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Abstract 
 

Whilst population counts cannot be obtained directly from remote sensing imagery, human 

habitation is associated with recognisable physical characteristics.  Visual interpretation of 

aerial photographs has been employed in the past for population estimation, but with the advent 

of digital imagery it has become possible in principle to devise mathematical models based on 

spectral reflectances which can directly provide small-area population estimates in a timely, 

flexible, and automated fashion.  Calibration or training of such algorithms requires “ground 

truth” population data.  Because this is generally available only at census enumeration district 

(ED) level and above, research to date in this area has generally utilised regression models for 

estimating ED populations on the basis of spatially aggregated reflectance data.  Two extensions 

to this methodology have been explored, utilising 6-band Landsat Thematic Mapper (TM) 

imagery. 

Firstly, the ED aggregate approach was extended to include a range of spectral and textural 

transformations which might provide improved surrogate indicators of population, and by the 

use of non-linear functional forms in the regression models.  

Secondly, an alternative approach was developed for estimating population at the level of 

individual pixels.  Pixels were first classified as residential or non-residential by the method of 

maximum likelihood.  Ground truth populations for residential pixels were imputed from census 

counts for EDs, and these were regressed on the various remote sensing measures – both the 

basic bands and selected spectral and spatial transformations.  An expectation-maximisation 

(EM) approach was incorporated to iteratively refine the imputed pixel populations.  

Model identification and development was based on an image centred on the Australian 

provincial city of Ballarat.  This was followed by three phases of refinement and validation.  

Firstly, a number of candidate procedures were tested on a second image centred on the 

neighbouring provincial city of Geelong, as a result of which the preferred procedure was 

chosen and a number of refinements were made, including a contextual reclassification phase.  

Secondly, the Ballarat-trained regression model was applied, in normalised form, to several 

further Australian images, including large metropolitan areas with populations of up to 3 

million. The model was found to be moderately robust, for urban areas, to geographical and 

temporal differences in season and climate, but less robust to differences in intensity of 

urbanisation.  Finally, methods were developed for local training of an estimation equation on a 

small sample of population data from within an image, and for tuning the training sample to 

minimise estimation bias. Coefficients of determination for population density of individual 



   v 

  

EDs were typically in the range .80-.90 for training samples and .70-.80 for full image 

validation. Total urban populations for a number of images were estimated with errors in the 

range –2% to +4%.  In urban areas of moderate density, mean absolute proportional errors for 

individual EDs were typically in the range 15-20%. 

It was concluded on a number of grounds that the pixel-based estimation procedure is preferable 

to aggregate-based procedures.  A generic modelling framework for population estimation from 

TM imagery is specified, which is proposed as the basis of a feasible operational procedure.  

The limitations of the methodology at both high and low extremes of population density are 

considered, and procedures outlined for the incorporation of ancillary information from other 

sources.  A number of avenues for potential further investigation are outlined, together with 

some potential applications. 
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Chapter 1  
 
The Use of Remote Sensing for 
Population Estimation 
 
 
1.1  INTRODUCTION 
 
Population estimation in developed countries has in the past been based on two methodologies.  

Regular censuses have provided comprehensive baseline data.  This has been supplemented by 

inter-censal population estimates derived from mathematical models which utilise statutory data 

about such indicators as births, deaths, marriages, school enrolments, land ownership and 

occupancy, and housing construction.  

Remote sensing techniques have in relatively recent times provided a third methodology, whose 

rationale and potential was expressed by Henderson (1979) thus:  

Estimates of population cannot be obtained directly from remote sensing imagery.  

However, simple models employing visible physical characteristics can be designed that 

infer population densities by surrogate...the result is a rather precise population estimate 

derived without actually counting the people.  

In some developing countries, these developments have coincided with and perhaps assisted in 

the emergence of national demographic programs. The use of remote sensing in conjunction 

with official census or survey operations has been reported and/or evaluated in Afghanistan 

(Dayal and Khairzada, 1976), Bolivia (National Aeronautics and Space Administration, 1978), 

Nigeria (Morgan, 1984; Olorunfemi, 1986) and Sudan (Stern, 1984).  Checks of census 

accuracy based on remote sensing data have been carried out in Jamaica by Eyre et al (1970) 

and in the USA by Clayton and Estes (1980).  The Australian Bureau of Statistics routinely uses 

aerial reconnaissance as part of the process of regular reselection of sample areas for its monthly 

population surveys (Crockett, 1990). 

In the USA, the potential for census-related applications were examined in reports by Durland 

(1975) and General Electric Corporation (1977).  Brugioni (1983) went so far as to suggest that 
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a remote sensing program could replace the US census.  Morrow-Jones and Watkins (1984) and 

other respondents have rightly criticised Brugioni's rather extravagant claims.  Nevertheless, at a 

time when censuses in developed countries are under fire for their expense and perceived 

shortcomings, and when there is pressure for at least a reduction in their frequency, remote 

sensing has real potential for the provision of selective, timely, and economical inter-censal 

population and housing estimates, which furthermore need not be limited in geographical scope 

to standard census areas.   

In many underdeveloped countries with high rates of population growth, remote sensing has the 

potential to provide methodologies for monitoring changes produced by population pressure, 

where no methodologies exist at present.  

With regard to the precision alluded to by Henderson above, it is true that some researchers 

have obtained quite accurate estimates of the total populations of large urban areas. In the case 

of small areas, a high degree of accuracy has only been attained when the visual interpretation 

of large scale aerial photography has been employed, and where the study areas have been 

relatively homogeneous.  Small area population and housing estimates obtained for more 

heterogeneous areas from small scale high altitude photographs or from digitally analysed 

satellite imagery have to date been much less accurate. Improved techniques must be developed 

if orbital remote sensing is to become operationally feasible for this purpose. 

 
1.2 HISTORICAL OVERVIEW 
 
Lo (1986a, p.53) distinguished four approaches to the use of remote sensing data for population 

estimation.  Three were established methods involving visual interpretation of (analogue) 

photographic images, the population estimates being based on:  

• counts of dwelling units  

• measured urban land areas  

• measured land-use areas  

The fourth method is radically different, being based on automated analysis of digital images, 

and utilising the spectral radiance characteristics of the individual pixels of an image.  

 
1.2.1 Dwelling Counts  
 
Estimated dwelling counts based on the visual interpretation of large scale black and white 

photography have a long history, being reported by Porter (1956), Green (1957), Eyre et al 

(1970), Hsu (1971), Collins and El-Beik (1971), Dayal and Khairzada (1976), Lo and Chan 

(1980), Watkins (1984), and Watkins and Morrow-Jones (1985).  Medium to small scale high 

altitude color infrared images were used as the basis of housing counts by Lindgren (1971), 
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Duecker and Horton (1971), Clayton and Estes (1980), and Lo (1986b).  Lo (1989) overlaid a 

raster grid on high altitude and large format space photographs in order to produce GIS-

compatible estimates of dwelling counts and population. 

 
1.2.2 Measured urban area  
 
Models which assume a direct mathematical relationship between the population of an urban 

area and its size are referred to as allometric models (Webster, 1996).  The relationship between 

total urban population and measured urban area has been investigated in a number of studies 

based on small scale high altitude images, including those of Wellar (1969), Holz et al (1973), 

Anderson and Anderson (1973), Ogrosky (1975), and Lo and Welch (1977).  Various linear, 

power and logarithmic functional forms have been employed. 

Holz et al (1973) developed a linear regression model for estimating populations of urban 

centres of 2500 persons or more in the Tennessee River valley, based on measures obtained 

from visual interpretation of small scale aerial photographs. Using census population estimates 

as their dependent variable, they obtained coefficients of variation (R2 ) of .902 and .774 for the 

two years of their study.  

Ogrosky (1975) applied a similar method in a study of urban centres in the Puget Sound area of 

Washington state, whose populations ranged from 11,000 to 531,000. The images used, from 

high altitude infrared photography, had a similar ground resolution to the then imminent Skylab 

orbiter. The regression model obtained, which had an R2 value of .973, predicted 

log(population) for each centre on the basis of four measures obtained visually from the images, 

of which by far the most important was log(area).  

Lo and Welch (1977) produced population estimates for urban centres in China from Landsat 

MSS images, using linear and curvilinear models relating population to area alone.  

These area-related approaches have three characteristics in common.  

• The populations estimated are of whole urban centres.  

• The indicators, particularly measured urban area, are obtained by visual interpretation of the 

image as a whole.  

• Census population estimates are used as the best feasible approximation to ground truth 

data. 

 
1.2.3 Measured land use areas  
 
This is a refinement to the allometric approach, in which urban areas are broken down into sub-

types.  Kraus et al (1974), Thompson (1975) and Lo (1979) related population to measured 
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urban areas of various land use types, via characteristic population densities associated with 

each land use type.  Olorunfemi (1984) related population to the proportions of different land 

use types in each of a set of test areas in Nigeria.  

 
1.2.4 Spectral radiance characteristics of individual pixels  
 
The regression models cited above were generally aimed at estimating the populations of 

relatively large regions, usually whole urban areas, and invariably involved a substantial amount 

of visual interpretation.  But with the advent of digital imagery it has become possible in 

principle to devise mathematical models which relate population to the spectral reflectances of 

the individual pixels of a raster image. 

Of course the accuracy of estimates of small area populations obtained directly and 

automatically from satellite data in this way is inherently limited, since the linkage between the 

quantity to be estimated, population, and the indicator variables, which are measures of surface 

reflectance, is of its nature indirect, conjectural, and potentially complex.  

The first published attempt to estimate small area populations from multispectral imagery was 

that of Iisaka and Hegedus (1982), who used regression models based on the spectral radiance 

characteristics of individual pixels for the purpose of estimating the population of 88 relatively 

small (500m × 500m) sections of the residential areas of suburban Tokyo. 

Their predictor variables were not visually interpreted characteristics, but rather measures 

directly obtained for each pixel by remote sensing - the radiance values of the four spectral 

bands of the Landsat multispectral scanner (MSS).  

Strictly, Iisaka and Hegedus did not operate at the level of individual pixels. Because census-

based ground truth population data was available for 500m grid squares, the Landsat data was 

resampled to 50m × 50m pixels co-registered with the grid.  Average (mean) reflectances 

calculated over the 10 pixel × 10 pixel grid squares were used as the explanatory variables in the 

regression analysis.  

Iisaka and Hegedus considered only straightforward linear models. Their final equations, 

obtained by stepwise linear regression, expressed estimated population as a linear function of 

the mean radiances of MSS bands 4, 6 and 7, with R2 values of .70 and .59 for the two years 

studied.  

This research demonstrated that there is a relationship between small area  populations and 

average spectral radiances which can be modelled moderately well by a simple linear function. 

Refinement of this methodology might be expected to lead to an improved accuracy of 

estimation.   
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In a brief report Stern (1984) described attempts to locate villages in the Sudan and estimate 

their populations from Landsat MSS imagery, using a classification approach based on various 

spectral and textural transformations of the MSS bands.  No quantitative results were reported. 

The work reported herein was conceived and commenced in 1990.  Subsequently, a number of 

contemporaneous studies have been reported. 

Langford et al. (1991) used a classification-based approach to estimate the populations of 49 

census wards (clusters of census enumeration districts) in northern Leicestershire.  The 

explanatory variables were the numbers of pixels in each of five land use categories 

(industrial/commercial, dense residential, ordinary residential, uninhabited, agricultural), 

obtained by performing a supervised classification of a Landsat TM image.  This was 

conceptually similar to the previously cited work of Kraus et al (1974), Thompson (1975), Lo 

(1979) and Olorunfemi (1984), but the implementation was digital.  For multiple regression 

models with all five explanatory variables, two explanatory variables (dense and ordinary 

residential) and one explanatory variable (all residential) R2 values of .85, .82 and .75 

respectively were obtained.  However, the last two models were forced through the origin, and 

the basis for calculation and interpretation of the R2 values was not clear (see section 2.8.3).  

Langford et al. subsequently diverged from remote sensing population estimation per se, 

focussing instead, in a series of related publications (Langford and Unwin, 1994; Fisher and 

Langford, 1995; Fisher and Langford, 1996), on a hybrid population estimation methodology 

using the technique of dasymetric mapping (Wright, 1936 cited in Fisher, 1989).  Beginning 

with information available for a set of relatively coarse geographical aggregates (in this context 

the known population of census enumeration districts), data from a second source is used to 

produce an estimated distribution at a finer level of aggregation (in this context remote sensing 

imagery was used to classify pixels and hence to geographically distribute the known census 

populations within EDs).  

Yuan et al. (1997) applied a similar dasymetric analysis to that of Langford et al. to census 

enumeration districts in central Arkansas. 

Lo (1996) applied similar approaches to both those of Iisaka and Hegedus and Langford et al. to 

the estimation of the population and dwelling unit numbers in 44 tertiary planning units (TPUs) 

in Kowloon, Hong Kong, using SPOT multispectral imagery.  Five different regression models 

were reported for each.  In four cases, the form was linear and the dependent variable was 

population (or dwelling) density.  The explanatory variables were: means of SPOT bands 1, 2 

and 3; mean of SPOT band 3 alone; mean population per pixel in high and low density 

residential classes; proportion of pixels in the high density residential class.  In the fifth case, 

the form was logarithmic, the dependent variable was population (dwelling count), and the 
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explanatory variable was the number of pixels in the high density residential class.  In each case 

the models were estimated using 12 TPUs and then applied to the full set of 44 TPUs.  R2 values 

were reported for only the fourth and fifth of these models in the training phase, the values 

being .88 and .77 respectively, the latter of which must be interpreted in the context of a model 

that was logarithmic in form (see Section 2.11.7).  Results for the full set of TPUs were 

summarised in terms of the relative error in the total estimated population, which ranged from –

5.3% to +5.3%, and the “absolute mean relative error” for individual TPUs,  which ranged from 

64% to 99% after deletion of 4 extreme outliers.  The corresponding results for dwelling unit 

estimation ranged from –10.1% to +5.0% and from 50% to 77%.  Whilst the overall totals were 

estimated reasonably accurately, the individual TPUs were not, reflecting the difficulty of 

applying remote sensing methodology to an area of very high population density including 

many multi-level and multi-functional structures.  

Webster (1996) developed models for estimating dwelling unit densities in the 47 suburbs of 

Harare, Zimbabwe.  The explanatory variables, derived from both SPOT and TM images and 

based on a subsample of pixels within each suburb, were characterised as measures of tone (6 

TM bands); measures of texture (3 measures derived from a classification of pixels into urban 

and non-urban: urban pixel density, homogeneity and entropy); and one measure of context – 

distance from the city centre.  Results from five models were reported, one based on each of the 

three texture variables in turn, and two (with two and three explanatory variables) selected using 

stepwise regression.  R2 values were in the range .69 to .81. 

In the same paper, a similar but more extensive analysis was reported for the numbers of 

dwelling units in 65 grid squares on a transect through Cardiff, Wales, which were co-registered 

with a dwelling count database.  Of a reported 70 texture statistics investigated, the 7 chosen by 

stepwise regression were described as measures of ‘edginess’ and ‘ripple’, generated using line 

detection algorithms and Fourier and Laplace transform methodology. R2 values for linear and 

logarithmic models were reported as .86 and .97 respectively.  In addition to the issue of 

capitalisation on chance (see section 2.11.4), the latter value was inflated both by a forced zero 

intercept (as pointed out by the author) and by the logarithmic form of the model (see section 

2.11.7).   Tables showing absolute and relative errors were presented but no summary statistics 

were reported for these.   

The researches of Langford et al., Lo and Webster in the period since 1991 have followed 

similar paths to some of those traversed by the author during the same period.  Together with 

the work of Iisaka and Hegedus, their reports provide benchmarks against which the 

methodologies, issues and results reported herein can be compared and assessed. 
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This body of work also illustrates an important issue about scale which arises when aggregated 

areas are unequal in size.  When the explanatory variables are aggregate measures such as 

average spectral characteristics or proportions of pixels in different classes, then the natural 

dependent variable is population (or dwelling unit) density.  When the explanatory variables are 

pixel counts, then the natural dependent variable is the total population of the aggregate.  When 

the aggregated areas are equal in size, as with grid squares, the distinction is immaterial.   

 
1.3   CONCEPTUAL FRAMEWORK 
 
The work of Iisaka and Hegedus and all of the subsequent work cited above involved in each 

case the development (calibration, training) and testing of a model for estimating ground truth 

(census) population using, as explanatory variables some function(s) of spectral characteristics 

derived from remote sensing imagery.  A conceptual framework for encompassing and 

extending this work was conceived as having four key aspects: sensor characteristics; 

approaches to spatial aggregation; form and complexity of models; and extent of validation. 

 
1.3.1 Sensor characteristics 
 
The work of Iisaka and Hegedus was based on Landsat MSS imagery.  Prima facie, it might be 

expected that the increased number of spectral bands and the higher spectral and spatial 

resolution of Landsat TM might be expected to lead to more accurate estimates of population.  

 
1.3.2 Approaches to spatial aggregation 
 
The data employed in remote sensing approaches to population estimation occur at two levels of 

spatial aggregation: 

Census aggregates: standardised grid cells or enumeration districts (EDs).  Ground truth 

population figures are available at this level 

Remote sensing image pixels.  Spectral characteristics are available at this level, which is 

typically one or more orders of magnitude smaller in size than census aggregates. 

Approaches to multi-level analysis 

The resulting problem of multi-level analysis (Goldstein, 1995) or areal interpolation 

(Goodchild and Lam, 1980; Goodchild et al., 1993) can be approached in two ways, either by: 

• aggregating the remote sensing data to the level of the population data, or 

• disaggregating the population data to the level of individual pixels 
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The former approach was used by Iisaka and Hegedus and in all the subsequent research into 

population estimation per se cited above.  The aggregation of the remote sensing data took 

various forms: averages, texture statistics and counts or proportions of pixels in different 

classes.   

In the dasymetric approach, known census aggregate populations are disaggregated on the basis 

of broad pixel classifications, but there is no attempt to model the populations of individual 

pixels directly from the remote sensing data. 

There are a number of potential advantages to be gained by explicitly modelling at the level of 

single pixels rather than larger aggregates.  On a theoretical level, it might be conjectured that 

the relationships between human habitation and reflectances might be better defined and 

expressed at the level of single pixels; both spectral characteristics and population densities can 

vary greatly within an extended area.  On a practical level, both classification and many textural 

measures involve a single pixel approach.  As to outcomes, pixel-based estimates would enable 

population density images to be produced, and would be compatible with geographical 

information systems (GIS).  

On the negative side, the essential difficulty lies in the fact that ground truth data for population 

estimation cannot feasibly be obtained at individual pixel level for any but the smallest areas. 

Most readily available ground truth and ancillary demographic data is only available for larger 

areas.  Disaggregation of the population of an ED into constituent populations associated with 

each pixel is less straightforward conceptually and computationally than the derivation of 

aggregate spectral characteristics for an ED.  

Notwithstanding these difficulties, the latter as well as the former approach has been employed 

in the present work. 

 
1.3.3 Form and complexity of models 

 
Some lines of investigation under this heading are: 

Mathematical models involving data transformations and/or non-linear functional forms  

There is no a priori reason to believe that the simple linear models employed by Iisaka and 

Hegedus are the most appropriate. Spectral transformations which have been widely used in 

remote sensing contexts include normalised bands, band ratios, band difference to band sum 

ratios, hue-saturation-intensity transformations and principal components  (see for example 

Richards, 1986; Harrison and Jupp, 1990; Langford et al., 1991).   
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Spatial statistics, such as between-pixel variance measures and other indicators of texture have 

been found useful particularly in an urban context by Hsu (1978), Forster (1981, 1983), Kivell 

et al (1989), Barnsley and Barr (1996), Webster (1996) and Heikkonen et al. (1997, 1998). 

The incorporation of non-linear functional forms such as the logarithm of the dependent 

variable is an approach frequently adopted when a dependent variable exhibits wide variation.  

This is frequently the case when the dependent variable is the population or population density 

of a diverse set of geographical units.  Logarithmic and other curvilinear transformations were 

used in a number of the studies already alluded to, including those of Anderson and Anderson 

(1973), Ogrosky (1975), Lo and Welch (1977), Lo (1995) and Webster (1996). 

Classification of the study area into land use zones prior to regression modelling  

The relationship between population and spectral reflectance is not invariant across a range of 

land uses.  For example, a roof surface in a residential area is associated with population, 

whereas the same type of surface in an industrial or commercial area is not. The incorporation 

of a classification phase would enable the regression analysis to be focussed on a more 

homogeneous class of residential pixels.  

Iisaka and Hegedus (1982) reported that they used a clustering procedure to assign their test 

sites into a number of classes, but whilst it appears that this classification was used for ancillary 

analyses, there is no evidence in their report that any stratification was incorporated into the 

regression analysis.  

Nevertheless they attained encouragingly high R2 values (.70 and .59) with a rather blunt 

instrument - averages over 10×10 MSS pixels and straight linear functions of band reflectances. 

They then omitted, post hoc, the one-third of their test sites which were fitted least well, and the 

R2 values rose to .88 and .81. It appears from their report that many of these sites included 

obvious anomalies such as major roads or open land. If such anomalies can be removed before 

the regression stage, some improvement should ensue.  

The resulting method would essentially combine the third and fourth of Lo's methods listed 

above. First, all pixels in the image would be classified into broad land use categories. For all 

but the most common residential categories, characteristic population densities would be 

assigned (zero in the case of non-residential classes).  But for the predominant residential 

categories, a regression analysis would be performed. 

As to classification techniques, the shift from photo interpretation techniques to more objective 

statistical methods of supervised classification such as the method of maximum likelihood and 

linear discriminant analysis occurred in the late 1970s in the context of digitised aerial 
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photography (contrast, for example, Gautam, 1976, with Hsu, 1978 or Scarpace and Quirk, 

1980). 

Over the next decade researchers such as Jackson et al. (1980), Congalton et al (1983), Stern 

(1984), Tom and Miller (1984), Haack (1984), Toll (1984), Martin et al (1988), Gong and 

Howarth (1990a, 1990b), explored these and conceptually related unsupervised classification (or 

clustering) techniques with Landsat MSS, Landsat TM, SPOT XS, SPOT HRV and other 

orbitally acquired data.  However, as is discussed by Webster (1996) and comprehensively 

documented by Barnsley and Barr (1996), the improvement in urban classification which was 

anticipated with data from higher resolution sensors largely failed to occur.  The problem is one 

of heterogeneity. Unlike rural land-use and land-cover classes, which are often quite 

homogeneous, many urban land-use classes, perhaps the residential class more than any other, 

are inherently mixtures of different land cover types at pixel or sub-pixel scale.    

In the last decade, many lines of enquiry have been followed for improving classification in 

remote sensing contexts, particularly with high levels of heterogeneity.   These include: analysis 

of fractal dimensions (De Cola, 1989; Fotheringham, 1989; Lam, 1990); fuzzy set theory 

(Wang, 1990; Gopal and Woodcock, 1994); mixed pixel or end member analysis (Smith et al., 

1990); knowledge-based systems (Wharton, 1987; Moller-Jensen, 1990; Bolstad and Lillesand, 

1992); neural networks (Chen et al., 1995; Foody et al., 1995; Foody, 1996); iterative methods 

based on maximum likelihood (Van Deusen, 1995); genetic programming (Rioli and Line, 

1995); classification and regression trees (Heikkonen et al., 1997; Heikonnen and Varfis, 1998); 

and various procedures which utilise spatial patterns or other contextual information for iterative 

reclassification (Treitz et al., 1992; Gong and Howarth, 1992; Barnsley and Barr, 1996; Sharma 

and Sarkar, 1998). 

Notwithstanding this range of experimentation, it was anticipated that in the context of the 

present project even a moderately successful classification into residential versus non-residential 

classes using the well-established and computationally accessible maximum likelihood method 

had the potential to substantially improve the performance of subsequent regression modelling 

for population estimation.  This was the approach adopted by Langford et al. (1991), by Lo 

(1995), by Webster (1996) and by the author.  In the present instance, it was ultimately 

embellished by what is effectively a subsequent phase of contextual reclassification. 

