

BALLARAT UNIVERSITY

ABSTRACT

A PROGRAM VISUALISATION META LANGUAGE

by David Stratton

A program visualisation system sets out to provide visual representation of

the execution of a target program in the hope that this will help programmers

better understand the effect of the program code. Despite the intuitive appeal

of this technique there is still a lack of conclusive, empirical evidence that

supports its efficacy. Experimentation in this regard has been conducted

using a variety of visualisation systems each of which incorporates a particular

approach to visual representation and usually a particular programming

language. There has been little opportunity for educational and psychological

researchers to test the effect of varying these approaches and this limitation

arises from the monolithic nature of most program visualisation systems. The

proposed Program Visualisation Meta Language provides a generalised

communication between an arbitrary executing target program and an engine

that provides visual representations of execution. This decoupling of target

and engine offers an increased scope for experimentation in the field.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Federation ResearchOnline

https://core.ac.uk/display/212995298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Abbreviations and Acronyms ...viii

Chapter 1: Introduction ... 1

Background... 2
Motivation .. 3
Contribution.. 5
Overview .. 6

Chapter 2: A Location and Language Independent Novice Programming

Environment .. 9

Summary of motivation..10
The Software Development Environment ...11

Features ...12
Software Process ...13
Learning Environment versus Production Environment....................................13

A Novice Programming Environment ...14
General Features to Add...15
Professional Features to Remove ...16
Language Independence..17
Location Independence ...17
Conclusion...19

Chapter 3: Progam Visualisation ..21

Taxonomies ..23
Visualisation Axioms ...24

Visualisation Roles ..24
Dynamic vs Static ..26

Program vs Algorithm Visualisation ...26
Code Visualisation ..26
Data Visualisation...27
Algorithm Animation ...28
Discussion..28
Conclusion ...31

Automation in Visualisation ..31
The Annotation Issue ...36

Class behaviour...38
Automatic Algorithm Identification ..39

Decoupling Visualisation ...40
Evaluating Visualisation ..41
Conclusion ..42

Chapter 4: Decoupling Visualisation Targets and Engines....................................44

Where to make the cut?..44
The Case for Decoupling ...46
Roles Revisited...47

Programmer Role..47
User Role ...48
Visualiser Role...49

 ii

PV Developer Role ..50
Discussion..50

Declarative Visualisation ...51
The Roman contribution to visualisation...53

Roman’s taxonomy ..53
Pavane” - A Declarative Approach to Program Visualisatio............................55

The Domingue contribution to visualisation ...57
Vis” - a Framework for Describing and Implementing Visualisation

Systems...57
Other Declarative Approaches ...59
Summary...61

Chapter 5: Debuggers ...63

PVML Architecture..64
Debuggers...66
Debugging Languages ..69

Imperative debugging languages ...70
Declarative debugging languages ..71
PVML as a debugging language...72

Chapter 6: PVML Language Requirements..74

Control ..74
Semantics of the Step Command – a Debugging Language Scenario....................78
Programming Language Issues ..80
Generic Code Issues ...82

Position in Source ...83
Layout of Source..86

Language-Specific Code Issues ...88
Procedural Languages ..88
Object Oriented Languages ..88
Functional Languages...91

Data...93
Data Values ...93
Data References ..94
Data References ..95
Object Oriented Languages ..97
Functional Languages...97

Managing Traffic Volume..98
Ancillary commands ..102
Summary of PVML Requirements ..102

Chapter 7: Reference PVML Implementation ...106

PVML Distribution Platform ...107
XML-based PVML ..109

Request/Response ..111
Engine to Target Requests ..111
Target to Engine Requests ..114
Target to Engine Responses..115

PVML Document Type Definition ..117
Examples ..117

Chapter 8: Reference Engine and Targets ...126

Shared Target and Engine Functionality ...127
Generating PVML ...128

 iii

Parsing PVML...128
Socket Server ...129

The Reference Engine ..130
Program Source Code...131
Program Data..135

Common Target Components ..139
Program Parsing...140
Parser Modifications...141
Program Watchpoint Management...144
The WatchManager ...146

The GDB Target...147
PVML to GDB Command Mapping..149
GDB Target Issues ..150

The JDB Target ..151
PVML to JDB Command Mapping...153

Chapter 9 Discusssion & Future Work ..154

The Significance of PVML..154
Some Criticisms of PVML...157

Novices and Experts ..157
Granularity ..158
Use of XML..159
Target Program Input/Output...162

Related Work..163
Decoupled PV..163
Distributed Debugging..166

Further Work ..168
Target Development ..169
Engine Development ...170
Combined Target and Engine Development...170
PVML Development ..171

Chapter 10 Conclusion ...172

Appendix A: Line-Numbered Variables And Scope Names in PVML176

Appendix B: Data Values in PVML..181

Appendix C: Source Code Representation in PVML...198

Appendix D: PVML Document Type Definiton...201

Appendix E: XML Parsers...204

 iv

LIST OF FIGURES

Number Page

Figure 4-1 Potential visualisation decoupling boundaries... 45

Figure 4-2: The Roman View of Visualisation. Reproduced from [89] 54

Figure 4-3: The Vis Architecture – reproduced from [21].. 59

Figure 4-4: The Location of PVML... 62

Figure 5-1: A PVML Target Driver... 65

Figure 5-2: A PVML Visualisation Engine Driver and its connection to two different

styles of PV display... 65

Figure 6-1 Program stepping - various granularities ... 79

Figure 6-2 Pretty Printed Source Code .. 87

Figure 6-3 Class relationship visualisation in BlueJ.. 90

Figure 6-4 Object test-bench in BlueJ ... 91

Figure 6-5 Data Structure Visualisation in DDD (from [28])... 96

Figure 7-1 Engine sends run request..118

Figure 7-2 Start of code response ..119

Figure 7-3 Establish the execution starting point ..119

Figure 7-4 Engine run request references target file system...120

Figure 7-5 Sample line of C source code...120

Figure 7-6 Level 1 PVML - FORTRAN source code...121

Figure 7-7 Single step in a C program...122

Figure 7-8 PVML frame request - adding an execution context.......................................122

Figure 7-9 Adding a watch to a variable..123

Figure 7-10 A data request communicates a simple updated data value124

Figure 7-11 A data request communicates a complex variable update.............................124

Figure 7-12 A watched variable becomes out of context ..125

Figure 8-1 Check whether input is request or response ..129

Figure 8-2 Executing a request ..129

Figure 8-3 Engine displaying sample Java source code..132

Figure 8-4 Engine displaying Java source code in a second execution context132

Figure 8-5 Engine showing sample C source code ...133

Figure 8-6 Engine showing sample FORTRAN source code ...134

Figure 8-7 Simultaneous sessions in three source languages..135

 v

Figure 8-8 Engine showing a watched variable...136

Figure 8-9 Display of a simple Java variable value...137

Figure 8-10 Display of a complex Java data item ...138

Figure 8-11 Display of a Java variable becoming out of scope ..139

Figure 8-12 XMLTreeDumper fragments for top-level node Visitor in two source

languages ...141

Figure 8-13 ParserTokenManager saves source code comment information..........142

Figure 8-14 XMLTreeDumper reinserts source comments in PVML stream................143

Figure 8-15 JTB-written code fragments showing language dependent package144

Figure 8-16 Setting an initial breakpoint ...151

Figure 9-1 Comparison of ENF and ANF representation of a PVML response.162

Figure 9-2 Structure of the Pavane system. Reproduced from [91]..................................165

Figure 9-3: The Vis Architecture. Reproduced from [21]...165

Figure 9-4 cdb's design. Reproduced from [38]...167

Figure 9-5 deet's nub interface. Reproduced from [38]..168

Figure A-1: Multiple scopes in a sample Java program..178

Figure B-1 A C structure and its PVML representation..186

Figure B-2 A one-dimensional C array and its PVML representation187

Figure B-3 A two-dimensional C array and its PVML representation188

Figure B-4 A Java Object and its PVML representation...189

Figure B-5 Data Structure Visualisation in DDD. Reproduced from [28].193

Figure B-6 PVML description of first item in list ...194

Figure B-7 PVML description of next pointer..195

Figure B-8 Reading at an offset from a pointer...197

Figure E-1 SAX Parser character() handler ...207

 vi

LIST OF TABLES

Table 4-1: Who plays what role? Visualisation players and their roles in Roman's

three specification styles ... 47

Table 4-2 Who does what? Visualisation roles for different experience levels 51

Table 6-1: Generic PVML Requirements..103

Table 6-2 Specific PVML for the Object Test Bench scenario...105

Table 8-1 Contrasting debugger approaches to program variable watching145

Table 8-2 Mapping PVML debugger requests to GDB ..149

Table 8-3 Mapping PVML debugger requests to JDB..153

Table A-1 PVML scope names in a sample Java program ...180

 vii

ACKNOWLEDGMENTS

The part-time doctoral degree is a magnificent concept, from the point

of view of a university teacher who is significantly committed to a

professional lecturing career, yet seeks further academic advancement. It

is very far from a magnificent concept for the wife of that teacher. My

wife, Ros, has had to contend with six years of a distracted, and

increasingly frantic, husband and her support, and love, have been

central to this endeavour.

My principal supervisor, Dr Philip Smith, has been a fellow traveller,

and has shown tireless dedication to Program Visualisation, his own

doctoral topic, and the potential impact of this research on that domain.

My warm thanks go to Philip and also to Dr John Wharington, my

associate supervisor, whose technical insight into the programming

domain, and willingness, literally, to travel the extra mile in supervising

me, has been a significant contribution.

Lastly I wish to acknowledge Professor Sidney Morris, my head of school,

who bent over backwards to relieve me of teaching duties in the final

phase of my completion.

 viii

ABBREVIATIONS AND ACRONYMS

ADT Abstract Data Type

AI Artificial Intelligence

ANF Attribute Normal Form

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AV Algorithm Visualisation

BNF Backus-Naur Form

CASE Computer Aided Software Engineering

CLR Common Language Runtime

COM+ Component Object Model

CORBA Common Object request Broker Architecture

CS1, 2 Computing Science Year 1 (2)

DOM Document Object Model

DTD Document Type Definition

ENF Element Normal Form

GCC GNU Compiler Collection

GDB GNU Debugger

GDL General purpose Debugging Language

GNU GNU’s Not Unix (!)

GUI Graphical User Interface

HTML Hyper Text Markup Language

 ix

HTTP Hyper Text Transfer Protocol

IDL Interface Definition Language

IP Internet Protocol

JDB Java Debugger

JDI Java Debug Interface

JDK Java Development Kit

JPDA Java Platform Debugging Architecture

JTB Java Tree Builder

MIME Multi-purpose Internet Mail Extension

PE Programming Environment

PV Program Visualisation

PVML Program Visualisation Meta Language

RFC Request For Comment

RMI Remote Method Invocation

RPC Remote Procedure Call

TCP Transmission Control Protocol

SAX Simple API for XML

SV Software Visualisation

W3C World Wide Web Consortium

XML Extensible Markup Language

 x

C h a p t e r 1

INTRODUCTION

This research is concerned with the difficulties that arise when people learn

to program computers. A novice programmer is confronted by a daunting

learning curve, part of which is the need to acquire mental models of the

process. It has been suggested by many authors, that the mental models of

the novice might be aided by systems that provided visual representations of

the program they are writing, in order to reinforce the largely text-based view

that is prevalent. This approach, Program Visualisation (PV), has an intuitive

appeal but its efficacy has not been conclusively and empirically

demonstrated.

Research into the efficacy of PV is, not necessarily, a computer science

undertaking. Significant contributions could potentially be made by

educational and psychological researchers but PV systems are not generally

open to reconfiguration by non computer scientists. A visualisation system

generally incorporates a particular approach to visual representation and

usually a particular programming language. The opportunity for educational

and psychological researchers to test the effect of varying these approaches is

limited and this limitation arises from the monolithic nature of most program

visualisation systems.

The proposed Program Visualisation Meta Language provides a generalised

communication between an arbitrary executing target program and an engine

that provides visual representations of execution. This decoupling of target

and engine offers an increased scope for experimentation in the field.

This thesis is submitted as the major component of the research portfolio for

this professional doctorate.

 2

1.1 Background

Computer programmers are often puzzled by the effects of the program that

they have written. For the novice programmer the problem is compounded

by the fact that they usually have inadequate mental models of the entire

programming process. To examine the behaviour of a running program

expert programmers have historically resorted to adding lines that print

messages or values to the screen. More sophisticated programmers might use

a debugger to step through their program and inspect its behaviour. Neither

of these approaches offers much help to the struggling novice whose lack of

understanding of the programming process can often leave them confused

and demoralised.

An alternative, one that might seem especially attractive to novice

programmers, is to provide some means of offering a more tangible

representation of program execution. The hope is that pictures or sounds

representing the state of the program will assist the development of mental

models of the execution process. The domain of PV has been the location

of much research, development and effort within computing science and

many large and complex systems have been created to provide, mainly visual,

representations of program execution across a broad range of computer

languages.

Naturally enough, the development of PV systems has been accompanied by

research into their efficacy, largely focusing on the question of whether

novice programmers are significantly assisted by the use of PV. Typically the

developers of a PV system, usually university researchers, will survey the

students who have used their system. In some cases they might conduct

experiments in which new programming students will be exposed to

programming pedagogy both with, and without, the PV system. Although

the qualitative studies have generally favoured PV the somewhat surprising

 3

conclusion of the quantitative work is that it has yet to be shown,

convincingly, that novice programmers benefit from PV.

It is against this background that the author has formed an interest in the

pedagogy of computer programming. In [106] the author has proposed a

“location and programming language independent” novice programming

environment. An argument has been presented for the provision of a

programming environment in which the target program, the one that is being

written and tested, is at a location that is remote from the novice

programmer. It has also been suggested that such an environment might

incorporate PV features. It is the proposal to provide PV in an environment

that is distributed, and which sets out to support programming in a variety of

languages, that led to the initial formulation of the Program Visualisation

Meta Language (PVML) proposal.

1.2 Motivation

The background described, both in terms of the author’s suggested novice

programming environment and the significant uncertainties surrounding the

usefulness of PV for novice programmers, together provide the motivation

for this research. In particular the motivation with regard to the general area

of PV research, is worthy of further explanation in this thesis. The more

general issue of a novice environment is covered in Chapter 2.

The question of what is, or is not, pedagogically effective is one that is

generally addressed by researchers in the field of education and psychology.

These researchers have learned to apply a range of statistical and

experimental techniques and are conversant with the psychology of

perception and the development process of mental models that students

undergo. Despite this the bulk of research into PV has been conducted by

computer scientists, the designers and builders of the PV systems. In general

the field of PV research has not been accessible to more educationally

oriented researchers. The closed nature of PV research relates directly to the

 4

closed nature of PV systems. A given PV system provides a particular visual

representation of execution for a particular programming language yet

empirical research in the field would perhaps seek to compare a variety of

visual approaches to pedagogy amongst a cross-section of computer

languages.

A careful review of PV literature reveals that comparatively few researchers

have explicitly isolated the role of visualiser. It is the role of a visualiser to

make the potentially pedagogically significant decisions as to what form of

visual representation will be used to represent particular programmatic

artifacts and states. This role, most often implicitly filled by the designer of

the PV system, is the location for precisely the pedagogical decisions that

should be examined most closely. Again it is the monolithic design of most

PV systems that fails to provide satisfactory access for the visualiser role.

The PVML proposal has the potential to decouple, or componentise, PV

systems; introducing a strict boundary between the executing program, which

is termed here the target, and the means of providing visual representation,

which is referred to as the engine. By establishing this boundary, across which

only program state information flows, it is possible for arbitrary engines to

communicate with arbitrary targets. A particular visualisation approach,

represented by a PVML engine, can therefore be applied to targets

incorporating a variety of programming languages. Alternatively novices,

learning a particular programming language, can apply various visualisation

engines, employing different visual metaphors, to the task of understanding

their particular program.

The effect of this should be to define a generic location for the activities of

the visualiser and hence to expose PV research as an area for educational

rather than computer specialists. Visualisation engines, that incorporate

explicit visualiser tools and interfaces, can expect to communicate via PVML

with a wide range of targets. The generalisation of this access implies that

 5

the effort expended in generating new and more sophisticated visualisation

tools can expect wider access and larger markets than would otherwise be

expected.

The principle motivation of this work is therefore to define an open PV

architecture that will enable a variety of visualisation schemes to interoperate

and that will encourage the generation of PV systems and research into their

efficacy. Ultimately this may lead to more effective pedagogy in the field of

computer programming and hence remove a barrier to students entering the

profession.

Computer programs, their creation and maintenance, occupy a critical

position in the twenty-first century economy. Programming related

endeavours represent a substantial element within that economy, but one

that is constrained by the supply of competent and well trained computer

programming professionals. Helping the novice programmer in their struggle

to engage with the field is a first step to securing that supply.

1.3 Contribution

The effect of a convincing definition of a Program Visualisation Meta

Language will be to open the PV field to significant innovation.

On the one hand programming languages that are used pedagogically, but for

which no visualisation tools are available, can potentially be visualised by a

range of PVML compliant visualisation engines. Providing such additional

targets involves wrapping a debugger for the language with appropriate

PVML drivers. If it is assumed that PV is useful for novice programmers, the

approach becomes accessible to those learning a greater cross-section of

languages.

On the other hand diverse approaches to visualisation can be implemented

in PVML compliant engines. In particular attention can be paid to

 6

configuring such engines in a manner that supports a meaningful visualiser

role in order that non computer scientists can configure, evaluate and assess

varied approaches to visualisation. This has the potential, perhaps, to lead to

some better answers to the question “Does PV help novice programmers?”

Although PVML has been characterised as a development that will

encourage further research in the field, the potential encouragement that the

decoupled architecture provides for PV software development should not be

neglected. It has been argued that the effect of componentisation in other

software development fields has been to encourage the growth of those

fields. PVML represents a critical step towards the componentisation of PV

systems and as such, a significant contribution to their future proliferation

and development.

1.4 Overview

The description of the proposed Program Visualisation Meta Language is

supported by three chapters that assess related work in the field.

Chapter 2 examines novice programming environments in general and sets

out to underpin the proposition that a location and language independent

novice programming environment would be pedagogically useful. This

represents the earlier stages of the study undertaken in this doctorate, and

concludes by suggesting that the provision of PV features within such an

environment would represent a significant challenge.

Chapter 3 specifically addresses the field of program visualisation and

examines the various approaches taken in the history of this field. PV is

examined from various angles and special attention is paid to work that has

set out to define taxonomies of PV systems.

Chapter 4 addresses the predominant issue in program visualisation from the

point of view of the PVML proposal – the decoupling of visualisation targets

 7

and engines. The PV systems examined here are those which partition the

PV problem along similar lines to that adopted by PVML.

Chapter 5 begins with a very broad, architectural, definition of PVML and

moves on to locate the language in the field of debugging. Given that PVML

expressly, and only, communicates program state information the language

could be said to have little to do with the actual visual representation that is

generated. This definition is central to the architecture being proposed but

also suggests that PVML is, in fact, a means to remotely debug programs in a

variety of languages.

Accordingly, the proposal will also be located relative to the domain of

heterogeneous distributed debugging. This leads to a definition of PVML as

an imperative debugging language and to the PVML-based system being an

abstract debugger.

Chapter 6 develops a set of requirements for PVML that is founded upon

this definition of the language. Working from established approaches, a set

of core requirements is developed. Some specialised extensions to the

language are discussed, with a view to providing support for visualisation

features that might support the particular pedagogical challenges posed by

specific classes of language.

Chapter 7 describes the specific implementation of PVML that is presented in

this thesis and justification offered for the decision to adopt an approach

based on Extensible Markup Language (XML). The formal definition of this

version of PVML is presented in the form of a Document Type Definition

(DTD). Some examples are offered illustrating how PVML can be applied to

a variety of scenarios.

Chapter 8 describes a significant part of the work undertaken – the creation of

reference implementations for the target and engine between which PVML

 8

flows. A brief description is offered of the reference engine and two reference

targets against which PVML concepts have been evaluated.

Chapter 9 discusses and assesses the research undertaken and pays particular

attention, given the open nature of the architecture supported by PVML, to

future possible developments that could widen the application of the language.

 9

C h a p t e r 2

A LOCATION AND LANGUAGE INDEPENDENT NOVICE

PROGRAMMING ENVIRONMENT

A novice programmer may well have a formidable task ahead of them.

Learning to program a computer involves many new conceptual hurdles and a

possibly difficult new set of mental models. However, in many cases, the

environments through which computers are programmed have significant

complexities in their own right. It would seem desirable to maintain a focus,

for the novice, on programming language skills and considerations whilst

minimising the distractions of mastering the environment that is being used.

Selecting or modifying a programming environment such that novice

programmers are well supported is an acknowledged problem which this

chapter sets out to examine. The assertion is made that an environment that is

location-independent, language-independent and which offers program

visualisation features would be a useful contribution to the field. This

assertion will be critically examined in light of developments in the published

literature. As will be seen, the requirement for a PVML arises in the

specification of a programming environment that has these three

characteristics.

This chapter maps a context for the work that follows, which focuses more

precisely on issues relating to PVML. An exhaustive coverage of literature

relating to the needs of novice programmers is not attempted here – rather

signposting is provided that leads to the areas, relating to program

visualisation, that are more substantially covered in later chapters. As stated in

Section 1.2, an important motivation for this research is the provision of PV in

a distributed, multi-language, novice programming environment.

 10

2.1 Summary of motivation

The case is made for a certain style of programming environment for novice

programmers. Drawing from literature relating to novice programmers, the

assertion is made that such students would benefit from an environment that

was portable (between home and school) and that supported the learning of

multiple programming languages. It is also asserted that inclusion of program

visualisation features should be considered. A discussion of the evidence that

supports this view is presented in Section 3.7. It is the suggestion of providing

PV features in a distributed, multi-language environment, that historically, and

architecturally, gives rise to the PVML concept.

The specific focus, in terms of defining ‘novice programmers’, is a quest for a

programming environment (PE) that adequately supports university first year

– often referred to as CS1 or CS2 – programmers. To begin with, the term

‘Software Development Environment’ is explored in general terms, before

seeking to define the distinct aspects that might characterise a learning

environment as opposed to a production environment.

The needs of a novice programmer are shown to be distinct from those of a

professional software developer. The survey presented here moves beyond the

bounds of mainstream software development literature to address issues which

are unique to the endeavour of teaching, and learning, programming.

The following issues motivate the directions taken in this chapter:

- Learning environments versus production environments

Certain attributes of production programming environments

render them unsuitable for the novice. At the same time

consideration is given to features that would possibly only be used

by a novice.

 11

- Choice of programming language

The controversial question of what makes a suitable CS1

programming language will not be addressed. Instead

programming environments that support several different

languages will be examined.

- Platform and location independence

Programming environments can be complex to install and

configure. The impact of this difficulty on student learning

patterns is considered and a case made for an environment that

transparently supports multiple locations – typically for a student,

home and school.

As has been noted, this chapter stops short of discussing program

visualisation, which is the main focus of this thesis. To a large extent the

reasoning presented here has been published by the author in [106], to which

the interested reader is referred.

2.2 The Software Development Environment

With a global economy, in which the production of software plays an

increasingly important role, it is appealing to consider software development

environments as the ‘factories’ of the 21st century. The software development

environment, which will be referred to here as a programming environment

(PE), provides many levels of support to the ‘workers in code’.

Historically the means to support software development began to mature in

the Unix operating system [54] as a set of utilities that communicated with

each other via text files and the notion of ‘pipes’ – a primitive form of inter-

process communication. The consequent interoperability of discreet tools

gave rise to programming toolkit environments with support even extending

to entire ‘environments’ based on the integrated use of such tools [31].

 12

The increase of computing power available at the desktop, and the consequent

development of the graphical user interface (GUI), created a shift in emphasis

from the integration of low-level tools towards integration of the user interface

behind which these tools operated. In this context the language based

environment arose, in which the PE provided, within a single user interface,

integrated access to all stages of the development process for a particular

language. Lisp [93] and Smalltalk [33] were early beneficiaries of this approach.

2 .2 . 1 Fea tu r e s

It is instructive to review the types of features that might be found in a

modern professional PE. The list of features that follows is not intended to be

exhaustive but the breadth of aspects that may be covered is an indication of

the importance of the PE:

- Code writing support

Most PE’s provide an editor that is programming language aware

at some level. The editor might, for example, highlight the

reserved words of the language, match closing braces with opening

braces or check basic language syntax.

- Code management tools

In a large software development project many programmers are

working concurrently on different parts of the source code. A

mature PE needs to provide version control so that change is

managed in a consistent manner. This support may be provided

within the PE or as an external system with which the PE

interacts.

 13

- Tool Launching

In the course of software development a variety of tools need to

be used, such as a compiler, linker, profiler or debugger and the

PE may provide an interface to these lower level tools enabling

them to be invoked and configured from a single interface.

- Debugging support

The actual process of debugging may be specifically supported by

the PE which may provide data inspection and visualisation tools.

2 .2 . 2 So f t war e P r o c e s s

The software development environment is a focus of study in its own right.

Notkin [73] discusses the relationship of PE's to the various software

engineering paradigms and process programming languages [2] are designed to

abstract the process and formalise the design of PE's.

Support for a coherent development of software development tools has given

rise to standards such as the Portable Common Tool Environment [12] which

provides a standard for the ‘backend’ with which software development tools

necessarily interact.

Analysis of the software development process at this kind of level gives rise to

programming environments that have an ever increasing level of

sophistication.

2 .2 . 3 Lea r n i n g En v i r onmen t v e r s u s Pr od u c t i on Env i r onmen t

So far the discussion of PE's has focussed on the production-oriented needs

of large software projects. In the context of this proposal attention must be

turned to the needs of the novice programmer.

Jimenez-Peris has suggested [47] that an environment which supports the

process of learning to program needs to include new features, and exclude

existing features, relative to a production oriented environment.

 14

The additional inclusions are directed towards the fact that the student

programmer requires a greater level of abstraction of program structure and

function in order to gain insight into their efforts. They may also need more

assistance from the environment when they need to debug and correct errors.

Exclusion of features needs to occur in order to reduce the complexity and

scope of the environment. For a novice the learning curve imposed by the

development environment has the potential to eclipse the learning of a

programming language. This can be related to the sheer size of the

environment. Size can be quantified in terms of the complexity of the interface

and the richness of the feature set provided by the environment. The

Microsoft C++ development environment (not, by production standards, a

large environment) offers the user over three hundred separate options and

menus.

The author’s professional experience particularly supports this line of

reasoning. A complex PE (Visual Age for Smalltalk – an IBM production

development environment) was used for several years to introduce novices to

the Smalltalk programming language. It seemed clear that, in many cases, CS1

became a course in Visual Age rather than one in Smalltalk. The subsequent

adoption of the Java language, along with an environment specifically designed

for novices, BlueJ [57], has mitigated the situation. Even so, students who are

struggling to learn Java, still find mastering the environment a barrier.

2.3 A Novice Programming Environment

Given the complexity of mainstream environments, and the distinctive needs

of the novice programmer, it is reasonable for Jimenez-Peris to have suggested

the removal, as well as the addition, of certain features. In these terms, the

PVML proposal constitutes a significant addition and this chapter seeks to

elaborate upon that context – a PE that provides features that explicitly seek to

target the novice programmer.

 15

The two aspects, language and location independence, are examined separately

since they are important aspects of the architecture into which PVML fits.

2 .3 . 1 Ge ne r a l F e a t u r e s t o Add

Although production PE's may on occasions implement some of these listed

features they are not considered to be central to the formal software

development process whereas the arguments for their inclusion in a novice

programming environment are much stronger.

- Visualisation

The question of program visualisation is most comprehensively

addressed in Chapter 3 and so will not be discussed in depth here.

- Intelligent tutors

The help system of a complex program can be as intimidating as

the program itself. Novices will often not know what search terms

to use within the help system, since they lack a mental model of

what they are trying to accomplish.

Work has been done on help systems that embody Artificial

Intelligence (AI) such as the Lisp Tutor [1] and Pascal-based

Proust [51], in an effort to develop a help system that understands

what the novice is trying to accomplish.

- Informative Error Messages

The novice is likely to spend more time looking at error messages

than the professional programmer yet these messages are often

expressed in terse, formal terms that are not helpful to novices.

Error messages arise as a result of program syntax errors – these

must be understood, and corrected, before an executable program

is produced. The eventual execution may also generate error

messages.

 16

Explanations, and examples, will assist the novice but perhaps at

the cost of execution efficiency in the PE. It has been noted [47]

that the execution efficiency of a novice environment is of less

relative importance.

- Language Aware Editors

For a novice the language aware editor, described as a generic

feature for a PE, is particularly helpful. Through the highlighting

of language syntax and program structure such an editor offers

support for one of the main hurdles for a novice programmer.

2 .3 . 2 Pr o f e s s i o n a l F e a t u r e s t o R emo v e

The simple answer as to which features of a professional PE would be

appropriate to remove for the novice user, is ‘many’. The sheer number of

features alone, in a professional PE, act as a deterrent to the novice

programmer. Although Eisenstadt and Domingue [21] have argued for a

‘cradle to grave’ PE, such an environment would need to implement multiple

operating modes, which corresponded to differing levels of experience in the

programmer.

The breadth of features that may be found in a professional PE, even though

each may be strongly argued for as an inclusion in CS1 education, have the

combined effect of deterring novices who have yet to write their first program

in any language.

Features such as version management, multi module source management

(make), group work management, software testing and specification tools

should be removed, or at least made optional, in novice programming

environments.

 17

2 .3 . 3 Lan gua g e In d e p e nd e n c e

Much literature, that relates to the philosophy and pedagogy of computing

science curriculum design, discusses programming language issues. There is

considerable focus on the relative importance of teaching programming

formalisms, compared with a more pragmatic approach driven by the current

needs of the computing industry. What this leads to, at some level, is the

choice of a first (and maybe second) programming language in computing

degrees.

Whilst the choice of a first programming language can colour the overall

theoretical approach in a computing degree, the choice of a PE is a logically

separate and less extensively discussed issue. Curricula that are ‘multi lingual’

(as many are) usually require students to learn to use more than one PE.

Hendrix observes [41] that this has a tendency to lead students towards

learning PE’s rather than programming languages The Hendrix GRASP

environment, “constructively” supports novices in a number of programming

languages (currently C, C++, Ada, Java and VHDL - a hardware description

language). Constructive support in this context is the ability to syntax check

and pretty-print the student’s source code. The key observation made by

Hendrix is that it is “...the learning curve associated with environments, not

languages that is the most frustrating to students”.

An environment that supported all the languages that a student was required

to learn, would be one with which the student would become very familiar. As

latter languages were undertaken, the environment would become a support

and encouragement for the language-learning process rather than a distraction.

2 .3 . 4 Lo ca t i on Ind e p e nd e n c e

The other novel aspect that has been considered central to a novice

programming environment is the delivery mechanism.

 18

Novice PE's that have been developed to run on Unix or Windows. The

assumption is always that the student is seated at a workstation on which the

programming environment has been installed and configured. This places

physical constraints on where the learning may take place. Prior to using the

PE at a particular location the PE software must first be installed at that

location.

These constraints have the potential to vanish if the environment is delivered

within a web browser. Literature relating to use of the World Wide Web as a

vehicle for educational delivery has therefore been reviewed.

Boroni [10] describes the shift to web-delivery as a ‘new paradigm’ in

education and notes the following features within that paradigm:

- That students are able to maintain a dynamic involvement with

course material outside of the traditional dynamic experience – the

face-to-face lecture.

- That lectures themselves suffer from not being repeatable –

especially not being correctable if an error occurs – whereas web

delivered material can be constantly refined and reviewed.

These points both relate to the delivery of standard course material through

the Web. The presentation of more dynamic scenarios, material that was

normally restricted to institutional computer laboratories, is covered in

literature relating to Web-delivery of animations. In an earlier paper Boroni

notes [11] that Web delivery enables animations to be used “without even the

hassle of local installation required of most current systems”.

An excellent overview of the area of animation delivery through the web is

provided by Naps et al in [71]. Though this report primarily addresses

visualisation delivery, the prevailing emphasis on visualisation of program

execution, means that it is reasonable to generalise to the provision of PE's

through the Web.

 19

Naps suggests a taxonomy of Web visualisation delivery mechanisms, parts of

which can be generalised to a Web-delivered PE.

The principle axis concerns whether the computation of a visualisation is

remote or local (at a server or in the browser).

At one end of this continuum he identifies visualisations which are entirely

downloaded to the browser. In this scenario the program that is being

visualised executes at the browser along with the visual display. Such programs

would necessarily be written in the Java programming language and it would

be quite practicable to develop a PE for Java that functioned in this way. Jeliot

[36] is an example of this approach, although not characterised as a PE.

This taxonomy describes an intermediate level of visualisation delivery, in

which the execution component is downloaded through the Web into some

locally installed, non-browser, packages such as a C compiler or spreadsheet.

This model would require the host environment to be installed and configured

at the user's computer. Naps notes the support problems involved and in the

current context the aim of delivery being browser-based has already been

suggested.

The ‘remote’ end of the axis is characterised as involving ‘remote-run’ and

‘distributed-run’ visualisations. This approach is the one that most closely

corresponds to the architecture that the author has described in his Chiba

paper [106]. The ‘natural’ division would be to run the ‘model’ on the server

and the ‘viewer’ in the browser. In terms of a PE model translates to the

program being written and executed whereas viewer represents the user

interface of the PE.

2 .3 . 5 Conc l u s i on

The review of requirements for a novice programming environment has been

brief. The substantial work in this thesis relates to program visualisation which

is given a deeper treatment in Chapter 3. The intent to investigate PV systems

 20

in which the target and engine are substantially decoupled, has arisen however,

in the historical context of the architecture described – namely a programming

environment that runs the target program on a server and the GUI in a web

browser. The intent of this chapter has been to give that architecture some

background within established work in the field.

