 50% 
and lower 50 % raw drag force groups for each towing velocity.  

   Independent t-test 

Velocity Group Mean ±±±± SD t score df Sig. p 

1.9 m.s-1 Upper 50 % -45.29 ± 8.55 4.636 16 0.000 
 Lower 50 % -67.07 ± 11.20    
      

2.2 m.s-1 Upper 50 % -83.04 ± 10.29 4.821 16 0.000 
 Lower 50 % -116.06 ± 17.78    
      

2.2 m.s-1 Upper 50 % -115.83 ± 9.50  4.913 16 0.000 
 Lower 50 % -148.71 ± 17.70    

 

Selected anthropometric measures were explored for differences between the 

groups. Significant differences were observed for numerous anthropometric measures 

when using separate pairwise comparison ANOVAs at the 2.2 m.s-1 and 2.5 m.s-1 

velocities (see Table 7.7). A Pearson product-moment correlation matrix indicating 

those anthropometrical variables that shared significant common variance across all 

participants (n = 18) are included in Table 7.8.  
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Table 7.7. Anthropometric measures that varied significantly between the upper 50 
% and lower 50 % groups, for each towing velocity. 

Towing velocity (m.s-1) 

1.9 2.2 2.5 

None �Height 
 �Streamline height 
�Tib Lat to floor 
�Foot length 
�Foot width 

�Biacromial breadth 

�Mass 
�Height 

�Streamline height 
�Troch to Tib Lat 
�Tib Lat to floor 

�Biacromial breadth 
�Chest girth 
�Waist girth 
�Gluteal girth 

Note 1. Troch = Trochanterion; Tib = Tibialis; Lat = Lateralis. 

� Denotes the direction of the difference for the upper 50 % groups compared to the lower 50 % groups 

With significant differences in anthropometric measures observed between the 

upper and lower groups (2.2 m.s-1 and 2.5 m.s-1 velocities) and the highly correlated 

relationships that exist between these measures, determination of the kinematic 

differences between groups is unlikely to be attributed to technique variation alone.  The 

inappropriateness of including multiple, highly correlated variables as covariates in 

ANOCOVA (Tabachnick & Fidell, 1989) led to the calculation and inclusion of the 

three body form measures used by Lyttle et al. (2000) that represent the three forms of 

drag, as covariates in these analyses (chest girth: form drag; surface area: frictional drag; 

and slenderness index: wave drag). This was performed to obtain clearer distinction 

between dolphin kick technique kinematics, while controlling for differences in 

anthropometric dimensions between the upper and lower groups. Separate pairwise 

comparison ANOCOVAs were performed on each kinematic variable between the 

groups, for each of the three towing velocities. Type III sums of squares, Bonferroni 

adjustments for multiple comparisons and an alpha level of p=0.05 were used. The 
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adjusted group Means (± SEM) for dolphin kicking kinematics measures are presented 

in Table 7.9. Adjusted Mean and percent differences between the groups’ kinematic 

measures and significant pairwise ANOCOVA comparisons are listed in Table 7.10. 

Results indicated significantly larger vertical displacement of the hip measured in the 

upper 50 % group when towed at 1.9 m.s-1 and 2.2 m.s-1 (3.98 and 5.01 cm, 

respectively), and significantly larger vertical displacement of the knee at the 2.2 m.s-1 

(5.21 cm) tow velocity. Table 7.10 indicates that despite varying in magnitude, the 

differences in kinematic measures between the upper and lower 50 % groups all 

occurred in the same direction, but were non-significant.  



 

Table 7.8. Pearson product-moment correlations for all anthropometric measures for all participants (n=18) 
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Mass (kg) 1 .691* .620* .379 .424 .426 .470* .486* .830* .544* .881* .853* .822* .664* 
Height (cm)  1 .965* .841* .829* .886* .571* .575* .657* .483* .513* .513* .430 .377 
Streamlined Height (cm)   1 .840* .913* .930* .583* .582* .573* .404 .465 .500* .363 .365 
Troch to Tibialis lateralis (cm)    1 .778* .943* .360 .361 .457 .392 .239 .370 .091 .023 
Tibialis lateralis to floor (cm)     1 .943* .448 .443 .434 .175 .321 .419 .235 .277 
Troch to floor (cm)      1 .428 .426 .473* .300 .297 .418 .173 .159 
Foot length (cm)       1 .999* .446 .216 .404 .254 .311 .433 
Foot width (cm)        1 .458 .220 .415 .267 .325 .444 
Biacromial breadth (cm)         1 .569* .780* .791* .645* .394 
A -P chest depth (cm)          1 .666* .452 .400 -.102 
Chest girth (cm)           1 .812* .735* .397 
Waist girth (cm)            1 .752* .494* 
Gluteal girth (cm)             1 .708* 
Calf girth (cm)              1 

Note. Troch = Trochanterion; Lat = Lateralis; A – P = Anterior - Posterior 

* Denotes significance (p<0.05)  



 

 

Table 7.9. Adjusted Means (± SEM) for the upper (n=9) and lower 50 % group’s (n=9) dolphin kicking kinematics measures. 

       Velocity  

        1.9 m.s-1        2.2 m.s-1        2.5 m.s-1 

Variable Upper 50 % Lower 50 % Upper 50 % Lower 50 % Upper 50 % Lower 50 % 

Time per kick cycle (s) 0.461 ± 0.021 0.463 ± 0.021 0.456 ± 0.024 0.419 ± 0.024 0.438 ± 0.026 0.404 ± 0.026 
Kick frequency (kicks.s-1) 2.190 ± 0.102 2.195 ± 0.102 2.204 ± 0.128 2.444 ± 0.128 2.324 ± 0.168 2.324 ± 0.168 
Vertical displacement hip (cm) 11.90 ± 0.951 7.11 ± 0.951 11.16 ± 0.952 6.16 ± 0.952 10.16 ± 1.629 9.11 ± 1.629 
Vertical displacement knee (cm) 24.59 ± 1.26 22.08 ± 1.26 25.75 ± 1.46 20.54 ± 1.46 23.81 ± 1.86 22.93 ± 1.86 
Vertical displacement ankle (cm) 35.91 ± 2.09 33.73 ± 2.09 38.20 ± 2.19 31.59 ± 2.19 36.79 ± 2.69 33.23 ± 2.69 
Vertical displacement foot (cm) 43.35 ± 2.25 45.21 ± 2.25 49.49 ± 2.45 41.72 ± 2.45 48.06 ± 3.33 43.10 ± 3.33 
Knee range of movement (deg) 70.69 ± 2.76 70.00 ± 2.76 70.21 ± 3.01 65.83 ± 3.01 68.86 ± 2.17 60.97 ± 2.17 
Ankle range of movement (deg) 36.35 ± 3.88 29.14 ± 3.88 29.51 ± 4.09 27.81 ± 4.09 29.09 ± 3.23 28.953 ± 3.23 
Kick amplitude-rate ratio 103.29 ± 5.09 98.50 ± 5.09 109.30 ± 6.90 101.52 ± 6.90 109.99 ± 7.26 108.40 ± 7.26 
Kick amplitude - streamline ratio 19.16 ± 0.92 18.43 ± 0.92 20.05 ± 1.01 16.98 ± 1.01 19.43 ± 1.36 17.56 ± 1.36 



 

 

Table 7.10. Adjusted Mean and percent differences between the upper (n=9) and lower 50 % group’s (n=9) kinematic measures with 
significant pairwise comparison ANOCOVA results. 