Models which link population to reflectance data indirectly through intermediate dwelling-

related variables 

Essentially, this would involve a synthesis of Lo's first and fourth methods, with visual dwelling 

counts being replaced by variables such as percentage housing cover, which might be directly 

estimated on a per pixel basis.  
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Such a two-stage procedure, as well as providing dwelling-related estimates of interest in their 

own right, might also enable refinements which are feasible at one stage but not the other.  

For example, the intermediate dwelling measures, unlike population, relate directly to ground 

cover, and hence the nature of their relationship to surface reflectance should be more amenable 

to physical analysis. Ground truth data for small areas can also be obtained photographically. 

For population, ground truth data can only feasibly be inferred from censuses, and then only for 

standard geographical aggregations.  

The second stage, the link between dwellings and population, is via measures such as 

occupancy ratios, which may also be able to be estimated spectrally, either in relation to land 

use classes or in some other way.  

The work of Forster (1980a, 1980b, 1981, 1983) embodied the first of these two stages, and also 

incorporated more complex models as advocated in 2) above.   

Forster estimated various housing measures including percentage housing cover and number of 

dwellings per area from Landsat MSS spectral data, using regression models incorporating 

various data transformations.  

Data was obtained from 70 ground truth sites in the metropolitan area of Sydney, Australia, 

each site consisting of an 8×5 pixel block. Ground co-ordinates of the ground truth sites were 

obtained from the Landsat line and pixel co-ordinates by a polynomial transformation based on 

100 ground control points distributed across the study area. The 40 pixels of each ground truth 

site were then located on panchromatic aerial photographs.  Within each pixel area, 20 random 

points were chosen, and the type of ground cover at each point was assigned after examination 

of the photographs. Hence, estimates were obtained of the proportion of housing and other types 

of cover for each pixel.  These estimates provided the ground truth data against which the 

Landsat estimates were evaluated.  

The regression equations obtained by Forster, which included as predictors various transformed 

variables such as brightness vectors, band ratios, and textural variables in the form of between-

pixel variances, attained R2 values in excess of .80.  

Lo (1995) has demonstrated that remote sensing estimates of dwelling unit counts tend to be 

more accurate than those of population, though not uniformly so.  In some contexts, dwelling 

counts may be of interest in their own right (Webster, 1996). But from the perspective of 

population estimation, when the additional imprecision in the relationship between dwelling 

counts and population is considered, it has not been established that improved estimates of 

population would result.  
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Dwelling counts were estimated in the first phase of the present work, but following similarly 

modest improvements in accuracy to those reported by Lo, the approach was ultimately 

abandoned in favour of more direct population estimation. 

 
1.3.4 Extent of validation 
 
Validation of models for population estimation can be considered at two levels: 

1) Internal validation – Given a “training set” of entities (pixels, EDs etc.) on the basis of 

which some procedure / function of the spectral characteristics is chosen, how well does that 

function reproduce the populations of the entities in the training set  i.e. can any relationship 

between population and remote sensing characteristics be established at all? 

2) External validation – How well does the  procedure / function perform when applied 

beyond the training set i.e. how robust and generally applicable is the procedure / function / 

relationship? 

Whilst it might be interesting from a theoretical or conceptual perspective to demonstrate the 

existence of a relationship in a particular context, for an estimation procedure to have any 

operational use for estimation its external validity must be demonstrated over some extended 

domain.  

Whilst Iisaka and Hegedus (1982) mentioned external validation, their reported results appear to 

pertain only to the training set, and hence they were not externally validated at all.  In Langford 

et al. (1991), external validation was limited to two indirect demonstrations of face validity – 

one involving a different aggregation scheme (National Grid kilometre squares vs. census 

wards) for the same geographical area, and the other involving the same area at the time of an 

earlier census.  Again, whilst Webster (1996) sounded notes of caution about the geographic 

robustness of his results, no external validation was undertaken.  Of the recently reported 

population estimation procedures, only Lo (1995) undertook clear and explicit external 

validation, by training his models on a sample of Hong Kong TPUs, and then applying them to 

the remaining TPUs.  In no case was robustness or validity examined beyond the particular test 

image. 

In the present work considerable investigation of external validity has been undertaken, both 

within particular images (regions) and between different images (regions). 
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1.4 RESEARCH QUESTIONS  
 
The basic aims of this research were twofold: 

• to extend and refine statistical image analysis methodologies for directly estimating small 

area populations and population densities from Landsat TM images. 

• to validate the procedures developed and to explore their robustness to geographical and 

seasonal differences within Australia, and hence to explore the potential of this 

methodology to provide a genuine operational alternative to existing methods of population 

estimation.   

In pursuing these aims, a number of specific research questions and specific research 

hypotheses, some of which emerged during the research, were addressed.  Research hypotheses 

regarding methodology were: 

• That the capability of linear population estimation models is enhanced by the incorporation 

of spectral transformations of TM data. 

• That the capability of linear population estimation models is enhanced by the incorporation 

of spatial transformations of TM data. 

• That the capability of linear population estimation models is enhanced by the incorporation 

of mathematical transformations of the dependent population variable. 

• That the capability of linear population estimation models is enhanced by modelling the 

population of individual pixels rather than that of larger spatial aggregates. 

• That the capability of linear population estimation models based on individual pixels is 

enhanced by classification of the pixels into different landcover/landuse classes. 

• That classification of pixels is enhanced by the incorporation of spectral transformations of 

TM data. 

• That classification of pixels is enhanced by the incorporation of spatial transformations of 

TM data. 

• That classification of pixels is enhanced by the incorporation of a second stage of contextual 

reclassification. 

Regarding validity and robustness, the research questions addressed to varying degrees were the 

extent to which both the general procedures developed and the specific details of the models 

were robust, firstly beyond the immediate training data, and then more broadly to differences in: 

• geographical location, land cover and climate; 
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• time and season; 

• intensity of human settlement. 

The final objective was to specify a feasible operational procedure for estimating population 

from TM imagery.  More specific aims related to this objective were: 

• to identify the nature and extent of non-remote sensing inputs required; 

• to identify the nature and extent of human intervention and interpretation required; 

• to estimate the accuracy of population estimates attainable at the macro (major metropolitan 

centre), intermediate (Statistical Local Area, provincial city) and micro (Census Collection 

District) levels. 

 
1.5 OUTLINE OF THE RESEARCH AND THE THESIS 
 
The theoretical bases for each stage of the analysis are outlined in Chapter 2. 

The procedures were developed and evaluated using Landsat TM images of the mixed 

urban/rural areas surrounding and including the provincial cities of Ballarat and Geelong, the 

state capital cities of Adelaide, Sydney and Brisbane, and the remote mining centre Kalgoorlie.  

The sources of both remote sensing data and population data, the preparation of the remote 

sensing images, the co-registration of images with census boundaries and the computational 

methods used to link the remote sensing data and population data and to perform statistical 

analyses are described in Chapter 3. 

The first approach, in which populations of 138 census collection districts in Ballarat were 

estimated using aggregated remote sensing indicators, is reported in Chapter 4.  A range of 

spectral and spatial transformations was examined and a number of preferred models selected 

by stepwise regression analysis.  

The second approach, based on individual pixels, is developed in Chapters 5-9.    

Chapter 5 traces the initial development of this methodology on the Ballarat image.  An initial 

maximum likelihood classification of pixels was followed by regression modelling on a sample 

of those pixels classified as residential.  A variety of spectral and spatial transformations were 

investigated, as well as nonlinear functional forms and an iterative refinement of the estimated 

ground truth populations assigned to individual pixels. 

External validation of the procedures developed in Chapters 4 and 5 was conducted on a second 

image.  A number of candidate estimation procedures arising from both approaches were 

applied to an image of the nearby Geelong region. As a result of this testing, one of the pixel-

based approaches was selected as the preferred methodology, a number of refinements were 
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made to it, and a detailed evaluation of its performance undertaken.  These steps are reported in 

Chapter 6. 

Central to the chosen procedure was an algorithm for iteratively refining the estimated ground 

truth populations assigned to individual pixels.  It was decided, prior to applying the 

methodology on a larger scale, to place this algorithm in a broader theoretical context, and to 

undertake a thorough investigation of its sampling variability and other characteristics by Monte 

Carlo simulation.  This work is reported in Chapter 7. 

Attempts were then made to find a normalising transformation which would render the 

procedure robust to changes in climate, season, and to the limited extent possible within the 

Australian context, culture.  Various normalising transformations were tested on a second image 

of Ballarat, and on images of the other cities and regions.  This work is reported in Chapter 8. 

Since only a modest degree of robustness was achieved, the alternative of local training on a 

small subset of each region was investigated, with rather more success.  These explorations and 

the outcomes are reported in Chapter 9.  

Chapter 10 includes a comparative summary of outcomes, a generic specification for application 

of the recommended methodology, a consideration of its limitations, a review of further avenues 

for refinement and improvement, and an outline of some potential applications. 

Sections of Chapters 4 and 5 have been published in preliminary form in Harvey (1996). 
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Chapter 2 
  
Theoretical and Methodological Bases 
for the Research 
 
 
2.1 INTRODUCTION 
 
This chapter includes some general background material about remote sensing imagery and 

methodologies, and introduces the theoretical bases and the technical methods which are used 

throughout the study.   

Sections 2.2 and 2.3 introduce Landsat TM data and the various ways it can be represented and 

displayed.  Sections 2.4 and 2.5 are concerned with various mathematical transformations that 

can be applied to remote sensing data, in both the multivariate spectral domain and the two 

dimensional spatial domain.   

Both the aggregate-based and pixel-based approaches to population estimation utilise some 

form of linear modelling, and the pixel-based approach also includes a classification phase.  

Sections 2.6 and 2.7 deal with discrimination and classification, and sections 2.8 and 2.9 discuss 

various aspects of linear regression models.  Two non-linear aspects of the methodology are 

considered in Section 2.10. 

Assessment of performance, validity and robustness are addressed in Section 2.11  The final 

section 2.12 considers some related issues of parameterisation and presentation.  

 
2.2 LANDSAT THEMATIC MAPPER MULTISPECTRAL RADIANCE DATA 
 
Landsat 5 follows a near polar, sun synchronous orbit at an altitude of 705km, and with a period 

of 98.9 min. Image data for each particular area is acquired on the north-south traverse, at 

around 9.30 am local time. 

The Thematic Mapper (TM) is a mechanical scanning device which sweeps 16 transverse scan 

lines simultaneously across a swath of width 185 km.  The orientation of the 16 TM sensors is 
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such that the spacing of the scan lines on the ground is 30m.  The sensors produce a continuous 

output which is sampled at a rate which corresponds to a 30m spacing of samples along the scan 

line also.  The optical characteristics of the TM are such that the instantaneous field of view 

(IFOV) also corresponds to this spacing, so that each sampled pixel ideally represents the 

integrated response of the TM sensors to the radiation reflected from a 30m square on the 

ground, with the pixels (or strictly the squares that they represent) being contiguous in both 

across-track (along-scan) and along-track directions.  In practice, atmospheric attenuation and 

scattering degrade the signal to some degree both radiometrically and spatially (see Section 3.7). 

The TM senses radiation in seven spectral bands, whose characteristics are summarised in Table 

2.1. 

The IFOV of band 6 is 120m×120m, corresponding to a 4 pixel×4 pixel square in the other 

bands.  For uniformity, data for this band is also formatted as if for 30m pixels, with each data 

value being repeated for the 16 appropriate pixels.  However, the underlying resolution 

incompatibility renders band 6 generally unsuitable for incorporation in multispectral analyses.  

This study is based on the 6 spatially compatible bands.  Henceforth, reference will be made to 

these bands only. 

The pixel brightness in each spectral band is proportional to the incident radiance, measured in 

watt per steradian per square metre.  The dynamic range of the TM is 8 bits.  The output is 

expressed as an integer in the range 0-255. 

 
Table 2.1  Landsat TM Spectral Bands 

 
Band Wavelegth (µm) Description 
   1 0.45 - 0.52 blue 
   2 0.52 - 0.60 green 
   3 0.63 - 0.69 red 
   4 0.76 - 0.90 near infrared 
   5 1.55 - 1.75 mid infrared 
   7* 2.08 - 2.35 mid infrared 
   6 10.4 - 12.5 thermal infrared 

 
* Band 7 is numbered out of sequence as a result of being added late in the design period when the 

numerical designations of the other bands were well established. 
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2.3 SPATIAL DOMAIN AND SPECTRAL DOMAIN DATA 
REPRESENTATIONS 

 
The full raw dataset for a TM scene1 or subscene can be thought of as being 8-dimensional, 

consisting of a 2-dimensional r×p spatial array, where 

r = number of rows 

p = number of pixels per row, 

and where each point in the spatial array has an associated 6-dimensional vector of spectral 

brightnesses. 

The term "image" is used in three ways: 

(i) (occasionally) the totality of the 8-dimensional raw data i.e. synonymous with "scene" or 

"subscene". 

(ii) (more commonly) a derived data set with 2 spatial dimensions and either: 1 spectral 

dimension e.g. a single spectral band or the ratio of 2 spectral bands; or 3 such spectral 

dimensions. 

(iii) (usually) a visual representation or realisation of (ii) e.g. a colour-coded video display or 

print. 

 
2.3.1 Colour representation 
 
Harrison and Jupp (1990) distinguish two types of colour representation of images. 

In the case of a single spectral dimension, a colour look-up table (lut) is used to assign a graded 

range of colours (typically up to 28 =256 in number) to the range of numerical values which 

occur, producing a pseudocolour image.  A monochrome or greyscale image is a special case in 

which only black, white and the intermediate shades of grey are used. 

Three spectral dimensions may be displayed as follows.  The human eye perceives colours as 

the proportions of red, green and blue wavelengths that it detects.  These colours are known as 

the additive primaries.  Colour monitors use three colour guns to excite red, green and blue 

phosphors, and hence additively create the full range of colours on a screen.  Three variables 

may be displayed by assigning each to one of the guns, whose intensities then represent the 

levels of the corresponding variables.  The resulting colour composite or RGB image has a 

much larger range of available colour shadings than a pseudocolour image (typically (28)3≈

                                                 
1 Technically, the term “scene” refers to the standard geographical units into which TM output is divided 

for purposes of identification and distribution. 
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17,000,000).  If the red, green and blue TM bands are displayed in this way, the resulting image 

is a 'true' or 'natural' colour composite.  Any other mapping is called a false colour composite. 

In the present study, both natural and false colour composite RGB images have been used for 

general geographical orientation, for co-registration with overlaid census boundaries, for visual 

selection of classification training sets, and for identifying causes of anomalous results.  

Pseudocolour images have been used for displaying single TM bands, various derived measures, 

classifications and population densities. 

 
2.3.2 Spatial and spectral displays 
 
When a pseudocolour or colour composite image is displayed, the spatial domain provides the 

explicit structural basis of the display, whilst the quantity displayed represents a 1- or 3-

dimensional aspect of the spectral domain characteristics. 

Alternatively, the spectral domain may be used as the explicit basis of the representation.  The 

response of each pixel can be represented by a point in 6-dimensional Euclidean space, of which 

any 1, 2 or 3 dimensions may be displayed graphically at one time.  It is conventional to use 

histograms for displaying the values of a single spectral variable, and 2- or 3-dimensional 

crossplots (or scatter-plots) in the other cases.  Because the number of points (pixels) is usually 

large, spatial information is usually omitted from histograms and crossplots, although some 

information about spatial areas may be incorporated, for example by colour coding of 

categories. 

In the present study, histograms have been used extensively for purposes of distributional 

analysis and as an aid to image enhancement for the purpose of detecting features and 

facilitating visual judgements.  

2.3.3 Data transformations 
 
There is no a priori reason to believe that population will be best indicated by a simple linear 

combination of TM bands.  Potentially useful data transformations which have been widely 

used in many remote sensing contexts are now reviewed and considered.  

The mathematical transformations which are applied to multispectral data fall into two 

categories - those which are applied to the data one pixel at a time, and those which involve 

neighbouring pixels also. 

The former type operate on one point in space at a time. They take as input one or more spectral 

bands and produce as output one or more new spectral variables. These are referred to as 

spectral domain transformations or point transformations. 



THEORETICAL AND METHODOLOGICAL BASES FOR THE RESEARCH  

 

20

 

The latter type operate on one spectral band only, but involve more than one point in space.  

These are referred to as spatial domain transformations. 

Both types1 are considered further in the following sections. 

 
2.4 SPECTRAL DOMAIN TRANSFORMATIONS 
 
2.4.1 Single band transformations 
 
The simplest spectral domain or point transformations are those applied to a single spectral 

band. 

These include linear and distribution-based transformations routinely applied for radiometric 

correction or contrast enhancement of images (See Section 3.7). 

Transformations which might be considered for analytic purposes include raising to a power, or 

taking a root, logarithm, or exponent.  However, most common analytic point transformations 

are multivariate in nature, with multiple inputs and either single or multiple outputs.  Some 

standard procedures are briefly outlined. 

 
2.4.2 Single-valued band comparisons or indices 
 
The pixel brightnesses in two or more spectral bands may be added, subtracted, multiplied or 

divided.  Multiplication has not proved useful and is little used. Band differences and ratios are 

most common (Richards, 1986, p. 146).  

Differencing is used, for example, to detect temporal changes by comparing the same band in 

two co-registered images from different dates. 

Three generic ratio-based vegetation indices of increasing complexity are: 

red
infrared =I1  

(NDVI)index n  vegetatiodifference normalised          
red+infrared
red-infrared =I2  

(TVI)index n  vegetationsformed       tra          1.0+I2 =I3  

The first of these is a simple band to band ratio, which is effectively a transformation to a single 

polar co-ordinate.  The second is a band-difference to band-sum ratio, division by the sum 

                                                 
1  The terms “tone” and “texture” are sometimes used respectively to refer to the spectral and spatial 

dimensions of an image (see for example Wang, L. and He, D.C. (1990)). 
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having the effect of "normalising" or limiting the values of the index to the range (-1,1).  I2 

carries the same information as I1, and is related to it by the formula 

1+I1
1-I1=I2  

In the third case, a constant is added to remove negative values, and then the square root is 

taken. 

A related TM-based index used as an indicator of urban density (Kawamara et al., 1996) is the 

band-difference to band-sum ratio: 

B4+B7
B4-B7=UI  

 Another type of common index is the basic band normalising ratio: 

bands 
band=I4

Σ
 

The purpose of normalisation is to reduce the effect of variations in overall light intensity. 

In the present study, extensive investigation was made of band to band ratios, band-difference to 

band-sum ratios and band normalising ratios. 

 
2.4.3 Many-to-many transformations 
 
In the three transformations which follow, the rectangular co-ordinate framework based on the 

original spectral bands is replaced by a new co-ordinate framework based on a new set of 

derived variables. 

 
2.4.4 The principal components (PC) transformation 
 
Essentially, the principal components transformation is a linear transformation in which the 

vector y representing a pixel point in the new co-ordinate system is related to the original co-

ordinates x by the equation 

y = Tx 

Geometrically, this represents a rotation of the reference axes.  The matrix T is chosen so as to 

align the new axes with the spatial distribution of the data points in such a way that the new y 

variables (the principal components) are, unlike the original x variables, uncorrelated with one 

another. 

This is illustrated schematically in Figure 2.1, where the ellipse represents the region of 2-

dimensional spectral space occupied by a set of data points, of which a typical one is plotted. 
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To accomplish this particular rotation, it can be shown that T must be the transposed matrix of 

eigenvectors of the covariance matrix Σx. 

It can be further shown that the covariance matrix of the ys, Σy, is diagonal, with the diagonal 

entries (the variances of the ys) being equal to the eigenvalues of Σx, which are always non-

negative.  It also follows that since the off-diagonal elements of Σy (the covariances of the ys) 

are zero, the ys are uncorrelated. 

 
Figure 2.1  The principal components transformation 

 
 
 
 
 
 
               x2        • 
 
 
 
              y1 
 
          y2 
        
 
 
           x1 
        
 
The rows of T can always be ordered in such a way that the eigenvalues occur in descending 

order of magnitude.  Thus, as can be seen in Figure 2.1, y1, the first principal component (PC1), 

has the largest variance, y2 the next largest variance, and so on.  Geometrically, PC1 is aligned 

in the direction of greatest spread of the pixel points in the original co-ordinate space.  PC2 is 

orthogonal to PC1, and subject to this constraint, is in the direction of the next greatest spread, 

and so on. 

These directions are determined by the coefficients of the linear transformation, i.e. the elements 

of the matrix T, also known as weights or loadings. 

Commonly, all spectral bands are positively correlated, in which case PC1 will load positively 

on all bands, and will be a measure of overall brightness.  The second and subsequent 

components will represent orthogonal contrasts between various band combinations, with each 

further component exhibiting less pixel-to-pixel variation. 
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The higher the correlations between the original bands, the more rapid is the decrease in 

component variances, and the greater is the proportion of the total information which is 

contained in the first few components. 

The following figures, taken from Richards (1986, p.137), illustrate a typical principal 

components analysis (PCA) for a 4 band Landsat MSS image.  The covariance matrix is 

Σx = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

35.2180.4533.4371.22
80.4502.10458.9952.87

43.3399.58105.9555.62
22.7152.8755.6234.89

 

Its eigenvalues are: 

eigenvalues 253.44 7.91 3.96 0.89 

% of total 95.20 3.00 1.50 0.30 

The transformation matrix, whose columns are the eigenvectors, is 

T =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−
−−

88.011.038.028.0
48.022.057.063.0
06.065.040.064.0
06.071.061.034.0

 

The pattern of the loadings indicates that the 1st PC is a positively weighted combination of all 

four bands (i.e. overall brightness); the 2nd PC is essentially the difference between the visible 

and infrared bands; the 3rd is essentially the difference between visible red and green; and the 

4th is essentially the difference between the two infrared bands. 

However, the first component encompasses 95% of the variance in the data, and hence 95% of 

the information for distinguishing between pixels.  At the other extreme, the last component has 

negligible variance and hence negligible information content.  It is to be expected that, when 

displayed, the first component will exhibit strong contrast and structure, whilst the last will 

appear almost totally as noise of low amplitude. 

In a similar way, most of the information contained in a 6 band TM image can often be 

compressed into a 1-, 2- or 3-dimensional PC image for more convenient and effective display 

or further analysis. 

As has been pointed out above, the rotation of the co-ordinate axes results in at least some 

components which are bipolar, for which data co-ordinates may be positive or negative.  For 

convenience, in the image analysis context, negative values may be avoided by a translation of 

the reference origin by an appropriate amount.  Thus in practice the affine transformation 

y = Tx + c 
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where c is a constant vector, may be used. 

The Kauth-Thomas transformation 

The Kauth-Thomas or "tasselled cap" transformation (Kauth and Thomas, 1976) originally 

defined in terms of four band MSS data, is not so much a type of transformation as a realisation 

of a principal components transformation in an agricultural context.  Kauth and Thomas found 

four orthogonal directions, the first three of which broadly corresponded to soil brightness, 

greenness and yellowness, with the remaining dimension being essentially random noise.  These 

four components, like principal components, have decreasing variances. 

Whilst the context-driven approach of Kauth and Thomas was very different to the purely 

statistical basis of principal components analysis, the resulting transformation matrix (after 

Richards, 1986, p.145) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
81.019.049.026.0
54.004.060.00.59

0.010.520.56-0.63
0.220.83-0.29-0.43

 

is, apart from the arbitrary reversal of sign in the last component, very similar to the PC 

transformation matrix above.   

In this study, the principal components of the 6 TM bands were investigated as possible 

indicators of population. 

 
2.4.5 Hue-saturation-intensity (HSI) transformations. 
 
The red, green and blue additive primary dimensions of a colour composite image (see Section 

2.2) can be re-parameterised in terms of the three variables hue, saturation and intensity.  For an 

illustration of the representation of HSI in the RGB colour cube see for example Harrison and 

Jupp, 1990, p18.  The intensity diagonal represents the shades of grey from black to white.  On 

the level surfaces of intensity, hue is an angular measure representing what is commonly 

referred to as colour, whilst saturation, measured radially from the intensity axis, represents the 

strength of the colour.  The subtractive primaries yellow, cyan and magenta occur at the 

remaining corners of the cube. 

