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A PROGRAM VISUALISATION META LANGUAGE 

by David Stratton 

A program visualisation system sets out to provide visual representation of 

the execution of a target program in the hope that this will help programmers 

better understand the effect of the program code.  Despite the intuitive appeal 

of this technique there is still a lack of conclusive, empirical evidence that 

supports its efficacy.  Experimentation in this regard has been conducted 

using a variety of visualisation systems each of which incorporates a particular 

approach to visual representation and usually a particular programming 

language.  There has been little opportunity for educational and psychological 

researchers to test the effect of varying these approaches and this limitation 

arises from the monolithic nature of most program visualisation systems.  The 

proposed Program Visualisation Meta Language provides a generalised 

communication between an arbitrary executing target program and an engine 

that provides visual representations of execution. This decoupling of target 

and engine offers an increased scope for experimentation in the field. 
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C h a p t e r 1  

INTRODUCTION 

This research is concerned with the difficulties that arise when people learn 

to program computers. A novice programmer is confronted by a daunting 

learning curve, part of which is the need to acquire mental models of the 

process. It has been suggested by many authors, that the mental models of 

the novice might be aided by systems that provided visual representations of 

the program they are writing, in order to reinforce the largely text-based view 

that is prevalent. This approach, Program Visualisation (PV), has an intuitive 

appeal but its efficacy has not been conclusively and empirically 

demonstrated. 

Research into the efficacy of PV is, not necessarily, a computer science 

undertaking. Significant contributions could potentially be made by 

educational and psychological researchers but PV systems are not generally 

open to reconfiguration by non computer scientists. A visualisation system 

generally incorporates a particular approach to visual representation and 

usually a particular programming language. The opportunity for educational 

and psychological researchers to test the effect of varying these approaches is 

limited and this limitation arises from the monolithic nature of most program 

visualisation systems.   

The proposed Program Visualisation Meta Language provides a generalised 

communication between an arbitrary executing target program and an engine 

that provides visual representations of execution. This decoupling of target 

and engine offers an increased scope for experimentation in the field. 

This thesis is submitted as the major component of the research portfolio for 

this professional doctorate. 
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1.1 Background 

Computer programmers are often puzzled by the effects of the program that 

they have written.  For the novice programmer the problem is compounded 

by the fact that they usually have inadequate mental models of the entire 

programming process. To examine the behaviour of a running program 

expert programmers have historically resorted to adding lines that print 

messages or values to the screen. More sophisticated programmers might use 

a debugger to step through their program and inspect its behaviour. Neither 

of these approaches offers much help to the struggling novice whose lack of 

understanding of the programming process can often leave them confused 

and demoralised. 

An alternative, one that might seem especially attractive to novice 

programmers, is to provide some means of offering a more tangible 

representation of program execution. The hope is that pictures or sounds 

representing the state of the program will assist the development of mental 

models of the execution process.  The domain of PV has been the location 

of much research, development and effort within computing science and 

many large and complex systems have been created to provide, mainly visual, 

representations of program execution across a broad range of computer 

languages. 

Naturally enough, the development of PV systems has been accompanied by 

research into their efficacy, largely focusing on the question of whether 

novice programmers are significantly assisted by the use of PV.  Typically the 

developers of a PV system, usually university researchers, will survey the 

students who have used their system. In some cases they might conduct 

experiments in which new programming students will be exposed to 

programming pedagogy both with, and without, the PV system.  Although 

the qualitative studies have generally favoured PV the somewhat surprising 
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conclusion of the quantitative work is that it has yet to be shown, 

convincingly, that novice programmers benefit from PV. 

It is against this background that the author has formed an interest in the 

pedagogy of computer programming. In [106] the author has proposed a 

“location and programming language independent” novice programming 

environment. An argument has been presented for the provision of a 

programming environment in which the target program, the one that is being 

written and tested, is at a location that is remote from the novice 

programmer.  It has also been suggested that such an environment might 

incorporate PV features. It is the proposal to provide PV in an environment 

that is distributed, and which sets out to support programming in a variety of 

languages, that led to the initial formulation of the Program Visualisation 

Meta Language (PVML) proposal. 

1.2 Motivation 

The background described, both in terms of the author’s suggested novice 

programming environment and the significant uncertainties surrounding the 

usefulness of PV for novice programmers, together provide the motivation 

for this research. In particular the motivation with regard to the general area 

of PV research, is worthy of further explanation in this thesis. The more 

general issue of a novice environment is covered in Chapter 2. 

The question of what is, or is not, pedagogically effective is one that is 

generally addressed by researchers in the field of education and psychology.  

These researchers have learned to apply a range of statistical and 

experimental techniques and are conversant with the psychology of 

perception and the development process of mental models that students 

undergo.  Despite this the bulk of research into PV has been conducted by 

computer scientists, the designers and builders of the PV systems. In general 

the field of PV research has not been accessible to more educationally 

oriented researchers.  The closed nature of PV research relates directly to the 
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closed nature of PV systems.  A given PV system provides a particular visual 

representation of execution for a particular programming language yet 

empirical research in the field would perhaps seek to compare a variety of 

visual approaches to pedagogy amongst a cross-section of computer 

languages. 

A careful review of PV literature reveals that comparatively few researchers 

have explicitly isolated the role of visualiser. It is the role of a visualiser to 

make the potentially pedagogically significant decisions as to what form of 

visual representation will be used to represent particular programmatic 

artifacts and states. This role, most often implicitly filled by the designer of 

the PV system, is the location for precisely the pedagogical decisions that 

should be examined most closely.  Again it is the monolithic design of most 

PV systems that fails to provide satisfactory access for the visualiser role. 

The PVML proposal has the potential to decouple, or componentise, PV 

systems; introducing a strict boundary between the executing program, which 

is termed here the target, and the means of providing visual representation, 

which is referred to as the engine. By establishing this boundary, across which 

only program state information flows, it is possible for arbitrary engines to 

communicate with arbitrary targets.  A particular visualisation approach, 

represented by a PVML engine, can therefore be applied to targets 

incorporating a variety of programming languages. Alternatively novices, 

learning a particular programming language, can apply various visualisation 

engines, employing different visual metaphors, to the task of understanding 

their particular program. 

The effect of this should be to define a generic location for the activities of 

the visualiser and hence to expose PV research as an area for educational 

rather than computer specialists. Visualisation engines, that incorporate 

explicit visualiser tools and interfaces, can expect to communicate via PVML 

with a wide range of targets.  The generalisation of this access implies that 
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the effort expended in generating new and more sophisticated visualisation 

tools can expect wider access and larger markets than would otherwise be 

expected. 

The principle motivation of this work is therefore to define an open PV 

architecture that will enable a variety of visualisation schemes to interoperate 

and that will encourage the generation of PV systems and research into their 

efficacy. Ultimately this may lead to more effective pedagogy in the field of 

computer programming and hence remove a barrier to students entering the 

profession. 

Computer programs, their creation and maintenance, occupy a critical 

position in the twenty-first century economy. Programming related 

endeavours represent a substantial element within that economy, but one 

that is constrained by the supply of competent and well trained computer 

programming professionals. Helping the novice programmer in their struggle 

to engage with the field is a first step to securing that supply. 

1.3 Contribution 

The effect of a convincing definition of a Program Visualisation Meta 

Language will be to open the PV field to significant innovation.   

On the one hand programming languages that are used pedagogically, but for 

which no visualisation tools are available, can potentially be visualised by a 

range of PVML compliant visualisation engines. Providing such additional 

targets involves wrapping a debugger for the language with appropriate 

PVML drivers. If it is assumed that PV is useful for novice programmers, the 

approach becomes accessible to those learning a greater cross-section of 

languages. 

On the other hand diverse approaches to visualisation can be implemented 

in PVML compliant engines.  In particular attention can be paid to 
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configuring such engines in a manner that supports a meaningful visualiser 

role in order that non computer scientists can configure, evaluate and assess 

varied approaches to visualisation.  This has the potential, perhaps, to lead to 

some better answers to the question “Does PV help novice programmers?” 

Although PVML has been characterised as a development that will 

encourage further research in the field, the potential encouragement that the 

decoupled architecture provides for PV software development should not be 

neglected. It has been argued that the effect of componentisation in other 

software development fields has been to encourage the growth of those 

fields. PVML represents a critical step towards the componentisation of PV 

systems and as such, a significant contribution to their future proliferation 

and development. 

1.4 Overview 

The description of the proposed Program Visualisation Meta Language is 

supported by three chapters that assess related work in the field. 

Chapter 2 examines novice programming environments in general and sets 

out to underpin the proposition that a location and language independent 

novice programming environment would be pedagogically useful. This 

represents the earlier stages of the study undertaken in this doctorate, and 

concludes by suggesting that the provision of PV features within such an 

environment would represent a significant challenge. 

Chapter 3 specifically addresses the field of program visualisation and 

examines the various approaches taken in the history of this field. PV is 

examined from various angles and special attention is paid to work that has 

set out to define taxonomies of PV systems. 

Chapter 4 addresses the predominant issue in program visualisation from the 

point of view of the PVML proposal – the decoupling of visualisation targets 
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and engines. The PV systems examined here are those which partition the 

PV problem along similar lines to that adopted by PVML. 

Chapter 5 begins with a very broad, architectural, definition of PVML and 

moves on to locate the language in the field of debugging. Given that PVML 

expressly, and only, communicates program state information the language 

could be said to have little to do with the actual visual representation that is 

generated.  This definition is central to the architecture being proposed but 

also suggests that PVML is, in fact, a means to remotely debug programs in a 

variety of languages.   

Accordingly, the proposal will also be located relative to the domain of 

heterogeneous distributed debugging. This leads to a definition of PVML as 

an imperative debugging language and to the PVML-based system being an 

abstract debugger. 

Chapter 6 develops a set of requirements for PVML that is founded upon 

this definition of the language. Working from established approaches, a set 

of core requirements is developed. Some specialised extensions to the 

language are discussed, with a view to providing support for visualisation 

features that might support the particular pedagogical challenges posed by 

specific classes of language. 

Chapter 7 describes the specific implementation of PVML that is presented in 

this thesis and justification offered for the decision to adopt an approach 

based on Extensible Markup Language (XML). The formal definition of this 

version of PVML is presented in the form of a Document Type Definition 

(DTD).  Some examples are offered illustrating how PVML can be applied to 

a variety of scenarios. 

Chapter 8 describes a significant part of the work undertaken – the creation of 

reference implementations for the target and engine between which PVML 
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flows.  A brief description is offered of the reference engine and two reference 

targets against which PVML concepts have been evaluated. 

Chapter 9 discusses and assesses the research undertaken and pays particular 

attention, given the open nature of the architecture supported by PVML, to 

future possible developments that could widen the application of the language. 
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C h a p t e r 2  

A LOCATION AND LANGUAGE INDEPENDENT NOVICE 

PROGRAMMING ENVIRONMENT 

A novice programmer may well have a formidable task ahead of them.  

Learning to program a computer involves many new conceptual hurdles and a 

possibly difficult new set of mental models. However, in many cases, the 

environments through which computers are programmed have significant 

complexities in their own right. It would seem desirable to maintain a focus, 

for the novice, on programming language skills and considerations whilst 

minimising the distractions of mastering the environment that is being used. 

Selecting or modifying a programming environment such that novice 

programmers are well supported is an acknowledged problem which this 

chapter sets out to examine.  The assertion is made that an environment that is 

location-independent, language-independent and which offers program 

visualisation features would be a useful contribution to the field.  This 

assertion will be critically examined in light of developments in the published 

literature. As will be seen, the requirement for a PVML arises in the 

specification of a programming environment that has these three 

characteristics. 

This chapter maps a context for the work that follows, which focuses more 

precisely on issues relating to PVML. An exhaustive coverage of literature 

relating to the needs of novice programmers is not attempted here – rather 

signposting is provided that leads to the areas, relating to program 

visualisation,  that are more substantially covered in later chapters. As stated in 

Section 1.2, an important motivation for this research is the provision of PV in 

a distributed, multi-language, novice programming environment. 
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2.1 Summary of motivation  

The case is made for a certain style of programming environment for novice 

programmers. Drawing from literature relating to novice programmers, the 

assertion is made that such students would benefit from an environment that 

was portable (between home and school) and that supported the learning of 

multiple programming languages. It is also asserted that inclusion of program 

visualisation features should be considered. A discussion of the evidence that 

supports this view is presented in Section 3.7. It is the suggestion of providing 

PV features in a distributed, multi-language environment, that historically, and 

architecturally, gives rise to the PVML concept.  

The specific focus, in terms of defining ‘novice programmers’, is a quest for a 

programming environment (PE) that adequately supports university first year 

– often referred to as CS1 or CS2 – programmers. To begin with, the term 

‘Software Development Environment’ is explored in general terms, before 

seeking to define the distinct aspects that might characterise a learning 

environment as opposed to a production environment. 

The needs of a novice programmer are shown to be distinct from those of a 

professional software developer. The survey presented here moves beyond the 

bounds of mainstream software development literature to address issues which 

are unique to the endeavour of teaching, and learning, programming. 

The following issues motivate the directions taken in this chapter: 

- Learning environments versus production environments 

Certain attributes of production programming environments 

render them unsuitable for the novice. At the same time 

consideration is given to features that would possibly only be used 

by a novice. 
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- Choice of programming language 

The controversial question of what makes a suitable CS1 

programming language will not be addressed. Instead 

programming environments that support several different 

languages will be examined. 

- Platform and location independence 

Programming environments can be complex to install and 

configure. The impact of this difficulty on student learning 

patterns is considered and a case made for an environment that 

transparently supports multiple locations – typically for a student, 

home and school. 

As has been noted, this chapter stops short of discussing program 

visualisation, which is the main focus of this thesis. To a large extent the 

reasoning presented here has been published by the author in [106], to which 

the interested reader is referred. 

2.2 The Software Development Environment 

With a global economy, in which the production of software plays an 

increasingly important role, it is appealing to consider software development 

environments as the ‘factories’ of the 21st century. The software development 

environment, which will be referred to here as a programming environment 

(PE), provides many levels of support to the ‘workers in code’.  

Historically the means to support software development began to mature in 

the Unix operating system [54] as a set of utilities that communicated with 

each other via text files and the notion of ‘pipes’ – a primitive form of inter-

process communication.  The consequent interoperability of discreet tools 

gave rise to programming toolkit environments with support even extending 

to entire ‘environments’ based on the integrated use of such tools [31]. 
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The increase of computing power available at the desktop, and the consequent 

development of the graphical user interface (GUI), created a shift in emphasis 

from the integration of low-level tools towards integration of the user interface 

behind which these tools operated. In this context the language based 

environment arose, in which the PE provided, within a single user interface, 

integrated access to all stages of the development process for a particular 

language. Lisp [93] and Smalltalk [33] were early beneficiaries of this approach. 

2 .2 . 1  Fea tu r e s  

It is instructive to review the types of features that might be found in a 

modern professional PE. The list of features that follows is not intended to be 

exhaustive but the breadth of aspects that may be covered is an indication of 

the importance of the PE: 

- Code writing support 

Most PE’s provide an editor that is programming language aware 

at some level. The editor might, for example, highlight the 

reserved words of the language, match closing braces with opening 

braces or check basic language syntax. 

- Code management tools 

In a large software development project many programmers are 

working concurrently on different parts of the source code. A 

mature PE needs to provide version control so that change is 

managed in a consistent manner. This support may be provided 

within the PE or as an external system with which the PE 

interacts. 
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- Tool Launching 

In the course of software development a variety of tools need to 

be used, such as a compiler, linker, profiler or debugger and the 

PE may provide an interface to these lower level tools enabling 

them to be invoked and configured from a single interface. 

- Debugging support 

The actual process of debugging may be specifically supported by 

the PE which may provide data inspection and visualisation tools. 

2 .2 . 2  So f t war e  P r o c e s s  

The software development environment is a focus of study in its own right. 

Notkin [73] discusses the relationship of PE's to the various software 

engineering paradigms and process programming languages [2] are designed to 

abstract the process and formalise the design of PE's. 

Support for a coherent development of software development tools has given 

rise to standards such as the Portable Common Tool Environment [12] which 

provides a standard for the ‘backend’ with which software development tools 

necessarily interact. 

Analysis of the software development process at this kind of level gives rise to 

programming environments that have an ever increasing level of 

sophistication. 

2 .2 . 3  Lea r n i n g  En v i r onmen t  v e r s u s  Pr od u c t i on  Env i r onmen t  

So far the discussion of PE's has focussed on the production-oriented needs 

of large software projects. In the context of this proposal attention must be 

turned to the needs of the novice programmer. 

Jimenez-Peris has suggested [47] that an environment which supports the 

process of learning to program needs to include new features, and exclude 

existing features, relative to a production oriented environment.  
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The additional inclusions are directed towards the fact that the student 

programmer requires a greater level of abstraction of program structure and 

function in order to gain insight into their efforts. They may also need more 

assistance from the environment when they need to debug and correct errors. 

Exclusion of features needs to occur in order to reduce the complexity and 

scope of the environment. For a novice the learning curve imposed by the 

development environment has the potential to eclipse the learning of a 

programming language. This can be related to the sheer size of the 

environment. Size can be quantified in terms of the complexity of the interface 

and the richness of the feature set provided by the environment. The 

Microsoft C++ development environment (not, by production standards, a 

large environment) offers the user over three hundred separate options and 

menus. 

The author’s professional experience particularly supports this line of 

reasoning.  A complex PE (Visual Age for Smalltalk – an IBM production 

development environment) was used for several years to introduce novices to 

the Smalltalk programming language. It seemed clear that, in many cases, CS1 

became a course in Visual Age rather than one in Smalltalk.  The subsequent 

adoption of the Java language, along with an environment specifically designed 

for novices, BlueJ [57], has mitigated the situation. Even so, students who are 

struggling to learn Java, still find mastering the environment a barrier. 

2.3 A Novice Programming Environment 

Given the complexity of mainstream environments, and the distinctive needs 

of the novice programmer, it is reasonable for Jimenez-Peris to have suggested 

the removal, as well as the addition, of certain features. In these terms, the 

PVML proposal constitutes a significant addition and this chapter seeks to 

elaborate upon that context – a PE that provides features that explicitly seek to 

target the novice programmer.  
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The two aspects, language and location independence, are examined separately 

since they are important aspects of the architecture into which PVML fits. 

2 .3 . 1  Ge ne r a l  F e a t u r e s  t o  Add  

Although production PE's may on occasions implement some of these listed 

features they are not considered to be central to the formal software 

development process whereas the arguments for their inclusion in a novice 

programming environment are much stronger. 

- Visualisation 

The question of program visualisation is most comprehensively 

addressed in Chapter 3 and so will not be discussed in depth here.  

- Intelligent tutors  

The help system of a complex program can be as intimidating as 

the program itself. Novices will often not know what search terms 

to use within the help system, since they lack a mental model of 

what they are trying to accomplish.  

Work has been done on help systems that embody Artificial 

Intelligence (AI) such as the Lisp Tutor [1] and Pascal-based 

Proust [51], in an effort to develop a help system that understands 

what the novice is trying to accomplish. 

- Informative Error Messages  

The novice is likely to spend more time looking at error messages 

than the professional programmer yet these messages are often 

expressed in terse, formal terms that are not helpful to novices. 

Error messages arise as a result of program syntax errors – these 

must be understood, and corrected, before an executable program 

is produced. The eventual execution may also generate error 

messages. 
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Explanations, and examples, will assist the novice but perhaps at 

the cost of execution efficiency in the PE. It has been noted [47] 

that the execution efficiency of a novice environment is of less 

relative importance. 

- Language Aware Editors 

For a novice the language aware editor, described as a generic 

feature for a PE, is particularly helpful. Through the highlighting 

of language syntax and program structure such an editor offers 

support for one of the main hurdles for a novice programmer. 

2 .3 . 2  Pr o f e s s i o n a l  F e a t u r e s  t o  R emo v e  

The simple answer as to which features of a professional PE would be 

appropriate to remove for the novice user, is ‘many’. The sheer number of 

features alone, in a professional PE, act as a deterrent to the novice 

programmer. Although Eisenstadt and Domingue [21] have argued for a 

‘cradle to grave’ PE, such an environment would need to implement multiple 

operating modes, which corresponded to differing levels of experience in the 

programmer. 

The breadth of features that may be found in a professional PE, even though 

each may be strongly argued for as an inclusion in CS1 education, have the 

combined effect of deterring novices who have yet to write their first program 

in any language. 

Features such as version management, multi module source management 

(make), group work management, software testing and specification tools 

should be removed, or at least made optional, in novice programming 

environments. 
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2 .3 . 3  Lan gua g e  In d e p e nd e n c e  

Much literature, that relates to the philosophy and pedagogy of computing 

science curriculum design, discusses programming language issues. There is 

considerable focus on the relative importance of teaching programming 

formalisms, compared with a more pragmatic approach driven by the current 

needs of the computing industry. What this leads to, at some level, is the 

choice of a first (and maybe second) programming language in computing 

degrees. 

Whilst the choice of a first programming language can colour the overall 

theoretical approach in a computing degree, the choice of a PE is a logically 

separate and less extensively discussed issue. Curricula that are ‘multi lingual’ 

(as many are) usually require students to learn to use more than one PE.  

Hendrix observes [41] that this has a tendency to lead students towards 

learning PE’s rather than programming languages The Hendrix GRASP 

environment, “constructively” supports novices in a number of programming 

languages (currently C, C++, Ada, Java and VHDL - a hardware description 

language). Constructive support in this context is the ability to syntax check 

and pretty-print the student’s source code. The key observation made by 

Hendrix is that it is “...the learning curve associated with environments, not 

languages that is the most frustrating to students”. 

An environment that supported all the languages that a student was required 

to learn, would be one with which the student would become very familiar. As 

latter languages were undertaken, the environment would become a support 

and encouragement for the language-learning process rather than a distraction. 

2 .3 . 4  Lo ca t i on  Ind e p e nd e n c e  

The other novel aspect that has been considered central to a novice 

programming environment is the delivery mechanism.  
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Novice PE's that have been developed to run on Unix or Windows. The 

assumption is always that the student is seated at a workstation on which the 

programming environment has been installed and configured. This places 

physical constraints on where the learning may take place. Prior to using the 

PE at a particular location the PE software must first be installed at that 

location. 

These constraints have the potential to vanish if the environment is delivered 

within a web browser. Literature relating to use of the World Wide Web as a 

vehicle for educational delivery has therefore been reviewed.  

Boroni [10] describes the shift to web-delivery as a ‘new paradigm’ in 

education and notes the following features within that paradigm: 

- That students are able to maintain a dynamic involvement with 

course material outside of the traditional dynamic experience – the 

face-to-face lecture. 

- That lectures themselves suffer from not being repeatable –

especially not being correctable if an error occurs – whereas web 

delivered material can be constantly refined and reviewed. 

These points both relate to the delivery of standard course material through 

the Web. The presentation of more dynamic scenarios, material that was 

normally restricted to institutional computer laboratories, is covered in 

literature relating to Web-delivery of animations.  In an earlier paper Boroni 

notes [11] that Web delivery enables animations to be used “without even the 

hassle of local installation required of most current systems”. 

An excellent overview of the area of animation delivery through the web is 

provided by Naps et al in [71]. Though this report primarily addresses 

visualisation delivery, the prevailing emphasis on visualisation of program 

execution, means that it is reasonable to generalise to the provision of PE's 

through the Web. 
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Naps suggests a taxonomy of Web visualisation delivery mechanisms, parts of 

which can be generalised to a Web-delivered PE. 

The principle axis concerns whether the computation of a visualisation is 

remote or local (at a server or in the browser). 

At one end of this continuum he identifies visualisations which are entirely 

downloaded to the browser. In this scenario the program that is being 

visualised executes at the browser along with the visual display. Such programs 

would necessarily be written in the Java programming language and it would 

be quite practicable to develop a PE for Java that functioned in this way. Jeliot 

[36] is an example of this approach, although not characterised as a PE. 

This taxonomy describes an intermediate level of visualisation delivery, in 

which the execution component is downloaded through the Web into some 

locally installed, non-browser, packages such as a C compiler or spreadsheet. 

This model would require the host environment to be installed and configured 

at the user's computer. Naps notes the support problems involved and in the 

current context the aim of delivery being browser-based has already been 

suggested. 

The ‘remote’ end of the axis is characterised as involving ‘remote-run’ and 

‘distributed-run’ visualisations. This approach is the one that most closely 

corresponds to the architecture that the author has described in his Chiba 

paper [106]. The ‘natural’ division would be to run the ‘model’ on the server 

and the ‘viewer’ in the browser. In terms of a PE model translates to the 

program being written and executed whereas viewer represents the user 

interface of the PE. 

2 .3 . 5  Conc l u s i on  

The review of requirements for a novice programming environment has been 

brief. The substantial work in this thesis relates to program visualisation which 

is given a deeper treatment in Chapter 3. The intent to investigate PV systems 
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in which the target and engine are substantially decoupled, has arisen however, 

in the historical context of the architecture described – namely a programming 

environment that runs the target program on a server and the GUI in a web 

browser. The intent of this chapter has been to give that architecture some 

background within established work in the field. 

The proposal for a PVML has arisen in the context of this suggestion for a 

distributed, and language independent, novice PE. The consequence of a 

convincing implementation of PVML would be to provide a basis for the 

implementation of the type of novice programming environment described. 
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C h a p t e r  3  

PROGRAM VISUALISATION 

The starting point of this review is the assumption, as explored in Chapter 2, 

that a novice programmer can benefit from a programming environment that 

is explicitly designed for them. As has been suggested, such an environment 

may well be designed to be location and language independent. Such a tool 

could be conceived as being central to the early years of a computing science 

degree. The question addressed in this review is whether there is a case to be 

made for including program visualisation facilities in the tool. 

The review starts by analysing the visualisation field in terms of several well-

established taxonomies before moving on to assess the evidence for PV 

being beneficial for novice programmers. Particular attention will be paid to 

those aspects which relate to a model of PV that could incorporate a PVML-

like concept. 

PV has been briefly defined in the introduction as the technique of 

presenting visual representations of the execution of a computer program in 

order that its behaviour can be better understood. This understanding may 

be from the point of view of specific aspects of the program or more 

generally at the level of establishing mental models of program execution. At 

this stage it is necessary to look more deeply into this definition. 

 
The term visualisation has many connotations in common parlance but the 

particular definition of this word that is at issue here is the one which 

suggests that a mental model of some concept is being formed. The 

psychological process of building a mental model[72] [92] of a complex 

process is an obvious step in understanding that process and the model-

building can be aided by visualisations of that process.[94] These 

visualisations may in fact be ‘visual’, in the sense of a “picture being worth a 
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thousand words” or they could take other forms. A verbal representation 

such as a metaphor could be an aid in visualisation if it helps engender a new 

mental model. Sounds that are produced to correlate with some aspect of a 

complex behaviour might aid understanding – although this would strictly be 

termed ‘auralisation’ it is still, in the general sense being discussed here, an 

aid to visualisation. Other senses have yet to be explored – perhaps 

‘aromarisation’ awaits the world! 

The application of visualisation techniques in the field of computer software 

gave rise at a very early stage [82] to the term Software Visualisation and this 

association of the two words implies any technique that aids in the 

understanding of a piece of software. The term can refer to a process as 

straightforward as the organised presentation of program source code [56] or 

to one as sophisticated as the movie “Sorting out Sorting” [4] that portrays a 

selection of sorting algorithms using sound and vision. 

There is an acknowledged division within the broad category of software 

visualisation into Algorithm Visualisation and Program Visualisation and the 

genesis of this division will be explored through the visualisation taxonomies 

that are discussed. The essence of this distinction rests on the level of 

abstraction of the raw program execution that is being offered – Algorithms 

are the higher level processes that are implemented by Programs. 

As this discussion of software visualisation unfolds there will be a number of 

related fields of endeavour that need to be set aside and clearly defined as 

being beyond the scope of this research. The following terms, though at 

times referred to in the taxonomic literature reviewed, are being deliberately 

set aside: 
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- Visual Programming 

The reversing of the order of these two word stems describes a 

distinct endeavour. Typically programs are written by using a text 

editor to create and modify program source code. A visual 

programming environment enables the programmer to create and 

modify a program by manipulating graphical objects that represent 

fragments of source code syntax. Closely related areas, that will 

also be set aside, are ‘Programming by Example’ and 

‘Programming by Demonstration’. The focus in this thesis will be 

on visual techniques for understanding, rather than producing, 

programs. 

- Computation Visualisation 

Visualisation techniques, which can be applied to the clarification 

of almost any process, potentially come under the umbrella of 

software visualisation when what they visualise is the process of 

computation. The use of visualisation to represent the 

performance and functioning of the underlying computer system 

(also termed ‘Performance Visualisation’) will be set aside. The 

focus here will be on the use of visual techniques to understand 

programs in a nexus that involves their creation rather than their 

eventual deployment in an actual computer system. 

3.1 Taxonomies 

This section will review the recognised taxonomies of software visualisation. 

Through examination of the work of Myers [68], Brown [15], Stasko [100], 

Price [83] and Roman [88] a focus will be developed on the particular 

category that is being addressed in this proposal. 

There is a circular aspect to the presentation of a set of taxonomies – such a 

presentation, in reality, represents yet one more taxonomy. It is not the 
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author’s intention to present another taxonomy but rather to justify an 

approach for the subsequent chapters of this thesis that is founded in a 

particular reading of the taxonomic literature available. In order to lead the 

reader towards this synthesis, this review has its own structure that relates to 

the conclusion being sought and rather than analysing each taxonomy in turn 

will present the major issues that are considered important and relate them to 

the literature. 

There are a few concepts to which the reader may require an initial 

introduction to in order to facilitate understanding of the discussion that 

follows and these are presented as visualisation axioms in the section that 

follows. 

The question of when to refer to the endeavour as software visualisation 

(SV) and when to use the term introduced earlier, program visualisation (PV) 

is one that is be discussed, at length, later in this review. To begin with, the 

more general of these two terms, SV, will be used. 

3.2 Visualisation Axioms 

Two aspects of the discussion of visualisation are considered so fundamental 

that they will be given a cursory examination before the full analysis is 

offered. These aspects are: 

- The various human roles involved in the visualisation domain 

- The distinction between static and dynamic visualisation 

It is hoped that the brief coverage offered here will assist the reading of the 

more detailed analysis that follows. 

3 .2 . 1  Vis ua l i s a t i o n  R o l e s  

In the course of a discussion of software visualisation there will be cause to 

refer to a visualisation system from various, human, points of view. These 

points of view represent the roles of the various human agents that are 
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required to design, build and then use a software visualisation system. The 

explanation offered is that of Blaine Price [83], but there is little disagreement 

on this matter in any of the taxonomies presented. 

The roles considered will be those of: 

- Programmer 

The person who wrote the program that is being visualised 

(referred to here as the target). As Price observes the programmer 

might not have been aware that their program was to be visualised 

and they also may not ever witness the visualisation of their 

program. 

- SV Software Developer 

Also, as Price notes, a programmer but in this case the program 

that they wrote is the one that enables other programs to be 

visualised. 

- Visualiser  

The person who used the SV system to design and build the 

particular visualisation that is being considered. Often this role and 

that of the SV developer may overlap but the important 

distinction that is made by this separation is the relative 

involvement with cognitive rather than technical programming 

issues. 

- User 

 The person for whose benefit the visualisation is presented. The 

effectiveness of a SV system, or the particular visualisation being 

viewed, would be gauged by its effect on the user's understanding 

of what is being visualised. 

It should be emphasised that these roles are not necessarily held by distinct, 

human players. In some cases a single person may wear more than one of 
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there ‘hats’. Clarifying the roles is important because they embody distinct 

areas of concern in approaching any SV system. 

3 .2 . 2  Dynam i c  v s  S t a t i c  

The explanation of the distinction between static and dynamic visualisation 

offered here is based on the work of Brad Myers [68] but again these terms 

are so fundamental, and also largely un-contentious, that they are to be found 

throughout the literature. Dynamic visualisation refers to an approach that 

offers an evolving view of a program running – in effect a movie. A static 

visualisation offers still images that represent the program from time to time. 

The emphasis in this review is on the visualisation of program execution and, 

as will be seen, the distinction between static and dynamic needs to be 

applied to most aspects of that discussion. The important point that is being 

made concerns the extent to which the display of the visualisation proceeds 

automatically (dynamically) or else is one that requires the viewer to select 

and view separate steps within the visualisation (static). 

3.3 Program vs Algorithm Visualisation 

Myers [68] presented “Taxonomies of Visual Programming and Program 

Visualisation”, a categorisation that many consider underpins the field. He 

defines two axes along which to organise SV systems. Myer's first axis 

describes the extent of animation in the visualisation – static or dynamic as 

discussed above. The second axis, the one that is considered here, considers 

the extent of the abstraction of the program represented in the visualisation. 

Myers segments the axis according to whether it is code, data or algorithm 

that is being visualised. 

3 .3 . 1  Cod e  Vi s ua l i s a t i o n  

Code visualisation refers to techniques which focus on the program source 

code. A static approach to code visualisation could be as straightforward as 
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the flowchart [37], perhaps the ancestor of all SV, or more recently attempts 

to increase readability of code by use of typographical techniques such as 

fonts and indenting [56], sometimes referred to as ‘pretty-printing’. Each of 

these techniques seeks to expose the higher level structure of a program in 

order to assist the user in visualising that structure. The static approach does 

not offer a temporal axis – the user must provide this by tracing through the 

representation.  

The dynamic approach relieves the user of this responsibility by stepping 

through the code as the program is executing and highlighting the code that 

is being executed. BALSA [14], often considered a seminal PV system, would 

pretty print the Pascal program source code in a window with the highlight 

moving as the program executed. Each call to a new procedure or function 

would cause a new source code window to open, providing a very direct 

visualisation of the call structure of the program. A programming language 

with a different execution model, such as Prolog, receives a different, but 

analogous, treatment in TPM [23] where a tree of Prolog predicates unfolds 

on the screen as the program executes. 

3 .3 . 2  Da t a  V i s ua l i s a t i o n  

The classic blackboard diagrams drawn by computer science lecturers 

teaching data structures – boxes with arrows joining them and values written 

within – are, in terms of Myer’s taxonomy, static data visualisations. They are 

obviously static and they represent the storage of data within a program. His 

own Incense [67] system would automatically generate such pictures. 