The proposal for a PVML has arisen in the context of this suggestion for a

distributed, and language independent, novice PE. The consequence of a

convincing implementation of PVML would be to provide a basis for the

implementation of the type of novice programming environment described.

 21

C h a p t e r 3

PROGRAM VISUALISATION

The starting point of this review is the assumption, as explored in Chapter 2,

that a novice programmer can benefit from a programming environment that

is explicitly designed for them. As has been suggested, such an environment

may well be designed to be location and language independent. Such a tool

could be conceived as being central to the early years of a computing science

degree. The question addressed in this review is whether there is a case to be

made for including program visualisation facilities in the tool.

The review starts by analysing the visualisation field in terms of several well-

established taxonomies before moving on to assess the evidence for PV

being beneficial for novice programmers. Particular attention will be paid to

those aspects which relate to a model of PV that could incorporate a PVML-

like concept.

PV has been briefly defined in the introduction as the technique of

presenting visual representations of the execution of a computer program in

order that its behaviour can be better understood. This understanding may

be from the point of view of specific aspects of the program or more

generally at the level of establishing mental models of program execution. At

this stage it is necessary to look more deeply into this definition.

The term visualisation has many connotations in common parlance but the

particular definition of this word that is at issue here is the one which

suggests that a mental model of some concept is being formed. The

psychological process of building a mental model[72] [92] of a complex

process is an obvious step in understanding that process and the model-

building can be aided by visualisations of that process.[94] These

visualisations may in fact be ‘visual’, in the sense of a “picture being worth a

 22

thousand words” or they could take other forms. A verbal representation

such as a metaphor could be an aid in visualisation if it helps engender a new

mental model. Sounds that are produced to correlate with some aspect of a

complex behaviour might aid understanding – although this would strictly be

termed ‘auralisation’ it is still, in the general sense being discussed here, an

aid to visualisation. Other senses have yet to be explored – perhaps

‘aromarisation’ awaits the world!

The application of visualisation techniques in the field of computer software

gave rise at a very early stage [82] to the term Software Visualisation and this

association of the two words implies any technique that aids in the

understanding of a piece of software. The term can refer to a process as

straightforward as the organised presentation of program source code [56] or

to one as sophisticated as the movie “Sorting out Sorting” [4] that portrays a

selection of sorting algorithms using sound and vision.

There is an acknowledged division within the broad category of software

visualisation into Algorithm Visualisation and Program Visualisation and the

genesis of this division will be explored through the visualisation taxonomies

that are discussed. The essence of this distinction rests on the level of

abstraction of the raw program execution that is being offered – Algorithms

are the higher level processes that are implemented by Programs.

As this discussion of software visualisation unfolds there will be a number of

related fields of endeavour that need to be set aside and clearly defined as

being beyond the scope of this research. The following terms, though at

times referred to in the taxonomic literature reviewed, are being deliberately

set aside:

 23

- Visual Programming

The reversing of the order of these two word stems describes a

distinct endeavour. Typically programs are written by using a text

editor to create and modify program source code. A visual

programming environment enables the programmer to create and

modify a program by manipulating graphical objects that represent

fragments of source code syntax. Closely related areas, that will

also be set aside, are ‘Programming by Example’ and

‘Programming by Demonstration’. The focus in this thesis will be

on visual techniques for understanding, rather than producing,

programs.

- Computation Visualisation

Visualisation techniques, which can be applied to the clarification

of almost any process, potentially come under the umbrella of

software visualisation when what they visualise is the process of

computation. The use of visualisation to represent the

performance and functioning of the underlying computer system

(also termed ‘Performance Visualisation’) will be set aside. The

focus here will be on the use of visual techniques to understand

programs in a nexus that involves their creation rather than their

eventual deployment in an actual computer system.

3.1 Taxonomies

This section will review the recognised taxonomies of software visualisation.

Through examination of the work of Myers [68], Brown [15], Stasko [100],

Price [83] and Roman [88] a focus will be developed on the particular

category that is being addressed in this proposal.

There is a circular aspect to the presentation of a set of taxonomies – such a

presentation, in reality, represents yet one more taxonomy. It is not the

 24

author’s intention to present another taxonomy but rather to justify an

approach for the subsequent chapters of this thesis that is founded in a

particular reading of the taxonomic literature available. In order to lead the

reader towards this synthesis, this review has its own structure that relates to

the conclusion being sought and rather than analysing each taxonomy in turn

will present the major issues that are considered important and relate them to

the literature.

There are a few concepts to which the reader may require an initial

introduction to in order to facilitate understanding of the discussion that

follows and these are presented as visualisation axioms in the section that

follows.

The question of when to refer to the endeavour as software visualisation

(SV) and when to use the term introduced earlier, program visualisation (PV)

is one that is be discussed, at length, later in this review. To begin with, the

more general of these two terms, SV, will be used.

3.2 Visualisation Axioms

Two aspects of the discussion of visualisation are considered so fundamental

that they will be given a cursory examination before the full analysis is

offered. These aspects are:

- The various human roles involved in the visualisation domain

- The distinction between static and dynamic visualisation

It is hoped that the brief coverage offered here will assist the reading of the

more detailed analysis that follows.

3 .2 . 1 Vis ua l i s a t i o n R o l e s

In the course of a discussion of software visualisation there will be cause to

refer to a visualisation system from various, human, points of view. These

points of view represent the roles of the various human agents that are

 25

required to design, build and then use a software visualisation system. The

explanation offered is that of Blaine Price [83], but there is little disagreement

on this matter in any of the taxonomies presented.

The roles considered will be those of:

- Programmer

The person who wrote the program that is being visualised

(referred to here as the target). As Price observes the programmer

might not have been aware that their program was to be visualised

and they also may not ever witness the visualisation of their

program.

- SV Software Developer

Also, as Price notes, a programmer but in this case the program

that they wrote is the one that enables other programs to be

visualised.

- Visualiser

The person who used the SV system to design and build the

particular visualisation that is being considered. Often this role and

that of the SV developer may overlap but the important

distinction that is made by this separation is the relative

involvement with cognitive rather than technical programming

issues.

- User

 The person for whose benefit the visualisation is presented. The

effectiveness of a SV system, or the particular visualisation being

viewed, would be gauged by its effect on the user's understanding

of what is being visualised.

It should be emphasised that these roles are not necessarily held by distinct,

human players. In some cases a single person may wear more than one of

 26

there ‘hats’. Clarifying the roles is important because they embody distinct

areas of concern in approaching any SV system.

3 .2 . 2 Dynam i c v s S t a t i c

The explanation of the distinction between static and dynamic visualisation

offered here is based on the work of Brad Myers [68] but again these terms

are so fundamental, and also largely un-contentious, that they are to be found

throughout the literature. Dynamic visualisation refers to an approach that

offers an evolving view of a program running – in effect a movie. A static

visualisation offers still images that represent the program from time to time.

The emphasis in this review is on the visualisation of program execution and,

as will be seen, the distinction between static and dynamic needs to be

applied to most aspects of that discussion. The important point that is being

made concerns the extent to which the display of the visualisation proceeds

automatically (dynamically) or else is one that requires the viewer to select

and view separate steps within the visualisation (static).

3.3 Program vs Algorithm Visualisation

Myers [68] presented “Taxonomies of Visual Programming and Program

Visualisation”, a categorisation that many consider underpins the field. He

defines two axes along which to organise SV systems. Myer's first axis

describes the extent of animation in the visualisation – static or dynamic as

discussed above. The second axis, the one that is considered here, considers

the extent of the abstraction of the program represented in the visualisation.

Myers segments the axis according to whether it is code, data or algorithm

that is being visualised.

3 .3 . 1 Cod e Vi s ua l i s a t i o n

Code visualisation refers to techniques which focus on the program source

code. A static approach to code visualisation could be as straightforward as

 27

the flowchart [37], perhaps the ancestor of all SV, or more recently attempts

to increase readability of code by use of typographical techniques such as

fonts and indenting [56], sometimes referred to as ‘pretty-printing’. Each of

these techniques seeks to expose the higher level structure of a program in

order to assist the user in visualising that structure. The static approach does

not offer a temporal axis – the user must provide this by tracing through the

representation.

The dynamic approach relieves the user of this responsibility by stepping

through the code as the program is executing and highlighting the code that

is being executed. BALSA [14], often considered a seminal PV system, would

pretty print the Pascal program source code in a window with the highlight

moving as the program executed. Each call to a new procedure or function

would cause a new source code window to open, providing a very direct

visualisation of the call structure of the program. A programming language

with a different execution model, such as Prolog, receives a different, but

analogous, treatment in TPM [23] where a tree of Prolog predicates unfolds

on the screen as the program executes.

3 .3 . 2 Da t a V i s ua l i s a t i o n

The classic blackboard diagrams drawn by computer science lecturers

teaching data structures – boxes with arrows joining them and values written

within – are, in terms of Myer’s taxonomy, static data visualisations. They are

obviously static and they represent the storage of data within a program. His

own Incense [67] system would automatically generate such pictures.

When the executing program itself is able to dynamically generate and update

such displays, this has become a dynamic data visualisation. It is at this point

that it would be reasonable to suggest that the execution of the program is

being animated. There are numerous systems that provide dynamic

visualisation of program data. One of the earliest, BALSA [14], already cited

for its dynamic code display, implemented a second set of windows in which

 28

representations of data structures were displayed as the Pascal program

executed.

3 .3 . 3 Al g or i t hm Anim a t i on

The visualisation of data structures, described above, shows the content of

actual program variables. For example a linked list may appear as a series of

boxes joined by arrows. Although such a display may prove invaluable to a

programmer that is having trouble writing code, it provides absolutely no

information about the purpose for which the linked list is being used. A wide

variety of computing science problems can be solved using the list as a tool,

but the higher-level structure of the problem, for example whether the list

represents a collection of bins or a tree structure, remains obscure. In order

to display this higher level a system of algorithm animation is required.

ANIM [7] automatically generated such displays from programs written in a

variety of source languages. The output was in a series of printed

representations – hence this is an example of static algorithm visualisation.

The dynamic approach is again well represented. BALSA offers this level of

display based on special instructions added to the program code. ALLADIN

[43] allows the visual representation to be specified at run time by selecting

and specifying graphical events. TANGO [103] adds gradual transformations

to the visual sequences that are specified by adding special instructions to the

code.

3 .3 . 4 Di s c u s s i o n

The broad distinction between visualising programs and algorithms, as

described by Myers, has been quite closely followed in the other taxonomies

reviewed.

Marc Brown, in [15], defines ‘Content’ as one of three dimensions. He

formalises the level of abstraction concept by considering whether the visual

 29

displays map directly to data structures within the program. In a ‘Direct’

display the program data structure could be deduced from the display which

is in contrast to a ‘Synthetic’ display, where the graphics portray more

abstract concepts, which map to a higher-level, algorithmic view of the

program. The distinction between program and algorithm remains, except it

has been restated and refined as that between direct and synthetic.

Blaine Price, in [83] also uses the term ‘Content’ and makes some interesting

observations about the line between ‘Algorithm’ and ‘Program’. Whilst he

regards algorithm visualisation (AV) as being “designed to educate the user

about a general algorithm”, he considers it “more likely” to be program

visualisation, when a particular implementation is the focus of study. He adds

that the provision of a view of program code in the system would lead to a

program visualisation categorisation.

Price’s taxonomy is distinguished by defining terms beneath the major top-

level distinctions such as ‘Content’. Indeed the whole Price taxonomy is

designed to be extensible and is presented in the form of a tree of concept

nodes. In the particular case of ‘Content’, Price directs further attention to

‘Fidelity and Completeness’ and ‘Data Gathering Time’.

The definition of ‘Fidelity and Completeness’, in which Price cites Eisenstadt

[24], seeks to explore the faithfulness of the mapping from program to

visualisation. Price considers the extent to which a visualisation system

displays the “full and complete behaviour” of the target program. He

suggests that a “hand-crafted”, algorithmic visualisation would have a low

‘Fidelity’ rating since few deductions could be made, from the visualisation,

about the state of the underlying program.

‘Data Gathering Time’, as an aspect of ‘Content’, depends on whether run-

time information, such as the values of data, is part of the visualisation.

There is no connection between this aspect of ‘Content’ and the question of

whether algorithm or program is being visualised.

 30

To summarise, Price maintains the distinction between program and

algorithm but adds to it in ways that shift his analysis beyond the structure

being suggested herein.

In [88] Roman remains faithful to the Myers approach but splits along two

axes within this area. ‘Scope’ is taken to define attention to a program's

“code, data and control states, and its execution behavior”, terms which

neatly span the Myers distinction between code and data.

The second Roman axis is that of ‘Abstraction’, within which he squarely

sides with Brown's ‘Content’ definition in citing the level of abstraction of

the graphical forms, relative to the program code. The Roman taxonomy is

useful here because it draws attention to the fact that Myers has set out to

define an axis with two ends (program and algorithm) and has proceeded to

mark three points on that axis (code, data, algorithm). It seems reasonable to

split these issues in the way that Roman does.

This is borne out by John Stasko in [100], where he takes an approach that is

roughly equivalent to Roman in identifying ‘Aspect’ and ‘Abstractness’ as

two out of his four axes. Stasko uses the term ‘Aspect’ to define “a different

aspect of a program... most clearly representing the purpose of the

visualisation.... what parts of the program are being emphasised”. The

purpose of this term is to draw attention to what is being visualised rather

than how it is being represented.

This latter issue is characterised by the ‘Abstractness’ axis which can be

applied to code, data or algorithm visualisation and attempts to characterise

the extent of abstraction. The example Stasko uses to clarify this point is a

representation of time in a program. A non-abstract (‘Direct’ in Brown’s

vocabulary) representation would show the variables in memory and their

values –- hour, minute and second or possibly just a large, binary number.

An abstract display (‘Synthetic’ to Brown) might display a picture of a clock

face. As a key to deciding whether it is ‘Abstractness’ or ‘Aspect’ that are

 31

being determined, Stasko offers the term ‘intention content’ to refer to the

extent to which a visualisation attempts to expose the meaning behind code

or data.

A visualisation with a low level of intention content remains close to the raw

data structures in the target program. A greater level of intention content in a

visualisation, displaying more abstract views, entails active effort on the part

of the visualisation system and its designer. In terms of the clock example, it

is the introduction of the intention content “telling the time”, that leads to

the effort to present a clock-like display rather than a low intention content

representation of three integers.

3.3.5 Conclusion

The desire to categorise the extent of abstraction is one of the fundamental

issues in all taxonomies of visualisation and the broad terms ‘program’ and

‘algorithm’ are ones that have wide acceptance. The reason that this issue is

of such importance is that it profoundly influences the extent to which

visualisations can be automatically generated by straightforward means.

The more a display gravitates towards the algorithm end of this spectrum the

more likely it is that there will need to be human intervention in deciding

what the intention content really is and how that can be mapped to a visual

display. Producing a visual representation of a program execution implies

definition of a distinct set of mappings from the states of the program to

some form of visualisation. The generation of this mapping is the issue that

is examined next in an examination of the topic of automation in

visualisation.

3.4 Automation in Visualisation

The topic of automation in visualisation focuses attention on the process by

which the visualisation is generated – categorising the extent to which the

visualisation simply ‘happens’ as a side effect of program execution in

 32

contrast to a display that requires effort on the part of one of the

participants.

The Myers taxonomy, though still the starting point for many discussions in

the field of SV, has little to say on the topic of automation. His two axes –

dynamic-static and program-algorithm – are the full extent of his

categorisation. At first thought it might seem tempting to associate degrees

of automation with varying positions on the static-dynamic axis, but this axis

is intended to categorise the presentation to the viewer rather than the way in

which a visualisation is derived. It is quite conceivable that a static

visualisation be automatically generated (Incense [67]) or that a dynamic

visualisation be generated by hand (Sorting Out Sorting [4])

To clearly locate the issue of automation in visualisation, attention must be

turned to the other available taxonomies, all of which make some reference

to this aspect.

The hierarchical approach taken by Price in his taxonomy [83], defines

‘Method’ as a top-level category and beneath this divides between

‘Visualization Specification Style’ and ‘Connection Technique’. Each of these

intersects with automation to a certain extent.

The question of ‘Visualisation Specification Style’ essentially asks how the

content of the display is derived. On the one hand the display, even if

dynamic, may contain a completely fixed set of events that were determined

by the SV designer (Sorting Out Sorting) – in this case the specification style

is fixed. At the opposite end of the spectrum, debugging type environments

such as TPM [23] and Lens [65] automatically generate displays with no

explicit intervention. Between these two extremes lie many systems where

the programmer or the visualiser (roles as defined earlier) can specify the

form of the display. For example in TANGO [103], the programmer may

add statements to the source code to cause interesting events to have visual

consequences. Indeed Price draws attention to the fact that “automatic

 33

systems have the advantage of making the programmer, visualiser and user

into the same person” (at least potentially)

The term ‘Connection Technique’ refers to a slightly separate issue – the

manner in which the assertions concerning the visual display are relayed

“between the visualisation and the actual software being visualised”. Some

aspects of this are barely distinguishable from the question of visualisation

specification style. For example, when annotations are added to a program in

order to control a display, a style of specification is being employed that lies

mid way between fixed and automatic. At the same time this is the technique

of connection through which the visualisation is driven by the program. The

terms defined by Price become confused.

Other concerns regarding connection technique are more clearly distinct –

for example:

- Does the target need to run at the same time as the visualisation is

viewed?

- Do target and visualisation need to run on the same computer?

These questions are very pertinent to the core of the PVML proposal, which

in Price's terms, could be characterised as a PV/Method/Connection

Technique proposal.

Brown's [15] taxonomy begins with a definition of three axes for the

categorisation of displays:

- Direct/Synthetic

As already discussed this maps to program/algorithm

- Current/History

Describing the timeliness of the display – namely whether it shows

past states as well as the present state of the program.

 34

- Incremental/Discrete

Defining to what extent changes in the display simply happen

(Discrete) or are represented as a transition (Incremental)

None of these particularly relate to the issue of automation but the bulk of

his paper does in fact discuss automation, applying the taxonomy described

above to systems that are capable of automatically generating displays. He

draws particular attention to the fact that steps in an algorithm execution

may not usefully map to discrete access to the program data structures. This

issue, that of automatic algorithm identification, is discussed in detail below.

Stasko [100] also made automation one of his four top-level categories

(‘Aspect’, ‘Abstractness’, ‘Animation’ and ‘Automation’). Bearing in mind the

earlier discussion of Stasko’s taxonomy, in the program versus algorithm

visualisation section, a key observation is that “our abstraction and

automation dimensions usually exist in an inverse relationship. Creating

program visualization views with high levels of abstractness involves a great

deal of intention content and simply requires a priori design support”. This

leaves the field of automatically generated visualisations populated on the

whole by straightforward, low-abstraction program visualisation. Notable

exceptions, such as UWPI [42], have a restricted domain of operation – only

generating certain pre-defined types of visualisation.

In [88] Roman associates the automation of visualisation generation with his

category of ‘Specification Method’ which “encompasses the means whereby

the animator specifies which aspect of a program are to be extracted and

how they are to be displayed”. He decomposes the specification method into

a series of broad types of technique and these will form the basis for further

discussion as they relate closely to the PVML proposal.

 35

- Predefinition

This is a fixed mapping between program state or events and the

display as implemented by a variety of debugger style

environments. The user is not given the opportunity to modify

the semantics of the display and there is no input from the

visualiser role.

- Annotation

Annotation of the programs being visualised is the predominant

technique for imposing the visualiser’s will on the display in the

cases where a higher level of abstraction from program code and

data is required. The technique of annotation was pioneered in

Balsa [14] but has been used extensively since. Sometime referred

to as the technique of interesting events, the annotation, inserted

into the program by the visualiser designing a visualisation or by

the programmer seeking to expose program behaviour, has the

effect of updating the display in some manner. There are many

consequences of this approach and it is discussed in more detail

below.

- Declaration

Although an organised approach to annotation would result in

certain states having certain visual analogues the overall mapping

is not clearly, and independently, defined. The declarative

approach takes as its starting point a definition of a set of program

state/display mappings and then arranges that the visualisation

system is simply kept aware of program state. Roman has used this

approach in Pavane. [87] This is a dramatic departure from the

architectures described so far because it clearly decouples the

program state from the visual consequences. The work of Roman

will be examined later in this review when the focus is on this

decoupling and the implications for the PVML proposal.

 36

In terms of the approach to PV that is being suggested in this thesis there are

two aspects relating to automation that need to be taken further:

- The nature of annotation and its consequences both technically and

pedagogically for the novice programmer

- The current state of automated algorithm identification.

3.5 The Annotation Issue

Annotation of the target program source code is one of the predominant

approaches to creating visualisations of that code. Price [83] specifically

reserves this term to refer to a system where the additions to the program

source code are hidden from the programmer1 by a special editor.

At the level of the version of the code that is executed and visualised,

annotation involves modifying the program to include procedure calls that

give rise to visual behaviour. Embedding these hooks in the flow of the

program is described by Robert Henry [42] as control intrusive. If the

programming language provides a means to attach such hooks to data

structures they might be termed data intrusive.

The selection of where to make these calls involves decisions about which

steps within the program execution give rise to interesting events. For

example the incrementing of a loop counter may only be of interest to the

overall aim of the program when a certain, critical, comparison is made. The

success (or failure) of the comparison is an interesting event, whereas the

incrementing of the loop counter is not. As can be seen the choice of what is

interesting requires a higher level comprehension of the program algorithm.

What happens visually when an interesting event occurs is a question that

involves issues of the visual psychology of the user of the system.

1 Price uses the closely related term instrumentation, to describe explicit addition to the
source code

 37

The default state of an unmodified executing program is that no events

within the program are signalled externally, other than at points when the

generation of output is explicitly part of the program. If this same program is

recompiled with the option to debug the program execution, the program is

able to be executed step by step, a line of source code at a time. Running a

program under a debugger is rather like instrumenting every single line of

source code since the debugging environment can readily be adapted to

communicate each, or selected, steps to a PV engine. This is the approach

adopted by TPM [23] and DBX [6] and many other systems. Although no

actual instrumentation has taken place, these systems could be characterised

as potentially automatically instrumenting every single line of the program.

A second approach, that achieves the same goal, is to use a special compiler

that instruments the generated execution module [95] without modifying the

source code.

Instrumentation, whether automatic or not, suffers from one telling criticism

– namely that instrumentation has the potential to change the behaviour of

the program. In general, a program that employs a single thread of execution

is unlikely to have its behaviour modified by instrumentation. However

multi-threaded or concurrent programs, where the relative timing of events

in several threads of execution can significantly alter program outcomes,

cannot necessarily be safely instrumented. The debugging and visualisation

of concurrent programs is a distinct area that requires further attention – but

one which will be set aside within this proposal. It is intended that the

techniques proposed here be applied to single threaded programs only in the

first instance.

Manual instrumentation, which requires the programmer to, in effect, add

procedure calls to interesting events, has been the subject of criticism on the

grounds that this activity is extra work for the programmer [89]. In the case

of a novice, the additional cognitive load imposed by instrumentation can

 38

detract attention from the programming issues which ought, pedagogically

speaking, to be the prime focus. In the case of an experienced programmer,

the extra steps simply may never be taken since the focus is firmly on writing

the program. These two points could be taken as arguing for an automatic

instrumentation approach and it is worth considering a way in which

automatic instrumentation can occur, in object oriented languages, without

the need to use special compilers or debuggers. This technique, described

below, exploits a fundamental property of those languages.

3 .5 . 1 Cla s s b e ha v i ou r

Several writers [15], [68], in discussing annotation or instrumentation, have

made the observation that an object oriented language is potentially self-

annotating. The reason for this is that object behaviour can be overloaded.

Although an object representing an integer is intended to participate in

expressions involving other numbers, a specially modified integer object, that

also understood how to visualise itself, could in fact be substituted. This

special class of object, that would reproduce all the normal behaviour of an

integer, also understands how to portray itself in a visual display. Such an

object could be transparently used by the program in its default operation

whilst, at the same time, being visualised. For normal execution the program

would be given access to the unmodified integer class.

This is convincingly demonstrated by Jeliot [36], which is web-delivered

visualisation system written for novice Java programmers. The novice writes

Java code in a Jeliot applet window and submits the source code to the Jeliot

server for compilation. The server compiles the code but employs

instrumented versions of Java base classes. The resultant byte code (the

executable form of Java) is returned to the novice’s browser and, when

executed, is able to visualise itself. In terms of the algorithmic goals of the

novice programmer the target program is unmodified yet the special

executable form is visualisation enabled.

 39

This same approach is used in several other PV systems [22] [19] and has

been usefully described by Thomas Naps [71] as making visualisation a “pure

natural side-effect” of normal program execution. It is of interest in the

context of the PVML proposal because it represents a very natural location

for PVML generation to take place. The requirement for self-instrumenting

classes in an arbitrary object oriented language would simply be that they

described themselves in PVML.

3 .5 . 2 Aut oma t i c A l g o r i t hm I d e n t i f i c a t i o n

A brief overview is offered of literature that relates to the automatic

identification of algorithms. Essentially, this is a topic that lies beyond the

bounds of the PVML proposal, since deductions about what will be

displayed in response to particular program states, in other words how

abstract the display will be, are made by the occupant of the visualiser role.

These take place after the PVML stream has delivered the program state to

the visualisation module.

Nevertheless it is worth paying some attention to what Price [83] categorises

as the ‘Intelligence’ of the ‘Visualisation Specification Style’. Perhaps un-

surprisingly, given the generally disappointing penetration of artificial

intelligence (AI) techniques into the world of real systems, Price notes that

“intelligence is sorely lacking among automatic SV systems”. Automatic

software visualisation systems are those that do not rely on human selection

of interesting events .

The contributions made by AI to the automatic identification of algorithms

is characterised as either deep or shallow depending on the extent of the

constraints that are applied to the domain before the AI component takes

effect. A completely open approach, that sets out to deduce the algorithm in

an arbitrary program would be deep AI. One that operates within a set of

constraints that limits the possible scope would be shallow.

 40

UWPI (University of Washington Illustrating Compiler) [42] is a good

example of a PV system that employs shallow AI and an examination of this

system can yield some insights into the issues involved in automatic

algorithm identification. The target program in UWPI is analysed by an

Inferencer that looks at how variables in the program are being used. Abstract

Data Types (ADT's) are inferred, based on a preloaded rule base of

programming idioms and common ADT's. It is the scope of this rule base

that limits the scope of algorithms that UWPI can recognise. The 1990

description of UWPI shows it being used to recognise a selection of sorting

and searching algorithms.

A deeper, in AI terms, approach is represented by the Programmers

Assistant [86] project from MIT. The Assistant, which is described as a

project which “overlaps both artificial intelligence and software engineering”,

uses a formal representation of programs and their languages known as the

Plan Calculus. Plan is described as a combination of “the representation

properties of flowcharts, data flow schemas, and abstract data types”. The

approach is similar to that of UPWI but the library of clichés that is provided

is more general, enabling a broader cross-section of algorithms to be

identified.

3.6 Decoupling Visualisation

The earlier discussion of automation in visualisation paid special attention to

the work of Roman and his identification of a declarative model of

visualisation. In the context of the PVML proposal, this model is of

particular interest because it clearly delineates the area of concern for the

various visualisation roles. This in turn underpins the decoupled architecture

in which PVML plays a part.

A more extensive examination of the work of Roman and others gives rise to

a clearer enunciation of these issues and is the topic of Chapter 4 of this

thesis.

 41

3.7 Evaluating Visualisation

As has been stated previously in Price’s taxonomy [83], the literature in

which visualisation is systematically and objectively evaluated is far

outweighed by that describing the development of yet another PV system. In

the words of Price: “The most disturbing observation is the lack of proper

empirical evaluation of SV systems, for if the systems are not evaluated, what

is the point of building them?”

Most PV systems are developed by researchers with involvement in

computer science education and the systems are used by students in those

institutions. Generally, the evaluation of the effectiveness of the PV systems

is anecdotal and experiential. There are substantial issues, that are germane to

all educational research, that should really be taken into account in designing

experiments to evaluate PV and these issues are often not the area of

expertise of PV developers. The PVML proposal, as was stated in the

introduction, is a suggestion as to how the PV evaluation domain may be

opened up to researchers who have more expertise in educational research

rather than in software development.

The PVML proposal is aimed at reorganising the fundamental architecture of

PV and in doing so to enable a variety of existing systems to interoperate.

This proposal does not make suggestions about how programs should look

when they are visualised, nor about what aspects of the program could be

most usefully visualised for novice programmers. If the PVML proposal

were at such a level, there would be a strenuous requirement to review the

literature relating to the efficacy of PV itself and through this to reassert the

case for PV. Since the intent of the PVML proposal is to render PV more

open to evaluation, this section of the PV review merely sketches the

landscape of the literature that assesses and evaluates PV. No concerted case

is made for the usefulness of PV.

 42

Certain systems have undergone more methodical evaluation than others.

Price singles out the work of Stasko [101] on TANGO and Goldenson [34]

on Pascal Genie (which is a commercial development based on Incense [67]).

These quantitative evaluations detected some benefit from PV, but in the

TANGO study the benefit measured was not statistically significant. Other

studies reported by Price are described as informal.

Mulholland [66] has characterised most evaluations of PV as “coarse

grained”. Such evaluations seek to measure the broad benefit of PV (relative

to a lack of PV) or else compare two PV systems. He pleads for, and

performs, ‘fine grained’ evaluation in which a detailed examination is made

of the interactions between the students and the PV system. He subjects

these interactions to ‘protocol analysis’ and by close examination was able to

motivate quite specific improvements in the PV system that he developed.

It is the power of the cognitive research methods applied that leads to these

very tightly targeted results and, in terms of the PVML proposal, the aim is

to enable greater emphasis to be placed on the cognitive research

methodology and less on the provision of PV systems.

3.8 Conclusion

The objective of this review, in the broader context of this thesis, is to set the

scene for the ensuing, more detailed, examination of the issue of the

decoupling of visualisation targets and engines. The reader has been drawn

towards issues that underpin the concept of a decoupled program

visualisation architecture, such as the roles of automation and annotation in

program visualisation and the underlying issue of whether program or

algorithm are being visualised. In the course of describing these

preoccupations in the program visualisation field, definitions have been

presented of many of the fundamental terms in the field and particular

attention has been paid to the authoritative taxonomies of program

visualisation.

 43

In weighing up the taxonomies, paying special attention to the issues that are

germane to the PVML proposal, greater weight has been attached to the

taxonomic approach of Roman and subsequently, the work of Roman plays a

central role.

The question of how the efficacy of PV for novice programmers has been

evaluated to date has also been briefly examined. It is the lack of extensive

empirical results that sustain or deny the proposition that PV is helpful to

novice programmers that provides one of the fundamental motivations for

the work described in this thesis.

 44

C h a p t e r 4

DECOUPLING VISUALISATION TARGETS AND ENGINES

This chapter begins with the assumption that PV facilities are to be added to

the proposed novice programming environment. The focus in this review is

on the ways in which that goal can be accomplished. In particular this review

assesses the case for substantially decoupling the visualisation target, the

programmer’s currently executing program, from the visualisation engine, the

components that provide the programmer with a visual representation of

their program execution. The case is based upon the work of a number of

researchers, who have identified approaches to visualisation that incorporate

a decoupled methodology.

This review seeks to make a case for establishing a generalised

communication protocol at the target/engine boundary – namely a Program

Visualisation Meta Language. A central justification for the direction of this

research is presented against the background of the earlier reviews. In

conclusion, a very broad definition is offered, of how a Program

Visualisation Meta Language fits into the generalised architecture of

visualisation adopted by the literature presented here.

4.1 Where to make the cut?

At a general level, a case is being made for decoupling the executing program

from the visual display, but as the figure below shows there are two steps

along the way and the separation could be made at either of these points.

 45

Executing
Program

Program State

information

Graphics
Mapping

Graphical

Description

information

Visual
Display

Visualisation

View

Figure 4-1 Potential visualisation decoupling boundaries

At the target end of the system there will be some means or other for the

executing program to communicate its execution state. As will be recalled

from the taxonomies examined, this might involve the annotation of

interesting events or the program may be running in an environment which

is able to automatically generate state information. By whatever means, the

output from the executing program is in terms of its execution state.

At the opposite end of the chain, where the user sits, there is a visual display

on which the PV is being viewed. The input to this display device is in the

form of instructions that relate to graphical primitives. “Move the second

box down”, “Draw an arrow between the 6th & 7th boxes” are the kind of

directions that the graphical display would be configured to interpret.

A split at this stage would require some form of Graphical Language to

describe what is to be displayed.

The box in the middle represents the point at which a particular execution

state or event is mapped to a visual representation. This is where Roman [90]

has applied his declarative approach – as a middleman between the

visualisation target and the display. Similarly it is where Domingue [21]

 46

applies views and mappings. A closer examination of the work of Roman and

of Domingue leads to a clarification of whether the boundary be one across

which program state or graphical description information is communicated.

4.2 The Case for Decoupling

The survey of the PV field, presented in Chapter 3, has established the

spectrum of terms that are used to refer to the various aspects of

visualisation. In considering the question of decoupling the target from the

engine, the focus needs to be on what Price describes as ‘Method’ in his

taxonomy. He uses this term to refer to the means that are used to generate

the display. Stasko refers to this as the ‘Automation’ axis.

The selection of a PV ‘Method’ is fundamental to the design of all PV

systems. In human terms this is most clearly reflected in the precise roles of

the PV players – the programmer, the PV developer, the visualiser and the

user. PV that relies on manual annotation of the target program tends to

combine the roles of visualiser, programmer and user since decisions about

the nature of the display are being enacted by active modification of the

target program and viewing of the results. If the PV developer has

introduced a degree of automation into the control of the display, the

visualiser role becomes trivial, since most decisions about the nature of the

display are already made. The user or programmer will proceed to use the

system with only marginal actions, such as selection from menus of

representation styles and content, that could be seen as acts of a visualiser.