       Velocity  

        1.9 m.s-1        2.2 m.s-1        2.5 m.s-1 

Variable 
Diff. a 

% 
Diff. b Sig. p 

95% 
CI  Diff. a 

% 
Diff. b Sig. p 

95% 
CI  Diff. a 

% 
Diff. b Sig. p 

95% 
CI  

Time per kick cycle (s) -0.002 -0.4 0.944 ±0.07 0.037 +8.8 0.331 ±0.08 0.034 +8.4 0.428 ±0.09 
Kick frequency (kicks.s-1) -0.005 -0.2 0.973 ±0.32 -0.240 -9.8 0.248 ±0.43 -0.210 -8.3 0.458 ±0.60 
Vertical displacement hip (cm) 3.98 +56.0 0.012* ±2.97 5.01 +81.3 0.005* ±3.20 1.06 +11.6 0.698 ±5.75 
Vertical displacement knee (cm) 2.51 +11.4 0.192 ±3.94 5.21 +25.4 0.039* ±4.92 0.89 +3.7 0.777 ±6.57 
Vertical displacement ankle (cm) 2.18 +6.5 0.482 ±6.51 6.61 +20.9 0.075 ±7.39 3.56 +10.7 0.476 ±10.48 
Vertical displacement foot (cm) 2.14 +4.7 0.521 ±7.02 7.78 +18.6 0.062 ±8.23 4.96 +11.5 0.379 ±11.76 
Knee range of movement (deg) 0.69 +1.0 0.866 ±8.62 4.39 +6.7 0.367 ±10.14 7.89 +12.9 0.098 ±9.58 
Ankle range of movement (deg) 7.22 +24.8 0.220 ±12.10 1.70 +6.1 0.794 ±13.74 0.13 +0.5 0.980 ±11.41 
Kick amplitude-rate ratio 4.79 +4.9 0.526 ±15.89 7.79 +7.7 0.481 ±23.20 1.59 +1.5 0.895 ±25.63 
Kick amplitude - streamline ratio 0.73 +4.0 0.593 ±2.87 3.07 +18.1 0.072 ±3.39 1.87 +10.7 0.416 ±4.81 
Note 1. Diff. = difference between group means.  

a Denotes difference in means following adjustment for the covariates. Calculated by subtracting the lower 50% group mean from the upper 50 % group mean. 

b % difference = [(A - B)/B] x 100 where A and B represent the upper and lower 50 % group mean scores
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Discussion 

This investigation was limited to eighteen experienced male swimmers. Since 

Chapter 6 showed gender differences in factors affecting underwater dolphin kicking, 

the findings of this investigation are therefore limited to males and that any 

generalisation to female swimmers is both inappropriate and invalid. The primary aim of 

this investigation was to examine underwater kicking styles to enable greater 

understanding of technique and anthropometric characteristics that are predictive of 

efficient underwater kicking during freestyle turn wall exits. In part, this work augments 

the work of Lyttle et al. (2000) by including a kinematic analysis of underwater kicking 

techniques and examines underwater kick kinematics at velocities beyond those 

exhibited in free-swimming. 

Lyttle (1999) stated that the preferred kicking resumption velocity following exit 

from the turn can be determined from towing testing by identifying the highest velocity 

at which kicking produces less net force than the streamlined glide position (cross-over 

velocity). In contrast to the findings of Lyttle et al. (2000), this investigation found a 

significant effect of underwater kicking style on net force. Results showed that 

underwater dolphin kick produced significantly less net drag force than the flutter kick 

and streamlined glide towing conditions across all three towing velocities. Subjects 

produced greater propulsive force without increased active drag. This finding indicates 

that for this population, underwater dolphin kick at these velocities is a superior kicking 

style and would prove advantageous when used following wall exit from a turn. In 

further contrast to the findings of Lyttle et al. (2000) a significant reduction in net force 

when dolphin kicking at the higher velocity of 2.5 m.s-1 (Lyttle et al., 2000: 1.9 m.s-1 
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and 2.2 m.s-1 velocities only), indicated it was beneficial to dolphin kick rather than 

maintain a streamlined glide or flutter kick. As underwater kick proficiency increases, it 

is likely the cross-over point would occur at higher glide velocity (Lyttle, 1999). 

Therefore, this difference in findings is likely to be due to differences in underwater 

dolphin kicking proficiency between participants in each study. The increased 

proficiency in the present study may be, in part, due to a learning effect as several 

swimmers had prior experience at underwater kicking while towed.  Nonetheless, this 

result highlights the need for re-evaluation of the velocity at which swimmers initiate 

underwater kicking without the detrimental effects of increased active drag.  

No significant anthropometric difference was found between the upper and 

lower 50 % groups when towed at 1.9 m.s-1. However, numerous significant 

anthropometric differences were observed between the upper and lower groups at the 

2.2 m.s-1 and 2.5 m.s-1 velocities, indicating body dimensions may have influenced raw 

drag forces at these velocities. Several investigations (Chatard, Bourgoin et al., 1990; 

Chatard, Lavoie et al., 1990; Clarys, 1978a, 1978b & 1979; Ria et al., 1987; van 

Tilborgh et al., 1983) have demonstrated body cross-sectional area, height and weight to 

influence passive drag. Similarly, body cross-sectional area, mass, height, various body 

widths, lengths and circumferences have shown to be significantly correlated with active 

drag (Huijing et al., 1988). Despite research investigating the relationships between 

body dimensions and form with active and passive drag producing contrasting results, 

the present findings indicate smaller anthropometric dimensions to be consistent with 

decreased active drag during underwater dolphin kicking.  

Although some studies suggest anthropometric parameters play a relatively 

minor role in active drag (Clarys, 1978a; 1979 & 1986; Toussaint et al., 1990), 
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kinematic differences between the upper and lower groups are unlikely to be attributed 

to technique variation alone. The differences observed in so many anthropometric 

measures may be due, in part, to the presence of high inter-correlations between 

measures. This indicates these measures are highly representative of one-another and are 

therefore, easily reduced in number (covariates) for the purpose of group comparisons. 

When co-varying for body dimensions, significant kinematic differences were limited to 

increased vertical displacement of the hip in the upper 50 % groups when towed at 1.9 

m.s-1 and 2.2 m.s-1 and significantly larger vertical displacement of the knee at 2.2 m.s-1. 

This suggests that better dolphin kickers involve the hips and knees more than lesser 

kickers. One interpretation of this is that better dolphin performers start their dolphin 

movements with noticeable hip oscillations. 

This result contrasts with the findings of the previous study in this series 

(Chapter 6) where vertical hip displacement was not highly correlated with underwater 

free-swimming dolphin kick velocity. Conversely, Shimonagata et al. (1997) and 

Arellano et al. (1998) reported whole body wave motions to be associated with skilled 

underwater dolphin kickers. In view of these contrasting findings, the relative 

importance of vertical hip displacement to underwater dolphin kicking remains unclear.  

The lack of additional significant kinematic differences between the upper and 

lower groups could be due to the relatively small sample sizes and large performance 

variation. This is evidenced by the relatively high group mean difference 95 % 

Confidence Intervals, particularly at the 2.5 m.s-1 towing velocity, thus indicating high 

variance in performance (see Table 7.10). This increase in performance variation is 

likely to have contributed to the contrasting, non-significant difference in vertical 

displacement of the hip between the upper and lower 50 % groups when towed at 2.5 
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m.s-1. Although speculative, techniques containing larger vertical body movements and 

greater joint ranges of motion may have had a cumulative effect that contributed to the 

production of more efficient underwater dolphin kicking. For example, kick amplitude-

rate ratios were 4.9, 7.7 and 1.5 % larger in the upper groups across the 1.9, 2.2 and 2.5 

m.s-1 towing velocities, respectively. This observation, in conjunction with greater 

vertical displacement of the foot (4.7, 18.6, and 11.5 % larger), implies these groups 

swam with larger kick size per time for each kick cycle than the lesser performed 50 % 

groups.  

To produce larger kick sizes per time of each kick cycle, the upper group was 

likely to have produced faster, and therefore, more powerful muscle contractions 

through a greater range. Mookerjee et al. (1995) performed an investigation into leg 

strength and isolated swim kick performance. They found no significant correlation 

between isokinetic strength and surface flutter kicking times in female college 

swimmers. However, results from underwater film analysis on six participants led 

Mookerjee et al. (1995) to suggest that peak torque plays a significant role in surface 

flutter kicking performance. The relationships between strength, power and the 

subsequent torques at the knee with underwater dolphin kick velocity are unknown. 