Harrison and Jupp report a variety of mathematical implementations of the HSI concept, based 

on triangular, conical, cylindrical and spherical co-ordinates, among others.  The HSI 

transformation supplied with ERMAPPER software is essentially rectangular in nature.  The 

level surfaces of intensity are the faces of the RGB cube, the saturation contours on each face 
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are L shaped, and the hue contours are 'stripes' parallel to the R-W, G-W and B-W diagonals of 

the faces. 

In this study rectangular, triangular and cylindrical HSI transformations were examined. The 

formulae are given in Appendix A. 

 
2.5 SPATIAL DOMAIN TRANSFORMATIONS 
 
As has been discussed above, spectral domain or point transformations are applied to each pixel 

one at a time, and usually involve more than one spectral band.  

In contrast to this, spatial transformations are applied in the spatial domain.  The input is a 

single spectral band (which may be either a primary data band or a derived band resulting from 

a univariate or multivariate spectral domain transformation), and the output value is a function 

of the input values of a number of pixels. A distinction can be drawn between the structural or 

morphological approaches of pattern recognition which seek to distinguish shapes and objects, 

and statistical measures of spatial variation (though the two approaches are not mutually 

exclusive).  Within the statistical domain, two approaches can be distinguished, based on either 

aggregates over an extended area, or on the immediate neighbourhood of each pixel.  

 
2.5.1 Aggregate measures 
 
If an image can be partitioned into a number of contiguous areas, then it may be useful to 

calculate statistical measures for each such area. 

Iisaka and Hegedus (1982) used means of each spectral band to estimate populations within grid 

squares.  In the present study, this approach was applied to census collection districts (CDs), 

with means, variances, standard deviations and coefficients of variation (standard 

deviation/mean) of both raw TM bands and a number of spectrally transformed variables being 

evaluated as predictors. 

These bulk variability measures indicate the magnitude of the variation over an extended spatial 

area, in contrast to the measures of local variability or texture discussed below. 

Chavez (1992) has investigated the scale-dependence of spatial standard deviations calculated at 

particular spacings or spatial frequencies, using high pass Laplacian filters and variogram 

techniques.  Whilst it is possible that scale-specific variability measures may have different 

properties than overall regional measures, they were not utilised in the present study. 
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2.5.2 Neighbourhood measures (spatial filters) 
 
Neighbourhood operations are generally defined in terms of a square window or template with 

an odd number of pixels per side (often just 3), which is passed over the image and centred on 

each pixel in turn.  The output value for each pixel is some function of the input values of that 

pixel and of its neighbouring pixels within the window. 

Convolution operations 

In a convolution operation, the central pixel value is replaced by a linear combination (i.e. a 

weighted sum) of the pixel values within the window.  The array of weights is referred to as the 

kernel of the convolution. 

In image analysis and image processing, convolution operations are routinely employed for both 

smoothing (low pass filters) and sharpening (high pass filters) of images.  Niblack (1986) gives 

an extensive summary. 

In the case of smoothing, averaging procedures with all non-negative weights are used.  

Sharpening techniques, such as those for detecting and enhancing lines and edges, utilise 

various patterns of positive and negative weights. 

Non-convolution template operations 

Other smoothing transformations, which are based either on structural analysis or on statistical 

alternatives to averaging, include the median filter, in which the central pixel value is replaced 

by the median of the pixel values within the window. 

Various measures of image texture have been proposed, which are based on statistical measures 

of the variability of the pixel values within the window. 

 
2.5.3 Measures of image texture 
 
Three obvious related measures of inter-pixel variability are spatial variance, spatial standard 

deviation and spatial coefficient of variation, which have been investigated in the context of 

urban applications of remote sensing by Forster (1981), Woodcock and Strahler (1987), Forster 

and Jones (1988), Takeuchi and Tomita (1988), Kivell et al (1989), Ng (1990), Forster and Xing 

(1992) and Forster (1993), and in a more rural village-oriented study by Stern (1984). 

Haralick (1978, 1986) and Rosenfeld and Kak (1982) have reviewed a wide range of other 

statistical and structural approaches to the analysis of texture in remote sensing and other image 

analysis contexts.  The methods and measures include auto-correlation and autoregressive time 

series techniques, digital transforms, mathematical morphology, gray-tone co-occurrence, edge 

density, relative extrema density, run lengths, Markov random fields and random mosaic 
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models.  Wang and He (1990) have developed a statistical approach which involves a scheme 

for coding the texture of each pixel neighbourhood into a single numerical value called a 

"texture unit number", and then analysing the distribution or spectrum of these numbers over a 

whole image or a subset thereof. 

Gong and Howarth (1990a) have reported the application of an edge density measure to the 

classification of land-use in a mixed urban/rural setting.  However, the method is 

computationally expensive, requiring multiple passes over the image with different window 

sizes, and it involves visual examination and subjective decision-making by the user.  More 

recently, these authors have proposed (Gong and Howarth, 1992) a multidimensional 

classification procedure in which the dimensions are the frequencies of occurrence of each 

possible grey level within a relatively large (9×9) window.  For multivariate data, principal 

components analysis followed by requantisation are used to reduce the number of possible grey 

levels.  This method too is computationally complex, and requires the selection of an optimum 

window size. 

Webster (1996) reported the use of a battery of texture measures in the context of estimation of 

dwelling counts in urban areas.  Some were measures of spatial variation derived from the class 

membership of neighbouring pixels, and others, designed to detect the repetitive patterns of 

street grids and described as measures of ‘edginess’ and ‘ripple’, were generated using line 

detection algorithms and Fourier and Laplace transform methods. 

Heikkonen and others (Heikkonen et al., 1997; Heikkonen and Varfis, 1998) defined a number 

of co-occurrence measures computed from spatial gray-level dependence matrices (conceptually 

similar to Webster’s neighbour-based measures).   They also  used Gabor filters from the 

domain of signal processing.  These are spatial sinusoids localised by a Gaussian window which 

provide measures of self correlation or morphological self similarity (again conceptually related 

to Webster’s measures of repetitiveness). 

Hsu (1978) carried out a very comprehensive study of relatively straightforward approaches.  

The 23 different texture measures he applied to the classification of digitised black-and-white 

aerial photographs can be categorised into four types, as follows. 

(i) Deviation measures 

These are measures of the average deviation of pixels in the window from some central 

value, such as the central pixel value or the mean of all the pixels in the window.  The 

types of average used by Hsu were mean absolute (MA) deviation, mean squared (MS) 

deviation and root mean squared (RMS) deviation.  In the case of deviations from the 

mean, the resulting statistics are the familiar mean deviation, variance and standard 
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deviation.  Other averages such as the median could be used.  Hsu also included higher 

order moments which measure skew and kurtosis. 

 (ii) Pairwise-difference measures 

In these measures, which Rosenfeld (1984) termed measures of "local busyness", an 

average is calculated for the differences between chosen pairs of pixels within the 

window e.g. all pairs, nearest neighbours, second nearest neighbours.  Again, the 

averaging procedure may be MA, MS or RMS. 

(iii) Proportion measures 

In this case, the calculated statistic is the proportion of pixels in the window with values 

above (or below) some chosen threshold or datum. 

(iv) Measures based on spatial wave-form characteristics 

These are based on the frequency and amplitude of peaks and troughs in both x and y 

directions.  They include average number of peaks and troughs, average difference in 

magnitude of peaks and troughs, and average distance of peaks and troughs from the 

centre of the window. 

Hsu applied these measures to the classification of eight general land-use types, using stepwise 

discriminant analysis.  He reported "hit rates" (correct classifications) above 95% for the 

training sets, and 85-90% for the full data set, with all but 4 of the 23 variables contributing 

significantly to the classification. 

In the present study, a central task was to distinguish between residential and other types of land 

use. 

Woodcock and Strahler (1987), Forster and Jones (1988), Takeuchi and Tomita (1988), Ng 

(1990), Forster and Xing (1992) and Forster (1993) have shown that inter-pixel variation is 

maximised when the individual land cover elements are similar in size to the pixels.  The key 

elements of the residential environment are dwellings and other structures, yards, lawns, 

gardens, trees and paved areas including streets.  The dimensions of these elements are of the 

same order of magnitude as a 30m square Landsat TM pixel.  As a consequence, residential 

areas display a high degree of inter-pixel variation in all TM bands. 

Whilst other land cover classes such as open forest also exhibit inter-pixel homogeneity, it may 

be possible to find a combination of texture and other spectral characteristics which clearly 

indicates residential land use. 
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2.5.4 Development of a texture index based on pairwise differences 
 
In classifying pixels on the basis of their spectral response alone (See Section 5.5), it was 

observed that many rural pixels associated with roads and shorelines in particular were 

incorrectly classified as residential.  

The aim was to discriminate between, on the one hand both lines and edges, regardless of their 

direction, and on the other hand, a more amorphous texture.  Whilst many standard line 

detecting and edge detecting filters exist, the particular combination of requirements appeared to 

be sufficiently unusual to necessitate the development of a more specific filter. 

Nine standard variants of a 3×3 window were set up with cells set to high or low values.  Four 

represented lines in different directions, four represented lineal boundaries in different 

directions, and one, with all cells at a constant intermediate level, represented no lineal pattern.  

With superimposed random error, the ninth window had the amorphous texture characteristic of 

mixed residential pixels. 

After extensive experimentation with simulated data (see Appendix B) a composite measure 

was developed, based on two of Hsu’s pairwise difference measures, which can be specified as 

follows. 

The value assigned to the central pixel is the lesser of: 

• the average of the absolute values of the differences between 2nd nearest neighbours in 

the diagonal direction (which in the case of a 3×3 window is just the average absolute 

difference between pixels in diagonally opposite corners), and 

• the average of all but the two largest of the absolute values of the differences between 

nearest neighbours around the perimeter of the window. 

This measure is referred to in Chapter 5 as the pairwise difference texture index. 

This measure achieved strong discrimination between the random pattern and all the 

geometrical patterns tested even in the presence of a substantial degree of random noise, 

regardless of the of the particular averaging procedure used.   For simplicity and speed of 

computation it was decided to use the root mean square averaging procedure. 

Application of the same set of measures to simulated data based on a 5×5 window resulted in a 

greatly increased computational burden, and produced no improvement in discrimination.  

Accordingly, it was decided to use measures based on a 3×3 window only. 

The index was coded in C as a user-defined ERMapper filter. 
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2.6 SUPERVISED CLASSIFICATION 
 
Supervised classification is the commonly used procedure of assigning each pixel in an image 

into one of several predefined land use or land cover categories.  (The less common exploratory 

approach in which the categories are not predefined, but are suggested by the analysis, is 

referred to as unsupervised classification or, in statistical parlance, cluster analysis.)  In the 

present study, the key land use, "residential", was predetermined, along with various other 

categories. 

Having defined the classes, the next step is to select "training sets" of typical representative 

pixels from each class.  In the present study this was done in part by visual examination of the 

image, and in part from known statutory land use zones. 

Next, a particular classification algorithm, which may be deterministic or probabilistic, is 

chosen, and the statistical characteristics of the training set data are used to estimate the 

parameters which characterise each class in multispectral space, also known as the signature of 

the class.  This empirical estimation of parameters constitutes the "training" of the classifier. 

The trained algorithm is then applied to the whole image, with each pixel being assigned to a 

class.  The output of the classification essentially takes the form of a new band of categorical 

data, which may be used in its own right as the basis of thematic displays, or as in the present 

study, it may provide a basis for further analysis. 

The effectiveness of the classification procedure may be gauged by examining the "confusion 

matrix", which shows the number of pixels in each training set assigned to each class.  The 

leading diagonal gives the numbers of correct assignments, and the off-diagonal elements give 

the numbers of incorrect assignments.  The proportion that are correctly classified provides a 

measure of internal validity. 

 
2.6.1 Maximum likelihood classification (MLC) 
 
The simplest classification algorithms are based on a deterministic partitioning of the 

multivariate spectral space.  More sophisticated methods involve the probabilistic assignment of 

pixels to classes with distributions which overlap in the multivariate space.  The maximum 

likelihood classifier is the most commonly used algorithm of the latter type. 

As the name suggests, this algorithm assigns each pixel to the class which is most likely (in a 

technical sense which is explained below) to contain it, given the empirical information about 

the classes obtained from the training sets. 

Symbolically, given a set of n spectral classes represented by 
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ωi, i=1,...,n 

and a particular pixel at location x in multivariate space, the pixel is assigned to the class for 

which the conditional probability (known as the likelihood) 

p(ωi/x) 

is a maximum. 

Now, by Bayes' rule (Mendenhall, 1979) 

p(ωi/x) = p(x/ωi) p(ωi) / p(x) 

For a particular pixel, p(x) is constant with respect to changes in i (it is the overall probability of 

finding a pixel from any class at location x).  Thus the required class is the one for which the  

product 

p(x/ωi) p(ωi) 

is a maximum. 

The second term in this product is called a prior probability.  It is the a priori probability 

associated with class i - that is, the overall probability with which any pixel would be assigned 

to this class by guesswork before the classification is carried out.  The prior probabilities may be 

assigned on the basis of prior knowledge about the relative preponderance of the classes.  If 

nothing is known, they may be assumed equal, in which case the term is simply omitted. 

The first term is the (conditional) probability that a pixel from class i would occur at location x.  

To compute this term, the distribution of each class must be specified.  The standard procedure 

is to assume that each class has a multivariate normal or Gaussian distribution in multispectral 

space.  The training set data are used to estimate the two parameters of this distribution for each 

class: the mean vector mi, which geometrically represents the centroid, and the covariance 

matrix Σi, which determines the shape, spread and orientation of the distribution, i.e. the region 

of multispectral space occupied by pixels of the particular class. 

By way of illustration, Figure 2.2 depicts four classes in 2-dimensional space, each with a 

different bivariate normal distribution.  The third axis (p) represents the probability of a pixel 

belonging to each of the classes. (Strictly p is the probability density, the probabilities being 

represented by the volume under each "hill".)  A low probability contour is shown for each 

class.  The distributions differ in location, shape, spread and orientation (i.e. they have different 

mean vectors and different covariance structures).  Three of the classes overlap each other to 

various degrees, whilst the fourth is clearly separated from the other three. 
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In practice, because of the exponential form of the Gaussian probability function, it is 

convenient to work with the logarithm of the likelihood product given above.  It can be shown 

(Johnson and Wichern, 1982, p 497) that the so called log-likelihood criterion which results and 

which is to be maximised has the form 

)-()'-(-ln- )(pln2 = ):(L i
1

iiiii mxmxx −ΣΣωω  

with the first term being omitted if the prior probabilities are assumed to be equal. 

Finally, a threshold level Ti  may be set for each class, with the pixels whose log-likelihoods fall 

below this threshold remaining unclassified. 

 
Figure 2.2  Maximum likelihood classification 
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The final decision rule is then 

x ∈ ωi  if     Li(x) > Lj(x) for all j≠i 

           and   Li(x) > Ti 

In Figure 2.2 the probability contour shown might correspond to the threshold level.  These and 

the intersections between the distributions define the decision boundaries. 

A more extensive treatment of the above is given in Richards (1986). 

If the covariance matrices in all classes are equal, the inter-class boundaries are linear, and MLC 

is equivalent to linear discriminant analysis (see Section 2.7).  In the case of unequal covariance 
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matrices, the boundaries are quadratic in form (hyperbolae & ellipses), and the term quadratic 

discriminant analysis is sometimes used. 

 
2.7 SELECTION OF CLASSIFIERS 
 
Maximum likelihood classification is computationally expensive if the number of spectral 

dimensions is large.  Furthermore, it is usually the case that the classes will be more separable in 

some dimensions than others.  As an alternative to multiple runs of the MLC algorithm, 

stepwise discriminant analysis (Cliff, 1987) or canonical analysis (an almost synonymous term 

used by some authors such as Richards, 1986) provides a systematic method of selecting an 

appropriate subset of the most strongly discriminating variables for use in the MLC procedure.   

 
2.7.1 Linear discriminant analysis 
 
Leaving aside the "stepwise" aspect for the moment, the aim of a linear discriminant analysis 

with a fixed set of variables is to find those directions in multivariate space in which the 

separation between a number of predefined classes with the same covariance structures is 

maximised.  This is a mathematicallty equivalent problem to MLC though viewed from a 

different perspective. 

The ellipses in Figure 2.3 represent two distinct classes in 2-dimensional spectral space.  (They 

may be thought of as near-zero probability contours.)  The two classes are almost identical with 

respect to variable x2.  Whilst x1 provides some discrimination between the classes, they have a 

degree of overlap in this direction also.  However, in the direction of the discriminant function 

vector d, the classes are maximally separated. 

Figure 2.3  The linear discriminant function 
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The separation criterion used is  
classeswithin variance
classesbetween  variance . 

It can be shown, analogously to principal components analysis (see Section 2.2), that the 

required directions and the values of the variance ratio in those directions, are given by the 

eigenvectors and eigenvalues of the matrix 

ΣBΣW-1 

where ΣB   =   between classes covariance matrix, esimated from the class means 

ΣW  =  within classes covariance matrix, estimated by pooling or averaging 

the covariance matrices for each class. 

Analogously to principal components analysis, the direction associated with the largest 

eigenvector, called the first discriminant function, is the direction of greatest separation of the 

classes.  The second discriminant function gives the next preferred direction for discrimination, 

and so on (though, unlike principal components, successive discriminant functions are not 

generally orthogonal).  The number of potential discriminant functions is one less than the lesser 

of the number of variables (spectral dimensions) and the number of classes.  However, as with 

PCA, the first few functions may account for most of the class separation. 

 
2.7.2 Stepwise discriminant analysis 
 
When a substantial number of potential discriminating variables are available for consideration, 

stepwise discriminant analysis provides a systematic method for selecting an appropriate 

parsimonious subset of the variables.  In principle, the stepwise discriminant algorithm proceeds 

as follows. 

Firstly, each variable is examined in turn, and the one on which the classes are most separated, 

in terms of the above criterion, is taken as the starting point of the analysis. 

Each of the remaining variables is then paired with the first chosen variable in turn, and the 

discriminant functions calculated.  The pair of variables which discriminate best are retained. 

The procedure continues with one more variable being included at each step until no significant 

improvement in discrimination is achieved, at which point both the selected set of variables and 

the degree of discrimination they achieve is known. 

It is also possible for a variable included in the model at some stage to become redundant at a 

later stage, in the sense that its removal would not cause a statistically significant reduction in 

discriminating power.  To avoid iterative cycling, it is usual to set the significance probability 
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for such removals somewhat higher than that for entry, typical values being .10 and .05 

respectively. 

In practice the matrix computations are performed incrementally, without the need for full 

inversion and eigenvalue calculations at each trial step. 

Stepwise discriminant analysis is an example of a general sub-optimal iterative search technique 

called the method of steepest ascent.  It does not necessarily lead to the global optimum - this 

can only be guaranteed by examining all possible combinations of variables.  However, the loss 

in discriminating power relative to the optimum is generally small and the computational 

savings are such that the trade-off is generally regarded as acceptable. 

 
2.7.3 Relationship between DA and MLC 
 
Stepwise discriminant analysis has two aspects: an initial model identification and estimation 

phase, in which the class covarince matricesd are assumed to be equal; and a classification 

phase, in which the covariance matrices may or may not be assumed equal.  Maximum 

likelihood classification is equivalent to the second phase, and is generally based on the 

individual class covariance matrices. 

There is no conflict in this.  At the exploratory stage, averaging over the classes leads to a single 

criterion for assessing overall discriminating power of the available variables.  But having 

chosen the variables to be used, it is important for achieving high accuracy at the classification 

stage, to use of all the available information about the particular spread, shape and orientation of 

each class. 

In the present study, maximum likelihood classification was available in the image processing 

software, but not discriminant analysis.  Using statistical software, stepwise discriminant 

analysis was applied “offline” to a suite of 80 variables derived from the training set data, of 

which sets of 6, 10, 15 and 25 were chosen for use with the maximum likelihood classification 

algorithm of the image processing software. (See Section 3.5 for details of the software used.) 

 
2.8 LINEAR MODELS 
 
2.8.1 Multiple linear regression 
 
Given for each of a set of entities or cases, the measurements on a number of variables x1, 

x2,...,xp, and a variable y, the aim of a multiple linear regression analysis is to find the linear 

combination of the x variables which best estimates the value of y for each entity. 
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The x variables are referred to as predictors or explanatory variables (and often, less 

inappropriately, as independent variables, though they are frequently not independent of one 

another, either in the colloquial sense nor technically in a statistical sense), whilst y is called the 

response variable or dependent variable.  In the context of the main modelling phase of the 

present study, the entities are either CDs (Ch 4) or pixels (Ch 5), the predictors are spectral 

values and other measures derived from them, and the dependent variable is a demographic 

characteristic such as a population density.  In the following discussion, the entities are assumed 

to be pixels. 

For a particular pixel, say the ith, the estimated value of y is given by the regression equation 

 i j

p

j= 
ji xbby ∑+=

1
0ˆ            (1) 

where b0  is called the constant term 

and b1 to bn are called the regression coefficients. 

The minimisation criterion which is generally used is the so-called "least squares criterion".  

The statistic which is minimised is the sum of the squares of the deviations of each ŷ  from the 

corresponding y value 

 2

1

ˆ )y(ySSD= i

n

i= 
i −∑            (2) 

where n is the number of pixels. 

The data for a set of n pixels may be represented as an n-vector y and an n× (p+1) matrix X, 

whose first column entries are all equal to 1 (this corresponds to the constant term) and whose 

subsequent columns correspond to the p variables x1 to xp.  The vector of estimates ŷ  is given 

by the regression equation 

 ŷ  = Xb            (3) 

where b is the (p+1)-vector of regression coefficients. 

Equation (1) corresponds to one row of the matrix equation (3). 

Also, in matrix terms, 

 SSD  = (y- ŷ )'(y- ŷ ) 

= (y-Xb)'(y-Xb)          (4) 

It can be shown (Myers, 1990) that the vector b which minimises SSD is given by 
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 b = (X'X)-1X'y 

This vector of regression coefficients characterises the regression model of equation (1) or (3). 

Geometrically, the data can be represented as a "cloud" of points in (p+1) dimensional space, 

one dimension representing y and the other p dimensions representing x1 to xp. 

For p=1, the data points can be plotted in 2 dimensions and the equations (1) or (3) represent the 

1-dimensional "line of best fit" through the 2-dimensional "data cloud". 

In Figure 2.4 the ellipse represents the region occupied by the data points.  The regression line 

has the equation 

xbby 10ˆ +=  

A typical data point (x,y) is shown, as is the regression estimate ŷ corresponding to it. 

For p=2, we have instead a 2-dimensional "plane of best fit" in 3-dimensional space.  In general, 

we have a p-dimensional hyperplane of best fit in (p+1)-dimensional space. 

Figure 2.4  The linear regression function 
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The above calculations can be performed for any set of data y and X.  Whilst the best estimates 

of y (in the least squares sense) are thereby obtained, it does not follow that the estimates are 

sufficiently accurate for the x variables to be regarded as practically useful predictors of y. 

The strength of the linear relationship between y and the x variables determines the accuracy of 

the predicted values.  This is usually indicated by using the test data set to calculate the 

coefficient of determination, R2.  This is the square of the correlation between the ŷ values and 
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the y values, which is conventionally expressed as a percentage, and interpreted as "the 

proportion of the variation in y which can be attributed to its relationship to the x variables". 

The estimates ŷ  define points on the fitted line, plane or hyperplane.  Geometrically, R2 is a 

measure of the proximity of the actual data points to this line, plane or hyperplane. 

If R2 is sufficiently large that a useful relationship is regarded as having been established, then 

the model can be used to estimate or predict y for data points (pixels) for which the x values are 

known but y is not.  This was the central aim of the present study. 