When the executing program itself is able to dynamically generate and update 

such displays, this has become a dynamic data visualisation. It is at this point 

that it would be reasonable to suggest that the execution of the program is 

being animated. There are numerous systems that provide dynamic 

visualisation of program data. One of the earliest, BALSA [14], already cited 

for its dynamic code display,  implemented a second set of windows in which 
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representations of data structures were displayed as the Pascal program 

executed. 

3 .3 . 3  Al g or i t hm  Anim a t i on  

The visualisation of data structures, described above, shows the content of 

actual program variables. For example a linked list may appear as a series of 

boxes joined by arrows. Although such a display may prove invaluable to a 

programmer that is having trouble writing code, it provides absolutely no 

information about the purpose for which the linked list is being used. A wide 

variety of computing science problems can be solved using the list as a tool, 

but the higher-level structure of the problem, for example whether the list 

represents a collection of bins or a tree structure, remains obscure. In order 

to display this higher level a system of algorithm animation is required. 

ANIM [7] automatically generated such displays from programs written in a 

variety of source languages. The output was in a series of printed 

representations – hence this is an example of static algorithm visualisation. 

The dynamic approach is again well represented. BALSA offers this level of 

display based on special instructions added to the program code. ALLADIN 

[43] allows the visual representation to be specified at run time by selecting 

and specifying graphical events. TANGO [103] adds gradual transformations 

to the visual sequences that are specified by adding special instructions to the 

code. 

3 .3 . 4  Di s c u s s i o n  

The broad distinction between visualising programs and algorithms, as 

described by Myers, has been quite closely followed in the other taxonomies 

reviewed. 

Marc Brown, in [15], defines ‘Content’ as one of three dimensions. He 

formalises the level of abstraction concept by considering whether the visual 
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displays map directly to data structures within the program. In a ‘Direct’ 

display the program data structure could be deduced from the display which 

is in contrast to a ‘Synthetic’ display, where the graphics portray more 

abstract concepts, which map to a higher-level, algorithmic view of the 

program. The distinction between program and algorithm remains, except it 

has been restated and refined as that between direct and synthetic. 

Blaine Price, in [83] also uses the term ‘Content’ and makes some interesting 

observations about the line between ‘Algorithm’ and ‘Program’. Whilst he 

regards algorithm visualisation (AV) as being “designed to educate the user 

about a general algorithm”, he considers it “more likely” to be program 

visualisation, when a particular implementation is the focus of study. He adds 

that the provision of a view of program code in the system would lead to a 

program visualisation categorisation.  

Price’s taxonomy is distinguished by defining terms beneath the major top-

level distinctions such as ‘Content’. Indeed the whole Price taxonomy is 

designed to be extensible and is presented in the form of a tree of concept 

nodes. In the particular case of ‘Content’, Price directs further attention to 

‘Fidelity and Completeness’ and ‘Data Gathering Time’. 

The definition of ‘Fidelity and Completeness’, in which Price cites Eisenstadt 

[24], seeks to explore the faithfulness of the mapping from program to 

visualisation. Price considers the extent to which a visualisation system 

displays the “full and complete behaviour” of the target program. He 

suggests that a “hand-crafted”, algorithmic visualisation would have a low 

‘Fidelity’ rating since few deductions could be made, from the visualisation, 

about the state of the underlying program. 

‘Data Gathering Time’, as an aspect of ‘Content’, depends on whether run-

time information, such as the values of data, is part of the visualisation. 

There is no connection between this aspect of ‘Content’ and the question of 

whether algorithm or program is being visualised.  
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To summarise, Price maintains the distinction between program and 

algorithm but adds to it in ways that shift his analysis beyond the structure 

being suggested herein. 

In [88] Roman remains faithful to the Myers approach but splits along two 

axes within this area. ‘Scope’ is taken to define attention to a program's 

“code, data and control states, and its execution behavior”, terms which 

neatly span the Myers distinction between code and data.  

The second Roman axis is that of ‘Abstraction’, within which he squarely 

sides with Brown's ‘Content’ definition in citing the level of abstraction of 

the graphical forms, relative to the program code. The Roman taxonomy is 

useful here because it draws attention to the fact that Myers has set out to 

define an axis with two ends (program and algorithm) and has proceeded to 

mark three points on that axis (code, data, algorithm). It seems reasonable to 

split these issues in the way that Roman does. 

This is borne out by John Stasko in [100], where he  takes an approach that is 

roughly equivalent to Roman in identifying ‘Aspect’ and ‘Abstractness’ as 

two out of his four axes. Stasko uses the term ‘Aspect’ to define “a different 

aspect of a program... most clearly representing the purpose of the 

visualisation.... what parts of the program are being emphasised”. The 

purpose of this term is to draw attention to what is being visualised rather 

than how it is being represented.  

This latter issue is characterised by the ‘Abstractness’ axis which can be 

applied to code, data or algorithm visualisation and attempts to characterise 

the extent of abstraction. The example Stasko uses to clarify this point is a 

representation of time in a program. A non-abstract (‘Direct’ in Brown’s 

vocabulary) representation would show the variables in memory and their 

values –- hour, minute and second or possibly just a large, binary number. 

An abstract display (‘Synthetic’ to Brown) might display a picture of a clock 

face. As a key to deciding whether it is ‘Abstractness’ or ‘Aspect’ that are 
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being determined, Stasko offers the term ‘intention content’ to refer to the 

extent to which a visualisation attempts to expose the meaning behind code 

or data.  

A visualisation with a low level of intention content remains close to the raw 

data structures in the target program. A greater level of intention content in a 

visualisation, displaying more abstract views, entails active effort on the part 

of the visualisation system and its designer. In terms of the clock example, it 

is the introduction of the intention content “telling the time”, that leads to 

the effort to present a clock-like display rather than a low intention content 

representation of three integers. 

3.3.5 Conclusion 

The desire to categorise the extent of abstraction is one of the fundamental 

issues in all taxonomies of visualisation and the broad terms ‘program’ and 

‘algorithm’ are ones that have wide acceptance. The reason that this issue is 

of such importance is that it profoundly influences the extent to which 

visualisations can be automatically generated by straightforward means.  

The more a display gravitates towards the algorithm end of this spectrum the 

more likely it is that there will need to be human intervention in deciding 

what the intention content really is and how that can be mapped to a visual 

display. Producing a visual representation of a program execution implies 

definition of a distinct set of mappings from the states of the program to 

some form of visualisation. The generation of this mapping is the issue that 

is examined next in an examination of the topic of automation in 

visualisation. 

3.4 Automation in Visualisation 

The topic of automation in visualisation focuses attention on the process by 

which the visualisation is generated – categorising the extent to which the 

visualisation simply ‘happens’ as a side effect of program execution in 
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contrast to a display that requires effort on the part of one of the 

participants. 

The Myers taxonomy, though still the starting point for many discussions in 

the field of SV, has little to say on the topic of automation. His two axes – 

dynamic-static and program-algorithm – are the full extent of his 

categorisation. At first thought it might seem tempting to associate degrees 

of automation with varying positions on the static-dynamic axis, but this axis 

is intended to categorise the presentation to the viewer rather than the way in 

which a visualisation is derived. It is quite conceivable that a static 

visualisation be automatically generated (Incense [67]) or that a dynamic 

visualisation be generated by hand (Sorting Out Sorting [4]) 

To clearly locate the issue of automation in visualisation, attention must be 

turned to the other available taxonomies, all of which make some reference 

to this aspect. 

The hierarchical approach taken by Price in his taxonomy [83], defines 

‘Method’ as a top-level category and beneath this divides between 

‘Visualization Specification Style’ and ‘Connection Technique’. Each of these 

intersects with automation to a certain extent. 

The question of ‘Visualisation Specification Style’ essentially asks how the 

content of the display is derived. On the one hand the display, even if 

dynamic, may contain a completely fixed set of events that were determined 

by the SV designer (Sorting Out Sorting) – in this case the specification style 

is fixed. At the opposite end of the spectrum, debugging type environments 

such as TPM [23] and Lens [65] automatically generate displays with no 

explicit intervention. Between these two extremes lie many systems where 

the programmer or the visualiser (roles as defined earlier) can specify the 

form of the display. For example in TANGO [103], the programmer may 

add statements to the source code to cause interesting events to have visual 

consequences. Indeed Price draws attention to the fact that “automatic 
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systems have the advantage of making the programmer, visualiser and user 

into the same person” (at least potentially) 

The term ‘Connection Technique’ refers to a slightly separate issue – the 

manner in which the assertions concerning the visual display are relayed 

“between the visualisation and the actual software being visualised”. Some 

aspects of this are barely distinguishable from the question of visualisation 

specification style. For example, when annotations are added to a program in 

order to control a display, a style of specification is being employed that lies 

mid way between fixed and automatic. At the same time this is the technique 

of connection through which the visualisation is driven by the program. The 

terms defined by Price become confused.  

Other concerns regarding connection technique are more clearly distinct – 

for example: 

- Does the target need to run at the same time as the visualisation is 

viewed?  

- Do target and visualisation need to run on the same computer? 

These questions are very pertinent to the core of the PVML proposal, which 

in Price's terms, could be characterised as a PV/Method/Connection 

Technique proposal. 

Brown's [15] taxonomy begins with a definition of three axes for the 

categorisation of displays: 

- Direct/Synthetic 

As already discussed this maps to program/algorithm 

- Current/History 

Describing the timeliness of the display – namely whether it shows 

past states as well as the present state of the program. 
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- Incremental/Discrete 

Defining to what extent changes in the display simply happen 

(Discrete) or are represented as a transition (Incremental) 

None of these particularly relate to the issue of automation but the bulk of 

his paper does in fact discuss automation, applying the taxonomy described 

above to systems that are capable of automatically generating displays. He 

draws particular attention to the fact that steps in an algorithm execution 

may not usefully map to discrete access to the program data structures. This 

issue, that of automatic algorithm identification, is discussed in detail below. 

Stasko [100] also made automation one of his four top-level categories 

(‘Aspect’, ‘Abstractness’, ‘Animation’ and ‘Automation’). Bearing in mind the 

earlier discussion of Stasko’s taxonomy, in the program versus algorithm 

visualisation section, a key observation is that “our abstraction and 

automation dimensions usually exist in an inverse relationship. Creating 

program visualization views with high levels of abstractness involves a great 

deal of intention content and simply requires a priori design support”. This 

leaves the field of automatically generated visualisations populated on the 

whole by straightforward, low-abstraction program visualisation. Notable 

exceptions, such as UWPI [42], have a restricted domain of operation – only 

generating certain pre-defined types of visualisation. 

In [88] Roman associates the automation of visualisation generation with his 

category of ‘Specification Method’ which “encompasses the means whereby 

the animator specifies which aspect of a program are to be extracted and 

how they are to be displayed”. He decomposes the specification method into 

a series of broad types of technique and these will form the basis for further 

discussion as they relate closely to the PVML proposal. 
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- Predefinition 

This is a fixed mapping between program state or events and the 

display as implemented by a variety of debugger style 

environments.  The user is not given the opportunity to modify 

the semantics of the display and there is no input from the 

visualiser role. 

- Annotation 

Annotation of the programs being visualised is the predominant 

technique for imposing the visualiser’s will on the display in the 

cases where a higher level of abstraction from program code and 

data is required. The technique of annotation was pioneered in 

Balsa [14] but has been used extensively since. Sometime referred 

to as the technique of interesting events, the annotation, inserted 

into the program by the visualiser designing a visualisation or by 

the programmer seeking to expose program behaviour, has the 

effect of updating the display in some manner. There are many 

consequences of this approach and it is discussed in more detail 

below. 

- Declaration 

Although an organised approach to annotation would result in 

certain states having certain visual analogues the overall mapping 

is not clearly, and independently, defined. The declarative 

approach takes as its starting point a definition of a set of program 

state/display mappings and then arranges that the visualisation 

system is simply kept aware of program state. Roman has used this 

approach in Pavane. [87] This is a dramatic departure from the 

architectures described so far because it clearly decouples the 

program state from the visual consequences. The work of Roman 

will be examined later in this review when the focus is on this 

decoupling and the implications for the PVML proposal. 
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In terms of the approach to PV that is being suggested in this thesis there are 

two aspects relating to automation that need to be taken further: 

- The nature of annotation and its consequences both technically and 

pedagogically for the novice programmer 

- The current state of automated algorithm identification. 

3.5 The Annotation Issue 

Annotation of the target program source code is one of the predominant 

approaches to creating visualisations of that code. Price [83] specifically 

reserves this term to refer to a system where the additions to the program 

source code are hidden from the programmer1 by a special editor. 

At the level of the version of the code that is executed and visualised, 

annotation involves modifying the program to include procedure calls that 

give rise to visual behaviour. Embedding these hooks in the flow of the 

program is described by Robert Henry [42] as control intrusive. If the 

programming language provides a means to attach such hooks to data 

structures they might be termed data intrusive. 

The selection of where to make these calls involves decisions about which 

steps within the program execution give rise to interesting events. For 

example the incrementing of a loop counter may only be of interest to the 

overall aim of the program when a certain, critical, comparison is made. The 

success (or failure) of the comparison is an interesting event, whereas the 

incrementing of the loop counter is not. As can be seen the choice of what is 

interesting requires a higher level comprehension of the program algorithm. 

What happens visually when an interesting event occurs is a question that 

involves issues of the visual psychology of the user of the system. 

                                                 
1 Price uses the closely related term instrumentation,  to describe explicit addition to the 
source code 
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The default state of an unmodified executing program is that no events 

within the program are signalled externally, other than at points when the 

generation of output is explicitly part of the program. If this same program is 

recompiled with the option to debug the program execution, the program is 

able to be executed step by step, a line of source code at a time. Running a 

program under a debugger is rather like instrumenting every single line of 

source code since the debugging environment can readily be adapted to 

communicate each, or selected, steps to a PV engine. This is the approach 

adopted by TPM [23] and DBX [6] and many other systems. Although no 

actual instrumentation has taken place, these systems could be characterised 

as potentially automatically instrumenting every single line of the program. 

A second approach, that achieves the same goal, is to use a special compiler 

that instruments the generated execution module [95] without modifying the 

source code. 

Instrumentation, whether automatic or not, suffers from one telling criticism 

– namely that instrumentation has the potential to change the behaviour of 

the program. In general, a program that employs a single thread of execution 

is unlikely to have its behaviour modified by instrumentation. However 

multi-threaded or concurrent programs, where the relative timing of events 

in several threads of execution can significantly alter program outcomes, 

cannot necessarily be safely instrumented. The debugging and visualisation 

of concurrent programs is a distinct area that requires further attention – but 

one which will be set aside within this proposal. It is intended that the 

techniques proposed here be applied to single threaded programs only in the 

first instance. 

Manual instrumentation, which requires the programmer to, in effect, add 

procedure calls to interesting events, has been the subject of criticism on the 

grounds that this activity is extra work for the programmer [89]. In the case 

of a novice, the additional cognitive load imposed by instrumentation can 
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detract attention from the programming issues which ought, pedagogically 

speaking, to be the prime focus. In the case of an experienced programmer, 

the extra steps simply may never be taken since the focus is firmly on writing 

the program. These two points could be taken as arguing for an automatic 

instrumentation approach and it is worth considering a way in which 

automatic instrumentation can occur, in object oriented languages, without 

the need to use special compilers or debuggers. This technique, described 

below, exploits a fundamental property of those languages. 

3 .5 . 1  Cla s s  b e ha v i ou r  

Several writers [15], [68], in discussing annotation or instrumentation, have 

made the observation that an object oriented language is potentially self-

annotating. The reason for this is that object behaviour can be overloaded. 

Although an object representing an integer is intended to participate in 

expressions involving other numbers, a specially modified integer object, that 

also understood how to visualise itself, could in fact be substituted. This 

special class of object, that would reproduce all the normal behaviour of an 

integer, also understands how to portray itself in a visual display. Such an 

object could be transparently used by the program in its default operation 

whilst, at the same time, being visualised. For normal execution the program 

would be given access to the unmodified integer class.  

This is convincingly demonstrated by Jeliot [36], which is web-delivered 

visualisation system written for novice Java programmers. The novice writes 

Java code in a Jeliot applet window and submits the source code to the Jeliot 

server for compilation. The server compiles the code but employs 

instrumented versions of Java base classes. The resultant byte code (the 

executable form of Java) is returned to the novice’s browser and, when 

executed, is able to visualise itself. In terms of the algorithmic goals of the 

novice programmer the target program is unmodified yet the special 

executable form is visualisation enabled. 
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This same approach is used in several other PV systems [22] [19] and has 

been usefully described by Thomas Naps [71] as making visualisation a “pure 

natural side-effect” of normal program execution. It is of interest in the 

context of the PVML proposal because it represents a very natural location 

for PVML generation to take place. The requirement for self-instrumenting 

classes in an arbitrary object oriented language would simply be that they 

described themselves in PVML. 

3 .5 . 2  Aut oma t i c  A l g o r i t hm  I d e n t i f i c a t i o n  

A brief overview is offered of literature that relates to the automatic 

identification of algorithms. Essentially, this is a topic that lies beyond the 

bounds of the PVML proposal, since deductions about what will be 

displayed in response to particular program states, in other words how 

abstract the display will be, are made by the occupant of the visualiser role. 

These take place after the PVML stream has delivered the program state to 

the visualisation module. 

Nevertheless it is worth paying some attention to what Price [83] categorises 

as the ‘Intelligence’ of the ‘Visualisation Specification Style’. Perhaps un-

surprisingly, given the generally disappointing penetration of artificial 

intelligence (AI) techniques into the world of real systems, Price notes that 

“intelligence is sorely lacking among automatic SV systems”. Automatic 

software visualisation systems are those that do not rely on human selection 

of interesting events . 

The contributions made by AI to the automatic identification of algorithms 

is characterised as either deep or shallow depending on the extent of the 

constraints that are applied to the domain before the AI component takes 

effect. A completely open approach, that sets out to deduce the algorithm in 

an arbitrary program would be deep AI. One that operates within a set of 

constraints that limits the possible scope would be shallow. 
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UWPI (University of Washington Illustrating Compiler) [42] is a good 

example of a PV system that employs shallow AI and an examination of this 

system can yield some insights into the issues involved in automatic 

algorithm identification. The target program in UWPI is analysed by an 

Inferencer that looks at how variables in the program are being used. Abstract 

Data Types (ADT's) are inferred, based on a preloaded rule base of 

programming idioms and common ADT's. It is the scope of this rule base 

that limits the scope of algorithms that UWPI can recognise. The 1990 

description of UWPI shows it being used to recognise a selection of sorting 

and searching algorithms. 

A deeper, in AI terms, approach is represented by the Programmers 

Assistant [86] project from MIT. The Assistant, which is described as a 

project which “overlaps both artificial intelligence and software engineering”, 

uses a formal representation of programs and their languages known as the 

Plan Calculus. Plan is described as a combination of “the representation 

properties of flowcharts, data flow schemas, and abstract data types”. The 

approach is similar to that of UPWI but the library of clichés that is provided 

is more general, enabling a broader cross-section of algorithms to be 

identified. 

3.6 Decoupling Visualisation 

The earlier discussion of automation in visualisation paid special attention to 

the work of Roman and his identification of a declarative model of 

visualisation. In the context of the PVML proposal, this model is of 

particular interest because it clearly delineates the area of concern for the 

various visualisation roles. This in turn underpins the decoupled architecture 

in which PVML plays a part. 

A more extensive examination of the work of Roman and others gives rise to 

a clearer enunciation of these issues and is the topic of Chapter 4 of this 

thesis. 
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3.7 Evaluating Visualisation 

As has been stated previously in Price’s taxonomy [83], the literature in 

which visualisation is systematically and objectively evaluated is far 

outweighed by that describing the development of yet another PV system. In 

the words of Price: “The most disturbing observation is the lack of proper 

empirical evaluation of SV systems, for if the systems are not evaluated, what 

is the point of building them?” 

Most PV systems are developed by researchers with involvement in 

computer science education and the systems are used by students in those 

institutions. Generally, the evaluation of the effectiveness of the PV systems 

is anecdotal and experiential. There are substantial issues, that are germane to 

all educational research, that should really be taken into account in designing 

experiments to evaluate PV and these issues are often not the area of 

expertise of PV developers. The PVML proposal, as was stated in the 

introduction, is a suggestion as to how the PV evaluation domain may be 

opened up to researchers who have more expertise in educational research 

rather than in software development.  

The PVML proposal is aimed at reorganising the fundamental architecture of 

PV and in doing so to enable a variety of existing systems to interoperate. 

This proposal does not make suggestions about how programs should look 

when they are visualised, nor about what aspects of the program could be 

most usefully visualised for novice programmers. If the PVML proposal 

were at such a level, there would be a strenuous requirement to review the 

literature relating to the efficacy of PV itself and through this to reassert the 

case for PV.  Since the intent of the PVML proposal is to render PV more 

open to evaluation, this section of the PV review merely sketches the 

landscape of the literature that assesses and evaluates PV.  No concerted case 

is made for the usefulness of PV. 
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Certain systems have undergone more methodical evaluation than others. 

Price singles out the work of Stasko [101] on TANGO and Goldenson [34] 

on Pascal Genie (which is a commercial development based on Incense [67]). 

These quantitative evaluations detected some benefit from PV, but in the 

TANGO study the benefit measured was not statistically significant. Other 

studies reported by Price are described as informal.  

Mulholland [66] has characterised most evaluations of PV as “coarse 

grained”. Such evaluations seek to measure the broad benefit of PV (relative 

to a lack of PV) or else compare two PV systems. He pleads for, and 

performs, ‘fine grained’ evaluation in which a detailed examination is made 

of the interactions between the students and the PV system. He subjects 

these interactions to ‘protocol analysis’ and by close examination was able to 

motivate quite specific improvements in the PV system that he developed. 

It is the power of the cognitive research methods applied that leads to these 

very tightly targeted results and, in terms of the PVML proposal, the aim is 

to enable greater emphasis to be placed on the cognitive research 

methodology and less on the provision of PV systems. 

3.8 Conclusion 

The objective of this review, in the broader context of this thesis, is to set the 

scene for the ensuing, more detailed, examination of the issue of the 

decoupling of visualisation targets and engines.  The reader has been drawn 

towards issues that underpin the concept of a decoupled program 

visualisation architecture, such as the roles of automation and annotation in 

program visualisation and the underlying issue of whether program or 

algorithm are being visualised. In the course of describing these 

preoccupations in the program visualisation field, definitions have been 

presented of many of the fundamental terms in the field and particular 

attention has been paid to the authoritative taxonomies of program 

visualisation. 
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In weighing up the taxonomies, paying special attention to the issues that are 

germane to the PVML proposal, greater weight has been attached to the 

taxonomic approach of Roman and subsequently, the work of Roman plays a 

central role. 

The question of how the efficacy of PV for novice programmers has been 

evaluated to date has also been briefly examined.  It is the lack of extensive 

empirical results that sustain or deny the proposition that PV is helpful to 

novice programmers that provides one of the fundamental motivations for 

the work described in this thesis. 
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C h a p t e r  4  

DECOUPLING VISUALISATION TARGETS AND ENGINES  

This chapter begins with the assumption that PV facilities are to be added to 

the proposed novice programming environment. The focus in this review is 

on the ways in which that goal can be accomplished. In particular this review 

assesses the case for substantially decoupling the visualisation target, the 

programmer’s currently executing program, from the visualisation engine, the 

components that provide the programmer with a visual representation of 

their program execution. The case is based upon the work of a number of 

researchers, who have identified approaches to visualisation that incorporate 

a decoupled methodology. 

This review seeks to make a case for establishing a generalised 

communication protocol at the target/engine boundary – namely a Program 

Visualisation Meta Language. A central justification for the direction of this 

research is presented against the background of the earlier reviews. In 

conclusion, a very broad definition is offered, of how a Program 

Visualisation Meta Language fits into the generalised architecture of 

visualisation adopted by the literature presented here. 

4.1 Where to make the cut? 

At a general level, a case is being made for decoupling the executing program 

from the visual display, but as the figure below shows there are two steps 

along the way and the separation could be made at either of these points. 
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Figure 4-1 Potential visualisation decoupling boundaries 

At the target end of the system there will be some means or other for the 

executing program to communicate its execution state. As will be recalled 

from the taxonomies examined, this might involve the annotation of 

interesting events or the program may be running in an environment which 

is able to automatically generate state information. By whatever means, the 

output from the executing program is in terms of its execution state. 

At the opposite end of the chain, where the user sits, there is a visual display 

on which the PV is being viewed. The input to this display device is in the 

form of instructions that relate to graphical primitives. “Move the second 

box down”, “Draw an arrow between the 6th & 7th boxes” are the kind of 

directions that the graphical display would be configured to interpret. 

A split at this stage would require some form of Graphical Language to 

describe what is to be displayed. 

The box in the middle represents the point at which a particular execution 

state or event is mapped to a visual representation. This is where Roman [90] 

has applied his declarative approach – as a middleman between the 

visualisation target and the display. Similarly it is where Domingue [21] 
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applies views and mappings. A closer examination of the work of Roman and 

of Domingue leads to a clarification of whether the boundary be one across 

which program state or graphical description information is communicated. 

4.2 The Case for Decoupling 

The survey of the PV field, presented in Chapter 3, has established the 

spectrum of terms that are used to refer to the various aspects of 

visualisation. In considering the question of decoupling the target from the 

engine, the focus needs to be on what Price describes as ‘Method’ in his 

taxonomy. He uses this term to refer to the means that are used to generate 

the display. Stasko refers to this as the ‘Automation’ axis. 

The selection of a PV ‘Method’ is fundamental to the design of all PV 

systems. In human terms this is most clearly reflected in the precise roles of 

the PV players – the programmer, the PV developer, the visualiser and the 

user. PV that relies on manual annotation of the target program tends to 

combine the roles of visualiser, programmer and user since decisions about 

the nature of the display are being enacted by active modification of the 

target program and viewing of the results. If the PV developer has 

introduced a degree of automation into the control of the display, the 

visualiser role becomes trivial, since most decisions about the nature of the 

display are already made. The user or programmer will proceed to use the 

system with only marginal actions, such as selection from menus of 

representation styles and content, that could be seen as acts of a visualiser. 

In terms of the argument being presented here, it is important note this 

observation – namely that the area of the system in which each role is active 

differs according to the method of visualisation that has been implemented.  

For example, a method that depends upon code modification tends to 

coalesce the roles of programmer and visualiser. The table below sets out to 

clarify this, identifying the location of the various roles in the context of 

Roman’s three specification styles. Comparable tables could be drawn using 
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the other associated taxonomies, but the approach of Roman is the most 

straightforward in this regard. The table shows the way in which a particular 

human ‘player’ ends up enacting a variety of roles, depending on the precise 

specification method that is being used. 

The table shows, for example, how the annotation approach has the effect of 

overloading the human programmer with visualiser activities. 

Visualisation Role Players 
 (Human Actors) 

Roman Taxonomy 
Categorisation 

User Programmer Visualiser Developer 

Predefinition User Programmer  × Developer 
Visualiser 
 

Annotation User Programmer 
Visualiser 

 × Developer 

Specification 
Method 

 
 

Declaration 
 

User Programmer Visualiser Developer 

Table 4-1: Who plays what role? Visualisation players and their roles in Roman's 
three specification styles 

There are no clear, persistent, boundaries that define the areas of concern for 

the various actors, yet logically, in the terms that were used to define the 

roles, their concerns should be distinct. Reasserting the intention behind the 

roles that have been defined should make this clearer 

4.3 Roles Revisited 

The four roles, User, Visualiser, Programmer and PV Developer that were 

initially mentioned in the PV review are discussed in more detail here. 

4 .3 . 1  Pr o g r amme r  R o l e  

The programmer has the goal of writing and debugging the program that is 

the target of the visualisation system. The concerns of the programmer are 

twofold: 
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- The overall, high-level description of what the target program sets 

out to achieve. This is the algorithmic description of the target 

program and is the fundamental starting point for all programming 

projects, although novices may neglect this area. 

- The lower-level concerns of the particular programming language 

that is being used. How can the language features be used to 

implement the algorithm? 

Some visualisation scenarios may not require a programmer at all. If the 

intent is to demonstrate algorithms, implemented by ready-written code, the 

introduction of programming language specifics will be a distraction. 

The clear intent of the programmer role, when it exists, is to manage the 

program source content of the target program. 

4 .3 . 2  Us e r  R o l e  

The user is the ultimate viewer of the visualisation. The entire purpose of the 

visualisation system is to assist the user in visualising a program or algorithm. 

It is the mental models of the user that are intended to be enhanced by the 

devising of new and better visualisation systems. 

In the case of automatic, dynamic visualisations the user has little to do other 

than look at the display – perhaps controlling what is being displayed as a TV 

watcher might control a VCR. Static displays require the user to “turn the 

page”. 

As soon as the person looking at the display begins to make substantial 

decisions about the form of what is displayed they are beginning to enact the 

visualiser role in addition to that of user.  

The aim of defining the user role is to isolate the consumption of the 

visualisation, as opposed to any part in its production. 
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4 .3 . 3  Vis ua l i s e r  R o l e  

In proposing the declarative method of program visualisation, the term used 

by Roman in his taxonomy, Roman defines visualisation as “a mapping from 

programs to graphical representations”. This concept is of considerable 

importance to the PVML proposal and will be looked at in more detail later 

but at this stage it is also extremely useful in clarifying the role of the 

visualiser. 

Given an executing program, and the goal of enhancing a user's mental 

model of the program, it is the job of the visualiser to design and modify the 

visual representations that will be observed by the user. The logical scope of 

the visualiser's activities is the nature of the mapping between program state 

and visualisation – namely the precise area encompassed by the Roman 

definition. 

It is not the intention that the visualiser modify the program although some 

PV implementations may require this. Neither is it the intention, necessarily, 

that the visualiser interact with the display. A particular PV system might 

enable the user to participate in the planning of the display – in which case 

an individual actor will play the role of user as well as visualiser. 

In becoming clearer about the nature of the visualiser role it is also becomes 

clear the way in which PV systems might become decoupled. The goal is that 

the tools and artifacts that the visualiser needs to interact with are distinct 

from other components in the system. 

Since the visualiser is most in control of what the user sees, it is the visualiser 

role that intersects most with that of an educational researcher who is 

seeking to assess the efficacy of various visualisation approaches. If the 

activities involved in the visualiser role are adequately decoupled from the 

rest of the PV system then PV systems can be exposed to greater, and more 

methodical, introspection concerning their usefulness. 
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4 .3 . 4  PV De ve l o p e r  R o l e  

The activity cycle of the PV developer is one that should be the mirror image 

of the other three roles. When the PV Developer is active, adapting or 

correcting the PV system the user, visualiser and programmer will be idle. 

The PV developer role is the one that is least likely to overlap, within a single 

human actor, with the other roles. 

Having clarified these roles the concept of declarative visualisation and its 

use in the Pavane [87], Vis [21] and ALADDIN [40] systems is expanded.  

4 .3 . 5  Di s c u s s i o n  

As the definitions of these roles are being reasserted it is prudent to restate 

that a given human participant can, in a particular scenario, enact one or 

more of these roles. Table 4-2 demonstrates that precisely “who does what 

and when” will depend, not only on the visualisation specification method 

employed, but also on the type of scenario. Particular attention will be paid 

to the disposition of visualisation roles where novice and expert 

programmers are involved. 

- Experts 

An expert programmer will be making use of the PV system in 

order to design and debug a complex program that they are 

developing. In this context the roles of programmer and user are 

likely to be predominant since visualiser activity, the design of 

representations, represent a significant distraction from the job in 

hand. The tendency of expert programmers to ignore PV systems, 

due to extra effort of enacting the visualiser role has been noted by 

several authors [65] [83] 
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- Novices 

A novice programmer may use the PV system simply as a user to 

observe the workings of algorithms. Where the novice is seeking 

to learn programming they will also enact the programmer role 

and in [104] Stasko draws attention to the positive motivational 

effect of asking novice programmers to be visualisers as well. He 

suggests that the program comprehension of student programmers 

was heightened by giving them the additional task of designing 

visualisations for their programs. 

 

Visualisation Role Players 
(Human Actors) 

Comment Visualisation Scenario 

User Programmer Visualiser  

Expert 
programmer 

× Programmer 
User 

De-
emphasised 

The expert 
programmer is 
focussed on the 
program 

Novice 
(studying 
algorithms) 

User Programmer 
( prepared what 
is being 
watched) 
Visualiser? 

Visualiser? The novice enacts 
the user role only. 
Who enacts the 
other roles 
depends on the 
system. 

Experience 
Level 
 
 

Novice 
(studying 
programming) 
 

× Programmer 
User 
Visualiser? 

Visualiser? The novice is 
programmer and 
user. Stasko 
recommends being 
the visualiser as 
well! Who enacts 
the other roles 
depends on the 
system 

Table 4-2 Who does what? Visualisation roles for different experience levels 

4.4 Declarative Visualisation 

The PV review presented earlier focussed on a number of accepted 

taxonomies of the field. These taxonomies have mapped out a variety of axes 

along which to categorise existing PV systems and the authors of the 

taxonomies have used these axes to locate their own work in the field. As has 
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been observed earlier the result is a plethora of distinct PV systems and a 

lack of any unifying concept that can lead to integration of these individual 

pieces of work. 

Two authors have drawn attention to this gap, Roman in his own taxonomy 

of visualisation [88] and Domingue in his description of Vis, a novel 

visualisation system in [21]. 

Both of these authors have introduced a level of abstraction into the 

discussion of visualisation, by making the same broad assertion about the 

nature of the visualisation task. For Roman visualisation is “a mapping from 

programs to graphical representations” and for Domingue “events and states 

[of a program] are mapped into a visual representation”. This concept of 

what visualisation is leads directly to a declarative model of visualisation 

which clearly defines the role and concerns of the visualiser as being the 

creation and manipulation of such mappings. When such a distinction is 

firmly enforced by the system it becomes clear that the visualiser has no 

involvement in the internals of the visualisation target execution. All 

visualiser activity is predicated on transforming some representation of 

program state into the new graphical form and it is precisely this that calls 

for, and supports, a clear decoupling of target and engine. 

For Roman the formal definition of the declarative approach leads to Pavane 

which is described in detail below. Pavane establishes a language for 

declaring the associations between program state and pictures. 