However, these might prove to be important and warrant future investigation. 

The present investigation did not find a significant relationship between ankle 

range of movement and increased underwater dolphin kicking efficiency. This is in 

agreement to the findings of the previous study (Chapter 6) and in contrast to the 

findings of several authors who report that increased ankle flexibility plays an important 

role in kicking speed (Barthels & Adrian, 1971; Cureton, 1930; Engesvik, 1992; Hull, 

1990; Maglischo, 1993; Robertson, 1960; Ungerechts et al., 1998).  
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Mammalian dolphins are supreme exponents of undulatory swimming 

techniques. Despite anatomical differences between dolphins and humans, comparisons 

may bring about improved human swimming techniques. Dolphin tail beat amplitudes 

do not exceed values greater than 25 % of their body length (Ungerechts et al., 1998). 

The upper 50 % group of underwater dolphin kickers in the present study demonstrated 

kick amplitude – streamlined length ratios of 19.32, 19.99 and 19.02 % across the three 

towing velocities, respectively. Despite the upper 50 % group consistently 

demonstrating higher kick amplitude – streamline length ratios than the lower group, 

differences between the groups were not significant. This finding suggests no optimal 

relationship exists between kick amplitude and streamlined length in human underwater 

dolphin kicking. In contrast, Lyttle and Benjanuvatra (2004) postulated that smaller 

kicks while at higher velocities would be better due to less deviation from a streamline 

position and therefore less drag. The determination of optimal kick amplitude – 

streamline length ratios is of practical significance to the swimmer as optimal kick 

amplitude can be easily determined from measurement of streamline length. Therefore, 

additional empirical research is warranted to further explore the concept of optimal 

underwater dolphin kicking amplitudes.  

Conclusion 

The importance of selecting an appropriate underwater kicking technique and 

minimising the deceleration caused by drag following wall push-off from a turn has 

been stated frequently. The results of this study indicate that, for this population, 

underwater dolphin kick is a superior method of underwater swimming to that of flutter 

kicking at velocities ranging between 1.9 and 2.5 m.s-1. A significant reduction in net 
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drag force when dolphin kicking compared with streamline gliding shown at a towing 

velocity of 2.5 m.s-1 indicates swimmers may initiate underwater kicking earlier than 

previously suggested following wall push-off from turns without detrimental increases 

in active drag. Smaller anthropometric body dimensions in this study were found to be 

consistent with decreased active drag during towed, underwater dolphin kicking. This 

was particularly so at the 2.2 and 2.5 m.s-1 towing velocities. Trends in data also show 

larger vertical hip and knee movements are linked with more efficient underwater 

dolphin kick while being towed.  
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Chapter 8  
Summary, Conclusions and  

Future Directions 

 Summary  

Freestyle swimming turns can have significant bearing on overall swim 

performance. In recent years there has been an increase in the number of swimmers 

adopting a dolphin kick rather than the traditional flutter kicking wall exit in freestyle 

swimming turns. However, until now no studies have attempted to quantify the 

performance and hydrodynamic merit of each kicking technique. A series of studies 

were conducted to comparing dolphin and flutter kicking exits in freestyle turns to 

identify critical features of efficient underwater kicking technique.  

The first study compared selected kinetic and kinematic variables recorded from 

freestyle turns that used dolphin and flutter kick exits performed by 20 male and 17 

female age-group swimmers. Despite no difference being evident in wall approach 

velocities, contact and push-off forces between the turn methods, 5 m round trip time 

(RTT) was significantly slower for the dolphin trials. The fastest 33 % and slowest 33 % 

dolphin kick trials were compared in order to identify factors that contributed to the 

performance differences. Analysis of the data indicated faster RTTs were associated 

with, among other things, an increased kick frequency. This finding supports previous 

research that has shown higher kick frequencies in human underwater undulatory 

swimming (UUS) leads to increased swimming velocity  (Arellano et al., 2000).  
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Poor dolphin kicking techniques demonstrated in the first study affected the 

ability to compare the merit of each wall exit strategy. Therefore, it was hypothesised 

that with increased practice at underwater dolphin kicking and dolphin kick turns, 

improved dolphin kick turn performances would enable a more appropriate comparison 

between the two turn styles. Hence, study two compared selected kinetic and kinematic 

variables recorded from freestyle turns that used dolphin and flutter kick exits, before 

and after six weeks of dolphin kick and dolphin kick turn practise. Attendance at 

training during the intervention period was poor with the mean number of trainings 

attended being 7.86 ± 3.24 from a possible 18 sessions. The consequence of such low 

attendance was that relatively little dolphin kick practice was performed by the group. 

However, despite this poor attendance, results demonstrated significant and equal 

improvements in dolphin and flutter kick turn 5 m RTTs. That turn RTTs were 

significantly improved with minimal practise is noteworthy and should be considered by 

coaches aiming to improve swimmer’s race times. Despite significant improvement in 

both turn techniques, 5 m RTTs remained significantly slower for the dolphin trials 

compared with the flutter trials. That is, practice of dolphin kicking did not narrow the 

performance gap between flutter and dolphin turns in age-group swimmers.  

Study three analysed the performances of eight male and five female experienced 

swimmers. It was believed that this swimming population would possess greater dolphin 

kicking experience and therefore, the ability to perform dolphin-kicking turn exits with 

greater consistency. In addition, assumed greater consistency in turn performance would 

allow differences in turn times to be more clearly attributed to turn style. Hence, it was 

proposed that this population would provide a more appropriate comparison of flutter 

and dolphin kick turns. Selected kinetic and kinematic variables recorded from freestyle 
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turns using dolphin and flutter kick exits were again compared. Exits from turns that 

incorporated dolphin kicking were shown to be marginally, but not significantly, faster, 

for 5 m out-time compared to when a flutter kick wall exit strategy was used. However, 

the time spent kicking during dolphin trials was significantly greater than during the 

flutter kicking trials. Despite swimmers demonstrating large variation in dolphin kicking 

proficiency, this investigation showed dolphin kick wall exits produced equally fast 5 

m-out turn times to flutter kick turn exits. A likely contributor to the varying dolphin 

and flutter kicking proficiency observed in study three was the variation in individual 

kicking technique. Conclusions regarding those technique parameters that contributed to 

proficient underwater dolphin or flutter kicking could not be clearly determined.  

Study four sought to investigate the kinematic differences between free-

swimming underwater flutter and dolphin kicking, and identify components of fast 

underwater kicking technique based on kinematic and anthropometric measures. 

Seventeen experienced swimmers (11 male and 6 female) were analysed when 

performing maximal effort natural dolphin, flutter and two modified dolphin underwater 

kicking swim trials. The free-swimming underwater dolphin kick technique was found 

to be significantly faster than that of the flutter and unpractised modified dolphin 

kicking techniques. Comparison between the three dolphin kick styles also highlighted 

that swimmers performed best at their usual technique. Regression analyses showed that 

to produce faster underwater free-swimming dolphin kick velocity, an optimal 

combination of greater foot width and greater vertical displacement of the ankle and foot 

is required. Gender differences were also observed in the factors that affected dolphin-

kicking velocity.  
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Swimmer wall exit velocities following the turn in freestyle swimming are 

considerably higher than during maximal free-swimming. With free-swimming dolphin 

kicking shown to be significantly faster than flutter kicking for experienced swimmers, 

it was necessary to compare underwater kicking techniques at velocities higher than free 

swimming. Hence, study five explored underwater gliding and kicking kinetics and 

kinematics at velocities higher than underwater free-swimming. Eighteen experienced 

male swimmers were measured during prone streamline gliding, freestyle and dolphin 

kicking, while towed at three different velocities (1.9, 2.2 and 2.5 m.s-1) at a depth of 0.5 

m. Significantly lower net forces (propulsive force – drag force) were recorded during 

the dolphin kick trials across all three velocities. The results showed dolphin kicking 

rather than flutter kicking to be the superior kicking technique in this sample. When 

subjects were divided into upper and lower 50 % groups based on dolphin kicking 

performance, several anthropometric measures discriminated between the groups at 

higher than swimming velocities. At the 2.5 m.s-1 towing velocities the upper 50 % 

group displayed significantly greater knee and hip vertical displacements. Similarly, 

significantly greater vertical hip displacements were displayed by the upper group at the 

1.9 m.s-1 towing velocities suggesting underwater dolphin kick actions incorporate the 

hips.  