In terms of the argument being presented here, it is important note this

observation – namely that the area of the system in which each role is active

differs according to the method of visualisation that has been implemented.

For example, a method that depends upon code modification tends to

coalesce the roles of programmer and visualiser. The table below sets out to

clarify this, identifying the location of the various roles in the context of

Roman’s three specification styles. Comparable tables could be drawn using

 47

the other associated taxonomies, but the approach of Roman is the most

straightforward in this regard. The table shows the way in which a particular

human ‘player’ ends up enacting a variety of roles, depending on the precise

specification method that is being used.

The table shows, for example, how the annotation approach has the effect of

overloading the human programmer with visualiser activities.

Visualisation Role Players
 (Human Actors)

Roman Taxonomy
Categorisation

User Programmer Visualiser Developer

Predefinition User Programmer × Developer
Visualiser

Annotation User Programmer
Visualiser

 × Developer

Specification
Method

Declaration

User Programmer Visualiser Developer

Table 4-1: Who plays what role? Visualisation players and their roles in Roman's
three specification styles

There are no clear, persistent, boundaries that define the areas of concern for

the various actors, yet logically, in the terms that were used to define the

roles, their concerns should be distinct. Reasserting the intention behind the

roles that have been defined should make this clearer

4.3 Roles Revisited

The four roles, User, Visualiser, Programmer and PV Developer that were

initially mentioned in the PV review are discussed in more detail here.

4 .3 . 1 Pr o g r amme r R o l e

The programmer has the goal of writing and debugging the program that is

the target of the visualisation system. The concerns of the programmer are

twofold:

 48

- The overall, high-level description of what the target program sets

out to achieve. This is the algorithmic description of the target

program and is the fundamental starting point for all programming

projects, although novices may neglect this area.

- The lower-level concerns of the particular programming language

that is being used. How can the language features be used to

implement the algorithm?

Some visualisation scenarios may not require a programmer at all. If the

intent is to demonstrate algorithms, implemented by ready-written code, the

introduction of programming language specifics will be a distraction.

The clear intent of the programmer role, when it exists, is to manage the

program source content of the target program.

4 .3 . 2 Us e r R o l e

The user is the ultimate viewer of the visualisation. The entire purpose of the

visualisation system is to assist the user in visualising a program or algorithm.

It is the mental models of the user that are intended to be enhanced by the

devising of new and better visualisation systems.

In the case of automatic, dynamic visualisations the user has little to do other

than look at the display – perhaps controlling what is being displayed as a TV

watcher might control a VCR. Static displays require the user to “turn the

page”.

As soon as the person looking at the display begins to make substantial

decisions about the form of what is displayed they are beginning to enact the

visualiser role in addition to that of user.

The aim of defining the user role is to isolate the consumption of the

visualisation, as opposed to any part in its production.

 49

4 .3 . 3 Vis ua l i s e r R o l e

In proposing the declarative method of program visualisation, the term used

by Roman in his taxonomy, Roman defines visualisation as “a mapping from

programs to graphical representations”. This concept is of considerable

importance to the PVML proposal and will be looked at in more detail later

but at this stage it is also extremely useful in clarifying the role of the

visualiser.

Given an executing program, and the goal of enhancing a user's mental

model of the program, it is the job of the visualiser to design and modify the

visual representations that will be observed by the user. The logical scope of

the visualiser's activities is the nature of the mapping between program state

and visualisation – namely the precise area encompassed by the Roman

definition.

It is not the intention that the visualiser modify the program although some

PV implementations may require this. Neither is it the intention, necessarily,

that the visualiser interact with the display. A particular PV system might

enable the user to participate in the planning of the display – in which case

an individual actor will play the role of user as well as visualiser.

In becoming clearer about the nature of the visualiser role it is also becomes

clear the way in which PV systems might become decoupled. The goal is that

the tools and artifacts that the visualiser needs to interact with are distinct

from other components in the system.

Since the visualiser is most in control of what the user sees, it is the visualiser

role that intersects most with that of an educational researcher who is

seeking to assess the efficacy of various visualisation approaches. If the

activities involved in the visualiser role are adequately decoupled from the

rest of the PV system then PV systems can be exposed to greater, and more

methodical, introspection concerning their usefulness.

 50

4 .3 . 4 PV De ve l o p e r R o l e

The activity cycle of the PV developer is one that should be the mirror image

of the other three roles. When the PV Developer is active, adapting or

correcting the PV system the user, visualiser and programmer will be idle.

The PV developer role is the one that is least likely to overlap, within a single

human actor, with the other roles.

Having clarified these roles the concept of declarative visualisation and its

use in the Pavane [87], Vis [21] and ALADDIN [40] systems is expanded.

4 .3 . 5 Di s c u s s i o n

As the definitions of these roles are being reasserted it is prudent to restate

that a given human participant can, in a particular scenario, enact one or

more of these roles. Table 4-2 demonstrates that precisely “who does what

and when” will depend, not only on the visualisation specification method

employed, but also on the type of scenario. Particular attention will be paid

to the disposition of visualisation roles where novice and expert

programmers are involved.

- Experts

An expert programmer will be making use of the PV system in

order to design and debug a complex program that they are

developing. In this context the roles of programmer and user are

likely to be predominant since visualiser activity, the design of

representations, represent a significant distraction from the job in

hand. The tendency of expert programmers to ignore PV systems,

due to extra effort of enacting the visualiser role has been noted by

several authors [65] [83]

 51

- Novices

A novice programmer may use the PV system simply as a user to

observe the workings of algorithms. Where the novice is seeking

to learn programming they will also enact the programmer role

and in [104] Stasko draws attention to the positive motivational

effect of asking novice programmers to be visualisers as well. He

suggests that the program comprehension of student programmers

was heightened by giving them the additional task of designing

visualisations for their programs.

Visualisation Role Players
(Human Actors)

Comment Visualisation Scenario

User Programmer Visualiser

Expert
programmer

× Programmer
User

De-
emphasised

The expert
programmer is
focussed on the
program

Novice
(studying
algorithms)

User Programmer
(prepared what
is being
watched)
Visualiser?

Visualiser? The novice enacts
the user role only.
Who enacts the
other roles
depends on the
system.

Experience
Level

Novice
(studying
programming)

× Programmer
User
Visualiser?

Visualiser? The novice is
programmer and
user. Stasko
recommends being
the visualiser as
well! Who enacts
the other roles
depends on the
system

Table 4-2 Who does what? Visualisation roles for different experience levels

4.4 Declarative Visualisation

The PV review presented earlier focussed on a number of accepted

taxonomies of the field. These taxonomies have mapped out a variety of axes

along which to categorise existing PV systems and the authors of the

taxonomies have used these axes to locate their own work in the field. As has

 52

been observed earlier the result is a plethora of distinct PV systems and a

lack of any unifying concept that can lead to integration of these individual

pieces of work.

Two authors have drawn attention to this gap, Roman in his own taxonomy

of visualisation [88] and Domingue in his description of Vis, a novel

visualisation system in [21].

Both of these authors have introduced a level of abstraction into the

discussion of visualisation, by making the same broad assertion about the

nature of the visualisation task. For Roman visualisation is “a mapping from

programs to graphical representations” and for Domingue “events and states

[of a program] are mapped into a visual representation”. This concept of

what visualisation is leads directly to a declarative model of visualisation

which clearly defines the role and concerns of the visualiser as being the

creation and manipulation of such mappings. When such a distinction is

firmly enforced by the system it becomes clear that the visualiser has no

involvement in the internals of the visualisation target execution. All

visualiser activity is predicated on transforming some representation of

program state into the new graphical form and it is precisely this that calls

for, and supports, a clear decoupling of target and engine.

For Roman the formal definition of the declarative approach leads to Pavane

which is described in detail below. Pavane establishes a language for

declaring the associations between program state and pictures.

From the point of view of PVML the consequences of Domingue's work are

even more interesting since he uses his framework of visualisation to create a

meta PV system called Vis. Vis is actually a SV system-building system. By

clearly isolating the visualisation mapping component, Vis is able to “reverse

engineer existing PV systems and construct new systems with ease”. This is

very close to the goal of PVML.

 53

4.5 The Roman contribution to visualisation

The review of PV literature that has been undertaken has clearly delineated

the work of Roman as having particular relevance to the PVML proposal.

Roman’s published work in the field consists of an actual PV system, Pavane,

and subsequently, significant introspection regarding the nature of PV.

4 .5 . 1 Roman ’ s t ax on omy

Out of all the taxonomies described in the PV Review there is only one [88]

that moves beyond the categorisation and description activities that are most

usually associated with a taxonomy. The Roman/Cox taxonomy sets out to

make a broad and formal definition of what visualisation is before beginning

a categorisation that is viewed from the point of view of this formalism.

The definition of software visualisation suggested by Roman is that of “a

mapping from programs to graphical representations”, a suggestion that is

clearly related to his earlier work on Pavane [90] which is described in more

detail below.

By conceptually decoupling the visualisation from the program, Roman is

able to create a division of labour amongst the four visualisation roles that

have been defined. The Pavane system actually incorporates a tool that

specifically targets the needs of the visualiser role without overlapping into

the domains of any of the other roles.

 54

Participants

ViewerAnimatorProgrammer

ProgramProgram Graphical

Representation

Graphical

Representation

Visualization

Taxonomic Criteria

Scope
Abstraction

&
Specification

Technique

Figure 4-2: The Roman View of Visualisation. Reproduced from [89]

This diagrammatic view of visualisation presented by Roman makes these

interrelations clear. In the diagram Roman shows:

- Participants

The three participants that are involved in use of a PV system (as

opposed to development of one). These have been referred to, in

this thesis, as roles and have also used the term visualiser in place

of animator.

- Activities

The respective domains of activity for each of these roles – namely

the program, the graphical representation and the transformation

between them.

 55

- Taxonomic Criteria

The criteria from his taxonomy that are relevant to each role.

‘Scope’ is the term he uses to refer to the aspects of the target

program that are to be visualised – in his earlier work on Pavane

the term domain was used at this point. Similarly, when describing

the graphical representations the term ‘Technique’ is used which

had formerly been referred to as range.

This taxonomy and formal conception of what visualisation entails

arose, historically, in the context of the development of the

visualisation system Pavane, which is described in some detail in the

next section.

4 .5 . 2 “Pa v an e ” - A De c l a r a t i v e App r oa c h t o Pr o g r am

Vi s ua l i s a t i o n

Roman describes [87] an approach to specifying the contents of a

visualisation which fundamentally decouples the target from the engine. In

this proposal he suggests declarations that associate specific visual events with

specific changes in program state. Hence, given a means for the target

program state to be communicated, the visual consequences of that state are

independently controlled by the set of declarations that have been

established.

The essential aim in Pavane, the PV system he developed, is the ‘separation

of concerns’. The programmer is concerned with the writing and testing of

program code whereas the visualisation of the execution of that code can be

placed in the hands of a ‘program animator’ who does not necessarily need

access to the program code. The Pavane system was used to visualise

programs written in a concurrent programming language – Swarm.

In describing Pavane, Roman introduces a pair of terms, domain and range that

are equivalent to the terms scope and technique that he went on to use in his

 56

later taxonomic paper. Domain (scope) refers to “which aspects of

computation are examined” whereas range (technique) refers to “what

graphical objects and techniques are provided”. Pavane provides the means

to define mappings between domain and range.

He suggests that most existing PV Systems neglect to “explicitly implement a

mapping” since they use annotation of the program code to single out

interesting events and to request a specific graphical presentation of that

event. The visualiser in such a system must identify points within the source

code at which ‘interesting’ transitions take place. The visualiser would

proceed to instrument the code with appropriate graphical calls.

Aside from the possibly confusing overlap of roles involved, there is a quite

fundamental problem inherent in this imperative visualisation approach. The

most useful display from the point of view of understanding the algorithm (a

synthetic display in Brown's terminology) may need to represent a complex

set of conditions within the program with a single visual metaphor. This is

particularly so for the concurrent programs that Pavane seeks to visualise for

an interesting event may be a “nebulous entity defined by state changes in a

large number of discreet processes”. However, this kind of statement can be

made about any program in any language, in the sense that high-level,

abstract concepts may have a complex relationship to the particular program

language entities that represent them. The lack of a general, one to one

relationship, between program execution events and the more complex

‘interesting events’ that are to be visualised, is the central justification for

adopting a declarative approach to visualisation in Pavane.

The preoccupation of many of the taxonomies with the program/algorithm

axis (direct/synthetic in Brown) can be restated to be a question of which of

the many possible mappings between domain and range are to be defined. A

single system can be characterised as either direct or synthetic depending on

what mappings have been created, supposing that appropriate tools are made

 57

available to the visualiser. These tools are “assumed to have complete access

to the [program] state” in order that the visualiser has the freedom to declare

any mapping they wish.

A key observation, from the point of view of locating PVML, is that the

annotation of the running program which is necessary to provide this access

“could in principle be largely automated” since “the entire state is examined

rather than animator-defined events”. In terms of the Roman model, PVML

could be defined as an open protocol of automated annotation

communication that can provide state input into a visualisation mapping

process.

The bulk of the paper describing Pavane is concerned with the formal syntax

used to define the relationships between program state and visual output.

This language defines state, in either the state space or animation space of the

visualisation, using collections of tuples. The detail of the mapping syntax

and implementation is beyond the scope of this review. For the purpose of

locating the PVML proposal, it is sufficient to note that PVML plays a part

in the communication between what Roman refers to as the domain and the

range of the visualisation.

4.6 The Domingue contribution to visualisation

The other major visualisation work that embodies a rigourous separation of

visualisation roles is that of Domingue, who is a colleague of Price and

Eisenstadt who have previously been cited. Domingue has not published

explicitly taxonomic work that can be set beside that of Roman but the Vis

system, which is described in some detail below, incorporates a similar

architecture.

“Vis” - a Framework for Describing and Implementing Visualisation Systems

Vis [21] appeared the same year (1992) as the Pavane paper and hence Vis

and Pavane would appear to have had little influence on each other’s design.

 58

Nevertheless they adopt a very similar approach to visualisation in that they

both isolate the actual visualisation decisions to s specific layer in their

systems.

The architecture of Vis considers “program execution to be a series of

history events happening to (or perpetrated by) players.” Domingue

compares these history events to the interesting events that Brown spoke of

and they represent some combination of program execution and data state.

The mapping of history events into a visualisation is handled by two

subsequent modules within Vis:

- View–Module

The view module controls the overall style of representation which

may vary from text to different types of graphics such as a tree

diagram or a graph.

- Mapping–Module

The mapping module connects aspect of program state to view

components.

The combined effect of these two modules is to create a range of “mappings

from program to pictures” (cf Roman) that can be moved amongst by the

visualisation user.

Figure 4-3, taken from the Vis paper, makes this architecture clearer and

includes the navigator module through which the user can control the

visualisation.

PVML very precisely maps to the communication between the Domingue

‘view’ and ‘history’ modules, with PVML statements transmitting history data

and a reverse flow of filtering commands being necessary to mitigate

excessive volumes of program state information.

 59

Figure 4-3: The Vis Architecture. Reproduced from [21]

4.7 Other Declarative Approaches

Two other pieces of work are referred to by Roman as to some extent

making use of a declarative approach.

ALADDIN [40] was developed by Helttula et al. ALADDIN was designed

to visualise Modula-2 programs and divided the issue of generating a display

into a space and time axis. The question of what to display in space was

handled declaratively by defining a set of graphical types and graphical variables

within an animation editor, ESA, where the graphical components are

associated with program states. The timing issue is handled by direct

annotation of appropriate (interesting) events in the Modula-2 program by

adding ghost variables to the Modula-2 program. These ghost variables

represent program state to the visualisation and their placement determines

timing.

The fact that program state is represented independently by the settings of

the ghost variables and that visual representations from a library are

 60

associated with these states is what identifies ALADDIN as a declarative

approach.

The ANIMUS system [22], developed by Duisberg has been mentioned

earlier in the PV review. ANIMUS achieves ‘automated annotation’ by the

extension of class behaviour to include visual behaviour. Roman has

characterised ANIMUS as declarative, based on the automatic association of

objects with their visual behaviour and on the way in which constraints can be

defined that limit the visual outcomes in selected ways.

In the case of generating visualisations based on class behaviour, the

declarative label seems to be somewhat forced. ANIMUS delegates

responsibility for the display of an object to the object itself and it is only to

the extent that the algorithms for display of various objects are managed in

an organised manner that this can be considered a declarative system.

A declarative system sets out to present a high-level, algorithmic description

of program state and map that to visual states. The nebulous relationship

between the values of program variables and this, more abstract, state applies

just as much in an object oriented language – objects and their states are

substituted for the values of variables. A coherent declarative approach will

depend upon techniques to abstract the states of an arbitrary set of objects

according to criteria that are driven by visualisation requirements.

Duisberg's use of constraints to manage temporal issues in the animation is

of considerable interest though in refining the concept of the declarative

approach. A constraint is “a statement of a relationship that we would like to

have hold” at some point in the future. A constraint exists independently of

the flow of control in a target program. The writer of a target program is not

called upon to “write and invoke procedures to do the maintenance (of the

constraint)” [9] – the constraints will be maintained by an external agent. For

example a user might want to limit the number of branches in a tree diagram

to the number that can be fitted on a single screen. The visualisation will be

 61

free to run and generate arbitrary tree diagrams but the display-related

constraint will be applied by another agent.

Such statements have an extensive part to play in the design of useable

visualisations. The mapping of program state to visual display establishes the

basic vocabulary of a visualisation but the clarity and comprehensibility of

the display depends on other issues such as the relative timing and screen

position of the artifacts. A perfectly reasonable representation can be

rendered incomprehensible if it is obscured by other objects or it displayed

with inappropriate timing. It has been demonstrated by Duisberg and others

[8] [70] that a constraint-based approach is ideal for managing issues that are

loosely coupled to an underlying formalism such as the display semantics of a

visualisation.

4.8 Summary

The proposal for a fundamental decoupling of visualisation target and engine

rests heavily on the definition of visualisation offered by Roman – best

summarised in [89]. It is also supported by the equivalent, though less

formally specified, work of Domingue which describes Vis, a system where

the decoupling is quite explicit. The declarative approach to visualisation has

been contrasted with other specification techniques and it has been shown

how it offers clearer distinctions between the domains of the four principal

roles involved in a visualisation scenario. This leads to the identification of

the stream of program state information that must be provided as the input

to a system that defines mappings between program state and pictures.

Figure 4-4 represents a Roman-like division of a complete PV system into

distinct modules and locates PVML as a communication amongst those

modules. The cartoons represent the three visualisation roles, user,

programmer and visualiser. Each role is shown connected to a single

component of the PV architecture. The emphasis on decoupling the target

and engine leaves each role with a single point of contact with the system

 62

bearing in mind, as previously emphasised, that in many cases a single human

may enact more than one role.

Mapping
Declaration

Visual
Display

PVML

Visualisation

Target

Visualisation

Engine

Visualiser Programmer

User
Executing
Program

Figure 4-4: The Location of PVML

PVML is used to implement a generalised communication between

visualisation targets and engines. The stream of PVML statements to the

engine, represents program state information and contains no assumptions

about how the program is to be visualised. These decisions are to be made

further down the track, by one or more visualisers that are in control of

components that are configured to consume the PVML stream. Appropriate

buffering and manipulation of a PVML stream should be capable of

transforming the program state information into the format required by an

arbitrary visualisation engine.

The broad outline of this proposal is the subject of the author’s publication

[107].

 63

C h a p t e r 5

DEBUGGERS

In the very broadest sense the requirements for PVML have been clarified

through the discussion of decoupling program visualisation systems. It is

fundamental to maintaining the separation of concerns for the visualisation

roles, that PVML communicate only program state information. There is no

mention in PVML, of any program visualisation related data. PV declarations

and manipulations are all local to the visualisation engine.

At this stage it must be noted that the language that is being defined has no

inherent link to program visualisation – other than the motivation, of

providing generalised decoupling amongst visualisation targets and engines.

PVML is, in fact, a language that enables a selection of normal debugger

functionality to be applied to a remote target program in a manner that is,

wherever possible, programming language neutral.

There are numerous precedents for basing visualisation on integration with a

debugger – Lens [65], Amethyst [69] as well as the large selection of

commercial CASE (Computer Aided Software Engineering) tools. The

objections raised to this approach in the PV literature have largely centred on

the excessive level of detail revealed and the difficulty for a novice user of

selecting an appropriate granularity of display. A PVML-based

implementation delegates such matters to the visualiser who is in control of

defining mappings between program state and visual representation.

 In order to clarify the significance of PVML, as the detailed requirements

are set out, they will be located within the literature that describes remote

and heterogeneous debugging. The name that has been adopted for this

language, “Program Visualisation Meta Language”, needs to be seen as an

 64

expression of the motivation and background to this proposal rather than an

attempt to define the precise functionality of PVML.

In discussing the requirements for PVML, a first step is to locate the

language more concretely in an architecture for decoupled visualisation. This

is followed by relating this endeavour to other work in the field of

debugging. The relationship of the language to the two main areas of

concern, target program source code and target program data, is discussed.

Also consideration is given to a number of ancillary areas that do not clearly

fall within the scope of source and data

5.1 PVML Architecture

The intent of the PVML proposal is to interface with components of existing

PV systems. Consequently the implementation of PVML needs to be in the

form of drivers that interact with components from existing systems.

A driver is needed for the visualisation target – a “PVML Target Driver”.

This driver will be wrapped around an existing environment that supports

stepping through and examining the state of a target program. Typically this

will be a debugger for the programming language involved.

The second driver is needed for the visualisation engine – a “PVML Engine

Driver”. This driver could be wrapped around the visualisation component

of an existing, or newly created, PV system. If the PV system uses the

declarative approach, then the mapping declaration module will receive the

appropriately formatted output of the driver. Imperative PV systems will

need the mapping declaration to be implemented within the engine driver.

The two drivers interact through a two-way stream of PVML commands.

The diagrams below shows the PVML target and engine drivers and the

details of the interactions that they need to have with the components of a

PV system and with each other.

 65

The focus in this chapter is on the PVML target driver and the way in which it

encapsulates, and abstracts, the underlying debugger.

PVML
Debugger

Executing
Program

PVML

Target

Driver

Debugger

output

Debugger

commands

Figure 5-1: A PVML Target Driver

PVML

 Declarative PV System

Mapping
Definition
Module

PVML

Engine

Driver

Visual

data

Program
State

information

Visual
Display

Imperative

 PV System

Visual
Display

Engine

Driver

Mapping

Module

Figure 5-2: A PVML Visualisation Engine Driver and its connection to two
different styles of PV display

 66

5.2 Debuggers

In reading the extensive literature relating to debugging programs it must

first be emphasised that a particular, restricted, area of the field is under

consideration. The PVML approach to debugging can characterised in the

following ways:

- Symbolic

Debuggers have access to extremely low level information

concerning the program that they are debugging. In many

instances the programmer using a debugger will need to make use

of specific memory addresses and machine implementation details

to achieve the results they desire. A distinct class of debuggers

makes use of the representation of the program that exists in the

program source code. These debuggers are termed symbolic

debuggers and the requirement to support novice programmer

activity clearly leads to PVML supporting symbolic debugging.

Although the novice user may well be principally interacting with

visual representations of their program, it is fundamental to the

endeavour of learning programming, that they will also be paying

attention to the source code listing of the program they have

written. It is at this point that the requirement for symbolic, rather

than lower-level machine, access arises.

 67

- Heterogeneous

Historically a particular debugger has often been associated with

working in a particular programming language as with, for

example, [3], [20] and [25]. The chapter supporting the novice

programming environment concept has made it clear, that for

novices, the ability to apply the same programming environment

to more than one language may well be useful. This leads to the

requirement that PVML support what might be termed language

neutral debugging. In the field of debuggers the term heterogeneous

is often used to describe this ability.

The GDB [99] debugger is a notable exception to the one-to-one

debugger-to-language mapping since it supports the cross-section

of languages for which there are Open Source, GNU Compiler

Collection (GCC) [27], compilers available. The linking concept

here is the binary executable file format and the way in which the

source code information is stored – namely the program symbol

table. The GDB debugger can interpret the range of executable file

and symbol file formats generated by a number of GCC compilers

and hence permit debugging of programs written in C, C++, Java,

FORTRAN and Ada. From the point of view of the PVML

proposal though, this multi-language ability cannot be considered

sufficient heterogeneity since it would restrict the scope of PVML

target languages to those supported by GDB.

 68

- Sequential

A major research preoccupation in the field of debuggers has been

the issue of debugging concurrent programs [60]. This issue

exposes substantial theoretical issues which are beyond the scope

of this thesis. At the novice level it is reasonable to assume that

students are engaging with programs that have a single thread of

execution. It is specifically sequential debuggers that are of

interest.

- Remote

It is fundamental to the visualisation architecture proposed that

the connection between the target and the engine potentially be

through a network. The reasoning behind this assumption

originates in the notion of the novice programming environment

being location independent but it could also be argued from the

point of view of maximising the extent of decoupling between the

target and the engine.

Many debuggers support this mode of operation but those that do

not can be, quite reasonably, ignored.

At this stage the literature describing debuggers will be examined, restricting

the view to those that are symbolic, remote-capable, sequential and language

neutral.

It has been noted by Olsson [78] that debugger research has been

disproportionately influenced towards the problems of debugging concurrent

programs and also the provision of graphical interfaces for debuggers. A

consequence of this bias is that there are comparatively few significant

contributions in the restricted field of debugging that must be examined. To

begin with the principal attribute that will guide the examination of debuggers

will be the question of language neutrality.

 69

In setting out to create debuggers that operate at a level of abstraction above

that of a particular programming language, a predominant approach has been

to define debugging languages that are super sets, in some sense, of the

programming languages that they set out to support. Some aspects of this

endeavour have issues in common with that of creating translators that

automatically transform a program from one source language to

another.

5.3 Debugging Languages

A debugging language can be characterised as providing some form of high-

level abstraction of debugging primitives that exist in one or more, language

specific, debugging environments. There will, in general, exist an

environment with which the programmer interacts. This is the environment

in which debugging language statements are manipulated and will

incorporate one or more underlying, back-end debuggers that are able to

host target programs in a variety of languages.

A debugging language will need to concern itself with a bidirectional flow

between the programmer and the underlying debugger. Debugger

commands, that trigger execution in the target program or perform specific

debugging primitives, such as the setting of a breakpoint, must be sent to the

debugger. At the same time, the output of the debugger must be observed

and manipulated.

Although debugging languages have been described since the early days of

computing science [35], a generally accepted means to classify them has not

evolved. In marked contrast to the domain of program visualisation, in

which there exist a significant number of well established taxonomies,

debugging languages are generally classified on an ad hoc basis.

The work of Sosic [96], which does not set out to be taxonomic, in fact

provides a useful axis along which to categorise debugging languages. In his

 70

paper describing Guard, a relative debugger that seeks to compare the

execution of two programs, Sosic divides the features of his debugger into

the categories of imperative and declarative. These are exactly the same terms

that were used by Roman in his classification of visualisation systems and

indeed, there are many similarities in the two endeavours. The terms

imperative and declarative can be applied to debugging languages in general

and PVML can be located upon this axis.

5.3.1 Imperative debugging languages

In the visualisation domain an imperative visualisation technique was defined

as one that set out to quite directly control visual outcomes. A single

visualisation command, which might for example arise from annotation of

the program source, would give rise to a single visual consequence.

In terms of debugging an imperative language establishes a similar one-to-

one relationship between debugging language statements and the commands

that are implemented by the underlying debugger. Through an imperative

debugging language the programmer has, in effect, manual control of the

underlying debugger – an individual command will be sent to the debugger

and the output generated as a result of that command will be handled. As

Sosic notes, this fine grained control may not be appropriate or manageable

where the target program is complex in its behaviour. This intractability

motivates the declarative model described below, specifically as a means to

manage more complex debugging scenarios.

However any debugging language must contain significant imperative

features in order to generate debugging commands. Using a language to

generate these commands has the advantage that a protracted sequence of

commands, that would be tedious to enter manually into a debugger, can be

straightforwardly generated.

 71

A typical scenario might be the examination of a target program

representation of a linked list – a common data structure in which some

representation stored in each element of a collection leads to the next

element. Manipulating a linked list through a debugger can involve a complex

sequence of commands and several authors [78], [32] have discussed the

issue of generating the low level debugging commands that would be

required to traverse a linked list. It is observed that when using the command

set of the underlying debugger directly such an operation is tedious.

Some debuggers provide the ability to store and invoke such sequences [99]

but the sequence is very specific and not easily modified. By contrast a

debugging language, by offering more abstract primitives that map to a series

of low level commands, make such complex data probing a routine and

manageable affair.

DUEL [32] is a “very high level debugging language” that uses a syntax

based on C to control and manipulate the output of GDB in a manner that is

almost LISP-like.

The design of an imperative debugging language is a nontrivial issue, which

will be discussed in considerable detail below. An examination is presented

of some of the semantic issues involved, as described in [18] and [48].

5 .3 . 2 De c l a r a t i v e d e b u g g i n g l a n g ua g e s

Initially the significance of this term within visualisation will be restated. A

declarative visualisation technique allows for a visual consequence to be

defined as contingent upon an arbitrarily complex set of conditions that

might occur in the target program. Declarative visualisation moves beyond

the one-to-one mapping between program events and visual occurrences by

defining a language in which complex mappings can be described.

In the domain of debugging there exists a very similar requirement. The

executing program is arbitrarily complex and a number of distinct events, in

 72

different sections of the program, may be required to trigger some debugging

activity. The interesting event, from the point of view of the person

debugging the program, may well have many distinct components. It is

fundamental to this approach that the low level components that are

combined will occur at distinct times during program execution. A

declarative debugging language will contain structures through which such

asynchronous events can be abstracted.

Many modern debugging languages offer an extensive set of declarative

features. Dalek [78] provides debugging “at a high level of abstraction” by

controlling GDB through higher level constructs. Dalek encapsulates the

output of GDB into an event structure that supports the hierarchical

processing of complex sets of events and hence the detection of arbitrarily

complex states. Guard [96] provides declarative debugging through its

implementation of an assert and verify command. In the domain of lazy

functional languages, where execution order is non-deterministic, imperative

debugging becomes impossible and the obligatory declarative approach is

implemented in a language such as EDT [97]

5.3.3 PVML as a debugging language

The motivation for PVML, namely the decoupling of visualisation system

architecture, requires that the debugging language operate as a more or less

transparent pipe between the visualisation engine and the target program. In

such an architecture the importance of the role of a visualiser, in employing a

declarative approach to defining mappings between programs and pictures,

has been emphasised.

Although conceptually similar to declarative debugging, the declarative

aspect in this instance is at the level of mappings from program state to

visual artifact rather than between a low and high level representation of

program state. In order for the declarative visualisation mapping to be

effective, and in order to support potential imperative visualisation engines,

 73

the engine requires access to the kind of low-level debugging primitives and

information that are represented in an imperative debugging language. Hence

PVML could be characterised as an imperative debugging language and the

requirements of PVML can be analysed by examining the literature

describing the semantics of imperative debugging languages.

The delegation of debugger interaction to a simplified language that abstracts

lower-level debugger behaviour is also the approach taken by deet [38]. The

cycle of development that led from ldb [84] a “retargetable debugger”,

through cdb [39] a “machine independent debugger” to deet, very clearly

approaches remote, language independent debugging in a similar manner to

PVML. The minimal set of debugging language primitives and the

implementation of these primitives in a nub that wraps around an established

debugger represent an architecture that is similar to that of the PVML

drivers. In addition, the argument that a reduced subset of generally accepted

debugger functionality is an acceptable trade-off for increased portability is

strongly reminiscent of the case that has been put in Chapter 2 for a novice

programming environment.

The simplified, portable, command set of the PVML-based debugger can

perhaps, most usefully, be characterised as implementing an ‘abstract

debugger’, that is mapped through a target driver to a particular concrete

debugger. This characterisation of PVML, as providing an abstract debugger,

is one that will be used throughout the remaining chapters of this thesis.

 74

C h a p t e r 6

PVML LANGUAGE REQUIREMENTS

Examination of the requirements, in general terms, for an imperative

debugging language leads to a definition of the specific requirements for

PVML. At the highest level, it has previously been noted that a debugging

language manages bidirectional communication between a user and an

underlying debugger. Commands that control debugger behaviour flow from

the user; and debugger output, in the form of descriptions of the state of the

program, flows in the opposite direction. The requirements of the command

stream are well analysed in [18] and the discussion of the reverse flow will

draw upon the work of Johnson [48].

6.1 Control

In discussing the semantics of an imperative debugging language there are

two fundamental concepts that must first be clarified – the question of dual

or single process debugging; and the definition of the underlying debugging

primitives that can be assumed to exist.

In general when debugging a program in a compiled language the debugger

will run in a separate process from the target program. The assumption is

that the machine architecture, on which the program is executing, provides

the means for the debugger process and the target process to communicate

at appropriate times.

An example of this would be the existence of a machine language instruction

that generates an interrupt that can cause a context switch. A debugger, such

as GDB, will insert this instruction into the target execution module at the

point where a breakpoint has been defined. The fact that this instruction can

cause a context switch means that the target program can be allowed to

execute at normal speed, with the knowledge that when the breakpoint has

 75

been reached, control will be transferred to the debugger for appropriate

action to ensue.

In the case of a program written in an interpreted programming language,

the debugging functionality is likely to be part of the interpreter itself, with

the consequence that debugging and normal program activity take place

within the same process.