From the point of view of PVML the consequences of Domingue's work are 

even more interesting since he uses his framework of visualisation to create a 

meta PV system called Vis. Vis is actually a SV system-building system. By 

clearly isolating the visualisation mapping component, Vis is able to “reverse 

engineer existing PV systems and construct new systems with ease”. This is 

very close to the goal of PVML.  
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4.5 The Roman contribution to visualisation 

The review of PV literature that has been undertaken has clearly delineated 

the work of Roman as having particular relevance to the PVML proposal. 

Roman’s published work in the field consists of an actual PV system, Pavane, 

and subsequently, significant introspection regarding the nature of PV.  

4 .5 . 1  Roman ’ s  t ax on omy  

Out of all the taxonomies described in the PV Review there is only one [88] 

that moves beyond the categorisation and description activities that are most 

usually associated with a taxonomy. The Roman/Cox taxonomy sets out to 

make a broad and formal definition of what visualisation is before beginning 

a categorisation that is viewed from the point of view of this formalism. 

The definition of software visualisation suggested by Roman is that of “a 

mapping from programs to graphical representations”, a suggestion that is 

clearly related to his earlier work on Pavane [90] which is described in more 

detail below.  

By conceptually decoupling the visualisation from the program, Roman is 

able to create a division of labour amongst the four visualisation roles that 

have been defined. The Pavane system actually incorporates a tool that 

specifically targets the needs of the visualiser role without overlapping into 

the domains of any of the other roles. 
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Figure 4-2: The Roman View of Visualisation. Reproduced from [89] 

  
This diagrammatic view of visualisation presented by Roman makes these 

interrelations clear. In the diagram Roman shows: 

- Participants 

The three participants that are involved in use of a PV system (as 

opposed to development of one). These have been referred to, in 

this thesis, as roles and have also used the term visualiser in place 

of animator. 

- Activities 

The respective domains of activity for each of these roles – namely 

the program, the graphical representation and the transformation 

between them. 



 

 55 

- Taxonomic Criteria 

The criteria from his taxonomy that are relevant to each role. 

‘Scope’ is the term he uses to refer to the aspects of the target 

program that are to be visualised – in his earlier work on Pavane 

the term domain was used at this point. Similarly, when describing 

the graphical representations the term ‘Technique’ is used which 

had formerly been referred to as range. 

This taxonomy and formal conception of what visualisation entails 

arose, historically, in the context of the development of the 

visualisation system Pavane, which is described in some detail in the 

next section. 

4 .5 . 2  “Pa v an e ”  -  A  De c l a r a t i v e  App r oa c h  t o  Pr o g r am  

Vi s ua l i s a t i o n  

Roman describes [87] an approach to specifying the contents of a 

visualisation which fundamentally decouples the target from the engine. In 

this proposal he suggests declarations that associate specific visual events with 

specific changes in program state. Hence, given a means for the target 

program state to be communicated, the visual consequences of that state are 

independently controlled by the set of declarations that have been 

established. 

The essential aim in Pavane, the PV system he developed, is the ‘separation 

of concerns’. The programmer is concerned with the writing and testing of 

program code whereas the visualisation of the execution of that code can be 

placed in the hands of a ‘program animator’ who does not necessarily need 

access to the program code. The Pavane system was used to visualise 

programs written in a concurrent programming language – Swarm. 

In describing Pavane, Roman introduces a pair of terms, domain and range that 

are equivalent to the terms scope and technique that he went on to use in his 



 

 56 

later taxonomic paper. Domain (scope) refers to “which aspects of 

computation are examined” whereas range (technique) refers to “what 

graphical objects and techniques are provided”. Pavane provides the means 

to define mappings between domain and range. 

He suggests that most existing PV Systems neglect to “explicitly implement a 

mapping” since they use annotation of the program code to single out 

interesting events and to request a specific graphical presentation of that 

event. The visualiser in such a system must identify points within the source 

code at which ‘interesting’ transitions take place. The visualiser would 

proceed to instrument the code with appropriate graphical calls. 

Aside from the possibly confusing overlap of roles involved, there is a quite 

fundamental problem inherent in this imperative visualisation approach. The 

most useful display from the point of view of understanding the algorithm (a 

synthetic display in Brown's terminology) may need to represent a complex 

set of conditions within the program with a single visual metaphor. This is 

particularly so for the concurrent programs that Pavane seeks to visualise for 

an interesting event may be a “nebulous entity defined by state changes in a 

large number of discreet processes”. However, this kind of statement can be 

made about any program in any language, in the sense that high-level, 

abstract concepts may have a complex relationship to the particular program 

language entities that represent them. The lack of a general, one to one 

relationship, between program execution events and the more complex 

‘interesting events’ that are to be visualised, is the central justification for 

adopting a declarative approach to visualisation in Pavane. 

The preoccupation of many of the taxonomies with the program/algorithm 

axis (direct/synthetic in Brown) can be restated to be a question of which of 

the many possible mappings between domain and range are to be defined. A 

single system can be characterised as either direct or synthetic depending on 

what mappings have been created, supposing that appropriate tools are made 
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available to the visualiser. These tools are “assumed to have complete access 

to the [program] state” in order that the visualiser has the freedom to declare 

any mapping they wish. 

A key observation, from the point of view of locating PVML, is that the 

annotation of the running program which is necessary to provide this access 

“could in principle be largely automated” since “the entire state is examined 

rather than animator-defined events”. In terms of the Roman model, PVML 

could be defined as an open protocol of automated annotation 

communication that can provide state input into a visualisation mapping 

process. 

The bulk of the paper describing Pavane is concerned with the formal syntax 

used to define the relationships between program state and visual output. 

This language defines state, in either the state space or animation space of the 

visualisation, using collections of tuples. The detail of the mapping syntax 

and implementation is beyond the scope of this review. For the purpose of 

locating the PVML proposal, it is sufficient to note that PVML plays a part 

in the communication between what Roman refers to as the domain and the 

range of the visualisation. 

4.6 The Domingue contribution to visualisation 

The other major visualisation work that embodies a rigourous separation of 

visualisation roles is that of Domingue, who is a colleague of Price and 

Eisenstadt who have previously been cited. Domingue has not published 

explicitly taxonomic work that can be set beside that of Roman but the Vis 

system, which is described in some detail below, incorporates a similar 

architecture. 

“Vis” - a Framework for Describing and Implementing Visualisation Systems 

Vis [21] appeared the same year (1992) as the Pavane paper and hence Vis 

and Pavane would appear to have had little influence on each other’s design. 
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Nevertheless they adopt a very similar approach to visualisation in that they 

both isolate the actual visualisation decisions to s specific layer in their 

systems. 

The architecture of Vis considers “program execution to be a series of 

history events happening to (or perpetrated by) players.” Domingue 

compares these history events to the interesting events that Brown spoke of 

and they represent some combination of program execution and data state.  

The mapping of history events into a visualisation is handled by two 

subsequent modules within Vis: 

- View–Module 

The view module controls the overall style of representation which 

may vary from text to different types of graphics such as a tree 

diagram or a graph. 

- Mapping–Module 

The mapping module connects aspect of program state to view 

components. 

The combined effect of these two modules is to create a range of “mappings 

from program to pictures” (cf Roman) that can be moved amongst by the 

visualisation user. 

Figure 4-3, taken from the Vis paper, makes this architecture clearer and 

includes the navigator module through which the user can control the 

visualisation. 

PVML very precisely maps to the communication between the Domingue 

‘view’ and ‘history’ modules, with PVML statements transmitting history data 

and a reverse flow of filtering commands being necessary to mitigate 

excessive volumes of program state information. 
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Figure 4-3: The Vis Architecture. Reproduced from [21] 

4.7 Other Declarative Approaches 

Two other pieces of work are referred to by Roman as to some extent 

making use of a declarative approach. 

ALADDIN [40] was developed by Helttula et al. ALADDIN was designed 

to visualise Modula-2 programs and divided the issue of generating a display 

into a space and time axis. The question of what to display in space was 

handled declaratively by defining a set of graphical types and graphical variables 

within an animation editor, ESA, where the graphical components are 

associated with program states. The timing issue is handled by direct 

annotation of appropriate (interesting) events in the Modula-2 program by 

adding ghost variables to the Modula-2 program. These ghost variables 

represent program state to the visualisation and their placement determines 

timing. 

The fact that program state is represented independently by the settings of 

the ghost variables and that visual representations from a library are 
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associated with these states is what identifies ALADDIN as a declarative 

approach. 

The ANIMUS system [22], developed by Duisberg has been mentioned 

earlier in the PV review. ANIMUS achieves ‘automated annotation’ by the 

extension of class behaviour to include visual behaviour. Roman has 

characterised ANIMUS as declarative, based on the automatic association of 

objects with their visual behaviour and on the way in which constraints can be 

defined that limit the visual outcomes in selected ways. 

In the case of generating visualisations based on class behaviour, the 

declarative label seems to be somewhat forced. ANIMUS delegates 

responsibility for the display of an object to the object itself and it is only to 

the extent that the algorithms for display of various objects are managed in 

an organised manner that this can be considered a declarative system.  

A declarative system sets out to present a high-level, algorithmic description 

of program state and map that to visual states. The nebulous relationship 

between the values of program variables and this, more abstract, state applies 

just as much in an object oriented language – objects and their states are 

substituted for the values of variables. A coherent declarative approach will 

depend upon techniques to abstract the states of an arbitrary set of objects 

according to criteria that are driven by visualisation requirements. 

Duisberg's use of constraints to manage temporal issues in the animation is 

of considerable interest though in refining the concept of the declarative 

approach. A constraint is “a statement of a relationship that we would like to 

have hold” at some point in the future. A constraint exists independently of 

the flow of control in a target program. The writer of a target program is not 

called upon to “write and invoke procedures to do the maintenance (of the 

constraint)” [9] – the constraints will be maintained by an external agent. For 

example a user might want to limit the number of branches in a tree diagram 

to the number that can be fitted on a single screen. The visualisation will be 
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free to run and generate arbitrary tree diagrams but the display-related 

constraint will be applied by another agent. 

Such statements have an extensive part to play in the design of useable 

visualisations. The mapping of program state to visual display establishes the 

basic vocabulary of a visualisation but the clarity and comprehensibility of 

the display depends on other issues such as the relative timing and screen 

position of the artifacts. A perfectly reasonable representation can be 

rendered incomprehensible if it is obscured by other objects or it displayed 

with inappropriate timing. It has been demonstrated by Duisberg and others 

[8] [70] that a constraint-based approach is ideal for managing issues that are 

loosely coupled to an underlying formalism such as the display semantics of a 

visualisation. 

4.8  Summary 

The proposal for a fundamental decoupling of visualisation target and engine 

rests heavily on the definition of visualisation offered by Roman – best 

summarised in [89]. It is also supported by the equivalent, though less 

formally specified, work of Domingue which describes Vis, a system where 

the decoupling is quite explicit.  The declarative approach to visualisation has 

been contrasted with other specification techniques and it has been shown 

how it offers clearer distinctions between the domains of the four principal 

roles involved in a visualisation scenario. This leads to the identification of 

the stream of program state information that must be provided as the input 

to a system that defines mappings between program state and pictures.  

Figure 4-4 represents a Roman-like division of a complete PV system into 

distinct modules and locates PVML as a communication amongst those 

modules. The cartoons represent the three visualisation roles, user, 

programmer and visualiser. Each role is shown connected to a single 

component of the PV architecture. The emphasis on decoupling the target 

and engine leaves each role with a single point of contact with the system 
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bearing in mind, as previously emphasised, that in many cases a single human 

may enact more than one role. 

Mapping 
Declaration 
 

Visual 
Display 
 

PVML 

Visualisation 

Target 

Visualisation 

Engine 

Visualiser Programmer 

User 
Executing 
Program 

 

Figure 4-4: The Location of PVML 

PVML is used to implement a generalised communication between 

visualisation targets and engines. The stream of PVML statements to the 

engine, represents program state information and contains no assumptions 

about how the program is to be visualised. These decisions are to be made 

further down the track, by one or more visualisers that are in control of 

components that are configured to consume the PVML stream. Appropriate 

buffering and manipulation of a PVML stream should be capable of 

transforming the program state information into the format required by an 

arbitrary visualisation engine.  

The broad outline of this proposal is the subject of the author’s publication 

[107]. 
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C h a p t e r  5  

DEBUGGERS 

In the very broadest sense the requirements for PVML have been clarified 

through the discussion of decoupling program visualisation systems.  It is 

fundamental to maintaining the separation of concerns for the visualisation 

roles, that PVML communicate only program state information.  There is no 

mention in PVML, of any program visualisation related data. PV declarations 

and manipulations are all local to the visualisation engine. 

At this stage it must be noted that the language that is being defined has no 

inherent link to program visualisation – other than the motivation, of 

providing generalised decoupling amongst visualisation targets and engines.  

PVML is, in fact, a language that enables a selection of normal debugger 

functionality to be applied to a remote target program in a manner that is, 

wherever possible, programming language neutral. 

There are numerous precedents for basing visualisation on integration with a 

debugger – Lens [65], Amethyst [69] as well as the large selection of 

commercial CASE (Computer Aided Software Engineering) tools. The 

objections raised to this approach in the PV literature have largely centred on 

the excessive level of detail revealed and the difficulty for a novice user of 

selecting an appropriate granularity of display. A PVML-based 

implementation delegates such matters to the visualiser who is in control of 

defining mappings between program state and visual representation.  

 In order to clarify the significance of PVML, as the detailed requirements 

are set out, they will be located within the literature that describes remote 

and heterogeneous debugging. The name that has been adopted for this 

language, “Program Visualisation Meta Language”, needs to be seen as an 
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expression of the motivation and background to this proposal rather than an 

attempt to define the precise functionality of PVML. 

In discussing the requirements for PVML, a first step is to locate the 

language more concretely in an architecture for decoupled visualisation. This 

is followed by relating this endeavour to other work in the field of 

debugging. The relationship of the language to the two main areas of 

concern, target program source code and target program data, is discussed. 

Also consideration is given to a number of ancillary areas that do not clearly 

fall within the scope of source and data  

5.1 PVML Architecture 

The intent of the PVML proposal is to interface with components of existing 

PV systems. Consequently the implementation of PVML needs to be in the 

form of drivers that interact with components from existing systems. 

A driver is needed for the visualisation target – a “PVML Target Driver”. 

This driver will be wrapped around an existing environment that supports 

stepping through and examining the state of a target program. Typically this 

will be a debugger for the programming language involved. 

The second driver is needed for the visualisation engine – a “PVML Engine 

Driver”. This driver could be wrapped around the visualisation component 

of an existing, or newly created, PV system. If the PV system uses the 

declarative approach, then the mapping declaration module will receive the 

appropriately formatted output of the driver. Imperative PV systems will 

need the mapping declaration to be implemented within the engine driver. 

The two drivers interact through a two-way stream of PVML commands. 

The diagrams below shows the PVML target and engine drivers and the 

details of the interactions that they need to have with the components of a 

PV system and with each other. 
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The focus in this chapter is on the PVML target driver and the way in which it 

encapsulates, and abstracts, the underlying debugger.  
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Figure 5-1: A PVML Target Driver 
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Figure 5-2: A PVML Visualisation Engine Driver and its connection to two 
different styles of PV display 
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5.2 Debuggers 

In reading the extensive literature relating to debugging programs it must 

first be emphasised that a particular, restricted, area of the field is under 

consideration.  The PVML approach to debugging can characterised in the 

following ways: 

- Symbolic 

Debuggers have access to extremely low level information 

concerning the program that they are debugging.  In many 

instances the programmer using a debugger will need to make use 

of specific memory addresses and machine implementation details 

to achieve the results they desire.  A distinct class of debuggers 

makes use of the representation of the program that exists in the 

program source code.  These debuggers are termed symbolic 

debuggers and the requirement to support novice programmer 

activity clearly leads to PVML supporting symbolic debugging. 

Although the novice user may well be principally interacting with 

visual representations of their program, it is fundamental to the 

endeavour of learning programming, that they will also be paying 

attention to the source code listing of the program they have 

written.  It is at this point that the requirement for symbolic, rather 

than lower-level machine, access arises. 
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- Heterogeneous 

Historically a particular debugger has often been associated with 

working in a particular programming language as with, for 

example, [3], [20] and [25]. The chapter supporting the novice 

programming environment concept has made it clear, that for 

novices, the ability to apply the same programming environment 

to more than one language may well be useful. This leads to the 

requirement that PVML support what might be termed language 

neutral debugging.  In the field of debuggers the term heterogeneous 

is often used to describe this ability. 

The GDB [99] debugger is a notable exception to the one-to-one 

debugger-to-language mapping since it supports the cross-section 

of languages for which there are Open Source, GNU Compiler 

Collection (GCC) [27], compilers available. The linking concept 

here is the binary executable file format and the way in which the 

source code information is stored – namely the program symbol 

table. The GDB debugger can interpret the range of executable file 

and symbol file formats generated by a number of GCC compilers 

and hence permit debugging of programs written in C, C++, Java, 

FORTRAN and Ada. From the point of view of the PVML 

proposal though, this multi-language ability cannot be considered 

sufficient heterogeneity since it would restrict the scope of PVML 

target languages to those supported by GDB. 
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- Sequential 

A major research preoccupation in the field of debuggers has been 

the issue of debugging concurrent programs [60]. This issue 

exposes substantial theoretical issues which are beyond the scope 

of this thesis.  At the novice level it is reasonable to assume that 

students are engaging with programs that have a single thread of 

execution. It is specifically sequential debuggers that are of 

interest. 

- Remote 

It is fundamental to the visualisation architecture proposed that 

the connection between the target and the engine potentially be 

through a network.  The reasoning behind this assumption 

originates in the notion of the novice programming environment 

being location independent but it could also be argued from the 

point of view of maximising the extent of decoupling between the 

target and the engine. 

Many debuggers support this mode of operation but those that do 

not can be, quite reasonably, ignored. 

At this stage the literature describing debuggers will be examined, restricting 

the view to those that are symbolic, remote-capable, sequential and language 

neutral. 

It has been noted by Olsson [78] that debugger research has been 

disproportionately influenced towards the problems of debugging concurrent 

programs and also the provision of graphical interfaces for debuggers. A 

consequence of this bias is that there are comparatively few significant 

contributions in the restricted field of debugging that must be examined. To 

begin with the principal attribute that will guide the examination of debuggers 

will be the question of language neutrality.  
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In setting out to create debuggers that operate at a level of abstraction above 

that of a particular programming language, a predominant approach has been 

to define debugging languages that are super sets, in some sense, of the 

programming languages that they set out to support. Some aspects of this 

endeavour have issues in common with that of creating translators that 

automatically transform a program from one source language to 

another.  

5.3 Debugging Languages 

A debugging language can be characterised as providing some form of high-

level abstraction of debugging primitives that exist in one or more, language 

specific, debugging environments. There will, in general, exist an 

environment with which the programmer interacts. This is the environment 

in which debugging language statements are manipulated and will 

incorporate one or more underlying, back-end debuggers that are able to 

host target programs in a variety of languages. 

A debugging language will need to concern itself with a bidirectional flow 

between the programmer and the underlying debugger. Debugger 

commands, that trigger execution in the target program or perform specific 

debugging primitives, such as the setting of a breakpoint, must be sent to the 

debugger.  At the same time, the output of the debugger must be observed 

and manipulated. 

Although debugging languages have been described since the early days of 

computing science [35], a generally accepted means to classify them has not 

evolved. In marked contrast to the domain of program visualisation, in 

which there exist a significant number of well established taxonomies, 

debugging languages are generally classified on an ad hoc basis.  

The work of Sosic [96], which does not set out to be taxonomic, in fact 

provides a useful axis along which to categorise debugging languages. In his 
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paper describing Guard, a relative debugger that seeks to compare the 

execution of two programs, Sosic divides the features of his debugger into 

the categories of imperative and declarative. These are exactly the same terms 

that were used by Roman in his classification of visualisation systems and 

indeed, there are many similarities in the two endeavours. The terms 

imperative and declarative can be applied to debugging languages in general 

and PVML can be located upon this axis. 

5.3.1 Imperative debugging languages 

In the visualisation domain an imperative visualisation technique was defined 

as one that set out to quite directly control visual outcomes. A single 

visualisation command, which might for example arise from annotation of 

the program source, would give rise to a single visual consequence.  

In terms of debugging an imperative language establishes a similar one-to-

one relationship between debugging language statements and the commands 

that are implemented by the underlying debugger.  Through an imperative 

debugging language the programmer has, in effect, manual control of the 

underlying debugger – an individual command will be sent to the debugger 

and the output generated as a result of that command will be handled.  As 

Sosic notes, this fine grained control may not be appropriate or manageable 

where the target program is complex in its behaviour. This intractability 

motivates the declarative model described below, specifically as a means to 

manage more complex debugging scenarios. 

However any debugging language must contain significant imperative 

features in order to generate debugging commands. Using a language to 

generate these commands has the advantage that a protracted sequence of 

commands, that would be tedious to enter manually into a debugger, can be 

straightforwardly generated.  
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A typical scenario might be the examination of a target program 

representation of a linked list – a common data structure in which some 

representation stored in each element of a collection leads to the next 

element. Manipulating a linked list through a debugger can involve a complex 

sequence of commands and several authors [78], [32] have discussed the 

issue of generating the low level debugging commands that would be 

required to traverse a linked list. It is observed that when using the command 

set of the underlying debugger directly such an operation is tedious.  

Some debuggers provide the ability to store and invoke such sequences [99] 

but the sequence is very specific and not easily modified. By contrast a 

debugging language, by offering more abstract primitives that map to a series 

of low level commands, make such complex data probing a routine and 

manageable affair. 

DUEL [32] is a “very high level debugging language” that uses a syntax 

based on C to control and manipulate the output of GDB in a manner that is 

almost LISP-like.  

The design of an imperative debugging language is a nontrivial issue, which 

will be discussed in considerable detail below. An examination is presented 

of some of the semantic issues involved, as described in [18] and [48]. 

5 .3 . 2  De c l a r a t i v e  d e b u g g i n g  l a n g ua g e s  

Initially the significance of this term within visualisation will be restated.  A 

declarative visualisation technique allows for a visual consequence to be 

defined as contingent upon an arbitrarily complex set of conditions that 

might occur in the target program.  Declarative visualisation moves beyond 

the one-to-one mapping between program events and visual occurrences by 

defining a language in which complex mappings can be described.  

In the domain of debugging there exists a very similar requirement.  The 

executing program is arbitrarily complex and a number of distinct events, in 
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different sections of the program, may be required to trigger some debugging 

activity.  The interesting event, from the point of view of the person 

debugging the program, may well have many distinct components. It is 

fundamental to this approach that the low level components that are 

combined will occur at distinct times during program execution. A 

declarative debugging language will contain structures through which such 

asynchronous events can be abstracted. 

Many modern debugging languages offer an extensive set of declarative 

features. Dalek [78] provides debugging “at a high level of abstraction” by 

controlling GDB through higher level constructs. Dalek encapsulates the 

output of GDB into an event structure that supports the hierarchical 

processing of complex sets of events and hence the detection of arbitrarily 

complex states. Guard [96] provides declarative debugging through its 

implementation of an assert and verify command. In the domain of lazy 

functional languages, where execution order is non-deterministic, imperative 

debugging becomes impossible and the obligatory declarative approach is 

implemented in a language such as EDT [97] 

5.3.3 PVML as a debugging language 

The motivation for PVML, namely the decoupling of visualisation system 

architecture, requires that the debugging language operate as a more or less 

transparent pipe between the visualisation engine and the target program. In 

such an architecture the importance of the role of a visualiser, in employing a 

declarative approach to defining mappings between programs and pictures, 

has been emphasised.  

Although conceptually similar to declarative debugging, the declarative 

aspect in this instance is at the level of mappings from program state to 

visual artifact rather than between a low and high level representation of 

program state. In order for the declarative visualisation mapping to be 

effective, and in order to support potential imperative visualisation engines, 



 

 73 

the engine requires access to the kind of low-level debugging primitives and 

information that are represented in an imperative debugging language. Hence 

PVML could be characterised as an imperative debugging language and the 

requirements of PVML can be analysed by examining the literature 

describing the semantics of imperative debugging languages. 

The delegation of debugger interaction to a simplified language that abstracts 

lower-level debugger behaviour is also the approach taken by deet [38]. The 

cycle of development that led from ldb [84] a “retargetable debugger”, 

through cdb [39] a “machine independent debugger” to deet, very clearly 

approaches remote, language independent debugging in a similar manner to 

PVML. The minimal set of debugging language primitives and the 

implementation of these primitives in a nub that wraps around an established 

debugger represent an architecture that is similar to that of the PVML 

drivers. In addition, the argument that a reduced subset of generally accepted 

debugger functionality is an acceptable trade-off for increased portability is 

strongly reminiscent of the case that has been put in Chapter 2 for a novice 

programming environment. 

The simplified, portable, command set of the PVML-based debugger can 

perhaps, most usefully, be characterised as implementing an ‘abstract 

debugger’, that is mapped through a target driver to a particular concrete 

debugger. This characterisation of PVML, as providing an abstract debugger, 

is one that will be used throughout the remaining chapters of this thesis. 
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C h a p t e r  6  

PVML LANGUAGE REQUIREMENTS 

Examination of the requirements, in general terms, for an imperative 

debugging language leads to a definition of the specific requirements for 

PVML. At the highest level, it has previously been noted that a debugging 

language manages bidirectional communication between a user and an 

underlying debugger. Commands that control debugger behaviour flow from 

the user; and debugger output, in the form of descriptions of the state of the 

program, flows in the opposite direction. The requirements of the command 

stream are well analysed in [18] and the discussion of the reverse flow will 

draw upon the work of Johnson [48]. 

6.1 Control 

In discussing the semantics of an imperative debugging language there are 

two fundamental concepts that must first be clarified – the question of dual 

or single process debugging; and the definition of the underlying debugging 

primitives that can be assumed to exist. 

In general when debugging a program in a compiled language the debugger 

will run in a separate process from the target program. The assumption is 

that the machine architecture, on which the program is executing, provides 

the means for the debugger process and the target process to communicate 

at appropriate times.  

An example of this would be the existence of a machine language instruction 

that generates an interrupt that can cause a context switch. A debugger, such 

as GDB, will insert this instruction into the target execution module at the 

point where a breakpoint has been defined. The fact that this instruction can 

cause a context switch means that the target program can be allowed to 

execute at normal speed, with the knowledge that when the breakpoint has 
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been reached, control will be transferred to the debugger for appropriate 

action to ensue. 

In the case of a program written in an interpreted programming language, 

the debugging functionality is likely to be part of the interpreter itself, with 

the consequence that debugging and normal program activity take place 

within the same process. 

Crawford [18] argues that the significance of this distinction is one of 

implementation efficiency, when considering the number of context switches 

that must occur during debugging. However, where PVML is concerned, 

these distinctions will be hidden within the visualisation target and the 

PVML stream will be unaware of whether the target debugs in a single or 

dual process mode. 

A debugging language will be built upon certain assumptions as to the 

debugging primitives available in the underlying debugger. Crawford, in 

designing his General purpose Debugging Language (GDL) [18] assumes the 

existence of four primitives: 

- read 

Read the contents of memory in the target program 

- write 

Write the contents of memory in the target program 

- stepi 

Cause the target program to execute a single machine instruction, 

as distinct from source code line (see step instruction below)  

- break 

Set a breakpoint in the target program at which control will be 

returned to the debugger. 
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Crawford argues that all other, normally expected, debugging behaviour can 

be derived from these primitives. However, generating more sophisticated 

behaviour through application of these primitives has the potential to 

significantly add to the computation required. In the context of debuggers 

currently available, which potentially could be targets for PVML, the addition 

of four further primitives is suggested: 

- step 

Cause the program to advance by precisely one line of source 

code. The definition of what represents a single line of source 

code will be programming language dependent. The effect of this 

command could be produced through iterations of the stepi 

command but it is reasonable to expect that the debuggers used 

will have a native implementation of step. The result is a 

considerable saving of computation. 

- resume 

Cause the target program to resume execution at normal speed. In 

the absence of any breakpoints this would lead potentially to the 

program terminating. The effect of this primitive can be 

reproduced by iteratively applying the stepi primitive but this 

approach is computationally expensive. 

- watch 

Set a watchpoint on a variable in the target program, to 

automatically switch control to the debugger when the marked 

variable is accessed. Generally a watchpoint can be configured to 

be sensitive to either the reading or writing of the data value.  
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Again Crawford describes the implementation of data watchpoints 

through programmatic application of the basic primitives. He 

suggests inspecting the value of a watched variable after each 

stepi operation. Given the support for watchpoints in current 

debuggers, much computation can be saved by the assumption of 

the watch primitive.  

- frame 

Provide some representation of the current depth of nesting 

within successive program contexts. In a block structured language 

this is commonly referred to as the stack frame. 

 
Crawford’s GDL proceeds to generalise debugging functionality by 

providing the means to iterate and test the use of the primitives that he has 

defined. It provides the necessary looping constructs and the ability to define 

functions that incorporate loops constructed from a sequence of low-level 

accesses. By this means he is able to offer highly abstracted control of 

debugging functionality. 

The limitation with Crawford’s approach, as should be clear from the 

examples provided, is that working with such low-level primitives there will 

often have extreme performance penalties.  As a result, higher level support 

for these instructions is desirable for practical debugging. 

In the case of PVML, the language will mostly be used in communication 

across a network rather than the inter-process communication for which 

GDL is designed. In the case of this more widespread distribution it would 

be inappropriate, in terms of the network traffic generated, for low-level 

looping to be expressed in PVML. Commands in PVML must map to the 

upper level of a language like GDL, with any low-level looping being 

implemented within the target driver. 
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This will become clearer through the detailed discussion below of the 

semantics of the PVML step command. 

6.2 The Step Command – a Debugging Language Scenario 

At this stage, two distinct primitive implementations of a command that 

steps program execution have been defined. On the one hand, the stepi 

command moves forward by one machine instruction. The step command 

however, advances by one complete source code line. These are the primitive 

levels of execution stepping that are assumed to be provided by debuggers 

that PVML targets. 

From the point of view of defining the requirements of the PVML language, 

and especially considering its usefulness to programming novices, it is quite 

reasonable to consider other granularities of stepping. In [18] Crawford 

considers stepping forwards in the source code by individual expressions, 

statements or even blocks of text. . In addition one might wish to support 

stepping into, out of and through a subroutine. These navigational devices 

are illustrated in Figure 6-1. 
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Figure 6-1 Program stepping - various granularities 

Clearly, any one of these can be implemented by appropriate iterations of the 

stepi primitive, assuming that the debugger has access to appropriate 

mappings between source and machine code. This issue is characterised by 

Johnson in [49] as that of “mapping to the source language state” and the 

availability of the various mappings will depend on the data structures 

maintained by the compiler or interpreter that the debugger is interacting 

with.  

An interpreter functions by establishing data structures that represent the 

program structure during execution. Run time access to these structures can 

yield detailed mappings between program source code and the machine code 

that is executed. By contrast, a compiler must analyse and translate an entire 

program source code into its machine code form. Intermediate data 

structures, that could yield an appropriate mapping, may or may not be 

      int i; 

      int a=2, b=3, c=4, d=5, e; 

      e = 0; 

      for (i=0; i<10; i++ ){ 

         e = (a+b) * (c+d); 

      } 

      e = eval( a, b ); 

       

      a = 42; 

      . 

      . 

      . 

      int eval( int x, int y ){ 

        int a; 

        a = x * y; 

        return( a ); 

      } 

. 

step one 
source line 

step by a 
block 

step by an 
expression 

step over a function call 

step into a 
function call 

step out of a 
function call 
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preserved. These structures may not even be accessible outside of the 

compiler itself. In general it is expected that a wider range of mappings will 

be available where the underlying execution takes place in an interpreter. 

Using PVML to provide a high level abstraction, such as stepping by source 

code expressions, involves generation of an appropriate sequence of 

debugging primitives within the target driver. Each debugger targeted would 

have its own driver that would incorporate mappings from a standardised 

PVML form into the correct sequence of primitives. 

This discussion draws attention to the issue of providing support for the 

differing capabilities of available debuggers and execution environments. 

PVML will, as it is applied to a wide range of targets, encounter disparities in 

target functionality and it therefore must incorporate the notion of several 

‘levels’ of functionality.  

In this case one such level is proposed for the case where only source line 

stepping is available, with a more sophisticated level, in which finer grained 

source code stepping can be provided, being applied to environments that 

support this. 

6.3 Programming Language Issues 

The flow of information from target to engine is considerably richer and 

more dense than the command flow that has so far been discussed. This flow 

clearly relates, in a much more complex fashion, to the programming 

language in which the target is written and also must take account of the 

distinction between program source code and program data. In the case of 

some programming languages this distinction can be complex. 

In discussing programming languages, authors seek to categorise them using 

terms that establish a taxonomy at the highest possible level. One such term 

is that of the programming language paradigm [120]. In the scope of this 
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research, it is appropriate to consider three paradigms of programming 

language: 

- Procedural languages such as Pascal or C.  These are also referred to 

as declarative languages 

- Object oriented languages such as Java or Smalltalk 

- Functional languages such as Lisp or Prolog.  These are also referred 

to as applicative languages 

The question of debugging programs written in such disparate programming 

languages is one that requires some considerable attention. The management 

of program source and data could need to be adapted to suit the underlying 

paradigm of the programming language itself. As has been indicated 

previously the approach generally taken to this problem is to define a high-

level, abstract debugging language – as has been done in this thesis. 

Automatic source-to-source translators, that accomplish their task through 

abstraction and reimplementation [119], must also address these issues but 

their approach, as a consequence of the need to regenerate source code, 

needs to be far more rigorous.  

The work of Johnson [48] considers the question of whether some treatment 

of programming languages can be considered generic. A generic feature is not 

necessarily common across all languages in the sense of being absolutely 

fundamental.  However, these features may be identified as common across 

several languages, including those from distinct paradigms. This is much as 

could be expected, considering that most languages are synthesised in a 

derivative fashion. Given a set of generic means to debug programs in 

disparate languages it is also appropriate to consider aspects that are specific 

to a language of class of languages. 