This thesis aimed to quantify the relative merit of performing traditional flutter 

and modified dolphin underwater kicking styles and their application to wall exists 

following the turn in freestyle swimming. For experienced and high calibre male 

swimmers, underwater dolphin kicking was found to be the superior kicking method 

during maximal free-swimming and during towing trials at velocities representing those 

experienced during freestyle turn wall exits. This finding confirms the growing trend in 
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competitive swimming wherein a majority of swimmers employ this turn exit strategy 

during freestyle events. Although free-swimming and towed dolphin kicking was found 

to be superior to flutter kicking, this finding was not demonstrated during dolphin and 

flutter kicking freestyle turn performances. A variety of reasons for the majority of 

findings that did not support dolphin kicking out of freestyle turns as being beneficial 

were discussed.  
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Conclusions 

This thesis investigated underwater dolphin and flutter kicking techniques and 

their application to exits following the turn in freestyle swimming. The main findings 

were as follows: 

Study 1: Traditional and modified freestyle tumble turns by age-group swimmers 

1. Using a kickboard, participants in the present study were able to kick on the surface 

in a prone position significantly faster over a distance of 25 m when using flutter 

kicking than dolphin kicking.  

2. No difference existed between dolphin and flutter kicking turns for the approach to 

the wall, during wall contact and push-off, and to the resumption of kicking for age-

group swimmers. 

3. Freestyle turns that incorporate a dolphin kick wall exit produced significantly 

greater arm resumption distance and time, slower arm resumption velocity, greater 

surface distance and time than did flutter kicking turns. 

4. Flutter kicking wall exits following the turn in freestyle produce significantly faster 

turn 5 m round trip times (RTTs) compared with a dolphin kick wall exit strategy for 

age-group swimmers.  

5. Faster dolphin kick turns are indicated by greater peak horizontal wall force, faster 

wall exit, kick resumption and arm resumption velocities, smaller arm resumption 

time and shorter time spent dolphin kicking.  
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Study 2: Practice and performance of a modified freestyle tumble turn by age-group 

swimmers  

6. For age-group swimmers, dolphin kicking and dolphin kicking turn practice 

produced significant and equal improvements in dolphin kick and flutter kick 

freestyle turn 5 m RTTs.  

7. Flutter kicking remained the faster freestyle turn wall exit method, based on 5 m 

RTTs, following dolphin kicking and dolphin kicking turn practice.  

Study 3: Traditional and modified freestyle tumble turns by skilled swimmers 

8. For skilled swimmers, the use of dolphin or flutter kicking exits following freestyle 

turn wall push-off produced equally fast 5 m-out turn times. 

a) No difference existed between dolphin and flutter kicking turns for the approach to 

the wall, during wall contact and push-off, and to the resumption of kicking for high 

calibre swimmers. 

9. The time spent kicking during the dolphin trials was significantly greater and 

comprised 63.3 % of the time to 5 m-out compared with 45.6 % during the flutter 

trials.  

10. Velocity above that of free-swimming was maintained for longer during the kicking 

phase of the dolphin trials.  
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Study 4: A comparison of lower extremity kinematics during free-swimming 

underwater kicking techniques 

11. Free-swimming underwater dolphin kick was significantly faster than that of flutter 

kicking and two unpractised modified dolphin-kicking techniques, for this sample 

population. 

12. Increased free-swimming underwater dolphin kick velocity is predicted to occur via 

an optimal combination of a greater foot width; increased ankle range of movement; 

and greater vertical displacement of the ankle and foot. 

13. Gender differences were observed for factors that affect underwater dolphin kicking.  

14. The superiority of unpractised modified (altered frequency and amplitude) dolphin 

kicking techniques to flutter kicking warrants their further investigation.  

Study 5: A kinetic and kinematic analysis of underwater gliding and kicking 

15. Experienced male swimmers demonstrated significant reduction in net drag force 

when dolphin kicking compared with streamlined gliding and flutter kicking at 

towing velocities of 1.9, 2.2 and 2.5 m.s-1.   

16. Swimmers were able to perform underwater kicking, without detrimental increases 

in active drag, earlier than previously reported.   

17. Participants demonstrating greater underwater dolphin kick efficiency consistently 

performed with dolphin kick amplitudes representing 19% of total streamline length, 

when towed at velocities ranging between 1.9 and 2.5 m.s-1.   
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18. Smaller anthropometric body dimensions were found to be associated with 

decreased active drag during towed, underwater dolphin kicking. 

Appendix D: The use of subject derived scale factors for one-camera 2D analysis in 

underwater swimming.  

19. Subject-derived calibration for one-camera 2D motion analysis demonstrated 

significantly smaller variation (error) than using a fixed reference calibration 

structure of known dimensions.   
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Future Directions 

The following points represent general recommendations for future research. 

1. Studies in this series compared biomechanical and performance characteristics of 

freestyle tumble turns using dolphin and flutter kicking exits in age-group 

swimmers. The superior flutter kicking ability demonstrated by participants, likely 

due to greater practice and more maturely developed movement patterns, contributed 

to superior flutter kick turn performance. In the likelihood that dolphin kicking may 

be an individually suited skill, further investigations into the comparison of 

proficient flutter and dolphin kick turn types in age-group swimmers should consider 

selection of participants with proficient kicking abilities. That is, attempts should be 

made to examine groups who demonstrate flutter and dolphin kicking proficiency.   

2. Future turn intervention studies using age-group competitors should consider the 

learning and developmental rates of swimmers. Present findings demonstrated equal 

improvements in dolphin and flutter turn performance following increased dolphin 

turn practice. In addition, low participant numbers and poor attendance rates at 

trainings limited the findings. Further studies using age-group swimmers may 

consider incentives to increase training attendance, which may help to demonstrate 

greater intervention affects.  

3. Alternatively, turn exit research could be focussed on swimmers who demonstrate 

more mature movement patterns where greater consistency in performance is 

attainable. This would enable intervention affects to be more clearly identified. 
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4. The use of 5 m out-time as the criterion measure for wall exit performance allowed 

better isolation of the underwater kicking component from the out-bound phase of 

the turn. Further studies into the kicking strategies used following turns should adopt 

this measurement criterion, as opposed to a 5 m RTT, to allow clearer comparison 

between wall exit kicking technique performances. 

5. Regression analysis in Study 4 indicated a relationship between ankle range of 

movement and dolphin kicking velocity. An intervention study aimed at increasing 

ankle flexibility would serve to assess the practical significance increased ankle 

range of movement has on free-swimming underwater dolphin kicking velocity.  

Alternatively, a comparison study comprising participants selected on the basis of 

ankle ROM (good and poor) could further clarify the significance of ankle range of 

movement and dolphin kick velocity. 

6. Comparison between the three dolphin kicking styles (natural, large and small) 

containing equal kick amplitude/rate ratios may reveal different results to the present 

findings. Collection of data allowing this comparison would require multiple swim 

trials from which an adequate number of performances containing equal kick 

amplitude/rate ratios could be identified. Despite obvious difficulties in obtaining an 

appropriate quantity of data, results would further highlight the importance of kick 

size relative to kick vertical leg movement velocity. 