Crawford [18] argues that the significance of this distinction is one of

implementation efficiency, when considering the number of context switches

that must occur during debugging. However, where PVML is concerned,

these distinctions will be hidden within the visualisation target and the

PVML stream will be unaware of whether the target debugs in a single or

dual process mode.

A debugging language will be built upon certain assumptions as to the

debugging primitives available in the underlying debugger. Crawford, in

designing his General purpose Debugging Language (GDL) [18] assumes the

existence of four primitives:

- read

Read the contents of memory in the target program

- write

Write the contents of memory in the target program

- stepi

Cause the target program to execute a single machine instruction,

as distinct from source code line (see step instruction below)

- break

Set a breakpoint in the target program at which control will be

returned to the debugger.

 76

Crawford argues that all other, normally expected, debugging behaviour can

be derived from these primitives. However, generating more sophisticated

behaviour through application of these primitives has the potential to

significantly add to the computation required. In the context of debuggers

currently available, which potentially could be targets for PVML, the addition

of four further primitives is suggested:

- step

Cause the program to advance by precisely one line of source

code. The definition of what represents a single line of source

code will be programming language dependent. The effect of this

command could be produced through iterations of the stepi

command but it is reasonable to expect that the debuggers used

will have a native implementation of step. The result is a

considerable saving of computation.

- resume

Cause the target program to resume execution at normal speed. In

the absence of any breakpoints this would lead potentially to the

program terminating. The effect of this primitive can be

reproduced by iteratively applying the stepi primitive but this

approach is computationally expensive.

- watch

Set a watchpoint on a variable in the target program, to

automatically switch control to the debugger when the marked

variable is accessed. Generally a watchpoint can be configured to

be sensitive to either the reading or writing of the data value.

 77

Again Crawford describes the implementation of data watchpoints

through programmatic application of the basic primitives. He

suggests inspecting the value of a watched variable after each

stepi operation. Given the support for watchpoints in current

debuggers, much computation can be saved by the assumption of

the watch primitive.

- frame

Provide some representation of the current depth of nesting

within successive program contexts. In a block structured language

this is commonly referred to as the stack frame.

Crawford’s GDL proceeds to generalise debugging functionality by

providing the means to iterate and test the use of the primitives that he has

defined. It provides the necessary looping constructs and the ability to define

functions that incorporate loops constructed from a sequence of low-level

accesses. By this means he is able to offer highly abstracted control of

debugging functionality.

The limitation with Crawford’s approach, as should be clear from the

examples provided, is that working with such low-level primitives there will

often have extreme performance penalties. As a result, higher level support

for these instructions is desirable for practical debugging.

In the case of PVML, the language will mostly be used in communication

across a network rather than the inter-process communication for which

GDL is designed. In the case of this more widespread distribution it would

be inappropriate, in terms of the network traffic generated, for low-level

looping to be expressed in PVML. Commands in PVML must map to the

upper level of a language like GDL, with any low-level looping being

implemented within the target driver.

 78

This will become clearer through the detailed discussion below of the

semantics of the PVML step command.

6.2 The Step Command – a Debugging Language Scenario

At this stage, two distinct primitive implementations of a command that

steps program execution have been defined. On the one hand, the stepi

command moves forward by one machine instruction. The step command

however, advances by one complete source code line. These are the primitive

levels of execution stepping that are assumed to be provided by debuggers

that PVML targets.

From the point of view of defining the requirements of the PVML language,

and especially considering its usefulness to programming novices, it is quite

reasonable to consider other granularities of stepping. In [18] Crawford

considers stepping forwards in the source code by individual expressions,

statements or even blocks of text. . In addition one might wish to support

stepping into, out of and through a subroutine. These navigational devices

are illustrated in Figure 6-1.

 79

Figure 6-1 Program stepping - various granularities

Clearly, any one of these can be implemented by appropriate iterations of the

stepi primitive, assuming that the debugger has access to appropriate

mappings between source and machine code. This issue is characterised by

Johnson in [49] as that of “mapping to the source language state” and the

availability of the various mappings will depend on the data structures

maintained by the compiler or interpreter that the debugger is interacting

with.

An interpreter functions by establishing data structures that represent the

program structure during execution. Run time access to these structures can

yield detailed mappings between program source code and the machine code

that is executed. By contrast, a compiler must analyse and translate an entire

program source code into its machine code form. Intermediate data

structures, that could yield an appropriate mapping, may or may not be

 int i;

 int a=2, b=3, c=4, d=5, e;

 e = 0;

 for (i=0; i<10; i++){

 e = (a+b) * (c+d);

 }

 e = eval(a, b);

 a = 42;

 .

 .

 .

 int eval(int x, int y){

 int a;

 a = x * y;

 return(a);

 }

.

step one
source line

step by a
block

step by an
expression

step over a function call

step into a
function call

step out of a
function call

 80

preserved. These structures may not even be accessible outside of the

compiler itself. In general it is expected that a wider range of mappings will

be available where the underlying execution takes place in an interpreter.

Using PVML to provide a high level abstraction, such as stepping by source

code expressions, involves generation of an appropriate sequence of

debugging primitives within the target driver. Each debugger targeted would

have its own driver that would incorporate mappings from a standardised

PVML form into the correct sequence of primitives.

This discussion draws attention to the issue of providing support for the

differing capabilities of available debuggers and execution environments.

PVML will, as it is applied to a wide range of targets, encounter disparities in

target functionality and it therefore must incorporate the notion of several

‘levels’ of functionality.

In this case one such level is proposed for the case where only source line

stepping is available, with a more sophisticated level, in which finer grained

source code stepping can be provided, being applied to environments that

support this.

6.3 Programming Language Issues

The flow of information from target to engine is considerably richer and

more dense than the command flow that has so far been discussed. This flow

clearly relates, in a much more complex fashion, to the programming

language in which the target is written and also must take account of the

distinction between program source code and program data. In the case of

some programming languages this distinction can be complex.

In discussing programming languages, authors seek to categorise them using

terms that establish a taxonomy at the highest possible level. One such term

is that of the programming language paradigm [120]. In the scope of this

 81

research, it is appropriate to consider three paradigms of programming

language:

- Procedural languages such as Pascal or C. These are also referred to

as declarative languages

- Object oriented languages such as Java or Smalltalk

- Functional languages such as Lisp or Prolog. These are also referred

to as applicative languages

The question of debugging programs written in such disparate programming

languages is one that requires some considerable attention. The management

of program source and data could need to be adapted to suit the underlying

paradigm of the programming language itself. As has been indicated

previously the approach generally taken to this problem is to define a high-

level, abstract debugging language – as has been done in this thesis.

Automatic source-to-source translators, that accomplish their task through

abstraction and reimplementation [119], must also address these issues but

their approach, as a consequence of the need to regenerate source code,

needs to be far more rigorous.

The work of Johnson [48] considers the question of whether some treatment

of programming languages can be considered generic. A generic feature is not

necessarily common across all languages in the sense of being absolutely

fundamental. However, these features may be identified as common across

several languages, including those from distinct paradigms. This is much as

could be expected, considering that most languages are synthesised in a

derivative fashion. Given a set of generic means to debug programs in

disparate languages it is also appropriate to consider aspects that are specific

to a language of class of languages.

Through applying a uniform debugging language, DiSpeL, to a representative

selection of languages, Algol, FORTRAN, LISP and Snobol, Johnson

identifies generic aspects of programs that map to what has so far been

 82

referred to as code and data. These he terms segment-generic and data-generic

features respectively. Within these categories, the specific entities that occur

vary from language to language.

For example LISP is characterised by the code entities ‘form’ and ‘function’

whereas in the procedural language Algol, he identifies ‘process’, ‘program’,

‘routine’, ‘clause’ and ‘unit’. DiSpeL debugging programs are written in terms

of generic features – such as PROCEDURE, BLOCK and STATEMENT

– and these interact with the source code of a particular program through a

set of generic-to-specific mappings that relate to the source language of that

program.

The core of PVML consists of terms that refer to such generic programming

language features. Mapping these generic terms to more specific, language

related terms, will occur in a particular target driver as required. A minimal,

generalised, engine offers the visualiser access to the state of a target

program through these generic terms, which the visualiser is free to interpret

in ways that are appropriate to features of the source language. These

activities of the visualiser role are quite independent of the PVML stream.

There may well be aspects of execution state or content, for a program in a

specific language, that are not amenable to such generic treatment. A specific

instance will be considered in more detail below in Section 6.5. In order to

manage these language specific issues PVML incorporates a means to

describe the capabilities of a particular target or engine. Upon initially

establishing contact, a target and engine negotiate the extent to which their

capabilities overlap and therefore what level of functionality can be provided.

6.4 Generic Code Issues

This discussion of the language requirements that relate to the management

and display of program source code begins with issues that are generic to the

 83

language paradigms under consideration. The treatment of language specific

issues, that cannot be considered generic, follows as a separate section.

In considering the generic representation of program code required by a

visualisation system there are two aspects of essential representation:

- Position in Source

Representing the position of the current execution point in the

source code

- Layout of Source

Presenting the source code to the user in a manner that exposes

the structure of the code (so-called ‘pretty printing’)

Each of these will be examined in some detail below.

6 .4 . 1 Po s i t i o n i n S ou r c e

Program source code is most commonly generated in a textual form. In the

visual programming domain, an alternative representation is introduced, in

the form of graphics.

As a program is executed a class of visualisation user, who is also enacting

the programmer role, will expect the visualisation engine to show the point

of current execution in the program source code. PVML needs to be able to

indicate the current point of execution for programs written in a variety of

languages.

There are two aspects of displaying the current position in the program

source:

 84

- Logical Line Numbers

Establishing a consistent mapping from the debugger’s notion of

the current execution line to the representation of that line that is

seen by the user.

- Representation of Context Change

Adjusting the view of the source code to represent entry to, and

exit from, alternate execution scopes. This aspect is treated here

from a point of view that supports the broadest possible range of

program language paradigms. The assumption made is that, at

some level, program execution enters and leaves contexts that will

be represented visually through a device such as separate source

code windows or a shifting visual emphasis.

Logical Line Numbers

In a textual language it is universal to describe locations within programs in

terms of the name of the source code file and the line count within that file.

This is the representation used in a variety of existing visualisation systems.

This approach must be mitigated, as has been noted by Mukherjea in his

description of the Lens system [65], when a single statement of source code

spreads over several lines. In such cases the logical line number within the

program more truly represents the current point of execution. Given that the

target driver is built around an underlying debugger, logical line numbers are

likely to be available.

This leads to the issue of translation from logical line numbers, which are

generated by the debugger, to physical line numbers that are required in

order to display the source code line to the user. The assumption that

underlies this question is that simply transmitting the text of every source

line when it is executed would generate excessive traffic. Although the

number of times a given source code line is executed is data driven and

potentially unbounded the number of actual lines of source code is bounded

 85

(though possibly large) for a given program. It seems reasonable to suggest

that PVML transmit the text of a source code line the first time it is

executed, along with its logical line number in order that subsequent

executions of that particular line could be indicated simply by the logical line

number.

In a professional development environment these issues would be

complicated by the need to expand certain elements of program source code

such that one physical line, as written by the programmer, may map to many

logical lines, as executed. Examples of such elements are program ‘macros’

and in C++, ‘templates’. The expansion of such elements is generally

handled transparently by the compiler, but options exist through which

compilers can be directed to preserve intermediate states such as macro

expansion.

Whilst the initial needs of a programming novice might be met by a one-to-

one physical-to-logical source line mapping, a PVML that supported more

advanced programming would need to identify source lines, not simply by a

digit, but through a tuple that identified a physical line and a possible logical

offset within that line.

Representation of Context Change

It is common in PV systems, supporting a cross section of program language

paradigms, to offer the programmer a view of source code that represents

successive program contexts through a distinct visual metaphor. In the

visualisation of a procedural language [14], Brown uses a separate source

code window to display the code in successive Pascal procedure calls. In a

functional language visualisation [46], a shifting frame is drawn around the

current function in a program.

What these scenarios have in common is a means for the debug target to

announce when it enters or leaves a context. This feature is not one that can

 86

be considered a normal primitive in a cross-section of debuggers. The

debugger that is part of the Java Development Kit, jdb, provides this feature

but GDB does not. It is, however, feasible to construct this behaviour

through use of other debugging primitives, in particular the combined use of

the step and frame primitives. This sequence is generated within the target

driver.

6 .4 . 2 Lay ou t o f S ou r c e

The previous section has addressed the question of using PVML to relay the

current execution point to the visualisation engine in order that the

programmer can keep track of the program execution. The normal way in

which this information is presented visually is for the current line to be

displayed, with a highlight, on a view of the source code for the module

being executed. Many PV systems [42], [17] make sure that the way in which

the source code is displayed supports the mental models of the programmer

by typographically displaying the code according to various conventions that

have been shown [5] to aid program comprehension.

Examples of these conventions [Figure 6-2] are the use of different colours

of text to denote programming language keywords, user-defined strings,

constants and other syntactic elements, along with indenting of source code

lines to correspond with the block structure of the program. The level of

analysis of the target source code that is required to accomplish such a

display requires access to the parse tree of the program, an intermediate,

hierarchical representation of the program structure that is generated by the

compiler or interpreter.

 87

Figure 6-2 Pretty Printed Source Code

In a PVML-driven visualisation environment the visualisation engine will not

necessarily have access to the parse tree of the program. The pedagogically

effective presentation of the source code in the engine could be

accomplished by giving the engine access to a generalised format of the parse

tree, as with the intermediate representation in UWPI [42]. The assumption

here is that the target has access at runtime to appropriate representations of

the source program – in general it is possible to configure compilers to

preserve intermediate representations, such as parse trees, that are otherwise

abandoned during compilation. When this is not possible targets may

explicitly re-parse the program in order to generate an appropriate

representation.

This introduces the important requirement that PVML handle structured,

hierarchical information such as a program parse tree.

Keywords
in green
type

Variables
in blue
type

Literals
in red
type

 88

6.5 Language-Specific Code Issues

Specific requirements for each language paradigm will be discussed.

6.5.1 Procedural Languages

The view of execution that has already been described – a highlighted line of

source code is the normally accepted way to display execution in a

procedural language.

An additional type of display that is often found in debuggers and CASE

tools is a “call tracer” which indicates the call chain (function A called

function B, which called function C) that leads to the current execution

point. To support this type of display in a PVML-driven engine would

require the execution target to communicate function entry and exit as

previously described.

6 .5 . 2 Ob j e c t O r i e n t e d Lan gua g e s

Michael Kolling [57] has argued strongly that novice programmers, who are

learning an object oriented language, will benefit from a development

environment that takes steps to represent the program in terms which

emphasise the object based nature of the program. He draws particular

attention to two aspects:

- Class and Object Hierarchy Display

Kolling recommends that the class and object inheritance

hierarchy, and the usage relationships (associations, aggregation

and containership), should be graphically displayed in code and

data views of the program. The distinction between code and data

becomes less rigid in an object oriented language since objects

created to store data have the code of the object methods included

therein.

 89

- Object Test Bench

Objects, which may be created in the course of program

execution, may also be created, and tested, manually in the

development environment.

These two requirements have different levels of impact on the PVML

proposal and are discussed in greater detail below:

Class and Object Hierarchy Display

Some aspects of the display of class and object hierarchies can be considered

simply to be a visualisation issue and therefore beyond the scope of PVML.

For example it could be a visualiser's decision to display the execution of a C

(procedural) program as if it were object oriented, with functions in modules

being represented as if they were methods of objects. Similarly the execution

of an object oriented program could be portrayed as if it were procedural and

this is indeed the objection that Kolling made to many development

environments at the time. In neither case is there a need to communicate any

different information at the PVML level – what is changing is the way that

the program state is being mapped to pictures.

The requirement to display inheritance hierarchies at the same time though,

requires an additional level of information and some significant additional

considerations to be introduced into PVML. The requirement is that all or

part or all of the inheritance hierarchy is communicated to the visualisation

engine. This level of communication would support the generation of

visualisations similar to those available in BlueJ, such as those shown in

Figure 6-3

 90

Figure 6-3 Class relationship visualisation in BlueJ

This question shares many aspects of the transmission of structured source

code considered above – namely the possibly selective delivery of a large,

tree structured data set to the visualisation engine. Some portions of this

stream will be code and some portions data, reflecting the intermingling of

code and data in the object oriented paradigm.

Object Test-Bench

An outstanding feature of the Kolling BlueJ environment [57] is the ability to

place objects on a test bench and interact with them outside of the normal

program code as shown in Figure 6-4.

This feature encourages development of prototype classes, the reuse of code

and experimentation with objects and classes beyond the scope of a

particular program. This feature is so beneficial to novice Java programmers

Inheritance
relationship

Containment
relationship

 91

that it is worth considering whether such a facility could be supported by a

PVML-based environment.

Figure 6-4 Object test-bench in BlueJ

This introduces the requirement that PVML support commands to

instantiate and invoke methods upon target objects. This particular scenario

will treated in more detail as an example of a programming language specific

extension to PVML. In principle the visualisation of the resulting objects

should be handled by the mechanisms already provided.

6 .5 . 3 Fun c t i o n a l Lan gua g e s

Functional languages differ from procedural, and object oriented languages

in their use of data values and structures. A program written in a procedural

language generally makes extensive use of program variables to store data

values. These data values are manipulated, and passed among, functions in

Object instance
being tested

Invoking a
method on
the sample
object

Entering a
parameter for
the method
invocation

 92

the program but the return value of a function is often of incidental interest,

perhaps indicating an error condition2.

By contrast, a functional language performs most manipulations by calling

functions which themselves may have other functions as parameters. The

return values of functions are primitives of the type that is germane to the

language – for Lisp it is lists and for Prolog it is predicates – but the point

about the functional paradigm is that the function return values are not

(necessarily) assigned to a variable; they are merely passed, on the stack, from

one function call to another.

The problems of visualising evaluation of programs written in functional

languages have been addressed by Touretzky [110] and by Jimenez-Peris [46]

and it is worth noting that in describing the execution of programs written in

functional languages there is little difference between visualising the progress

of execution and visualising data in the program. The sharp division between

these two concepts that exists in the other programming paradigms is

blurred by the fact that most of the data in the program is the return value of

the functions.

The only distinctive message, in terms of program execution state, that must

be relayed by PVML is the entering and leaving of functions – along with the

parameters and return values. None of this is additional to what has already

been covered.

2 It is certainly possible to write procedural language code in a functional

style – there is a place on the stack for a function return value and though

the data type of the return value is limited in most languages a pointer can

always be used. It is also possible, in all but the purest functional languages,

to declare variables and program as if the language were procedural but in

both cases one would be doing an injustice to the intent of the language.

 93

6.6 Data

Visualisation of program data is an area that is exceptionally thoroughly

covered by existing PV systems. In terms of the decoupling achieved by

adopting a declarative approach to visualisation, it is the program data that

defines the program state and visualisation mappings will consist of

associations between combinations of data values and the pictures that

represent them.

Because the intent is that it is the visualiser that makes algorithmic selections

of what aspects of program state to display, the visualisation engine

potentially needs to have access to an unfiltered stream of program data state

information. Clearly there will be occasions where this stream is excessive

and contains un-needed information but an important aspect of PVML will

be a means to apply constraints to this flow of information, which is

expanded upon in Section 6.7.

Another interesting consequence of feeding a PVML stream to a declarative

visualisation engine is that all the algorithmic decisions will be made later –

after the PVML stream has been constructed and consumed. There is no

need for any algorithmic level of description to be implemented in the

PVML language.

When considering the representation of target program data in PVML there

are some general issues as well as considerations that are specific to particular

languages and paradigms.

6 .6 . 1 Da t a Va l u e s

Ultimately it is the values of data items that are of interest to the programmer

and in many cases specific variables in the source language will contain the

data values. The manner of this containment, which can be language

dependent, is not the concern of PVML. What is significant is that the

engine can provide a specific variable name (taking account of scope) and the

 94

target can respond with the value of that variable. The variable may represent

a complex entity, such as a Java object or a C structure, but the values

required are contained within the representation of that variable.

What is convenient about such representations is that they are self-contained

in the sense that the representation has a beginning, various intermediate

hierarchical levels, and an end. The representation is bounded and well-

behaved.

6 .6 . 2 Da t a R e f e r e n c e s

In many languages it is not necessary for all variables to ‘contain’ the values

of data items. The alternative is that a program variable refers to, or points

to, the value being stored. In C and C++ this type of reference is known as a

pointer [55]. The programmer is still interested in seeing the value of the data

that is pointed to, but the straightforward association of the program variable

with the data value no longer exists.

The pointer may, on one occasion, reference a certain data item. At a latter

stage of execution the same pointer may reference a different data item. Both

data items may still, with complete validity, exist and need to be shown

separately to the programmer but a means to reference them has to be found

that lies beyond the program variable that stores the pointer.

This is a straightforward issue in a debugger that runs on the same machine

as the target program. The means to refer to the two sets of data values

independently is the machine address of the data item. When considering a

remote configuration, such as PVML supports, it is important to realise that

a machine address in the target has no meaning at the engine, other than as a

value that can be passed back, at a later stage to the target. The assumption

is made that memory references will be persistent during program execution.

This assumption has the effect of excluding certain operating system and

 95

debugger combinations in which virtual memory addressing is not ‘hidden’

from the programmer.

The target driver needs to be able to:

- Resolve (‘de-reference’) such pointer values, returning the

referenced data value to the engine. The underlying debugger would

need to be aware of the program variable semantics of pointer

values – namely that a particular machine address is, in fact, a

pointer to a particular structured data value. The target needs to be

able to apply such dereferencing recursively, such that when the data

pointed to is itself a pointer it is, in turn, de-referenced.

- Keep track of changes in the usage of memory in the target program

that could cause pointer references to become invalid. The watch

mechanism of the underlying debugger would need to be capable of

keeping track of changes in data at arbitrary memory locations.

- Limit the extent to which recurrent series of pointers are followed.

Following a ‘pointer chain’ is a potentially unbounded activity –

possibly even one that repeats infinitely as when a particular pointer

value leads back to the start of the chain. PVML needs to be able to

specify how many steps should be taken along such chains.

6 .6 . 3 Pr o c e du r a l Lan gua g e s

The visualisation of data structures and values in procedural languages is

perhaps the aspect that most distinctly characterises the broad area of

program visualisation. The most widely cited examples of PV systems, such

as BALSA [14], Tango [103], Zeus [16], all make some attempt to visualise

the data structures of a procedural language. This is true irrespective of

whether the work is styled as program or algorithm visualisation. A

fundamental aspect of software visualisation, across the board, is some kind

of representation of program data.

 96

The representation desired, from a novice programmer perspective, needs to

transparently display values in a manner that relates strongly to source

language constructs and weakly, or not at all, to underlying machine

implementation details. Figure 6-5 shows the view presented by DDD [29]

of a linked list implemented in C. Whilst the use of C variable names (list,

value, self, next) is helpful to the novice, the machine addresses (eg

0x804ab78) are quite probably not.

Figure 6-5 Data Structure Visualisation in DDD. Reproduced from [28]

As has been observed it is the selection of what kind of data is displayed that

characterises a system as program visualisation (PV) or algorithm

visualisation (AV) and the means for eliciting information about data in a

running program is generally some form of annotation or instrumentation.

Automatic annotation is generally associated with PV and manual annotation

with AV but it is fundamental to the decoupling implied by PVML that

annotation will be automatic – namely that the source program itself will not

be modified to support visualisation.

It is important to note that the description of the state of arbitrary data

structures implies that PVML will have a syntax which includes terms that

described hierarchical data. This observation has already been made in the

context of source code, as well as object hierarchy, delivery.

 97

6 .6 . 4 Ob j e c t O r i e n t e d Lan gua g e s

As has been previously noted, the distinction between program code and

data becomes less sharp in an object oriented language. The earlier section

that discussed the description of program execution for object oriented

languages therefore has some relevance. The advantages of representing the

program in terms which emphasise its object based nature have been argued

by Kolling [57] as has the consequence for the PVML stream, namely that

aspects of the class hierarchy of the target program are relayed to the engine.

As program execution proceeds and changed data objects are relayed to the

engine, the PVML target should take steps to avoid the resending of the

code component (the method implementations) of watched objects.

6 .6 . 5 Fun c t i o n a l Lan gua g e s

Literature relating to the visualisation of functional languages has already

been cited in the discussion of presentation of program execution. The

relationship between program execution and data is such the observations

concerning code also refer to data in the functional paradigm.

In the Lisp language the point at which values are computed is the internal

‘EVAL’ and ‘APPLY’ functions and Lisp visualisers such as the work of

Touretzky [110] establish a hook into these EVAL and TRACE calls in the

Lisp interpreter and generate output at these points. Touretzky's

visualisations are in the form of static EVAL and TRACE diagrams

generated by a set of LaTeX macros. This approach could clearly be used to

yield a stream of data-related PVML statements.

Prolog execution proceeds as successive predicates are evaluated and a

Prolog visualisation such as TPM [23] hooks the internal steps of the Prolog

interpreter – namely the attempt to prove a goal, the successful proof of a

goal, various levels of failure and re-attempting to prove a goal. It has been

demonstrated by the architecture of environments such as TPM that these

 98

steps can be hooked. A PVML driver for a Prolog target would generate an

appropriate PVML stream at each of these points.

6.7 Managing Traffic Volume

The volume of traffic that passes between the target and an engine can

critically affect the usability of a decoupled PV system. In a typical PVML

usage scenario, target and engine will be executing on remote machines and

this traffic will actually be network traffic. A requirement of PVML is that

the language, or its implementation, contains features that can manage traffic

volume.

The volume of traffic will depend on the extent of the display being

provided and the level of detail in the visual representations. These issues are

principally ones that will concern the visualiser role – the visualiser will, on

the one hand, select particular data as being of interest and on the other hand

wish to specify the visual interpretation of that data. This level of detail is

often referred to as granularity.

The granularity issue is germane to all PV. Price [83] characterises this issue

as elision control making the observation that irrelevant information may

need to be suppressed and that the problem grows with the size of the

project. Jeliot [36] allows the user to configure program variables to be

present (or not) on a stage on which the visualisation is enacted. TPM [23]

allows the user to choose between a long distance view or a close-up view of

the boolean decision tree (which TPM refers to as the And/Or Tree

Augmented or AORTA).

The PVML stream from an executing program will consist primarily of

descriptions of regions of source code and representations of the values of

data. The flow of source information, as has already been discussed, will be

mitigated by caching source code at the engine. A repeated request for

source code can therefore be satisfied locally, from the cache. The

 99

representations of data are considerably more complex and raise several

issues.

Through the debugger-style watch command, the visualiser can request

information describing all aspects of the data state of the target program and

is therefore in a position to define arbitrary states, made up of a combination

of values that are to be visualised. The second step in creating a visualisation,

following the declarative approach, is to define mappings from these

program states to selected visual effects. This defines a completely functional

PV system.

The decisions made by the visualiser, as they devise the mapping from

program state to visual representation, results in selectiveness at two levels

being applied to stream of data descriptions:

- What to View

The visualiser, or possibly the user if the engine permits, will select

certain data to be viewed. The consequence of a selection will be a

request to the underlying debugger at the target to place a watch

on the data member and updates will be transmitted.

- How to View

The visualiser will also be making decisions as to what form of

visual representation is presented to the user. This has a number

of consequences for the language.

What to View

The selection of a data item that will be watched by the debugger in the

target may be the result of a specific desire, on the part of the user or

visualiser, to view that data item or, in a more sophisticated declarative

scenario, that particular data item may constitute one component of a larger

mapping scenario. In either case, the engine can use a PVML command to

request that the target debugger watches the variable. This has much in

 100

common with the imperative approach to program visualisation in that

certain events are being designated as ‘interesting’.

The volume of traffic that arises from watching a large, possibly complex,

data structure at the target is potentially unbounded and it will be a necessary

for PVML to provide a mechanism that can avoid the sending of data values

that have not changed. If only a single component of a large structure has

changed in value the target driver needs to be able to detect this and the

language will be required to transmit what might be considered deltas of a

data structure, rather than the entire structure.

How to View

The default behaviour that has been described, with regards to data, is that

the portion of a data structure that has been modified be transmitted in its

entirety. The design of visual representations that are appropriate for the

novice programmer may well require that there is some control over the level

of detail displayed to the user. As has been already stated this problem is not

new to PV developers – there is a well-established case, in the PV field, for

the elision, under certain circumstances, of aspects of the full view of

program state. The object of this section is to assess techniques that have

been used in related contexts and therefore to suggest the means by which a

PVML stream could be filtered or reduced.

The Vis architecture (Figure 4-3) implements filtering of the annotation

stream as a form of ‘back chat’ from the view module to the history module.

The predominant flow is in the opposite direction – a stream of history

events that may, or may not, be mapped to pictures. The visualiser may, by

selections made in the view module, filter or even search through the

collection of history data.

The design of PVML intersects with this implementation in several ways:

 101

- The Vis history module needs to maintain a complete set of history

entries in order to support the searching and filtering. It is not

anticipated that this would be the case in PVML. This would have

implications concerning the size of the target driver program. It is

envisaged that the target driver would be a relatively lightweight

piece of software that generated a PVML stream and delegated such

issues as searching the history of events to the visualisation engine

- The storage of history records at the target in Vis enables filtering

and searching to both be implemented there. The PVML design

implies that searching, when supported, will be implemented in the

engine driver whereas the actual filtering of the PVML stream will

take place in the target driver. The implication of applying the filter

here is that the traffic that has been filtered will not be generated. In

a remote visualisation scenario, where target and engine are on

separate hosts, the filtered traffic will simply not appear on the

network.

- The specification of filter patterns in Vis takes place in the view

module which equates to the visualisation engine in the PVML

architecture. This is an appropriate location.

Most aspects of the PVML stream that have been discussed so far have

related to the information that needs to flow from the visualisation target to

the engine. It has been noted that many components of this information are

hierarchical in nature. The examples that have been given include the state of

target data, the target source code and the target object hierarchy. The means

to define this flow of hierarchical information has yet to be specified but the

requirement to filter regions within this flow very clearly has implications

that have a fundamental impact on the implementation of PVML

The means of transmitting filtering requirements from the engine to the

target should clearly be in harmony with the means adopted to transmit the

data in the opposite direction.

 102

6.8 Ancillary commands

The location of PVML, within the architecture of a distributed novice

programming environment, dictates that aspects other that debugging must

be managed. The novice programmer will be undertaking all steps in the

development cycle though the engine that constitutes their development

environment and so the language must include commands and responses

that map to such aspects as management of student source code and, when

required, compilation.

PVML will need to handle the commands to request compilation, possibly

incorporating a subset of compiler options. The compiler option to support

debugging of the target program would be part of the default compilation

request made by the target.

The compiler errors caused by program syntax errors would need to be

relayed to the engine and displayed to the user in a way that was helpful for a

novice and sympathetic to the programming language being used. A

comment made by Johnson in [48] is pertinent in this regard – “although the

debugging system should be language-independent, it should appear language

–dependent from the user’s point of view”. Through PVML the novice

programmer would be presented with the compiler error messages and

warnings that are specific to the programming language they are working

with.

6.9 Summary of PVML Requirements

The considerations discussed in this chapter lead to the definition of a set of

requirements for PVML which are presented here in Table 6-1 and Table 6-2.

This list expresses the core of PVML that would provide access to generic

visualisation of a cross section of programming languages. The table separates

PVML statements into those that are sent by the engine to the target

(‘commands’) and those that flow in the opposite direction (‘replies’). The

 103

terminology used deliberately avoids the terms ‘request’ and ‘response’ since

these terms acquire a more specific meaning in Chapter 7 when an actual

implementation of PVML is described.

The question of specific requirements that arise in the context of a particular

language or programming paradigm is one that is open ended. A description is

offered of a single language-specific scenario, that of the object test bench, in

order to illustrate a general direction that might be followed by subsequent

extensions to PVML.

PVML
Statement

Comment Parameters

Generic PVML Commands - Sent by the engine to the target

break Set a breakpoint. Location of breakpoint

compile Recompile program. Compiler switches

cont Resume normal (ie non-stepped)
execution. The program will execute until
it terminates or meets a break point

file Request a target file system listing Identity of target location

list Provide source listing. Identity of region of source

next Advance execution by one source line in
the current execution context – this could
involve executing an entire sub routine or
function.

query Request capabilities of target.

read Read a memory region Identity of region

run Cause the target program to load – but
not execute.

Identity of program

save Save program text. Identity of program and code to
save

step Advance execution by one source line in
the entire program.

Optional parameter to step out
of a context

stepi Advance execution by one source
expression

watch Set a data watch point. Identity of data item

write Write values to a memory region Identity of region and value to
write

Table 6-1: Generic PVML (engine to target)

 104

PVML
Statement

Comment Parameters

Generic PVML Replies - Sent by the target to the engine

code Source code listing in response to ‘list’. Representation of source
code

breakresp Confirmation of ‘break’ command. Success or failure

data Data value resulting from the triggering
of a watch

Representation of data value

location Updated current execution point
resulting from step/next/cont

Representation of location

pvmlinfo Response to ‘query’ command. Representation of target
ability

frame Indicates that the execution context
has changed

Extent and direction of
change

fileresp Response to ‘file’ command Representation of a region of
target file system

error A target error that must be
communicated to the engine

Representation of target error

saveresp Response to ‘save’ command Success or failure

Table 6-2: Generic PVML (target to engine)

 105

PVML Statement Comment Parameters

Specific PVML Commands
Sent by the engine to the target

Instantiate Cause the target program
instantiate an object

Identity of object class
Any necessary
parameters for the
instantiation

invoke Cause the target program to
invoke a method on an object.

Identity of object and
method
Any necessary
parameters

Specific PVML Responses
Sent by the target to the engine

instantiateresp Confirms the result of an
instantiate request

Failure or else identity
of object

invokeresp Result of invocation of method.
Data watches may be triggered
causing ‘data’ responses as well.