Other measures of predictive performance which are based on the residuals )ˆ ii y-(y  include the 

standard deviation of the residuals, or root mean square error (RMSE), the mean absolute 

deviation of the residuals, and the standard deviation or mean absolute deviation or of the 

proportional errors (or relative errors) 

 
i

ii

y
)y-(y ˆ

 

i.e. the standard deviation of the proportional errors, and the mean absolute proportional error 

(MAPE).   These are discussed further in Section 2.12. 

 
2.8.2 Stepwise regression 
 
The rationale and methodology of stepwise regression are similar to those of stepwise 

discriminant analysis discussed in Section 2.6. 

When a substantial number of potential predictor variables is available for consideration, some 

will be better predictors of the dependent variable than others. Also, the predictors are likely to 

be interrelated amongst themselves to some degree. Hence there will be both superfluity and 

redundancy in the full set of variables. Stepwise regression analysis provides a systematic 

method for selecting an appropriate, near optimal, parsimonious subset of the variables.  In 

principle, the stepwise regression algorithm proceeds by fitting a sequence of models to the data 

as follows. 

Firstly, y is regressed on each x variable in turn, and the one which is the best predictor of y 

(using a criterion such as the highest R2 value), is taken as the starting point of the analysis. 

Each of the remaining variables is then paired with the first chosen variable in turn, and the 

regression equations calculated.  The variable which produces the largest increase in R2 is 

selected as the second predictor. 

The procedure continues with one more variable being included at each step until no significant 

improvement in R2 is achieved, at which point the selected set of variables, the final regression 
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equation and the predictive performance of the model as indicated by the final value of R2, are 

known. 

It is also possible for a variable included in the model at some stage to become redundant at a 

later stage, in the sense that its removal would not cause a statistically significant reduction in 

predictive power.  To avoid iterative cycling, it is usual to set the significance probability for 

such removals somewhat higher than that for entry, typical values being .10 and .05 

respectively.  These levels were used throughout this study, unless otherwise specified. 

In practice the matrix computations are performed incrementally, without the need for full 

inversion calculations at each trial step. 

For a more detailed discussion of the above, see Cliff (1987). 

 
2.8.3 Regression through the origin 
 
In contexts where it is known that the zero points of a dependent variable y and a predictor x 

should coincide, a regression line can be fitted using the least squares principle but subject to 

the constraint that the constant term must be zero i.e. the line must pass through the origin. 

Whilst such a line may be more appropriate in particular circumstances, it does not usually fit 

the data as well as the unconstrained line.  However direct comparison is complicated by the 

fact that since the regression through the origin does not in general pass through the mean of the 

data, R2 can not be meaningfully calculated in the usual way.  A conceptually similar indirect 

measure can be calculated, but it tends to exaggerate the extent of the reduction in goodness of 

fit (Myers, 1990).  In the present study, regression through the origin was used in the context of 

comparing CD population density estimates produced by two different methods.  

 
2.8.4 Statistical assumptions, variable transformations and alternative models 

 
Ordinary least squares (OLS) regression  is predicated on an assumed additive linear model of 

the form  

 ii j

p

j= 
ji xy εββ ++= ∑

1
0     

where the random errors εi are independent and identically normally distributed with constant 

variance.  Under these assumptions, the OLS estimation procedure is equivalent to maximum 

likelihood estimation, and the standard inference based on t and F tests is valid. 

If, either on theoretical grounds or on the basis of empirical evidence, these assumptions appear 

to be violated - non-linear relationships, non-normal errors or non-constant variance - this 
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framework can be extended to encompass transformations of both the y and or x variables, but 

the fundamental assumptions about functional forms and error structures remain.  In particular, 

the y variable is assumed to be measured on a continuous scale. 

An alternative approach is the broader class of generalised linear models, in which 

transformations are treated rather more integrally via the concept of link functions, and which 

explicitly accommodate non-constant error variances and non-normal error distributions, 

including discrete distributions like the Poisson distribution for independent count data.  

Generalised linear models are usually estimated by rather more computationally intensive 

iterative numerical algorithms for maximum likelihood estimation. 

In the context of modelling population, some related conceptual issues arise.  Population density 

is a time dependent and scale dependent concept.  As Langford and Unwin (1995) point out, 

when the size of the areas for which it is calculated are reduced, population density becomes 

more grainy and variable.  The population density of a tower block of apartments is much 

higher than that of the suburb in which it is located. 

With regard to time dependence, instantaneous population density maps of a major city at 

midday and midnight would look very different.  For most demographic and planning purposes 

(though not for example for the positioning of display advertising), population is assigned by 

place of residence.  Raw census counts are a little anomalous in this regard, being based on the 

place of census-night accommodation. 

In spatial terms, the concept of residential population density changes in character as one 

reaches the quantum scale of the individual residence.  On the scale of CDs, an individual’s 

residence is unambiguously and discretely located within a particular CD.  The same cannot be 

said at the level of pixels, whose boundaries intersect property lines, structures and even rooms.  

Thus one can conceptualise either an instantaneous time dependent discrete pixel population, or 

a notional residential pixel population which is time invariant (for most pixels, on a scale of 

days or weeks), but which is not discrete. 

Poisson regression with an identity link function has been suggested for modelling population 

dependence on a binary variable such as a classification (Flowerdew and Green, 1989).  Poisson 

regression with a log link has been used for modelling migration between Canadian census 

divisions with origin and destination populations and distance as explanatory variables 

(Amrhein and Flowerdew, 1989).  

In the context of modelling ED aggregate populations the distinction between Poisson and OLS 

regressions with a logarithmic transform might be expected to diminish, since for large counts 

the Poisson distribution is well approximated by the normal.  In fact, Langford et al. (1991) 
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reported very little difference in the coefficients obtained using a linear OLS and Poisson model 

with identity link. 

In the case of modelling the relationship between population and the spectral characteristics of 

individual pixels, for the Poisson parameterisation to be appropriate then not only must the 

population of a single pixel be regarded as a discrete count, but also individuals in the 

population must be assumed to be acting independently in their choice of place of residence, 

which is not realistic.  As Flowerdew and Green point out, the clumping of population suggests 

a compound or generalised Poisson model.   

Alternatively, since a place of residence is not a single point but an extended area which might 

contribute fractionally to a number of pixels, the “population” of a single pixel can conversely 

be conceptualised as a continuous variable, in which case a normal error distribution perhaps 

has more face validity than a Poisson.  However, in this case too the independence assumption 

does not hold for adjacent pixels.    

It is certainly the case that in high density areas, the error distribution is positively skewed 

which prima facie is more characteristic of a Poisson distribution.  However, this is 

predominantly a systematic effect associated with multi-level accommodation, which is 

arguably more appropriately dealt with using ancillary parameters (see Chapter 10). 

Leaving aside issues such as independence of the locational behaviour of individuals, the 

Poisson regression models for population modelling suggested by Flowerdew and Green (1989) 

and used by Langford et al. (1991), as discussed in Section 2.8.4, would seem to be more 

congruent with the instantaneous discrete conceptualisation of population.  The ordinary least 

squares models with normal errors, used in by Iisaka and Hegedus (1982), Forster((1980b, 

1981, 1983), Langford et al. (1991), Fisher and Langford (1994), Lo (1995), Webster (1996) 

and Yuan et al. (1997) would seem to be more congruent with the alternative concept of a 

notional time invariant residential population assigned to each pixel, with individuals in some 

cases at least contributing fractionally to the notional populations of adjacent pixels. 

Throughout the pixel-based phase of this study, discrete ground truth CD populations are 

distributed amongst constituent pixels in various ways.  These imputed populations are not 

discrete, and are consistent with the latter conceptualisation.  Hence,  OLS models, sometimes 

including transformed dependent variables, have been used throughout. 

Another aspect of generalised linear models in a spatial context is the capacity to relax the 

assumption of independence of the error terms for different pixels, and to make explicit 

provision in the linear model for estimating the nature and degree of spatial dependence 

between the populations of neighbouring areas.  This approach was not adopted in the present 

study, whose methodology was tailored to the capablities of the available statistical and image 
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processing software (see Section 3.5 for details of the software used).  Instead, the spatial 

dependence aspect was dealt with through the use of the texture measures described in Section 

2.5 and an approach to contextual reclassification (see Section 6.4). 

  
2.9 REGRESSION ANALYSIS WITH INCOMPLETELY DETERMINED 

DATA 
 
2.9.1 An algorithm for iterative refinement of estimates 
 
The inherent difficulty with the pixel-based approach is that we have no ground truth data for 

the dependent variable, the population of each pixel.  We only have population figures for 

aggregates of pixels, in this instance for each CD. 

 In this section a heuristic argument is advanced for a methodology for making initial estimates 

of the population of each pixel, and then iteratively refining those estimates.   This approach 

could be applied in any multi-level situation, spatial or otherwise, where the dependent variable 

is incompletely determined in this way (i.e. only constrained to the extent of fixed aggregate 

subtotals).  Essentially, it is a least squares approximation to an EM (expectation-maximisation) 

algorithm (Dempster, Laird and Rubin, 1977; Lee, 1997), a generic 2-stage iterative approach 

the use of which has been reported in a number of multi-level analysis and image analysis 

contexts (Titterington, 1990; Goldstein, 1995). A detailed consideration of the relationship 

between this iterative refinement algorithm and the EM algorithm can be found in Section 7.2.  

Whilst this algorithm was developed independently, the author has since become aware that the 

EM approach was suggested (though not implemented) by Flowerdew and Green (1989) in the 

closely related context of areal interpolation for combining data from two incompatible sets of 

spatial zones. 

Consider the relationship portrayed in Figure 2.5 between pixel population p and a multivariate 

vector of remote sensing predictors s, represented schematically by a single dimension s.  

Suppose a particular CD has a ground truth population P, and includes n relevant pixels (those 

classified as residential).  Initially we make the simplest assumption, of constant population 

density, and assign to each pixel an equal share of the CD population., i.e. all pixels in the CD 

are assigned the same population 

n
Ppi =  i = 1,…, n 

Since these pixels will in general have different spectral characteristics i.e. different s values, 

they will be represented in Figure 2.5 by data points along a line such as A1A2, parallel to the s 

axis.  For points near A1, the regression estimate  ˆ ip will be less than the assigned population pi 

(as illustrated in Figure 2.5), and the converse will be true for points near A2. 
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We argue as follows. We do not believe that the populations of each pixel are in fact equal.  

Some of our assigned populations are no doubt too high and others are too low.  Assuming that 

there is in fact an underlying linear relationship between the dependent variable p and the 

explanatory variable s, the regression equation represents our best estimate of this relationship 

based on our partial knowledge about the actual values of p.  Prima facie, it seems that the 

populations assigned to pixels near A1 were too high, and those near A2 too low.  If we 

redistribute population away from those pixels near A1 and towards those near A2, whilst 

maintaining the constant CD total, we can produce a new set of assigned values which are 

consistent with the known CD totals, but which might be expected to lie closer to the true 

values.  A regression line fitted to this revised set of data might be expected to better represent 

the true relationship between population and spectral response. 

 
Figure 2.5  Regression with incompletely determined data 
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Intuition suggests, and it can be shown (see Section 7.2), that the optimal such redistribution in 

a least squares sense, which minimises the sum of squared residuals about the regression line 

while holding the sum of the p-values constant, is to adjust as follows: 

 ˆ)( rpp iadji +=  

where   ˆ ip is the regression estimate 

nppr ii

n

i

)ˆ( 
1

−=∑
=

 

This has the effect of making all the residuals equal i.e. mapping A1A2 onto A1'A2', parallel to 

the regression line. Similarly the data for the pixels from another CD might be reassigned from 

the line B1B2 onto B1'B2', and so on. 
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We make this adjustment for the pixels within each CD, then re-estimate the regression model.  

Since the second model should fit the adjusted data better than the first model fitted the initial 

data, the value of R2 will be expected to increase.  Furthermore, the geometry of the horizontal 

distributions of points make it likely that positive residuals will predominate for higher values 

of s, and negative residuals for lower values of s.  As a consequence, the adjusted regression 

line will be likely to be steeper, as illustrated.  This also suggests that the model initially fitted 

to the averaged data is likely to underestimate the sensitivity of p to changes in s. 

When the process is iterated, R2 increases monotonically towards some limiting value R2
L<1.  A 

value of R2
L=1 would imply that it is possible to distribute the fixed CD populations amongst 

their component pixels in such a way that some linear combination of the s variables will 

reproduce them exactly.  Whilst this could and would eventually happen if only one CD were 

involved, with more than one CD any non-linearity in the relationship between the CD totals 

and the s variables precludes it.   

When this procedure was first applied in the present study (see Chapter 5), a monotonic increase 

was observed in R2.  The value of R2 increased, initially at a rapid rate, but with a steadily 

decreasing rate of increase, appearing to converge towards a limiting value around .85. 

 A model thus obtained provides an upper limit to the accuracy of prediction that could be 

attained were the individual pixel populations known. 

As to validity and efficacy, there is no direct way of internally validating the procedure - no way 

of knowing whether the adjusted pixel populations are more or less accurate than the equal 

proportions assigned originally.  It must be stressed that the increase in "accuracy" as indicated 

by the increase in R2 means nothing of itself and may be quite spurious.   

So why do it?  With each iteration, the regression coefficients change.  The hope is that by 

better representing the populations of individual pixels, we will better estimate the relationships 

between pixel population and the predictor variables.  Ultimately, the validity and efficacy of 

this procedure, as with the rest of the estimation procedures, can only be assessed by external 

validation, in terms of the accuracy of the CD aggregate estimates produced for the whole 

training set, the whole image, and for other images. In the present study, substantial 

improvements were achieved using this procedure. 

A detailed investigation into the properties and characteristics of this procedure and the 

resulting regression coefficients is reported in context in Chapter 8. 
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2.9.2 Models with a transformed dependent variable 
 
The iterative refinement procedure of Section 2.9.1 requires some modification before it can be 

applied in cases where the dependent variable is transformed.  If, as in this study, the lowest 

values of the dependent variable are close to zero (relative to the scale of the data), the 

redistribution of residuals can lead to adjusted values which are negative.  This may be 

conceptually problematical, as in the case of population, but even so it may still lead to 

improved (non-negative) estimates of larger aggregates (see Chapter 5).  However with 

transformed data, more immediate practical problems arise.   In the present study, square root 

and logarithmic transformations were used.  In each of these cases the range of permissible 

variable values is restricted.  In the case of the logarithmic transformation the untransformed 

variable must be positive.  In the case of the square root transformation the transformed variable 

must be non-negative, and whilst negative values of the untransformed variable are technically 

permissible, the one-to-one relationship between transformed and untransformed values (which 

is essential for  backtransformation) is lost.  So in both cases, negative values of the 

untransformed variable are a problem.  In the present study, because the constraint on pixel 

populations is an additive one, it is in the domain of the untransformed (or backtransformed) 

variable where adjustments are made, and where negative values may consequentially arise. 

The problem can be overcome by a relatively minor ad hoc adjustment to the iterative process, 

the only cost of which is to inject a small arbitrary perturbation into the least squares process.  

The procedure and the rationale are as follows.  At each iteration, the fitted values for each pixel 

are backtransformed and the backtransformed values are adjusted in the usual fashion.  In the 

context of the present study, a negative population estimate is regarded as being below an 

indicative threshold, and is therefore readjusted to zero. A compensating readjustment must be 

made to the positive pixel values, which in the absence of the negative values will sum to a 

greater figure than the CD total.  The sum of the negative contributions is obtained for each CD, 

and the remaining positive pixel values are reduced proportionately, so that the correct CD total 

is maintained. 

 
2.10 NON-LINEAR METHODS 
 
2.10.1  Interactive effects 
 
If the relationship between a dependent variable y and a predictor x1 depends on the value of 

another predictor x2 , the two variables x1  and x2 are said to interact. 

Interactive effects are inherently non-linear, but in linear analyses such as discriminant analysis 

and multiple regression they can be modelled without departing from the linear form of the 

model, by the inclusion of product terms such as x1x2. 
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In the more flexible regime of knowledge-based or rule-based expert systems, interactions are 

the norm.  They are explicitly expressed in boolean terms such as 

IF  x1 .......  AND  x2 .......  THEN  y = ........ 

The difference between these approaches is illustrated in Figure 2.6. 

The inequality 

 x1x2>1 

defines a region bounded by a hyperbola (dashed line), whereas the boolean statement 

 x1>1 AND x2>1 

defines a related but different region bounded by two lines. 

Similarly, the inequality 

 1<x1x2<4 

defines a region bounded by two hyperbolae, whilst 

 1<x1<2 AND 1<x2<2 

defines a square subset of that region. 

 
Figure 2.6  Modelling of interaction 
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In the present study, multiplicative representations of interactions have been included at the 

classification and regression modelling stages. 

2.10.2  Rule-based methods 
 
Researchers such as Wharton (1987), Moller-Jensen (1990) and Bolstad and Lillesand (1992) 

have investigated the application of rule-based artificial intelligence or expert system techniques 

to land cover classification.  These methods usually involve the boolean combination of 

remotely sensed data with other available thematic data. 

In this study, the thresholding built into the final model implicitly represents a set of rule-based 

adjustments overlaid on a core relationship which is linear. 

 
2.11 MEASURES OF PERFORMANCE, VALIDITY AND ROBUSTNESS 
 
The discussion in this section is framed in terms of the pixel-based analyses of the primary and 

secondary images of Ballarat and Geelong described in Chapters 5 and 6, though the regression 

aspects apply also to the CD-based procedures of Chapter 4, and both aspects apply to the 

further scope of external validation undertaken in Chapters 8 and 9. 

Essentially, the pixel-based estimation algorithms developed in this study consist of two phases: 

(i) classification of each pixel as residential or non-residential 

(ii) estimation of the population (or number of dwellings) attributable to each pixel, by a 

multiple regression model. 

 
2.11.1  Internal validity, external validity and robustness 
 
Validation of both classification and regression procedures can be considered at two levels, 

which are characterised in this report as follows: 

1) Internal validation – Given a “training set” of entities (pixels CDs etc.) on the basis of 

which some procedure/function of the spectral characteristics is chosen, how well does 

that procedure/function work for the training set itself? 

2) External validation – How well does the procedure/function perform when applied 

beyond the training set i.e. how generally applicable is the procedure/function? 

Robustness is almost synonymous with external validity, but it carries the connotation of 

validity over a broader domain.  In the remote sensing context a procedure trained on a sample 

or subset of a particular image may be externally validated by applying it to other samples or 

subsets from the same image or a similar image.  If it also works for other rather different 
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images it is more likely to be described as robust.  Validity and robustness are not absolute 

terms nor absolutely distinguishable – it is a matter of degrees of generalisation.  

 
2.11.2  Indicators of internal validity  
 
The internal validity of a regression model is indicated by measures such as the coefficient of 

determination R2, the standard deviation of the residuals, and various relative error statistics 

(see Section 2.8).   

The internal validity of a classification algorithm can also be measured by R2 type measures 

such as Wilks Λ, and also in terms of the percentages of correct classifications in the training set 

data (the "hit rates") derived from the confusion matrix (see Section 2.6). 

Whilst these are often reported at face value, there are a number of statistical issues which 

should be addressed. 

 
2.11.3  Sample size considerations  
 
In any multivariate analysis, the sample size is an important determinant of both the validity of 

the models obtained, and also of the sensitivity with which relationships are detected.  On the 

one hand, small sample sizes can lead to “overfitting” or capitalising on chance.  On the other 

hand, automatic model selection procedures used with samples which are very large can result 

in over-sensitivity and the development of models which are unnecessarily complex.  Authors 

such as Tabachnick and Fidell (1996) have given rules of thumb for determining appropriate 

sample sizes for multiple regression and multiple discriminant analyses, in terms of the number 

of predictors and the number of groups.  A sample size at least an order of magnitude larger 

than the number of predictors or groups is desirable if reliable variable selections are to be 

made. 

One of the perennial problems of exploratory statistical analysis is that variables are easier to 

generate than are cases to test them on.  In the present context this is certainly so with the 

aggregate-based models of Chapter 4, where the number of variables considered is almost as 

large as the number of CDs in the primary study area.  One should be aware that models 

identified in this way are not likely to generalise robustly. 

Pixel-based models do not suffer from such paucity of training observations.  The sample sizes 

in Chapter 5 and beyond were typically in the order of thousands, in line with the principles 

enunciated by Tabachnick and Fidell. 
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2.11.4  Sample-dependence of stepwise procedures: external validation procedures  
 
Stepwise algorithms in general can be said to "capitalise on chance".  In both discriminant 

analysis and regression, the final form and the specific detail of the model are chosen to 

maximise performance for the particular sample of data under consideration.  The chosen model 

is thus biased by the characteristics of the particular data used, and the calculated values of the 

performance measures are misleading; whilst they provide a measure of internal validity, they 

are likely to over-estimate the performance of the algorithm when it is applied to other data. 

If the statistical population about which inferences are to be made is well defined and 

homogeneous, and the sample data is broadly representative, then less biased algorithms and 

more accurate measures of performance can be obtained by cross-validation methods (Myers, 

1990).  The simplest such approach is to split the test data, usually into two or three sets - one 

set for selecting the explanatory variables, one for estimating the parameters of the model, and 

one for assessing its performance. 

A more sophisticated regression cross-validation technique involves omitting one data point at a 

time, fitting the model to the reduced data set, and obtaining an estimate for the omitted data 

point.  This procedure is repeated for each point in turn, leading to a set of so-called "deleted 

residuals" 

 )y-(y i,-i 1ˆ  

where 1ˆi,-y  is the estimate of iŷ  from the model determined by all the data except point i.  

Whilst R2 is based on the ordinary residuals of equation (2) above, the deleted residuals provide 

the basis for alternative measures which are less subject to the bias discussed above. 

However, in the present context, there is no single well defined homogeneous population.  

Rather, there is a hierarchy of possible generalisations beyond the starting point of the training 

data.  We can consider the applicability of the algorithm to other sections of this particular 

image of Ballarat, to other "similar" images (e.g. Ballarat on other occasions, other Victorian 

provincial cities), other "less similar" images (e.g. an Australian capital city metropolitan area), 

quite dissimilar images (e.g. other parts of regional Australia, other countries) and so on. 

In this study, the performance of the algorithm has been evaluated at two levels beyond that of 

the immediate training set data. 

Firstly, performance statistics based on aggregate estimates for the 138 census collection 

districts (CDs) in the Ballarat image were calculated.  These are in effect performance measures 

based on all pixels in the image. 
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Secondly, the algorithm was applied, without retraining or modification, to an image of a 

neighbouring provincial city (Geelong) from the same date, and similar aggregate statistics 

computed.   

These aggregate measures provide the most useful indication of the effectiveness and generality 

of the estimation procedure.  Nevertheless, the various available intermediate performance 

measures have also been calculated and reported.  These measures can be summarised, and the 

scope of the data on which they were based can be approximately quantified, as in Tables 2.2 

and 2.3. 

Table 2.2  Scope of Data Sets  
 

Data 
set 

Description Approximate 
number of pixels 

1 Entire test area of Ballarat image 700,000 
2 Residential pixels 70,000 
3 Maximum likelihood classification (MLC) training sets 70,000 
4 Stepwise discriminant analysis (SDA) test data 

(1 in 10 sample of MLC training sets) 
 

7,000 
5 Stepwise regression analysis (SRA) test data 

(1 in 50 sample of residential pixels) 
 

1,400 
6 Test area of Geelong image 500,000 

 
 

Table 2.3  Summary of Performance Measures 
 

Stage Measure Data set Scope 
SDA Hit rate 4 7,000 pixels 
MLC Hit rate 3 70,000 pixels 
SRA R2 5 1,400 pixels 
Aggregates R2, slopes, 

relative errors 
2,1 138 CDs -  effectively the full set of 

residential pixels, or the full image 
Geelong R2, slopes, 

relative errors 
6 225 CDs -  the full image 

 
 

2.11.5  Multicollinearity 
 
The outcome of a multiple regression analysis, both with regard to which explanatory variables 

are selected and with regard to the estimated regression coefficients of the selected variables, is 

most sample-dependent when there is a substantial degree of correlation among the explanatory 

variables.  Geometrically, the spread of data in multivariate space is not sufficiently broad to 

support a consistent orientation of the hyperplane of best fit1.  Regression equations resulting 

from different training samples may have very different patterns of coefficients and even utilise 

                                                 
1  Myer (1996) uses the analogy of a planar object balanced on a picket fence.  Bob Dylan’s image is 

more graphic:  “It balances on your head just like a mattress balances on a bottle of wine – your brand 
new leopard skin pillbox hat” (in this case, a line of wine bottles!). 
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different subsets of predictors. Under these circumstances individual regression coefficients 

must be interpreted with even more caution than usual, since the notional varying of one 

explanatory variable whilst holding all others constant cannot occur in practice. 