Chapter 8: Summary, Conclusions and Future Directions  

 227 

7. All participants in the present study performed underwater kicking with maximal 

effort and with no limitations placed on kick amplitude or frequency.  Trends in 

results indicated consistent kick amplitude – streamline height ratios in the more 

efficient underwater dolphin kick groups at each towing velocity. Therefore, 

calculation of streamline height and kick amplitude in future studies could enable 

identification of optimal kick amplitude to body length ratio for human underwater 

dolphin kicking. However, because active drag increases with increased frontal area 

and increases with the square of the velocity, optimal kick amplitudes may vary 

depending on the velocity of movement. Hence, an ideal underwater kick strategy 

following the turn may incorporate small kicks, increasing in size; to an optimum 

based on an individual streamline length. To clarify if optimal kick amplitudes or 

frequencies exist, further studies should look at the effects of varying kick amplitude 

and frequency on net drag force while being towed at several velocities greater than 

free-swimming.  

8. The present analysis methods could be used to examine underwater kicking 

techniques used following the turn in backstroke. In conjunction with establishing a 

drag profile, this analysis would allow efficient supine underwater kicking 

kinematics to be identified.     

9. An inherent problem with swimming research is accessing sufficient participant 

numbers. The moderate subject number to variable ratios in the present work limits 

the application of findings to the general swimming population. Therefore, larger 

sample sizes of varying swimming experience levels and genders should be targeted 

in future work.   
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10. The kinematic analysis of underwater kicking techniques in the present works 

focussed on the lower extremity. With contrasting findings reported in the literature, 

anecdotally and within this work, the significance of upper body movements to 

underwater dolphin kicking efficiency remains unclear and warrants further 

investigation.  

11. Data collection and treatment in the present investigation was limited to two-

dimensional analyses. It is possible that the vertical oscillations of human legs 

during underwater dolphin kicking are not linear but include some curvilinear 

motion. Additional video cameras would facilitate a 3D representation of the legs 

during underwater kicking and should be considered for future research. 

12. The relationships between leg strength and power with kicking efficiency were not 

explored in the present work. With increased kick amplitudes, higher kick frequency 

rates, smaller kick amplitude-rate ratios and greater kick amplitude-streamline rate 

ratios shown to be linked with greater dolphin kicking efficiency, the ability to 

produce fast leg kicking movements through greater range appears important. At 

present the relationship between underwater dolphin kick velocity and leg strength 

and power are not known and are worthy of investigation.  
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13. All investigations in this series focussed on the mechanics of underwater kicking 

techniques and turning. No attempt was made to quantify the energy costs relating to 

these techniques and within turn performance. Future attempts to optimise wall exits 

following the turn should also consider the physiological cost in conjunction with 

optimal underwater kicking technique and turn strategy. Similarly, if underwater 

kicking were maintained for greater distance following the turn, breath holding 

would be increased at greater physiological cost. Impending studies should 

investigate this concept. 
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UNIVERSITY OF BALLARAT 

PLAIN LANGUAGE STATEMENT AND INFORMED CONSENT 

PROJECT TITLE: Biomechanical analysis of a modified freestyle tumble turn. 

INVESTIGATORS: Peter Clothier, Assoc. Prof. Warren Payne, Prof. Brian Blanksby. 

PLAIN LANGUAGE STATEMENT: 

The aim of the project is to determine how effective a modified freestyle tumble 
turn is compared to the traditional freestyle tumble turn. Is the modified turn faster? 
What type of swimmer is it faster for? How does the use of kicking effect deceleration 
following the turn? 

As a participant you will be invited to perform pool related performance tests 
and have a number of body measures taken. These measures will include height, weight, 
limb lengths, girths, breadths, skin fold measurements and joint flexibility. Tests of leg 
and abdominal strength will also be required to be performed. The swim testing 
procedure will involve a warm-up followed by a series of 50m freestyle sprints in a 25m 
pool with an appropriate recovery period between efforts. Tumble turns at 25m will be 
performed on a force plate to measure wall forces during push off. A video camera will 
be positioned at right angles to record the swimmer from 10m into the wall and 10m 
out.  Two 25m-kick time trials and a number of shorter (12m) underwater kicking 
sprints will also be performed and recorded using a hand held stopwatch and underwater 
videography. 

You, the participant, will also be invited to perform tests while being towed 
underwater by a mechanical winch. Passive and active drag forces will be measured 
while being towed by the hands, along the length of a 25 m pool at a depth of 0.5 m 
underwater at each of three different velocities (1.9; 2.2; & 2.5 meters per second). At 
each velocity, the subjects will be required to perform a prone streamlined glide, prone 
freestyle kick and prone dolphin kick, with all kicks performed at maximal effort. 
Throughout the towing trials, a video camera will be positioned underwater and at right 
angles to the swimmer, and record the swimmer over a distance of 5 m.  

Pool data collection will be carried out by Peter Clothier and Professor Brian 
Blanksby at the University of Western Australia. The land-based tests will be carried out 
at the University of Western Australia or a relevant swimming squad-training venue in 
Perth.  For your benefit, the results of your performances will be kept with strict security 
by the researchers and may, given your consent, be forwarded to your coaches for 
feedback. 

There are very few risks associated with participation in this study above the 
normal risks that would be encountered during training or competing. As a precaution, 
all participants will be screened via the use of a medical questionnaire (see attached). 
Previous research conducted by the investigators has shown very minimal risk to 
participants, with no instances of injury occurring during previous studies. Practice and 
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familiarisation trials are included in every warm up prior to testing at race pace and all 
towing velocities as a safeguard to minimise any risk further. 

I wish to thank you for consenting to participate in this study. Not only will your 
participation assist your performance as a swimmer but assist in developing current 
swimming techniques so we can achieve greater results.   

Any questions you may have regarding your participation in this study can be 
can directed to Peter Clothier or Brian Blanksby at the school of School of Human 
Movement Studies, The University of Western Australia, Nedlands, on telephone 
number 9380 2658.  
 

I (print name). . . . . . . . . . . . . . . . . . . . . . . . . . . of . . . . . . . . . . . . . . . . . . . . . . . hereby 
consent to participate as a subject in the above research study.  

The research program in which I am being asked to participate has been explained fully to me, 

verbally and in writing, and any matters on which I have sought information have been 

answered to my satisfaction. 

I understand that  

• all information I provide (including questionnaires) will be coded by number and stored 

separately from any listing that includes my name and address. 

• aggregated results will be used for research purposes and may be reported in scientific and 

academic journals. 

• my performance results throughout the study will be made available to my coach for 

analysis and myself from which feedback will be given.   

• I am free to withdraw my consent at any time during the study in which event my 

participation in the research study will immediately cease and any information obtained 

from it will not be used. 

SIGNATURE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DATE: . . . . . . . . . . .   

Parent or Guardians signature (for participants under the age of 18.)  

SIGNATURE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DATE: . . . . . . . . . . .   
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MEDICAL QUESTIONNAIRE 

In order to participate in the battery of tests required for this research project, you are required to 

complete the following questionnaire. 

Name: _________________________________. 

Date: ______________. 

Age: ________. 

Please circle the correct answer to the following questions. 

1. Do you smoke? Yes No 

2. Has your family a history of cardiovascular problems (e.g. heart attack, stroke, etc.)  Yes  No 

3. Do you suffer from any cardiovascular abnormalities (heart murmur, arrhythmic heart beat, etc?) 

 Yes No Don't know 

 If Yes, please state ___________________________________________. 

4. Are you a diabetic? Yes No 

5. Have you suffered from any viral infections in the past month? Yes  No 

 If Yes, please state ___________________________________________. 

6. Have you suffered from a cold in the past week? Yes No 

7. Do you have high blood pressure? Yes No 

8. Are you currently taking any medication?  Yes No 

 If Yes, please state ___________________________________________. 

9. Are you suffering from any bone or muscle injuries? Yes No 

 If Yes, please detail __________________________________________. 