Direct output of the
method invocation

Table 6-3 Specific PVML for the Object Test Bench scenario

The next chapter discusses, in general terms, the means that might be

employed to implement a PVML and move on to describe an implementation

that has been undertaken during this research. This implementation is capable

of communicating between PVML engines and targets in a range of declarative

languages.

In a subsequent chapter the application of this definition of PVML is

described. A single reference implementation of a PVML engine offers

rudimentary debugging access to programs hosted by a pair of reference

PVML targets. The underlying debuggers in these targets are JDB, the Java

debugger, and GDB, the GNU debugger. The target programming languages

supported hence include Java and the set of languages supported by GDB.

 106

C h a p t e r 7

REFERENCE PVML IMPLEMENTATION

PVML has been described as a language that will provide communication

between a visualisation engine and remote visualisation targets. Given a

variety of network infrastructures through which such communication may

need to occur, there could indeed be a variety of ways in which PVML was

implemented. In order to demonstrate the proposed language, and to a

certain extent evaluate its use, this research includes a reference

implementation of the PVML language. Hence forward in this thesis, all

mentions of PVML should be regarded as referring to this reference

implementation. This implementation embodies the following constraints:

- Network Infrastructure

The ground work that was undertaken in defining a novice

programming environment leads to the requirement that target

and engine interact through the Internet as currently configured.

This means that target and engine may well be separated by

arbitrary layers of Internet security mechanisms.

- User Interface Environment

As was discussed in Chapter 2, the location portability of the

programming environment is considerably enhanced by

implementing the engine in a manner that supports execution in a

Web browser.

- PVML Language Scope

The reference implementation of the PVML language will be

restricted to features that have been identified as generic across the

three language paradigms (Section 6.5) that have been considered.

 107

7.1 PVML Distribution Platform

In the general sense, the combination of visualisation engine and target

communicating through PVML constitutes a distributed application. There is

a wide range of distribution architectures that can tie together such

components but the requirements of the reference language implementation,

specified above, significantly limits the choice of distribution architecture.

Indeed, during the time span of this research, even the term ‘distribution

architecture’ has come to be less apposite for a number of reasons.

In [59] Matter traces the evolution of distributed systems, drawing attention

to the tightness of the coupling between distributed components when the

architecture of distribution is based on the notion of remote procedure call.

Remote procedure call, the metaphor that lies behind a wide range of

application distribution architectures such as CORBA [79], COM+ [62], RMI

[45] and RPC [108] requires that a client application behaves as if the

procedures implemented in the server were a part of the local program. This

aspect of the implementation has two profound consequences:

- Specialised Libraries

Significant, and specialised, communication and data-packaging

libraries become part of both the client and server application.

This can restrict the platforms from which components can readily

be deployed. For example a Microsoft browser often does not

include the libraries to support RMI or CORBA whereas other

browsers might have problems with a COM+ distribution.

 108

- Programming Language Semantics

It is fundamental to remote procedure call that the semantics of

the client application and of the services invoked in the server

must match at a programming language level. Whilst many

architectures (RPC, CORBA) abstract this through the use of a

language-neutral Interface Definition Language (IDL) it remains

the case that a procedure call is made in the client that will only be

returned from when the server has completed executing that

request.

The result is that there exists a very tight coupling between the client and the

server – moreover one that depends significantly for its operation on the

precise browser platform in use.

The alternative is for distributed components to interact through far more

loosely-coupled frameworks – the approach adopted in the Web Services

[115] the architecture currently evolving through the World Wide Web

Consortium (W3C). What characterises the web services approach is the use

of the standard web protocol, HTTP, and the ubiquitous data format, XML

[13], to link remote components [98].

In this light, the distribution technology employed by PVML needs to be

assessed with respect to communications protocol, and rendering:

 109

- Internet Protocol Issues

The networking infrastructure issues raised above will influence

the low-level network protocol that encapsulates the PVML

traffic. The aim is to maximise the likelihood that an arbitrary

target, running on a secure institutional server, can communicate

with an arbitrary engine that will be running in a possibly insecure

location elsewhere on the Internet. This suggests that whatever

form the PVML messages take they should ultimately be

encapsulated in HTTP – the standard protocol of the WWW.

- Browser Implementation Issues

The distribution architecture selected needs to be one that

integrates easily with the major browser platforms in use. In

practice, the ongoing market struggle between Microsoft and other

suppliers means that browser support for different application

distribution schemes is by no means heterogeneous.

Both of these factors, which underpin the location-independent deployment

of targets and engines, lead towards the proposal that the reference version

of PVML be implemented using XML. An XML definition of PVML will

integrate transparently into a web services framework if that is required in

the future. Apart from these deployment issues, an attractive aspect of XML

is its handling of hierarchical data – a feature that is fundamental to the

traffic between visualisation targets and engines. This will be the focus in the

following section.

7.2 XML-based PVML

Throughout the computing industry the description of arbitrary hierarchical

structures is increasingly being handled by XML [13]. Despite the origins of

XML as a means to create user-defined tags within HTML documents, the

fact that XML provides a “linear syntax for trees” [53], means that XML is

 110

being used in many domains aside from the layout of Web pages. The

following examples represent the breadth of such application:

- XML definition of structured document formats underpins many

current open e-Commerce proposals

- The Object Management Group (OMG) who define open standards

for distributed object technology (such as CORBA) have defined a

class hierarchy interchange format that uses XML [80]

- XML has been used to implement incremental code migration [26]

- XML has been used to define source code profiling specifications

[105]

The latter three examples all demonstrate the use of XML to describe

program related constructs of a hierarchical nature, object hierarchies,

program code and program execution respectively.

The description of what constitutes a legal set of XML statements in a

particular context is defined by a schema-like document known as a

Document Type Definition (DTD). The DTD defines the layout and legal

content of an XML document which provides the extensibility of the

language. New terms can be added to a document simply by defining them in

the DTD that is attached to the document.

There are many precedents for defining a new language in terms of XML.

The Organisation for the Advancement of Structured Information Standards

(OASIS) lists more than 500 ‘XML Applications’ [76], each of which

involves the definition of a DTD. Some examples include:

- Bioinformatic Sequence Markup Language (BSML) [74]

- Taxonomic Markup Language (TML) [77]

- Chess Markup Language (chessML) [75]

The PVML DTD will be presented in Section 7.3 but some preliminary

discussion will clarify some aspects of the DTD.

 111

7 .2 . 1 Requ e s t a nd Re s p on s e

The top-level distinction in PVML is between a request and a response.

PVML requests arrive, either at the target or at the engine, asynchronously.

This means that engine and target must be written in a way that can handle a

PVML request at any time. An example of this would be a data value

returned from the target, as a result of a watch that has been placed on a

variable. This message will be generated by the target at a point in time that

bears no consistent relationship with user activities in the engine. It is simply

a side-effect of program execution. The engine needs to respond to this

request with appropriate visual behaviour.

PVML responses always occur as a result of a previous request. Responses

are synchronous and should be waited for. All of the defined responses flow

from the target to the engine and are the result of engine requests. An

example would be the engine requesting a program listing and receiving the

response that is the listing.

7 .2 . 2 Eng i n e t o Ta r g e t R e qu e s t s

The requests that the engine sends to the target are all straightforward

commands that map to some combination of debugger primitives. These are

listed below:

- run

The run request begins a session with a particular execution file.

The parameter to the run request consists of a file system

identifier through which the target can locate the executable. The

assumption is that the executable has been compiled in such a way

that it can be debugged. A fully functional engine would provide a

remote file system browser, driven by a sequence of PVML

requests and responses, that would generate the file system

identifier in response to user selections.

 112

- step

The step request causes the target to advance execution by one

line of source code in the entire program. If the current execution

point is a subroutine or function call then the line of source code

that is executed will be the first line in that function and the

current execution point will have moved to a new context. All

debuggers support this basic mode of operation.

An optional parameter to the step request will cause execution to

advance until the current context terminates. In debuggers this is

often referred to as ‘step up’.

- stepi

The stepi request causes the target to advance execution by one

source code expression. This does not map to any normal

debugger primitive. The stepi command that is available in many

debuggers is in fact a command to advance by a single machine

code instruction. Whilst appropriate in a debugger for professional

programmers the novice programmer requires a granularity of

stepping that corresponds with the source code entities that they

are manipulating. For the target to provide this command there

needs to be a mapping available between source code expressions

and machine code locations. Given such a mapping a series of

primitive stepi commands could be invoked on the underlying

debugger by the target driver to cause a PVML stepi to take place.

 113

- next

The next request causes execution to advance by one line of source

code, in the current context. If the current execution point is a

subroutine or function call then that entire function will be

executed. In debuggers this is often referred to as ‘step over’.

- cont

The cont request causes execution to advance at ‘normal’ speed. In

a PVML context this speed of execution will be limited by

processing that the target driver must undertake to implement

other features, such as a generalised data watchpoint facility. Upon

receiving a cont request the target will proceed to execute until a

breakpoint is reached or the program terminates.

- break

The break request sets or clears a breakpoint in the target

program. The PVML break request maps directly to a

straightforward debugger break command. There is no support for

conditional breakpoints that will be triggered only when certain

data values exist. The break request is accompanied by a parameter

that identifies the source code location where the break is to be set

or cleared. This will be expressed in terms of a source file name

and source line number.

- list

The list request will trigger a response from the target containing a

representation of program source code. The parameter that

accompanies this request identifies the source filename. Future

enhancements of PVML would allow regions within a source file

to be specified.

 114

- watch

The watch request sets or clears a watch on a variable in the target

program. The parameters indicate whether this is a set or clear

operation and identify the variable using the source file name, the

procedure name and the variable name. In using this request the

target and engine need to arrange that the scoping rules of the

programming language are observed. Uniquely identifying a

variable can raise many programming language dependent issues.

Appendix A resolves this issue in greater detail.

- query

The query request is the means by which the engine discovers the

capabilities of the target. There could exist, in an environment

supporting various language paradigms, a possibly complex range

of capabilities.

- save

The save request is used by the engine to request that modified

source code is saved to the target file system. The parameters to

this request consist of the full path name and the modified source

code.

- file

The file request is used by the engine to manage a file browser

dialog that would enable a user to browse their file system space

on the target machine. The parameter to this request consists of

the path name that is to the browsed.

7 .2 . 3 Tar g e t t o En g i n e Re qu e s t s

Asynchronous data, that must be sent from the target to the engine, will be

contained in a request message. In particular this is the means by which

changing data values are relayed in order that they may be visualised.

 115

- frame

The frame request describes a change in execution context that has

taken place at the target. Execution context changes are handled as

potentially asynchronous events since they may occur during the

execution that proceeds after a cont request. In this instance

changes in source code view may need to be displayed visually as

the target program moves between execution contexts over a

protracted period.

In stepped execution, the execution of a single line of source code

will result, if a frame change occurs, in the addition (push) or

removal (pop) of a single frame from the program execution stack.

The normal parameter passed with a frame request hence needs to

be plus (or minus) one.

- data

The data request is the means by which the target communicates

data values to the engine. Section 6.7 has discussed ways in which

the volume of this stream could be mitigated – in particular to

isolate regions of a complex data structure, either because they had

actually changed or to support a selected granularity level. The

reference implementation of PVML contains no features of this

nature. Entire data structures are sent in the form of a hierarchical

description that contains variable values and types. This is

discussed in greater detail in Appendix B.

7 .2 . 4 Tar g e t t o En g i n e Re s p on s e s

The balance of PVML traffic will consist of responses that the target

generates to the various requests described. Neither of the two requests that

flow from target engine require any response.

 116

- code

The code response contains a representation of the program

source code and replies to a list request. The representation of

target source code can be at three levels of detail according to the

abilities of the particular debugger and program source language.

This representation is described in detail in Appendix C.

- breakresp

The breakresp response is the acknowledgement of a request to

set, or clear, a breakpoint. A simple success or failure code is the

parameter passed with this response.

- location

A location response is received by the engine as a result of any

command that causes target execution to advance. The arrival of a

location response is an indication that the target has successfully

advanced to the location specified and an engine would be able to

highlight an appropriate source line. The location is described by

means of a source file name and line number parameter. It should

be borne in mind that whilst a location response is pending there

can be an arbitrary number of data and frame requests arriving at

the engine each of which may have a visual consequence.

- pvmlinfo

A pvmlinfo response is the reply to a query request and the

parameter must communicate the capabilities of the target. The

reference version of PVML does not make use of this facility. The

name of the target debugger is passed as a placeholder.

- saveresp

A saveresp response is the reply to a file request and indicates

success or failure of the save operation.

 117

- fileresp

A fileresp response is the reply to a file request. The parameter

consists of the identity and types (file or directory) of file system

objects at the level that is being queried.

7.3 PVML Document Type Definition

The authoritative definition of PVML, from an XML point of view, is

contained in the DTD presented in Appendix D.

There are many aspects of the format of an XML document format that are

not described in a DTD. The DTD has the purpose of defining the

containment rules but does not provide any support for the checking of leaf

nodes. The leaf nodes are defined at the foot of the DTD and are all denoted

as (#PCDATA)which, in terms of the automatic checking of documents, is

nothing more than a commitment to include some bytes of data at that

point. A lower-level validation of an XML document would be

accomplished through the use of XML Schemas [118]. This degree of

automated validation of the PVML stream has not been undertaken here

but would, quite reasonably, be part of a wide-spread implementation of

PVML.

7.4 Examples

The discussion of PVML requirements has hinted at a variety of

programming scenarios to which PVML can be applied. This section

presents the PVML traffic involved in a series of such scenarios. The

captures of PVML traffic have taken place between reference

implementations of PVML components. Chapter 8 describes the reference

engine and the two targets that have been implemented in the course of this

research. These packages have been configured to dump the PVML traffic

and that traffic is presented here.

 118

7 .4 . 1 Load in g a J a va P r o g r am

This shows the engine requesting the loading of a Java program and the

transmission of the source code. The result will be a source display as shown

in Figure 6-2 on page 87. Large portions of the PVML traffic have been

removed in order to focus on significant aspects.

Figure 7-1 shows the initial request from the engine for the target to run a

program. Figure 7-2 shows the beginning of the resulting response that sends

the source code. When the source code response is complete the target will

send (Figure 7-3) a frame request to trigger an initial stack frame

representation followed by the position response that will result in the initial

source line being highlighted (Figure 6-2)

Figure 7-1 Engine sends run request

Request sent: run

Out: <pvml>

Out: <request>

Out: <run>

Out: <appname>

Out: Test

Out: </appname>

Out: </run>

Out: </request>

Out: </pvml>

The request
is “run”

The name
of the
application

 119

Figure 7-2 Start of code response

Figure 7-3 Establish the execution starting point

Awaiting: code

In: <pvml>

In: <response>

In: <code>

In: <pvmllevel>

In: 2

In: </pvmllevel>

In: <filename>

In: Test.java

In: </filename>

In: <source>

In: <line>

In: <num>1</num><keyword>public</keyword>

In: <![CDATA[]]><keyword>class</keyword>
In: <![CDATA[]]><identifier>Test</identifier>

This is level 2
PVML

Source file name of
program – will used later
to identify locations and
variables

The source code – and
the first line

Line number 1 begins with the
keyword “public”

Whitespace wrapped in a CDATA tag

In: <pvml>

In: <request>

In: <frame>

In: <change>

In: 1

In: </change>

In: </frame>

In: </request>

In: </pvml>

In: <pvml>

In: <response>

In: <location>

In: <filename>

In: Test.java

In: </filename>

In: <linenumber>

In: 6

In: </linenumber>

In: </location>

In: </response>

In: </pvml>

Target requests initial
frame

Target responds to initial
run request by stating the
location at which
execution begins

 Execution will commence at line 6
in the source file

 120

7 .4 . 2 Load in g a C P r o g r am

This example shows an engine requesting the loading of a C program at the

target. The result will be the source code view shown in Figure 8-5 on page

133. In this case it can be seen that the requested appname is a target file

system path

Figure 7-4 Engine run request references target file system

A sample line of C code, in this case a simple loop ‘for(i=0;i<10;i++)’,

as encoded in a PVML code response is shown in Figure 7-5.

Figure 7-5 Sample line of C source code

Out: <pvml>

Out: <request>

Out: <run>

Out: <appname>

Out: samp/c/a.out

Out: </appname>

Out: </run>

Out: </request>
Out: </pvml>

The name of the
application as a
target file system
path

In: <line>

In: <num>15</num>

In: <![CDATA[]]><keyword>for</keyword>

In: <![CDATA[]]>(<identifier>i</identifier>

In: <![CDATA[]]>=<![CDATA[]]><literal>0</literal>

In: ;<![CDATA[]]><identifier>i</identifier>

In: <![CDATA[]]>< <![CDATA[]><literal>10</literal>

In: ;<![CDATA[]]><identifier>i</identifier>

In: ++)
In: </line> Program source that is

not keyword, literal or
identifier, but legal
XML, is contained
directly in containing
line element

Some program source
is not legal XML and
must be “escaped”
appropriately

 121

7 .4 . 3 Load in g a FORTRAN pr o g r am

The FORTRAN example shows a PVML level 1 code response. GDB

identifies the source language of the target program as FORTRAN but no

parser (see Section 8.3.1) is available to support a level 2 display. Without

a parser available the entire source code is sent as an XML CDATA block.

The result is the source code view in Figure 8-5 on page 134.

Figure 7-6 Level 1 PVML - FORTRAN source code

7 .4 . 4 S i n g l e S t e p i n a C Pr o g r am

This example shows a single line of source code executing when a step

request is sent to the target. The numstep parameter has not been set

causing the default step size – a single line of source code.

In: <![CDATA[1 REAL SUM6,SUM7,SUM8,DIF6,DIF7,DIF8,SUMINF

In: 2

In: 3 OPEN(6,FILE='PRN')

In: 4

In: 5 SUM6=.9*(1.-0.1**6)/0.9

In: 6

In: 7 SUM7=.9*(1.-0.1**7)/0.9

In: 8

In: 9 SUM8=.9*(1.-0.1**8)/0.9

In: 10

. . .

In: 29 STOP

In: 30

In: 31 END

In:]]>
In: </source>

 Level 1 PVML encapsulates the
entire FORTAN source in a
CDATA block.

 122

Figure 7-7 Single step in a C program

7 .4 . 5 S i n g l e S t e p w i t h a Fr ame Chan g e

When stepping by a single source line causes a change of execution context

at the target a frame request is sent. When a function in another source file

has been called the subsequent location response will indicate a location in

a source file which may not yet be cached at the engine. This will cause the

engine to issue a list request to retrieve the new source code. The GUI

view of this scenario is shown in Figure 8-4 on page 132.

Figure 7-8 PVML frame request - adding an execution context

Out: <pvml>

Out: <request>

Out: <step>

Out: </step>

Out: </request>

Out: </pvml>

In: <pvml>

In: <response>

In: <location>

In: <filename>

In: selectSort.c

In: </filename>

In: <linenumber>

In: 12

In: </linenumber>

In: </location>

In: </response>
In: </pvml>

Single step requires
no numstep
parameter

 Location response indicates the
step is complete. filename and
linenumber parameters specify
new location.

In: <pvml>

In: <request>

In: <frame>

In: <change>

In: 1

In: </change>

In: </frame>

In: </request>
In: </pvml>

 123

7 .4 . 6 P l a c i n g a wa t c h on a v a r i a b l e

The visualiser will provide a means whereby the user may select a variable to

become part of the visual representation. Updates in the value of this

variable need to be detected by the target. The implementation details of this

process depend on the capabilities of the underlying debugger and the

consequent design of the target PVML driver.

The watch request identifies a variable, using the language neutral terminology

explained in Appendix A, and indicates whether a watch is being added to or

removed from this variable.

Figure 7-9 Adding a watch to a variable

7 .4 . 7 Chan g e i n v a l u e o f wa t c h e d v a r i a b l e

The changed value of a watched variable will become available to the target

asynchronously – as a result of program execution rather than action on the

part of the user. The data request transmits the new value of the variable to

the engine. PVML syntax, as explained in Appendix B, can represent

arbitrary combinations of data values and data references.

Figure 7-10 shows the PVML that results from a simple variable (a Java int)

update. The GUI view of this scenario is shown in Figure 8-9.

Out: <watch>

Out: <stat>

Out: true

Out: </stat>

Out: <filename>

Out: TestClass.java

Out: </filename>

Out: <linenumber>

Out: 11

Out: </linenumber>

Out: <var>

Out: j

Out: </var>
Out: </watch>

Parameter indicates
that a watch is
being added to the
variable ‘j’

 124

Figure 7-10 A data request communicates a simple updated data value

Figure 7-11 shows the representation of a more complex variable. In this,

more complex, case the formatting of the PVML in the figure has been

manually altered to clarify the representation of the data values. The GUI view

of this scenario can be seen in Figure 8-10.

Figure 7-11 A data request communicates a complex variable update

<data>
 <filename>Test.java</filename>
 <linenumber>5</linenumber>
 <varname>var1</varname>
 <value>
 <type>TestClass</type>
 <value>
 <type>int</type>
 <val>51</val>
 </value>
 <value>
 <type>NestedClass</type>
 <value>
 <type>java.lang.Integer</type>
 <val>42</val>
 </value>
 <value>
 <type>java.lang.String</type>
 <val>Sample String</val>
 </value>
 </value>
 </value>
</data>

In: <data>
In: <filename>
In: TestClass.java
In: </filename>
In: <linenumber>
In: 11
In: </linenumber>
In: <varname>
In: i
In: </varname>
In: <value>
In: <type>
In: int
In: </type>
In: <val>
In: 1
In: </val>
In: </value>
In: </data>

 125

7 .4 . 8 Wat ch e d va r i a b l e b e c om in g ou t o f s c o p e

The visualiser has the responsibility of maintaining a visual representation,

for the novice programmer, of variables that actually exist in the executing

program. When a variable, that has been watched, is no longer in scope it is

critical that the visualiser be made aware of this fact, in order that an

appropriate visual reaction may ensue. Under these circumstances the

optional eoc (end of context) element may be passed in place of a variable

value in a data request.

Figure 7-12 A watched variable becomes out of context

In: <data>

In: <filename>

In: Test.java

In: </filename>

In: <proc>

In: morejunk30

In: </proc>

In: <var>

In: i

In: </var>

In: <value>

In: </value>

In: </data>
In: </request>

 126

C h a p t e r 8

REFERENCE ENGINE AND TARGETS

The foregoing PVML language scenarios have been based on actual PVML

traffic between an engine and two different targets. This chapter describes

the reference engine and targets. These reference implementations are all

written in the Java programming language. The case has already been made

in Chapter 2, for using Java to implement the engine – which ultimately will

be the novice programming environment.

There is no fundamental reason, given the decoupling that PVML

introduces, why the targets should be written in Java. In the context of this

research, and the demonstration of a working PVML-based program

development scenario, it has been prudent to take advantage of the fact that

there are significant amounts of functionality that are shared between a target

and an engine. The generation and parsing of PVML streams, along with the

management of the network connections across which those streams flow,

occur in the target and the engine and significant economies of effort have

been achieved by using Java throughout.

In order to evaluate the use of PVML with a cross-section of programming

languages, two targets have been created. A PVML target can most easily be

characterised as one that encapsulates the functionality of a particular

debugger:

 127

- GDB target

The debugger GDB has been mentioned at various points in the

definition of PVML requirements. This debugger is almost

universally available within UNIX systems and will debug

programs written in a wide range of GNU supported languages.

GDB provides a low-level, command line interface to symbolic

debugging primitives for the languages that it supports.

Many researchers have sought to develop enhancements to GDB

functionality, both in terms of improving the user interface [29]

and developing debugging languages [18],[78] but these efforts

have not involved modification of GDB itself – rather the

management of the command and output streams of the

underlying debugger. The approach could be characterised as the

development of wrappers for GDB and its functionality.

In the context of this research the existence of a wrapper, Insight

[85], that is written in Java, and which has open source, has been

critical given the arguments already raised concerning Java.

- JDB Target

The JDB debugger is part of the standard Java Development Kit

(JDK) distribution. The debugger has a command line interface

that is strongly modelled on GDB but the JDK also provides an

Application Program Interface (API) to the full range of Java

debugging functionality.

The reference engine does not set out to provide any program visualisation

features. Instead the approach has been to provide a platform through which

PVML debugging scenarios can be explored.

8.1 Shared Target and Engine Functionality

This section offers a more detailed examination of the extent of functionality

that is shared by the reference engine and targets.

 128

8 .1 . 1 Ge ne r a t i n g PVML

The set of PVML requests and responses, that have been already discussed,

are programmatically available to target and engine through a single module.

PVML output is returned to the calling application as a Java String and the

parameters, when required are passed as appropriate Java parameters.

8 .1 . 2 Par s i n g PVML

The parsing of an incoming PVML stream relies, in the first instance, on

libraries within the JDK that process XML documents. There are two

distinct approaches to the parsing of XML streams – the Simple API for

XML (SAX) parser and the Document Object Model (DOM) parser. These

are discussed, in general terms, in Appendix E and a case is made for a

particular combination of the SAX and DOM approaches. The result of this

combination is that the PVML parser, that manages PVML specific aspects

of the data stream, has access to a structured DOM representation of the

request or response that is guaranteed to be clear of any empty nodes that

could complicate processing.

Having used this combination of SAX and DOM parsing the PVML parser

exposes the DOM version of the input (PVML request or response) to a

series of calls that are made by the command processing loop of the engine

or target. Some examples will make this clear.

Request or Response?

The top level loop, that first analyses the incoming PVML stream, must

decide if the latest input is a request or response. In Figure 8-1 the incoming

PVML is parsed into a DOM represented by the variable doc. The parser

utility routine getType() will extract the value of the top-level element from

the DOM indicating whether the input is a request or response.

 129

Figure 8-1 Check whether input is request or response

Execute a Request

Having identified a request, the body of the request must be executed by the

command interpreter at the target or engine. In Figure 8-2 the

CommandExecutor class will cause this execution to occur in a separate

Thread and to occur on the particular interpreter. The parser utility

routine, getNodeValue(), will extract the body of the command from the

DOM so that is may be passed to the command.

Figure 8-2 Executing a request

8 .1 . 3 So cke t S e r v e r

The underlying communication, at a transport level, is Transmission Control

Protocol (TCP) traffic between Java implemented Sockets at the target and

engine. The code that manages these Socket connections, establishing a

connection and proceeding to process requests and responses is shared

between the implementations of target and engine. This effect of this can be

seen in Figure 8-2 where the interpreter variable, which represents the

command processor that will handle the request, is a parameter in otherwise

generic code.

Document doc = parser.parse(inString);

//Was this a request or response?

String inputType = parser.getType(doc);
if(inputType.equals(PVMLParser.REQUEST_TAG)){

new Thread(new CommandExecutor(interpreter,

 requestType,

 parser.getNodeValue(doc,

 PVMLParser.REQUEST_TAG).

 getFirstChild())).

 start();

 130

8.2 The Reference Engine

This section describes the reference PVML engine in greater detail. The

engine is based on the GUI debugger sample program that is part of the

standard Java Platform Debugging Architecture (JPDA) [109] distribution.

Sun Microsystems provides this sample, which implements a graphical

interface to the underlying Java debugging API, in order to demonstrate the

use of the API to debug a local Java program. The JPDA also implements,

Java specific, remote debugging connections and these can also be used in

the sample program.

In terms of this research the sample program, when separated at a layer that

purely sends debugging requests and displays the replies, has provided a

useful starting point for a PVML reference engine. The GUI has had features

removed and added but is still recognisably that of the Sun sample program.

It must be stressed that the reference engine provides no data visualisation

capabilities. Textual representations of watched data values are displayed.

The addition of an interface between these values and an established,

command driven, visualisation scheme such as JSamba [102] would provide

such an ability, but this is beyond the scope of this research.

The reference implementation of PVML, described in Chapter 7, has been

used to provide communication between the reference engine and targets. A

PVML-based infrastructure that supports two important aspects of program

visualisation has been demonstrated:

- Program source code

The source language independent pretty-printing of program

source code and the associated management of the display of the

current execution point.

 131

- Program data

Any local or global program variable may be selected to be

watched. Updates in variable values are displayed as human

readable text.

8 .2 . 1 Pr o g r am S ou r c e C od e

Several examples of the display of program source code and current

execution point in the reference engine are shown here. These GUI

examples correspond to the PVML scenarios that were introduced in

Chapter 7.

Display of Java source code

This corresponds to the PVML in Section 7.4.1 and Figure 8-3 shows how

Java source code is pretty printed. The pretty printing of source code is

actually available for any language that can be parsed by the target.

A top-level pane is provided for each target connection made from the engine

and within this pane a separate source code pane is provided for each

execution context. The top-level frame is labelled (‘jdb@!localhost:12345’

in this example) with the name of the debugger in the current target and

TCP/IP (host and socket) location information. The initial pane is numbered

‘1’ – the first execution frame. The pane is also labelled with the name of the

source code file.

 132

Figure 8-3 Engine displaying sample Java source code

As target program execution proceeds, and methods are invoked or functions

called, new execution contexts will be entered. Each new execution context, as

signalled by a PVML frame request (Section 7.4.5), will cause the engine to

display a new source pane. If the function is defined in a source file that has

not previously been displayed by the engine, this could result in the transfer of

a new batch of source code.

Figure 8-4 Engine displaying Java source code in a second execution context

Top-level pane contains
all panes for a specific
target connection

Each execution
context has source
code displayed in a
separate pane

Highlighting of
current execution
point

A new execution
context is
displayed in a new
source pane

 133

Display of C source code

Figure 8-5 corresponds to the PVML in Section 7.4.2 and shows pretty

printed C source code, that has been provided by a GDB based target that

has access to a C language parser.

Figure 8-5 Engine showing sample C source code

Display of FORTRAN Source Code

If the debugger in the target, for some reason, cannot parse the source file

the level of PVML used defaults to one which does not support pretty

printing. This has been described in Section 7.4.3, where the PVML

implications are shown, and will also be discussed from a target point of view

in Section 8.4.2.

The reference engine allows the user to step through such a program but does

not provide a means to select program variables to be watched. In the absence

 134

of a program parse tree no automatic detection of program variables can be

provided and the selection of a variable to be watched would need to be based

on textual entry of a variable name.

Figure 8-6 Engine showing sample FORTRAN source code

Simultaneous debugging in several different languages

The engine can connect to an indefinite number of targets, each of which

may be directed to run a program written in a distinct source language.

Figure 8-7 shows the reference engine being used with three targets – a JDB

target running a Java program and two separate GDB targets, one running a

program written in C and the other running a program written in

FORTRAN.

 135

Figure 8-7 Simultaneous sessions in three source languages

8 .2 . 2 Pr o g r am Da t a

The reference engine allows any program variable to be selected to be

watched by the target. The target implementation of variable watching is

discussed in detail in Sections 8.3 and 8.5 where the specific reference targets

are described.

From the point of view of the engine there are two issues that are addressed –

the selection of a variable to be watched and the display of value updates.

Selection of a variable

When the target is able to parse the source language of the program, the

pretty printing of the engine listing enables the engine to identify the

declarations of variables in the program listing. A mouse click on a variable

declaration will tag that program variable to be watched and the source

listing is modified with all occurrences of that variable being marked with a

border as in Figure 8-8. A mouse click on a watched variable will remove the

watch. The corresponding PVML is shown in Figure 7-9.

The declaration of the variable is also highlighted which means that the

attention of the novice programmer is drawn to the scoping rules of the

One gdb target
is running a
program in C

The jdb target is
running a
program in Java

The second gdb
target is running
a program in
FORTRAN

 136

language. As can be seen in the associated PVML it is the line number of the

declaration that is passed to the target in order to unambiguously identify the

variable.

Figure 8-8 Engine showing a watched variable

Clearly this selection technique depends upon the pretty-printing of the source

code which in turn depends on program parsing at the target. The reference

engine does not provide a user interface to support the specification of

variables to be watched in situations such as Figure 8-6 where the source

program has not been parsed.

Display of variable updates

Variable updates, received in a PVML data request, are displayed by the

engine in a raw, textual form, in the lower pane associated with each source

code frame. In a visualisation context it is this output that would be parsed

by a visualisation tool.

If a declarative approach to visualisation specification (Section 4.4) were

adopted, particular elements of this stream would form the input to

All occurrences of the
watched variable are
highlighted

All occurrences of the
watched variable are
highlighted

 137

expressions, the evaluation of which would result in specific visual

consequences.

The, more widely adopted, imperative approach to specifying program

visualisation would map updates in variable values directly to visual

representations of those variables.

Figure 8-9 shows a simple variable value being displayed when program

execution results in two new values being assigned to a watched variable. The

PVML that results in this display is shown in Section 7.4.7.

Figure 8-9 Display of a simple Java variable value

Figure 8-10 shows the output when the value of a more complex variable is

watched. In this case the variable consisted of an instance of NestedClass

within an instance of TestClass. The PVML for this transaction is shown in

Figure 7-11.

Identification of variable
using filename and source
line of declaration

Type and value of variable

 138

Figure 8-10 Display of a complex Java data item

A visualisation scenario would need to include a means to handle variables that

have become out of scope – their display would need to be modified in some

way (possibly ‘greyed out’) or else they might simply disappear. In the

reference engine, since the effect of returning from a function call is to close

the source window for that function, the values of variables within that

function will also disappear from view.

Figure 8-11 illustrates the display that occurs when a variable is not longer in

scope. This scenario actually exposes an interesting aspect of the scoping rules

in Java. In Java it is normal to declare a loop counter in the manner shown in

Line 13 of the sample program – with the expected consequence that, by Line

18, the variable ‘i’ will no longer be in scope. This, however, is not the case as

can be seen by the program execution highlight needing to be at Line 19

before the “Out of context” message is displayed. Java keeps a variable in

scope for a short, unspecified, period after the block in which it is declared.