Individual correlation coefficients very close to ±1 are a sufficient but not necessary condition 

for multicollinearity to be present.  A more reliable indication is a measure called the variance 

inflation factor (VIF), which is based on the multiple correlation coefficient between each 

explanatory variable and the rest.  VIFs greater than 10 are generally regarded as indicating 

some cause for concern about multicollinearity (Myers, 1990).  

When, as in the present study, the main motivation for the regression analysis is prediction, 

multicollinearity may or may not be problematical to this aim. If different samples have 

individual multicollinearity structures which are not reflected in the population, then estimates 

for points in the population whose combination of explanatory variable values are not 

represented in the sample (away from the wine bottles in a perpendicular direction) will have 

large variances.  But if multicollinearity exists in the population and is well represented in the 

sample data, accuracy of predictions will not be affected.  Regression equations resulting from 

different training samples may have very different patterns of coefficients and even utilise 

different subsets of predictors, and yet produce quite consistent estimates. 

The simplest remedy for multicollinearity is to omit the affected variable(s).   However, there is 

a trade-off.  Deletion of selected variables will inevitably result in some reduction in overall 

predictive power of the model.       

In the present study, there was evidence of multicollinearity in all of the regression models for 

pixel population, particularly involving the visible bands.  TM band 2 was most consistently 

affected with VIFs typically in the range 15-25, whilst bands 1 and 3 each had VIFs around 10 

in one or more images.  Whilst the general pattern was consistent across all images, the Sydney 

and Brisbane images exhibited higher levels of multicollinearity than the more southerly 

images, with bands 5 and 7 also having VIFs around 10.   However, since for each image the 

multicollinearity was consistent across samples, and the sample covariance matrices were 

similar to those of the whole image, it was considered that in each case the samples reflected the 

underlying multicollinearity in the population.  For this reason, and because omission of TM 

band 2 resulted in considerable reduction in R2, it was decided to retain this variable in the suite 

of predictors. 

  
2.11.6  Type I error rates in stepwise analyses 
 
Another related problem with stepwise regression is that, whilst the p-to-enter value may be set 

at say .05 for each step, as the number of available candidate variables increases, so too the 
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probability that at least some of the selected variables will be chosen in error due to chance 

relationships, becomes much greater than .05. 

This is analogous to the well established concept of an experimentwise type I error rate, 

associated with multiple comparisons in the analysis of statistical experiments. 

In the regression context, a correction factor is routinely applied to R2 to make adjustment for 

the number of terms included in the model (adjustment for degrees of freedom).  In the pixel-

based models in the present study, the sample sizes (and total degrees of freedom) are generally 

so large that such adjustments are of little consequence. 

However, the very fact that df are large allows for the testing of many variables and many 

transformations.  In this situation, the chance selection of spurious variables is increasingly 

likely.  External validation of models is again the safeguard. 

 
2.11.7  Modified performance measures with transformed dependent variables 
 
Transformation of the dependent variable in a regression analysis is a common response to 

nonlinearity of relationships or violation of statistical assumptions by the data.  The following 

example illustrates the fact that when the principal aim is estimation rather than investigation of 

structural relationships, the resulting improvements in model fit indicated by the standard 

measures may be illusory. 

Consider a logarithmic model of the form 

 i j

p

j=
ji xbb)(y ∑+=

1
0ĝlo  

for which R2  =.901.  (See Table 4.2, Section 4.1) 

R = .901  = .95 is the correlation between the observed and fitted values of log(y). 

However it is y, not log(y), that we wish to estimate.  Of more concern is the correlation 

between the observed values y and the estimates ŷ  obtained from (y)ĝlo  by an exponential 

back-transformation, which in this instance is .84.  The square of this correlation (.704), which 

can also be interpreted as the R2 value obtained from the regression of y on ŷ , gives a more 

meaningful indication of the estimation performance of such a model than does the R2 from the 

transformed model.   

Similar calculations can be applied to RMSEs, mean absolute proportional errors, etc. 

Measures based on back-transformed estimates have been quoted wherever appropriate in this 

study.  
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2.12 ISSUES OF PARAMETRISATION, PRESENTATION AND EVALUATION 
 
2.12.1  Population density vs. total population 
 
As was pointed out in Section 1.2.4, when building regression models based on geographical 

aggregates of unequal area, the question arises as to what is the most appropriate dependent 

variable.  If the explanatory variables are aggregate measures such as average spectral 

characteristics or proportions of pixels in different classes, then the natural dependent variable is 

population density.  If the explanatory variables are pixel counts, then the natural dependent 

variable is the total population of the aggregate.  If the aggregated areas are equal, as with grid 

squares, the distinction is immaterial. 

In the first phase of this study (see Chapter 4), the geographical basis was census collection 

districts (CDs) and the explanatory variables were average spectral characteristics.  Hence 

population density was used as the dependent variable. 

An alternative would be to regress total CD population on the aggregate measures weighted by 

CD area, but it was considered that in a mixed urban-rural context, this might have the 

undesirable result of producing very positively skewed marginal distributions for the 

explanatory variables, with a few very large low density rural CDs unduly influencing the 

outcome of the regression analysis.  

 
2.12.2  Presentation and evaluation 

 
In the second phase (see Chapter 5 et seq.), regression models were fitted at the scale of 

individual pixels.  Since all pixels in an image are (nominally) the same size, the total vs. 

density issue does not arise.  However, for purposes of validation, the estimated pixel 

populations were aggregated to CD level and compared with the ground truth CD totals.  This 

raises a number of issues which are now considered. 

Orientation of plots  

To maintain consistency throughout, ground truth values were plotted on the vertical (Y) axis 

and remote sensing estimates on the horizontal (X) axis.   

Measures of accuracy, consistency and bias 

First, a word about the usage in this report of two terms which have quite precise technical 

meanings in the context of mathematical statistics, but which can also be used in less technical 

discourse to refer to the same broad concepts. 

The estimated values of some quantity, such as the population densities of a number of CDs, 

may be inaccurate in two ways.  They may consistently underestimate or consistently 
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overestimate the true values, in which case they are said to be biased.  If not, the estimates and 

the procedure that generated them can be said to be unbiased.     

Whether or not there is bias present, estimates for individual CDs may vary above or below the 

true values, to a degree which may be large or small in comparison to any bias present.  This is 

referred to as variability or conversely consistency. 

The portmanteau term accuracy covers both aspects.  Accuracy implies both consistency and 

lack of bias.  Inaccuracy may be due to either bias or variability, or both. 

CD aggregate measures for pixel-based models 

Consider a plot of some ground truth data for a set of CDs, g, (which may either be a total or a 

density), vs. a remote sensing estimate of it, r. 

Suppose that r is the set of fitted values from a linear regression model fitted to g, as is the case 

with the many of the models of Chapter 4.  Then if g were to be regressed on r, the OLS line of 

best fit would necessarily have zero intercept and unit slope, and measures such as R2 would 

have the same values as in the original regression.  Furthermore, the residuals from the second 

regression are the same as those from the first, i.e. they represent the errors of estimation.  

Such an analysis would be redundant, uninformative and pointless.  But if r is the result of some 

other less direct estimation process, as in the models with transformed dependent variables in 

Chapter 4, the pixel-based procedures of Chapter 5, or the external validation of a regression 

equation on second set of data, then regressing g on r provides new information about how well 

the estimation algorithm can recover the CD data.  Goodness of fit criteria include a high R2 

value (in the case of the models with transformed dependent variables these are the 

backtransformed values discussed in Section 2.11.7), an intercept near zero (in relative terms) 

and a slope near unity, regardless of whether or not the line is forced through the origin (see 

Section 2.8.3).  A slope other than unity is an indication of bias in the estimation procedure, 

whilst R2 is a measure of consistency.  In particular, it is quite possible to obtain a high R2 with 

CD estimates which are consistently off target.  

Note however, that such a secondary regression analysis is indicative only and is part of the 

validation process – not the estimation process.  The remote sensing estimates are the r values 

which have already been obtained – not the fitted values which result when the ground truth g 

values are regressed on the r values.  A corollary to this is that the estimation errors are the 

differences r-g, not the residuals from the regression of g on r.  

(Note that in the linear CD aggregate based models, these quantities are identical.  Furthermore, 

in this case the issue of bias does not arise, since the residuals are constrained to sum to zero.  In 
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this context, R2 is a reasonable measure of overall accuracy.  This is not so when reporting CD 

results for pixel-based models, or results for other validation sets.)  

Population density vs. total population 

The two types of plot throughout this report, based on CD population densities and CD 

populations (see for example Figure 6.3, Section 6.3), each have a characteristic feature, which 

is to some degree an artifact of the nature of census CDs.  On both types of plot, the main body 

of points is scattered about a positively sloping line indicative of positive correlation between 

the ground truth figures and the remote sensing estimates.  On the population density plots, the 

outlying points are generally above and to the left of the linear “main sequence”.  These 

represent CDs whose ground truth population density is substantially underestimated.  These are 

generally CDs with high population densities.  Because CDs are designed to have roughly 

similar populations, such CDs are usually small in area.  Whilst the relative error of 

underestimation may be large, so long as estimates are constrained to be non-negative it cannot 

exceed 100%, and so the absolute error in population cannot exceed the CD population.   

On the population plots, the most extreme points are generally below and to the right of the 

linear “main sequence”.  These represent CDs whose ground truth population is substantially 

overestimated.  These are generally large CDs with low population densities.  Whilst an 

overestimated population density may still be low in absolute terms, when it is leveraged by the 

large area involved, the resulting error in population may be very large.  There is no upper limit 

to overestimation. 

Underestimation is not so noticeable on population plots, because it is relatively small in 

magnitude and generally occurs near the origin.  For the same reason, overestimation is not so 

noticeable on population density plots.   

Regression models fitted to CD population densities have different characteristics from those 

fitted to CD populations.  In particular they are less sensitive to the effects of overestimation in 

large low density CDs.  Conversely, regression models fitted to CD populations are less 

sensitive to the effects of underestimation in small high density urban CDs. 

Because of the urban focus of most of the interest in population estimation, most models in this 

report are fitted to CD population densities. 

It is arguable that in the context of population estimation, the proportional errors in the 

estimates may often be of more interest and importance than their absolute magnitudes.   

Relative error measures are the same for both population density and population.  Therefore, 

such measures are sensitive to both types of discrepancy. 
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Relative errors 

The relative or proportional error of estimation  

%100×
−

=
g

grRE  

is a measure of performance which is identical for both population and population density. 

 Since the errors of estimation for individual CDs may be positive or negative, averages of the 

absolute errors or the relative errors give indications of any consistent bias in the estimation 

process.   But even in the absence of bias, estimates for individual CDs may vary above and 

below the true values.  Averages of the absolute (unsigned) values, either of the absolute errors 

or the relative errors (one inevitably runs into some terminological inconsistency here), are 

indicators of the overall accuracy of estimates, which as well as variability or consistency 

between CDs, may or may not also include bias effects.  Two such measures have been used in 

this report: the mean absolute proportional error (MAPE – referred to by Lo, 1995, as “absolute 

mean relative error”); and because it is less susceptible to the inflationary influence of a few 

extreme outliers, the median absolute proportional error, i.e. the proportional error which is 

exceeded in half of the CDs.  For brevity, these statistics are referred to as mean relative error 

and median relative error respectively.   

Bias is addressed by calculating (signed) relative errors for the total populations of whole 

regions and the urban sections of regions.  Accuracy in estimating these totals is of course an 

important objective in its own right. 

 
2.13 SUMMARY 
 
This chapter has provided a general orientation to multispectral remote sensing imagery and an 

outline of the theoretical bases and technical methods which are used throughout the study.   

Some key issues included: 

• the tone-texture or spectral-spatial dichotomy of multispectral remote sensing imagery; 

• mathematical transformations that can be applied to remote sensing data in both the 

multivariate spectral domain and the two dimensional spatial domain;   

• statistical methods for classification of the pixels of an image; 

• statistical methods for modelling the putative relationship between population and remote 

sensing indicators; 

• the assessment of performance, validity and robustness of models, and in particular the use 

and interpretation of R2 and relative error measures in various contexts; 
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• associated issues of parameterisation and presentation. 

In the next chapter, the specific data sets used in the study and the preliminary preparation of the 

data are described, together with an outline of the computational methods used to implement the 

analyses. 
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Chapter 3 
  
Data Preparation and Integration 
 
 
3.1 INTRODUCTION 
 
This study involved the integration of two types of data from different sources: ground-based 

demographic data and satellite-based reflectance data.  In this chapter, the sources and specific 

details of both sets of data are given, and the methods used to prepare and integrate them are 

described. 

 Section 3.2 introduces the six areas and seven images used in the study.  Full details of the first 

two study areas are also given here; more detail of the remaining five areas is given in context in 

Chapter 8.  Sections 3.3 and 3.4 give details of the ground-based demographic data and the 

satellite-based reflectance data respectively.  Section 3.5 outlines the computing methods used 

to implement the integration of the two sets of data and the subsequent analyses.   

Sections 3.6 and 3.7 are concerned with the temporal and spatial aspects of data integration.  

Section 3.6 outlines the methods used to estimate ground truth populations at the dates the 

images were acquired.  Section 3.7 concerns the spatial alignment of the remote sensing 

imagery with the ground-based census geography.  

A number of variations in methodology alluded to in Section 3.7 came about because the work 

was carried out over a number of years.  Advances in hardware and software capability and 

changes in data formats and availability meant that different methods were employed for similar 

tasks at different stages of the work.  Some tasks such as initial data acquisition and co-

registration which had to be performed in a painstaking, time-consuming first-principles fashion 

for the primary image became routine or trivial at later stages.   

 
3.2 THE STUDY AREAS 
 
Six mixed urban/rural areas of Australia were employed in the study, surrounding and including 

the provincial cities of Ballarat and Geelong, the state capital cities of Sydney, Brisbane and 
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Adelaide (population rankings 1, 3 and 4 amongst Australian cities), and the remote mining 

centre Kalgoorlie.  Figure 3.1 and Table 3.1 show the locations and some basic characteristics of 

the study areas. 

Table 3.1  Study Areas 
 

Name State Area  
(sq. km.) 

Population Year 

Ballarat Victoria 634 79,179 1988 
Ballarat* Victoria 199 35,711 1994 
Geelong Victoria 352 147,910 1988 
Adelaide South Australia 10735 1,158,625 1997 
Sydney New South Wales 3524 3,283,889 1996 
Brisbane Queensland 4623 1,488,880 1989 
Kalgoorlie Western Australia 62 30246 1989 

*The 1994 image of Ballarat included only part of the original 1988 study area 
 

Figure 3.1  Study Areas 
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3.2.1 The primary study area 
 
The primary area selected for study was Ballarat Statistical District (BSD), an inland region of 

some 634 sq. km. in extent, centred on the provincial city of Ballarat, 110 km west of 

Melbourne, Victoria, Australia.   
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Figure 3.2  Ballarat Statistical District 
Showing major roads, SLA and CD boundaries and ground control points 
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BSD, as defined by the Australian Bureau of Statistics (ABS), comprises the Ballarat urban 

area, which is delineated using criteria based on population density, together with a surrounding 

rural area which is expected to encompass urban expansion over an extended period.  

BSD encompasses six Statistical Local Areas (SLAs), which correspond to legal Local 

Government Areas (cities, shires, boroughs, etc.), or parts thereof.  The six SLAs which made 

up BSD included two central urban LGAs in their entirety, and the urban and near-urban 

sections of the four surrounding, predominantly rural shires.   

For census purposes, each SLA is further subdivided into Census Collection Districts (CDs).  

For the 1986 Census of Population and Housing, BSD comprised 138 CDs, of which 122 were 

classified by the ABS as urban.   The main criterion for classifying a CD as urban is an average 

population density of 200 persons per sq. km. or more, supplemented by contextual rules aimed 

at reducing fragmentation (ABS, 1998).  The urban CDs comprise the Ballarat urban area (118 

CDs) and four outlying satellite suburbs or townships, each of which consists of a single CD.   

The estimated population of BSD in 1988 was 79179, of which the urban area contributed 

70222. 
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The statistical structure of BSD at the time of the 1986 census is summarised in Table 3.2.  

Figure 3.2 shows 1986 SLA boundaries and 1996 CD boundaries. 

 
Table 3.2  Statistical structure of Ballarat Statistical District in 1986 

 
Statistical Local Area (SLA) Number of  

1986 Census Collection Districts (CDs) 
 Urban Rural Total 
City of Ballaarat 72 - 72 
Borough of Sebastopol 11 - 11 
Shire of Ballarat (Part A) 27 3 30 
Shire of Bungaree (Part A) 2 4 6 
Shire of Buninyong (Part A) 7 6 13 
Shire of Grenville (Part A) 3 3 6 
Total BSD 122 16 138 

 
 
3.2.2 The secondary study area 
 
The secondary study area was Geelong Statistical District (GSD), a similarly mixed urban/rural 

area of some 352 sq. km. in extent, centred on the port city of Geelong, 90 km south east of 

Ballarat. 

The estimated population of GSD in 1988 was 147,910 to which the urban area contributes 

some 142,250.  The GSD comprised eight SLAs, which for the 1986 census were divided into 

225 CDs, of which 218 were classified as urban.  These include the Geelong urban area and two 

outlying satellite suburbs or townships, each of which consists of several CDs. 

The statistical structure of GSD is summarised in Table 3.3.  Figure 3.3 shows 1986 SLA 

boundaries and 1996 CD boundaries. 

 
Table 3.3  Statistical structure of Geelong Statistical District 

 
Statistical Local Area (SLA) Number of  

1986 Census Collection Districts (CDs) 
 Urban Non-urban Total 
City of Geelong 25 - 25 
City of Geelong West 27 - 27 
City of Newtown 19 - 19 
City of South Barwon 48 1 49 
Shire of Bannockburn (Part A) - 2 2 
Shire of Barrabool (Part A) - 1 1 
Shire of Bellarine (Part A) 24 4 28 
Shire of Corio (Part A) 71 3 74 
Total GSD 214 11 225 
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Figure 3.3  Geelong Statistical District 
Showing major roads, SLA and CD boundaries and ground control points 
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3.2.3  Further study areas 

 
In the latter phase of the study, four further areas were involved, three of them being much more 

extensive regions centred on large capital cities, and also part of the Ballarat study area was re-

examined on a different date. CD boundary maps and a comparative summary of all study areas 

can be found in context in Section 8.2.   See also TM images 15, 17, 19, 21, and 23. 

 
3.3 POPULATION AND RELATED DATA 
 
3.3.1 Population estimates 
 
Three types of population estimate are published by ABS. 

Census counts by place of enumeration 

ABS conducts a five-yearly Census of Population and Housing, the most recent for which 

detailed data was available being that of June 30, 1986.  Population counts based on people's 

actual location on census night are published for all levels of geographic aggregation down to 

the lowest level, the CD. 
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Census counts by place of usual residence 

These are census counts adjusted to take account of people who are not at their place of usual 

residence on census night.  These people are omitted from the count in the SLA in which they 

were enumerated and added to count for the SLA corresponding to their home address.  These 

adjusted counts provide a better estimate of resident population, but are not available for CDs - 

only for SLAs and larger geographical aggregates. 

Estimated resident population 

These estimates are produced annually for SLAs and larger geographical aggregates but not for 

CDs.  In census years, the census counts by place of usual residence are adjusted upwards for 

the effects of temporary absences overseas.  Adjustment is also made for census under-

enumeration, the magnitude of which is estimated by an intensive post-census sample survey.  

In the intervening non-census years, mathematical models are used to estimate population 

changes from the census baseline, employing a range of statutory data such as births, deaths, 

school enrolments, building approvals and commencements, and so on. After each census, the 

estimates for the previous intercensal period are revised. 

 
3.3.2 Dwelling count estimates 
 
Census counts 

Dwellings are enumerated in the five-yearly ABS Census within four categories: 

* Private dwellings 

* Unoccupied private dwellings 

* Caravans etc. in caravan parks 

* Non-private dwellings. 

In all but the first category, enumerated units correspond to distinct physical structures.  

However, the private dwelling category generally predominates.  In this category, a dwelling is 

regarded as the space occupied by a household (see Appendix D for detailed definitions). There 

may be one or more dwellings contained within a physical structure, be it a house, a block of 

flats, or whatever.  Each private dwelling is categorised according to the type of structure which 

contains it.  Counts of each dwelling category, and of each structure category for private 

dwellings, are published for all levels of geographical aggregation. 

Other potential sources 

Databases pertaining to property ownership, valuations, land use zoning, building regulations, 

utilities and services, etc., contain relatively current and comprehensive information about the 
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existence, location and status of dwelling structures.  However, such data is neither integrated 

nor readily accessible at this time. 

 
3.3.3 Census collection district boundaries 
 
Digitised 1986 census boundaries of the CDs in the two study areas were obtained from the 

Australian Survey and Land Information Group of the Department of Administrative Services 

(AUSLIG).  The data was in vector polygon form, consisting of an ordered sequence of vertex 

co-ordinates for each CD.  The co-ordinates for each point were latitude and longitude 

expressed to 5 decimal places (in the order of 1m).  

For the supplementary study areas, 1996 census boundaries expressed in AMG co-ordinates 

were obtained from CDATA96 (ABS, 1997). 

 
3.4 LANDSAT THEMATIC MAPPER DATA 
 
The primary and secondary images 

The satellite data used in the earlier phases of the study consists of two subsets of the Landsat 

Thematic Mapper (TM) scene path 93 row 86F, of February 14, 1988.  Each Landsat TM pixel 

corresponds to a 30m square on the earth's surface.  Since the satellite travels in an approximate 

N-S direction and the TM sensor makes sweeps perpendicular to the satellite's path (Lo, 1986, 

p.31), images are oriented approximately N-S/E-W.   

The raw Ballarat subscene comprised a rectangle of 1350 pixels (40.5 km) east-west by 1008 

pixels or rows (30.2 km) north-south which was skewed as part of the rectification process into 

a parallelogram within a 1412 pixel × 1008 pixel rectangle .   

The raw Geelong subscene comprised a rectangle of 900 pixels (27 km) east-west by 1008 

pixels or rows (30.2 km) north-south, which has been skewed and rotated as part of the 

rectification process into a parallelogram within a 1119 pixel × 1174 pixel rectangle.   

Images 1 and 13 are quasi-natural colour images of the two areas.  Image 2 is a green-enhanced 

quasi-natural colour image of the primary study area. 

Supplementary images 

The images used in the later phases of the study were rectangular subsets of larger images which 

in all but one case had already been rectified to Australian Map Grid (AMG) co-ordinates. 

The details of these subscenes are listed in Table 3.4. 
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Table 3.4  Specifications of Supplementary Images 
 

Image Size 
(pixels/line ×lines) 

Pixel size  
(m) 

Date of 
acquisition 

TM 
path/row 

Ballarat   616 × 697 30 15/12/94 93 86 
Adelaide 5010 × 6187 25 2/2/97 97 84 
Sydney 2740 × 3678 25 8/12/96 89 83 
Brisbane 2965 × 3616 30 16/9/89 89 79 
Kalgoorlie 1201 × 1078 30 27/9/89 109 81 

 
 
3.5 COMPUTING METHODS 
 
Most image analysis was performed using ER Mapper Versions 2.0, 3.0 (1991), 3.1 (1992), 5.0 

(1995) and 5.2 (1997) using an X-terminal linked to a Sun SPARCstation 2.  Additional user-

defined code for ER Mapper was written in C.  Some preliminary data preparation was done 

using MicroBRIAN (1988).   