Through applying a uniform debugging language, DiSpeL, to a representative 

selection of languages, Algol, FORTRAN, LISP and Snobol, Johnson 

identifies generic aspects of programs that map to what has so far been 
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referred to as code and data. These he terms segment-generic and data-generic 

features respectively. Within these categories, the specific entities that occur 

vary from language to language.  

For example LISP is characterised by the code entities ‘form’ and ‘function’ 

whereas in the procedural language Algol, he identifies ‘process’, ‘program’, 

‘routine’, ‘clause’ and ‘unit’. DiSpeL debugging programs are written in terms 

of generic features – such as PROCEDURE, BLOCK and STATEMENT 

– and these interact with the source code of a particular program through a 

set of generic-to-specific mappings that relate to the source language of that 

program. 

The core of PVML consists of terms that refer to such generic programming 

language features. Mapping these generic terms to more specific, language 

related terms, will occur in a particular target driver as required. A minimal, 

generalised, engine offers the visualiser access to the state of a target 

program through these generic terms, which the visualiser is free to interpret 

in ways that are appropriate to features of the source language. These 

activities of the visualiser role are quite independent of the PVML stream. 

There may well be aspects of execution state or content, for a program in a 

specific language, that are not amenable to such generic treatment. A specific 

instance will be considered in more detail below in Section 6.5. In order to 

manage these language specific issues PVML incorporates a means to 

describe the capabilities of a particular target or engine. Upon initially 

establishing contact, a target and engine negotiate the extent to which their 

capabilities overlap and therefore what level of functionality can be provided. 

6.4 Generic Code Issues 

This discussion of the language requirements that relate to the management 

and display of program source code begins with issues that are generic to the 
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language paradigms under consideration. The treatment of language specific 

issues, that cannot be considered generic, follows as a separate section. 

In considering the generic representation of program code required by a 

visualisation system there are two aspects of essential representation: 

- Position in Source 

Representing the position of the current execution point in the 

source code 

- Layout of Source 

Presenting the source code to the user in a manner that exposes 

the structure of the code (so-called ‘pretty printing’) 

Each of these will be examined in some detail below. 

6 .4 . 1  Po s i t i o n  i n  S ou r c e  

Program source code is most commonly generated in a textual form. In the 

visual programming domain, an alternative representation is introduced, in 

the form of graphics.  

As a program is executed a class of visualisation user, who is also enacting 

the programmer role, will expect the visualisation engine to show the point 

of current execution in the program source code.  PVML needs to be able to 

indicate the current point of execution for programs written in a variety of 

languages. 

There are two aspects of displaying the current position in the program 

source: 
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- Logical Line Numbers 

Establishing a consistent mapping from the debugger’s notion of 

the current execution line to the representation of that line that is 

seen by the user. 

- Representation of Context Change 

Adjusting the view of the source code to represent entry to, and 

exit from, alternate execution scopes. This aspect is treated here 

from a point of view that supports the broadest possible range of 

program language paradigms. The assumption made is that, at 

some level, program execution enters and leaves contexts that will 

be represented visually through a device such as separate source 

code windows or a shifting visual emphasis. 

Logical Line Numbers 

In a textual language it is universal to describe locations within programs in 

terms of the name of the source code file and the line count within that file. 

This is the representation used in a variety of existing visualisation systems. 

This approach must be mitigated, as has been noted by Mukherjea in his 

description of the Lens system [65], when a single statement of source code 

spreads over several lines. In such cases the logical line number within the 

program more truly represents the current point of execution. Given that the 

target driver is built around an underlying debugger, logical line numbers are 

likely to be available.  

This leads to the issue of translation from logical line numbers, which are 

generated by the debugger, to physical line numbers that are required in 

order to display the source code line to the user. The assumption that 

underlies this question is that simply transmitting the text of every source 

line when it is executed would generate excessive traffic. Although the 

number of times a given source code line is executed is data driven and 

potentially unbounded the number of actual lines of source code is bounded 
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(though possibly large) for a given program. It seems reasonable to suggest 

that PVML transmit the text of a source code line the first time it is 

executed, along with its logical line number in order that subsequent 

executions of that particular line could be indicated simply by the logical line 

number. 

In a professional development environment these issues would be 

complicated by the need to expand certain elements of program source code 

such that one physical line, as written by the programmer, may map to many 

logical lines, as executed. Examples of such elements are program ‘macros’ 

and in C++, ‘templates’. The expansion of such elements is generally 

handled transparently by the compiler, but options exist through which 

compilers can be directed to preserve intermediate states such as macro 

expansion. 

Whilst the initial needs of a programming novice might be met by a one-to-

one physical-to-logical source line mapping, a PVML that supported more 

advanced programming would need to identify source lines, not simply by a 

digit, but through a tuple that identified a physical line and a possible logical 

offset within that line. 

Representation of Context Change 

It is common in PV systems, supporting a cross section of program language 

paradigms, to offer the programmer a view of source code that represents 

successive program contexts through a distinct visual metaphor. In the 

visualisation of a procedural language [14], Brown uses a separate source 

code window to display the code in successive Pascal procedure calls. In a 

functional language visualisation [46], a shifting frame is drawn around the 

current function in a program. 

What these scenarios have in common is a means for the debug target to 

announce when it enters or leaves a context. This feature is not one that can 
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be considered a normal primitive in a cross-section of debuggers. The 

debugger that is part of the Java Development Kit, jdb, provides this feature 

but GDB does not. It is, however, feasible to construct this behaviour 

through use of other debugging primitives, in particular the combined use of 

the step and frame primitives. This sequence is generated within the target 

driver. 

6 .4 . 2  Lay ou t  o f  S ou r c e  

The previous section has addressed the question of using PVML to relay the 

current execution point to the visualisation engine in order that the 

programmer can keep track of the program execution. The normal way in 

which this information is presented visually is for the current line to be 

displayed, with a highlight, on a view of the source code for the module 

being executed. Many PV systems [42], [17] make sure that the way in which 

the source code is displayed supports the mental models of the programmer 

by typographically displaying the code according to various conventions that 

have been shown [5] to aid program comprehension.  

Examples of these conventions [Figure 6-2] are the use of different colours 

of text to denote programming language keywords, user-defined strings, 

constants and other syntactic elements, along with indenting of source code 

lines to correspond with the block structure of the program. The level of 

analysis of the target source code that is required to accomplish such a 

display requires access to the parse tree of the program, an intermediate, 

hierarchical representation of the program structure that is generated by the 

compiler or interpreter.  
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Figure 6-2 Pretty Printed Source Code  

In a PVML-driven visualisation environment the visualisation engine will not 

necessarily have access to the parse tree of the program. The pedagogically 

effective presentation of the source code in the engine could be 

accomplished by giving the engine access to a generalised format of the parse 

tree, as with the intermediate representation in UWPI [42]. The assumption 

here is that the target has access at runtime to appropriate representations of 

the source program – in general it is possible to configure compilers to 

preserve intermediate representations, such as parse trees, that are otherwise 

abandoned during compilation. When this is not possible targets may 

explicitly re-parse the program in order to generate an appropriate 

representation. 

This introduces the important requirement that PVML handle structured, 

hierarchical information such as a program parse tree. 
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6.5 Language-Specific Code Issues 

Specific requirements for each language paradigm will be discussed. 

6.5.1 Procedural Languages 

The view of execution that has already been described – a highlighted line of 

source code is the normally accepted way to display execution in a 

procedural language. 

An additional type of display that is often found in debuggers and CASE 

tools is a “call tracer” which indicates the call chain (function A called 

function B, which called function C) that leads to the current execution 

point. To support this type of display in a PVML-driven engine would 

require the execution target to communicate function entry and exit as 

previously described. 

6 .5 . 2  Ob j e c t  O r i e n t e d  Lan gua g e s  

Michael Kolling [57] has argued strongly that novice programmers, who are 

learning an object oriented language, will benefit from a development 

environment that takes steps to represent the program in terms which 

emphasise the object based nature of the program. He draws particular 

attention to two aspects: 

- Class and Object Hierarchy Display 

Kolling recommends that the class and object inheritance 

hierarchy, and the usage relationships (associations, aggregation 

and containership), should be graphically displayed in code and 

data views of the program. The distinction between code and data 

becomes less rigid in an object oriented language since objects 

created to store data have the code of the object methods included 

therein. 
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- Object Test Bench 

Objects, which may be created in the course of program 

execution, may also be created, and tested, manually in the 

development environment. 

These two requirements have different levels of impact on the PVML 

proposal and are discussed in greater detail below: 

Class and Object Hierarchy Display 

Some aspects of the display of class and object hierarchies can be considered 

simply to be a visualisation issue and therefore beyond the scope of PVML. 

For example it could be a visualiser's decision to display the execution of a C 

(procedural) program as if it were object oriented, with functions in modules 

being represented as if they were methods of objects. Similarly the execution 

of an object oriented program could be portrayed as if it were procedural and 

this is indeed the objection that Kolling made to many development 

environments at the time. In neither case is there a need to communicate any 

different information at the PVML level – what is changing is the way that 

the program state is being mapped to pictures. 

The requirement to display inheritance hierarchies at the same time though, 

requires an additional level of information and some significant additional 

considerations to be introduced into PVML. The requirement is that all or 

part or all of the inheritance hierarchy is communicated to the visualisation 

engine. This level of communication would support the generation of 

visualisations similar to those available in BlueJ, such as those shown in 

Figure 6-3 
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Figure 6-3 Class relationship visualisation in BlueJ  

This question shares many aspects of the transmission of structured source 

code considered above – namely the possibly selective delivery of a large, 

tree structured data set to the visualisation engine. Some portions of this 

stream will be code and some portions data, reflecting the intermingling of 

code and data in the object oriented paradigm. 

Object Test-Bench 

An outstanding feature of the Kolling BlueJ environment [57] is the ability to 

place objects on a test bench and interact with them outside of the normal 

program code as shown in Figure 6-4. 

This feature encourages development of prototype classes, the reuse of code 

and experimentation with objects and classes beyond the scope of a 

particular program. This feature is so beneficial to novice Java programmers 
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that it is worth considering whether such a facility could be supported by a 

PVML-based environment. 

 

Figure 6-4 Object test-bench in BlueJ 

This introduces the requirement that PVML support commands to 

instantiate and invoke methods upon target objects. This particular scenario 

will treated in more detail as an example of a programming language specific 

extension to PVML. In principle the visualisation of the resulting objects 

should be handled by the mechanisms already provided. 

6 .5 . 3  Fun c t i o n a l  Lan gua g e s  

Functional languages differ from procedural, and object oriented languages 

in their use of data values and structures. A program written in a procedural 

language generally makes extensive use of program variables to store data 

values. These data values are manipulated, and passed among, functions in 
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the program but the return value of a function is often of incidental interest, 

perhaps indicating an error condition2. 

By contrast, a functional language performs most manipulations by calling 

functions which themselves may have other functions as parameters. The 

return values of functions are primitives of the type that is germane to the 

language – for Lisp it is lists and for Prolog it is predicates – but the point 

about the functional paradigm is that the function return values are not 

(necessarily) assigned to a variable; they are merely passed, on the stack, from 

one function call to another.  

The problems of visualising evaluation of programs written in functional 

languages have been addressed by Touretzky [110] and by Jimenez-Peris [46] 

and it is worth noting that in describing the execution of programs written in 

functional languages there is little difference between visualising the progress 

of execution and visualising data in the program. The sharp division between 

these two concepts that exists in the other programming paradigms is 

blurred by the fact that most of the data in the program is the return value of 

the functions. 

The only distinctive message, in terms of program execution state, that must 

be relayed by PVML is the entering and leaving of functions – along with the 

parameters and return values. None of this is additional to what has already 

been covered. 

                                                 
2 It is certainly possible to write procedural language code in a functional 

style – there is a place on the stack for a function return value and though 

the data type of the return value is limited in most languages a pointer can 

always be used. It is also possible, in all but the purest functional languages, 

to declare variables and program as if the language were procedural but in 

both cases one would be doing an injustice to the intent of the language. 
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6.6 Data  

Visualisation of program data is an area that is exceptionally thoroughly 

covered by existing PV systems. In terms of the decoupling achieved by 

adopting a declarative approach to visualisation, it is the program data that 

defines the program state and visualisation mappings will consist of 

associations between combinations of data values and the pictures that 

represent them. 

Because the intent is that it is the visualiser that makes algorithmic selections 

of what aspects of program state to display, the visualisation engine 

potentially needs to have access to an unfiltered stream of program data state 

information. Clearly there will be occasions where this stream is excessive 

and contains un-needed information but an important aspect of PVML   will 

be a means to apply constraints to this flow of information, which is 

expanded upon in Section 6.7. 

Another interesting consequence of feeding a PVML stream to a declarative 

visualisation engine is that all the algorithmic decisions will be made later – 

after the PVML stream has been constructed and consumed. There is no 

need for any algorithmic level of description to be implemented in the 

PVML language.  

When considering the representation of target program data in PVML there 

are some general issues as well as considerations that are specific to particular 

languages and paradigms. 

6 .6 . 1  Da t a  Va l u e s  

Ultimately it is the values of data items that are of interest to the programmer 

and in many cases specific variables in the source language will contain the 

data values. The manner of this containment, which can be language 

dependent, is not the concern of PVML. What is significant is that the 

engine can provide a specific variable name (taking account of scope) and the 
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target can respond with the value of that variable. The variable may represent 

a complex entity, such as a Java object or a C structure, but the values 

required are contained within the representation of that variable. 

What is convenient about such representations is that they are self-contained 

in the sense that the representation has a beginning, various intermediate 

hierarchical levels, and an end. The representation is bounded and well-

behaved.  

6 .6 . 2  Da t a  R e f e r e n c e s  

In many languages it is not necessary for all variables to ‘contain’ the values 

of data items. The alternative is that a program variable refers to, or points 

to, the value being stored. In C and C++ this type of reference is known as a 

pointer [55]. The programmer is still interested in seeing the value of the data 

that is pointed to, but the straightforward association of the program variable 

with the data value no longer exists.  

The pointer may, on one occasion, reference a certain data item. At a latter 

stage of execution the same pointer may reference a different data item. Both 

data items may still, with complete validity, exist and need to be shown 

separately to the programmer but a means to reference them has to be found 

that lies beyond the program variable that stores the pointer. 

This is a straightforward issue in a debugger that runs on the same machine 

as the target program. The means to refer to the two sets of data values 

independently is the machine address of the data item. When considering a 

remote configuration, such as PVML supports, it is important to realise that 

a machine address in the target has no meaning at the engine, other than as a 

value that can be passed back, at a later stage to the target.  The assumption 

is made that memory references will be persistent during program execution. 

This assumption has the effect of excluding certain operating system and 
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debugger combinations in which virtual memory addressing is not ‘hidden’ 

from the programmer. 

The target driver needs to be able to: 

- Resolve (‘de-reference’) such pointer values, returning the 

referenced data value to the engine. The underlying debugger would 

need to be aware of the program variable semantics of pointer 

values – namely that a particular machine address is, in fact, a 

pointer to a particular structured data value. The target needs to be 

able to apply such dereferencing recursively, such that when the data 

pointed to is itself a pointer it is, in turn, de-referenced.  

- Keep track of changes in the usage of memory in the target program 

that could cause pointer references to become invalid. The watch 

mechanism of the underlying debugger would need to be capable of 

keeping track of changes in data at arbitrary memory locations. 

- Limit the extent to which recurrent series of pointers are followed. 

Following a ‘pointer chain’ is a potentially unbounded activity – 

possibly even one that repeats infinitely as when a particular pointer 

value leads back to the start of the chain. PVML needs to be able to 

specify how many steps should be taken along such chains. 

6 .6 . 3  Pr o c e du r a l  Lan gua g e s  

The visualisation of data structures and values in procedural languages is 

perhaps the aspect that most distinctly characterises the broad area of 

program visualisation. The most widely cited examples of PV systems, such 

as BALSA [14], Tango [103], Zeus [16], all make some attempt to visualise 

the data structures of a procedural language. This is true irrespective of 

whether the work is styled as program or algorithm visualisation. A 

fundamental aspect of software visualisation, across the board, is some kind 

of representation of program data. 



 

 96 

The representation desired, from a novice programmer perspective, needs to 

transparently display values in a manner that relates strongly to source 

language constructs and weakly, or not at all, to underlying machine 

implementation details. Figure 6-5 shows the view presented by DDD [29] 

of a linked list implemented in C. Whilst the use of C variable names (list, 

value, self, next) is helpful to the novice, the machine addresses (eg 

0x804ab78) are quite probably not. 

 

Figure 6-5 Data Structure Visualisation in DDD. Reproduced from [28] 

As has been observed it is the selection of what kind of data is displayed that 

characterises a system as program visualisation (PV) or algorithm 

visualisation (AV) and the means for eliciting information about data in a 

running program is generally some form of annotation or instrumentation. 

Automatic annotation is generally associated with PV and manual annotation 

with AV but it is fundamental to the decoupling implied by PVML that 

annotation will be automatic – namely that the source program itself will not 

be modified to support visualisation. 

It is important to note that the description of the state of arbitrary data 

structures implies that PVML will have a syntax which includes terms that 

described hierarchical data. This observation has already been made in the 

context of source code, as well as object hierarchy, delivery. 
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6 .6 . 4  Ob j e c t  O r i e n t e d  Lan gua g e s  

As has been previously noted, the distinction between program code and 

data becomes less sharp in an object oriented language. The earlier section 

that discussed the description of program execution for object oriented 

languages therefore has some relevance. The advantages of representing the 

program in terms which emphasise its object based nature have been argued 

by Kolling [57] as has the consequence for the PVML stream, namely that 

aspects of the class hierarchy of the target program are relayed to the engine. 

As program execution proceeds and changed data objects are relayed to the 

engine, the PVML target should take steps to avoid the resending of the 

code component (the method implementations) of watched objects.  

6 .6 . 5  Fun c t i o n a l  Lan gua g e s  

Literature relating to the visualisation of functional languages has already 

been cited in the discussion of presentation of program execution. The 

relationship between program execution and data is such the observations 

concerning code also refer to data in the functional paradigm. 

In the Lisp language the point at which values are computed is the internal 

‘EVAL’ and ‘APPLY’ functions and Lisp visualisers such as the work of 

Touretzky [110] establish a hook into these EVAL and TRACE calls in the 

Lisp interpreter and generate output at these points. Touretzky's 

visualisations are in the form of static EVAL and TRACE diagrams 

generated by a set of LaTeX macros. This approach could clearly be used to 

yield a stream of data-related PVML statements. 

Prolog execution proceeds as successive predicates are evaluated and a 

Prolog visualisation such as TPM [23] hooks the internal steps of the Prolog 

interpreter – namely the attempt to prove a goal, the successful proof of a 

goal, various levels of failure and re-attempting to prove a goal. It has been 

demonstrated by the architecture of environments such as TPM that these 
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steps can be hooked. A PVML driver for a Prolog target would generate an 

appropriate PVML stream at each of these points. 

6.7 Managing Traffic Volume 

The volume of traffic that passes between the target and an engine can 

critically affect the usability of a decoupled PV system. In a typical PVML 

usage scenario, target and engine will be executing on remote machines and 

this traffic will actually be network traffic.  A requirement of PVML is that 

the language, or its implementation, contains features that can manage traffic 

volume. 

The volume of traffic will depend on the extent of the display being 

provided and the level of detail in the visual representations. These issues are 

principally ones that will concern the visualiser role – the visualiser will, on 

the one hand, select particular data as being of interest and on the other hand 

wish to specify the visual interpretation of that data. This level of detail is 

often referred to as granularity.  

The granularity issue is germane to all PV. Price [83] characterises this issue 

as elision control making the observation that irrelevant information may 

need to be suppressed and that the problem grows with the size of the 

project. Jeliot [36] allows the user to configure program variables to be 

present (or not) on a stage on which the visualisation is enacted. TPM [23] 

allows the user to choose between a long distance view or a close-up view of 

the boolean decision tree (which TPM refers to as the And/Or Tree 

Augmented or AORTA). 

The PVML stream from an executing program will consist primarily of 

descriptions of regions of source code and representations of the values of 

data. The flow of source information, as has already been discussed, will be 

mitigated by caching source code at the engine. A repeated request for 

source code can therefore be satisfied locally, from the cache. The 
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representations of data are considerably more complex and raise several 

issues. 

Through the debugger-style watch command, the visualiser can request 

information describing all aspects of the data state of the target program and 

is therefore in a position to define arbitrary states, made up of a combination 

of values that are to be visualised. The second step in creating a visualisation, 

following the declarative approach, is to define mappings from these 

program states to selected visual effects. This defines a completely functional 

PV system. 

The decisions made by the visualiser, as they devise the mapping from 

program state to visual representation, results in selectiveness at two levels 

being applied to stream of data descriptions: 

- What to View 

The visualiser, or possibly the user if the engine permits, will select 

certain data to be viewed. The consequence of a selection will be a 

request to the underlying debugger at the target to place a watch 

on the data member and updates will be transmitted. 

- How to View 

The visualiser will also be making decisions as to what form of 

visual representation is presented to the user. This has a number 

of consequences for the language. 

What to View 

The selection of a data item that will be watched by the debugger in the 

target may be the result of a specific desire, on the part of the user or 

visualiser, to view that data item or, in a more sophisticated declarative 

scenario, that particular data item may constitute one component of a larger 

mapping scenario. In either case, the engine can use a PVML command to 

request that the target debugger watches the variable. This has much in 
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common with the imperative approach to program visualisation in that 

certain events are being designated as ‘interesting’. 

The volume of traffic that arises from watching a large, possibly complex, 

data structure at the target is potentially unbounded and it will be a necessary 

for PVML to provide a mechanism that can avoid the sending of data values 

that have not changed. If only a single component of a large structure has 

changed in value the target driver needs to be able to detect this and the 

language will be required to transmit what might be considered deltas of a 

data structure, rather than the entire structure.  

How to View 

The default behaviour that has been described, with regards to data, is that 

the portion of a data structure that has been modified be transmitted in its 

entirety. The design of visual representations that are appropriate for the 

novice programmer may well require that there is some control over the level 

of detail displayed to the user. As has been already stated this problem is not 

new to PV developers – there is a well-established case, in the PV field, for 

the elision, under certain circumstances, of aspects of the full view of 

program state. The object of this section is to assess techniques that have 

been used in related contexts and therefore to suggest the means by which a 

PVML stream could be filtered or reduced. 

The Vis architecture (Figure 4-3) implements filtering of the annotation 

stream as a form of ‘back chat’ from the view module to the history module. 

The predominant flow is in the opposite direction – a stream of history 

events that may, or may not, be mapped to pictures.  The visualiser may, by 

selections made in the view module, filter or even search through the 

collection of history data. 

The design of PVML intersects with this implementation in several ways: 
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- The Vis history module needs to maintain a complete set of history 

entries in order to support the searching and filtering. It is not 

anticipated that this would be the case in PVML. This would have 

implications concerning the size of the target driver program. It is 

envisaged that the target driver would be a relatively lightweight 

piece of software that generated a PVML stream and delegated such 

issues as searching the history of events to the visualisation engine 

- The storage of history records at the target in Vis enables filtering 

and searching to both be implemented there. The PVML design 

implies that searching, when supported, will be implemented in the 

engine driver whereas the actual filtering of the PVML stream will 

take place in the target driver. The implication of applying the filter 

here is that the traffic that has been filtered will not be generated. In 

a remote visualisation scenario, where target and engine are on 

separate hosts, the filtered traffic will simply not appear on the 

network. 

- The specification of filter patterns in Vis takes place in the view 

module which equates to the visualisation engine in the PVML 

architecture. This is an appropriate location. 

Most aspects of the PVML stream that have been discussed so far have 

related to the information that needs to flow from the visualisation target to 

the engine. It has been noted that many components of this information are 

hierarchical in nature. The examples that have been given include the state of 

target data, the target source code and the target object hierarchy. The means 

to define this flow of hierarchical information has yet to be specified but the 

requirement to filter regions within this flow very clearly has implications 

that have a fundamental impact on the implementation of PVML 

The means of transmitting filtering requirements from the engine to the 

target should clearly be in harmony with the means adopted to transmit the 

data in the opposite direction. 
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6.8 Ancillary commands 

The location of PVML, within the architecture of a distributed novice 

programming environment, dictates that aspects other that debugging must 

be managed. The novice programmer will be undertaking all steps in the 

development cycle though the engine that constitutes their development 

environment and so the language must include commands and responses 

that map to such aspects as management of student source code and, when 

required, compilation. 

PVML will need to handle the commands to request compilation, possibly 

incorporating a subset of compiler options. The compiler option to support 

debugging of the target program would be part of the default compilation 

request made by the target. 

The compiler errors caused by program syntax errors would need to be 

relayed to the engine and displayed to the user in a way that was helpful for a 

novice and sympathetic to the programming language being used. A 

comment made by Johnson in [48] is pertinent in this regard – “although the 

debugging system should be language-independent, it should appear language 

–dependent from the user’s point of view”. Through PVML the novice 

programmer would be presented with the compiler error messages and 

warnings that are specific to the programming language they are working 

with. 

6.9 Summary of PVML Requirements 

The considerations discussed in this chapter lead to the definition of a set of 

requirements for PVML which are presented here in Table 6-1 and Table 6-2. 

This list expresses the core of PVML that would provide access to generic 

visualisation of a cross section of programming languages. The table separates 

PVML statements into those that are sent by the engine to the target 

(‘commands’) and those that flow in the opposite direction (‘replies’). The 
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terminology used deliberately avoids the terms ‘request’ and ‘response’ since 

these terms acquire a more specific meaning in Chapter 7 when an actual 

implementation of PVML is described. 

The question of specific requirements that arise in the context of a particular 

language or programming paradigm is one that is open ended. A description is 

offered of a single language-specific scenario, that of the object test bench, in 

order to illustrate a general direction that might be followed by subsequent 

extensions to PVML. 

PVML 
Statement 

Comment Parameters 

Generic PVML Commands -  Sent by the engine to the target 

break Set a breakpoint. Location of breakpoint 

compile Recompile program. Compiler switches 

cont Resume normal (ie non-stepped) 
execution. The program will execute until 
it terminates or meets a break point 

 

file Request a target file system listing Identity of target location 

list Provide source listing. Identity of region of source  

next Advance execution by one source line in 
the current execution context – this could 
involve executing an entire sub routine or 
function. 

 

query Request capabilities of target.  

read Read a memory region Identity of region  

run Cause the target program to load – but 
not execute. 

Identity of program 

save Save program text. Identity of program and code to 
save 

step Advance execution by one source line in 
the entire program. 

Optional parameter to step out 
of a context 

stepi Advance execution by one source 
expression 

 

watch Set a data watch point. Identity of data item  

write Write values to a memory region Identity of region and value to 
write 

Table 6-1: Generic PVML (engine to target) 
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PVML 
Statement 

Comment Parameters 

Generic PVML Replies -  Sent by the target to the engine 

code Source code listing in response to ‘list’. Representation of source 
code 

breakresp Confirmation of ‘break’ command. Success or failure 

data Data value resulting from the triggering 
of a watch 

Representation of data value 

location Updated current execution point 
resulting from step/next/cont 

Representation of location 

pvmlinfo Response to ‘query’ command. Representation of target 
ability 

frame Indicates that the execution context 
has changed 

Extent and direction of 
change 

fileresp Response to ‘file’ command Representation of a region of 
target file system 

error A target error that must be 
communicated to the engine 

Representation of target error 

saveresp Response to ‘save’ command Success or failure 

Table 6-2: Generic PVML (target to engine ) 
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PVML Statement Comment Parameters 

Specific PVML Commands 
Sent by the engine to the target 

Instantiate Cause the target program 
instantiate an object 

Identity of object class 
Any necessary 
parameters for the 
instantiation 

invoke Cause the target program to 
invoke a method on an object. 

Identity of object and 
method 
Any necessary 
parameters 

Specific PVML Responses 
Sent by the target to the engine 

instantiateresp Confirms the result of an 
instantiate request 

Failure or else identity 
of object 

invokeresp Result of invocation of method. 
Data watches may be triggered 
causing ‘data’ responses as well. 

Direct output of the 
method invocation 

Table 6-3 Specific PVML for the Object Test Bench scenario 

The next chapter discusses, in general terms, the means that might be 

employed to implement a PVML and move on to describe an implementation 

that has been undertaken during this research. This implementation is capable 

of communicating between PVML engines and targets in a range of declarative 

languages. 

In a subsequent chapter the application of this definition of PVML is 

described. A single reference implementation of a PVML engine offers 

rudimentary debugging access to programs hosted by a pair of reference 

PVML targets. The underlying debuggers in these targets are JDB, the Java 

debugger, and GDB, the GNU debugger. The target programming languages 

supported hence include Java and the set of languages supported by GDB. 
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C h a p t e r  7  

REFERENCE PVML IMPLEMENTATION 

PVML has been described as a language that will provide communication 

between a visualisation engine and remote visualisation targets. Given a 

variety of network infrastructures through which such communication may 

need to occur, there could indeed be a variety of ways in which PVML was 

implemented. In order to demonstrate the proposed language, and to a 

certain extent evaluate its use, this research includes a reference 

implementation of the PVML language. Hence forward in this thesis, all 

mentions of PVML should be regarded as referring to this reference 

implementation. This implementation embodies the following constraints: 

- Network Infrastructure 

The ground work that was undertaken in defining a novice 

programming environment leads to the requirement that target 

and engine interact through the Internet as currently configured. 

This means that target and engine may well be separated by 

arbitrary layers of Internet security mechanisms. 

- User Interface Environment 

As was discussed in Chapter 2, the location portability of the 

programming environment is considerably enhanced by 

implementing the engine in a manner that supports execution in a 

Web browser. 

- PVML Language Scope 

The reference implementation of the PVML language will be 

restricted to features that have been identified as generic across the 

three language paradigms (Section 6.5) that have been considered. 
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7.1 PVML Distribution Platform 

In the general sense, the combination of visualisation engine and target 

communicating through PVML constitutes a distributed application. There is 

a wide range of distribution architectures that can tie together such 

components but the requirements of the reference language implementation, 

specified above, significantly limits the choice of distribution architecture.  

Indeed, during the time span of this research, even the term ‘distribution 

architecture’ has come to be less apposite for a number of reasons.  

In [59] Matter traces the evolution of distributed systems, drawing attention 

to the tightness of the coupling between distributed components when the 

architecture of distribution is based on the notion of remote procedure call. 

Remote procedure call, the metaphor that lies behind a wide range of 

application distribution architectures such as CORBA [79], COM+ [62], RMI 

[45] and RPC [108] requires that a client application behaves as if the 

procedures implemented in the server were a part of the local program. This 

aspect of the implementation has two profound consequences: 

- Specialised Libraries 

Significant, and specialised, communication and data-packaging 

libraries become part of both the client and server application. 

This can restrict the platforms from which components can readily 

be deployed. For example a Microsoft browser often does not 

include the libraries to support RMI or CORBA whereas other 

browsers might have problems with a COM+ distribution. 
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- Programming Language Semantics 

It is fundamental to remote procedure call that the semantics of 

the client application and of the services invoked in the server 

must match at a programming language level. Whilst many 

architectures (RPC, CORBA) abstract this through the use of a 

language-neutral Interface Definition Language (IDL) it remains 

the case that a procedure call is made in the client that will only be 

returned from when the server has completed executing that 

request. 

 

The result is that there exists a very tight coupling between the client and the 

server – moreover one that depends significantly for its operation on the 

precise browser platform in use. 

The alternative is for distributed components to interact through far more 

loosely-coupled frameworks – the approach adopted in the Web Services 

[115] the architecture currently evolving through the World Wide Web 

Consortium (W3C). What characterises the web services approach is the use 

of the standard web protocol, HTTP, and the ubiquitous data format, XML 

[13], to link remote components [98].  

In this light, the distribution technology employed by PVML needs to be 

assessed with respect to communications protocol, and rendering: 
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- Internet Protocol Issues 

The networking infrastructure issues raised above will influence 

the low-level network protocol that encapsulates the PVML 

traffic. The aim is to maximise the likelihood that an arbitrary 

target, running on a secure institutional server, can communicate 

with an arbitrary engine that will be running in a possibly insecure 

location elsewhere on the Internet. This suggests that whatever 

form the PVML messages take they should ultimately be 

encapsulated in HTTP – the standard protocol of the WWW. 

- Browser Implementation Issues 

The distribution architecture selected needs to be one that 

integrates easily with the major browser platforms in use. In 

practice, the ongoing market struggle between Microsoft and other 

suppliers means that browser support for different application 

distribution schemes is by no means heterogeneous. 

Both of these factors, which underpin the location-independent deployment 

of targets and engines, lead towards the proposal that the reference version 

of PVML be implemented using XML. An XML definition of PVML will 

integrate transparently into a web services framework if that is required in 

the future. Apart from these deployment issues, an attractive aspect of XML 

is its handling of hierarchical data – a feature that is fundamental to the 

traffic between visualisation targets and engines. This will be the focus in the 

following section. 

7.2 XML-based PVML 

Throughout the computing industry the description of arbitrary hierarchical 

structures is increasingly being handled by XML [13]. Despite the origins of 

XML as a means to create user-defined tags within HTML documents, the 

fact that XML provides a “linear syntax for trees” [53], means that XML is 
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being used in many domains aside from the layout of Web pages. The 

following examples represent the breadth of such application: 

- XML definition of structured document formats underpins many 

current open e-Commerce proposals 

- The Object Management Group (OMG) who define open standards 

for distributed object technology ( such as CORBA ) have defined a 

class hierarchy interchange format that uses XML [80] 

- XML has been used to implement incremental code migration [26] 

- XML has been used to define source code profiling specifications 

[105] 

The latter three examples all demonstrate the use of XML to describe 

program related constructs of a hierarchical nature, object hierarchies, 

program code and program execution respectively. 

The description of what constitutes a legal set of XML statements in a 

particular context is defined by a schema-like document known as a 

Document Type Definition (DTD). The DTD defines the layout and legal 

content of an XML document which provides the extensibility of the 

language. New terms can be added to a document simply by defining them in 

the DTD that is attached to the document. 

There are many precedents for defining a new language in terms of XML. 