Structured printout of
variable value.

 139

Figure 8-11 Display of a Java variable becoming out of scope

8.3 Common Target Components

It is fundamental to the PVML-based architecture that most target

functionality is implemented in a PVML target driver that is specifically

matched to a particular underlying debugger. It is the target driver that maps

the commands of the abstract ‘PVML debugger’ to the command set of the

particular debugger that is being encapsulated.

Two aspects of the target functionality are generic to all targets:

- Program Parsing

The parsing of target program code, in order to generate the pretty

printed source display, is generic to all targets.

“Out of context” message
generated when highlighted
source line is entered.

 140

- Watchpoint Management

The variable watching functionality of the PVML debugger is a

significant extension of that available in typical debuggers. Various

classes that are shared by all targets manage this aspect.

8 .3 . 1 Pr o g r am Pa r s i n g

The necessary language parsers are written automatically by a ‘compiler

compiler’. JavaCC [121] is a Java implementation of a parser generator, that

takes a language grammar representation as input and automatically generates

the Java classes required to implement a parser for source files that adhere to

the grammar. University Collage of Los Angeles maintains a repository of

grammar files [111] for a cross-section of programming languages – a JavaCC

grammar is defined in a file with a ‘jj’ extension containing productions that

are very similar to those expressed in the Backus-Naur Form (BNF) definition

of a language syntax.

Generation of the PVML representation of a program source file requires that

the source file be parsed into a tree representation which is traversed in such

an order that a correct XML representation of the source code is output. The

tree representation can be generated automatically from the JavaCC grammar

definition using the Java Tree Builder (JTB) [52] which extends the parsing

functionality of JavaCC to include the building of a parse tree. JTB also

provides methods, that make use of the Visitor pattern [30], to enable classes

to be written that will perform certain actions at nodes of the parse tree.

In this context an XMLTreeDumper has been written which generates

appropriate PVML to describe each region of the parse tree. A distinct

XMLTreeDumper must be provided for each source language that is supported

since this class explicitly references the productions of the source language.

Figure 8-12 shows fragments extracted from the XMLTreeDumper’s written

for Java and for C. In both cases the Visitor method displayed is the one that

 141

is called at the root of the parse tree. In the case of Java this is represented by a

CompilationUnit node whereas in C the representation is in the form of

TranslationUnit. At this level in the tree the functionality required is

identical – namely to recursively visit the rest of the tree before closing any

open XML elements. Visitor methods for nodes lower down in the tree may

differ significantly according to source language.

Figure 8-12 XMLTreeDumper fragments for top-level node Visitor in two source
languages

8 .3 . 2 Par s e r Mod i f i c a t i o n s

In most respects the automatically generated parser and the associated,

custom-written, Visitor class combine to produce the necessary PVML

output. There are two considerations though which lead to modifications to

the JTB-written parser code:

//Top-level Java Visitor

 public Object visit(CompilationUnit n, Object argu){

 Object _ret=null;

 super.visit(n, new Boolean(false));

 out.println("</"+PVMLParser.LINE_TAG+">\n");

 if(blocksToClose.size()>0)

 out.println("</"+PVMLParser.BLOCK_TAG+">\n");

 out.println("</"+PVMLParser.SOURCE_TAG+">\n");

 return _ret;

 }

//Top-level C Visitor

 public Object visit(TranslationUnit n, Object argu){

 Object _ret=null;

 super.visit(n, new Boolean(false));

 out.println("</"+PVMLParser.LINE_TAG+">\n");

 if(blocksToClose.size()>0)

 out.println("</"+PVMLParser.BLOCK_TAG+">\n");

 out.println("</"+PVMLParser.SOURCE_TAG+">\n");

 return _ret;
 }

Structured printout of
variable value.
Recursively visit the
entire tree

Top-level Java node

Top-level C node

Close final line of
program

If necessary close final
block in program

Close PVML source
element

 142

Program Comments

It is fundamental to the operation of a parser that program comments are

ignored and do not appear in the parse tree of the source code. However,

from the point of view of the novice programmer, it is important that the

comments are displayed in the engine. The ParserTokenManager class,

written by JTB, is modified such that, when comment tokens are

encountered, their text and position in the source code are logged as shown

in Figure 8-13 with a CommentManager class.

Figure 8-13 ParserTokenManager saves source code comment information

The XMLTreeDumper checks with the CommentManager class before

generating the PVML for a new source line and any, outstanding, comments

are returned and inserted in the PVML stream as comment elements which will

be rendered appropriately by the engine. This is shown in Figure 8-14.

//Test whether this token was ‘special’

//Special tokens are not placed in the parse tree

if ((jjtoSpecial[jjmatchedKind >> 6] & (1L <<

(jjmatchedKind & 077))) != 0L){

 //Get the token

 matchedToken = jjFillToken();

 //Log information describing this comment

 CommentManager.add(matchedToken.beginLine,

 matchedToken.beginColumn,
 matchedToken.toString());

Source line of
comment

Column position of
comment to control
indentation Text of comment

 143

Figure 8-14 XMLTreeDumper reinserts source comments in PVML stream

Parsing Multiple Source Languages

A target, such as the GDB target described below, needs to be able to parse

more than one source language and hence have access to JDB-generated

parsers for a number of languages. The selection, amongst these parsers, will

depend on the debugger reporting the source language of the current debug

target.

To implement this feature the JTB invocation that generates the parser classes

is directed, through a command line switch, to create these classes in a Java

package, the name of which includes the name of the source language as

shown in Figure 8-15.

The target command interpreter is able to construct the name of the required

parser and tree-dumper classes and attempt to load these classes at run-time.

Failure to locate a parser for a program source language will cause the target to

fall back to a PVML Level 1 representation.

//A line is finished - check for comments

Vector comments = CommentManager.checkComment(n.beginLine);

//There are comments to insert

if(comments != null){

 //Process each comment found

 for(int i=0; i<comments.size(); i++){

 Comment comment = (Comment)comments.elementAt(i);

 out.print("<"+PVMLParser.LINE_TAG+">\n");

 printLineNum(comment.line);

 out.print("<"+PVMLParser.COMMENT_TAG+">\n");

 String pad = "";

 for(int j=0; j<comment.col -1; j++)

 pad = pad + " ";

 if(!pad.equals(""))

 out.print("<![CDATA["+ pad +"]]>");

 out.println(comment.text);

 out.print("</"+PVMLParser.COMMENT_TAG+">\n");

 out.print("</"+PVMLParser.LINE_TAG+">\n");

}

Open PVML line
element, emit num
element and open
comment element

Create padding to
maintain indent

Close open elements

 144

Figure 8-15 JTB-written code fragments showing language dependent package

8 .3 . 3 Pr o g r am Wa t ch p o i n t Mana g em en t

PVML sets out to provide debugging functionality that is independent of

source language issues and which is also, from the point of view of a novice

programmer, uniform in application across all aspects of their target

program.

This aspect of PVML is most evident in terms of the watching of program

variable updates. Table 8-1 sets out the contrasting approaches to variable

watching in the PVML debugger and the two target debuggers that have been

evaluated and it is the task of the WatchManager class to map the generous

and uniform PVML watch model to the heterogeneous watch models of the

supported debuggers.

To provide program variable watch support at points in program execution

where the debugger would not (local method variables in JDB, out-of-context

variables in GDB) requires the WatchManager to maintain data structures that

record details of watched variables independently of the underlying debugger.

package jtb.c.syntaxtree;

 /* Grammar production:

 * f0 -> (Pointer() | [Pointer()]

DirectAbstractDeclarator())

 */

public class AbstractDeclarator implements Node {

package jtb.java.syntaxtree;

/ * Grammar production:

 * f0 -> MultiplicativeExpression()

 * f1 -> (("+" | "-") MultiplicativeExpression())*

 */

public class AdditiveExpression implements Node {

C language parser
package statement

Java language parser
package statement

 145

Debugger Variable watching functionality
PVML - Any program variable can be selected to be watched

- Variable is specified by source file and line number of
declaration

- Variable updates and ‘out of context’ messages returned to
engine in data requests

- Visual treatment of data requests is delegated to the
visualiser role

GDB - Any, in context, variable can be selected to be watched
- Variable is specified by name

- Automatically deletes watchpoints for variables that
become out of context

JDB - Class ‘members’ can be watched (variables that are defined
at the head of the class)

- Local method variables cannot be watched
- Variable to be watched is specified by name

Table 8-1 Contrasting debugger approaches to program variable watching

The WatchManager maintains data structures relating to potential program

watch points and through access to these structures the target driver is able to

command the debugger appropriately to watch variables that would otherwise

be unavailable. The following two examples clarify this process:

GDB – persistent watch on local variable

Since GDB can only be commanded to watch an in-scope variable the

persistent watching of a variable that enters and leaves scope requires a new

watch command upon each entry to that context. The target driver, upon

entering a new context, checks with the WatchManager for any variable

watches that need to be re-established.

JDB – watching local variables

JDB cannot set a watch on the local variables of a method. In order to watch

such a variable the target driver needs to command JDB to step by machine

instructions in regions where a watched variable exists and manually inspect

the value of that variable. This is a significant performance overhead and

 146

should be avoided in the absence of any variables that need to be watched.

The WatchManager is designed to avoid un-necessary low-level stepping.

8 .3 . 4 The WatchManager

The WatchManager maintains data structures that describe each scope in the

target program in order that information regarding watched variables can be

stored independently of the target debugger and in a manner that optimises

the target driver commands that are sent to the debugger.

The description of a particular program scope is maintained by an instance

of the ProcBlock class. A ProcBlock is given a name according to the rules

described in Appendix A. The WatchManager maintains a Hashtable of

ProcBlocks for each source file in the target program that is indexed by

ProcBlock name, and from which the status of watched variables may be

retrieved by the target driver upon entry into a context.

The ProcBlock class

A ProcBlock instance stores details of all variables in a context that are

watched. The members of this class store the information needed to manage

the life cycle of variable watching for a particular scope in the source

program:

- watchcount

This integer stores the current number of variables in a scope

being watched. On entering a scope the target driver check this

count and if variables are currently being watched proceeds to

command the debugger using the less efficient, low-level

command set.

 147

- filename, procname

The combination of the source filename and the PVML scope

name generated according to the techniques described in

Appendix A, uniquely identify this scope within the target

program.

- vars

This Hashtable, indexed by variable name, stores details of

watched variables in this scope.

- startLine, endLine

The source code lines included within this scope.

8.4 The GDB Target

This section describes the PVML GDB target in greater detail paying

particular attention to the use of Insight [85], the open source, Java wrapper

for GDB.

Many research projects and developments have involved extending the

behaviour of GDB as noted in the introduction to this chapter and also in the

discussion of debuggers in Chapter 5. These endeavours have largely been

based on choosing not to modify, or directly invoke, GDB functionality but

instead, to feed commands to an underlying GDB invocation and to capture

the resulting GDB output. Such an approach is sometimes referred to as

‘screen scraping’.

Insight is a Java GUI front-end for GDB which incorporates this screen

scraping approach. In the context of a PVML target, the GUI is dispensed

with and the low-level Insight classes, which control access to GDB, are built

into the target driver.

Insight extends the event-driven architecture that typifies Java GUI’s by

implementing a Panel class. This class responds to asynchronous events

 148

generated by an underlying GDBServer class that directly manages GDB input

and output. Insight defines many sub classes of Panel that register with

GDBServer and subscribe to certain classes of event. Callbacks from the server

then result in appropriate GUI updates taking place. In the context of creating

a PVML target driver for GDB, this architecture is particularly well suited to

the extension that has been implemented.

As has been previously described on page 129, the parsing of the incoming

PVML stream is handled by a PVMLParser class, that is common to both

engine and target implementations. The PVMLParser passes commands

onwards to an instance of a CommandInterpreter. The GDB target includes

a pvml.target.gdb.TargetCommandInterpreter class that implements

the commands received. This class maintains communication with the active

GDB invocation through sub-classes of the Insight Panel class that register

with the Insight GDBServer and receive responses from GDB.

Additional communications, that are not supported by the Insight

infrastructure, take place through the direct invocation of methods of the

Insight GDBServer object.

The aspect of target design that requires detailed discussion here is the

mapping between the command set of the abstract PVML debugger and that

of the underlying debugger, in this instance GDB. This relationship is

described in Section 8.4.1.

Other issues that are particular to the use of GDB in a PVML target are

discussed in Section

 149

8 .4 . 1 PVML t o GDB Command Mapp i n g

PVML
debugger
request

GDB
debugger
command

Comment

break break The only type of breakpoint specification in PVML
is by filename and line number.

cont cont Directly mapped
data - This request returns data values to the engine. All

watches, when the variable is in context, are native
GDB watches. The WatchPanel class receives
notification of the update of watched variables and
forwards a PVML data request to the engine.

frame backtrace The PVML frame request is an asynchronous
indication of a frame change for which there is no
equivalent GDB response. A frame change in GDB
is detected by an invocation of the backtrace
command following each step command. When a
frame change is detected Insight notifies an instance
of the FramePanel class which forwards a PVML
frame request to the engine.

list - Program listing in a PVML target is not
implemented through the debugger. The target
driver directly reads the source file – through a
language parser if one is available.

next next Directly mapped
read print The PVML read command can only be applied to

variables whereas GDB can evaluate an expression
in a supported source language.

run run Directly mapped – before running a program a
breakpoint must be set at the entry point to the
program.

step step Directly mapped – a backtrace command is
included to detect frame changes.

watch watch The GDB watch command allows a watch to be set
(or cleared) on any, in context, variable. The PVML
watch command allows a watch variable to specified
by source filename and line number – in other
words regardless of context.
The PVML watch is set in the WatchManager. If
the variable is in context the GDB watch is set as
well – otherwise the setting of this watch in GDB is
delegated to the WatchManager.

write The PVML write command can only be applied to
variables whereas GDB can evaluate an expression
in a supported language and assign the result to a
variable...

Table 8-2 Mapping PVML debugger requests to GDB

 150

8 .4 . 2 GDB Ta r g e t I s s u e s

Some aspects of GDB, and the GNU language environment, have a

particular impact on the design of the target driver and of PVML.

Source Language Identification

The GDB ‘info source’ command returns the name of the program source

language of the currently executing source file. The target driver uses this

command to retrieve the name that it uses to construct the language parser

class name as described on page 143. If the parser class cannot be found the

target will default to a PVML Level 1 representation and there will be no

pretty printing of the source code available at the engine.

GDB source language identification depends upon the extension used in the

source filename (the part of the filename after the last period in the name) and

situations where source files have been given non-standard extensions will

prevent PVML Level 2 from being used, even if, in fact a parser exists for the

source language.

Program Entry Point

If single stepping, rather than full speed execution, is required a break point

must be set at some point in the target program before it is run – the default

behaviour of GDB is to run a target program to completion. It is normal to

set a breakpoint at the first instruction of a program before running it under

GDB in order that initial control is passed to the debugger.

In the case of a PVML target this breakpoint needs to be automatically set in

order that programs respond to the PVML run request by loading and

advancing to the first line of user source code.

The automatic, language-independent setting of this initial breakpoint is

complicated by the fact that different source languages may use a different

symbol name to identify the entry point to the initial source file of the

 151

program. The executable file for a program written in a language such as GNU

FORTRAN, which is actually implemented in C, does have the normal C

main() entry point, but the execution at this stage is within the libraries that

support the FORTRAN environment. For the novice programmer the

perception needs to be of execution commencing in the FORTRAN source

code. This latter entry point, for FORTRAN, is named MAIN__.

This issue is resolved by attempting to set the initial breakpoint at all of the

known program entry points as the fragment of code in Figure 8-16 shows.

Figure 8-16 Setting an initial breakpoint

8.5 The JDB Target

This section describes the PVML JDB target in greater detail and pays

particular attention to the relationship of this work the Java Platform

Debugging Architecture (JPDA) [109].

The JPDA exposes all aspects of an executing Java program to programmatic

manipulation. JDB, the Java debugger, was originally a stand-alone

application that provided a command set that was very similar to that of

GDB – but restricted to Java target programs. The publication of the JPDA,

String [] mainNames = {"main", "MAIN___", "MAIN__" };

StringObj reply;

for(int i=0; i<mainNames.length;i++){

 reply = gdbs.doBreakCmd("break " + mainNames[i]);

if(reply.stringObjString != null){

 if(reply.stringObjString.indexOf("file") != -1){

 //We have set a breakpoint in a source file

 //This is the one we want

 return;

 }

 }

 runCmd("delete breakpoints 1");

}

Known entry point names

Try setting a breakpoint at each in turn

Return – with a breakpoint set
if the GDB response includes
the word ‘file’ which identifies a
breakpoint in the user source –
otherwise delete this breakpoint
and try again

 152

which includes the Java Debug Interface (JDI), allows all the functionality of

JDB, for example, to be provided in a sample Java program that is part of the

JDPA library. The classes and interfaces that make up the JDI provide access

to all the functionality that is needed in a PVML target that specifically hosts

Java programs.

The limitations of JDB in relation to watching local method variables, as

detailed in Table 8-1, can be seen as being related to the set of events defined

in the com.sun.jdi.event package [109] which includes a

ModificationWatchpointEvent that is fired when a class field is modified

but no event that corresponds to modification of a local method variable.

 153

8 .5 . 1 PVML t o JDB C ommand Mapp in g

PVML
debugger
request

JDB
debugger
command

Comment

break break The only type of breakpoint specification in PVML
is by filename and line number.

cont cont Directly mapped
data - This request returns data values to the engine. Field

watches are native to JDB whereas local variable
watches are implemented through the
WatchManager as described in Section 8.3.3.

frame trace

methods
The JDB debugger will announce frame changes
when configured to do so with the trace
methods command. This command enables the
MethodEntryEvent and MethodExitEvent of
the JDI, which announce frame changes
asynchronously.

list - Program listing in a PVML target is not
implemented through the debugger. The target
driver directly reads the source file – through a
language parser if one is available.

next next Directly mapped
read print The PVML read command can only be applied to

variables whereas the JDI can evaluate a Java
expression.

run run Directly mapped – before running a program a
breakpoint must be set at the entry point to the
program which can be done though the JDI.

step step Directly mapped
watch watch The JDI only allows class fields to be watched.

Watching of other variables is implemented through
the WatchManager as described in Section 8.3.3.

write set The PVML write command can only be applied to
variables whereas the JDI can evaluate a Java
expression and assign the result to a variable...

Table 8-3 Mapping PVML debugger requests to JDB

 154

C h a p t e r 9

DISCUSSION & FUTURE WORK

This chapter discusses the significance, limitations and possible future

development of the research described in this thesis. The significance of

PVML as a concept, and of the reference implementations that are included

in this research, is described in the context of existing work in the fields of

PV and remote debugging. There are important aspects of PVML that have

been set aside as being beyond the scope of this thesis and some

consideration needs to be given to the validity of the limitations that have

been placed on the scope of this work.

This thesis is a component in the research portfolio presented herewith, in

fulfillment of the submission requirements of the professional doctorate

degree. The significance of this thesis, within the broader context of the

portfolio, is described in the commentary contained in the portfolio.

Particular attention is paid there to the thematic linkage that exists between

all the work undertaken in this degree. The research presented in this thesis

constitutes the culmination of that thematically linked program of study and

represents a little over half of the entire work undertaken in the degree.

Accordingly it has been necessary to limit the scope of the research

undertaken here and the ensuing discussion of limitations in the PVML

approach will draw attention to these limits.

9.1 The Significance of PVML

As described in Chapter 3, program visualisation has, in general, been based

on monolithic systems that offer the ability to visualise execution of a

program in a specific source language. The user interface through which the

novice programmer gains access to these features is particular to the

visualisation system. The consequences of this architecture are twofold:

 155

- Novice programmers, as they move on to learn subsequent

programming languages, will need to become conversant with yet

another programming and visualisation environment. The work of

Hendrix [41], discussed in Section 2.3.3 draws particular attention to

this issue.

- The activities of the visualiser role – namely the design of

pedagogically effective visual representations of program execution

– are most usually undertaken by the developer of the PV system.

There is no clear location for effecting changes in visualisation

strategies that is independent of PV system design. This question has

been explored in Chapter 4.

Both of these consequences support the idea of decomposing PV systems

into more strictly decoupled modules. Through such decoupling, a scenario

can be realised, where each of the three key PV roles, visualiser, programmer

and user, interact with a distinct module in the system. This is not a new way

to approach PV. It has been strongly argued for by Roman [88] who, along

with several other researchers, has implemented PV systems that are

decoupled along these lines.

The PVML proposal has similar decoupling boundaries but is distinctive in

suggesting that the communication at these boundaries be in a standard and

open format. The design of an extensible language, that permits arbitrary

visualisation targets and engines to interact, potentially allows many existing

visualisation components to interoperate. Through enforcing a formalisation

of functionality, program visualisation becomes open and extensible. This

line of argument closely mirrors the developments in distributed computing,

described in Section 7.1, which have seen the coupling between distributed

components become less tight at a programming language level. PVML

represents a significant addition to the expanding range [74] of XML-based

initiatives that can implement this looser coupling between distributed

components.

 156

It is important to note that the boundary, across which this decoupling is

proposed, is fundamentally one that is only traversed by program state

information. Any intrusion of visual representation information into this

flow would represent a division of attention for the visualiser, between the

target and the engine. Roman has described the declarative model of

visualisation in which “complete access to program state” provides the input

that is required for declaring visualisation mappings from “programs to

pictures”. PVML has the express purpose of delivering such state

information to the visualisation engine.

This reasoning raises the question of whether PVML should also be located

within the domain of debugging languages. Precedents have been cited for

building visualisation environments around debuggers (see the introduction

to Chapter 5) and this proposal proceeds in that vein. In general, a debugging

environment can deliver arbitrary amounts of program state information. In

a PVML-based environment this same information will be available to an

engine, and hence the visualiser, through typical, generic Internet

connections.

A significant effort has been made in Chapter 5 to relate the design of PVML

to the literature describing debugging languages. It is shown that, whilst there

is a significant overlap in functional requirements, PVML introduces distinct

considerations. The PV motivation, especially the emphasis on the needs of

programming novices, constrains the breadth of coverage of the debugging

domain. Furthermore, the truly decoupled nature of the target and the engine

extends remote debugging beyond its normal boundaries.

The true significance of PVML will become apparent as engine and target

drivers are developed for a variety of existing components. In some instances

these developments will require extensions to the PVML language, where the

appropriate interactions move beyond what has been considered generic

amongst programming languages, into more language specific aspects.

 157

Within this thesis the case of the ‘object test bench’ has been considered.

This is an example of a language specific extension to PVML, in this case

one that could be applied to object oriented languages.

9.2 Some Criticisms of PVML

The scope of this study has focused attention on a generic core of

functionality for PVML and excluded certain important areas. This study also

includes a reference implementation of the PVML language that is based on

XML.

This section explores the rationale behind a number of exclusions and

provides a brief discussion of the issues that would be involved were future

development to be undertaken in such areas. The design decision to base

PVML on XML is also discussed critically.

9 .2 . 1 Nov i c e s a n d Exp e r t s

One aspect of this work that requires some mention is the decision that was

made, at an early stage, to focus on the requirements of novice programmers.

On the one hand, as has been shown in Section 3.7, the evaluation of the

effectiveness of program visualisation has largely focused on its use by

novices. An interest in visualisation is to a considerable extent, as far as the

literature is concerned, an interest in programming by novices.

It has been argued in Section 2.3.2, that the feature-richness of the

programming environment be deliberately curtailed when novice use is

considered. By setting aside complex features, the design of PVML becomes

a realistic undertaking within the scope of this research. Future work in this

field can examine the application of these techniques to professional

programming environments but this work would undoubtedly raise many

new issues.

 158

As described in Section 5.3, the generic core of PVML, which can be

generalised across several paradigms of computing language, is a subset of

complete debugger functionality. In this sense it is reasonable to consider

PVML as providing an abstract debugger which implements a set of features

that are appropriate to novice use. The exclusion of features that is implicit in

the approach of Johnson [48] or Hanson [38] is emulated by the PVML

proposal.

9 .2 . 2 Granu l a r i t y

Although the topic of granularity has been discussed in defining the general

requirements for PVML, the reference language, engine and targets do not

put any of these ideas into practice. A convincing demonstration of filtering

the PVML stream was considered beyond the scope of this research but the

theoretical functionality is present. Filtering should ensure that only changes

in state are transmitted and that the level of detail in that state can be

controlled by the engine. Filtering does not affect the fundamental concept

of the abstract debugger but it does have the potential to substantially impact

the usability of a PVML-based system. Reducing the data throughput of the

PVML connection will increase the responsiveness of a PVML engine and

lessen the impact of PVML-based visualisation on computing infrastructure.

Granularity is also an important aspect of PV, as discussed in Section 6.7, since

the visualiser needs to manage the scale and scope of visual artifacts that are

presented to the user. Control over the extent and detail of visualisations

offered to a potentially struggling, novice programmer, is a significant

pedagogical issue that [83] referred to as elision control. In future, PVML

would need to be extended to include terms through which an engine, under

the direction of a visualiser or perhaps as the result of user selection, transmits

filter specifications to a target. The consequent limiting of PVML traffic to

that which is strictly necessary to support a particular visual representation

could clearly have an impact on system responsiveness.

 159

9 .2 . 3 Us e o f XML

The design of PVML, as a specialisation of XML, has a number of particular

consequences. There are several aspects of the XML approach to data

representation that represent potential criticisms of the PVML design

presented and therefore require further discussion.

Well-formedness

Each PVML communication is a complete XML document, which is

required to be ‘well-formed’, in the sense of having correct structure. A well-

formed document is defined by the recursive application of two rules:

- Elements that are opened must be closed.

- A nested element must be closed before its parent element is closed.

The representation of program code in XML does not raise any problems –

program code also adheres to the ‘well formed’ principle and hence the PVML

encoding of program code can be justified.

Program state, during execution, can also usually considered to ‘well formed’,

in the sense that context entry is matched by context exit according to similar

rules that govern XML parsing. There are, however, circumstances in program

execution that, at first sight, do not meet this requirement – such as an

instruction to ‘goto’ a label, an exception or error condition or a pause for user

input. The overall state of the executing program at such junctures is no longer

one that can necessarily be described in a valid XML document.

It remains to consider whether this theoretical problem is, in fact, an actual

problem in the use of PVML. The decoupling between an engine and target is

such that the need never, in practice, arises to generate a complete PVML

description of program state. An examination of the PVML command set

shows that, even though the target program may, at times, be in an ‘ill formed’

state, PVML only communicates a fraction of that state – the current location

– which can always be expressed in a well formed manner.

 160

Representation of binary data

Computer programs fundamentally manipulate binary data. An integer value

is represented by a number of bytes of memory; a string value by a series of

bytes storing the encoding (formerly single byte ASCII but often now two-

byte Unicode) of the characters in the string.

XML, a ‘text-based’ language, can only include ‘printable’ bytes in a valid

document. In the case of the two examples given, integer and string values, the

representation in an XML stream is straightforward. XML allows a character

coding format to be declared in a document and hence any Unicode

represented strings can be included in a document. Integers, and other simple

data types, can be adequately represented as strings – at the cost of some

verbosity relative to their binary forms.

A problem arises though, with more extensive binary data, such as images. As

has been noted in Appendix B, the designers of XML consider this question to

be beyond the scope of the XML standard. It is intended that the

incorporation of binary data into an XML stream be based on established

Internet standards such as Multi-purpose Internet Mail Extension (MIME).

As discussed in Section 2.3.4 the PVML-based model of PV explicitly targets

use in a generic Internet context, where the target and engine may be on either

side of an arbitrary extent of security-related firewall architectures. In this

context the encoding of binary data according to extant standards would be a

requirement, rather than an impediment.

Verbosity

Attention has already been drawn to the, often verbose, encoding of simple

binary data, such as an integer, when sent in an XML stream3. The discussion

of MIME encoding, in which eight bit bytes are encoded as seven bit bytes

3 A two-byte integer could represent a five-digit number, which would occupy five
bytes when encoded as an ASCII string or even ten bytes as a Unicode string.

 161

would increase the size of data by between 10 and 20%. However the

verbosity of XML extends beyond data encoding to the fact that XML

includes ‘meta data’ in the stream. In the context of PVML the occurrence

of, for example, the element name <request> at the beginning of a PVML

utterance and the closing tag </request> represents a significant overhead.

A practical PVML-based PV system could employ various strategies to reduce

the volume of this meta-data:

- Condensed DTD

For the sake of clarity in this research, element names have been

full, explanatory, words. A working system could be based on an

alternative DTD with considerably abbreviated element names.

- Attribute Normal Form

Again for the sake of clarity, all representations herein have been

in what is known as the ‘Element Normal Form’ (ENF) of XML.

This form, in which elements simply contain other elements and

possibly data, can be departed from in the lower regions of an

XML hierarchy, in which elements simply contain data, rather than

other elements. The alternative representation for such regions is

termed ‘Attribute Normal Form’ (ANF) and can provide some

reduction in verbosity compared to the ENF form of the DTD

presented here.4

Figure 9-1 contrasts the ANF and ENF representation of a PVML

location response. As can be seen the saving is due to ANF not

requiring element closing tags – in this instance three such tags

(‘filename’, ‘linenumber’ and ‘location’) have been

dispensed with.

4 The DTD presented in Appendix D is, for the sake of clarity, written entirely in
ENF but with two exceptions. The id attribute (Page 180) requires the expressive
power of the ID declaration, which can only be applied to an attribute. The href
attribute (Page 181) is required by the xinxlude standard.

 162

Figure 9-1 Comparison of ENF and ANF representation of a PVML response.

9 .2 . 4 Tar g e t P r o g r am In pu t/Ou tp u t

No mechanism has been proposed for managing the normal input and

output of the target program. Where this information is textual a

straightforward extension to PVML can manage the entry of data at the

engine and the consequent display of program output. Many novice

programming scenarios are, quite reasonably, restricted to ones that involve

text input and output. For the decoupled engine and target to manage

programs with graphical requirements would require a mechanism for a

whole additional, complex set of information to be handled. Clearly this is

not a matter to be handled by PVML.

The established remote graphical environment is that of X Windows [50]. X

Windows can display the graphical output of a target program on any engine

running ‘X Server’ software. The terminology is counter-intuitive – the

engine is considered to be offering ‘display services’ to the host target

program. The X Windows approach is very broadly portable but generates a

great deal of network traffic. In order to transparently deliver target-

ENF representation of a location response

<pvml>

 <response>

 <location>

 <filename>

 Test.java

 </filename>

 <linenumber>

 6

 </linenumber>

 </location>

 </response>

</pvml>

ANF representation of a location response

<pvml>

 <response>

 <location filename=”Test.java” linenumber=”6”/>

 </response>

</pvml>

 163

generated graphical output, from programs in several languages, there are

several issues that would need to be addressed:

- All target programs would have to perform their graphical output as

X-Clients. This will not be generally the case – target programs will

use a variety of means to create graphical output. However various

UNIX based graphical environments do, in fact, map to an

underlying X-Client. Java on UNIX behaves as an X-Client as does

the graphical language TCL [81]. The Wine project [124] provides an

environment for UNIX that will support the execution of graphical

Windows applications by mapping their Windows Graphical Device

Interface calls to X-Client requests. Wine can be run under the

Windows OS as well.

- The engine applet would need to incorporate X-Server functionality.

Various commercial [122] and open source [123] developments

support X-Server functionality within Java enabled Web browsers.

- The engine, from the point of view of the novice programmer,

would need to manage the inter-relationship of arbitrary target

program output windows and the windows that were part of the PV

proper.

9.3 Related Work

Previous chapters have examined existing work in two distinct fields that are

related to this body of research. This section reviews the relationship of

PVML to existing work in the fields of decoupled PV architectures and

distributed, language-neutral debugging.

9 .3 . 1 De c oup l e d PV

As has been stated, the significant impact of the decoupling of target and

engine in a PVML-based PV system is that the role of the visualiser can be

isolated from the other roles involved in PV. This approach has, most

 164

dramatically, been demonstrated in the work of Roman [90] and Domingue

[21]. The Pavane and Vis PV systems both incorporate partitioning of their

functionality which leaves a distinct, and independent, location for the

activities of the visualiser.

It is instructive to consider how a PVML-based connection would relate to

the architecture of these systems and in particular how the dependence of

PVML communication on open, ‘web friendly’, standards would enable such

systems to be used through the ‘generic’ type of Internet connection most

commonly encountered by students. These connections are characterised by

extensive security-related restrictions that preclude normal, socket-to-socket,

communication.

In Pavane, as Figure 9-2 illustrates, it is the communication between the

“underlying computation” and the “visualisation computation” that would be

realised by PVML. In a functioning Pavane system this stream of program

state information is transmitted through inter-process communication

mechanisms, using protocols that are particular to Pavane. It would be

theoretically feasible to insert a PVML link at this point and hence enable a

Pavane visualisation to be viewed at a remote location, through a generic

Internet connection.

 165

Figure 9-2 Structure of the Pavane system. Reproduced from [91]

In Vis, as Figure 9-3 illustrates, it is the stage at which “program execution

history” calls are sent that would be realised in PVML. A similar observation

can be made concerning the theoretical application of PVML-based

communication to a working Vis system.

Figure 9-3: The Vis Architecture. Reproduced from [21]

Location for
PVML-based
communication

Location for PVML-
based communication

 166

9 .3 . 2 Di s t r i b u t e d De bu g g i n g

As has been observed in Chapter 5, the content of a PVML stream has much

in common with the communication between the components of a

distributed debugger. PVML adds the intention that this communication be

independent of target programming language to the general requirements of

a distributed debugger. In general, as described in Section 5.3, language-

neutral, or heterogeneous, debugging has been implemented through a

debugging language that abstracts low-level debugging primitives. This

indeed, is the approach taken by PVML.