 Maps of the study areas were produced using CDATA96 (ABS, 1997) census mapping 

software and Mapinfo 4.1 (1997) GIS software.  Mapinfo was also used to locate ground control 

points for the secondary study area. 

Notwithstanding the rapid advances in hardware and software capability, it remains the case, as 

has been recently discussed by Mesev (1998), that proprietary remote sensing and GIS software 

packages are quite limited in their capacity to undertake anything but the most straightforward 

statistical analysis.  In this study, most statistical analysis was performed offline using Excel 

(1990-97), Minitab (1989-97), SPSS-X (SPSS Inc, 1988) and SPSS for Windows (SPSS Inc, 

1993-98). 

A range of incompatible native data formats for both raster and vector data was involved, and 

handshaking did not always proceed seamlessly, necessitating the development of both 

systematic interchange routines and ad hoc patches.  Pascal programs were written to enable 

data sampling and data interchange between the image analysis programs, which use band-

interleaved-by-line (BIL) binary format for raster data, and the spreadsheet and statistical 

programs, which most conveniently import data in ASCII format.  Pascal programs were also 

written for: geometric correction of the primary image; pre-processing and co-registration of the 

CD boundary data for the primary study area; the simulation study of texture measures; 

systematic manipulation of vector data files; the initial implementation of the iterative 

regression algorithm. 

The final implementation of the iterative regression algorithm and the associated simulation 

study was via Minitab macros, which were also used extensively during model testing and 

evaluation.  Excel was also used extensively for data interchange, and Excel macros were used 
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in the post-processing and summarising of the results of regression simulations.  ERMAPPER 

vector and raster dataset header files, vector data files and algorithm files were also manipulated 

extensively to achieve objectives beyond the standard capabilities of the graphical user 

interfaces.  

A detailed breakdown of the computational steps involved in the project, and the technical 

details of their implementation, are summarised in tabular and schematic form in Appendix C. 

 
3.6 ESTABLISHING GROUND TRUTH POPULATION DATA 
 
Because the date of acquisition of the satellite data for the primary and secondary study areas, 

14/2/88, was some 19 months after the census of 1986, it was decided to bring together all 

available information in order to estimate the population of each CD as of that date.   

Published population and dwelling data as described in Chapter 3 were obtained for the CDs 

and SLAs in the primary study area using the Supermap (1988) census data retrieval system, 

and a number of printed sources (Ballarat and Western Victoria Regional Information Bureau, 

1989, Australian Bureau of Statistics 1987, 1989, 1990).  These were used as the basis for 

calculating population and dwelling estimates as at 14/2/88, the date of acquisition of the 

satellite data, for each of the 138 CDs in the primary study area.  

CD population data is only available as raw counts by place of enumeration from 5-yearly 

censuses - in this case data from 1981 and 1986 was used.  SLA data is available from the 

censuses and from the ABS estimated resident population (e.r.p.) series. 

The procedure essentially involved three phases.   

Firstly, the 1986 CD e.r.p.s were estimated by comparing the 1986 SLA e.r.p.s with the 

corresponding 1986 SLA census counts, and applying the resulting SLA differentials to the 

counts for the CDs within each SLA. 

Secondly, the intercensal rate of population change for each CD was compared with that of the 

SLA it lies within.  This differential was then used, together with the annual  SLA e.r.p. figures, 

as a basis for extrapolating the e.r.p. of each CD beyond 1986.  

It was observed that when the resulting CD estimates were summed for each SLA, the total 

exceeded the estimate for the SLA as a whole.  It was then proved that the estimation procedure 

has a small systematic bias towards over-estimation.  Consequently, a final adjustment was 

made to ensure that the CD estimates for each SLA summed to the SLA estimates.  See 

Appendix D for a fuller explanation of the methodology and details of the calculations. 

The same approach was used in the secondary study area. 
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As for the supplementary areas, because detailed 1986 and 1991 census information at CD level 

was not available to the author for regions outside Victoria, and because the scale and 

complexity of such adjustments would render the task very much more difficult for large and 

unfamiliar urban areas, attempts were made to obtain images acquired close to the census of 

August 1996, with mixed success.   Of the large supplementary study areas, two images 

(Adelaide and Sydney) were acquired soon after the 1996 census (within 4 and 6 months 

respectively).  Another image (Ballarat) was acquired 18 months before the 1996 census but 

included no areas of rapid change. It was decided that these images would serve the purpose of 

the study quite adequately without detailed adjustments of the sort carried out on the primary 

and secondary study areas.  The two remaining images obtained, those of Brisbane and 

Kalgoorlie, were acquired in 1989, seven years before the only census data available to the 

author.  Some analysis was nevertheless carried out on these images, but their usefulness was 

limited because of the temporal mismatch. 

 
3.7 RADIOMETRIC AND GEOMETRIC CORRECTION OF THE IMAGE  
 
Remote sensing images in their raw form are not located relative to any standard frame of 

reference, such as latitude and longitude or Australian Map Grid (AMG) co-ordinates.  They are 

also subject to various distortions in both spectral and spatial domains.  Corrections for 

radiometric distortion may or may not be made, but geometric correction or rectification and 

registration of an image is always necessary if it is to be integrated with ground-based data, as 

was the case in this study. 

 
3.7.1 Radiometric Correction 
 
Radiometric distortion refers to any lack of correspondence between the measured brightness 

values of the pixels in a scene and the true brightness. Richards (1986, p.33) distinguishes two 

broad categories.  Firstly, within a particular band the relativity between image brightness and 

scene brightness can vary from pixel to pixel over the image.  Secondly, within a particular 

pixel the relativity between image brightness and scene brightness can vary from band to band.  

Both effects can arise either as a result of atmospheric conditions or of sensor characteristics. 

Of the instrumentation effects, the most potentially serious is within-band variation caused by 

differences in response between parallel detectors, of which Landsat TM has 16 per band.  This 

problem is indicated by visible horizontal striping of an image.  In the present study, no striping 

was evident in any band of the data, and so no corrective steps were taken. 
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The effect of the atmosphere is to scatter radiation, and hence obscure some of the detail in the 

image.  Different atmospheric conditions in different parts of a scene will result in within-band 

variations, the most extreme being localised total obscurity due to clouds, smoke etc. 

Two broad mechanisms of atmospheric scattering are distinguished: Rayleigh scattering, due to 

the air molecules themselves, and Mie scattering, which involves larger particles such as those 

of dust, smoke, fog and cloud.  Both mechanisms are wavelength dependent, the shorter 

wavelengths being the more scattered in each case.  This dependence leads to a lack of 

calibration between bands.  One important way in which this is manifested is a brightening of 

the darkest pixels (such as deep water), but to a different degree in each band, leading to a non-

zero threshold brightness in each band, whose magnitude is inversely related to wavelength. 

Explicit correction for these effects requires detailed information about atmospheric conditions 

(temperature, relative humidity, pressure, visibility) which were not available in the present 

study. 

However, implicit corrections for the threshold or haze effect may be made based on statistical 

analysis of the image.  Whilst more elaborate algorithms have been employed (see for example 

Lavreau, 1991), a first order approach is to assume a constant haze noise level within each band 

and to correct for it by subtracting the dark threshold value from all data values within each 

band.  This procedure was adopted in the present study, the thresholds for the six bands of the 

primary image being 45,14,10,4, 1 and 1.  It is worth noting that whilst such an affine 

transformation has an effect on non-linear derived measures such as band ratios, it has no 

substantive effect on linear functions of the bands. 

This "haze removal" procedure is distinct from the "histogram equalisation" or "stretching" 

procedures employed for enhancing the visual contrast of images.  In this study, "95th percentile 

equalisation", in which a linear transformation is applied such that the data value at the 5th 

percentile is set to zero and that at the 95th percentile is set to the maximum value of 255, was 

frequently employed for contrast enhancement of displayed images. 

An important difference is that stretching produces the same standardised brightness range in all 

bands, whereas haze removal retains the information about the relative brightness ranges in the 

different bands. 

 
3.7.2 Approaches to rectification and registration 
 
Changes in software capability and available data formats during the life of the study impacted 

greatly on the tasks of image rectification and registration. 
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At the time of the initial processing of the primary image, the image data was available only in 

raw form with no georeferencing, the 1986 CD boundaries were available only in (latitude, 

longitude) form, no GIS software was available and the available remote sensing software had 

no warping (rectification, registration, resampling) capability.  It was decided to leave the raster 

image unchanged and co-register the CD vectors to it using parametric adjustments followed by 

a polynomial warp fitted from first principles using offline statistical processing. 

Some time later, when the secondary image was prepared, the remote sensing software had a 

warping capability, but the CD boundaries were still in the same form.  In this case, the CD 

vectors were transformed from first principles into approximate AMG co-ordinates, and the 

raster image warped in the more usual manner to co-register with the CD boundaries. 

Later again, when the supplementary images were processed, most of the images were supplied 

already approximately registered to the AMG grid, and the 1996 CD boundaries were available 

in a GIS in AMG co-ordinates, so that final adjustment to the co-registration was a trivial task.  

The one image which was in raw form was registered to the CD vectors in the routine manner. 

The remaining sections of this chapter pertain mainly to the procedures used for the primary 

image. 

 
3.7.3 Sources of geometric distortion 
 
Richards (1986, pp.43-50) discusses the following seven sources of geometric distortion of 

remotely sensed images: 

• aspect ratio distortion 

• earth curvature 

• panoramic distortion 

• variations in platform altitude, velocity and attitude 

• sensor scan nonlinearities 

• earth rotation effects 

• scan time skew 

The first of these refers to the fact that some sensors, such as Landsat MSS, produce pixels 

which do not correspond to a square region on the ground. However, a Landsat TM image has 

an aspect ratio of 1, since the along-scan sampling interval and the scan line spacing are equal, 

nominally both 30m. 



DATA PREPARATION AND INTEGRATION 

 

70

 

Earth curvature and panoramic effects cause the instantaneous field of view (IFOV) represented 

by a pixel to vary in both size and shape across the image.  The narrow swathe of Landsat TM 

ensures that both of these effects are negligible.  Since the study area was west of the satellite 

nadir, the maximum panoramic distortion would occur at the western edge of the image, where 

it was estimated using the methods of Richards (1986) at less than 1%. 

Variations in platform motion are not considered to be a major problem, since corrections for 

these effects are applied to Landsat data before distribution (Richards, 1986, p.48). 

Sensor scan nonlinearities may arise from non-uniform velocity of the scanning mechanism.  

This is not considered to be a major problem in the case of the TM's oscillating mirror 

arrangement, which is designed so that the acceleration associated with the endpoints of the 

oscillation takes place beyond the range of data acquisition. 

Whilst none of the above is regarded as serious in its own right, together they will always cause 

some departure from ideal image geometry.  The method of warping polynomials, which was 

used to register the CD boundaries to the image (see Section 3.7.6), also implicitly provides an 

ad hoc correction for these effects. 

The most serious geometric distortion in TM images, which cannot be corrected in this way, is a 

skewing effect caused by the finite scan rate of the sensor and the rotation of the earth during 

each scan. 

The TM has 16 parallel sensors for each band, so that on each scan it images a strip of 16 rows 

of pixels.  During the time taken to scan one such strip and position for the next, the satellite 

moves forward along its orbit a distance corresponding to 16 pixels or 480m on the earth's 

surface, and also the earth's surface rotates some distance from west to east.  These motions 

have three consequences.  The first is a slight skewing of each pixel and each row of pixels due 

to the forward motion of the satellite.  The second is a slight compression of each pixel in the 

east-west direction relative to the nominal dimension of 30m.  These effects are minute, and can 

be disregarded.  The third, far more substantial effect is that each strip of 16 rows in the image 

is incrementally displaced towards the west on the ground.  Using the methods of Richards 

(1986), the magnitude of this displacement at Ballarat was calculated as approximately 26m, or 

just under one pixel width. 

When a raw TM image containing any regular geometric features is displayed as a rectangle, 

then each strip of 16 rows is quite visible.  The successive displacement of each strip to the right 

produces a skew towards the east as the image is traversed from top to bottom. 

Because of its discrete stepwise nature, this distortion cannot be corrected by a continuous 

mathematical transformation such as a warping polynomial. However, an approximate 

correction method is readily available, which does not require pixel resampling but which 
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slightly over-corrects. This is to displace each successive strip of 16 rows in the image by one 

pixel to the left.  In this study, such a correction was made programmatically to the raw TM data 

files, by inserting appropriate blocks of null values. 

An eighth potential source of geometric error discussed by Forster (1980a) is a topographic 

effect - a displacement of pixels in the scan direction due to differences in surface elevation 

within the scene.  In the present study, this effect would be most pronounced in the western 

section of the image, which is furthest from the satellite nadir.  This area happens to be a lava 

plain with little topographic variation.  Calculations based on the methods of Richards (1986) 

confirmed that topographic distortion was not a major problem in this study, having a maximum 

in the order of 6m in the urban area and perhaps 10m around a few high points in the eastern 

half of the image.  Some correction for this effect was of course also implicitly incorporated in 

the polynomial transformation. 

 
3.7.4 Methods of co-registration 
 
An adjunct to rectification is co-registration, in which the remote sensed image is aligned with a 

map projection or with another raster or vector dataset (in this instance the CD boundaries). 

In the absence of a developed co-registration capability in the software available to the author at 

the time, co-registration of the primary image and CD boundaries was carried out from first 

principles.  There are three possible approaches.  The parametric approach involves 

mathematically modelling the motion of the satellite and the formation of the image.  The 

method of warping polynomials is a statistical approach which produces an optimal polynomial 

transformation of a specified order without explicitly modelling the relationships or 

mechanisms.  The third approach is to combine aspects of both methods.  Whilst Trinder 

(reported in Forster, 1980a) suggests that all three methods lead to similar results, others 

(microBRIAN Version 2.2, 1988) have recommended the third approach, by first explicitly 

modelling those aspects of the transformation which are well defined, then applying a warping 

polynomial to complete the task, the rationale being to simplify the required polynomial as far 

as possible.  It was decided to adopt such a hybrid approach. 

When an image is registered to a standard co-ordinate system, the original pixels no longer align 

with the co-ordinate grid.  This necessitates resampling, in which the original pixel values are 

processed using one of a number of standard algorithms, to produce estimated values for a new 

set of aligned pixels.  The new pixel values are derived either by averaging or interpolating over 

a neighbourhood, or by selecting the nearest neighbour and using its data.  In the case of the 

primary image, rather than resample, it was decided to register the vector CD boundaries to the 

row and pixel co-ordinates of the raster image, rather than the more conventional registration of 
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the image to the map co-ordinates. The following sections describe the steps in co-registration 

of the CD boundaries to the skew-corrected primary image. 

The secondary image was co-registered to the CD boundaries at a later time with the benefit of 

substantial software enhancements.  It was initially skew-corrected, then co-registered to the CD 

boundaries in the conventional manner, using a cubic warp and nearest neighbour resampling, 

which has the advantage for the purposes of the present study of preserving the band-to-band 

relativities (ERMapper 5.0, 1995, p 390). 

 
3.7.5 Explicit Parametric Transformations 
 
Transformations were applied to the CD boundary co-ordinates to shift the reference origin, to 

correct the aspect ratio, to align the co-ordinate frame with that of the TM image, and to rescale. 

Reference Origin 

The origin for latitude and longitude is the intersection of the equator and the Greenwich 

meridian.  This was shifted to the point 37.5° S 143.8° E, within the study area, by the 

transformation 

 L' = L - 143.8 

 l'   = l - 37.5 

 where  L = longitude (east) 

   l  = latitude (south)  

Aspect Ratio 

Latitude and longitude are directly proportional to distances N-S and E-W respectively.  

However, whilst the constant of proportionality for latitude does not depend on longitude, the 

proportionality constant for longitude does vary, being itself proportional to the cosine of the 

latitude.  Hence anywhere but on the equator, a particular difference in longitude represents a 

smaller distance than a numerically equal difference in latitude.  This aspect ratio was corrected 

by the transformation 

 L'' = L' cos l 

Alignment 

Landsat 5 follows an approximately circular orbit whose plane intersects the longitudinal plane 

at an angle of 8.2°. (In fact the sun-synchronous orbit precesses by 360° per year, or 

approximately 1° per day, or 0.07° per revolution).  From this it was calculated that the nominal 

path of Landsat 5 at Ballarat (latitude 37.5° S) is inclined at 10.36° to N-S.  The origin for row 
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and pixel counts is at the top left corner of the image, which is consistent with the east-south 

sense of the longitude and latitude co-ordinates.  Alignment with this frame of reference 

required only a clockwise rotation of 10.36°, by means of the transformation 

 X = l' sinθ  + L'' cosθ  

 Y = l' cosθ  - L'' sinθ      where θ  = 10.36°  

Scale 

Since 1° of latitude corresponds to about 110 km, the scale change  

 x = 100X 

 y = 100Y 

results in a scale on which 1 unit represented about 1.1 km, or 37 pixel widths.  This was done 

to reduce the scale mismatch with the pixels, thereby avoiding numerical problems at the next 

stage. 

The overall transformation to this point was 

 x = 100((l-37.5)sin10.36° + (L-143.8)coslcos10.36°) 

 y = 100((l-37.5)cos10.36° - (L-143.8)coslsin10.36°) 

 
3.7.6 Warping Polynomials 
 
To complete the transformation from latitude and longitude to row (R) and pixel (P) co-

ordinates, polynomials of fifth degree in x and y were fitted to the data from 59 ground control 

points, using standard least squares techniques. 

Ground Control Points 

Ground control points (GCPs) were selected using an enhanced quasi-natural colour RGB 

image (R = band 3, G = band 2 + band 4, B = band 1) of the study area.  The 59 points selected 

were predominantly road/road or road/rail intersections, with a few involving creeks or fence 

lines.  They were chosen on the basis of even distribution, good image definition, and location 

on CD boundaries, for which accurate co-ordinates were known.  A higher concentration of 

GCPs was selected in the more densely populated urban areas where CDs are smaller and 

accurate registration was most critical.  The distribution of GCPs is shown in Figure 3.2. 

Of the 28 points outside the main urban area of Ballarat, 18 lie in a ring on or close to the 

boundary of the study area, and 10 lie in a band midway between the urban area and the outer 

ring.  The spacing of these rural GCPs is typically 5-10 km. 
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There are 31 points in the main urban area.  About half are on or near the periphery and the rest 

on a rough grid with a spacing of approximately 1.5 km, or 50 pixels. 

Choice of warping polynomials 

The method of least squares, or multiple linear regression, was used to determine an appropriate 

pair of polynomials which fitted the data as closely as possible i.e. which mapped the (x,y) co-

ordinates of the 59 GCPs close to their observed line and pixel (L,P) locations in the image. 

In the standard regression terminology, there were two dependent variables, L and P.  The 

candidate predictor variables in each case were a constant term and all powers and cross-

products of x and y up to and including 5th order - 21 terms in all. 

If it were reasonable to assume that the underlying relationships between the two sets of co-

ordinates are functionally simple, but that there may be a substantial random measurement error 

component in the L and P values of the GCPs, then it would be appropriate to select a minimum 

set of predictors by a procedure such as stepwise regression, the general principles of which 

have been outlined in Section 2.8. 

If, on the other hand, the pattern of image distortion is smooth but more complex, and the 

measurement errors relatively small, then it is appropriate to proceed to more complex models 

regardless of the statistical significance of the extra terms.  The tests of significance will err 

conservatively under these conditions, because the residuals of the simpler models will contain 

a substantial "lack of fit" component as well as random error.  The aim here is not to be 

parsimonious, but to model the contortions of the complex response surface as closely as 

possible. 

The logical conclusion of this line of reasoning is to just fit a model containing all 21 terms.  In 

practice, with high order polynomial models, the degree of correlation between the terms is such 

that one or more terms are likely to be almost exactly linearly dependent on the others.  

Including all terms in the regression model can lead to numerical instability and erroneous 

results, particularly at the extremities of the image. 

In this study, because the CD boundaries generally followed recognisable features in the image, 

it was possible to visually evaluate the performance of both types of model for the boundary 

data as a whole rather than just at the GCPs, and hence decide the most appropriate strategy. 

Firstly, the standard stepwise procedure was used, with F-to-enter set at 4.0 (approximately 

corresponding to p=.05), to derive a minimal polynomial for each of L and P.  This is referred to 

as Model 1. 

Secondly, the stepwise procedure was rerun with the statistical inclusion criterion greatly 

relaxed (F-to-enter = 0.1, p=.75), with the result that the only terms excluded were those which 
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were extremely highly correlated with terms already in the model, and which might lead to 

numerical instability.  The result was Model 2. 

Finally, as a check, forced multiple regression was used to fit polynomials which contained all 

21 terms.  This was Model 3. 

The standard errors of the three models are compared in Table 3.5. 

Table 3.5   Comparison of Warping Polynomials 
 

Dependent  Number of  Standard Error 
variable terms in All GCPs (n = 58) Urban GCPs (n=31) 

 model Pixels (metres) Pixels (metres) 
Model 1      

      
Line 9 1.02 (30.6) 0.74 (22.2) 
Pixel 5 1.25 (37.5) 0.67 (20.1) 

      
Model 2      

      
Line 16 0.70 (21.0) 0.45 (13.5) 
Pixel 17 0.76 (22.8) 0.47 (14.1) 

      
Model 3      

      
Line 21 0.71 (21.3) not calculated 
Pixel 21 0.83 (24.9) not calculated 

      
 
Clearly, the more complex polynomials of Model 2 produced a better fit to the GCPs.  Models 1 

and 2 both performed better in the urban area, where the density of GCPs was higher.  As 

expected, Model 3 provided no improvement over Model 2.  Indeed, numerical instability 

actually led to an increase in the calculated standard errors. 

Models 1 and 2 were then applied to the CD boundary co-ordinates and the results overlaid on 

the Landsat image and examined visually.1  

If the residuals in Model 1 had been predominantly due to random measurement error, then the 

improvement in fit attained by Model 2 at the GCPs would not have been maintained across the 

image as a whole. 

In fact, with the exception of two sparsely populated areas at the north-east and south-west 

extremities of the study area, the fit of all the CD boundaries was uniformly improved by Model 

                                                 
1 During  the  visual examination, some localised discrepancies were discovered which were clearly due 

to errors in the CD boundary co-ordinates as supplied.  The positions of the small rural townships of 
Miners Rest and Cardigan Village (CDs 80 and 81) had been translated some 2 rows up and 3.5 pixels 
to the left,  presumably as the result of inadvertent movement during the digitising process.  A 
compensating adjustment was made to these co-ordinates before final co-registration. 
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2.  This indicates that the discrepancies in Model 1 were largely due, not to random noise, but to 

a smooth pattern of distortion which was better modelled by the more complex polynomials of 

Model 2.  Accordingly, Model 2 was adopted. 

The final equations for the warping transformation were: 

L  = 296.057 - 0.05858x + 36.0084y + 0.062483x2 + 0.030666y2  

 + 0.03483xy - 0.004692x3 - 0.0044253xy2 + 0.005852x2y - 0.000199x4  

 - 0.000811x2y2 - 0.0001203x3y + 0.00001818x5 + 0.00003441x2y3  

 + 0.00006346x3y2 - 0.00004086x4y 

P  = 616.896 + 37.0608x - 0.5989y + 0.019426x2 - 0.00717y2 - 0.07719xy 

 - 0.002171x3 + 0.010388y3 - 0.003914xy2 + 0.004066x2y  

 - 0.00011504x4 - 0.0012794y4 + 0.0004581xy3 - 0.00042159x2y2  

 + 0.00032904x3y + 0.00000274x5 + 0.00004608y5  

For purposes of display, the transformed boundaries were overlaid in vector form on the TM 

image.  For purposes of analysis, they were also used to define 138 regions on the image, and 

hence, using the ER Mapper IF INREGION( ) function, a data band containing the CD 

identification of each pixel was also defined.  This band formed the essential link between the 

remote sensing data based on pixels and the ground truth data based on CDs. 

 
3.8 SUMMARY 
 
In this chapter, the methods used to acquire, prepare and integrate ground-based demographic 

data and satellite-based reflectance data have been described. 