10. Do you suffer from asthma? Yes No 

11. Do you have any medical complaint, or any other reason which you know of, which you think may 

prevent you from participating in strenuous exercise? Yes No 

 If Yes, please state ___________________________________________. 

DECLARATION 

I ______________________________ believe that the answers to these questions are true and correct. 

Signed ________________________. 

Date _____________.
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The following description is from the unpublished thesis titled “Hydrodynamics 

of the Human Body during the Freestyle Tumble Turn” by Andrew Lyttle, University of 

Western Australia, 1999. Full permission has been given by the original author to 

reproduce this work. Lyttle (1999) described the following: 

Towing Device Description 

A towing device was designed to measure above-water and underwater drag 

created by swimmers (see Figure 4.1). This towing device was used to quantify 

drag experienced at pre-determined velocities and depths.  Essentially, a servo 

controlled mechanical winch was used to tow swimmers along the length of a 25 

m pool.  A pulley arrangement was positioned along the pool wall to enable the 

towing force to be essentially horizontal at the required depth.  An underwater 

video camera monitored the trials to ensure the appropriate depth was 

maintained throughout the 12 m measuring range. The equipment used in the 

towing set-up is described below. 

Pool

Pulley System

Mechanical
Winch

Force Data
Collection
Computers

Swimmer Load Cell & Amplifiers

FM Transmitter FM Receiver

 

Figure 4.1. Experimental set-up for the collection of passive drag force 
recordings. 
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Mechanical Winch 

A two horsepower, variable control, motorised winch (DC motor, Type RX70 

MG7 D90L) with a gearbox ratio of 4.67, was used to tow the swimmers (see 

Figure 4.2).  Stainless steel wire of 3 mm diameter was attached via a pulley 

system to the winch and the swimmer.  This wound around a metal drum as the 

swimmer was towed through the water.  A loop of nylon webbing was connected 

to the end of the wire and secured around the subject’s wrists thereby preventing 

the webbing from sliding off the hands during towing.  This allowed the 

swimmer to maintain a more streamlined position by overlapping the hands 

compared with the T bar grips and torso supports which were used previously (di 

Prampero et al., 1974; Jiskoot & Clarys, 1975; Clarys, 1979).  

 

 

Figure 4.2. Mechanical winch. 

Velocity Control Unit 

The towing velocity was determined via a variable control unit, which was 

attached to the motor and adjustable to 0.05 ms-1. Pilot testing showed that this 

unit consistently controlled velocity between 1.6 and 3.1 ms-1 while towing 
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different body types. High inter-trial reliability was found with the coefficient of 

variation for the velocity trials being 0.6% over 30 trials with three swimmers. 

The motor was controlled remotely via a monitoring unit developed in the 

Department of Human Movement and Exercise Science at The University of 

Western Australia (UWA).  This unit triggered data collection on the acquisition 

program, measured the displacement of the swimmer from which the velocity 

was calculated, and acted as a safety cut-off by ceasing the towing 5 m prior to 

the pool wall.  Measurement of the displacement and calculation of the velocity 

of the swimmer was achieved by monitoring holes drilled at equal distances 

around the rim of the cylindrical metal drum.  An optical electric sensor detected 

the holes as the drum rotated and produced a pulse train which represented the 

change in displacement over a given period.  An instrument with an embedded 

controller (Type 8051) was then used to calculate and display the displacement, 

and the instantaneous and peak velocities.  Following each towing trial, the times 

for each 2 m towing interval were displayed as well as the average velocity over 

the whole towing distance (15 m).  When the wire was manually unwound over a 

measured 5 m distance, the error in the displacement measured by the unit due to 

rounding errors was less than 1%. 

In addition to initiating towing, the velocity-monitoring unit triggered data 

collection after the swimmer was towed 3 m, and then discontinued towing after 

a further 12 m (total of 15 m).  Pilot testing demonstrated that 3 m was sufficient 

distance to accelerate the swimmer to the required constant velocity over the 

velocity range used.  Thus, drag could be recorded during the period of constant 

velocity only and not during the acceleration phase.  The towing finished 5 m 

from the wall, which enabled the swimmers sufficient time to stop prior to 

reaching the end of the pool.  A pre-loaded mechanical clutch (pre-load force = 

350 N) was added as a back-up safety measure to disengage the motor in case of 

a failure in the electronic cut-off.  A wire clamp was attached to the wire 3 m in 

front of the swimmer and, in the event of an electronic cut-off failure, the wire 

clamp would contact the pulley system on the pool wall with sufficient force to 

initiate clutch slippage and disengage the motor. 
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Data Acquisition 

The drag forces resisting towing were recorded using a strain gauge, uni-axial 

load cell.  The load cell employed four strain gauges (TML type: WFLA-6-1L) 

in a full Wheatstone bridge configuration mounted on a stainless steel cylinder 

(diameter – 0.07 m).  Each strain gauge was encased within a transparent flexible 

epoxy resin and coated with a microcrystalline wax (M-coat W-1) for 

waterproofing.  Vinyl leads from each strain gauge were attached directly to a 

waterproof PVC capsule (length - 0.25 m; diameter – 0.06 m) which contained 

the strain gauge amplifiers (see Figure 4.4).  The size of the strain gauge cylinder 

and the waterproof capsule were positioned 0.4 m in front of the swimmer to 

reduce the effects of the flow disturbance. Calibration of the strain gauges was 

performed by suspending static weights from the cylinder and recording the 

strain gauge bridge output.  Results of the calibration demonstrated a linear 

relationship (R2 = 1.00) between the load applied and the voltage recorded (see 

Figure 4.3). 
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Calibration Results for Load Cell
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Figure 4.3.  Load cell calibration and electronic schematics. 

 

 

Figure 4.4. Image of the waterproof capsule and load cell. 
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Also housed within the waterproof capsule was a voltage-to-frequency converter 

that transformed the amplified strain gauge signal from a voltage to a frequency 

signal of 0 to 10 KHz.  Both the strain gauge amplifier and voltage-to-frequency 

converter were designed and manufactured at UWA, and were powered via 9 v 

batteries.  The frequency information from the load cell capsule was transferred 

via electrical cable to a Realistic FM modulator transmitter (carrier frequency of 

36.7 MHz).  The transmitter travelled along a roller system, above water, as the 

swimmer was towed.  During pilot testing, attempts were made to transmit the 

FM signal using various frequencies from underwater.  This was unsuccessful 

due to signal grounding problems from the chlorinated water environment and 

the plumbing used for heating the pool.  

The FM data signals were received on the pool deck using a Realistic FM 

receiver/demodulator. The signals were then passed through a frequency-to-

voltage converter where the frequency signals were transformed to a 0 to 5 volt 

reading with a gain setting of 50 N / 1 v.  The voltage signals were collected at 

200 Hz for 10 s on a PC computer using a PC-30, 12 bit A-D card, and 

processed using the AP30 force analysis program.  The AP30 force data analysis 

program provides for real time data acquisition and analysis of analogue signals 

(Pearce, 1996). 

Towing Depth Control 

Depth was controlled using an adjustable, two-pulley system fixed to the pool 

wall (see Figures 4.5 & 4.6).  The top, fixed pulley was attached to the main 

stainless steel tube.  The lower pulley position was adjustable vertically along a 

track that reached from the water surface to 1.2 m deep, in 0.05 m increments.  

The lower pulley permitted the towing force vector to be horizontal at the 

required depth. (p. 90-94) 
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Figure 4.5.  Schematic diagram of the pulley system for controlling depth. 

 

Figure 4.6.  Pulley system for controlling depth.
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The use of subject derived scale factors for one-camera 2D analysis in 
underwater swimming. 