In discussing the relationship of PVML to existing PV systems it has been

suggested that, in theory, a target driver could be devised that encapsulated the

appropriate components of a PV system in order to communicate program

state information remotely. A similar proposition can be made in relation to

debugging language implementations – namely that a PVML target driver can

be designed to enable a PVML engine to interact with a target built upon an

underlying debugging language. The complexity of such a task though would

be dependent on the modularity of the design of the debugging-language

system under consideration and on the precise architecture of the language

implementation. When the boundaries across which the debugging system is

decoupled match the boundaries implicit in PVML, as they do in both Pavane

and Vis, the task could be considerably more straightforward.

Accordingly the examination of distributed debugging systems, in relation to

PVML, is strongly motivated by a consideration of the boundaries across

which they are decoupled. In this light, it is the work of Hanson [39] that is of

particular interest. The architecture of deet and the architecture of a PVML-

based system are very similar.

The deet program is based on cdb [39], earlier work of the same author. The

cdb program is a machine independent debugger that attaches a small ‘nub’ of

machine dependent code to a target program, in order that machine

 167

dependencies can be abstracted. Figure 9-4 illustrates this architecture and it is

instructive to compare this with the PVML architecture shown in Figure 4-4.

Figure 9-4 cdb's design. Reproduced from [38]

The nub provides a simplified debugging interface, that an external debugger

can interact with. In cdb the debugger is a text-based debugger, similar to

many conventional debuggers.

The deet program provides a graphical front-end to the interface provided by

an enhanced version of the cdb nub. The interface provided by the deet nub

is shown in Figure 9-5. As can be seen this is a basic, but adequate, set of

debugging primitives similar to that provided by GDL [18] and discussed in

some detail in Section 6.1.

The principal observation regarding such debugger primitives is that their use

can involve significant processing overhead relative to the more expressive

commands of an established debugger. A straightforward example of this to

contrast the low-level commands required to step forward in execution to the

next source line – a part of normal debugger functionality – with the native

implementation of a conventional debugger. In a PVML-based scenario, in

which a non-trivial network communication is included, this argument carries

still more weight.

 168

Figure 9-5 deet's nub interface. Reproduced from [38]

Nevertheless the approach taken by deet shares many aspects with that taken

in this research and it would quite definitely be feasible to design a PVML

target driver that encapsulates a deet nub.

9.4 Further Work

The proposal for an open, XML-based, communication between visualisation

engines and targets opens up many fascinating future directions. The general

motivation of these developments is to provide a variety of visualisation

scenarios in which distinct styles of, and approaches to, visualisation can be

employed with a variety of target programming languages. The intention is to

open the domain of program visualisation, as a component of introductory

programming pedagogy to more extensive experimental evaluation.

Specific developments can be broadly divided between those that develop

engine and those that develop target functionality.

deet_open initialize the target

deet_breakpoint f -set j -
delete j -list g file line

character

set, remove, and list breakpoints

deet_frame [n] get/set current frame
deet_getval type address read a value of type from address

deet_putval type address value write the value of type to address

deet_continue resume execution

deet_sym f -all j -files j -
locals j -params | -name

name g

finds the symbol-table entries

deet_type symbol

get symbol’s type information

 169

9 .4 . 1 Tar g e t D e ve l opme n t

The extent of PVML that has been demonstrated herein is restricted to a

generic core of functionality that can be applied to a cross-section of

programming languages. Aside from devising target drivers that encapsulate

individual, specific languages and their debuggers there is a specific

development that could lead to exploration of the application of PVML to

extensive, novel, areas.

.NET Target

The Microsoft .NET framework [61] is a set of standards that enable

programs written in a variety of source languages to interoperate. Programs

written in wide variety of languages – seventeen non-Microsoft languages are

listed at [63] – are compiled into a Common Language Runtime (CLR) that

can be executed on a variety of platforms. The interoperability between this

multitude of languages is at the CLR level.

The .NET framework incorporates a debugging API [64], that supports the

debugging of CLR executions and which gives access to the particular

programming language source code that gave rise to each executing fragment

of CLR code.

A PVML target driver that encapsulated a CLR debugger would expose the

broad cross-section of .NET languages to a PVML engine. The .NET

supported languages are representative of the three language paradigms

described on page 81, and this target would be a suitable environment for the

study of the paradigm-specific extensions to PVML that would support

appropriate pedagogy in a variety of CS1 and CS2 environments.

This work has commenced under an honours-level project, supervised by the

author.

 170

9 .4 . 2 Eng i n e De v e l o pm en t

A general model for PVML engine development is shown in Figure 5-2 where

the PVML engine driver is represented as an encapsulation of an existing

imperative or declarative visualisation system. As can be seen, a declarative

model of visualisation, which is inherently designed to consume a stream of

program state information, requires a simpler engine driver.

A general direction for future work on PVML engines would be to implement

drivers for a number of existing visualisation front ends. As has been

suggested in Section 9.3.2 (page 166), the manageability of this task will

depend on the extent and nature of the modularity already demonstrated by

the existing PV system. A straight-forward addition of an existing imperative

PV system, JSamba, to the reference engine has already been discussed in

Section 8.2 (page 130).

Chapter 2, which discusses a novice programming environment, could be the

basis for a particular PVML engine which would, in fact, be a complete multi-

lingual, novice programming environment. Section 6.8 discusses the extensions

to PVML that would support compilation of the target program and simple

source file management.

9 .4 . 3 Comb i n e d Ta r g e t a nd Eng i n e De v e l o pmen t

In some cases it could be considered useful to partition an existing,

monolithic development or visualisation environment across PVML

boundaries. For the novice programmer the effect would be to provide

location independence, with a single set of programming tasks being pursued

from any location.

BlueJ Target/Engine

In the context of the author’s professional involvement in the pedagogy of

object-oriented programming the BlueJ [57] environment has been a critical

improvement in presenting the paradigm to novices. As discussed in Section

 171

6.5.2, the internal partitioning of the BlueJ implementation is one that would

quite naturally support the inclusion of a PVML-based connection between a

server-based target and a portable, possibly browser-based, engine.

9 .4 . 4 PVML De v e l o pm en t

Undoubtedly the suggestions made for future work would give rise to

extensions and possibly modifications to the PVML language proposed

herein. The standard definition of the language itself, if such developments

are to proceed in an organised fashion, will need to be made available

through an appropriate, centralised repository.

 172

C o n c l u s i o n

CONCLUSION

Program visualisation is a well-established field, populated by a wide variety of

systems. These systems demonstrate a range of approaches to providing visual

representations of program execution. Many systems have the express purpose

of supporting novice programmers in their initial programming endeavours.

Programming in a variety of target languages is supported and the visual

representations, provided by some form of engine that the user of the system

interacts with, involve visual methodologies that in many cases are the express

project of the system designer.

The extent of this activity is largely motivated by the suggestion that PV assists

the programming novice in forming mental models of an unfamiliar process

and will ultimately speed up the development of programming skills. Whilst

fundamental to all PV development, this assertion is one that still lacks

extensive, empirical support.

Much work has been put into taxonomic analyses of these efforts but, as has

been noted, comparatively few researchers have undertaken a concerted,

conceptual analysis of what PV actually is. Terms have been defined that

identify components and aspects of the PV endeavour but this language has

been applied to describing what has been undertaken rather than analysing,

through generalised reasoning, the aim of PV. From this point of view the

work of Roman is distinctive and the research presented here is profoundly

influenced by that work.

Roman’s generalised definition of PV as “a mapping from programs to

graphical representations” involves a closer than usual examination of the

human roles involved in PV. The definition of the roles of user, programmer

 173

visualiser and PV system developer has particular consequences to any

discussion of PV systems. Although the user and the programmer role, whose

concerns coalesce in the novice-programmer, represent the ‘end-user’ of a PV

system it is the visualiser, who makes the decisions as to exactly how program

execution is represented. These choices are central to any assessment or

evaluation of PV. In most PV system implementations it is the PV system

developer who makes these decisions and there exists no clear location for the

independent exercising of the visualiser role.

Isolating the activities of the visualiser, and exposing them to evaluation that is

independent of the PV system developer in particular, depends on the design

of the PV system itself. A monolithic architecture, in which the PV system

consists of a single large program, necessarily involves visualiser decisions

being made by the system developer. Roman, in proposing a declarative model

of program visualisation, also implied a decomposition of this monolithic

architecture such that visualiser activity was expressly isolated.

At one level the contribution of PVML can be expressed in these terms alone.

PVML implements a decoupled PV architecture, which echoes that of Roman

and several other researchers, but does so in an open and extensible manner.

Through PVML it becomes feasible to propose arbitrary assemblies of PV

engines and targets and by this means to expose visualiser activity to critical,

comparative evaluation. Completely new PV components can be developed or

else, as has been described, parts of existing PV systems could be exposed in

this manner.

It should also be noted though, that this proposed decoupling of target and

engine is precisely the architectural foundation that is needed for a language

and location independent programming environment. Historically it is this

goal, as expressed in the author's 1999 conference paper, which gave rise to

the initial proposal of a Program Visualisation Meta Language. Whilst PVML

can provide program visualisation in a fully decoupled environment, it can also

provide the elementary program development scaffolding that, almost

 174

inevitably, will accompany a novice programmer making use of PV in their

initial programming endeavours. The PVML-based program development

environment is an engine that can be used from any location to undertake

development of remote target programs – in theory independently of the

programming language in which they are written.

The location of PVML within the particular decomposition of the PV task has

the interesting consequence that PVML is also a debugging language. This

arises because a strict adherence of the proposed PV boundaries to the

separation of the PV roles, leads to the PVML stream containing only program

state information. The genesis of this definition can be found in PV systems

designed by Roman and others, where the activity of visualiser is supported

through an un-encumbered stream of program state information. PVML

provides such a stream.

It is this architectural consideration that motivates a significant portion of this

thesis, leading to an emphasis on the design of debugging languages and

attendant low-level programming issues. It leads to the important

characterisation of PVML as implementing an abstract debugger that

encapsulates a particular concrete debugger in a particular target. Most

decisions in the design of PVML can be represented as abstract-to-concrete

debugger command mappings.

Although these observations may lead to the suggestion that the name PVML

does not accurately describe the work that has been undertaken, on balance it

is the attention to the PV domain that has motivated this work. It is the PV

domain that stands to benefit principally from adoption of a PVML approach.

This research conclusively demonstrates a loosely coupled, extensible,

communication framework through which arbitrary target and engine

components can communicate. Not only does this expose program

visualisation to substantial opportunities for empirical validation but it also

 175

suggests directions for the significant development of novice programming

environments.

 176

A p p e n d i x A

LINE-NUMBERED VARIABLES AND SCOPE NAMES IN PVML

This appendix contains a more detailed discussion of the requirement for

PVML to identify scopes and program variables through program line-

numbers in order to refer to variables in a generic manner.

In all programming languages variable names are unique within a particular,

defined, region of the program. The region within which a variable name is

considered unique is termed the ‘scope’ of the variable. The unique

identification of a variable can be decomposed into a combination of the

variable name and some unique definition of the scope.

The rules relating to scope vary amongst programming languages as some

brief examples will show.

Scope in C

Within a program function names must be unique. Within a function variable

names must be unique. A C variable is therefore uniquely identified by a

function name-variable name tuple. However, as will be seen below, this

description of a variable may not be unique in other languages.

Scope in C++

C++ (and some other object oriented languages) allow the overloading of

function (method) names. In a language such as C, a function name such as

test() must be unique within a program. C++ distinguishes between

different versions of test() according to the types of the parameter(s)

declared. Hence test(int i) is considered distinct from test(floatsf).

The engine needs to refer to these scopes in a manner that maintains the

distinction. Furthermore the scope of a method name is limited by the class in

 177

which it is defined - two distinct classes may include methods of the same

name.

The C++ compiler keeps track of this through a process known as ‘name

mangling’, in which methods are given specially generated, unique, names

during compilation. These unique names are built by the compiler through a

combination of the class name, the method name and some representation of

the parameter types. These ‘mangled’ names are usually private to the

compiler but use of appropriate compiler switches, or executing a C++

program under a debugger, can make the mangled names apparent.

From the point of view of a novice programmer, viewing the source code of a

C++ program through an engine, variables will be perceived as distinct by

virtue of their location in the program source code. A particular variable

declaration, as seen in source code listing, will identify a particular variable

uniquely. This leads to the requirement that a PVML engine identifies

variables through their location in the source file, delegating the retrieval of

the actual variable to the target, which also has access to the source file.

In addition, the scoping of variables in C++ is also distinct at the lower level

of, otherwise un-named, blocks of source code. Any language construct in

C++ that permits the use of braces (‘{‘ ‘}’) to define a block of source code

will have the consequence of defining a new scope within which variables

may be declared.

The PVML engine requires the ability to refer uniquely to variables declared

in each such scope.

Scope in Java

Similar scoping issues arise in Java and these concepts are demonstrated

through the fragment of Java source code presented below. In this example

 178

line numbers, not normally part of the Java language, have been added to

support the discussion.

Figure A-1: Multiple scopes in a sample Java program

The fragment of code contains three variables of int type but in one case

the same name j has been used in different scopes.

The variable j has been declared in the body of the class (line 2) and

assigned a value. The scope of this variable is the entire class. Hence line 5

will print out ‘13’. In order to place a watch on this variable it might be

identified as simply ‘j’ in the source file - the syntax of Java dictates that this

is an unambiguous reference.

A method named sampleMethod is declared in line 3. The effect of this is

to establish a new scope in which variables can be declared. The variable k

has been declared and assigned a value. A representation such as

‘sampleMethod, k’ for this variable would not, necessarily, be unique given

that sampleMethod() may have been overloaded. The requirement is

already apparent for a representation that uniquely identifies a particular

region of code where a variable has been declared.

This requirement is re-emphasised when, in line 6, yet another scope has

been created. The effect, in Java, of using braces after a statement like ‘for(

j=0…)’ is to establish a scope in which variable names, such as the counter j

1 public SampleClass{

2 int j=13;

3 public static void sampleMethod(){

4 int k=14;

5 System.out.println(j);

6 for(int j=0; j<2; j++){

7 System.out.println(j);

8 }

9 System.out.println(j);

10 }

11 }

Deleted: 10-1

 179

have the potential to obscure similarly named variables in a superior scope.

The effect of this is that line 7 will print out ‘0’ the first time it is executed -

rather than ‘13’. A reference to this particular variable again needs to be

made in terms of the specific location where the variable is declared.

Discussion

The requirement that the PVML framework be programming language

neutral introduces a particular set of constraints to this discussion. The

means employed by the engine to refer to variables and scopes, needs to be

independent of particular programming language techniques, such as name

mangling. At the same time, the reference to a variable needs to be one that

the language-specific target can decode in order to give access to the value

of a particular variable.

PVML make use of two terms to identify a variable:

- filename

The source filename in which the variable is declared. The novice

programmer will have a ‘pretty printed’ view of all relevant

program source at their disposal and will select a variable by

highlighting its declaration.

- linenumber

The line number of the variable declaration. The line number and

the source filename will be resolved by the target to reference a

particular variable.

This approach assumes that programs are ‘well formed’ in the sense of using

new lines to separate declarations from other source constructs. Handling

the program ‘conundrums’, that deliberately set out to write entire programs

in a single line of source code, would need to be set aside as being beyond

the scope of this work.

 180

In addition to describing variables PVML targets need, when specifying

watched variables, to refer to contexts in the source program by names that

identify them uniquely across variable program language contexts. These

unique scope names are generated by appending the line number of the

beginning of the scope an enclosing scope name.

The sample Java program in Figure A-1 illustrates this concept. This sample

Java class contains three distinct scopes and their unique PVML names are

shown in Table A-10-1. This table explains the PVML scope names that,

accompanied by the filename containing the scope definition, will uniquely

identify the respective scopes.

Scope description PVML scope
name

Comment

Entire class ***1 In Java the top-level in a file has a name
– in this example SampleClass.
However in other languages this may
not be the case. Hence a general term is
used (which cannot be a legal function
or method name) to denote this top-
level scope.

sampleMethod sampleMethod3 The PVML scope name describes this
scope uniquely, even when the method
name has been overloaded.

for{} loop in
sampleMethod

sampleMethod6 The PVML scope name identifies a
region that would otherwise be
anonymous.

Table A-10-1 PVML scope names in a sample Java program

 181

A p p e n d i x B

DATA VALUES IN PVML

The purpose of this appendix is to clarify the manner in which arbitrary

target data values and references can be encoded in a PVML stream. The

hierarchical representation is defined by the DTD presented in Appendix D

and this appendix will expand upon the terse representation provided by the

DTD.

The root of a data representation in PVML is a value element that contains

branches and links that represent the structure of target data. A compulsory

attribute of all value elements is an id to which the target driver may assign

a target machine memory address.

In the target programming language, data is identified either by the name of

a variable or by a pointer that references a region of target memory that is

supplying some structured storage. The need to support both data values

and data references (as laid out in Section 6.6) means that whenever a data

value is transmitted it will be accompanied by a unique target memory

reference and, when it exists, a uniquely specified variable name.

Target data representations, encoded in the format described here, may be

transmitted in three circumstances:

- Content of an asynchronous request

These arrive at the engine as a result of watchpoints in the target

program being triggered. The debugger causes the target driver to

send a PVML request to the engine which will result in

visualisation(s) being updated.

 182

- Content of a synchronous response

These arrive at the engine in response to a request sent to the

target such as read. Such requests are the result of user

interaction with the engine. This will occur when the target

program is halted and the user is investigating the state of target

data.

- Parameter to a request

Target data representations will be sent by the engine, as a

parameter to a write request, when the user is modifying data at

the target.

The XML representation is designed to encode hierarchical, and linked, data

structures. In all cases the actual data values are ultimately encoded as text

or a raw data encapsulation that is manageable by XML and the particular

engine implementation.

The XML Protocol Working Group [112], a body undertaking the

specification of requirements for the XML Protocol, has largely set aside the

issue of the encoding of binary data as being beyond the scope of the XML

protocol. Reference is made [ibid Section 2.1], to “commonly used image

formats like PNG, JPEG” and to emerging approaches “based on MIME

multipart” both of which are in extensive use in related Internet activities.

The components that interoperate to implement the Internet and World

Wide Web rely, in many cases, on communicating binary data, in which the

entire 8 bits of a byte are significant, through channels that require ASCII

formatted data, in which only 7 bits are significant. A typical instance of this

constraint exists in electronic mail – the standard defining the format of

Internet mail, RFC822 [44] specifies that electronic mail messages must

consist of ASCII text. To accommodate this constraint a variety of

encodings, such as MIME, have been developed that transform binary data

 183

into an ASCII representation that can be encapsulated in an electronic mail

message.

The intent of XML development is to delegate the management of binary

data to an accepted, non-XML, standard which, in a PVML context, would

be agreed between the target and engine.

Since a PVML target is a wrapper around a debugger for the source

language, the data representations and features available through PVML will

be constrained by those available in the underlying debugger. The content

and format of data appearing in the PVML stream will always be a subset of

the representations provided by the debugger involved.

The data Element

The value of a target data item, which may consist of arbitrarily nested data

structures or references, is transmitted in a data element. The data

element is defined as follows:

Name o f v a r i a b l e

Variable names need to uniquely identify a variable, taking into account the

scoping rules of the target language. The general form of a variable

identification is discussed in Appendix A and consists of:

- filename

The source file name expressed as a target file system location.

- linenumber

The source line number of the variable declaration.

- varname

The name of the variable.

 184

Va lu e o f va r i a b l e

- value

The value element can be used recursively to define arbitrarily

nested, and linked, data.

The value Element

The visualiser in a PV system will be assigning mappings between the state

of target program data and, usually visual, representations that are presented

to the user. The value element in PVML contains the information on

which the visualisation will be based.

- type

A text string representing the data type of this variable. This

string is only used at the engine for display purposes and will be

in the language dependent format employed by the underlying

debugger at the target.

- varname?

The ‘?” syntax in a DTD indicates that the marked item may

occur zero or one time in an element – in other words the

content is optional.

varname represents the name of the variable. The name is

provided in order that the visualisation may incorporate variable

names. In certain cases a variable may have no name – for

example an intermediate value in a complex expression or a

structure that is being referenced through a pointer.

- val* | value*

The DTD syntax of ‘*’ denotes zero-to-many occurrences of

the tagged item. The ‘|’ operator denotes that either of the

operands are valid at this level.

 185

A value element may consist either of zero or more repetitions

of a val element or zero or more repetitions of a value

element. value elements incorporate name and type elements

and are therefore appropriate for the representation of

structures, objects or named fields within such elements.

val elements contain no meta-information and are therefore

appropriate for the representation of, possibly repeated, simple

elements.

The val Element

The val element represents a single simple (not structured) data item. This

could either be a data value, of the type defined in the enclosing value

element, or a data reference in the form of a ptr element. Both these

possibilities are considered in more detail below. Examples are given

demonstrating the representation of various data in a variety of source

languages.

Data Values

Actual data values (as distinct from data references, which are described

below), will consist of nested value and val elements, with the values of

the leaf nodes in the data structures being stored in the val elements. A

variety of examples of this representation are presented, using C and Java

data structures.

C s t r u c t u r e

The fragment of C code shows a variable myStruct that consists of a

structure containing some numeric values and a nested, second, structure.

The PVML fragment represents this variable. It should be noted that the

meta-data (type, varname) in the PVML stream means that this

 186

representation is self-documenting. The PVML stream contains sufficient

information for the visualiser to build appropriate visual representations.

Figure B-1 A C structure and its PVML representation

struct innerStruct{

 int innerInt a;

}

struct sample{

 int x;

 float y;

 struct innerStruct z;

}

struct sample myStruct;

myStruct.x = 10;

myStruct.y = 3.14;

myStruct.innerStruct.a = 42;

<value>

 <type>struct sample</type>

 <varname>myStruct</varname>

 <value>

 <type>int</type>

 <varname>x</varname>

 <val>10</val>

 </value>

 <value>

 <type>float</type>

 <varname>y</varname>

 <val>3.14</val>

 </value>

 <value>

 <type>struct innerStruct</type>

 <varname>z</varname>

 <value>

 <type>int</type>

 <varname>a</varname>

 <vaL>42</val>

 </value>

 </value>

</value>

 187

C Ar ra y

The C fragment in Figure B-2 shows a variable myArray that stores a small,

one dimensional array of integers. The PVML fragment represents this

variable.

Figure B-2 A one-dimensional C array and its PVML representation

Figure B-3 shows a limitation of the PVML DTD in representing a two

dimensional array. There is insufficient meta-data in the PVML stream to

support a two-dimensional visual representation. A visualiser would be

constrained to represent the two-dimensional array in one dimension.

To remove this restriction would require use of techniques, similar to those

described in Section 6.5.2, to relay type information to the engine

independently of data values.

int myArray[4];

myArray[0]=1;

myArray[1]=2;

myArray[2]=3;

myArray[3]=4;

<value>

 <type>int</type>

 <varname>myArray</varname>

 <val>1</val>

 <val>2</val>

 <val>3</val>

 <val>4</val>

</value>

 188

Figure B-3 A two-dimensional C array and its PVML representation

J a v a Ob j e c t

The Java fragment shows a variable myObject, storing a Java object. The

Java object contains a number of fields – one of which is itself an object.

Note that some parts of a Java object will be method source code.

Representation of these regions is not part of the PVML value element.

The PVML fragment shows the representation of this variable.

int myArray[2][2];

myArray[0][0]=1;

myArray[0][1]=2;

myArray[1][0]=3;

myArray[1][1]=4;

<value>

 <type>int</type>

 <varname>myArray</varname>

 <val>1</val>

 <val>2</val>

 <val>3</val>

 <val>4</val>

</value>

 189

Figure B-4 A Java Object and its PVML representation

Data References

As described in Section 6.6.2, significant data may be stored and retrieved by

means of pointers, essentially anonymous references to target memory

locations. These memory references, of no direct significance in the engine

environment, can be passed back to the target in order to refer to data.

Memory references consist of the reference itself (often referred to as a

pointer) and a means to identify the location being pointed to. In PVML

class inner{

 int[] a;

}

class outer{

 int x;

 inner y;

}

. . .

outer myObject = new outer();

myObject.x = 42;

myObject.y.a[0] = 1;

myObject.y.a[1] = 2;

<value>

 <type>class outer</type>

 <varname>myObject</varname>

 <value>

 <type>int</type>

 <varname>x</varname>

 <val>42</val>

 </value>

 <value>

 <type>class inner</type>

 <varname>y</varname>

 <value>

 <type>int</type>

 <varname>a</varname>

 <val>1</val>

 <val>2</val>

 </value>

 </value>

</value>

 190

locations are identified by an id element and references to such locations by

a ptr element.

The id a t t r i b u t e

The definition of all value elements incorporates a compulsory (#REQUIRED)

attribute named id:

33:5 <!ELEMENT value (type, varname?, (eoc | val* |

value*)>

34: <!ATTLIST value id ID #REQUIRED>

This attribute is defined in the DTD as being of type ID. In XML this

implies that the value of the id is unique in the document and can also be

straightforwardly referred to elsewhere.

The ptr e l em en t

References (pointers) to memory locations are represented in PVML by a ptr

element:

31: <!ELEMENT ptr (xinc:include, mod?)>

This element is an alternative to a raw data value as the form for a val

element:

35: <!ELEMENT val (#PCDATA | ptr)>

This element can store what is, in effect, an XML reference to a location in

another document in the form of an xinc: include element. The xinclude

[116] mechanism is defined to support the inclusion, in an XML document,

of XML fragments from other documents. This definition of the ptr element

5 The numbers preceding DTD fragments refer to the DTD listing in Appendix D

 191

makes use of a ‘namespace prefix’, xinc6, in order that downstream XML

processors can be directed to handle the element by resolving a reference in

another context.

The element xinc:include, which is recognised by XML parsers as

representing a remote inclusion, incorporates a compulsory (#REQUIRED)

attribute named href through which the location that is being pointed to is

specified:

59: <!ELEMENT xinc:include EMPTY>

60: <!ATTLIST xinc:include href CDATA #REQUIRED>

At this stage the expressive power of the DTD format has been exhausted –

the href attribute is simply defined using the term CDATA which is completely

generic.

In the context of PVML the href parameter needs to define the location of

another value element – in other words the pointer, points to some data.

The general format of such a definition would be:

filename#xpointer(id(idvalue))

The keyword xpointer means that within the ‘file’ specified the filename a

location will be described using XPath [113] syntax. XPath provides an

extensive syntax through which sub-sections of an XML document can be

defined. In the case of the PVML ptr, an extremely restricted subset of

XPath is used – namely the id() statement, through which an XML node,

in a given document, can be identified by an id.

6 The head of the XML document, in other words each PVML fragment, includes
the declaration xmlns:xinc="http://www.w3.org/2001/XInclude" . The effect of
this definition is to force appropriate expansion of XML elements that are
preceded by ‘xinc:’ // STYLE TO FULL SIZE???

 192

For this style of reference to succeed, the DTD must include an element

definition of type ID – as has been described in the previous section.

The effect of this syntax is to provide two levels at which data can be pointed

to:

- filename provides an outer level. The PVML stream, that contains

the location being pointed to, is not written to the target or engine

file-system at any point. Thus the filename field will never contain

an actual filename. Instead an id value will be used. The target and

engine drivers will resolve this reference among stored, top-level,

PVML value blocks – each of which will contain the compulsory

id entry.

- idvalue provides an inner level of referencing that will function

within a value block and refer to a value element that is nested

within the top-level value block.

These two levels of representation map directly to the fundamental operations

that flow between a PVML target and engine.

A typical user (novice programmer) will select data items whose values are to

be monitored in the visualisation. These values may, or may not, include other

data values. The PVML data request, through which the changed values are

returned to the engine, consists of a top-level value element along with

possible included value elements to an arbitrary level of nesting. The

entire population of value elements, known to the engine, hence falls into

these two categories of top-level and subsidiary elements. The decision to

preserve this distinction in remote references is based on efficiency

considerations.

 193

Pointer Example

This section presents a concrete example of the PVML representation of

data references. The scenario presented is the linked list example that has

been shown earlier in the general discussion of data representation in

procedural languages (Section 6.6.3). For convenience the illustration of the

representation of a linked list in DDD is repeated below.

Figure B-5 Data Structure Visualisation in DDD. Reproduced from [28].

The PVML representations of two aspects is presented:

- The first item in the list

This is labelled ‘2: *list’ in Figure B-5. This data structure includes

three members. The value field, which is equal to 85, is assumed

to be stored as an 8 byte integer. The self field is a self-referential

pointer – the PVML representation of which is omitted for

clarity. The next field, a pointer to the next item in the list, is

shown as an example of the PVML ptr representation.

- Sub item reference

The resolution of a ptr reference to a sub item in the list –

namely an explicit reference to the next field in the second list

item.

 194

Fi r s t i t em i n l i s t

The PVML data request shown in Figure B-6, represents the first item in the

list, identified as ‘2: *list’ in Figure B-5. The visual consequence of this

request would be subject to the respresentational decisions of the visualiser

role but typically might be similar to that in the DDD screen shown above.

This data request would be sent by the target as a result of a request to

watch this location or possibly a subsequent change in the data value at this

location.

The notation used to refer to the type of the pointer is worthy of discussion.

The notation ‘*list’ is a programming language dependent string that has

been provided by the target though interaction with the underlying debugger.

In the engine context this is no more that a label that may, at some later point,

be passed back to the target.

Figure B-6 PVML description of first item in list

<pvml xmlns:xinc="http://www.w3.org/2001/XInclude">

 <request>

 <data>

 <value id="x804ab78">

 <type>list</type>

 <value id="x804ab78">

 <type>int</type>

 <varname>value</varname>

 <val>85</val>

 </value>

 . . . representation of “self” omitted

 <value id="x804ab84">

 <type>*list</type>

 <varname>next</varname>

 <val>

 <ptr>

 <xinc:include href="x804ab88"/>

 </ptr>

 </val>

 </value>

 </value>

 </data>

 </request>

</pvml>

The xinc: namespace declaration causes the XML parsers to
expand elements that include an xinc: designation.

Each value element includes an id which, on the
target, can be interpreted as a memory location

Type, value and name of some data. A data value as
opposed to a data reference

A value that is, in
fact, a data
reference

The pointer to another top-level
value element. The href attribute
is used as a index into stored, top-
level, value nodes

 195

Sub - i t em r e f e r e n c e

The PVML data request shown in Figure B-7, represents the next field in

the second item in the list. This list item is identified as ‘3: *list->next’

in Figure B-5 and the PVML shown refers to the next field at that location.

As before, the visualiser ultimately would control consequence of this

request, but the item being watched in this instance is a single pointer value.

The PVML in this example represents what is in effect, a pointer to a

pointer and hence is of an appropriate type – ‘**list’. Type names are

subject to warning already made concerning their relevance in target and

engine.

Figure B-7 PVML description of next pointer

Pointer Arithmetic

It is common in languages that make use of pointers for operations, known

as pointer arithmetic, to be performed on those pointers. The language

compiler enforces a view of pointers that preserves their relationship to the

storage of data, of the type for which the pointer has been declared. For

<pvml xmlns:xinc="http://www.w3.org/2001/XInclude">

 <request>

 <data>

 <value id="x804cd26">

 <type>**list</type>

 <val>

 <ptr>

 <xinc:include href="x804ab98#xpointer(id(‘x804aba4’)”/>

 </ptr>

 </val>

 <name>example</name>

 </value>

 </data>

 </request>

</pvml>

This pointer to a pointer example is stored in a variable
at an arbitrary location

A lower-level pointer
reference. In this case the
id is that of the next
field within the list
element. Note how XML
uses single & double
quotes to resolve the
issue of ‘quotes within
quotes’

Target debugger derived representation of the
data type of this variable

The pointer to another top-level
value element. In this case it is the
second element in the list shown in
the diagram

 196

example adding ‘1’ to a pointer to a list structure does not increment a

machine address by ‘1’ – instead the pointer value is incremented by the

number of bytes occupied in memory by one additional list structure.

Visualisation of a program that includes such pointer arithmetic requires

PVML to include a means to describe arbitrary offsets from given pointer

values.

To assess the need for PVML to represent pointer arithmetic it is necessary

to consider the three circumstances under which PVML data

representations are required to be sent, in either direction, between a target

and an engine as set out in the introduction to Appendix B.

Con t e n t o f a n a s yn c h r on ou s r e q u e s t

The target is sending updated data to the engine, in this instance as a result

of some pointer arithmetic having occurred. This arithmetic has caused

changes in the value of data that is already being represented in ptr

elements.

The updated href values will be sent to the engine. It is possible that these

new values may not reference data of which the engine currently has a

representation. In this case the visualiser must arrange that a read request is

sent in order to retrieve the required data.

Con t e n t o f a s yn ch r o n ou s r e s p on s e

The engine has requested data from the target with a read request and the

target is responding. Pointer arithmetic needs to be considered if the

visualiser sets out to offer the user functionality that enables them to request

to view data at an offset from an existing pointer.

This functionality is provided in PVML by including an optional modifier in

the definition of the ptr element:

 197

31: <!ELEMENT ptr (xinc:include, mod?)>

The operation requested though this element is implemented at the target and

can be any legal operation supported by the debugger as the example below

illustrates.

Figure B-8 Reading at an offset from a pointer

Param e t e r t o a r e qu e s t

In this case the engine is making a write request in order to modify data in

the target program. Similar reasoning applies to the ptr element of this

request as to the read request described above.

<read>

 <ptr>

 <xinc:include href="x804ab88"/>

 <mod>+7</mod>

 </ptr>

</read>

 198

A p p e n d i x C

SOURCE CODE REPRESENTATION IN PVML

In order to support such features as the pretty printing of source code and

source expression stepping the source code must be sent from the target to

the engine as a hierarchical structure derived from the parse tree of the

program. The ability of the target to provide this information will depend

on the extent and type of language support available to the underlying

debugger.