The Organisation for the Advancement of Structured Information Standards 

(OASIS) lists more than 500 ‘XML Applications’ [76], each of which 

involves the definition of a DTD. Some examples include: 

- Bioinformatic Sequence Markup Language (BSML) [74] 

- Taxonomic Markup Language (TML) [77] 

- Chess Markup Language (chessML ) [75] 

The PVML DTD will be presented in Section 7.3 but some preliminary 

discussion will clarify some aspects of the DTD. 
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7 .2 . 1  Requ e s t  a nd  Re s p on s e  

The top-level distinction in PVML is between a request and a response.  

PVML requests arrive, either at the target or at the engine, asynchronously. 

This means that engine and target must be written in a way that can handle a 

PVML request at any time. An example of this would be a data value 

returned from the target, as a result of a watch that has been placed on a 

variable. This message will be generated by the target at a point in time that 

bears no consistent relationship with user activities in the engine. It is simply 

a side-effect of program execution. The engine needs to respond to this 

request with appropriate visual behaviour. 

PVML responses always occur as a result of a previous request. Responses 

are synchronous and should be waited for. All of the defined responses flow 

from the target to the engine and are the result of engine requests. An 

example would be the engine requesting a program listing and receiving the 

response that is the listing. 

7 .2 . 2  Eng i n e  t o  Ta r g e t  R e qu e s t s  

The requests that the engine sends to the target are all straightforward 

commands that map to some combination of debugger primitives. These are 

listed below: 

- run 

The run request begins a session with a particular execution file. 

The parameter to the run request consists of a file system 

identifier through which the target can locate the executable. The 

assumption is that the executable has been compiled in such a way 

that it can be debugged. A fully functional engine would provide a 

remote file system browser, driven by a sequence of PVML 

requests and responses, that would generate the file system 

identifier in response to user selections. 
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- step 

The step request causes the target to advance execution by one 

line of source code in the entire program. If the current execution 

point is a subroutine or function call then the line of source code 

that is executed will be the first line in that function and the 

current execution point will have moved to a new context. All 

debuggers support this basic mode of operation. 

An optional parameter to the step request will cause execution to 

advance until the current context terminates. In debuggers this is 

often referred to as ‘step up’. 

- stepi 

The stepi request causes the target to advance execution by one 

source code expression. This does not map to any normal 

debugger primitive. The stepi command that is available in many 

debuggers is in fact a command to advance by a single machine 

code instruction. Whilst appropriate in a debugger for professional 

programmers the novice programmer requires a granularity of 

stepping that corresponds with the source code entities that they 

are manipulating. For the target to provide this command there 

needs to be a mapping available between source code expressions 

and machine code locations. Given such a mapping a series of 

primitive stepi commands could be invoked on the underlying 

debugger by the target driver to cause a PVML stepi to take place. 
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- next 

The next request causes execution to advance by one line of source 

code, in the current context. If the current execution point is a 

subroutine or function call then that entire function will be 

executed. In debuggers this is often referred to as ‘step over’. 

- cont 

The cont request causes execution to advance at ‘normal’ speed. In 

a PVML context this speed of execution will be limited by 

processing that the target driver must undertake to implement 

other features, such as a generalised data watchpoint facility. Upon 

receiving a cont request the target will proceed to execute until a 

breakpoint is reached or the program terminates. 

- break 

The break request sets or clears a breakpoint in the target 

program. The PVML break request maps directly to a 

straightforward debugger break command. There is no support for 

conditional breakpoints that will be triggered only when certain 

data values exist. The break request is accompanied by a parameter 

that identifies the source code location where the break is to be set 

or cleared. This will be expressed in terms of a source file name 

and source line number. 

- list 

The list request will trigger a response from the target containing a 

representation of program source code. The parameter that 

accompanies this request identifies the source filename. Future 

enhancements of PVML would allow regions within a source file 

to be specified. 
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- watch 

The watch request sets or clears a watch on a variable in the target 

program. The parameters indicate whether this is a set or clear 

operation and identify the variable using the source file name, the 

procedure name and the variable name. In using this request the 

target and engine need to arrange that the scoping rules of the 

programming language are observed. Uniquely identifying a 

variable can raise many programming language dependent issues. 

Appendix A resolves this issue in greater detail. 

- query 

The query request is the means by which the engine discovers the 

capabilities of the target. There could exist, in an environment 

supporting various language paradigms, a possibly complex range 

of capabilities. 

- save 

The save request is used by the engine to request that modified 

source code is saved to the target file system. The parameters to 

this request consist of the full path name and the modified source 

code. 

- file 

The file request is used by the engine to manage a file browser 

dialog that would enable a user to browse their file system space 

on the target machine. The parameter to this request consists of 

the path name that is to the browsed. 

7 .2 . 3  Tar g e t  t o  En g i n e  Re qu e s t s  

Asynchronous data, that must be sent from the target to the engine, will be 

contained in a request message. In particular this is the means by which 

changing data values are relayed in order that they may be visualised. 
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- frame 

The frame request describes a change in execution context that has 

taken place at the target. Execution context changes are handled as 

potentially asynchronous events since they may occur during the 

execution that proceeds after a cont request. In this instance 

changes in source code view may need to be displayed visually as 

the target program moves between execution contexts over a 

protracted period. 

In stepped execution, the execution of a single line of source code 

will result, if a frame change occurs, in the addition (push) or 

removal (pop) of a single frame from the program execution stack. 

The normal parameter passed with a frame request hence needs to 

be plus (or minus) one. 

- data 

The data request is the means by which the target communicates 

data values to the engine. Section 6.7 has discussed ways in which 

the volume of this stream could be mitigated – in particular to 

isolate regions of a complex data structure, either because they had 

actually changed or to support a selected granularity level. The 

reference implementation of PVML contains no features of this 

nature. Entire data structures are sent in the form of a hierarchical 

description that contains variable values and types. This is 

discussed in greater detail in Appendix B. 

7 .2 . 4  Tar g e t  t o  En g i n e  Re s p on s e s  

The balance of PVML traffic will consist of responses that the target 

generates to the various requests described. Neither of the two requests that 

flow from target engine require any response. 
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- code 

The code response contains a representation of the program 

source code and replies to a list request. The representation of 

target source code can be at three levels of detail according to the 

abilities of the particular debugger and program source language. 

This representation is described in detail in Appendix C. 

- breakresp 

The breakresp response is the acknowledgement of a request to 

set, or clear, a breakpoint. A simple success or failure code is the 

parameter passed with this response. 

- location 

A location response is received by the engine as a result of any 

command that causes target execution to advance. The arrival of a 

location response is an indication that the target has successfully 

advanced to the location specified and an engine would be able to 

highlight an appropriate source line. The location is described by 

means of a source file name and line number parameter. It should 

be borne in mind that whilst a location response is pending there 

can be an arbitrary number of data and frame requests arriving at 

the engine each of which may have a visual consequence. 

- pvmlinfo 

A pvmlinfo response is the reply to a query request and the 

parameter must communicate the capabilities of the target. The 

reference version of PVML does not make use of this facility. The 

name of the target debugger is passed as a placeholder. 

- saveresp 

A saveresp response is the reply to a file request and indicates 

success or failure of the save operation. 
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- fileresp 

A fileresp response is the reply to a file request. The parameter 

consists of the identity and types (file or directory) of file system 

objects at the level that is being queried. 

7.3 PVML Document Type Definition 

The authoritative definition of PVML, from an XML point of view, is 

contained in the DTD presented in Appendix D.  

There are many aspects of the format of an XML document format that are 

not described in a DTD. The DTD has the purpose of defining the 

containment rules but does not provide any support for the checking of leaf 

nodes. The leaf nodes are defined at the foot of the DTD and are all denoted 

as (#PCDATA)which, in terms of the automatic checking of documents, is 

nothing more than a commitment to include some bytes of data at that 

point. A lower-level validation of an XML document would be 

accomplished through the use of XML Schemas [118]. This degree of 

automated validation of the PVML stream has not been undertaken here 

but would, quite reasonably, be part of a wide-spread implementation of 

PVML. 

7.4 Examples 

The discussion of PVML requirements has hinted at a variety of 

programming scenarios to which PVML can be applied. This section 

presents the PVML traffic involved in a series of such scenarios. The 

captures of PVML traffic have taken place between reference 

implementations of PVML components. Chapter 8 describes the reference 

engine and the two targets that have been implemented in the course of this 

research. These packages have been configured to dump the PVML traffic 

and that traffic is presented here. 
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7 .4 . 1  Load in g  a  J a va  P r o g r am  

This shows the engine requesting the loading of a Java program and the 

transmission of the source code. The result will be a source display as shown 

in Figure 6-2 on page 87. Large portions of the PVML traffic have been 

removed in order to focus on significant aspects.   

Figure 7-1 shows the initial request from the engine for the target to run a 

program. Figure 7-2 shows the beginning of the resulting response that sends 

the source code. When the source code response is complete the target will 

send (Figure 7-3) a frame request to trigger an initial stack frame 

representation followed by the position response that will result in the initial 

source line being highlighted (Figure 6-2) 

 

Figure 7-1 Engine sends run request 

Request sent: run 

Out: <pvml> 

Out: <request> 

Out: <run> 

Out: <appname> 

Out: Test 

Out: </appname> 

Out: </run> 

Out: </request> 

Out: </pvml> 

 

The request 
is “run” 

The name 
of the 
application 
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Figure 7-2 Start of code response 

 

Figure 7-3 Establish the execution starting point 

Awaiting: code 

In: <pvml> 

In: <response> 

In: <code> 

In: <pvmllevel> 

In: 2 

In: </pvmllevel> 

In: <filename> 

In: Test.java 

In: </filename> 

In: <source> 

In: <line> 

In: <num>1</num><keyword>public</keyword> 

In: <![CDATA[ ]]><keyword>class</keyword> 
In: <![CDATA[ ]]><identifier>Test</identifier> 

This is level 2 
PVML 

Source file name of 
program – will used later 
to identify locations and 
variables 

The source code – and 
the first line 

Line number 1 begins with the 
keyword “public” 

Whitespace wrapped in a CDATA tag 

In: <pvml> 

In: <request> 

In: <frame> 

In: <change> 

In: 1 

In: </change> 

In: </frame> 

In: </request> 

In: </pvml> 

In: <pvml> 

In: <response> 

In: <location> 

In: <filename> 

In: Test.java 

In: </filename> 

In: <linenumber> 

In: 6 

In: </linenumber> 

In: </location> 

In: </response> 

In: </pvml> 

 

Target requests initial 
frame 

Target responds to initial 
run request by stating the 
location at which 
execution begins 

 Execution will commence at line 6 
in the source file 
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7 .4 . 2  Load in g  a  C  P r o g r am  

This example shows an engine requesting the loading of a C program at the 

target. The result will be the source code view shown in Figure 8-5 on page 

133. In this case it can be seen that the requested appname is a target file 

system path 

 

Figure 7-4 Engine run request references target file system 

A sample line of C code, in this case a simple loop ‘for(i=0;i<10;i++)’, 

as encoded in a PVML code response is shown in Figure 7-5. 

 

Figure 7-5 Sample line of C source code 

Out: <pvml> 

Out: <request> 

Out: <run> 

Out: <appname> 

Out: samp/c/a.out 

Out: </appname> 

Out: </run> 

Out: </request> 
Out: </pvml> 

The name of the 
application as a 
target file system 
path 

In: <line> 

In: <num>15</num> 

In: <![CDATA[        ]]><keyword>for</keyword> 

In: <![CDATA[ ]]>(<identifier>i</identifier> 

In: <![CDATA[ ]]>=<![CDATA[ ]]><literal>0</literal> 

In: ;<![CDATA[ ]]><identifier>i</identifier> 

In: <![CDATA[ ]]>&lt; <![CDATA[ ]><literal>10</literal> 

In: ;<![CDATA[ ]]><identifier>i</identifier> 

In: ++) 
In: </line> Program source that is 

not keyword, literal or 
identifier, but legal 
XML, is contained 
directly in containing 
line element 

Some program source 
is not legal XML and 
must be “escaped” 
appropriately 
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7 .4 . 3  Load in g  a  FORTRAN pr o g r am  

The FORTRAN example shows a PVML level 1 code response. GDB 

identifies the source language of the target program as FORTRAN but no 

parser (see Section 8.3.1) is available to support a level 2 display. Without 

a parser available the entire source code is sent as an XML CDATA block. 

The result is the source code view in Figure 8-5 on page 134. 

 

Figure 7-6 Level 1 PVML - FORTRAN source code 

7 .4 . 4  S i n g l e  S t e p  i n  a  C  Pr o g r am  

This example shows a single line of source code executing when a step 

request is sent to the target. The numstep parameter has not been set 

causing the default step size – a single line of source code. 

In: <![CDATA[1  REAL SUM6,SUM7,SUM8,DIF6,DIF7,DIF8,SUMINF 

In: 2 

In: 3  OPEN(6,FILE='PRN') 

In: 4 

In: 5  SUM6=.9*(1.-0.1**6)/0.9 

In: 6 

In: 7  SUM7=.9*(1.-0.1**7)/0.9 

In: 8 

In: 9   SUM8=.9*(1.-0.1**8)/0.9 

In: 10 

. . . 

In: 29   STOP 

In: 30 

In: 31   END 

In: ]]> 
In: </source> 

 Level 1 PVML encapsulates the 
entire FORTAN source in a 
CDATA block. 
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Figure 7-7 Single step in a C program 

7 .4 . 5  S i n g l e  S t e p  w i t h  a  Fr ame  Chan g e  

When stepping by a single source line causes a change of execution context 

at the target a frame request is sent. When a function in another source file 

has been called the subsequent location response will indicate a location in 

a source file which may not yet be cached at the engine. This will cause the 

engine to issue a list request to retrieve the new source code. The GUI 

view of this scenario is shown in Figure 8-4 on page 132. 

 

Figure 7-8 PVML frame request - adding an execution context 

Out: <pvml> 

Out: <request> 

Out: <step> 

Out: </step> 

Out: </request> 

Out: </pvml> 

In: <pvml> 

In: <response> 

In: <location> 

In: <filename> 

In: selectSort.c 

In: </filename> 

In: <linenumber> 

In: 12 

In: </linenumber> 

In: </location> 

In: </response> 
In: </pvml> 

Single step requires 
no numstep 
parameter 

 Location response indicates the 
step is complete. filename and 
linenumber parameters specify 
new location. 

In: <pvml> 

In: <request> 

In: <frame> 

In: <change> 

In: 1 

In: </change> 

In: </frame> 

In: </request> 
In: </pvml> 
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7 .4 . 6  P l a c i n g  a  wa t c h  on  a  v a r i a b l e  

The visualiser will provide a means whereby the user may select a variable to 

become part of the visual representation. Updates in the value of this 

variable need to be detected by the target. The implementation details of this 

process depend on the capabilities of the underlying debugger and the 

consequent design of the target PVML driver. 

The watch request identifies a variable, using the language neutral terminology 

explained in Appendix A, and indicates whether a watch is being added to or 

removed from this variable. 

 

Figure 7-9 Adding a watch to a variable 

7 .4 . 7  Chan g e  i n  v a l u e  o f  wa t c h e d  v a r i a b l e  

The changed value of a watched variable will become available to the target 

asynchronously – as a result of program execution rather than action on the 

part of the user. The data request transmits the new value of the variable to 

the engine. PVML syntax, as explained in Appendix B, can represent 

arbitrary combinations of data values and data references. 

Figure 7-10 shows the PVML that results from a simple variable (a Java int) 

update. The GUI view of this scenario is shown in Figure 8-9.  

Out: <watch> 

Out: <stat> 

Out: true 

Out: </stat> 

Out: <filename> 

Out: TestClass.java 

Out: </filename> 

Out: <linenumber> 

Out: 11 

Out: </linenumber> 

Out: <var> 

Out: j 

Out: </var> 
Out: </watch> 

Parameter indicates 
that a watch is 
being added to the 
variable ‘j’ 
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Figure 7-10 A data request communicates a simple updated data value 

Figure 7-11 shows the representation of a more complex variable. In this, 

more complex, case the formatting of the PVML in the figure has been 

manually altered to clarify the representation of the data values. The GUI view 

of this scenario can be seen in Figure 8-10. 

 

Figure 7-11 A data request communicates a complex variable update 

<data> 
  <filename>Test.java</filename> 
  <linenumber>5</linenumber> 
  <varname>var1</varname> 
  <value> 
    <type>TestClass</type> 
    <value> 
       <type>int</type> 
       <val>51</val> 
    </value> 
    <value> 
       <type>NestedClass</type> 
       <value> 
          <type>java.lang.Integer</type> 
          <val>42</val> 
       </value> 
       <value> 
          <type>java.lang.String</type> 
          <val>Sample String</val> 
       </value> 
     </value> 
  </value> 
</data> 

In: <data> 
In: <filename> 
In: TestClass.java 
In: </filename> 
In: <linenumber> 
In: 11 
In: </linenumber> 
In: <varname> 
In: i 
In: </varname> 
In: <value> 
In: <type> 
In: int 
In: </type> 
In: <val> 
In: 1 
In: </val> 
In: </value> 
In: </data> 
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7 .4 . 8  Wat ch e d  va r i a b l e  b e c om in g  ou t  o f  s c o p e  

The visualiser has the responsibility of maintaining a visual representation, 

for the novice programmer, of variables that actually exist in the executing 

program. When a variable, that has been watched, is no longer in scope it is 

critical that the visualiser be made aware of this fact, in order that an 

appropriate visual reaction may ensue. Under these circumstances the 

optional eoc (end of context) element may be passed in place of a variable 

value in a data request. 

 

Figure 7-12 A watched variable becomes out of context 

In: <data> 

In: <filename> 

In: Test.java 

In: </filename> 

In: <proc> 

In: morejunk30 

In: </proc> 

In: <var> 

In: i 

In: </var> 

In: <value> 

In: </value> 

In: </data> 
In: </request> 
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C h a p t e r  8  

REFERENCE ENGINE AND TARGETS  

The foregoing PVML language scenarios have been based on actual PVML 

traffic between an engine and two different targets. This chapter describes 

the reference engine and targets. These reference implementations are all 

written in the Java programming language. The case has already been made 

in Chapter 2, for using Java to implement the engine – which ultimately will 

be the novice programming environment. 

There is no fundamental reason, given the decoupling that PVML 

introduces, why the targets should be written in Java. In the context of this 

research, and the demonstration of a working PVML-based program 

development scenario, it has been prudent to take advantage of the fact that 

there are significant amounts of functionality that are shared between a target 

and an engine. The generation and parsing of PVML streams, along with the 

management of the network connections across which those streams flow, 

occur in the target and the engine and significant economies of effort have 

been achieved by using Java throughout. 

In order to evaluate the use of PVML with a cross-section of programming 

languages, two targets have been created. A PVML target can most easily be 

characterised as one that encapsulates the functionality of a particular 

debugger: 
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- GDB target 

The debugger GDB has been mentioned at various points in the 

definition of PVML requirements. This debugger is almost 

universally available within UNIX systems and will debug 

programs written in a wide range of GNU supported languages. 

GDB provides a low-level, command line interface to symbolic 

debugging primitives for the languages that it supports. 

Many researchers have sought to develop enhancements to GDB 

functionality, both in terms of improving the user interface [29] 

and developing debugging languages [18],[78] but these efforts 

have not involved modification of GDB itself – rather the 

management of the command and output streams of the 

underlying debugger. The approach could be characterised as the 

development of wrappers for GDB and its functionality. 

In the context of this research the existence of a wrapper, Insight 

[85], that is written in Java, and which has open source, has been 

critical given the arguments already raised concerning Java. 

- JDB Target 

The JDB debugger is part of the standard Java Development Kit 

(JDK) distribution. The debugger has a command line interface 

that is strongly modelled on GDB but the JDK also provides an 

Application Program Interface (API) to the full range of Java 

debugging functionality. 

The reference engine does not set out to provide any program visualisation 

features. Instead the approach has been to provide a platform through which 

PVML debugging scenarios can be explored.  

8.1 Shared Target and Engine Functionality 

This section offers a more detailed examination of the extent of functionality 

that is shared by the reference engine and targets. 
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8 .1 . 1  Ge ne r a t i n g  PVML 

The set of PVML requests and responses, that have been already discussed, 

are programmatically available to target and engine through a single module. 

PVML output is returned to the calling application as a Java String and the 

parameters, when required are passed as appropriate Java parameters. 

8 .1 . 2  Par s i n g  PVML 

The parsing of an incoming PVML stream relies, in the first instance, on 

libraries within the JDK that process XML documents. There are two 

distinct approaches to the parsing of XML streams – the Simple API for 

XML (SAX) parser and the Document Object Model (DOM) parser. These 

are discussed, in general terms, in Appendix E and a case is made for a 

particular combination of the SAX and DOM approaches. The result of this 

combination is that the PVML parser, that manages PVML specific aspects 

of the data stream, has access to a structured DOM representation of the 

request or response that is guaranteed to be clear of any empty nodes that 

could complicate processing. 

Having used this combination of SAX and DOM parsing the PVML parser 

exposes the DOM version of the input (PVML request or response) to a 

series of calls that are made by the command processing loop of the engine 

or target. Some examples will make this clear. 

Request or Response? 

The top level loop, that first analyses the incoming PVML stream, must 

decide if the latest input is a request or response. In Figure 8-1 the incoming 

PVML is parsed into a DOM represented by the variable doc. The parser 

utility routine getType() will extract the value of the top-level element from 

the DOM indicating whether the input is a request or response. 
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Figure 8-1 Check whether input is request or response 

Execute a Request 

Having identified a request, the body of the request must be executed by the 

command interpreter at the target or engine. In Figure 8-2 the 

CommandExecutor class will cause this execution to occur in a separate 

Thread and to occur on the particular interpreter. The parser utility 

routine, getNodeValue(), will extract the body of the command from the 

DOM so that is may be passed to the command. 

 

Figure 8-2 Executing a request 

8 .1 . 3  So cke t  S e r v e r  

The underlying communication, at a transport level, is Transmission Control 

Protocol (TCP) traffic between Java implemented Sockets at the target and 

engine. The code that manages these Socket connections, establishing a 

connection and proceeding to process requests and responses is shared 

between the implementations of target and engine. This effect of this can be 

seen in Figure 8-2 where the interpreter variable, which represents the 

command processor that will handle the request, is a parameter in otherwise 

generic code. 

Document doc = parser.parse( inString ); 

//Was this a request or response? 

String inputType = parser.getType( doc ); 
if( inputType.equals( PVMLParser.REQUEST_TAG )){ 

new Thread( new CommandExecutor( interpreter,  

       requestType, 

       parser.getNodeValue(doc, 

             PVMLParser.REQUEST_TAG). 

       getFirstChild())). 

       start(); 
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8.2 The Reference Engine 

This section describes the reference PVML engine in greater detail. The 

engine is based on the GUI debugger sample program that is part of the 

standard Java Platform Debugging Architecture (JPDA) [109] distribution. 

Sun Microsystems provides this sample, which implements a graphical 

interface to the underlying Java debugging API, in order to demonstrate the 

use of the API to debug a local Java program. The JPDA also implements, 

Java specific, remote debugging connections and these can also be used in 

the sample program. 

In terms of this research the sample program, when separated at a layer that 

purely sends debugging requests and displays the replies, has provided a 

useful starting point for a PVML reference engine. The GUI has had features 

removed and added but is still recognisably that of the Sun sample program. 

It must be stressed that the reference engine provides no data visualisation 

capabilities. Textual representations of watched data values are displayed. 

The addition of an interface between these values and an established, 

command driven, visualisation scheme such as JSamba [102] would provide 

such an ability, but this is beyond the scope of this research. 

The reference implementation of PVML, described in Chapter 7, has been 

used to provide communication between the reference engine and targets. A 

PVML-based infrastructure that supports two important aspects of program 

visualisation has been demonstrated: 

- Program source code 

The source language independent pretty-printing of program 

source code and the associated management of the display of the 

current execution point. 
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- Program data 

Any local or global program variable may be selected to be 

watched. Updates in variable values are displayed as human 

readable text. 

8 .2 . 1  Pr o g r am  S ou r c e  C od e  

Several examples of the display of program source code and current 

execution point in the reference engine are shown here. These GUI 

examples correspond to the PVML scenarios that were introduced in 

Chapter 7. 

Display of Java source code 

This corresponds to the PVML in Section 7.4.1 and Figure 8-3 shows how 

Java source code is pretty printed. The pretty printing of source code is 

actually available for any language that can be parsed by the target. 

A top-level pane is provided for each target connection made from the engine 

and within this pane a separate source code pane is provided for each 

execution context. The top-level frame is labelled (‘jdb@!localhost:12345’ 

in this example) with the name of the debugger in the current target and 

TCP/IP (host and socket) location information. The initial pane is numbered 

‘1’ – the first execution frame. The pane is also labelled with the name of the 

source code file. 
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Figure 8-3 Engine displaying sample Java source code  

As target program execution proceeds, and methods are invoked or functions 

called, new execution contexts will be entered. Each new execution context, as 

signalled by a PVML frame request (Section 7.4.5), will cause the engine to 

display a new source pane. If the function is defined in a source file that has 

not previously been displayed by the engine, this could result in the transfer of 

a new batch of source code. 

 

Figure 8-4 Engine displaying Java source code in a second execution context 

Top-level pane contains 
all panes for a specific 
target connection 

Each execution 
context has source 
code displayed in a 
separate pane  

Highlighting of 
current execution 
point 

A new execution 
context is 
displayed in a new 
source pane 
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Display of C source code 

Figure 8-5  corresponds to the PVML in Section 7.4.2 and shows pretty 

printed C source code, that has been provided by a GDB based target that 

has access to a C language parser. 

 

Figure 8-5 Engine showing sample C source code 

Display of FORTRAN Source Code 

If the debugger in the target, for some reason, cannot parse the source file 

the level of PVML used defaults to one which does not support pretty 

printing. This has been described in Section 7.4.3, where the PVML 

implications are shown, and will also be discussed from a target point of view 

in Section 8.4.2. 

The reference engine allows the user to step through such a program but does 

not provide a means to select program variables to be watched. In the absence 
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of a program parse tree no automatic detection of program variables can be 

provided and the selection of a variable to be watched would need to be based 

on textual entry of a variable name. 

 

Figure 8-6 Engine showing sample FORTRAN source code 

Simultaneous debugging in several different languages 

The engine can connect to an indefinite number of targets, each of which 

may be directed to run a program written in a distinct source language. 

Figure 8-7 shows the reference engine being used with three targets –  a JDB 

target running a Java program and two separate GDB targets, one running a 

program written in C and the other running a program written in 

FORTRAN. 
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Figure 8-7 Simultaneous sessions in three source languages 

8 .2 . 2  Pr o g r am  Da t a  

The reference engine allows any program variable to be selected to be 

watched by the target. The target implementation of variable watching is 

discussed in detail in Sections 8.3 and 8.5 where the specific reference targets 

are described. 

From the point of view of the engine there are two issues that are addressed – 

the selection of a variable to be watched and the display of value updates. 

Selection of a variable 

When the target is able to parse the source language of the program, the 

pretty printing of the engine listing enables the engine to identify the 

declarations of variables in the program listing. A mouse click on a variable 

declaration will tag that program variable to be watched and the source 

listing is modified with all occurrences of that variable being marked with a 

border as in Figure 8-8.  A mouse click on a watched variable will remove the 

watch. The corresponding PVML is shown in Figure 7-9. 

The declaration of the variable is also highlighted which means that the 

attention of the novice programmer is drawn to the scoping rules of the 

One gdb target 
is running a 
program in C 

The jdb target is 
running a 
program in Java 

The second gdb 
target is running 
a program in 
FORTRAN 
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language. As can be seen in the associated PVML it is the line number of the 

declaration that is passed to the target in order to unambiguously identify the 

variable. 

 

Figure 8-8 Engine showing a watched variable 

Clearly this selection technique depends upon the pretty-printing of the source 

code which in turn depends on program parsing at the target. The reference 

engine does not provide a user interface to support the specification of 

variables to be watched in situations such as Figure 8-6  where the source 

program has not been parsed. 

Display of variable updates 

Variable updates, received in a PVML data request, are displayed by the 

engine in a raw, textual form, in the lower pane associated with each source 

code frame. In a visualisation context it is this output that would be parsed 

by a visualisation tool.  

If a declarative approach to visualisation specification (Section 4.4) were 

adopted, particular elements of this stream would form the input to 

All occurrences of the 
watched variable are 
highlighted 

All occurrences of the 
watched variable are 
highlighted 
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expressions, the evaluation of which would result in specific visual 

consequences. 

The, more widely adopted, imperative approach to specifying program 

visualisation would map updates in variable values directly to visual 

representations of those variables. 

Figure 8-9 shows a simple variable value being displayed when program 

execution results in two new values being assigned to a watched variable. The 

PVML that results in this display is shown in Section 7.4.7.  

 

Figure 8-9 Display of a simple Java variable value  

Figure 8-10 shows the output when the value of a more complex variable is 

watched. In this case the variable consisted of an instance of NestedClass 

within an instance of TestClass. The PVML for this transaction is shown in 

Figure 7-11. 

Identification of variable 
using filename and source 
line of declaration 

Type and value of variable 
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Figure 8-10 Display of a complex Java data item 

A visualisation scenario would need to include a means to handle variables that 

have become out of scope – their display would need to be modified in some 

way (possibly ‘greyed out’) or else they might simply disappear. In the 

reference engine, since the effect of returning from a function call is to close 

the source window for that function, the values of variables within that 

function will also disappear from view.  

Figure 8-11 illustrates the display that occurs when a variable is not longer in 

scope. This scenario actually exposes an interesting aspect of the scoping rules 

in Java. In Java it is normal to declare a loop counter in the manner shown in 

Line 13 of the sample program – with the expected consequence that, by Line 

18, the variable ‘i’ will no longer be in scope. This, however, is not the case as 

can be seen by the program execution highlight needing to be at Line 19 

before the “Out of context” message is displayed. Java keeps a variable in 

scope for a short, unspecified, period after the block in which it is declared. 

Structured printout of 
variable value.  
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Figure 8-11 Display of a Java variable becoming out of scope 

8.3 Common Target Components 

It is fundamental to the PVML-based architecture that most target 

functionality is implemented in a PVML target driver that is specifically 

matched to a particular underlying debugger. It is the target driver that maps 

the commands of the abstract ‘PVML debugger’ to the command set of the 

particular debugger that is being encapsulated.  

Two aspects of the target functionality are generic to all targets: 

- Program Parsing 

The parsing of target program code, in order to generate the pretty 

printed source display, is generic to all targets. 

“Out of context” message 
generated when highlighted 
source line is entered. 
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- Watchpoint Management 

The variable watching functionality of the PVML debugger is a 

significant extension of that available in typical debuggers. Various 

classes that are shared by all targets manage this aspect. 

8 .3 . 1  Pr o g r am  Pa r s i n g  

The necessary language parsers are written automatically by a ‘compiler 

compiler’. JavaCC [121] is a Java implementation of a parser generator, that 

takes a language grammar representation as input and automatically generates 

the Java classes required to implement a parser for source files that adhere to 

the grammar. University Collage of Los Angeles maintains a repository of 

grammar files [111] for a cross-section of programming languages – a JavaCC 

grammar is defined in a file with a ‘jj’ extension containing productions that 

are very similar to those expressed in the Backus-Naur Form (BNF) definition 

of a language syntax. 

Generation of the PVML representation of a program source file requires that 

the source file be parsed into a tree representation which is traversed in such 

an order that a correct XML representation of the source code is output. The 

tree representation can be generated automatically from the JavaCC grammar 

definition using the Java Tree Builder (JTB) [52] which extends the parsing 

functionality of JavaCC to include the building of a parse tree. JTB also 

provides methods, that make use of the Visitor pattern [30], to enable classes 

to be written that will perform certain actions at nodes of the parse tree. 

In this context an XMLTreeDumper has been written which generates 

appropriate PVML to describe each region of the parse tree. A distinct 

XMLTreeDumper must be provided for each source language that is supported 

since this class explicitly references the productions of the source language.  

Figure 8-12 shows fragments extracted from the XMLTreeDumper’s written 

for Java and for C. In both cases the Visitor method displayed is the one that 
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is called at the root of the parse tree. In the case of Java this is represented by a 

CompilationUnit node whereas in C the representation is in the form of 

TranslationUnit. At this level in the tree the functionality required is 

identical – namely to recursively visit the rest of the tree before closing any 

open XML elements. Visitor methods for nodes lower down in the tree may 

differ significantly according to source language. 

 

Figure 8-12 XMLTreeDumper fragments for top-level node Visitor in two source 
languages 

8 .3 . 2  Par s e r  Mod i f i c a t i o n s  

In most respects the automatically generated parser and the associated, 

custom-written, Visitor class combine to produce the necessary PVML 

output. There are two considerations though which lead to modifications to 

the JTB-written parser code: 

   

//Top-level Java Visitor 

 public Object visit( CompilationUnit n, Object argu ){ 

      Object _ret=null; 

      super.visit(n, new Boolean(false) ); 

      out.println( "</"+PVMLParser.LINE_TAG+">\n"); 

      if(blocksToClose.size()>0 ) 

           out.println( "</"+PVMLParser.BLOCK_TAG+">\n"); 

      out.println( "</"+PVMLParser.SOURCE_TAG+">\n"); 

      return _ret; 

   } 

 

 

//Top-level C Visitor 

   public Object visit( TranslationUnit n, Object argu ){ 

      Object _ret=null; 

      super.visit(n, new Boolean(false) ); 

      out.println( "</"+PVMLParser.LINE_TAG+">\n"); 

      if(blocksToClose.size()>0 ) 

           out.println( "</"+PVMLParser.BLOCK_TAG+">\n"); 

      out.println( "</"+PVMLParser.SOURCE_TAG+">\n"); 

      return _ret; 
   } 

Structured printout of 
variable value.  
Recursively visit the 
entire tree  

Top-level Java node  

Top-level C node  

Close final line of 
program  

If necessary close final 
block in program  

Close PVML source 
element  
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Program Comments 

It is fundamental to the operation of a parser that program comments are 

ignored and do not appear in the parse tree of the source code. However, 

from the point of view of the novice programmer, it is important that the 

comments are displayed in the engine. The ParserTokenManager class, 

written by JTB, is modified such that, when comment tokens are 

encountered, their text and position in the source code are logged as shown 

in Figure 8-13 with a CommentManager class. 