SUMMARY 

This technical note describes a comparison of relative errors in one-camera 2D 

underwater motion analysis when using two different control structure methods for 

calibrating video images. Eleven male and six female participants performed underwater 

kicking swim trials. A reference structure of known length and each swimmer’s actual 

(land measured) thigh length were each used to calibrate the movement space from 

which digitised thigh lengths were calculated from each trial. For each trial, mean thigh 

lengths calculated using the two methods were then compared to actual thigh length for 

each swimmer and the differences recorded. Mean differences between actual and 

computed thigh lengths for the two methods were shown to be similar. However, the 

spread of mean differences was much less when the actual thigh length was used for 

calibration. This result strongly supports the use of thigh length as a more accurate 

method of calibration for one-camera 2D underwater motion analysis.   

Introduction 

The development of improved methods for quantifying spatial co-ordinates prior 

to motion analysis has enabled rapid expansion in knowledge pertaining to human 

movement. Abdel-Aziz and Karara (1971) developed the most commonly used 

technique for quantifying 3D co-ordinates - Direct Linear Transformation (DLT).  The 

use of DLT in swimming studies is common practice (Berger, Hollander & de Groot, 

1999; Cappaert, Pease & Troup, 1995; Payton & Bartlett, 1995; Payton, Baltzopoulos & 
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Bartlett, 2002; Yanai, Hay & Miller, 2000). Walton (1981) as cited in Kwon (1999) 

developed a variation of the DLT for 2D analysis involving eight parameters based on at 

least four control points. The 2D DLT method is especially applicable in underwater 

motion analysis (Kwon & Sung, 1995) as it allows greater freedom of camera placement 

(Kwon, 1999a). The ability to cover a wide object plane and the ability to place the 

optical axis of the camera other than perpendicular to the plane of motion are considered 

advantages of the 2D DLT method (Kwon, 1999a).   

Despite being superseded by multiple camera analysis techniques (2D and 3D 

DLT), one-camera 2D analysis remains a critical tool for underwater motion analysis. 

Hay and Gerot (1991) explain that it is often not practical to use certain underwater 

filming techniques and equipment set-ups. Physical limitations such as access to, the 

location of underwater viewing windows, and the complications of using underwater 

housings can render 3D and 2D DLT methods of analysis expensive, extremely time 

consuming and difficult to perform.  

Importantly, the method chosen for data collection must answer the pertinent 

questions about body motion (Plagenhoef, 1971). Movement such as underwater 

dolphin and flutter kicking predominantly involve motion in two dimensions, vertical 

and longitudinal. Hence, a one-camera 2D analysis system may be sufficient and more 

appropriate for measuring underwater kicking motions.  

When limited to a one-camera data collection system, it is not possible to use 

DLT for spatial quantification. One-camera 2D analysis is dependent on the swimmer 

passing in a perpendicular plane of motion to the optical axis of the camera. A major 

concern when photographing human movement for analytical purposes is perspective 
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error, a phenomenon fundamentally caused when one part of an object being filmed is 

closer to the camera than another part of that object. Hence, those parts closer to the 

camera appear larger than those further away. Cureton (1939) reported that perspective 

errors are greatly magnified when the camera is very close to the object being 

photographed or filmed. Therefore, camera positions placed further from the object 

being filmed can minimise perspective error (Cureton, 1939; Haven, Wilkerson & 

Bates, 1977).  Ideally, a camera should be placed as far from the plane of motion as 

possible and zoomed in until the object fills the field of view (Peak Motus 32, 2001). 

However, pool dimensions and poor image quality associated with underwater 

videography often require swimmers to remain relatively close to the camera during 

filming. This positioning combined with the difficulty ensuring all swimmers remain the 

correct distance from the camera when free swimming, can potentially contribute to 

measurement error in 2D analysis. Variations in swim plane (closer to or further from 

the camera) relative to the position of a reference (calibration) structure are likely to 

increase perspective errors and subsequent errors of measurement.  

Haven et al. (1977) stated that when the subject-to-camera distance varies, 

corrections should be made for perspective error by using a scaling factor for each 

subject to camera distance that occurs in the analysis. According to Haven et al. (1977), 

this process is relatively simple when exact subject-to-camera distances are known or 

the relative perpendicular distance from the camera can be determined because the 

subject touched the ground at some point during the analysis. The method developed by 

Haven et al. (1977) to calculate a scale factor for each performer relative to their 

position from the camera can not be applied in an aquatic environment, as at no time 



Appendix D: Scale factor calibration study  

 275 

does a swimmer contact a fixed point at a known distance from the camera during free 

swimming. 

The degree to which perspective error affects the accuracy of measurement in a 

one-camera 2D underwater swimming analysis system formed the basis of this 

investigation. Hence, the purpose of this investigation was to compare the relative error 

from one-camera 2D underwater motion analysis when using two different control 

structure methods. 

Method 

Sample 

Data were collected from 11 male and 6 female participants who performed four 

maximum effort underwater kick swims using four different kick styles: flutter; natural 

dolphin; small dolphin; and large dolphin. These kick trials formed the basis of another 

study, and were used in the current study to investigate two separate methods of 

calibration. Ethics clearance and participant informed consent were obtained prior to the 

commencement of trials.  

Data Collection 

Prior to performing the trials, each participant was physically number-coded, and 

the hip, knee and ankle joint centres were highlighted with pen markings on the right 

side of the body, using procedures identified by Plagenhoef (1971). The right foot was 

also land marked at the distal head of the fifth metatarsal. The distance between the hip 

(trochanterion) and the knee (femur/tibia joint line) markings was measured twice and 
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the mean recorded as thigh length (TEM = 0.11 cm). A Level Two trained 

anthropometrist performed all the land marking and measurement of thigh length. An 

example of participant land marking is presented in Figure 1.  

 

Figure 1.  A number coded participant with land markings. 

Prior to the commencement of trials, a reference structure of known vertical and 

horizontal dimensions was positioned in the plane of motion, at a distance of 5.4 m 

perpendicular to the camera. Video images of this calibration structure were recorded 

prior to its removal, allowing the swim trials to begin. Data trials were conducted with 

participants assembling mid-pool (12.5 m from the pool wall) from where they were 

required, in order, to increase underwater kick velocity and have reached maximum 

velocity by the time they crossed a floor marker placed seven metres from the pool wall. 
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Maximum kick velocity was to be maintained from this point through to the end of the 

pool, during which time, lateral video images were recorded and stored for analysis. A 

departure time of 15 seconds was used between participants, who each repeated their 

four kick trials, with six minutes rest between trials.  

Instrumentation 

A Rosscraft Centurion anthropometry kit was used for the measurement of thigh 

length. Swim trials were captured at 50 Hz using a Panasonic MS5 S-VHS video 

camcorder. An exposure time of 500.s-1 was used and the video images were recorded 

on a Panasonic VCR (model AG-7350-E). The camera was positioned level and 

perpendicular to the field of view in an underwater viewing window 5.4 m lateral and 

perpendicular to the swimmer’s path (plane), at a distance of 5.0 m from the end of the 

pool. This camera positioning was in accordance with the requirements for the 

traditional direct multiplier method of calibration (Peak Motus 32, 2001).  The field of 

view was set to record the hip to foot complex over a minimum of two complete kick 

cycles.  

Data analysis 

When using a horizontal 2-point scaling device and the direct multiplier method 

of calibration, the generated horizontal scale factor is also applied in the vertical 

direction (Peak Motus 32, 2001). If the video monitor vertical and horizontal 

compression ratio is not 1:1, then error may be introduced in the vertical component. 

That is, the ratio between these two measures should be 1:1 if the picture is symmetrical 

and not compressed or extended vertically. To counter this potential error, measurement 

of the pixel to real world unit ratio was performed by separately digitising known 
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lengths from a scaling device in the horizontal and vertical directions. Comparison of 

pixel to real world units was then made, allowing for adjustment in the vertical direction 

if necessary. No vertical picture compression or extension was found to be present in the 

system used to analyse the present data.  