The six study areas and seven study images were introduced, as was the variety of software used 

to implement the integration of the two types of data and to carry out the analyses.   

A substantial proportion of the chapter was devoted to what now might seem rather tortuous and 

primitive approaches to image rectification and co-registration.  Changes in available data 

formats and software capabilities throughout the period of the study impinged particularly in 

this area, which became progressively more straightforward as the study progressed. 

This concludes the introductory and preparatory phases of the thesis.  The work proper begins in 

Chapter 4 with an account of investigations into extensions and enhancements to the aggregate-

based methodology of Iisaka and Hegedus (1982). 

 



77 

 
 
 
Chapter 4 
 
Estimates Based On Census Collection 
District Aggregate Measures 
 
4.1 INTRODUCTION 
 
The geographical basis of the investigations reported in this chapter is the Census Collection 

District (CD).  Regression analysis was performed on data for the 132 CDs in the primary study 

area.   

Whilst Iisaka and Hegedus (1982) had used linear combinations of MSS band averages across 

500m grid squares, it was decided to examine a broader range of possible relationships by 

incorporating a variety of standard spectral and spatial transformations of the TM data, 

including a number used by Forster (1980b, 1981, 1983) in the context of urban land use. 

Section 4.2 is concerned with models based on band averages, together with squares, cross 

products and ratios of those averages.  In Section 4.3, measures of spatial variation in TM 

reflectances across the CD are incorporated.  In Section 4.4, a selected set of spectral 

transformations made at the individual pixel level are introduced (though the basis of their 

selection is reported in context in Chapter 5); means and spatial variation measures of each of 

these measures are incorporated into the regression models.  In Section 4.5, the same sequence 

of models is applied to the estimation of dwelling densities and counts.  

Throughout this section of the work, for reasons which are explained in Section 4.2, two 

variants of the basic form of model were also considered, with logarithmic and square root 

transformations being applied to the dependent variable (the population or dwelling density). 

In Section 4.6, all of the models tested are comparatively evaluated.  Six models were chosen 

for external validation on the secondary image. (The results of this are reported in Chapter 7.) 
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4.2 POPULATION DENSITY ESTIMATES FROM AVERAGE 
REFLECTANCES 

 
Initially, collection district population density was regressed on average reflectances in the 6 

TM bands across each CD. 

This was done for two reasons: firstly, to establish whether results similar to those reported by 

Iisaka and Hegedus (see Section 1.2) could be obtained by a similarly basic procedure, and 

secondly, to establish a benchmark against which the performance of more refined procedures 

could be evaluated. 

Using the CD identification data band (see Section 3.7), the mean reflectance in each TM band 

was calculated for each of the 138 CDs.  Population density D (persons/sq.km) was calculated 

by dividing the ground truth population estimate P by the CD area. 

Population densities ranged from 4.5 to 5142 persons/sq.km., with a mean value of 1556.9 

persons/sq.km. (see Appendix E).  The lowest densities were generally found in the large rural 

CDs.    With regard to the CD average reflectances in the 6 TM bands, bands 1, 2, and 3 were all 

positively correlated to a substantial degree. Among the other bands there was a chain of 

moderate to high correlations but no clear clustering.  The strongest correlations with population 

density were band 5 (-.52), band 4 (-.40) and band 1 (+.34).   This suggests that the presence of 

people is weakly associated with a tendency for high reflectance in the short visible (blue) 

wavelengths, perhaps associated with paved surfaces and some roofing materials, and relatively 

low reflectance in the near infrared, associated with vegetation (or relative lack of it). 

A multiple regression analysis was performed using the 6 TM band reflectances as predictors.  

The saturated 6-variable model had R2 = .539.  Stepwise selection resulted, with very little 

reduction in R2, in the following 4-variable model (with variables in order of entry): 

D̂   = 72.3 - 135.6 b5 + 332.0 b7 - 151.0 b3 + 61.6 b4  

with  R2 = .537   s = 763.8 

The same procedure was also applied to the 122 urban CDs only, yielding 

D̂   = -48.9 - 203.5 b5 + 365.5 b7 + 114.7 b4 - 99.7 b1 

with  R2 = .459   s = 760.5 

As is often the case, the best multivariate set of predictors is not entirely made up of variables 

which are individually most correlated with the dependent variable.  The residual standard 

deviations are similar for both models.  The lower value of R2 in the second case can be 

attributed to the reduced range of population densities when the rural areas are excluded. 
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Comparison with Iisaka and Hegedus' reported R2 values (.59 and .70 for two different years) 

confirmed the expectation that population estimation might be more difficult in a mixed 

urban/rural area in regional Australia.  There is perhaps a greater degree of local heterogeneity 

within CDs even in many urban sections of a provincial city, than would be expected in the 

suburban areas of a metropolis such as Tokyo. 

An obvious problem was that the values of the dependent variable ranged over 3 orders of 

magnitude.  An analysis of the residuals (D - D̂ ) revealed pronounced positive skew, variance 

increasing with increasing D, and some evidence of a concave upward curvilinear trend (see 

Appendix E), all of which are commonly associated with a large range in the dependent 

variable.  A standard corrective approach in such circumstances is to transform the dependent 

variable by taking the logarithm or the square root.  Both of these transformations were 

investigated.  

A second approach to the representation of non-linear relationships within a linear framework is 

to transform the explanatory variables.  The pool of potential predictors was enlarged by 

applying to the CD means a range of transformations: firstly the squares of the 6 basic band 

means, then the 15 band mean to band mean cross-product terms, the 15 pairwise band-to-band 

ratios, and finally the 15 pairwise difference-to-sum ratios. 

Models involving these variables were fitted to the whole data set and also to the urban subset.  

As the aim was to encompass both rural and urban areas, and as it seemed that the models 

performed no better when applied to the urban areas alone (see Table 4.2), analysis of the urban 

subset was discontinued, and all subsequent analyses were done on the full data set. 

In the context of additive linear modelling, difference-to-sum ratios have an inherent additive 

symmetry, whilst band ratios do not.  Because of this, the 15 reciprocal band ratios were also 

investigated, but they were found to have little effect on the results reported below.  This is 

probably because the range of variation in each ratio was quite limited, so that any reciprocal 

relationships were adequately represented to first order accuracy by negative linear terms. 

The full set of variables, and the models selected by stepwise regression, are summarised in 

Tables 4.1 and 4.2.  It is important to realise that the variables pij, rij and dij are functions of 

means, not means of functions; each variable is the product or ratio of mean values derived from 

CD aggregate figures, rather than the mean of a product or ratio calculated for each individual 

pixel.  The latter approach is considered in Chapter 5. 

Table 4.2 shows that, beginning from a base R2 value of around .5, the incorporation of squares, 

cross-products or ratios increased this to around .7.  Application of either the square root or the 

logarithmic transformation to D resulted in a further increase in R2 to within the .8 to .9 range. 
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Table 4.1  Summary of Regression Variables 
 

Generic 
name 

Number of 
variables 

Description 

bi 6 mean of TM band i 
si 6 square of bi 
pij 15 cross-product bi×bj 
rij 15 ratio bi/bj 
dij 15 difference-to-sum ratio (bi-bj)/(bi+bj) 

Total 42 i, j = 1,2,3,4,5,7 
 
Many of the potential predictors were quite highly correlated, so that the number of variables 

retained by the stepwise procedure was reasonably small, ranging from 1 to 8.  Also in most 

cases the specificity of the chosen set of variables is not high; using “best subsets” regression it 

is possible to select alternative sets which perform almost as well.  For example in the basic 4-

band model, band 1 or band 2 can replace band 3 without much loss, since all three are highly 

correlated.  

Table 4.2  Population Density Models based on CD Means 
Summary of Stepwise Regression Results 

 
 Urban area only 

(n=122) 
Urban and rural areas 

(n=138) 
 
 

Potential 

Dependent 
variable 

D 

Dependent 
variable 

D 

Dependent 
variable 
√D 

Dependent 
variable 

lnD 
Predictors Selected R2 Selected R2 Selected R2 Selected R2 
(number) Predictors  Predictors  Predictors  (R2

b) Predictors (R2
b) 

 
bi  
(6) 

 
b5 b7 b4 
b1 

 
.459 

 
b5 b7 b4 
b3 

 
.537 

 
b5 b7 b4 
b3 

 
 .652 
(.557) 

 

 
b5 b7 b3 
b2  

 
.684 

(.343) 

bi si  
(12) 

s1 b1 s7 b4 
b5 

.618 s5 b7 s1 b5 
b4 s4 s7 
 

.735 s1 b1 s7 
b4 b5 s4 

.847 
(.755) 

s5 b7 s1 b1 
s7 b5 

.861 
(.687) 

bi si pij 
(27) 

s5 p47  b5 .501 s5 p47 p57 
p45 

.730 s2 b4 p24 
s7 b5 
 

.845 
(.757) 

s5 p14 b4 
s1 p47 

.855 
(.656) 

bi si pij rij 
(42) 

r23 .351 r57 r14 r37 
 
 

.696 r57 r15 r17 
r47 

.844 
(.757) 

p45 s1 r17 
p35 p37 
p13 s3 r37 
 

 .901 
(.704) 

bi si rij dij 
(42) 

r23 .351 r57 r14 
d35 d14 
d37 r25 
 

.753 r57 r14 
d14 r15  
 

.846 
(.762) 

r13 r14 r15 
s4 s1 s7 
  

.910 
(.719) 

 
Note: 
• Models selected for further investigation are shown in boldface. 
• Predictors in each model are listed in the order of selection. 
• Parenthesised R2

b values are based on back-transformation (see Section 2.9).  They are the R2 values 
obtained when the dependent variable D is regressed on the estimate of D (obtained by inverse 
transformation of the regression estimates for the transformed D values), and hence provide a more 
realistic indication than R2 of the predictive accuracy of the model. 
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Two points are noteworthy.  Firstly, except in the case of the logarithmic models, when band 

ratios (varibles whose names begin with “r” or “d”) were included they completely displaced the 

other predictors (see last two rows of Table 4.2).  Secondly, band 2 only appears relatively 

infrequently in Table 4.2.  It seems that in the multispectral context, visible green may be the 

least discriminating spectral signature of human habitation.  

The residuals from these models were examined in the light of the demographic characteristics 

of the individual CDs (Ballarat and Western Victoria Regional Information Bureau, 1989).  The 

residual distributions tended to be positively skewed, with the extreme positive values being 

consistently associated with the same few CDs.  The CD whose population was consistently 

underestimated by the greatest amount contains a large multi-storeyed geriatric institution.  The 

populations of 6 CDs consisting predominantly of high density public housing were also 

substantially underestimated throughout.  Conversely, whilst overestimation was not so extreme 

in most models, populations did tend to be overestimated in older established areas where there 

are relatively high proportions of small households in disproportionately large houses. 

Whilst the R2 values obtained for these refined models were encouraging, there are a number of 

reasons for circumspection.  Firstly, in models with a transformed dependent variable, the R2 

value exaggerates the precision of estimation (see Section 2.11.7).   In this situation, R2
b values 

based on back-transformation give a more meaningful indication of comparative predictive 

performance.  Values of this statistic are included in parentheses in Table 4.2 and subsequent 

tables.  In the case of the square root transformation they are in general marginally higher than 

the R2 values for the corresponding untransformed model, and in the case of the logarithmic 

transformation they are substantially lower. This indicates that whilst transformation may lead 

to a more appropriate from of model, the resulting increase in R2 may be illusory, in the sense 

that the population estimates produced by the transformed models are not substantially more 

accurate, and in some cases less so.  

Secondly, even though increases in R2 have been obtained, with values around .75 (i.e. with 

correlations in the order of .87), the uncertainty range associated with population estimates for 

individual CDs is still quite substantial. 

Finally, as with any stepwise regression procedure, there is the aspect of capitalisation on 

chance (see Section 2.11.4) to consider.  These models were generated using data from the 

entire primary test image, with no external validation.  The results obtained when selected 

regression models were applied to another image are reported in Chapter 7. 

The fitted values and residuals from the three types of model were examined graphically (see 

Appendix E).  On the basis of goodness of fit, parsimony (number of predictors), and the 

statistical characteristics of the residuals (normality, homogeneity of variance, non-random 
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patterning) it appeared that the square root transformation was consistently more appropriate 

than the logarithmic transformation.  This conclusion was borne out in the more complex 

models which followed.  

Further sets of explanatory variables were then examined.  At each stage, one or more models 

were selected as the best of each class.  From Table 4.2, four models were retained for further 

examination.  The first square root transformation model was selected as representing a more 

statistically appropriate base model than the untransformed base model.  The regression 

equation (with terms in order of selection) was: 

)( DEst =  - 1.4 - 2.33 b5 + 5.37 b7 + 1.22 b4 - 2.04 b3 

 with R2 = .652  and R2
b = .557 

The other four square root transformation models represented a considerable improvement over 

the base model.  There was little to separate them.  Two were chosen for further consideration: 

the second, based on band means and their squares, and the fifth, based on ratios of band means.  

The regression equations (with terms in order of selection) were:  

)( DEst = - 171.34 - 0.140 s1 + 9.220 b1 + 0.0344 s7+ 4.874 b4 - 1.952 b5 - 0.0359 s4  

 with R2 = .847  and R2
b = .755   

and  

)( DEst =  345.35 - 68.41 r57 - 275.56 r14 + 226.89 d14 + 120.30 r15 

 with R2 = .846  and R2
b = .762 

 
4.3 POPULATION DENSITY ESTIMATES: MEASURES OF SPATIAL 

VARIABILITY 
 
Because it was conjectured that inter-pixel variability may provide key indicators of population 

density, the variability throughout each CD was calculated for each TM band.  The measures 

used were variance, standard deviation and coefficient of variation (standard deviation/mean). 

 
Table 4.3  Variable Suffix Nomenclature 

 
Suffix Meaning Example 
none mean b5 
s standard deviation b5s 
c coefficient of variation b5c 
v variance b5v 
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The results of stepwise regression analyses using the 6 band means and the 18 (3×6) variation 

measures, are shown in Table 4.4.  In this and subsequent tables, the suffix notation shown in 

Table 4.3 has been used. 

Table 4.4 shows that a linear model based on the means and standard deviations of the basic TM 

bands within each CD produced somewhat better population density estimates (R2 =.751) than 

the models based on means and functions of means.  The addition of variance or coefficient of 

variation terms produced little further improvement.  A similar pattern was evident with the 

square root models.  Again the logarithmic models tended to incorporate more variables but did 

not perform as well. 

On balance, the preferred prediction model from Table 4.4 was the final square root 

transformation model, for which the regression equation (with terms in order of selection) was:  

)( DEst = 75.20 - 2.19 b5 - 245.20 b7c - 70.36 b4c + 0.171 b7v + 0.851 b4 + 2.88 b7  

- 0.124 b1v + 69.57 b1c + 70.37 b5c 

 with R2 = .840  and R2
b = .780   

 
Table 4.4  Population Density Models based on CD Means and Spatial Variation 

Measures: Summary of Stepwise Regression Results 
 

Potential predictors 
(number) 

Dependent variable 
D 

Dependent variable 
√D 

Dependent variable 
lnD 

 Selected R2 Selected R2 Selected R2 
 predictors  predictors  (R2

b) predictors (R2
b) 

 
mean 
(6) 

 
b5 b7 b3 b4 

 
.537 

 
b5 b7 b4 b3 

 
.652 

(.557) 

 
b5 b7 b3 b2  

 
.684 

(.343) 
 

mean, std dev 
(12) 

b5 b1s b7 b4 
b4s 

.751 b5 b7 b1s b4 
b4s b7s 

.802 
(.766) 

b5 b7 b4 b7s 
b3 b4s b2 

.763 
(.497) 

 
mean, std dev, 
coeff of var 
(18) 
 

b5 b1c b4c b7 
b4s b5c 

.759 b5s b5 b7c 
b4c b7 b3 b4s 

.821 
(.769) 

b5 b7 b4 b7c 
b3 b4s b5c b3s 
 

.791 
(.533) 

 

mean, std dev, 
coeff of var, 
variance 
(24) 
 

b5 b1c b4c b7 
b4v b1 

.768 b5 b7c b4c 
b7v b4 b7 b1v 
b1c b5c 

.840 
(.780) 

b5 b7 b3 b4 
b4v b7c b5c 
b3s 

.794 
(.524) 

 

 
Note: 
• Models selected for further investigation are shown in boldface. 
• Predictors in each model are listed in the order of selection. 
• Parenthesised R2

b values are based on back-transformation (see Section 2.9).  They are the R2 values 
obtained when the dependent variable D is regressed on the estimate of D (obtained by inverse 
transformation of the regression estimates for the transformed D values), and hence provide a more 
realistic indication than R2 of the predictive accuracy of the model. 
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4.4 POPULATION DENSITY ESTIMATES: SPECTRAL 
TRANSFORMATIONS 

 
The band-to-band relationships discussed in Section 4.1 were implemented on CD aggregates 

(average values) for each band.  Of more interest in the later phases of this study were the 

localised relationships between band values for each pixel.  It was decided to try out something 

of a hybrid methodology at this stage, by incorporating a selection of such transformations, 

calculated at pixel level then averaged across CDs rather than vice versa.  Of the vast number of 

spectral transformations that could be applied to the 6 TM bands at the individual pixel level 

(see Section 2.3), 14 were identified as having some capacity to discriminate between 

residential and other land uses.  These are listed in Table 4.5.  Details of how they were selected 

are discussed in context in Chapter 5. 

Values of these 14 variables were calculated for each pixel in the study area, and CD aggregate 

means, standard deviations, coefficients of variation and variances were derived.  These 56 

(14×4) variables were combined with the 24 variables based on the individual TM bands, and a 

number of stepwise regression analyses were then applied to various subsets of the 80 variables.  

The resulting models are summarised in Table 4.6, using the same suffix notation as in Table 

4.3. 

Table 4.5  Selected spectral transformations 
 

Variable Description 
nb1 normalised band 1 
nb2 normalised band 2 
rl4 ratio band 1 to band 4 
rl5 ratio band 1 to band 5 
r25 ratio band 2 to band 5 
r57 ratio band 5 to band 7 
ds15 difference/sum ratio bands 1, 5 
ds25 difference/sum ratio bands 2, 5 
ds35 difference/sum ratio bands 3, 5 
ds57 difference/sum ratio bands 5, 7 
ch123 cylindrical hue bands 1, 2, 3 
ch125 cylindrical hue bands 1, 2, 5 
rh123 rectangular hue bands 1, 2, 3 
rh125 rectangular hue bands 1, 2, 5 

 
The models with untransformed population density as the dependent variable fall into two 

groups. For the first model and the last four models (which utilise only the spectrally 

transformed predictors), R2 values in the range .779 to .825 were obtained. In the remaining 3 

models, as happens from time to time with any incremental sub-optimal search, the stepwise 

procedure “stopped short” with relatively few variables selected and relatively low R2 values 

reached.  
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Table 4.6  Population Density Models based on CD Means and Spatial Variation of 
Selected Spectral Transformations: Summary of Stepwise Regression Results 

 
Potential predictors 

(number) 
Dependent variable 

D 
Dependent variable 

√D 
Dependent variable 

lnD 
 Selected R2 Selected R2 Selected R2 
 predictors  predictors  (R2

b) predictors (R2
b) 

 
TM bands + 
transformations: 
means  
(20) 

 
rh123 r14 ds35 
r57 rh125 ch125 

 
.794 

 
rh123 r14 r57 
ds35 rh125 
ch125 

 
.898 

(.832) 

 
r14 r57 ds35 
ch123 ds15 b5 
b7 

 
.880 

(.774) 

TM bands + 
transformations: 
means, std devs  
(40) 

rh123 b1s 
 

.729 
 

rh123 r14 r57 
ds35 rh125 
rh125s 

.904 
(.843) 

rh123 rh123s 
b3 b4s b1 b7s 
b1s b5 b7 

.897 
(.706) 

TM bands + 
transformations: 
means, std devs, 
coeffs of var  
(60) 

rh123 b1s 
 

.729 
 

rh123 r14 r57 
ds35 rh125 
rh125s 

.904 
(.843) 

rh123 rh123s 
b3 b4s b1 b7s 
b1s b5 b7  

.897 
(.706) 

TM bands + 
transformations: 
means, std devs, 
coeffs of var, 
variances  
(80) 

rh123 b3v b2s .758 
 

rh123 r14 r57 
ds35 rh125 
rh125s 

.904 
(.843) 

rh123 rh123s 
b3 b4s b1 b5v 
b7c b3v ds15 
rh125s b5s 
rh123c 

.916 
(.694) 

 
Transformations 
only: 
means  
(14) 

 
rh123 r14 ds35 
r57 rh125 ch125 

 
.794 

 
rh123 r14 r57 
ds35 rh125 
ch125 

 
.898 

(.832) 

 
r14 r57 ds35 
ch123 ds15 

 
.867 

(.741) 

Transformations 
only: 
means, std devs  
(28) 

r14s r25 r57 r14 
rh125s rh123s 

.825 rh123 r14 r57 
ds35 rh125 
rh125s 

.904 
(.843) 

rh123 r14 
rh123s r57 
ds35 ds25 
rh125s  

.894 
(.764) 

Transformations 
only: 
means, std devs, 
coeffs of var  
(42) 

rh123 r14s r25 
rh125 r57c 

.779 rh123 r14 r57 
ds35 rh125 
rh125s 

.904 
(.843) 

rh123 r14 
rh123s r57 
ds35 ds25 
rh125s rh123c 

.898 
(.746) 

Transformations 
only: 
means, std devs, 
coeffs of var, 
variances  
(56) 
 

rh123 r14s r25 
rh125 r57c 

.779 rh123 r14 r57 
ds35 rh125 
rh125s 

.904 
(.843) 

r14 rh123s 
ch123v r57 
ds35 rh125s 
ch123s rh123c 
rh123v ch123 

.928 
(.771) 

 
Note: 
• Models selected for further investigation are shown in boldface. 
• Predictors in each model are listed in the order of selection. 
• Parenthesised R2

b values are based on back-transformation (see Section 2.9).  They are the R2 values 
obtained when the dependent variable D is regressed on the estimate of D (obtained by inverse 
transformation of the regression estimates for the transformed D values), and hence provide a more 
realistic indication than R2 of the predictive accuracy of the model. 
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Once again the logarithmic transformation produced apparent improvement in R2 at the expense 

of parsimony, but the improvement was not apparent after back-transformation.   

However the models utilising the square root of population density as the dependent variable 

again performed very well.  A very stable 6 variable solution emerged which is the preferred 

model from Table 4.6.  The regression equation (with terms in order of selection) is:  

)( DEst = 530.10 + 0.278 rh123 - 92.34 r14 - 60.81 r57 + 165.91 ds35 - 1.308 rh125  

- 0.370 rh125s 

with R2=.904 and R2
b=.843.  

 
4.5  DWELLING DENSITY ESTIMATES 
 
The same sequence of analyses as above were applied to the estimation of housing density 

(dwellings/sq.km).  The resulting models are summarised in Tables 4.7 to 4.9. 

 
4.6 EVALUATION OF REGRESSION MODELS BASED ON CENSUS 

COLLECTION DISTRICT AGGREGATES 
  
The two sets of six models chosen to represent the range of options tested for estimating 

population and dwelling densities on the basis of averages of substantial aggregates of pixels are 

summarised in Tables 4.10 and 4.11, and Figure 3.4.  Further plots produced for the purpose of 

exploring the patterns of residuals in the final models in Tables 4.10 and 4.11 can be found in 

Appendix E.  

All but the first base model in each table involved a regression equation for predicting the 

square root of the ground truth population or dwelling density.  Remote sensing density 

estimates were found by squaring the predicted value for each CD.  

Tables 4.10 and 4.11 are each comprised of 2 parts (separated by double vertical borders). The 

first section pertains to the regression equation employed on the transformed dependent 

variable, and the second part to the direct relationship between the dependent variable and the 

back-transformed estimates.  Figure 4.1 consists of 4 plots pertaining to the second section of 

these tables. 