 

Figure 8-13 ParserTokenManager saves source code comment information 

The XMLTreeDumper checks with the CommentManager class before 

generating the PVML for a new source line and any, outstanding, comments 

are returned and inserted in the PVML stream as comment elements which will 

be rendered appropriately by the engine. This is shown in Figure 8-14. 

//Test whether this token was ‘special’ 

//Special tokens are not placed in the parse tree 

 

if ((jjtoSpecial[jjmatchedKind >> 6] & (1L <<   

(jjmatchedKind & 077))) != 0L){ 

 

     //Get the token 

     matchedToken = jjFillToken(); 

 

     //Log information describing this comment 

     CommentManager.add( matchedToken.beginLine, 

                matchedToken.beginColumn, 
                matchedToken.toString() ); 

Source line of 
comment  

Column position of 
comment to control 
indentation Text of comment  
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Figure 8-14 XMLTreeDumper reinserts source comments in PVML stream 

Parsing Multiple Source Languages 

A target, such as the GDB target described below, needs to be able to parse 

more than one source language and hence have access to JDB-generated 

parsers for a number of languages. The selection, amongst these parsers, will 

depend on the debugger reporting the source language of the current debug 

target. 

To implement this feature the JTB invocation that generates the parser classes 

is directed, through a command line switch, to create these classes in a Java 

package, the name of which includes the name of the source language as 

shown in Figure 8-15.  

The target command interpreter is able to construct the name of the required 

parser and tree-dumper classes and attempt to load these classes at run-time. 

Failure to locate a parser for a program source language will cause the target to 

fall back to a PVML Level 1 representation. 

//A line is finished - check for comments 

Vector comments = CommentManager.checkComment(n.beginLine ); 

 

//There are comments to insert 

if( comments != null ){ 

 

   //Process each comment found 

   for( int i=0; i<comments.size(); i++ ){ 

       Comment comment = (Comment)comments.elementAt(i); 

       out.print("<"+PVMLParser.LINE_TAG+">\n"); 

       printLineNum( comment.line ); 

       out.print("<"+PVMLParser.COMMENT_TAG+">\n"); 

       String pad = ""; 

       for( int j=0; j<comment.col -1; j++ ) 

           pad = pad + " "; 

       if( !pad.equals("")) 

           out.print( "<![CDATA["+ pad +"]]>" ); 

       out.println( comment.text ); 

       out.print("</"+PVMLParser.COMMENT_TAG+">\n"); 

       out.print("</"+PVMLParser.LINE_TAG+">\n"); 

} 

Open PVML line 
element, emit num 
element and open 
comment element 

Create padding to 
maintain indent 

Close open elements 
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Figure 8-15 JTB-written code fragments showing language dependent package 

8 .3 . 3  Pr o g r am  Wa t ch p o i n t  Mana g em en t  

PVML sets out to provide debugging functionality that is independent of 

source language issues and which is also, from the point of view of a novice 

programmer, uniform in application across all aspects of their target 

program. 

This aspect of PVML is most evident in terms of the watching of program 

variable updates. Table 8-1 sets out the contrasting approaches to variable 

watching in the PVML debugger and the two target debuggers that have been 

evaluated and it is the task of the WatchManager class to map the generous 

and uniform PVML watch model to the heterogeneous watch models of the 

supported debuggers. 

To provide program variable watch support at points in program execution 

where the debugger would not (local method variables in JDB, out-of-context 

variables in GDB) requires the WatchManager to maintain data structures that 

record details of watched variables independently of the underlying debugger. 

package jtb.c.syntaxtree; 

 /* Grammar production: 

 * f0 -> ( Pointer() | [ Pointer() ] 

DirectAbstractDeclarator() ) 

 */ 

public class AbstractDeclarator implements Node { 

 

 

 

package jtb.java.syntaxtree; 

/ * Grammar production: 

 * f0 -> MultiplicativeExpression() 

 * f1 -> ( ( "+" | "-" ) MultiplicativeExpression() )* 

 */ 

public class AdditiveExpression implements Node { 

C language parser 
package statement 

Java language parser 
package statement 
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Debugger Variable watching functionality 
PVML - Any program variable can be selected to be watched 

- Variable is specified by source file and line number of 
declaration 

- Variable updates and ‘out of context’ messages returned to 
engine in data requests 

- Visual treatment of  data requests is delegated to the 
visualiser role 

GDB - Any, in context, variable can be selected to be watched 
- Variable is specified by name 

- Automatically deletes watchpoints for variables that 
become out of context 

JDB - Class ‘members’ can be watched (variables that are defined 
at the head of the class) 

- Local method variables cannot be watched 
- Variable to be watched is specified by name 

Table 8-1 Contrasting debugger approaches to program variable watching 

The WatchManager maintains data structures relating to potential program 

watch points and through access to these structures the target driver is able to 

command the debugger appropriately to watch variables that would otherwise 

be unavailable. The following two examples clarify this process: 

GDB – persistent watch on local variable 

Since GDB can only be commanded to watch an in-scope variable the 

persistent watching of a variable that enters and leaves scope requires a new 

watch command upon each entry to that context. The target driver, upon 

entering a new context, checks with the WatchManager for any variable 

watches that need to be re-established. 

JDB – watching local variables 

JDB cannot set a watch on the local variables of a method. In order to watch 

such a variable the target driver needs to command JDB to step by machine 

instructions in regions where a watched variable exists and manually inspect 

the value of that variable. This is a significant performance overhead and 
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should be avoided in the absence of any variables that need to be watched. 

The WatchManager is designed to avoid un-necessary low-level stepping. 

8 .3 . 4  The  WatchManager  

The WatchManager maintains data structures that describe each scope in the 

target program in order that information regarding watched variables can be 

stored independently of the target debugger and in a manner that optimises 

the target driver commands that are sent to the debugger.  

The description of a particular program scope is maintained by an instance 

of the ProcBlock class. A ProcBlock is given a name according to the rules 

described in Appendix A. The WatchManager maintains a Hashtable of 

ProcBlocks for each source file in the target program that is indexed by 

ProcBlock name, and from which the status of watched variables may be 

retrieved by the target driver upon entry into a context. 

The ProcBlock class 

A ProcBlock instance stores details of all variables in a context that are 

watched. The members of this class store the information needed to manage 

the life cycle of variable watching for a particular scope in the source 

program: 

- watchcount 

This integer stores the current number of variables in a scope 

being watched. On entering a scope the target driver check this 

count and if variables are currently being watched proceeds to 

command the debugger using the less efficient, low-level 

command set. 



 

 147 

- filename, procname 

The combination of the source filename and the PVML scope 

name generated according to the techniques described in 

Appendix A, uniquely identify this scope within the target 

program. 

- vars 

This Hashtable, indexed by variable name, stores details of 

watched variables in this scope.  

- startLine, endLine 

The source code lines included within this scope. 

 

8.4 The GDB Target 

This section describes the PVML GDB target in greater detail paying 

particular attention to the use of Insight [85], the open source, Java wrapper 

for GDB. 

Many research projects and developments have involved extending the 

behaviour of GDB as noted in the introduction to this chapter and also in the 

discussion of debuggers in Chapter 5. These endeavours have largely been 

based on choosing not to modify, or directly invoke, GDB functionality but 

instead, to feed commands to an underlying GDB invocation and to capture 

the resulting GDB output. Such an approach is sometimes referred to as 

‘screen scraping’. 

Insight is a Java GUI front-end for GDB which incorporates this screen 

scraping approach. In the context of a PVML target, the GUI is dispensed 

with and the low-level Insight classes, which control access to GDB, are built 

into the target driver.  

Insight extends the event-driven architecture that typifies Java GUI’s by 

implementing a Panel class. This class responds to asynchronous events 
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generated by an underlying GDBServer class that directly manages GDB input 

and output. Insight defines many sub classes of Panel that register with 

GDBServer and subscribe to certain classes of event. Callbacks from the server 

then result in appropriate GUI updates taking place. In the context of creating 

a PVML target driver for GDB, this architecture is particularly well suited to 

the extension that has been implemented.  

As has been previously described on page 129, the parsing of the incoming 

PVML stream is handled by a PVMLParser class, that is common to both 

engine and target implementations. The PVMLParser passes commands 

onwards to an instance of a CommandInterpreter. The GDB target includes 

a pvml.target.gdb.TargetCommandInterpreter class that implements 

the commands received. This class maintains communication with the active 

GDB invocation through sub-classes of the Insight Panel class that register 

with the Insight GDBServer and receive responses from GDB. 

Additional communications, that are not supported by the Insight 

infrastructure, take place through the direct invocation of methods of the 

Insight GDBServer object. 

The aspect of target design that requires detailed discussion here is the 

mapping between the command set of the abstract PVML debugger and that 

of the underlying debugger, in this instance GDB. This relationship is 

described in Section 8.4.1. 

Other issues that are particular to the use of GDB in a PVML target are 

discussed in Section  
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8 .4 . 1  PVML t o  GDB Command  Mapp i n g  

PVML 
debugger 
request 

GDB 
debugger 
command 

Comment 

break  break The only type of breakpoint specification in PVML 
is by filename and line number.  

cont cont Directly mapped 
data - This request returns data values to the engine. All 

watches, when the variable is in context, are native 
GDB watches. The WatchPanel class receives 
notification of the update of watched variables and 
forwards a PVML data request to the engine. 

frame backtrace The PVML frame request is an asynchronous 
indication of a frame change for which there is no 
equivalent GDB response. A frame change in GDB 
is detected by an invocation of the backtrace 
command following each step command. When a 
frame change is detected Insight notifies an instance 
of the FramePanel class which forwards a PVML 
frame request to the engine.  

list  - Program listing in a PVML target is not 
implemented through the debugger. The target 
driver directly reads the source file – through a 
language parser if one is available. 

next  next Directly mapped 
read  print The PVML read command can only be applied to 

variables whereas GDB can evaluate an expression 
in a supported source language. 

run  run Directly mapped – before running a program a 
breakpoint must be set at the entry point to the 
program. 

step  step Directly mapped – a backtrace command is 
included to detect frame changes. 

watch watch The GDB watch command allows a watch to be set 
(or cleared) on any, in context, variable. The PVML 
watch command allows a watch variable to specified 
by source filename and line number – in other 
words regardless of context. 
The PVML watch is set in the WatchManager. If 
the variable is in context the GDB watch is set as 
well – otherwise the setting of this watch in GDB is 
delegated to the WatchManager. 

write  The PVML write command can only be applied to 
variables whereas GDB can evaluate an expression 
in a supported language and assign the result to a 
variable... 

Table 8-2 Mapping PVML debugger requests to GDB 
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8 .4 . 2  GDB Ta r g e t  I s s u e s  

Some aspects of GDB, and the GNU language environment, have a 

particular impact on the design of the target driver and of PVML. 

Source Language Identification 

The GDB ‘info source’ command returns the name of the program source 

language of the currently executing source file. The target driver uses this 

command to retrieve the name that it uses to construct the language parser 

class name as described on page 143. If the parser class cannot be found the 

target will default to a PVML Level 1  representation and there will be no 

pretty printing of the source code available at the engine. 

GDB source language identification depends upon the extension used in the 

source filename (the part of the filename after the last period in the name) and 

situations where source files have been given non-standard extensions will 

prevent PVML Level 2 from being used, even if, in fact a parser exists for the 

source language. 

Program Entry Point 

If single stepping, rather than full speed execution, is required a break point 

must be set at some point in the target program before it is run – the default 

behaviour of GDB is to run a target program to completion. It is normal to 

set a breakpoint at the first instruction of a program before running it under 

GDB in order that initial control is passed to the debugger. 

In the case of a PVML target this breakpoint needs to be automatically set in 

order that programs respond to the PVML run request by loading and 

advancing to the first line of user source code.  

The automatic, language-independent setting of this initial breakpoint is 

complicated by the fact that different source languages may use a different 

symbol name to identify the entry point to the initial source file of the 
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program. The executable file for a program written in a language such as GNU 

FORTRAN, which is actually implemented in C, does have the normal C 

main() entry point, but the execution at this stage is within the libraries that 

support the FORTRAN environment. For the novice programmer the 

perception needs to be of execution commencing in the FORTRAN source 

code. This latter entry point, for FORTRAN, is named MAIN__. 

This issue is resolved by attempting to set the initial breakpoint at all of the 

known program entry points as the fragment of code in Figure 8-16 shows. 

 

Figure 8-16 Setting an initial breakpoint 

8.5 The JDB Target 

This section describes the PVML JDB target in greater detail and pays 

particular attention to the relationship of this work the Java Platform 

Debugging Architecture (JPDA) [109].  

The JPDA exposes all aspects of an executing Java program to programmatic 

manipulation. JDB, the Java debugger, was originally a stand-alone 

application that provided a command set that was very similar to that of 

GDB – but restricted to Java target programs. The publication of the JPDA, 

String [] mainNames = {"main", "MAIN___", "MAIN__" }; 

StringObj reply; 

 

for( int i=0; i<mainNames.length;i++){ 

  reply = gdbs.doBreakCmd( "break " + mainNames[i] ); 

 

   

if( reply.stringObjString != null ){ 

    if( reply.stringObjString.indexOf( "file" ) != -1 ){ 

      //We have set a breakpoint in a source file 

      //This is the one we want 

      return; 

    } 

  } 

  runCmd( "delete breakpoints 1" ); 

} 

Known entry point names 

Try setting a breakpoint at each in turn 

Return – with a breakpoint set 
if the GDB response includes 
the word ‘file’ which identifies a 
breakpoint in the user source – 
otherwise delete this breakpoint 
and try again 
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which includes the Java Debug Interface (JDI), allows all the functionality of 

JDB, for example, to be provided in a sample Java program that is part of the 

JDPA library. The classes and interfaces that make up the JDI provide access 

to all the functionality that is needed in a PVML target that specifically hosts 

Java programs. 

The limitations of JDB in relation to watching local method variables, as 

detailed in Table 8-1, can be seen as being related to the set of events defined 

in the com.sun.jdi.event package [109] which includes a 

ModificationWatchpointEvent that is fired when a class field is modified 

but no event that corresponds to modification of a local method variable. 
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8 .5 . 1  PVML t o  JDB C ommand  Mapp in g  

PVML 
debugger 
request 

JDB 
debugger 
command 

Comment 

break  break The only type of breakpoint specification in PVML 
is by filename and line number.  

cont cont Directly mapped 
data - This request returns data values to the engine. Field 

watches are native to JDB whereas local variable 
watches are implemented through the 
WatchManager as described in Section 8.3.3.  

frame trace 

methods 
The JDB debugger will announce frame changes 
when configured to do so with the trace 
methods command. This command enables the 
MethodEntryEvent and MethodExitEvent of 
the JDI, which announce frame changes 
asynchronously.  

list  - Program listing in a PVML target is not 
implemented through the debugger. The target 
driver directly reads the source file – through a 
language parser if one is available. 

next  next Directly mapped 
read  print The PVML read command can only be applied to 

variables whereas the JDI can evaluate a Java 
expression. 

run  run Directly mapped – before running a program a 
breakpoint must be set at the entry point to the 
program which can be done though the JDI. 

step  step Directly mapped  
watch watch The JDI only allows class fields to be watched. 

Watching of other variables is implemented through 
the WatchManager as described in Section 8.3.3. 

write set The PVML write command can only be applied to 
variables whereas the JDI can evaluate a Java 
expression and assign the result to a variable... 

Table 8-3 Mapping PVML debugger requests to JDB 
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C h a p t e r  9  

DISCUSSION & FUTURE WORK 

This chapter discusses the significance, limitations and possible future 

development of the research described in this thesis. The significance of 

PVML as a concept, and of the reference implementations that are included 

in this research, is described in the context of existing work in the fields of 

PV and remote debugging.  There are important aspects of PVML that have 

been set aside as being beyond the scope of this thesis and some 

consideration needs to be given to the validity of the limitations that have 

been placed on the scope of this work. 

This thesis is a component in the research portfolio presented herewith, in 

fulfillment of the submission requirements of the professional doctorate 

degree. The significance of this thesis, within the broader context of the 

portfolio, is described in the commentary contained in the portfolio. 

Particular attention is paid there to the thematic linkage that exists between 

all the work undertaken in this degree. The research presented in this thesis 

constitutes the culmination of that thematically linked program of study and 

represents a little over half of the entire work undertaken in the degree. 

Accordingly it has been necessary to limit the scope of the research 

undertaken here and the ensuing discussion of limitations in the PVML 

approach will draw attention to these limits. 

9.1 The Significance of PVML 

As described in Chapter 3, program visualisation has, in general, been based 

on monolithic systems that offer the ability to visualise execution of a 

program in a specific source language. The user interface through which the 

novice programmer gains access to these features is particular to the 

visualisation system. The consequences of this architecture are twofold: 
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- Novice programmers, as they move on to learn subsequent 

programming languages, will need to become conversant with yet 

another programming and visualisation environment. The work of 

Hendrix [41], discussed in Section 2.3.3 draws particular attention to 

this issue. 

- The activities of the visualiser role – namely the design of 

pedagogically effective visual representations of program execution 

– are most usually undertaken by the developer of the PV system. 

There is no clear location for effecting changes in visualisation 

strategies that is independent of PV system design. This question has 

been explored in Chapter 4. 

Both of these consequences support the idea of decomposing PV systems 

into more strictly decoupled modules. Through such decoupling, a scenario 

can be realised, where each of the three key PV roles, visualiser, programmer 

and user, interact with a distinct module in the system. This is not a new way 

to approach PV. It has been strongly argued for by Roman [88] who, along 

with several other researchers, has implemented PV systems that are 

decoupled along these lines. 

The PVML proposal has similar decoupling boundaries but is distinctive in 

suggesting that the communication at these boundaries be in a standard and 

open format. The design of an extensible language, that permits arbitrary 

visualisation targets and engines to interact, potentially allows many existing 

visualisation components to interoperate. Through enforcing a formalisation 

of functionality, program visualisation becomes open and extensible. This 

line of argument closely mirrors the developments in distributed computing, 

described in Section 7.1, which have seen the coupling between distributed 

components become less tight at a programming language level. PVML 

represents a significant addition to the expanding range [74] of XML-based 

initiatives that can implement this looser coupling between distributed 

components. 
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It is important to note that the boundary, across which this decoupling is 

proposed, is fundamentally one that is only traversed by program state 

information. Any intrusion of visual representation information into this 

flow would represent a division of attention for the visualiser, between the 

target and the engine. Roman has described the declarative model of 

visualisation in which “complete access to program state” provides the input 

that is required for declaring visualisation mappings from “programs to 

pictures”. PVML has the express purpose of delivering such state 

information to the visualisation engine. 

This reasoning raises the question of whether PVML should also be located 

within the domain of debugging languages. Precedents have been cited for 

building visualisation environments around debuggers (see the introduction 

to Chapter 5) and this proposal proceeds in that vein. In general, a debugging 

environment can deliver arbitrary amounts of program state information. In 

a PVML-based environment this same information will be available to an 

engine, and hence the visualiser, through typical, generic Internet 

connections.  

A significant effort has been made in Chapter 5 to relate the design of PVML 

to the literature describing debugging languages. It is shown that, whilst there 

is a significant overlap in functional requirements, PVML introduces distinct 

considerations. The PV motivation, especially the emphasis on the needs of 

programming novices, constrains the breadth of coverage of the debugging 

domain. Furthermore, the truly decoupled nature of the target and the engine 

extends remote debugging beyond its normal boundaries. 

The true significance of PVML will become apparent as engine and target 

drivers are developed for a variety of existing components. In some instances 

these developments will require extensions to the PVML language, where the 

appropriate interactions move beyond what has been considered generic 

amongst programming languages, into more language specific aspects. 
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Within this thesis the case of the ‘object test bench’ has been considered. 

This is an example of a language specific extension to PVML, in this case 

one that could be applied to object oriented languages.  

9.2 Some Criticisms of PVML 

The scope of this study has focused attention on a generic core of 

functionality for PVML and excluded certain important areas. This study also 

includes a reference implementation of the PVML language that is based on 

XML. 

This section explores the rationale behind a number of exclusions and 

provides a brief discussion of the issues that would be involved were future 

development to be undertaken in such areas. The design decision to base 

PVML on XML is also discussed critically. 

9 .2 . 1  Nov i c e s  a n d  Exp e r t s  

One aspect of this work that requires some mention is the decision that was 

made, at an early stage, to focus on the requirements of novice programmers. 

On the one hand, as has been shown in Section 3.7, the evaluation of the 

effectiveness of program visualisation has largely focused on its use by 

novices. An interest in visualisation is to a considerable extent, as far as the 

literature is concerned, an interest in programming by novices. 

It has been argued in Section 2.3.2, that the feature-richness of the 

programming environment be deliberately curtailed when novice use is 

considered. By setting aside complex features, the design of PVML becomes 

a realistic undertaking within the scope of this research. Future work in this 

field can examine the application of these techniques to professional 

programming environments but this work would undoubtedly raise many 

new issues. 
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As described in Section 5.3, the generic core of PVML, which can be 

generalised across several paradigms of computing language, is a subset of 

complete debugger functionality. In this sense it is reasonable to consider 

PVML as providing an abstract debugger which implements a set of features 

that are appropriate to novice use. The exclusion of features that is implicit in 

the approach of Johnson [48] or Hanson [38] is emulated by the PVML 

proposal. 

9 .2 . 2  Granu l a r i t y  

Although the topic of granularity has been discussed in defining the general 

requirements for PVML, the reference language, engine and targets do not 

put any of these ideas into practice. A convincing demonstration of filtering 

the PVML stream was considered beyond the scope of this research but the 

theoretical functionality is present. Filtering should ensure that only changes 

in state are transmitted and that the level of detail in that state can be 

controlled by the engine. Filtering does not affect the fundamental concept 

of the abstract debugger but it does have the potential to substantially impact 

the usability of a PVML-based system. Reducing the data throughput of the 

PVML connection will increase the responsiveness of a PVML engine and 

lessen the impact of PVML-based visualisation on computing infrastructure. 

Granularity is also an important aspect of PV, as discussed in Section 6.7, since 

the visualiser needs to manage the scale and scope of visual artifacts that are 

presented to the user. Control over the extent and detail of visualisations 

offered to a potentially struggling, novice programmer, is a significant 

pedagogical issue that [83] referred to as elision control. In future, PVML 

would need to be extended to include terms through which an engine, under 

the direction of a visualiser or perhaps as the result of user selection, transmits 

filter specifications to a target. The consequent limiting of PVML traffic to 

that which is strictly necessary to support a particular visual representation 

could clearly have an impact on system responsiveness. 
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9 .2 . 3  Us e  o f  XML 

The design of PVML, as a specialisation of XML, has a number of particular 

consequences. There are several aspects of the XML approach to data 

representation that represent potential criticisms of the PVML design 

presented and therefore require further discussion. 

Well-formedness 

Each PVML communication is a complete XML document, which is 

required to be ‘well-formed’, in the sense of having correct structure. A well-

formed document is defined by the recursive application of two rules: 

- Elements that are opened must be closed. 

- A nested element must be closed before its parent element is closed. 

The representation of program code in XML does not raise any problems – 

program code also adheres to the ‘well formed’ principle and hence the PVML 

encoding of program code can be justified. 

Program state, during execution, can also usually considered to ‘well formed’, 

in the sense that context entry is matched by context exit according to similar 

rules that govern XML parsing. There are, however, circumstances in program 

execution that, at first sight, do not meet this requirement – such as an 

instruction to ‘goto’ a label, an exception or error condition or a pause for user 

input. The overall state of the executing program at such junctures is no longer 

one that can necessarily be described in a valid XML document. 

It remains to consider whether this theoretical problem is, in fact, an actual 

problem in the use of PVML. The decoupling between an engine and target is 

such that the need never, in practice, arises to generate a complete PVML 

description of program state. An examination of the PVML command set 

shows that, even though the target program may, at times, be in an ‘ill formed’ 

state, PVML only communicates a fraction of that state – the current location 

– which can always be expressed in a well formed manner. 
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Representation of binary data 

Computer programs fundamentally manipulate binary data. An integer value 

is represented by a number of bytes of memory; a string value by a series of 

bytes storing the encoding (formerly single byte ASCII but often now two-

byte Unicode) of the characters in the string.  

XML, a ‘text-based’ language, can only include ‘printable’ bytes in a valid 

document. In the case of the two examples given, integer and string values, the 

representation in an XML stream is straightforward. XML allows a character 

coding format to be declared in a document and hence any Unicode 

represented strings can be included in a document. Integers, and other simple 

data types, can be adequately represented as strings – at the cost of some 

verbosity relative to their binary forms.  

A problem arises though, with more extensive binary data, such as images. As 

has been noted in Appendix B, the designers of XML consider this question to 

be beyond the scope of the XML standard. It is intended that the 

incorporation of binary data into an XML stream be based on established 

Internet standards such as Multi-purpose Internet Mail Extension (MIME). 

As discussed in Section 2.3.4 the PVML-based model of PV explicitly targets 

use in a generic Internet context, where the target and engine may be on either 

side of an arbitrary extent of security-related firewall architectures. In this 

context the encoding of binary data according to extant standards would be a 

requirement, rather than an impediment. 

Verbosity 

Attention has already been drawn to the, often verbose, encoding of simple 

binary data, such as an integer, when sent in an XML stream3. The discussion 

of MIME encoding, in which eight bit bytes are encoded as seven bit bytes 

                                                 
3 A two-byte integer could represent a five-digit number, which would occupy five 
bytes when encoded as an ASCII string or even ten bytes as a Unicode string. 
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would increase the size of data by between 10 and 20%. However the 

verbosity of XML extends beyond data encoding to the fact that XML 

includes ‘meta data’ in the stream. In the context of PVML the occurrence 

of, for example, the element name <request> at the beginning of a PVML 

utterance and the closing tag </request> represents a significant overhead. 

A practical PVML-based PV system could employ various strategies to reduce 

the volume of this meta-data: 

- Condensed DTD 

For the sake of clarity in this research, element names have been 

full, explanatory, words. A working system could be based on an 

alternative DTD with considerably abbreviated element names. 

- Attribute Normal Form 

Again for the sake of clarity, all representations herein have been 

in what is known as the ‘Element Normal Form’ (ENF) of XML. 

This form, in which elements simply contain other elements and 

possibly data, can be departed from in the lower regions of an 

XML hierarchy, in which elements simply contain data, rather than 

other elements. The alternative representation for such regions is 

termed ‘Attribute Normal Form’ (ANF) and can provide some 

reduction in verbosity compared to the ENF form of the DTD 

presented here.4 

Figure 9-1 contrasts the ANF and ENF representation of a PVML 

location response. As can be seen the saving is due to ANF not 

requiring element closing tags – in this instance three such tags 

(‘filename’, ‘linenumber’ and ‘location’) have been 

dispensed with. 

                                                 
4 The DTD presented in Appendix D is, for the sake of clarity, written entirely in 
ENF but with two exceptions. The id attribute (Page 180) requires the expressive 
power of the ID declaration, which can only be applied to an attribute. The href 
attribute (Page 181) is required by the xinxlude standard. 
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Figure 9-1 Comparison of ENF and ANF representation of a PVML response. 

9 .2 . 4  Tar g e t  P r o g r am  In pu t/Ou tp u t  

No mechanism has been proposed for managing the normal input and 

output of the target program. Where this information is textual a 

straightforward extension to PVML can manage the entry of data at the 

engine and the consequent display of program output. Many novice 

programming scenarios are, quite reasonably, restricted to ones that involve 

text input and output. For the decoupled engine and target to manage 

programs with graphical requirements would require a mechanism for a 

whole additional, complex set of information to be handled. Clearly this is 

not a matter to be handled by PVML.  

The established remote graphical environment is that of X Windows [50]. X 

Windows can display the graphical output of a target program on any engine 

running ‘X Server’ software. The terminology is counter-intuitive – the 

engine is considered to be offering ‘display services’ to the host target 

program. The X Windows approach is very broadly portable but generates a 

great deal of network traffic. In order to transparently deliver target-

ENF representation of a location response 

<pvml> 

  <response> 

    <location> 

      <filename> 

        Test.java 

      </filename> 

      <linenumber> 

        6 

      </linenumber> 

    </location> 

  </response> 

</pvml> 

ANF representation of a location response 

<pvml> 

  <response> 

    <location filename=”Test.java” linenumber=”6”/> 

  </response> 

</pvml> 
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generated graphical output, from programs in several languages, there are 

several issues that would need to be addressed: 

- All target programs would have to perform their graphical output as 

X-Clients. This will not be generally the case – target programs will 

use a variety of means to create graphical output. However various 

UNIX based graphical environments do, in fact, map to an 

underlying X-Client. Java on UNIX behaves as an X-Client as does 

the graphical language TCL [81]. The Wine project [124] provides an 

environment for UNIX that will support the execution of graphical 

Windows applications by mapping their Windows Graphical Device 

Interface calls to X-Client requests. Wine can be run under the 

Windows OS as well. 

- The engine applet would need to incorporate X-Server functionality. 

Various commercial [122] and open source [123] developments 

support X-Server functionality within Java enabled Web browsers. 

- The engine, from the point of view of the novice programmer, 

would need to manage the inter-relationship of arbitrary target 

program output windows and the windows that were part of the PV 

proper.  

 

9.3 Related Work 

Previous chapters have examined existing work in two distinct fields that are 

related to this body of research. This section reviews the relationship of 

PVML to existing work in the fields of decoupled PV architectures and 

distributed, language-neutral debugging. 

9 .3 . 1  De c oup l e d  PV 

As has been stated, the significant impact of the decoupling of target and 

engine in a PVML-based PV system is that the role of the visualiser can be 

isolated from the other roles involved in PV. This approach has, most 
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dramatically, been demonstrated in the work of Roman [90] and Domingue 

[21]. The Pavane and Vis PV systems both incorporate partitioning of their 

functionality which leaves a distinct, and independent, location for the 

activities of the visualiser.  

It is instructive to consider how a PVML-based connection would relate to 

the architecture of these systems and in particular how the dependence of 

PVML communication on open, ‘web friendly’, standards would enable such 

systems to be used through the ‘generic’ type of Internet connection most 

commonly encountered by students. These connections are characterised by 

extensive security-related restrictions that preclude normal, socket-to-socket, 

communication. 

In Pavane, as Figure 9-2 illustrates, it is the communication between the 

“underlying computation” and the “visualisation computation” that would be 

realised by PVML. In a functioning Pavane system this stream of program 

state information is transmitted through inter-process communication 

mechanisms, using protocols that are particular to Pavane. It would be 

theoretically feasible to insert a PVML link at this point and hence enable a 

Pavane visualisation to be viewed at a remote location, through a generic 

Internet connection. 
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Figure 9-2 Structure of the Pavane system. Reproduced from [91] 

In Vis, as Figure 9-3 illustrates, it is the stage at which “program execution 

history” calls are sent that would be realised in PVML. A similar observation 

can be made concerning the theoretical application of PVML-based 

communication to a working Vis system. 

 

Figure 9-3: The Vis Architecture. Reproduced from [21] 

 

Location for 
PVML-based 
communication 

Location for PVML-
based communication 
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9 .3 . 2  Di s t r i b u t e d  De bu g g i n g  

As has been observed in Chapter 5, the content of a PVML stream has much 

in common with the communication between the components of a 

distributed debugger. PVML adds the intention that this communication be 

independent of target programming language to the general requirements of 

a distributed debugger. In general, as described in Section 5.3, language-

neutral, or heterogeneous, debugging has been implemented through a 

debugging language that abstracts low-level debugging primitives. This 

indeed, is the approach taken by PVML. 

In discussing the relationship of PVML to existing PV systems it has been 

suggested that, in theory, a target driver could be devised that encapsulated the 

appropriate components of a PV system in order to communicate program 

state information remotely. A similar proposition can be made in relation to 

debugging language implementations – namely that a PVML target driver can 

be designed to enable a PVML engine to interact with a target built upon an 

underlying debugging language. The complexity of such a task though would 

be dependent on the modularity of the design of the debugging-language 

system under consideration and on the precise architecture of the language 

implementation. When the boundaries across which the debugging system is 

decoupled match the boundaries implicit in PVML, as they do in both Pavane 

and Vis, the task could be considerably more straightforward. 

Accordingly the examination of distributed debugging systems, in relation to 

PVML, is strongly motivated by a consideration of the boundaries across 

which they are decoupled. In this light, it is the work of Hanson [39] that is of 

particular interest. The architecture of deet and the architecture of a PVML-

based system are very similar. 

The deet program is based on cdb [39], earlier work of the same author. The 

cdb program is a machine independent debugger that attaches a small ‘nub’ of 

machine dependent code to a target program, in order that machine 
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dependencies can be abstracted. Figure 9-4 illustrates this architecture and it is 

instructive to compare this with the PVML architecture shown in Figure 4-4. 

 

Figure 9-4 cdb's design. Reproduced from [38] 

The nub provides a simplified debugging interface, that an external debugger 

can interact with. In cdb the debugger is a text-based debugger, similar to 

many conventional debuggers.  

The deet program provides a graphical front-end to the interface provided by 

an enhanced version of the cdb nub. The interface provided by the deet nub 

is shown in Figure 9-5. As can be seen this is a basic, but adequate, set of 

debugging primitives similar to that provided by GDL [18] and discussed in 

some detail in Section 6.1.  

The principal observation regarding such debugger primitives is that their use 

can involve significant processing overhead relative to the more expressive 

commands of an established debugger. A straightforward example of this to 

contrast the low-level commands required to step forward in execution to the 

next source line – a part of normal debugger functionality – with the native 

implementation of a conventional debugger. In a PVML-based scenario, in 

which a non-trivial network communication is included, this argument carries 

still more weight. 
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Figure 9-5 deet's nub interface. Reproduced from [38] 

Nevertheless the approach taken by deet shares many aspects with that taken 

in this research and it would quite definitely be feasible to design a PVML 

target driver that encapsulates a deet nub. 

9.4 Further Work 

The proposal for an open, XML-based, communication between visualisation 

engines and targets opens up many fascinating future directions. The general 

motivation of these developments is to provide a variety of visualisation 

scenarios in which distinct styles of, and approaches to, visualisation can be 

employed with a variety of target programming languages. The intention is to 

open the domain of program visualisation, as a component of introductory 

programming pedagogy to more extensive experimental evaluation. 