Calibration of the field of view was firstly performed using a Peak Motus 32 

(version 6.1) motion analysis system and a horizontal reference structure of known 

length (2.8 m). Following this, the hip (trochanterion) and knee landmarks of a single 

leg were digitised over one complete kick cycle. A kick cycle was defined as the period 

in which the leg travelled through one complete up and down movement. Each complete 

kick cycle nearest to the centre of the digitising screen was chosen for analysis in an 

attempt to minimise refraction errors (Kwon, 1999b). Computed data were smoothed 

using a Butterworth filter with a Jackson-Knee optimal prescribed cut-off of 0.1 (Peak 

Motus 32, 2001).  Mean hip to knee segment length calculated from the digitising 

process for one complete kick cycle was then recorded. An example of a digitised frame 

with segment overlay is presented in Figure 2.   

 

Figure 2. Swimmer with digitised trochanterion and knee landmarks, with 
segmental overlay. 

Calibration of the field of view was then re-performed by digitising the mid-

point of the knee and trochanterion landmarks and using the land measured thigh length 
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as the known reference, for each swimmer in each trial. Care was taken during this 

process to ensure the thigh was horizontal and centred as near as possible in the field of 

view when digitised. Using the new calibration scale factor from each participant’s trial 

thigh length, the original digitised data were re-smoothed using the same filtering 

algorithm. This process ensured no errors in calculation of predicted thigh length could 

be attributed to digitiser error or varying degrees of filtering. Mean hip to knee segment 

length (computed thigh) was then re-calculated from each complete kick cycle for this 

set of data and recorded.  

Statistical analyses 

Analysis in the present investigation was aimed at determining the relative 

accuracies of two methods of scaling, that is, to examine the discrepancies between the 

aquatic estimates of thigh lengths and the actual land measured thigh lengths, when 

using two different methods of calibration. The analysis is essentially an examination of 

measures of variability, including standard deviations (SD) and associated confidence 

intervals for the SDs. 

Results  

Mean land measured and computer calculated thigh lengths, and the difference 

between the two, are presented for each calibration method are presented in Table 1. 

Table 2. shows a number of measures indicating the spread in the two sets of data. 

Boxplots of the differences between land measured and thigh lengths estimated by the 

two methods are shown in Figure 3. Standard deviations of the difference between 

actual thigh length and the computed thigh lengths are shown in Table 3, together with 
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confidence intervals for each SD based on the Chi Square distribution (see for example 

Wackerly, Mendenhall, & Scheaffer, 1996). The fact that the 99 % confidence intervals 

for SD using the two methods fail to overlap indicates that the observed difference 

between SDs is statistically significant at the 0.01 level. 

Table 1.  Mean thigh length and difference between land measured and computer 
calculated thigh length for each calibration method. 

Calibration 
method 

Mean land 
measured thigh 

length (cm) 

Mean computer 
calculated thigh 

length (cm) 

Mean Difference  

±±±± SD  

Reference structure 44.63 45.40 -0.77 ± 3.23 
Anthropometry  44.63 44.59 0.01 ± 0.24 

n = 68 

Table 2.  Descriptive statistics for the difference between land measured and 
computer calculated thigh length for each calibration method. 

Calibration 
method 

n SD Min. Max. Range 

Reference structure 68 3.23 -4.45 7.35 11.80 
Anthropometry 68 0.24 -0.44 0.48 0.92 

Table 3.  Confidence intervals for the standard deviation difference between land 
measured and computer calculated thigh length   

 Confidence interval for SD (99%) 

Calibration method SD Lower Upper 

Reference structure 3.23 2.59 4.02 
Anthropometry 0.24 0.30 0.19 
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Figure 3.   Boxplots showing the range of variation in the difference between land 
measured and computer calculated thigh length for each calibration 
method. 

Discussion 

A comparison of relative error from one-camera 2D underwater motion analysis 

when using two different control structure methods was performed. Mean scores for the 

two methods were shown to be similar, as was expected. However, the spread of mean 

differences were observed to differ substantially. Examination of the boxplots clearly 

illustrates the variances are vastly different for the two calibration methods. This result 

strongly vindicates the use of thigh length as a superior method of calibration for one-

camera 2D underwater motion analysis.   
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Nonetheless, there are potential problems with this method. These limitations are 

largely related to extrapolation errors. Kwon (1999a) states you must not use a control 

object smaller than the movement volume to avoid large extrapolation error due to 

refraction. Hence, a potential limitation of using thigh length as a scaling device for one-

camera 2D analysis is the length of the thigh itself. The potential for error being 

introduced through digitising is increased as the size of the scaling device is reduced. 

For example, if a scaling device is exactly ten pixels on the video monitor, but 11 pixels 

are digitised, then the systematic error introduced is about (11-10)/11 or nine percent. 

However, if the scaling rod covers 500 pixels on the video monitor, but the rod is mis-

digitised by the same one pixel, the systematic error is (501-500)/501 or approximately 

0.2 percent (Peak Motus 32, 2001). The magnitude of the error introduced may, 

however, be reduced by increasing the image size as this will result in a proportional 

reduction in the potential error caused through digitising, and is therefore recommended. 

The longitudinal field of view required may also influence the appropriateness of 

using a one-camera 2D analysis system and subject derived calibration. The greater the 

longitudinal distance (wider field of view) over which the swimmer is required to be 

filmed, the smaller the thigh length will be relative to the image size on the screen and 

the number of pixels. This filming requirement potentially limits the use of this method 

of calibration to analyses comprising one, or at most two, complete swim stroke cycles. 

In most cases, this number of stroke cycles is adequate for technique analysis. 

Nonetheless, to ensure greater accuracy using this method, the object being filmed and 

the required movement volume should be maximised in the field of view.  

For accurate thigh length calibration in one-camera 2D analysis, the pixel to real 

world unit ratio in the horizontal and vertical directions must be shown to be equal.  If 
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unequal, correction should be made. A system check can be performed by recording a 

scaling device of known horizontal and vertical lengths in the centre of the field of view 

to allow comparison of this horizontal – vertical aspect ratio. The distance this device 

should be placed from the camera is relatively independent of the performance trials, as 

the pixel to real world ratio should remain constant, irrespective of its initial image size.    

Inherent problems associated with underwater filming have been recently been 

explored and documented by Kwon (1999a, 1999b). Unavoidable errors caused by the 

refraction of light through water, air and glass interfaces result in a “pincushion effect” 

distortion. Kwon (1999b) states that maximum errors occur at the outermost edges of 

the control volume space. Therefore, it is recommended that a control object be large 

enough to cover the entire space of motion in order to minimise coordinate extrapolation 

and subsequent inaccurate coordinate computation. Using subject-derived known 

lengths for calibration does not comply with this requirement and is therefore limited 

with respect to the recommendations of Kwon (1999b). However, the potential for 

perspective error as a result of swimmers travelling in a plane of motion nearer or 

further from the camera than a reference structure is considered far greater.  For 

example, if a swimmer travels in a plane 20 cm closer to the camera over a distance of 

5.40 m (the distance from lens to control structure in the present investigation set-up), 

the perspective error is equal to 0.2/5.40 m. This equates to a measurement error of 3.7 

%. A 3.7 % error in the mean thigh length recorded in this investigation (44.63 cm) is 

equal to 1.65 cm. Maximising the size of the calibration object and using a camera lens 

with minimal fish-eye refraction will reduce pincushion effect distortion.  
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Conclusion 

This investigation has shown that two different control structure methods 

produced vastly different variation in the prediction of known thigh lengths, when 

performing one-camera 2D underwater motion analysis. The use of actual land 

measured thigh length as a known calibration length was found to be far superior to use 

of a fixed reference structure. Subject-derived calibration for one-camera 2D motion 

analysis appears advantageous when relatively small longitudinal fields of view are 

required and the object to camera distance cannot be strictly controlled. Reductions in 

perspective error through using subject-derived calibration will allow greater accuracy 

in one-camera 2D swimming analysis 



Appendix E: Raw, summary and statistical data  

 285 

Appendix E: Raw, Summary and Statistical data  

 Information is contained within the CD located inside the back cover.  