There have been three levels of support identified in the process of

developing the reference targets against which PVML has been evaluated:

- Level 1

A level 1 target is unable to provide any hierarchical

representation of the source code. In this context the only view of

the source code that can be provided will be entirely plain text.

- Level 2

A level 2 target has access to the program parse tree and hence

can deliver a hierarchical representation of the source code as

described in this appendix.

- Level 3

A level 3 target has access to structures that link source

expressions to machine code locations. The combination of these

associations, and a hierarchical representation that identifies

source expressions, is sufficient to support source expressions

stepping.

 199

Flat Representation

In order to encode arbitrary text, such as a program listing, in XML a means

must be devised to manage the reserved characters of the XML language –

such as ‘>’ and ‘<’. XML provides a mechanism for ‘escaping’ these specific

characters to permit them to passed explicitly in an XML stream but use of

this mechanism would require the source code to be parsed at target and

engine. The alternative, used for level 1 PVML, is to ‘escape’ the entire

source code as a block using the XML CDATA construct.

Hierarchical Representation

The hierarchical representation of PVML used in level 2 & 3 operation

makes use of a number of ‘complex types’ defined in the DTD. These types

are described below. The line numbers reference the DTD in Appendix D.

- 32: source (rawsource | block* | line+)

The code response makes use of a source parameter to transmit

the program source code and this parameter may consist of a

rawsource block (in the level 1 case) or else a number of lines

and blocks of code. There must be at least one line of code (as

defined by the ‘+’) but there may be zero occurrences of block

(‘*’)

- 27: block (line+)

A block of source code consists of one or more lines of code.

- 30: line (num, (expr* | identifier* | literal* |

keyword* | tag* | decl* | comment))

A line of source code consists of a line number followed by zero

or more occurrences of various syntactic elements. The elements

that are considered significant are those that may play some part

in subsequent processing at the engine.

 200

- 50: num

Source line numbers are enclosed in a num element. PVML

sends no data at all for blank lines. The engine must regenerate

these at display time.

- 29: expr

Expressions are tagged, in level 3 PVML, in order that source

expression stepping can be supported. A level 3 engine will be

able to highlight the currently executing expression based on the

regions tagged with expr.

- 45: identifier

48: literal

46: keyword

38: comment

In the engine special typographical representations that represent

distinct syntactic components in the program source code is

based on these tags.

- 40: decl

Variable declarations are explicitly tagged to assist the engine in

determining variable scope. The visual representation of whether

or not a particular variable is in a ‘watched’ state depends of the

engine being able to distinguish variables of the same name, in

different scopes. The engine can identify variables through the

decl tag which draws attention to their declaration.

 201

A p p e n d i x D

PVML DOCUMENT TYPE DEFINITION

This appendix presents the DTD for PVML. In the interest of clarity the

comments in this file have been shown in bold text, though normally a

DTD would consist of plain ASCII text. The line numbers have been added

to facilitate cross referencing.

 202

1 <!--pvml.dtd Version 0.2 Supports watching of variables-->

2 <!ELEMENT pvml (request | response) >

3 <!ELEMENT request (run| next | step | cont | break | list | query |

watch | save | file | compile | frame | data) >

4 <!ELEMENT response (code | location | breakresp | pvmlinfo)>

5 <!--Requests - To target -->

6 <!ELEMENT break (filename, linenumber)>

7 <!ELEMENT cont EMPTY >

8 <!ELEMENT file (path)>

9 <!ELEMENT list (filename)>

10 <!ELEMENT next EMPTY >
11 <!ELEMENT query EMPTY >
12 <!ELEMENT read ((filename, linenumber, varname)|ptr)>
13 <!ELEMENT run (appname)>
14 <!ELEMENT save (pathname, source)>
15 <!ELEMENT step (numstep?) >
16 <!ELEMENT watch (stat, ((filename, linenumber, varname)| ptr))>
17 <!ELEMENT write (((filename, linenumber, varname)| ptr), value)>
18 <!--Requests - From target -->
19 <!ELEMENT data (filename, linenumber, varname, value)>
20 <!ELEMENT frame (direction)>
21 <!--Responses – From target -->
22 <!ELEMENT code (pvmllevel, filename, source)>
23 <!ELEMENT breakresp (set)>
24 <!ELEMENT location (filename, linenumber)>
25 <!ELEMENT pvmlinfo (debugger)>
26 <!--Complex types -->
27 <!ELEMENT block (line+) >
28 <!ELEMENT decl (identifier |)>
29 <!ELEMENT expr (identifier* | literal* | keyword* | tag*)>
30 <!ELEMENT line (num, (expr* | identifier* | literal* | keyword* |

tag* | decl* | comment))>

31 <!ELEMENT ptr (xinc:include, mod?)>
32 <!ELEMENT source (rawsource | block* | line+)>
33 <!ELEMENT value (type, varname?, (eoc | val* | value*)>
34 <!ATTLIST value id ID #REQUIRED>
35 <!ELEMENT val (#PCDATA | ptr)>

Continued on Page 203

 203

36 <!--Basic elements -->
37 <!ELEMENT appname (#PCDATA) >
38 <!ELEMENT comment (#PCDATA) >
39 <!ELEMENT debugger (#PCDATA) >
40 <!ELEMENT decl (#PCDATA) >
41 <!ELEMENT direction (#PCDATA)>
42 <!ELEMENT eoc (#PCDATA)>
43 <!ELEMENT filename (#PCDATA) >
44 <!ELEMENT id (#PCDATA)>
45 <!ELEMENT identifier (#PCDATA) >
46 <!ELEMENT keyword (#PCDATA) >
47 <!ELEMENT linenumber (#PCDATA) >
48 <!ELEMENT literal (#PCDATA) >
49 <!ELEMENT mod (#PCDATA) >
50 <!ELEMENT num (#PCDATA) >
51 <!ELEMENT numstep (#PCDATA) >
52 <!ELEMENT pvmllevel (#PCDATA) >
53 <!ELEMENT rawsource (#PCDATA)>
54 <!ELEMENT set (#PCDATA) >
55 <!ELEMENT stat (#PCDATA) >
56 <!ELEMENT tag (#PCDATA) >
57 <!ELEMENT type(#PCDATA)>
58 <!ELEMENT varname (#PCDATA)>
59 <!ELEMENT xinc:include EMPTY>
60 <!ATTLIST xinc:include href CDATA #REQUIRED>

 204

A p p e n d i x E

XML PARSERS

There are two fundamentally distinct approaches to parsing XML

documents – the Simple API for XML (SAX) and the Document Object

Model (DOM). This appendix describes the difference in these two

approaches in order to inform the discussion of parsing the PVML stream.

Simple API for XML (SAX)

SAX [114] is described as an event-based API and treats an XML document as

a stream of text. As the stream of text is consumed, starting at the beginning

of the document, the SAX libraries generate a series of events that an

application program can receive and process. These events correspond, for

example, to the opening and the closing of tags in the document. A

document, which could be arbitrarily large, is seen by the application

program as a series of events and there is no necessity to store the entire

document in any internal structures of the program.

This is considered the main advantage of SAX. If the task being

implemented is one that does not require access to the entire structure of

the document, for example searching for a particular element, then it could

be considered an unwarranted overhead to build up a complete description

of the document structure within the application. The PVML stream cannot

usefully be processed sequentially in this way. The persistent representation,

in the engine, of target source and data needs to be in a form that is not far

removed from the hierarchical XML structure so that the discarding of that

structure, that is fundamental to SAX parsing, would be a negative feature.

 205

A positive feature of SAX parsing however is the event-based architecture

which allows access, through programmer supplied routines, to the lowest

levels of processing of the source document.

Document Object Model API (DOM)

The DOM [117] API for XML reads an entire document into memory

before exposing the XML document to programmatic manipulation. With

the entire, hierarchical, structure of the document available to the

application the range of manipulations that can be supported is greatly

extended. DOM will permit any section of the document to be viewed and

even deleted or modified.

The engine can make good use of DOM based representations in order to

store and manipulate the PVML transmitted representations of the program

source code and regions of data.

A drawback to using the DOM parser is that there is no mechanism

available in this framework through which the programmer can over-ride

the default, low-level processing. A DOM parser will succeed completely or

else fail to parse some region of its input. There is no provision for

modifying the low level behaviour of the parser on an element by element

basis.

Combined Parsing

The descriptions above of SAX and DOM parsing clearly identify positive

aspects of both. On the one hand the output of a DOM parser is useful for

subsequent manipulations whilst on the other hand a SAX parser exposes

low-level element parsing to programmatic intervention.

The PVML parser uses an approach that can benefit from both these

features. The requirement to proceed in this way arises due to the inability

 206

of the DOM parsing routines to sensibly manage empty nodes in an XML

document. An empty node can arise when an additional newline character is

inserted into an output stream. The DOM parsing routines, even if

configured to ignore whitespace, treat this as an additional node in the

output tree. The result is a DOM tree that is semantically correct but very

difficult to work with due to the number of addition, empty nodes.

A SAX parser can, through a programmer-provided implementation of the

characters() routine (the event handler that is called by the SAX parser

for each group of characters) sanitise the input, removing any empty node

definitions.

This event handler can be written in such a way that the sanitised output is

written into a DOM tree. Figure E-1 shows the characters() handler that has

been provided in the PVML parser. The variable db in this routine

represents the DOM tree representation that is progressively being built.

The routine, that is called for each additional block of characters that the

SAX parser sees, uses the variable stripNewLine to control the removal of

extra newline characters from the data that is written to the DOM. The

resulting DOM is guaranteed to be clear of any empty nodes.

 207

Figure E-1 SAX Parser character() handler

public void characters (char ch[], int start, int length)

 throws SAXException{

 int stripNewline = 0;

 if(length >= 1 && ch[start] == '\n')

 stripNewline |= 1;

 if(length > 1 && ch[start+length-1] == '\n')

 stripNewline |= 2;

 switch(stripNewline){

 case 0: //No newlines

 db.characters(ch, start, length);

 break;

 case 1: //Newline at start

 if(length != 1)

 db.characters(ch, start+1, length-1);

 break;

 case 2: //Newline at end

 db.characters(ch, start, length -1);

 break;

 case 3: //Newline at start and end

 db.characters(ch, start=1, length -2);

 break;

 }

 }

Deleted: 10-9

 208

BIBLIOGRAPHY

1. Anderson, J. and Reiser, B. (1985). “The LISP Tutor” Byte, 10(4) pp
159-175.

2. Armenise, P., Bandinelli, S,.Ghezzi, C. and Morzenti, A. (1992).
Software Process Languages: Survey and Assessment, In Proceedings
of the Fourth Conference on Software Engineering and Knowledge
Engineering, Capri, Italy.

3. Ashby, G., Salmonson, L. and Heilman, R. (1973). Design of an
interactive debugger for FORTRAN:Mantis, Software-Practice and
Experience 3(1), pp 65-74.

4. Baeker, R. and Sherman, D. (1981). Sorting out Sorting, SIGRAPH
Video Review 7.

5. Baeker, R.M. and Marcus, A. (1990). Human Factors and
Typography for More Readable Programs, ACM Press, Addison-
Wesley, Reading, Mass., USA.

6. Baskerville, D.B. (1985). Graphic Presentation of Data Structures in
the DBX Debugger, Technical Report UCB/CSD 86/260,
University of California, Berkeley, CA, USA.

7. Bentley, J. and Kernighan, B. (1987). A System for Algorithm
Animation: Tutorial and User Manual, Computing Science Technical
Report 132, AT&T Bell Laboratories.

8. Borning A. (1981). The Programming Language Aspects of
ThingLab, a Constraint-Oriented Simulation; Laboratory, ACM
Transactions on Programming Languages and Systems 3(4), pp 353-
387.

9. Borning, A., Freeman-Benson, B. and Wilson, M. (1992). Constraint
Hierarchies, Lisp and Symbolic Computation 5, pp 223-270.

10. Boroni, C.M., Goosey, F.W., Grinder, M. and Ross, R.A. (1998). A
Paradigm Shift! The Internet, the Web, Browsers, Java, and the
future of Computer Science Education, SIGCSE Bulletin, 30(2),
pp 145-152.

11. Boroni, C.M., Goosey, F.W., Grinder, M., .Rockford J. and
Wissenbach, P. (1997). WebLab! A Universal and Interactive
Teaching, Learning, and Laboratory Environment for the WWW,
SIGCSE Bulletin, 29(1), pp 199-203.

12. Boudier, G., Gallo, F., Minot, R. and Thomas, I. (1989). An
Overview of PCTE and PCTE+, ACM SIGSOFT Software
Engineering Notes, 13(5), pp 248-257.

 209

13. Bray, T., Paoli, J., and Sperberg-McQueen, C.M. (1998). Extensible
Markup Language, http://www.w3.org/TR/1998/REC-xml,
Accessed 28/3/2003.

14. Brown, M.H. (1988). Exploring Algorithms using Balsa-II, IEEE
Computer, 21(5), pp 14-36.

15. Brown, M.H. (1988). Perspectives on Algorithm Animation, In
Proceedings of the CHI '88 conference on Human Factors in
Computing Systems, ACM Press, New York, pp 33-38.

16. Brown, M.H. (1991). Zeus, A System for Algorithm Animation and
Multi-View Editing, In Proceedings of IEEE Workshop on Visual
Languages, New York: IEEE Computer Society Press, pp 4-9.

17. Brown, M.H. (1992). A System for Algorithm Animation, Computer
Graphics, 18(3), pp177-186.

18. Crawford, R. H , Olsson, R. A. , Ho, W. W. and Wee, C. E. (1995).
Semantic issues in the design of languages for debugging,
Computer Languages, 21(1), pp 17-37.

19. Cunningham, W., and Beck, K (1986). A Diagram for Object-
Oriented Programs, In Proceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA'86), Portland, Oregon, USA, pp 361-367.

20. Di Maio, A., Ceri, C. and Crespi Reghizzi, S (1985). Execution
monitoring and debugging tool for Ada using relational algebra,
ACM SIGAda Ada Letters, V(2), pp 109-123.

21. Domingue, J., Price, B.A. .and Eisenstadt, M., (1992). A Framework
for Describing and Implementing Software Visualization Systems.
In Proceedings of Graphics Interface 92 Conference, May 1992,
Vancouver, Canada, Canadian Information Processing Society,
Toronto, Canada, pp 53-60.

22. Duisberg, R.A. (1986). Constraint Based Animation: Temporal
Constraints in the Animus System, UW CSE Technical Report,86-
09-01, University of Washington, Computer Science &
Engineering, Seattle, WA, USA.

23. Eisenstadt, M. and Brayshaw, M. (1988). The Transparent Prolog
Machine (TPM); an execution model and graphical debugger for
logic programming, Journal of Logic Programming 5(4), pp. 1-66.

24. Eisenstadt, M., Domingue, J., Rajan, T. and Motta, E. (1990). Visual
Knowledge Engineering, IEEE Transactions on Software
Engineering, Special Issue on Visual Programming 16(10), pp 1164-
1177.

25. Ellshof, I.J.P. (1989). A distributed debugger for Amoeba. In
Proceedings of the ACM SIGPLAN and SIGOPS Workshop on

 210

Parallel and Distributed Debugging, May 5-6, 1988, University of
Wisconsin, Madison, Wisconsin. ACM SIGPLAN Notices 24(1),
January 1989, pp 1-10

26. Emmerlich, W., Mascolo, M. and Finkelstein, A. (2000).
Implementing Incremental Code Migration with XML, In
Proceedings of. 22nd International Conference on Software
Engineering (ICSE2000), Limerick, Ireland, June 2000. ACM
Press pp 397-406.

27. Free Software Foundation (2003). The GNU Compiler Collection,
GNU Project - Free Software Foundation (FSF),
http://gcc.gnu.org. Accessed 16/3/2003.

28. Free Software Foundation (2000). Displaying Data, Debugging
with DDD,
http://www.gnu.org/manual/ddd/html_mono/#Displaying%20Va
lues. Accessed 20/3/2003.

29. Free Software Foundation (2002). DDD - Data Display Debugger,
GNU Project - Free Software Foundation (FSF),
http://www.gnu.org/software/ddd. Accessed 20/3/2003.

30. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley.

31. Garlan, D. and Ilias, E. (1990). Low-cost, adaptable tool integration
policies for integrated environments, ACM SIGSOFT Software
Engineering Notes, 15(6) pp. 1-10.

32. Golan, M., Hanson, D.R. (1993). DUEL - A Very High-Level
Debugging Language. In Proceedings of USENIX Winter
Conference, San Diego, USA, pp 107-117.

33. Goldberg, A. (1994). Smalltalk-80; the Interactive Programming
Environment, Addison-Wesley, Reading, Mass., USA.

34. Goldenson, D.R. (1989). The Impact of Structure Editing on
Introductory Computer Science Education, ACM SIGCSE
Bulletin, 21(3), pp 26-29.

35. Grisham, R. (1971). Criteria for a debugging language. In Debugging
Techniques in Large Systems, Ed. R. Rustin, Prentice Hall, pp 57-75.

36. Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Terasvirta, T. and
Vanninen, P. (1977). Animation of user algorithms on the Web,
Proceedings Visual Languages '97, IEEE Symposium on Visual
Languages, IEEE 1997, pp 360-367.

37. Haibt, L.M. (1977). A Program to Draw Multi-Level Flowcharts.
In Proceedings of the Western Joint Computer Conference, San
Fransisco, 1959, pp 131-137.

 211

38. Hanson, D.R. and Korn,J.L (1977). A simple and extensible
graphical debugger. In Proceedings of the USENIX Annual
Technical Conference, January 1997, Anaheim, California pp 163-
174.

39. Hanson, D.R. and Raghavachari, M. (1996). A Machine-
Independent Debugger, Software—Practice and Experience, 26
(11), pp 1277-1299.

40. Helttula, E., Hyrskykari, A. and Raiha, K.-J. (1989). Graphical
Specification of Algorithm Animations with ALADDIN. In
Proceedings of the 22nd Hawaii International Conference on System
Sciences, January 1989, Kailua-Kona, Hawaii,. pp 892-901.

41. Hendrix, D., Barowski, L. and Cross, J. (1997). A Visual
Development Environment for Multi-Lingual Curricula, SIGCSE
Bulletin, 29(1), pp 22-24.

42. Henry, R.R.,Whaley, K.M. and Forstall, B. (1990) The University of
Washington Illustrating Compiler, SIGPLAN Notices, 25(6), pp
223-233.

43. Hyrskyakari, A. and Raiha, K.J. (1987). Animation of algorithms
without programming. In Proceedings 1987 Workshop on Visual
Languages, IEEE Computer Society, Linkoping, Sweden, pp. 40-
54.

44. Internet Engineering Steering Group (1982). Standard For The
Format Of ARPA Internet Text Messages,
http://www.rfc.net/rfc822.html. Accessed 30/3/2003

45. JavaSoft. (1999). Java Remote Method Invocation (RMI),
http://java.sun.com/products/jdk/1.2/docs/guide/rmi. Accessed
12/1/2003.

46. Jimenez-Peris, R., Pareja-Flores, C., Patino-Martinez, M. and
Valazquez-Iturbide, J.A. (1996). Graphical Visualization of the
Evaluation of Functional Programs. In Proceedings of the ACM
ITiCSE Conference. June 1996, Barcelona, Spain, pp 36-38.

47. Jimenez-Peris, R., Patino-Martinez, M. and Velazquez-Iturbide, J.A.
(2000). Towards Truly Educational Programming Environments.
In Computer Science Education in the 21st Century, Ed
T.Greening, Springer-Verlag , pp 81-112.

48. Johnson, M.S. (1977). The Design of a High-Level Language-
Independent Symbolic Debugging System. In Proceedings of the
ACM Annual Conference, October 1977, Seattle, WA, USA, pp
315-322.

49. Johnson, M.S. (1982). Some requirements for architectural support
of software debugging. In Proceedings of the first international

 212

symposium on Architectural support for programming languages and
operating systems, March 1982, Palo Alto, California, USA, pp 140-
148.

50. Jones, O. (1988). Introduction to the X Window System, Prentice
Hall Professional Technical Reference.

51. Jonson, W. E. and Soloway, E. (1985). PROUST: Knowledge-Based
Program Understanding, IEEE Transactions. on Software
Engineering, 11(3), pp 11-19.

52. JTB, “JTB: The Java Tree Builder Homepage” in
http://www.cs.purdue.edu/jtb/ (2003)???

53. Karlund, N., Moller, A. and Schwartzbach, M.I. (2000). DSD: A
Schema Language for XML. In Proceedings 3rd ACM Workshop
on Formal Methods in Software Practice, 2000, Portland, OR, USA,
pp 101-111.

54. Kernighan, B.W and Pike, R. (1984). The UNIX Programming
Environment, Prentice-Hall Inc.

55. Kernighan, B.W. and Ritchie, D.M. (1978). The C Programming
Language, Prentice-Hall Inc, p24

56. Knuth, D.E. (1984). Literate Programming, Computing, 27(2), pp
97-111

57. Kolling, M. and Rosenberg , J. (1996). An Object Oriented Program
Development Environment for the first programming course. In
Proceedings of the 27th SIGCSE Technical Symposium on
Computer Science Education, February, 1996, Philadelphia, PA,
USA, pp 83-87.

58. Mancoridis, S., Holt, R. and Penny, D. (1993). A Curriculum-Cycle
Environment for teaching programming. In Proceedings of the
twenty-fourth SIGCSE technical symposium on Computer science
education, February 1993, Indianapolis, Indiana, USA, pp15-19.

59. Mattern,F. and Sturm, P. (2003). From Distributed Systems to
Ubiquitous Computing - The State of the Art, Trends, and
Prospects of Future Networked Systems. In Proceedings of KIVS
2003 (Kommunikation in Verteilten Systemen), February 2003,
Leipzig, Germany, Springer-Verlag, pp 3-25.

60. McDowell, C.E., Helmbold , D.P. (1989). Debugging concurrent
programs, ACM Computing Surveys (CSUR), 21(4) pp 593-622.

61. Microsoft (2003). .NET Framework Home Page,
http://msdn.microsoft.com/netframework/. Accessed 6/4/2003.

 213

62. Microsoft (2003). COM+ Reference, MSDN Library,
http://msdn.microsoft.com/library/en-
us/cossdk/htm/cosreftoplevel_65r9.asp. Accessed 15/3/2003

63. Microsoft (2003). Programming Language Partners, MSDN Library,
http://msdn.microsoft.com/vstudio/partners/language/default.asp.
Accessed 6/4/2003.

64. Microsoft (2003). Visual Studio Debugger Object Model, MSDN
Library,
http://msdn.microsoft.com/library/default.asp?url=/library/ en-
us/vsdebugext/html/vxoriDebuggerObjectModel.asp. Accessed
6/4/2003

65. Mukherjea, S. and Stasko, J. (1994). Toward Visual Debugging:
Integrating Algorithm Animation Capabilities within a Source
Level Debugger, ACM Transactions on Human Computer
Interaction, 1(3), pp 215-344.

66. Mulholland, P. (1997). Using a fine-grained comparative evaluation
technique to understand and design software visualization tools. In
Empirical Studies of Programmers: Seventh Workshop, New York:
ACM Press, pp 91-108 .

67. Myers, B.A. (1983). Incense: A System for Displaying Data
Structures, ACM SIGRAPH, 17(3), pp 115-125.

68. Myers, B.A. (1986). Visual Programming, Programming by
Example, and Program Visualisation: A Taxonomy. In Proceedings,
CHI '86: Human Factors in Computing Systems, 1986, Boston,
MA, pp 59-66.

69. Myers, B.A., Chandhok, R. and Sareen, A. (1988). Automatic data
visulization for novice Pascal programmers. In Proceedings of
IEEE Workshop on Visual Languages, October 1988, Pittsburgh,
PA, USA, pp 192-198

70. Myers, B.A., Miller, R.C., McDonald, R. and Ferrency, A. (1996).
Easily adding Animations to Interfaces Using constraints. In
Proceedings of the ACM SIGGRAPH Symposium, Seattle, WA, pp.
119-128.

71. Naps, T., et al. (1997). Using the WWW as the delivery mechanism
for interactive, visualization-based instructional modules, Report of
the ITiCSE '97 working group on visualization, ITiCSE-WGRSP
'97, pp. 31-26

72. Norman D.A. (1983). Some observations on mental models. In D.
Gentner, A. Stevens (eds.) Mental Models, Lawrence Erlbaum
Associates, Hillsdale NJ, USA, pp 7-14.

 214

73. Notkin, D. (1988). The Relationship Between Software
Development Environments and the Software Process. In
Proceedings of the third ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software development
environments,1988 , Boston, MA, USA, pp 107-109.

74. OASIS (2001). Bioinformatic Sequence Markup Language (BSML),
Organization for the Advancement of Structured Information
Standards, http://xml.coverpages.org/bsml.html. Accessed
2/4/2003.

75. OASIS (2002). Chess Markup Language (ChessML), Organization
for the Advancement of Structured Information Standards,
http://xml.coverpages.org/chessML.html. Accessed 2/4/2003.

76. OASIS (2003). XML Applications and Initiatives, Organization for
the Advancement of Structured Information Standards,
http://xml.coverpages.org/xmlApplications.html. Accessed
2/4/2003.

77. OASIS, (2001). Taxonomic Markup Language, Organization for
the Advancement of Structured Information Standards,
http://xml.coverpages.org/taxonomicML.html. Accessed 2/4/2003

78. Olsson, R.A.; Crawford, R.H.; Ho, W.W.; Wee, C.E. (1991).
Sequential debugging at a high level of abstraction, IEEE
Software, 8(3), pp 27-36.

79. OMG (1997). CORBA™/IIOP™ Specification, OMG
Documents,
http://www.omg.org/technology/documents/formal/corba_iiop.htm.
Accessed 1/2/2003.

80. OMG (2002). XML Metadata Interchange, OMG Documents,
http://www.omg.org/technology/documents/formal/xmi.htm.
Accessed 2/4/2003.

81. Ousterhout ,J.K. (1990). Tcl: An embeddable command language.
In Proceedings Winter USENIX Conference, Berkeley, CA, USA,
pp 133-146.

82. Price, B.A. and Baecker, R.M. (1991). The Automatic Animation of
Concurrent Programs. In Proceedings of International Workshop on
Human Computer Interaction, 1991, Moscow, USSR, pp. 128-137

83. Price, B.A., Baecker, R.M. and Small, I.S. (1993). A Principled
Taxonomy of Software Visualisation, Visual Languages in
Computing 4(3), pp 211-266

84. Ramsey, N. and Hanson, D.R. (1992). A retargetable debugger. In
Proceedings of the 5th ACM SIGPLAN conference on

 215

Programming language design and implementation, San Francisco,
CA, USA, pp 22-31.

85. Redhat, (2001). Insight Home Page -The GDB GUI,
http://sources.redhat.com/insight. Accessed 21/1/2003

86. Rich, C. and Waters, R.C. (1987). The Programmer's Apprentice
Project: A Research Overview, IEEE Computer, 21(11), pp 10-25.

87. Roman, G.C. and Cox, K. (1989). A Declarative Approach to
Visualising Concurrent Program Execution, Computer,22(10), pp
25-36.

88. Roman, G.C. and Cox, K. (1993). A Taxonomy of Program
Visualisation Systems, Computer, 26(12), pp 11-24.

89. Roman, G.C. and Cox, K.C. (1992). Program Visualization: The Art
of Mapping Programs to Pictures. In Proceedings of the 14th
international conference on Software engineering, May 1992,
Melbourne, Australia, pp.412-420.

90. Roman, G.C., Cox, K., Wilcox, C. and Plun, J. (1992). Pavane: A
System for Declarative Visualisation of Concurrent Computations,
Visual Languages and Computing, 3(1), pp 161-193.

91. Roman, G.C., Cox, K., Wilcox, C. and Plun, J. (1992). Pavane: A
System for Declarative Visualisation of Concurrent Computations,
Technical Report WUCS-92-40, Department of Computing
Science, Washington University, Saint Louis, MO, USA.

92. Rutherford, A. and Wilson J.R. (1991). Models of Mental Models:
An Ergonomist Psychologist Dialogue. In D. Ackerman and M.
Tauber (eds.), Mental Models In Human-Computer Interaction,.
Amsterdam: North-Holland.

93. Sandewall, E. (1978). Programming in an Interactive Environment:
The LISP Experience” in ACM Computing Surveys, 10(1), pp 35-
71.

94. Scanlan, D. A. (1989). Structured flowcharts outperform pseudo
code: an experimental comparison, IEEE Software,. 6(5), pp 28-36.

95. Smith, P. A. and Webb, G. I. (2000). The Efficacy of a Low-Level
Program Visualisation Tool for Teaching Programming Concepts
to Novice C Programmers, Journal of Educational Computing
Research, 22(2), pp 187-215 .

96. Sosic, R., Abramson D. (1997). Guard: A Relative Debugger,
Software - Practice and Experience, 27 (2), pp 185-206

97. Sparud, J., Nilsson, H. (1995). The Architecture of a Debugger for
Lazy Functional Languages. In Proceedings of AADEBUG'95,

 216

2nd International Workshop on Automated and Algorithmic
Debugging, May 1995, Saint-Malo, France, pp 19-34.

98. Stal, M. (2002). Web services: beyond component-based
computing, Communications of the ACM, 45 (10), pp 71-76.

99. Stallman, R.M., Pesch, R.H. (1991). Using GDB: A guide to the
GNU source-level debugger, Technical report, Free Software
Foundation, Cambridge, MA, USA.

100. Stasko, J. and Patterson,C. (1992). Understanding and
Characterizing Software Visualization Systems. In Proceedings of
IEEE Workshop on Visual Languages, Seattle, WA, USA, pp 2-10.

101. Stasko, J., Badre, A. and Lewis, C. (1993). Do algorithm animations
assist learning?: an empirical study and analysis. In Proceedings of
CHI '93. Conference on Human factors in computing systems,
January 1993, Amsterdam, The Netherlands, pp 61-66

102. Stasko, J.T. (1988). JSAMBA -- Java version of the SAMBA
Animation Program,
http://www.cc.gatech.edu/gvu/softviz/algoanim/jsamba. Accessed
2/4/2003.

103. Stasko, J.T. (1990). Tango: A Framework and System for Algorithm
Animation, IEEE Computer, 23(9), pp 27-39.

104. Stasko, J.T. (1997). Using Student-built Algorithm Animations as
Learning Aids, ACM SIGCSE Bulletin, 29(1), pp 25-29.

105. Steven, J., Chandra, P., Fleck, P. and Podgurski,.A. (2000). jRapture:
A Capture/Replay tool for observation-based testing. In
Proceedings, International Symposium on Software Testing and
Analysis, Portland, OR, USA, pp 158-167.

106. Stratton, D.H. (1999). Towards a Language and Location
Independent Novice Programming Environment. In Proceedings of
the International Conference on Computers in Education (ICCE),
November 1999, Tokyo, Japan, pp 59-66

107. Stratton, D.H. (2001). A Program Visualisation Meta-Language
Proposal. In Proceedings of the International Conference on
Computers in Education (ICCE), November 2001, Seoul, Korea,
pp 602-609.

108. Sun Microsystems (1985). RPC reference manual, Sun
Microsystems Ltd., Mountain View, California, USA.

109. Sun Microsystems (2000). The Java Platform Debugging
Architecture,
http://java.sun.com/j2se/1.3/docs/guide/jpda/jpda.html. Accessed
13/1/2003.

 217

110. Touretzky, D.S. and Lee, P. (1992). Visualizing Evaluation in
Applicative Languages, Communications of the ACM, 35(10 0, pp
49-59.

111. UCLA (2002). JavaCC Grammar Repository,
http://www.cobase.cs.ucla.edu/pub/javacc. Accessed 24/2/2003.

112. W3C (2000). XML Protocol Working Group Charter, W3C,
http://www.w3.org/2000/09/XML-Protocol-Charter. Accessed
24/2/2003.

113. W3C (2002). XML Path Language (XPath) 2.0, W3C Working
Draft, http://www.w3.org/TR/xpath20. Accessed 24/2/2003.

114. W3C (2002). Simple API for XML (SAX),
http://www.saxproject.org, Accessed 13/2/2003.

115. W3C (2002). Web Services Activity, W3C Architecture Domain
Activity Statement, http://www.w3.org/2002/ws/Activity.
Accessed 24/2/2003.

116. W3C (2002). XML Inclusions (XInclude) Version 1.0, W3C
Candidate Recommendation, http://www.w3.org/TR/xinclude.
Accessed 24/2/2003.

117. W3C (2003). The Document Object Model (DOM), W3C
Architecture Domain, http://www.w3.org/DOM. Accessed
24/2/2003.

118. W3C (2003). XML Schema, W3C Architecture Domain,
http://www.w3.org/XML/Schema. Accessed 24/2/2003.

119. Waters, R.C. (1988). Program Translation via Abstraction and
Reimplementation, IEEE Transactions on Software Engineering,
14(8), pp 1207-1229.

120. Watt, D.A. (1990). Programming Languages: Concepts and
Paradigms, Prentice Hall

121. WebGain (2000). WebGain Products : JavaCC,
http://www.webgain.com/products/java_cc. Accessed 2/4/2003

122. WebTerm (2003). WebTerm X and X Windows,
http://www.powerlan-usa.com/webtermx.html. Accessed
2/4/2003

123. WierdX (2001). WeirdX -- Pure Java X Window System Server
under GPL, http://www.jcraft.com/weirdx/index.html. Accessed
2/4/2003

124. Wine (2003). Wine Development HQ, http://www.winehq.com.
Accessed 2/4/2003