Specific developments can be broadly divided between those that develop 

engine and those that develop target functionality. 

deet_open initialize the target 

 
deet_breakpoint f -set j -
delete j -list g  file line 

character 

 

set, remove, and list breakpoints 

deet_frame [ n ] get/set current frame 
deet_getval type address read a value of type from address 

 
deet_putval type address value write the value of type to address 

 
deet_continue resume execution 

 
deet_sym f -all j -files j -
locals j -params | -name 

name g 

finds the symbol-table entries 

 

deet_type symbol 

 
get symbol’s type information 
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9 .4 . 1  Tar g e t  D e ve l opme n t  

The extent of PVML that has been demonstrated herein is restricted to a 

generic core of functionality that can be applied to a cross-section of 

programming languages. Aside from devising target drivers that encapsulate 

individual, specific languages and their debuggers there is a specific 

development that could lead to exploration of the application of PVML to 

extensive, novel, areas.  

.NET Target 

The Microsoft .NET framework [61] is a set of standards that enable 

programs written in a variety of source languages to interoperate. Programs 

written in wide variety of languages – seventeen non-Microsoft languages are 

listed at [63] – are compiled into a Common Language Runtime (CLR) that 

can be executed on a variety of platforms. The interoperability between this 

multitude of languages is at the CLR level. 

The .NET framework incorporates a debugging API [64], that supports the 

debugging of CLR executions and which gives access to the particular 

programming language source code that gave rise to each executing fragment 

of CLR code. 

A PVML target driver that encapsulated a CLR debugger would expose the 

broad cross-section of .NET languages to a PVML engine. The .NET 

supported languages are representative of the three language paradigms 

described on page 81, and this target would be a suitable environment for the 

study of the paradigm-specific extensions to PVML that would support 

appropriate pedagogy in a variety of CS1 and CS2 environments. 

This work has commenced under an honours-level project, supervised by the 

author. 
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9 .4 . 2  Eng i n e  De v e l o pm en t  

A general model for PVML engine development is shown in Figure 5-2 where 

the PVML engine driver is represented as an encapsulation of an existing 

imperative or declarative visualisation system. As can be seen, a declarative 

model of visualisation, which is inherently designed to consume a stream of 

program state information, requires a simpler engine driver.  

A general direction for future work on PVML engines would be to implement 

drivers for a number of existing visualisation front ends. As has been 

suggested in Section 9.3.2 (page 166), the manageability of this task will 

depend on the extent and nature of the modularity already demonstrated by 

the existing PV system. A straight-forward addition of an existing imperative 

PV system, JSamba, to the reference engine has already been discussed in 

Section 8.2 (page 130). 

Chapter 2, which discusses a novice programming environment, could be the 

basis for a particular PVML engine which would, in fact, be a complete multi-

lingual, novice programming environment. Section 6.8 discusses the extensions 

to PVML that would support compilation of the target program and simple 

source file management. 

9 .4 . 3  Comb i n e d  Ta r g e t  a nd  Eng i n e  De v e l o pmen t  

In some cases it could be considered useful to partition an existing, 

monolithic development or visualisation environment across PVML 

boundaries. For the novice programmer the effect would be to provide 

location independence, with a single set of programming tasks being pursued 

from any location.  

BlueJ Target/Engine 

In the context of the author’s professional involvement in the pedagogy of 

object-oriented programming the BlueJ [57] environment has been a critical 

improvement in presenting the paradigm to novices. As discussed in Section 
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6.5.2, the internal partitioning of the BlueJ implementation is one that would 

quite naturally support the inclusion of a PVML-based connection between a 

server-based target and a portable, possibly browser-based, engine. 

9 .4 . 4  PVML De v e l o pm en t  

Undoubtedly the suggestions made for future work would give rise to 

extensions and possibly modifications to the PVML language proposed 

herein. The standard definition of the language itself, if such developments 

are to proceed in an organised fashion, will need to be made available 

through an appropriate, centralised repository. 
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C o n c l u s i o n  

CONCLUSION 

 

Program visualisation is a well-established field, populated by a wide variety of 

systems. These systems demonstrate a range of approaches to providing visual 

representations of program execution. Many systems have the express purpose 

of supporting novice programmers in their initial programming endeavours. 

Programming in a variety of target languages is supported and the visual 

representations, provided by some form of engine that the user of the system 

interacts with, involve visual methodologies that in many cases are the express 

project of the system designer. 

The extent of this activity is largely motivated by the suggestion that PV assists 

the programming novice in forming mental models of an unfamiliar process 

and will ultimately speed up the development of programming skills. Whilst 

fundamental to all PV development, this assertion is one that still lacks 

extensive, empirical support.  

Much work has been put into taxonomic analyses of these efforts but, as has 

been noted, comparatively few researchers have undertaken a concerted, 

conceptual analysis of what PV actually is. Terms have been defined that 

identify components and aspects of the PV endeavour but this language has 

been applied to describing what has been undertaken rather than analysing, 

through generalised reasoning, the aim of PV. From this point of view the 

work of Roman is distinctive and the research presented here is profoundly 

influenced by that work. 

Roman’s generalised definition of PV as “a mapping from programs to 

graphical representations” involves a closer than usual examination of the 

human roles involved in PV. The definition of the roles of user, programmer 
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visualiser and PV system developer has particular consequences to any 

discussion of PV systems. Although the user and the programmer role, whose 

concerns coalesce in the novice-programmer, represent the ‘end-user’ of a PV 

system it is the visualiser, who makes the decisions as to exactly how program 

execution is represented. These choices are central to any assessment or 

evaluation of PV. In most PV system implementations it is the PV system 

developer who makes these decisions and there exists no clear location for the 

independent exercising of the visualiser role. 

Isolating the activities of the visualiser, and exposing them to evaluation that is 

independent of the PV system developer in particular, depends on the design 

of the PV system itself. A monolithic architecture, in which the PV system 

consists of a single large program, necessarily involves visualiser decisions 

being made by the system developer. Roman, in proposing a declarative model 

of program visualisation, also implied a decomposition of this monolithic 

architecture such that visualiser activity was expressly isolated. 

At one level the contribution of PVML can be expressed in these terms alone. 

PVML implements a decoupled PV architecture, which echoes that of Roman 

and several other researchers, but does so in an open and extensible manner. 

Through PVML it becomes feasible to propose arbitrary assemblies of PV 

engines and targets and by this means to expose visualiser activity to critical, 

comparative evaluation. Completely new PV components can be developed or 

else, as has been described, parts of existing PV systems could be exposed in 

this manner. 

It should also be noted though, that this proposed decoupling of target and 

engine is precisely the architectural foundation that is needed for a language 

and location independent programming environment. Historically it is this 

goal, as expressed in the author's 1999 conference paper, which gave rise to 

the initial proposal of a Program Visualisation Meta Language. Whilst PVML 

can provide program visualisation in a fully decoupled environment, it can also 

provide the elementary program development scaffolding that, almost 
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inevitably, will accompany a novice programmer making use of PV in their 

initial programming endeavours. The PVML-based program development 

environment is an engine that can be used from any location to undertake 

development of remote target programs – in theory independently of the 

programming language in which they are written. 

The location of PVML within the particular decomposition of the PV task has 

the interesting consequence that PVML is also a debugging language. This 

arises because a strict adherence of the proposed PV boundaries to the 

separation of the PV roles, leads to the PVML stream containing only program 

state information. The genesis of this definition can be found in PV systems 

designed by Roman and others, where the activity of visualiser is supported 

through an un-encumbered stream of program state information. PVML 

provides such a stream. 

It is this architectural consideration that motivates a significant portion of this 

thesis, leading to an emphasis on the design of debugging languages and 

attendant low-level programming issues. It leads to the important 

characterisation of PVML as implementing an abstract debugger that 

encapsulates a particular concrete debugger in a particular target. Most 

decisions in the design of PVML can be represented as abstract-to-concrete 

debugger command mappings. 

Although these observations may lead to the suggestion that the name PVML 

does not accurately describe the work that has been undertaken, on balance it 

is the attention to the PV domain that has motivated this work. It is the PV 

domain that stands to benefit principally from adoption of a PVML approach. 

This research conclusively demonstrates a loosely coupled, extensible, 

communication framework through which arbitrary target and engine 

components can communicate. Not only does this expose program 

visualisation to substantial opportunities for empirical validation but it also 
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suggests directions for the significant development of novice programming 

environments. 
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A p p e n d i x  A  

LINE-NUMBERED VARIABLES AND SCOPE NAMES IN PVML  

This appendix contains a more detailed discussion of the requirement for 

PVML to identify scopes and program variables through program line-

numbers in order to refer to variables in a generic manner.  

In all programming languages variable names are unique within a particular, 

defined, region of the program. The region within which a variable name is 

considered unique is termed the ‘scope’ of the variable. The unique 

identification of a variable can be decomposed into a combination of the 

variable name and some unique definition of the scope. 

The rules relating to scope vary amongst programming languages as some 

brief examples will show. 

Scope in C 

Within a program function names must be unique. Within a function variable 

names must be unique. A C variable is therefore uniquely identified by a 

function name-variable name tuple. However, as will be seen below, this 

description of a variable may not be unique in other languages. 

Scope in C++ 

C++ (and some other object oriented languages) allow the overloading of 

function (method) names. In a language such as C, a function name such as 

test() must be unique within a program. C++ distinguishes between 

different versions of test() according to the types of the parameter(s) 

declared. Hence test(int i) is considered distinct from test(floatsf). 

The engine needs to refer to these scopes in a manner that maintains the 

distinction. Furthermore the scope of a method name is limited by the class in 
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which it is defined - two distinct classes may include methods of the same 

name. 

The C++ compiler keeps track of this through a process known as ‘name 

mangling’, in which methods are given specially generated, unique, names 

during compilation. These unique names are built by the compiler through a 

combination of the class name, the method name and some representation of 

the parameter types. These ‘mangled’ names are usually private to the 

compiler but use of appropriate compiler switches, or executing a C++ 

program under a debugger, can make the mangled names apparent. 

From the point of view of a novice programmer, viewing the source code of a 

C++ program through an engine, variables will be perceived as distinct by 

virtue of their location in the program source code.  A particular variable 

declaration, as seen in source code listing, will identify a particular variable 

uniquely. This leads to the requirement that a PVML engine identifies 

variables through their location in the source file, delegating the retrieval of 

the actual variable to the target, which also has access to the source file. 

In addition, the scoping of variables in C++ is also distinct at the lower level 

of, otherwise un-named, blocks of source code. Any language construct in 

C++ that permits the use of braces (‘{‘  ‘}’) to define a block of source code 

will have the consequence of defining a new scope within which variables 

may be declared. 

The PVML engine requires the ability to refer uniquely to variables declared 

in each such scope. 

Scope in Java 

Similar scoping issues arise in Java and these concepts are demonstrated 

through the fragment of Java source code presented below. In this example 
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line numbers, not normally part of the Java language, have been added to 

support the discussion.  

 

Figure A-1: Multiple scopes in a sample Java program 

The fragment of code contains three variables of int type but in one case 

the same name j has been used in different scopes. 

The variable j has been declared in the body of the class (line 2) and 

assigned a value. The scope of this variable is the entire class. Hence line 5 

will print out ‘13’. In order to place a watch on this variable it might be 

identified as simply ‘j’ in the source file - the syntax of Java dictates that this 

is an unambiguous reference. 

A method named sampleMethod is declared in line 3. The effect of this is 

to establish a new scope in which variables can be declared. The variable k 

has been declared and assigned a value. A representation such as 

‘sampleMethod, k’ for this variable would not, necessarily, be unique given 

that sampleMethod() may have been overloaded. The requirement is 

already apparent for a representation that uniquely identifies a particular 

region of code where a variable has been declared. 

This requirement is re-emphasised when, in line 6, yet another scope has 

been created. The effect, in Java, of using braces after a statement like ‘for( 

j=0…)’ is to establish a scope in which variable names, such as the counter j 

1  public SampleClass{ 

2    int j=13; 

3    public static void sampleMethod(){ 

4      int k=14; 

5      System.out.println( j ); 

6      for( int j=0; j<2; j++ ){ 

7        System.out.println( j ); 

8      } 

9      System.out.println( j ); 

10   } 

11 } 

Deleted: 10-1
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have the potential to obscure similarly named variables in a superior scope. 

The effect of this is that line 7 will print out ‘0’ the first time it is executed - 

rather than ‘13’. A reference to this particular variable again needs to be 

made in terms of the specific location where the variable is declared. 

Discussion 

The requirement that the PVML framework be programming language 

neutral introduces a particular set of constraints to this discussion. The 

means employed by the engine to refer to variables and scopes, needs to be 

independent of particular programming language techniques, such as name 

mangling. At the same time, the reference to a variable needs to be one that 

the language-specific target can decode in order to give access to the value 

of a particular variable. 

PVML make use of two terms to identify a variable: 

- filename 

The source filename in which the variable is declared. The novice 

programmer will have a ‘pretty printed’ view of all relevant 

program source at their disposal and will select a variable by 

highlighting its declaration. 

- linenumber 

The line number of the variable declaration. The line number and 

the source filename will be resolved by the target to reference a 

particular variable.  

This approach assumes that programs are ‘well formed’ in the sense of using 

new lines to separate declarations from other source constructs. Handling 

the program ‘conundrums’, that deliberately set out to write entire programs 

in a single line of source code, would need to be set aside as being beyond 

the scope of this work. 
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In addition to describing variables PVML targets need, when specifying 

watched variables, to refer to contexts in the source program by names that 

identify them uniquely across variable program language contexts. These 

unique scope names are generated by appending the line number of the 

beginning of the scope an enclosing scope name. 

The sample Java program in Figure A-1 illustrates this concept. This sample 

Java class contains three distinct scopes and their unique PVML names are 

shown in Table A-10-1. This table explains the PVML scope names that, 

accompanied by the filename containing the scope definition, will uniquely 

identify the respective scopes. 

Scope description PVML scope 
name 

Comment 

Entire class ***1 In Java the top-level in a file has a name 
– in this example SampleClass. 
However in other languages this may 
not be the case. Hence a general term is 
used (which cannot be a legal function 
or method name) to denote this top-
level scope. 

sampleMethod sampleMethod3 The PVML scope name describes this 
scope uniquely, even when the method 
name has been overloaded. 

for{} loop in 
sampleMethod 

sampleMethod6 The PVML scope name identifies a 
region that would otherwise be 
anonymous. 

Table A-10-1 PVML scope names in a sample Java program 
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A p p e n d i x  B  

DATA VALUES IN PVML 

The purpose of this appendix is to clarify the manner in which arbitrary 

target data values and references can be encoded in a PVML stream. The 

hierarchical representation is defined by the DTD presented in Appendix D 

and this appendix will expand upon the terse representation provided by the 

DTD. 

The root of a data representation in PVML is a value element that contains 

branches and links that represent the structure of target data. A compulsory 

attribute of all value elements is an id to which the target driver may assign 

a target machine memory address.  

In the target programming language, data is identified either by the name of 

a variable or by a pointer that references a region of target memory that is 

supplying some structured storage. The need to support both data values 

and data references (as laid out in Section 6.6) means that whenever a data 

value is transmitted it will be accompanied by a unique target memory 

reference and, when it exists, a uniquely specified variable name. 

Target data representations, encoded in the format described here, may be 

transmitted in three circumstances: 

- Content of an asynchronous request 

These arrive at the engine as a result of watchpoints in the target 

program being triggered. The debugger causes the target driver to 

send a PVML request to the engine which will result in 

visualisation(s) being updated. 
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- Content of a synchronous response 

These arrive at the engine in response to a request sent to the 

target such as read. Such requests are the result of user 

interaction with the engine. This will occur when the target 

program is halted and the user is investigating the state of target 

data. 

- Parameter to a request 

Target data representations will be sent by the engine, as a 

parameter to a write request, when the user is modifying data at 

the target. 

The XML representation is designed to encode hierarchical, and linked, data 

structures. In all cases the actual data values are ultimately encoded as text 

or a raw data encapsulation that is manageable by XML and the particular 

engine implementation. 

The XML Protocol Working Group [112], a body undertaking the 

specification of requirements for the XML Protocol, has largely set aside the 

issue of the encoding of binary data as being beyond the scope of the XML 

protocol. Reference is made [ibid Section 2.1], to “commonly used image 

formats like PNG, JPEG” and to emerging approaches “based on MIME 

multipart” both of which are in extensive use in related Internet activities. 

The components that interoperate to implement the Internet and World 

Wide Web rely, in many cases, on communicating binary data, in which the 

entire 8 bits of a byte are significant, through channels that require ASCII 

formatted data, in which only 7 bits are significant. A typical instance of this 

constraint exists in electronic mail – the standard defining the format of 

Internet mail, RFC822 [44] specifies that electronic mail messages must 

consist of ASCII text. To accommodate this constraint a variety of 

encodings, such as MIME, have been developed that transform binary data 
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into an ASCII representation that can be encapsulated in an electronic mail 

message. 

The intent of XML development is to delegate the management of binary 

data to an accepted, non-XML, standard which, in a PVML context, would 

be agreed between the target and engine. 

Since a PVML target is a wrapper around a debugger for the source 

language, the data representations and features available through PVML will 

be constrained by those available in the underlying debugger. The content 

and format of data appearing in the PVML stream will always be a subset of 

the representations provided by the debugger involved. 

The data Element 

The value of a target data item, which may consist of arbitrarily nested data 

structures or references, is transmitted in a data element. The data 

element is defined as follows: 

Name  o f  v a r i a b l e  

Variable names need to uniquely identify a variable, taking into account the 

scoping rules of the target language. The general form of a variable 

identification is discussed in Appendix A and consists of: 

- filename  

The source file name expressed as a target file system location. 

- linenumber 

The source line number of the variable declaration. 

-  varname 

The name of the variable. 
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Va lu e  o f  va r i a b l e  

- value 

The value element can be used recursively to define arbitrarily 

nested, and linked, data. 

The value Element 

The visualiser in a PV system will be assigning mappings between the state 

of target program data and, usually visual, representations that are presented 

to the user. The value element in PVML contains the information on 

which the visualisation will be based.  

- type 

A text string representing the data type of this variable. This 

string is only used at the engine for display purposes and will be 

in the language dependent format employed by the underlying 

debugger at the target. 

- varname? 

The ‘?” syntax in a DTD indicates that the marked item may 

occur zero or one time in an element – in other words the 

content is optional.  

varname represents the name of the variable. The name is 

provided in order that the visualisation may incorporate variable 

names. In certain cases a variable may have no name – for 

example an intermediate value in a complex expression or a 

structure that is being referenced through a pointer. 

- val* | value* 

The DTD syntax of ‘*’ denotes zero-to-many occurrences of 

the tagged item. The ‘|’ operator denotes that either of the 

operands are valid at this level. 
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A value element may consist either of zero or more repetitions 

of a val element or zero or more repetitions of a value 

element. value elements incorporate name and type elements 

and are therefore appropriate for the representation of 

structures, objects or named fields within such elements. 

val elements contain no meta-information and are therefore 

appropriate for the representation of, possibly repeated, simple 

elements. 

The val Element 

The val element represents a single simple (not structured) data item. This 

could either be a data value, of the type defined in the enclosing value 

element, or a data reference in the form of a ptr element. Both these 

possibilities are considered in more detail below. Examples are given 

demonstrating the representation of various data in a variety of source 

languages. 

Data Values 

Actual data values (as distinct from data references, which are described 

below), will consist of nested value and val elements, with the values of 

the leaf nodes in the data structures being stored in the val elements. A 

variety of examples of this representation are presented, using C and Java 

data structures. 

C  s t r u c t u r e  

The fragment of C code shows a variable myStruct that consists of a 

structure containing some numeric values and a nested, second, structure. 

The PVML fragment represents this variable. It should be noted that the 

meta-data (type, varname) in the PVML stream means that this 
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representation is self-documenting. The PVML stream contains sufficient 

information for the visualiser to build appropriate visual representations. 

 

Figure B-1 A C structure and its PVML representation 

struct innerStruct{ 

    int innerInt a; 

} 

struct sample{ 

    int x; 

    float y; 

    struct innerStruct z; 

} 

 

struct sample myStruct; 

myStruct.x = 10; 

myStruct.y = 3.14; 

myStruct.innerStruct.a = 42; 

<value> 

   <type>struct sample</type> 

   <varname>myStruct</varname> 

   <value> 

       <type>int</type> 

       <varname>x</varname> 

       <val>10</val> 

   </value> 

   <value> 

       <type>float</type> 

       <varname>y</varname> 

       <val>3.14</val> 

   </value> 

   <value> 

       <type>struct innerStruct</type> 

       <varname>z</varname> 

       <value> 

           <type>int</type> 

           <varname>a</varname> 

           <vaL>42</val> 

       </value> 

   </value> 

</value> 
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C  Ar ra y  

The C fragment in Figure B-2 shows a variable myArray that stores a small, 

one dimensional array of integers. The PVML fragment represents this 

variable.  

 

Figure B-2 A one-dimensional C array and its PVML representation 

Figure B-3 shows a limitation of the PVML DTD in representing a two 

dimensional array.  There is insufficient meta-data in the PVML stream to 

support a two-dimensional visual representation. A visualiser would be 

constrained to represent the two-dimensional array in one dimension. 

To remove this restriction would require use of techniques, similar to those 

described in Section 6.5.2, to relay type information to the engine 

independently of data values. 

int myArray[4]; 

myArray[0]=1; 

myArray[1]=2; 

myArray[2]=3; 

myArray[3]=4; 

 

<value> 

   <type>int</type> 

   <varname>myArray</varname> 

   <val>1</val> 

   <val>2</val> 

   <val>3</val> 

   <val>4</val> 

</value> 
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Figure B-3 A two-dimensional C array and its PVML representation 

J a v a  Ob j e c t  

The Java fragment shows a variable myObject, storing a Java object. The 

Java object contains a number of fields – one of which is itself an object. 

Note that some parts of a Java object will be method source code. 

Representation of these regions is not part of the PVML value element. 

The PVML fragment shows the representation of this variable. 

int myArray[2][2]; 

myArray[0][0]=1; 

myArray[0][1]=2; 

myArray[1][0]=3; 

myArray[1][1]=4; 

 

<value> 

   <type>int</type> 

   <varname>myArray</varname> 

   <val>1</val> 

   <val>2</val> 

   <val>3</val> 

   <val>4</val> 

</value> 
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Figure B-4 A Java Object and its PVML representation 

Data References 

As described in Section 6.6.2, significant data may be stored and retrieved by 

means of pointers, essentially anonymous references to target memory 

locations. These memory references, of no direct significance in the engine 

environment, can be passed back to the target in order to refer to data. 

Memory references consist of the reference itself (often referred to as a 

pointer) and a means to identify the location being pointed to. In PVML 

class inner{ 

    int[] a; 

} 

class outer{ 

    int x; 

    inner y; 

} 

. . . 

outer myObject = new outer(); 

myObject.x = 42; 

myObject.y.a[0] = 1; 

myObject.y.a[1] = 2; 

 

<value> 

    <type>class outer</type> 

    <varname>myObject</varname> 

    <value> 

         <type>int</type> 

         <varname>x</varname> 

         <val>42</val> 

    </value> 

    <value> 

         <type>class inner</type> 

         <varname>y</varname> 

         <value> 

             <type>int</type> 

             <varname>a</varname> 

             <val>1</val> 

             <val>2</val> 

         </value> 

     </value> 

</value> 
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locations are identified by an id element and references to such locations by 

a ptr element. 

The  id  a t t r i b u t e  

The definition of all value elements incorporates a compulsory (#REQUIRED) 

attribute named id: 

33:5 <!ELEMENT value ( type, varname?, ( eoc | val* | 

value*)> 

34: <!ATTLIST value id ID #REQUIRED> 

This attribute is defined in the DTD as being of type ID. In XML this 

implies that the value of the id is unique in the document and can also be 

straightforwardly referred to elsewhere. 

The  ptr  e l em en t  

References (pointers) to memory locations are represented in PVML by a ptr 

element: 

31: <!ELEMENT ptr (xinc:include, mod? )> 

This element is an alternative to a raw data value as the form for a val 

element: 

35: <!ELEMENT val (#PCDATA | ptr)> 

This element can store what is, in effect, an XML reference to a location in 

another document in the form of an xinc: include element. The xinclude 

[116] mechanism is defined to support the inclusion, in an XML document, 

of XML fragments from other documents. This definition of the ptr element 

                                                 
5 The numbers preceding DTD fragments refer to the DTD listing in Appendix D  
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makes use of a ‘namespace prefix’, xinc6, in order that downstream XML 

processors can be directed to handle the element by resolving a reference in 

another context. 

The element xinc:include, which is recognised by XML parsers as 

representing a remote inclusion, incorporates a compulsory (#REQUIRED) 

attribute named href through which the location that is being pointed to is 

specified: 

59: <!ELEMENT xinc:include EMPTY> 

60: <!ATTLIST xinc:include href CDATA #REQUIRED> 

At this stage the expressive power of the DTD format has been exhausted – 

the href attribute is simply defined using the term CDATA which is completely 

generic. 

In the context of PVML the href parameter needs to define the location of 

another value element – in other words the pointer, points to some data. 

The general format of such a definition would be: 

filename#xpointer(id( idvalue )) 

The keyword xpointer  means that within the ‘file’ specified the filename a 

location will be described using XPath [113] syntax. XPath provides an 

extensive syntax through which sub-sections of an XML document can be 

defined. In the case of the PVML ptr, an extremely restricted subset of 

XPath is used – namely the id() statement, through which an XML node, 

in a given document, can be identified by an id.  

                                                 
6 The head of the XML document, in other words each PVML fragment, includes 
the declaration xmlns:xinc="http://www.w3.org/2001/XInclude" . The effect of 
this definition is to force appropriate expansion of XML elements that are 
preceded by ‘xinc:’ // STYLE TO FULL SIZE??? 
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For this style of reference to succeed, the DTD must include an element 

definition of type ID – as has been described in the previous section. 

The effect of this syntax is to provide two levels at which data can be pointed 

to: 

- filename provides an outer level. The PVML stream, that contains 

the location being pointed to, is not written to the target or engine 

file-system at any point. Thus the filename field will never contain 

an actual filename. Instead an id value will be used. The target and 

engine drivers will resolve this reference among stored, top-level, 

PVML value blocks – each of which will contain the compulsory 

id entry. 

- idvalue provides an inner level of referencing that will function 

within a value block and refer to a value element that is nested 

within the top-level value block. 

These two levels of representation map directly to the fundamental operations 

that flow between a PVML target and engine. 

A typical user (novice programmer) will select data items whose values are to 

be monitored in the visualisation. These values may, or may not, include other 

data values. The PVML data request, through which the changed values are 

returned to the engine, consists of a top-level value element along with 

possible included value elements to an arbitrary level of nesting. The 

entire population of value elements, known to the engine, hence falls into 

these two categories of top-level and subsidiary elements. The decision to 

preserve this distinction in remote references is based on efficiency 

considerations. 
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Pointer Example 

This section presents a concrete example of the PVML representation of 

data references. The scenario presented is the linked list example that has 

been shown earlier in the general discussion of data representation in 

procedural languages (Section 6.6.3). For convenience the illustration of the 

representation of a linked list in DDD is repeated below. 

 

Figure B-5 Data Structure Visualisation in DDD. Reproduced from [28]. 

The PVML representations of two aspects is presented: 

- The first item in the list 

This is labelled ‘2: *list’ in Figure B-5. This data structure includes 

three members. The value field, which is equal to 85, is assumed 

to be stored as an 8 byte integer. The self field is a self-referential 

pointer – the PVML representation of which is omitted for 

clarity. The next field, a pointer to the next item in the list, is 

shown as an example of the PVML ptr representation. 

- Sub item reference 

The resolution of a ptr reference to a sub item in the list – 

namely an explicit reference to the next field in the second list 

item. 
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Fi r s t  i t em  i n  l i s t  

The PVML data request shown in Figure B-6, represents the first item in the 

list, identified as ‘2: *list’ in Figure B-5. The visual consequence of this 

request would be subject to the respresentational decisions of the visualiser 

role but typically might be similar to that in the DDD screen shown above. 

This data request would be sent by the target as a result of a request to 

watch this location or possibly a subsequent change in the data value at this 

location. 

The notation used to refer to the type of the pointer is worthy of discussion. 

The notation ‘*list’ is a programming language dependent string that has 

been provided by the target though interaction with the underlying debugger. 

In the engine context this is no more that a label that may, at some later point, 

be passed back to the target. 

 

Figure B-6 PVML description of first item in list 

<pvml xmlns:xinc="http://www.w3.org/2001/XInclude"> 

 <request> 

  <data> 

   <value id="x804ab78"> 

    <type>list</type> 

    <value id="x804ab78"> 

       <type>int</type> 

       <varname>value</varname> 

       <val>85</val> 

     </value> 

     . . . representation of “self” omitted 

     <value id="x804ab84"> 

       <type>*list</type> 

       <varname>next</varname> 

       <val> 

         <ptr> 

            <xinc:include href="x804ab88"/> 

         </ptr> 

       </val> 

     </value> 

   </value> 

  </data> 

 </request> 

</pvml> 

 

The xinc: namespace declaration causes the XML parsers to 
expand elements that include an xinc: designation. 

Each value element includes an id which, on the 
target, can be interpreted as a memory location 

Type, value and name of some data. A data value as 
opposed to a data reference  

A value that is, in 
fact, a data 
reference  

The pointer to another top-level 
value element. The href attribute 
is used as a index into stored, top-
level, value nodes  



 

 195 

Sub - i t em  r e f e r e n c e  

The PVML data request shown in Figure B-7, represents the next field in 

the second item in the list. This list item is identified as ‘3: *list->next’ 

in Figure B-5 and the PVML shown refers to the next field at that location. 

As before, the visualiser ultimately would control consequence of this 

request, but the item being watched in this instance is a single pointer value. 

The PVML in this example represents what is in effect, a pointer to a 

pointer and hence is of an appropriate type – ‘**list’. Type names are 

subject to warning already made concerning their relevance in target and 

engine. 

 

Figure B-7 PVML description of next pointer 

Pointer Arithmetic 

It is common in languages that make use of pointers for operations, known 

as pointer arithmetic, to be performed on those pointers. The language 

compiler enforces a view of pointers that preserves their relationship to the 

storage of data, of the type for which the pointer has been declared. For 

<pvml xmlns:xinc="http://www.w3.org/2001/XInclude"> 

 <request> 

  <data> 

   <value id="x804cd26"> 

     <type>**list</type> 

     <val> 

       <ptr> 

         <xinc:include href="x804ab98#xpointer(id(‘x804aba4’)”/> 

       </ptr> 

     </val> 

       <name>example</name> 

   </value> 

  </data> 

 </request> 

</pvml> 

 

This pointer to a pointer example is stored in a variable 
at an arbitrary location 

A lower-level pointer 
reference. In this case the 
id  is that of the next 
field within the list 
element. Note how XML 
uses single & double 
quotes to resolve the 
issue of ‘quotes within 
quotes’  

Target debugger derived representation of the 
data type of this variable   

The pointer to another top-level 
value element. In this case it is the 
second element in the list shown in 
the diagram  
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example adding ‘1’ to a pointer to a list structure does not increment a 

machine address by ‘1’ – instead the pointer value is incremented by the 

number of bytes occupied in memory by one additional list structure. 

Visualisation of a program that includes such pointer arithmetic requires 

PVML to include a means to describe arbitrary offsets from given pointer 

values. 

To assess the need for PVML to represent pointer arithmetic it is necessary 

to consider the three circumstances under which PVML data 

representations are required to be sent, in either direction, between a target 

and an engine as set out in the introduction to Appendix B. 

Con t e n t  o f  a n  a s yn c h r on ou s  r e q u e s t  

The target is sending updated data to the engine, in this instance as a result 

of some pointer arithmetic having occurred. This arithmetic has caused 

changes in the value of data that is already being represented in ptr 

elements.  

The updated href values will be sent to the engine. It is possible that these 

new values may not reference data of which the engine currently has a 

representation. In this case the visualiser must arrange that a read request is 

sent in order to retrieve the required data. 

Con t e n t  o f  a  s yn ch r o n ou s  r e s p on s e  

The engine has requested data from the target with a read request and the 

target is responding. Pointer arithmetic needs to be considered if the 

visualiser sets out to offer the user functionality that enables them to request 

to view data at an offset from an existing pointer.  

This functionality is provided in PVML by including an optional modifier in 

the definition of the ptr element: 
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31: <!ELEMENT ptr (xinc:include, mod? )>  

The operation requested though this element is implemented at the target and 

can be any legal operation supported by the debugger as the example below 

illustrates. 

 

Figure B-8 Reading at an offset from a pointer 

Param e t e r  t o  a  r e qu e s t  

In this case the engine is making a write request in order to modify data in 

the target program. Similar reasoning applies to the ptr element of this 

request as to the read request described above. 

<read> 

   <ptr> 

       <xinc:include href="x804ab88"/> 

       <mod>+7</mod> 

   </ptr> 

</read> 
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A p p e n d i x  C  

SOURCE CODE REPRESENTATION IN PVML 

In order to support such features as the pretty printing of source code and 

source expression stepping the source code must be sent from the target to 

the engine as a hierarchical structure derived from the parse tree of the 

program. The ability of the target to provide this information will depend 

on the extent and type of language support available to the underlying 

debugger. 

There have been three levels of support identified in the process of 

developing the reference targets against which PVML has been evaluated: 

- Level 1 

A level 1 target is unable to provide any hierarchical 

representation of the source code. In this context the only view of 

the source code that can be provided will be entirely plain text.  

- Level 2 

A level 2 target has access to the program parse tree and hence 

can deliver a hierarchical representation of the source code as 

described in this appendix. 

- Level 3 

A level 3 target has access to structures that link source 

expressions to machine code locations. The combination of these 

associations, and a hierarchical representation that identifies 

source expressions, is sufficient to support source expressions 

stepping. 
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Flat Representation 

In order to encode arbitrary text, such as a program listing, in XML a means 

must be devised to manage the reserved characters of the XML language –  

such as ‘>’ and ‘<’. XML provides a mechanism for ‘escaping’ these specific 

characters to permit them to passed explicitly in an XML stream but use of 

this mechanism would require the source code to be parsed at target and 

engine. The alternative, used for level 1 PVML, is to ‘escape’ the entire 

source code as a block using the XML CDATA construct. 

Hierarchical Representation 

The hierarchical representation of PVML used in level 2 & 3 operation 

makes use of a number of ‘complex types’ defined in the DTD. These types 

are described below. The line numbers reference the DTD in Appendix D. 

- 32: source ( rawsource | block* | line+ ) 

The code response makes use of a source parameter to transmit 

the program source code and this parameter may consist of a 

rawsource block (in the level 1 case) or else a number of lines 

and blocks of code. There must be at least one line of code (as 

defined by the ‘+’) but there may be zero occurrences of block 

(‘*’) 

- 27: block ( line+ ) 

A block of source code consists of one or more lines of code. 

- 30: line ( num, ( expr* | identifier* | literal* | 

keyword* | tag* | decl* | comment )) 

A line of source code consists of a line number followed by zero 

or more occurrences of various syntactic elements. The elements 

that are considered significant are those that may play some part 

in subsequent processing at the engine. 
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- 50: num 

Source line numbers are enclosed in a num element. PVML 

sends no data at all for blank lines. The engine must regenerate 

these at display time. 

- 29: expr 

Expressions are tagged, in level 3 PVML, in order that source 

expression stepping can be supported. A level 3 engine will be 

able to highlight the currently executing expression based on the 

regions tagged with expr. 

- 45: identifier 

48: literal 

46: keyword 

38: comment 

In the engine special typographical representations that represent 

distinct syntactic components in the program source code is 

based on these tags. 

- 40: decl 

Variable declarations are explicitly tagged to assist the engine in 

determining variable scope. The visual representation of whether 

or not a particular variable is in a ‘watched’ state depends of the 

engine being able to distinguish variables of the same name, in 

different scopes. The engine can identify variables through the 

decl tag which draws attention to their declaration. 
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A p p e n d i x  D  

PVML DOCUMENT TYPE DEFINITION 

This appendix presents the DTD for PVML. In the interest of clarity the 

comments in this file have been shown in bold text, though normally a 

DTD would consist of plain ASCII text. The line numbers have been added 

to facilitate cross referencing. 
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1 <!--pvml.dtd  Version 0.2 Supports watching of variables--> 

2 <!ELEMENT pvml ( request | response ) > 

3 <!ELEMENT request ( run| next | step | cont | break | list | query | 

watch | save | file | compile | frame | data ) > 

4 <!ELEMENT response ( code | location | breakresp | pvmlinfo )> 

5 <!--Requests - To target --> 

6 <!ELEMENT break ( filename, linenumber )> 

7 <!ELEMENT cont EMPTY > 

8 <!ELEMENT file ( path )> 

9 <!ELEMENT list ( filename )> 

10 <!ELEMENT next EMPTY > 
11 <!ELEMENT query EMPTY > 
12 <!ELEMENT read ((filename, linenumber, varname)|ptr)> 
13 <!ELEMENT run ( appname )> 
14 <!ELEMENT save ( pathname, source )> 
15 <!ELEMENT step (numstep?) > 
16 <!ELEMENT watch (stat, ((filename, linenumber, varname)| ptr))> 
17 <!ELEMENT write (((filename, linenumber, varname)| ptr), value)> 
18 <!--Requests - From target --> 
19 <!ELEMENT data (  filename, linenumber, varname, value )> 
20 <!ELEMENT frame ( direction )> 
21 <!--Responses – From target --> 
22 <!ELEMENT code ( pvmllevel, filename, source )> 
23 <!ELEMENT breakresp ( set )> 
24 <!ELEMENT location ( filename, linenumber )> 
25 <!ELEMENT pvmlinfo ( debugger )> 
26 <!--Complex types --> 
27 <!ELEMENT block ( line+ ) > 
28 <!ELEMENT decl ( identifier | )> 
29 <!ELEMENT expr ( identifier* | literal* | keyword* | tag* )> 
30 <!ELEMENT line ( num, ( expr* | identifier* | literal* | keyword* | 

tag* | decl* | comment ))> 

31 <!ELEMENT ptr (xinc:include, mod? )> 
32 <!ELEMENT source ( rawsource | block* | line+ )> 
33 <!ELEMENT value ( type, varname?, ( eoc | val* | value*)> 
34 <!ATTLIST value id ID #REQUIRED>  
35 <!ELEMENT val (#PCDATA | ptr)> 

 

 

Continued on Page 203 
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36 <!--Basic elements --> 
37 <!ELEMENT appname (#PCDATA) > 
38 <!ELEMENT comment (#PCDATA) > 
39 <!ELEMENT debugger (#PCDATA) > 
40 <!ELEMENT decl (#PCDATA) > 
41 <!ELEMENT direction (#PCDATA)> 
42 <!ELEMENT eoc (#PCDATA)>   
43 <!ELEMENT filename (#PCDATA) > 
44 <!ELEMENT id (#PCDATA)> 
45 <!ELEMENT identifier (#PCDATA) > 
46 <!ELEMENT keyword (#PCDATA) > 
47 <!ELEMENT linenumber (#PCDATA) > 
48 <!ELEMENT literal (#PCDATA) > 
49 <!ELEMENT mod (#PCDATA) > 
50 <!ELEMENT num (#PCDATA) > 
51 <!ELEMENT numstep (#PCDATA) > 
52 <!ELEMENT pvmllevel (#PCDATA) > 
53 <!ELEMENT rawsource (#PCDATA)> 
54 <!ELEMENT set (#PCDATA) > 
55 <!ELEMENT stat (#PCDATA) > 
56 <!ELEMENT tag (#PCDATA) > 
57 <!ELEMENT type(#PCDATA)> 
58 <!ELEMENT varname (#PCDATA)> 
59 <!ELEMENT xinc:include EMPTY> 
60 <!ATTLIST xinc:include href CDATA #REQUIRED> 
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A p p e n d i x  E  

XML PARSERS 

There are two fundamentally distinct approaches to parsing XML 

documents – the Simple API for XML (SAX) and the Document Object 

Model (DOM). This appendix describes the difference in these two 

approaches in order to inform the discussion of parsing the PVML stream. 

Simple API for XML (SAX) 

SAX [114] is described as an event-based API and treats an XML document as 

a stream of text. As the stream of text is consumed, starting at the beginning 

of the document, the SAX libraries generate a series of events that an 

application program can receive and process. These events correspond, for 

example, to the opening and the closing of tags in the document. A 

document, which could be arbitrarily large, is seen by the application 

program as a series of events and there is no necessity to store the entire 

document in any internal structures of the program. 

This is considered the main advantage of SAX. If the task being 

implemented is one that does not require access to the entire structure of 

the document, for example searching for a particular element, then it could 

be considered an unwarranted overhead to build up a complete description 

of the document structure within the application. The PVML stream cannot 

usefully be processed sequentially in this way. The persistent representation, 

in the engine, of target source and data needs to be in a form that is not far 

removed from the hierarchical XML structure so that the discarding of that 

structure, that is fundamental to SAX parsing, would be a negative feature. 
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A positive feature of SAX parsing however is the event-based architecture 

which allows access, through programmer supplied routines, to the lowest 

levels of processing of the source document. 

Document Object Model API (DOM) 

 
The DOM [117] API for XML reads an entire document into memory 

before exposing the XML document to programmatic manipulation. With 

the entire, hierarchical, structure of the document available to the 

application the range of manipulations that can be supported is greatly 

extended. DOM will permit any section of the document to be viewed and 

even deleted or modified.  

The engine can make good use of DOM based representations in order to 

store and manipulate the PVML transmitted representations of the program 

source code and regions of data. 

A drawback to using the DOM parser is that there is no mechanism 

available in this framework through which the programmer can over-ride 

the default, low-level processing. A DOM parser will succeed completely or 

else fail to parse some region of its input. There is no provision for 

modifying the low level behaviour of the parser on an element by element 

basis. 

Combined Parsing 

The descriptions above of SAX and DOM parsing clearly identify positive 

aspects of both. On the one hand the output of a DOM parser is useful for 

subsequent manipulations whilst on the other hand a SAX parser exposes 

low-level element parsing to programmatic intervention. 

The PVML parser uses an approach that can benefit from both these 

features. The requirement to proceed in this way arises due to the inability 
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of the DOM parsing routines to sensibly manage empty nodes in an XML 

document. An empty node can arise when an additional newline character is 

inserted into an output stream. The DOM parsing routines, even if 

configured to ignore whitespace, treat this as an additional node in the 

output tree. The result is a DOM tree that is semantically correct but very 

difficult to work with due to the number of addition, empty nodes. 

A SAX parser can, through a programmer-provided implementation of the 

characters() routine (the event handler that is called by the SAX parser 

for each group of characters) sanitise the input, removing any empty node 

definitions. 

This event handler can be written in such a way that the sanitised output is 

written into a DOM tree. Figure E-1 shows the characters() handler that has 

been provided in the PVML parser. The variable db in this routine 

represents the DOM tree representation that is progressively being built. 

The routine, that is called for each additional block of characters that the 

SAX parser sees, uses the variable stripNewLine to control the removal of 

extra newline characters from the data that is written to the DOM. The 

resulting DOM is guaranteed to be clear of any empty nodes. 
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Figure E-1 SAX Parser character() handler 

public void characters (char ch[], int start, int length) 

    throws SAXException{ 

       int stripNewline = 0; 

       if( length >= 1 && ch[start] == '\n' ) 

           stripNewline |= 1; 

       if( length > 1 && ch[start+length-1] == '\n' ) 

           stripNewline |= 2; 

       switch( stripNewline ){ 

          case 0: //No newlines 

             db.characters( ch, start, length ); 

             break; 

          case 1: //Newline at start 

             if( length != 1 ) 

                db.characters( ch, start+1, length-1 ); 

             break; 

          case 2: //Newline at end 

             db.characters( ch, start, length -1 ); 

             break; 

          case 3: //Newline at start and end 

             db.characters( ch, start=1, length -2 ); 

             break; 

       } 

    } 

Deleted: 10-9



 

 208 

BIBLIOGRAPHY 

 

1. Anderson, J. and Reiser, B. (1985). “The LISP Tutor” Byte, 10(4) pp 
159-175. 

2. Armenise, P., Bandinelli, S,.Ghezzi, C. and Morzenti, A. (1992). 
Software Process Languages: Survey and Assessment, In Proceedings 
of the Fourth Conference on Software Engineering and Knowledge 
Engineering, Capri, Italy.  

3. Ashby, G., Salmonson, L. and Heilman, R. (1973). Design of an 
interactive debugger for FORTRAN:Mantis, Software-Practice and 
Experience 3(1), pp 65-74. 

4. Baeker, R. and Sherman, D. (1981). Sorting out Sorting, SIGRAPH 
Video Review 7. 

5. Baeker, R.M. and Marcus, A. (1990). Human Factors and 
Typography for More Readable Programs, ACM Press, Addison-
Wesley, Reading, Mass., USA. 

6. Baskerville, D.B. (1985). Graphic Presentation of Data Structures in 
the DBX Debugger, Technical Report UCB/CSD 86/260, 
University of California, Berkeley, CA, USA. 

7. Bentley, J. and Kernighan, B. (1987).  A System for Algorithm 
Animation: Tutorial and User Manual, Computing Science Technical 
Report 132, AT&T Bell Laboratories. 

8. Borning A. (1981). The Programming Language Aspects of 
ThingLab, a Constraint-Oriented Simulation; Laboratory, ACM 
Transactions on Programming Languages and Systems 3(4), pp 353-
387. 

9. Borning, A., Freeman-Benson, B. and Wilson, M. (1992). Constraint 
Hierarchies, Lisp and Symbolic Computation 5, pp 223-270. 

10. Boroni, C.M., Goosey, F.W., Grinder, M. and Ross, R.A. (1998). A 
Paradigm Shift! The Internet, the Web, Browsers, Java, and the 
future of Computer Science Education, SIGCSE Bulletin, 30(2), 
pp 145-152. 

11. Boroni, C.M., Goosey, F.W., Grinder, M., .Rockford J. and 
Wissenbach, P. (1997). WebLab! A Universal and Interactive 
Teaching, Learning, and Laboratory Environment for the WWW, 
SIGCSE Bulletin, 29(1), pp 199-203. 

12. Boudier, G., Gallo, F., Minot, R. and Thomas, I. (1989). An 
Overview of PCTE and PCTE+, ACM SIGSOFT Software 
Engineering Notes, 13(5),  pp 248-257. 



 

 209 

13. Bray, T., Paoli, J., and Sperberg-McQueen, C.M. (1998). Extensible 
Markup Language,  http://www.w3.org/TR/1998/REC-xml,  
Accessed 28/3/2003. 

14. Brown, M.H. (1988). Exploring Algorithms using Balsa-II, IEEE 
Computer, 21(5), pp 14-36.  

15. Brown, M.H. (1988). Perspectives on Algorithm Animation, In 
Proceedings of the CHI '88 conference on Human Factors in 
Computing Systems, ACM Press, New York, pp 33-38. 

16. Brown, M.H. (1991). Zeus, A System for Algorithm Animation and 
Multi-View Editing, In Proceedings of IEEE Workshop on Visual 
Languages, New York: IEEE Computer Society Press, pp 4-9. 

17. Brown, M.H. (1992).  A System for Algorithm Animation, Computer 
Graphics, 18(3), pp177-186.  

18. Crawford, R. H , Olsson, R. A. , Ho, W. W. and Wee, C. E. (1995). 
Semantic issues in the design of languages for debugging, 
Computer Languages, 21(1), pp 17-37. 

19. Cunningham, W., and Beck, K (1986). A Diagram for Object-
Oriented Programs,  In Proceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications 
(OOPSLA'86), Portland, Oregon, USA, pp 361-367. 

20. Di Maio, A., Ceri, C. and Crespi Reghizzi, S (1985). Execution 
monitoring and debugging tool for Ada using relational algebra, 
ACM SIGAda Ada Letters, V(2), pp 109-123. 

21. Domingue, J., Price, B.A. .and Eisenstadt, M., (1992). A Framework 
for Describing and Implementing Software Visualization Systems. 
In Proceedings of Graphics Interface 92 Conference, May 1992, 
Vancouver, Canada, Canadian Information Processing Society, 
Toronto, Canada, pp 53-60. 

22. Duisberg, R.A. (1986). Constraint Based Animation: Temporal 
Constraints in the Animus System, UW CSE Technical Report,86-
09-01, University of Washington, Computer Science & 
Engineering, Seattle, WA, USA. 

23. Eisenstadt, M. and Brayshaw, M. (1988). The Transparent Prolog 
Machine (TPM); an execution model and graphical debugger for 
logic programming, Journal of Logic Programming 5(4), pp. 1-66. 

24. Eisenstadt, M., Domingue, J., Rajan, T. and Motta, E. (1990). Visual 
Knowledge Engineering,  IEEE Transactions on Software 
Engineering, Special Issue on Visual Programming 16(10), pp 1164-
1177. 

25. Ellshof, I.J.P. (1989). A distributed debugger for Amoeba. In 
Proceedings of the ACM SIGPLAN and SIGOPS Workshop on 



 

 210 

Parallel and Distributed Debugging, May 5-6, 1988, University of 
Wisconsin, Madison, Wisconsin. ACM SIGPLAN Notices 24(1), 
January 1989, pp 1-10  

26. Emmerlich, W., Mascolo, M. and Finkelstein, A. (2000). 
Implementing Incremental Code Migration with XML, In 
Proceedings of. 22nd International Conference on Software 
Engineering (ICSE2000), Limerick, Ireland, June 2000. ACM 
Press pp 397-406. 

27. Free Software Foundation  (2003). The GNU Compiler Collection,  
GNU Project - Free Software Foundation (FSF), 
http://gcc.gnu.org. Accessed 16/3/2003. 

28. Free Software Foundation (2000). Displaying Data,  Debugging 
with DDD, 
http://www.gnu.org/manual/ddd/html_mono/#Displaying%20Va
lues. Accessed 20/3/2003. 

29. Free Software Foundation (2002). DDD - Data Display Debugger, 
GNU Project - Free Software Foundation (FSF), 
http://www.gnu.org/software/ddd. Accessed 20/3/2003. 

30. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design 
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley. 

31. Garlan, D. and Ilias, E. (1990). Low-cost, adaptable tool integration 
policies for integrated environments, ACM SIGSOFT Software 
Engineering Notes, 15(6) pp. 1-10.  

32. Golan, M., Hanson, D.R. (1993). DUEL - A Very High-Level 
Debugging Language. In Proceedings of USENIX Winter 
Conference, San Diego, USA, pp 107-117. 

33. Goldberg, A. (1994). Smalltalk-80; the Interactive Programming 
Environment, Addison-Wesley, Reading, Mass., USA. 

34. Goldenson, D.R. (1989). The Impact of Structure Editing on 
Introductory Computer Science Education,  ACM SIGCSE 
Bulletin, 21(3), pp 26-29. 

35. Grisham, R. (1971). Criteria for a debugging language. In Debugging 
Techniques in Large Systems, Ed. R. Rustin, Prentice Hall, pp 57-75. 

36. Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Terasvirta, T. and 
Vanninen, P. (1977). Animation of user algorithms on the Web, 
Proceedings Visual Languages '97, IEEE Symposium on Visual 
Languages, IEEE 1997, pp 360-367. 

37. Haibt, L.M. (1977). A Program to Draw Multi-Level Flowcharts. 
In Proceedings of the Western Joint Computer Conference, San 
Fransisco, 1959, pp 131-137. 



 

 211 

38. Hanson, D.R. and Korn,J.L (1977). A simple and extensible 
graphical debugger. In Proceedings of the USENIX Annual 
Technical Conference, January 1997, Anaheim, California pp 163-
174. 

39. Hanson, D.R. and Raghavachari, M. (1996). A Machine-
Independent Debugger, Software—Practice and Experience, 26 
(11), pp 1277-1299. 

40. Helttula, E., Hyrskykari, A. and Raiha, K.-J. (1989). Graphical 
Specification of Algorithm Animations with ALADDIN. In 
Proceedings of the 22nd Hawaii International Conference on System 
Sciences, January 1989, Kailua-Kona, Hawaii,. pp 892-901. 

41. Hendrix, D., Barowski, L. and Cross, J. (1997). A Visual 
Development Environment for Multi-Lingual Curricula, SIGCSE 
Bulletin, 29(1), pp 22-24.  

42. Henry, R.R.,Whaley, K.M. and Forstall, B. (1990) The University of 
Washington Illustrating Compiler, SIGPLAN Notices, 25(6), pp 
223-233. 

43. Hyrskyakari, A. and Raiha, K.J. (1987). Animation of algorithms 
without programming. In Proceedings 1987 Workshop on Visual 
Languages, IEEE Computer Society, Linkoping, Sweden, pp. 40-
54. 

44. Internet Engineering Steering Group (1982). Standard For The 
Format Of ARPA Internet Text Messages,  
http://www.rfc.net/rfc822.html. Accessed 30/3/2003 

45. JavaSoft. (1999). Java Remote Method Invocation (RMI), 
http://java.sun.com/products/jdk/1.2/docs/guide/rmi. Accessed 
12/1/2003. 

46. Jimenez-Peris, R., Pareja-Flores, C., Patino-Martinez, M. and 
Valazquez-Iturbide, J.A. (1996). Graphical Visualization of the 
Evaluation of Functional Programs. In Proceedings of the ACM  
ITiCSE Conference. June 1996, Barcelona, Spain, pp 36-38. 

47. Jimenez-Peris, R., Patino-Martinez, M. and Velazquez-Iturbide, J.A. 
(2000). Towards Truly Educational Programming Environments. 
In Computer Science Education in the 21st Century, Ed 
T.Greening, Springer-Verlag , pp 81-112. 

48. Johnson, M.S. (1977). The Design of a High-Level Language-
Independent Symbolic Debugging System. In Proceedings of the 
ACM Annual Conference, October 1977, Seattle, WA, USA, pp 
315-322. 

49. Johnson, M.S. (1982). Some requirements for architectural support 
of software debugging. In Proceedings of the first international 



 

 212 

symposium on Architectural support for programming languages and 
operating systems,  March 1982, Palo Alto, California, USA, pp 140-
148.  

50. Jones, O. (1988). Introduction to the X Window System, Prentice 
Hall Professional Technical Reference. 

51. Jonson, W. E. and Soloway, E. (1985). PROUST: Knowledge-Based 
Program Understanding, IEEE Transactions. on Software 
Engineering, 11(3), pp 11-19.  

52. JTB, “JTB: The Java Tree Builder Homepage” in 
http://www.cs.purdue.edu/jtb/ (2003)??? 

53. Karlund, N., Moller, A. and Schwartzbach, M.I. (2000). DSD: A 
Schema Language for XML. In Proceedings 3rd ACM Workshop 
on Formal Methods in Software Practice, 2000, Portland, OR, USA, 
pp 101-111. 

54. Kernighan, B.W and Pike, R. (1984). The UNIX Programming 
Environment, Prentice-Hall Inc. 

55. Kernighan, B.W. and Ritchie, D.M. (1978).  The C Programming 
Language, Prentice-Hall Inc, p24 

56. Knuth, D.E. (1984).  Literate Programming, Computing, 27(2),  pp 
97-111  

57. Kolling, M. and Rosenberg , J. (1996). An Object Oriented Program 
Development Environment for the first programming course. In 
Proceedings of the 27th SIGCSE Technical Symposium on 
Computer Science Education, February, 1996, Philadelphia, PA, 
USA, pp 83-87. 

58. Mancoridis, S., Holt, R. and Penny, D. (1993). A Curriculum-Cycle 
Environment for teaching programming. In Proceedings of the 
twenty-fourth SIGCSE technical symposium on Computer science 
education, February 1993, Indianapolis, Indiana, USA, pp15-19. 

59. Mattern,F. and Sturm, P. (2003). From Distributed Systems to 
Ubiquitous Computing - The State of the Art, Trends, and 
Prospects of Future Networked Systems. In Proceedings of KIVS 
2003 (Kommunikation in Verteilten Systemen), February 2003, 
Leipzig, Germany, Springer-Verlag, pp 3-25.  

60. McDowell, C.E., Helmbold , D.P. (1989). Debugging concurrent 
programs, ACM Computing Surveys (CSUR), 21(4) pp 593-622. 

61. Microsoft (2003). .NET Framework Home Page, 
http://msdn.microsoft.com/netframework/. Accessed 6/4/2003. 



 

 213 

62. Microsoft (2003). COM+ Reference, MSDN Library, 
http://msdn.microsoft.com/library/en-
us/cossdk/htm/cosreftoplevel_65r9.asp. Accessed 15/3/2003 

63. Microsoft (2003). Programming Language Partners, MSDN Library, 
http://msdn.microsoft.com/vstudio/partners/language/default.asp. 
Accessed 6/4/2003. 

64. Microsoft (2003). Visual Studio Debugger Object Model, MSDN 
Library, 
http://msdn.microsoft.com/library/default.asp?url=/library/ en-
us/vsdebugext/html/vxoriDebuggerObjectModel.asp. Accessed 
6/4/2003 

65. Mukherjea, S. and Stasko, J. (1994). Toward Visual Debugging: 
Integrating Algorithm Animation Capabilities within a Source 
Level Debugger, ACM Transactions on Human Computer 
Interaction, 1(3), pp 215-344. 

66. Mulholland, P. (1997). Using a fine-grained comparative evaluation 
technique to understand and design software visualization tools. In 
Empirical Studies of Programmers: Seventh Workshop, New York: 
ACM Press, pp 91-108 . 

67. Myers, B.A. (1983). Incense: A System for Displaying Data 
Structures, ACM SIGRAPH, 17(3), pp 115-125. 

68. Myers, B.A. (1986). Visual Programming, Programming by 
Example, and Program Visualisation: A Taxonomy. In Proceedings, 
CHI '86: Human Factors in Computing Systems, 1986, Boston, 
MA, pp 59-66.  

69. Myers, B.A., Chandhok, R. and Sareen, A. (1988). Automatic data 
visulization for novice Pascal programmers. In Proceedings of 
IEEE Workshop on Visual Languages, October 1988, Pittsburgh, 
PA, USA, pp 192-198 

70. Myers, B.A., Miller, R.C., McDonald, R. and Ferrency, A. (1996). 
Easily adding Animations to Interfaces Using constraints. In 
Proceedings of the ACM SIGGRAPH Symposium, Seattle, WA, pp. 
119-128.  

71. Naps, T., et al. (1997). Using the WWW as the delivery mechanism 
for interactive, visualization-based instructional modules, Report of 
the ITiCSE '97 working group on visualization, ITiCSE-WGRSP 
'97, pp. 31-26   

72. Norman D.A. (1983). Some observations on mental models. In D. 
Gentner, A. Stevens (eds.) Mental Models, Lawrence Erlbaum 
Associates, Hillsdale NJ, USA, pp 7-14.  



 

 214 

73. Notkin, D. (1988). The Relationship Between Software 
Development Environments and the Software Process. In 
Proceedings of the third ACM SIGSOFT/SIGPLAN software 
engineering symposium on Practical software development 
environments,1988 , Boston, MA, USA, pp 107-109. 

74. OASIS (2001). Bioinformatic Sequence Markup Language (BSML), 
Organization for the Advancement of Structured Information 
Standards, http://xml.coverpages.org/bsml.html. Accessed 
2/4/2003.  

75. OASIS (2002). Chess Markup Language (ChessML), Organization 
for the Advancement of Structured Information Standards, 
http://xml.coverpages.org/chessML.html. Accessed 2/4/2003.  

76. OASIS (2003). XML Applications and Initiatives,  Organization for 
the Advancement of Structured Information Standards, 
http://xml.coverpages.org/xmlApplications.html. Accessed 
2/4/2003. 

77. OASIS, (2001). Taxonomic Markup Language,  Organization for 
the Advancement of Structured Information Standards, 
http://xml.coverpages.org/taxonomicML.html. Accessed 2/4/2003 

78. Olsson, R.A.; Crawford, R.H.; Ho, W.W.; Wee, C.E. (1991). 
Sequential debugging at a high level of abstraction, IEEE 
Software, 8(3), pp 27-36. 

79. OMG (1997). CORBA™/IIOP™ Specification,  OMG 
Documents, 
http://www.omg.org/technology/documents/formal/corba_iiop.htm. 
Accessed 1/2/2003. 

80. OMG (2002). XML Metadata Interchange, OMG Documents, 
http://www.omg.org/technology/documents/formal/xmi.htm. 
Accessed 2/4/2003. 

81. Ousterhout ,J.K. (1990).  Tcl: An embeddable command language. 
In Proceedings Winter USENIX Conference, Berkeley, CA, USA, 
pp 133-146. 

82. Price, B.A. and Baecker, R.M. (1991). The Automatic Animation of 
Concurrent Programs. In Proceedings of International Workshop on 
Human Computer Interaction, 1991, Moscow, USSR, pp. 128-137  

83. Price, B.A., Baecker, R.M. and Small, I.S. (1993). A Principled 
Taxonomy of Software Visualisation, Visual Languages in 
Computing 4(3),  pp 211-266  

84. Ramsey, N. and Hanson, D.R. (1992). A retargetable debugger. In 
Proceedings of the 5th ACM SIGPLAN conference on 



 

 215 

Programming language design and implementation, San Francisco, 
CA, USA, pp 22-31. 

85. Redhat, (2001). Insight Home Page -The GDB GUI,  
http://sources.redhat.com/insight. Accessed 21/1/2003 

86. Rich, C. and Waters, R.C. (1987). The Programmer's Apprentice 
Project: A Research Overview, IEEE Computer, 21(11), pp 10-25. 

87.  Roman, G.C. and Cox, K. (1989). A Declarative Approach to 
Visualising Concurrent Program Execution, Computer,22(10), pp 
25-36. 

88. Roman, G.C. and Cox, K. (1993). A Taxonomy of Program 
Visualisation Systems, Computer, 26(12), pp 11-24. 

89. Roman, G.C. and Cox, K.C. (1992). Program Visualization: The Art 
of Mapping Programs to Pictures. In Proceedings of the 14th 
international conference on Software engineering,  May 1992, 
Melbourne, Australia, pp.412-420. 

90. Roman, G.C., Cox, K., Wilcox, C. and Plun, J. (1992). Pavane: A 
System for Declarative Visualisation of Concurrent Computations, 
Visual Languages and Computing, 3(1), pp 161-193. 

91. Roman, G.C., Cox, K., Wilcox, C. and Plun, J. (1992). Pavane: A 
System for Declarative Visualisation of Concurrent Computations, 
Technical Report WUCS-92-40, Department of Computing 
Science, Washington University, Saint Louis, MO, USA. 

92. Rutherford, A. and Wilson J.R. (1991).  Models of Mental Models: 
An Ergonomist Psychologist Dialogue. In D. Ackerman and M. 
Tauber (eds.), Mental Models In Human-Computer Interaction,. 
Amsterdam: North-Holland. 

93. Sandewall, E. (1978). Programming in an Interactive Environment: 
The LISP Experience” in ACM Computing Surveys, 10(1), pp 35-
71. 

94. Scanlan, D. A. (1989). Structured flowcharts outperform pseudo 
code: an experimental comparison, IEEE Software,. 6(5), pp 28-36.   

95. Smith, P. A.  and Webb, G. I. (2000). The Efficacy of a Low-Level 
Program Visualisation Tool for Teaching Programming Concepts 
to Novice C Programmers, Journal of Educational Computing 
Research,  22(2), pp 187-215 . 

96. Sosic, R.,  Abramson D. (1997). Guard: A Relative Debugger, 
Software - Practice and Experience, 27 (2), pp 185-206  

97. Sparud, J., Nilsson, H. (1995). The Architecture of a Debugger for 
Lazy Functional Languages. In Proceedings of AADEBUG'95, 



 

 216 

2nd International Workshop on Automated and Algorithmic 
Debugging, May 1995, Saint-Malo, France, pp 19-34. 

98. Stal, M. (2002). Web services: beyond component-based 
computing, Communications of the ACM,  45 (10), pp 71-76. 

99. Stallman, R.M., Pesch, R.H. (1991). Using GDB: A guide to the 
GNU source-level debugger, Technical report, Free Software 
Foundation, Cambridge, MA, USA. 

100. Stasko, J. and Patterson,C. (1992). Understanding and 
Characterizing Software Visualization Systems. In Proceedings of 
IEEE Workshop on Visual Languages, Seattle, WA, USA, pp 2-10. 

101. Stasko, J., Badre, A. and Lewis, C. (1993). Do algorithm animations 
assist learning?: an empirical study and analysis. In Proceedings of 
CHI '93. Conference on Human factors in computing systems,  
January 1993, Amsterdam, The Netherlands, pp 61-66  

102. Stasko, J.T. (1988). JSAMBA -- Java version of the SAMBA 
Animation Program, 
http://www.cc.gatech.edu/gvu/softviz/algoanim/jsamba. Accessed 
2/4/2003. 

103. Stasko, J.T. (1990). Tango: A Framework and System for Algorithm 
Animation, IEEE Computer, 23(9), pp 27-39.  

104. Stasko, J.T. (1997). Using Student-built Algorithm Animations as 
Learning Aids, ACM SIGCSE Bulletin, 29(1), pp 25-29. 

105. Steven, J., Chandra, P., Fleck, P. and Podgurski,.A. (2000). jRapture: 
A Capture/Replay tool for observation-based testing. In 
Proceedings, International Symposium on Software Testing and 
Analysis, Portland, OR, USA, pp 158-167. 

106. Stratton, D.H. (1999). Towards a Language and Location 
Independent Novice Programming Environment. In Proceedings of 
the International Conference on Computers in Education (ICCE), 
November 1999, Tokyo, Japan, pp 59-66  

107. Stratton, D.H. (2001). A Program Visualisation Meta-Language 
Proposal. In Proceedings of the International Conference on 
Computers in Education  (ICCE), November 2001, Seoul, Korea, 
pp 602-609. 

108. Sun Microsystems (1985).  RPC reference manual, Sun 
Microsystems Ltd., Mountain View, California, USA. 

109. Sun Microsystems (2000). The Java Platform Debugging 
Architecture, 
http://java.sun.com/j2se/1.3/docs/guide/jpda/jpda.html. Accessed 
13/1/2003. 



 

 217 

110. Touretzky, D.S. and Lee, P. (1992). Visualizing Evaluation in 
Applicative Languages, Communications of the ACM, 35(10 0, pp 
49-59. 

111. UCLA (2002).  JavaCC Grammar Repository,  
http://www.cobase.cs.ucla.edu/pub/javacc. Accessed 24/2/2003. 

112. W3C (2000). XML Protocol Working Group Charter, W3C, 
http://www.w3.org/2000/09/XML-Protocol-Charter. Accessed 
24/2/2003. 

113. W3C (2002).  XML Path Language (XPath) 2.0, W3C Working 
Draft, http://www.w3.org/TR/xpath20. Accessed 24/2/2003. 

114. W3C (2002). Simple API for XML (SAX), 
http://www.saxproject.org, Accessed 13/2/2003. 

115. W3C (2002). Web Services Activity,  W3C Architecture Domain 
Activity Statement, http://www.w3.org/2002/ws/Activity. 
Accessed 24/2/2003. 

116. W3C (2002). XML Inclusions (XInclude) Version 1.0, W3C 
Candidate Recommendation, http://www.w3.org/TR/xinclude. 
Accessed 24/2/2003. 

117. W3C (2003). The Document Object Model (DOM), W3C 
Architecture Domain, http://www.w3.org/DOM. Accessed 
24/2/2003. 

118. W3C (2003). XML Schema,  W3C Architecture Domain, 
http://www.w3.org/XML/Schema. Accessed 24/2/2003. 

119. Waters, R.C. (1988). Program Translation via Abstraction and 
Reimplementation, IEEE Transactions on Software Engineering,  
14(8), pp 1207-1229. 

120. Watt, D.A. (1990). Programming Languages: Concepts and 
Paradigms, Prentice Hall  

121. WebGain (2000). WebGain Products : JavaCC, 
http://www.webgain.com/products/java_cc. Accessed 2/4/2003 

122. WebTerm (2003). WebTerm X and X Windows, 
http://www.powerlan-usa.com/webtermx.html. Accessed 
2/4/2003 

123. WierdX (2001). WeirdX -- Pure Java X Window System Server 
under GPL, http://www.jcraft.com/weirdx/index.html. Accessed 
2/4/2003 

124. Wine (2003). Wine Development HQ, http://www.winehq.com. 
Accessed 2/4/2003 