The first section of Table 4.10 shows that by progressive enhancement of the set of predictors, 

the value of the coefficient of determination (R2) was increased from around 55% to just over 

90%.   
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 Table 4.7  Dwelling Density Models based on CD Means 
Summary of Stepwise Regression Results 

 
Potential 
predictors 

Dependent variable 
D 

Dependent variable 
√D 

Dependent variable 
lnD 

(number) Selected R2 Selected R2 Selected R2 
 predictors  predictors  (R2

b) predictors (R2
b) 

 
bi  
(6) 
 

 
b5 b7 b4 b3 

 
.560 

 
b5 b7 b4 b3 

 
.667 

(.584) 
 

 
b5 b7 b4 b3  

 
.707 

(.583) 

bi si  
(12) 

s5 b7 s3 b3 b5 b4 
s4 
 

.798 s5 b2 s2 s7 b4 s4 
b5  

.877 
(.817) 

s5 s3 s1 b1 s7 b5 
b3 

.883 
(.781) 

bi si pij 
(27) 

s5 p14 p15 p37 
p45 b7 
 

.802 s2 b4 p24 s7 p25 .872 
(.826) 

s5 p14 b4 s1 p47 .867 
(.801) 

bi si pij rij 
(42) 

r24 r37 r47 r15 
r17 p25 
 

.822 r57 r14 r17 r47 
r15 

.881 
(.832) 

p47 p45 s1 r17 
r25 r24 b7 
 

 .887 
(.760) 

bi si rij dij 
(42) 

r24 d35 r47 r15 .801 r57 r14 d17 r47 
r15  
 

.881 
(.832) 

d13 r13 r57 s1 b1 
r47 
  

.910 
(.793) 

 
 

Table 4.8  Dwelling Density Models based on CD Means and Spatial Variation Measures: 
Summary of Stepwise Regression Results 

 
Potential predictors 

(number) 
Dependent variable 

D 
Dependent variable 

√D 
Dependent variable 

lnD 
 Selected R2 Selected R2 Selected R2 
 predictors  predictors  (R2

b) predictors (R2
b) 

 
mean 
(6) 
 

 
b5 b7 b4 b3 

 
.560 

 
b5 b7 b4 b3 

 
.667 

(.584) 

 
b5 b7 b4 b3  

 
.707 

(.583) 

mean, std dev 
(12) 
 

b5s b5 b1s b7 
b4 b4s 

.818 b5 b7 b1s b4 
b4s b7s 

.840 
(.843) 

b5 b7 b4 b7s 
b3 b4s b2  

.779 
(.515) 

mean, std dev, 
coeff of var 
(18) 
 

b5s b5 b5c b4c 
b7 b1s b4 

.845 b5s b5 b7c b7 
b4 b4c b7s b1s 
b1c 

.871 
(.876) 

b5s b5 b7 b4 
b7c b3 b4s 
b5c b7s 

.817 
(.585) 

mean, std dev, 
coeff of var, 
variance 
(24) 
 

b5 b1c b7 b4 
b4c b7c b7v b1s 

.875 b5 b7c b7v 
b4c b4 b5c b7 
b1v b1c 

.888 
(.878) 

b5 b7 b4 b4v 
b7c b5c b7s 
b3 b5s 

.819 
(.604) 

 
Note: 
• Models selected for further investigation are shown in boldface. 
• Predictors in each model are listed in the order of selection. 
• Parenthesised R2

b values are based on back-transformation (see Section 2.9).  They are the R2 values 
obtained when the dependent variable D is regressed on the estimate of D (obtained by inverse 
transformation of the regression estimates for the transformed D values), and hence provide a more 
realistic indication than R2 of the predictive accuracy of the model. 
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Table 4.9  Dwelling Density Models based on CD Means and Spatial Variation of Selected 
Spectral Transformations: Summary of Stepwise Regression Results 

 
Potential predictors Dependent variable 

D 
Dependent variable 

√D 
Dependent variable 

lnD 
(number) Selected R2 Selected R2 Selected R2 

 predictors  predictors  (R2
b) predictors (R2

b) 
 
TM bands + 
transformations: 
means  
(20) 

 
r14 ds35 r57 r15 
r25 b5 b1 

 
.876 

 
r14 r57 rh125 
b2 ds15 ch123 
ds25 b1 

 
.945 

(.918) 

 
r14 r57 ds35 
ch123 ds15 b5 
b7 

 
.896 

(.810) 

TM bands + 
transformations: 
means, std devs  
(40) 

rh123 b1s rh125 
r57 r14 ds15 ds25 
rh123s 

.905 r14 b3 b2s 
ds15 r57 ds25 
rh125 rh125s 

.945 
(.924) 

rh123 rh123s 
b3 b1 b4s b7s 
b5 b1s 

.907 
(.766) 

TM bands + 
transformations: 
means, std devs, 
coeffs of var  
(60) 

rh123 b1s ch123s 
b4c ch123c 

.834 r14  b5 b4 b2c 
ds15 r57 
ds35c rh125s 

.946 
(.922) 

rh123 rh123s 
b3 b1 b4c b7s 
b5 b1s 

.908 
(.769) 

TM bands + 
transformations: 
means, std devs, 
coeffs of var, 
variances  
(80) 

b5s b5v rh123 
b3v b2s r14 r57 
ds35 

.916 r14 b5 b2s b3v 
b4 ds15 r57 
ds35c rh125s 

.948 
(.924) 

rh123 rh123s 
b3 b1 b5v b4s 
ds25c ch125 

.913 
(.733) 

 
Transformations 
only: 
means  
(14) 

 
r14 ds35 r57 r15 
r25 rh125 nb2 

 
.872 

 
r14 r57 ch125 
ds57 nb2 nb1 
ch123 

 
.933 

(.924) 

 
r14 r57 ds35 
ch123 ds15 
ds25 

 
.884 

(.799) 

Transformations 
only: 
means, std devs  
(28) 

rh123 r14s rh125 
ds15 r57 r14 ds25 
rh123s 

.898 r14 r14s ds15 
r57 rh125 
rh125s ds25 

.941 
(.912) 

rh123 rh123s 
ch123 r14s 

.875 
(.717) 

Transformations 
only: 
means, std devs, 
coeffs of var  
(42) 

r14s rh125 ds15 
r57 r14 ds25 
ch123c rh123c  

.903 r14 r14s ds15 
r57 rh125 
rh125s ds25 

.941 
(.912) 

rh123 rh123s 
ch123 r14s 

.875 
(.717) 

Transformations 
only: 
means, std devs, 
coeffs of var, 
variances  
(56) 

r14s rh125 ds15 
r57 r14 ds25 
ch123c rh123c 

.903 r14 r14v ds15 
r57 rh125 
rh125v ds25 
ch123v nb1s 

.944 
(.918) 

rh123 r14 
rh123s ch123v 
ch123s rh123c 
r57 ds15 
rh125s ch123 
ch125 ch125c 
 

.945 
(.854) 

 

Note: 
• Models selected for further investigation are shown in boldface. 
• Predictors in each model are listed in the order of selection. 
• Parenthesised R2

b values are based on back-transformation (see Section 2.9).  They are the R2 values 
obtained when the dependent variable D is regressed on the estimate of D (obtained by inverse 
transformation of the regression estimates for the transformed D values), and hence provide a more 
realistic indication than R2 of the predictive accuracy of the model. 
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The second section shows that in terms of predictive accuracy, the effective coefficient of 

variation (R2
b ) was increased from around 55% to around 85%.  This corresponds to an increase 

in the correlation between the remote sensing and ground truth figures from around 0.75 to 

around 0.92.  The standard deviation of the residual (unexplained) variation (s) was 

progressively reduced from 739 to 441 persons/sq.km. 

However, correlation is not the only criterion to be considered: a high correlation only implies a 

linear relationship, not necessarily a direct correspondence.  In directly estimated linear models, 

the estimates obtained are unbiased so that if the dependent variable is regressed on the 

estimates, the line of best fit has intercept=0 and slope=1. But when the data is transformed or 

when a regression equation is applied to another set of data (as in Chapter 7), biases can occur 

in the form of both systematic offsets (zero errors), and systematic scale errors.  Table 4.10 

shows that when the regression is unforced, the zero errors for all models are small relative to 

the scale of the data, and the slope coefficients of both forced and unforced regressions are close 

to unity, indicating a lack of substantial bias of either type.  This is confirmed by the plots in 

Figure 4.1. 

Notwithstanding all of the above considerations regarding population densities, the ultimate 

criterion for population estimation is the accuracy with which actual population counts can be 

estimated.  Table 4.12 shows the results of multiplying the density estimate for each CD by its 

area to generate an estimated CD population count.  As well as regression results, the mean and 

median of the absolute values of the relative errors (see Section 2.12.2) are reported, as well as 

estimates for the population of the whole study area and the urban section and their relative 

errors.  The more complex models had median proportional errors within the range 17-24% 

overall, and 14-21% for the urban area.  Mean proportional errors were somewhat higher, 

indicating a positive skew characteristic of absolute value distributions1, which may be 

exacerbated by the presence of a few outlying values (see for example Figure 4.1B).   

Similar results for estimated total dwelling counts are shown in Table 4.13.  

The inherent limitations of the CD aggregate method start to become apparent in Tables 4.12 

and 4.13.  In most of the models, for reasons which will be discussed in later chapters, for the 16 

rural CDs which have very low densities, the densities tend to be over-estimated by amounts 

which though small in absolute terms, are large in relative terms. When these over-estimates are 

weighted or leveraged by the large areas involved, they have a substantial effect on estimates of 

population or dwelling counts.  As a result, whilst the more complex models produce estimates 

                                                 
1 For normally distributed errors, the so-called half normal distribution has 20.0=

−
σ

µ M
(Kendall et 

al., 1987, p 117). 
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of the urban totals which are accurate to within a few percent, the total for the whole study area 

is in every case overestimated to a much greater degree. 

The opposite happens in the first (untransformed) model where, because of the concave-up 

curvilinearity of the relationship, the densities at the low end are underestimated by the linear 

model to such an extent that a number of the estimates are substantially negative.  When 

combined with the large areal weightings of these low density CDs, this results in an estimated 

total population which is negative.   

Negative estimates are always a potential problem when the lowest densities are small in 

comparison to the range of densities being estimated.  Langford et al. (1991) describe models 

which can lead to such estimates as “logically flawed”, whilst Lo (1995) takes the more 

pragmatic view that a negative estimate can be interpreted as evidence of zero population.  

Webster’s results (1996) also contain negative estimates but they are not discussed.  Negative 

estimates can only be avoided by restricting models to functional forms such as logarithmic, 

where such results are not possible.  However, other forms of model may be preferred on the 

basis of other performance criteria.  In the present instance the square root form, which 

generally produces better results than the logarithmic form, is potentially quite logically flawed 

in that negative results automatically backtransformed by squaring lead to positive estimates.  In 

these circumstances, the author is inclined to share Lo’s view and reset any negative estimates 

to zero. 

Since dwellings are more directly evidenced in satellite imagery than human population, it is to 

be expected that the accuracy of estimation would be somewhat higher for dwelling counts than 

for population, as indeed it generally is, though not invariably so and not by very large margins.  

Furthermore, it seems from an examination of Figures 4.1B and 4.1D that much of the 

difference in the best fitting models is associated with specific anomalous CDs (outliers) such as 

those in which major institutions are located (the two CDs which include a geriatric institution 

and two hospitals are clearly visible at the top right on Figure 4.1B), rather than with a more 

diffuse phenomenon across all CDs.  For the larger aggregate areas (urban and total), the 

population estimates are just as accurate as the estimates of dwelling counts.  For this reason, it 

was decided that estimating dwelling counts held no advantage for the estimation of population, 

and it was decided henceforth to focus exclusively on models for direct population estimation. 

Of course the same methodologies could be applied throughout to the estimation dwelling 

counts if that was the required outcome. 
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Table 4.10  Summary of Selected Models for Population Density  
Based on TM Data Aggregated over Census Collection Districts  

 
Model 
type 

Class 
of 

 predictors 

Dependent 
variable 

 

Number 
of 

predictors 

Regression equation R2 

 
D vs. D̂  

Regression coeffts.* 
(unforced & forced) 

R2
b 

 
s 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
D 
 
 

√D 
 

 
4 
 
 

4 

 
72.3 – 135.6 b5 + 332.0 b7 -151.0 b3 + 61.6 
b4  
 
-1.4 – 2.33 b5 + 5.37 b7 + 1.22 b4 – 2.04 b3 
 

 
.537 

 
 

.652 
 
 

 
0+1.00  ;  1.00 

(Fig 13A) 
 

81+1.01  ; 1.05 

 
.537 

 
 

.557 
 

 
739 

 
 

739 

3 Mean, (mean)2 

 
√D 6 

 
-171.34 – 0.140 s1 + 9.220 b1 + 0.0344 s7 
+ 4.874 b4 – 1.952 b5 – 0.0359 s4 
 

.847 
 

-58.1+1.07  ;  1.04 .755 
 

550 

4 Ratios & difference 
to sum ratios 
 

√D 4 345.35 – 68.41 r57 – 275.56 r14 + 226.89 d14  
+ 120.30 r15 
 

.846 
 

1.7+1.03  ;  1.03 .762 
 

 

541 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

√D 9 75.20 – 2.19 b5 – 245.20 b7c – 70.36 b4c  
+ 0.171 b7v + 0.851 b4 + 2.88 b7 – 0.124 b1v  
+ 69.57 b1c + 70.37 b5c 
 

.840 
 

116+.95  ;  1.01 .780 
 

521 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

√D 6 530.10 + 0.278 rh123 – 92.34 r14 – 60.81 r57  
+165.91 ds35 – 1.308 rh125 – 0.370 rh125s 
 

.904 
 

9.5+1.01  ;  1.02 
(Fig 13B) 

 

.843 
 

441 

*   Intercept + slope; slope when forced through origin 
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Table 4.11  Summary of Selected Models for Dwelling Density 
Based on TM Data Aggregated over Census Collection Districts  

 
Model 
type 

Class 
of 

 predictors 

Dependent 
variable 

 

Number 
of 

predictors 

Regression equation R2 

 
D vs. D̂  

Regression coeffts.* 
(unforced & forced) 

R2
b 

 
s 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
D 
 
 

√D 
 

 
4 
 
 

4 

 
89.7 - 49.77 b5 + 110.49 b7 + 23.81 b4  
- 44.18 b3 
 
-0.879 - 1.451 b5 + 3.119 b7 + 0.784 b4  
- 1.051 b3 
 

 
.560 

 
 

.667 
 
 

 
0+1.00  ;  1.00 

(Fig 13C) 
 

19.6+1.03  ;  1.06 

 
.560 

 
 

.584 
 

 
265 

 
 

258 

3 Mean, (mean)2 

 
√D 7 -176.63 + 0.0101 s5 + 12.147 b2 - 0.266 s2  

+ 0.019 s7 + 6.540 b4 - 0.050 s4 - 3.035 b5 
 

.877 
 

3.5+1.02  ;  1.02 .817 
 

171 

4 Ratios & difference 
to sum ratios 
 

√D 5 
 
 

160.0 - 27.9 r57 - 153.6 r14 + 58.8 d17 
 - 33.3 r47 + 146.6 r15 
 

.881 
 

2.8+1.02  ;  1.02 .832 
 
 

164 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

√D 9 59.21 - 1.29 b5 - 169.32 b7c + 0.130 b7v  
-34.37 b4c + 0.508 b4 + 35.46 b5c + 1.42 b7  
- 0.0715 b1v + 37.68 b1c 
 

.888 
 

33.9+0.96  ;  1.00 .878 
 

139 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

√D 8 312.05 - 72.85 r14 + 0.260 b3 - 0.520 b2s  
+ 244.92 ds15 - 30.45 r57 - 165.42 ds25  
-0.716 rh125 - 0.158 rh125s 
 

.945 
 

5.4+1.00  ;  1.01 
(Fig 13D) 

.924 
 

111 

  *   Intercept + slope; slope when forced through origin 
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Table 4.12  Summary of Estimated Census Collection District Populations  
Based on TM Data Aggregated over Census Collection Districts  

 
Ballarat Statistical District 

(n=138) 
Ballarat urban area 

(n=122) 
Model 
Type* 

Class of 
 predictors 

Slope 
(forced) 

R2 s Mean 
% error 

Median 
% error 

Est. tot. 
(% error**) 

Slope 
(forced) 

R2 s Mean 
% error 

Median 
% error 

Est. tot. 
(% error**) 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
-.002 

 
 

.12 
 

 

 
.02 

 
 

.00 

 
259 

 
 

259 

 
553.6 

 
 

185.9 

 
31.0 

 
 

32.9 

 
-33519 

(-142.3%) 
 

151019 
(+91%) 

 

 
.57 

 
 

.77 

 
.26 

 
 

.29 

 
225 

 
 

221 

 
83.2 

 
 

72.4 

 
28.5 

 
 

30.5 

 
88178 

(+26%) 
 

74832 
(+7%) 

3 Mean, (mean)2 

 
.66 .10 246 47.6 24.1 89094 

(+13%) 
.78 .32 216 33.5 20.0 74811 

(+7%) 
4 Ratios & difference 

to sum ratios 
 

.58 .15 238 57.3 20.9 91992 
(+16%) 

.85 .34 213 37.7 19.4 71992 
(+2%) 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

.28 .01 257 93.0 23.0 111574 
(+41%) 

.97 .49 186 36.5 21.0 68805 
(-2%) 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

.58 .18 235 39.4 17.4 89849 
(+14%) 

.94 .56 175 28.2 13.6 70615 
(+0.6%) 

 
*    As in Table 4.10, the dependent variable for model type 1 was D, and for all other model types √D 
** Ground truth populations are: BSD 79179; Urban 70222  
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Table 4.13  Summary of Estimated Census Collection District Dwelling Counts 
Based on TM Data Aggregated over Census Collection Districts  

 
Ballarat Statistical District 

(n=138) 
Ballarat urban area 

(n=122) 
Model 
Type* 

Class of 
 predictors 

Mean 
% error 

Median 
% error 

Est. tot. 
(% error**) 

Mean 
% error 

Median 
% error 

Est. tot. 
(% error**) 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
720.9 

 
 

231.6 

 
32.7 

 
 

37.5 

 
-18649 

(-169.6%) 
 

55070 
(+49%) 

 
91.0 

 
 

77.7 

 
28.0 

 
 

29.5 

 
31569 

(+30%) 
 

26645 
(+9%) 

3 Mean, (mean)2 

 
63.2 22.9 32811 

(+22%) 
 

33.9 19.6 25237 
(+4%) 

4 Ratios & difference 
to sum ratios 
 

57.9 18.7 31507 
(+17%) 

37.5 16.0 25215 
(+3%) 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

103.3 21.6 36911 
(+37%) 

34.3 18.5 24104 
(-0.1%) 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

36.9 16.0 29300 
(+9%) 

23.7 15.4 24503 
(+0.6%) 

 
 
*    As in Table 4.11, the dependent variable for model type 1 was D, and for all other model types √D 
** Ground truth dwelling numbers are: BSD 26971; Urban 24368  
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Figure 4.1  Population and Dwelling Density Estimates  
for 138 Census Collection Districts: 

Ground Truth vs. Remote Sensing Estimates from Base and Enhanced Models 
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The level of accuracy achieved with the most complex models is rather better than the best of 

the models fitted to 47 suburbs of Harare by Webster (1996) using a similar methodology but a 

different suite of  predictors.  It is comparable to the accuracy of a 7-variable model Webster 

fitted to 65 Cardiff grid squares using yet another different suite of 70 texture variables.  A 

second model reported by Webster for the Cardiff data cannot be assessed comparatively, 

because no adjustment to R2 was reported for its logarithmic form nor for the fact that its 

intercept was forced to zero (see Sections 2.8.3, 2.11.7). 

The “mechanism” of the models derived in this chapter, why these particular linear 

combinations of these particular spatially aggregated and averaged spectral characteristics 

should correlate highly with populations, is conjectural.  It may be possible to relate the 

structure of these equations to reflectance properties of materials and combinations thereof, but 

one must always exercise extreme caution in placing interpretations on individual regression 

coefficients in a multivariate context.  As has already been noted, there may be many other 

alternative combinations of variables which would work almost as well on this set of data, and 

perhaps better on a slightly different set of data.   
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In models based on CD aggregates, this problem of capitalisation on chance is exacerbated by 

the relative paucity of aggregated observations.  In the present instance, a total of 116 

explanatory variables has been considered and assessed on the basis of a mere 138 observations.  

There is also the issue of the ecological fallacy; the presence of a particular relationship between 

population and spatially aggregated and averaged spectral characteristics does not imply that a 

similar relationship holds at the level of individual pixels or individual dwellings.  Considering 

these caveats, a question that can be more readily addressed than “what is in the black box” is 

“how well does the black box work in other contexts”.   The beginnings of an answer to that 

question will be found in Chapter 7. 

 
4.7  SUMMARY 
 
In this chapter, beginning from the most basic prediction model, substantial improvements were 

achieved in the estimation of CD population and dwelling densities and counts on the basis of 

CD aggregates of remote sensing indicators.  From the many models tested, six representative 

models were chosen (for each of population and dwelling density) for further testing on the 

secondary image.  The first was the simplest baseline model, with an untransformed dependent 

variable and the 6 TM band means as predictors.  The other 5 all utilised the square root of the 

density, and involved progressively more complex CD aggregate functions of the TM bands: 

basic means; squares of means, ratios of means, variation measures; and means and variation 

measures of selected pixel-level spectral transformations. The effective R2 values of these 

models ranged from .54 to .84 for population density, and from .56 to .92 for dwelling density.  

The three most complex models produced quite accurate estimates of total population and total 

dwellings for the Ballarat urban area (all correct to within 3%), but total population and total 

dwellings for the low density rural sections and hence for the whole study area were 

substantially overestimated by all models.   

The general shortcomings of the aggregate-based approach which were outlined in Section 1.3.2 

were brought into sharper focus by the foregoing analysis.   Firstly, because of the small 

effective sample size associated with the aggregate approach, the improvements in predictive 

accuracy bought at the price of wide net-casting and lack of parsimony were likely to prove 

illusory when subjected to external validation.  Secondly, the sacrifice of detailed spatial 

information particularly within the more extensive low density CDs left no way to respond to 

the problem of over-estimation in these areas.  The conclusion that the aggregate-based 

approach was likely to prove a blunt and limited instrument strongly motivated a change to the 

pixel-based approach of Chapter 5. 
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Chapter 5 
  
Estimates Based on Individual Pixels 
 
5.1 INTRODUCTION 
 
As an alternative to the use of spatially aggregated data discussed in Chapter 4, regression 

analyses were investigated for estimating the population of each pixel, based on the spectral 

responses of individual pixels.  Some conceptual issues regarding the modelling of the notional 

residential population associated with a single pixel have been addressed in Section 2.8.4.  

Section 5.2 reports a straightforward regression analysis on a random sample of all pixels in the 

image, with the basic 6 TM bands as predictors.  This approach was found to be quite 

inadequate unless terms were included to distinguish a priori between urban and non-urban 

pixels, and so was not taken further.  In Section 5.3, a classification step is introduced, and a 

two phase classification and regression procedure based on just the 6 TM bands is reported.  

The obtained population estimates were aggregated to CD level and compared to ground truth 

CD figures.  Section 5.4 describes the selection of a suite of spectral transformations which 

seemed to have the potential for improving population estimates (the use of these was also 

reported on in Chapter 4), and also a number of spatial transformations designed to provide 

information about spatial variation in the immediate neighbourhood of each pixel (i.e. image 

texture).  Sections 5.5 and 5.6 describe the incorporation of these transformations at the 

classification stage and regression stage respectively.  Section 5.7 describes the implementation 

of an ancillary improvement strategy - iterative refinement of the initial ground truth 

populations assigned to individual pixels.  In Section 5.8, the models resulting from Sections 

5.5-5.7 are comparatively evaluated by aggregating population estimates to the CD level and 

comparing the results with ground truth values.  In Section 5.9,  logarithmic and square root 

transformations of the dependent variable, which had been used with some success in the CD 

aggregate modes of Chapter 4, were applied at the pixel level.  Four pixel-based models were 

ultimately selected for further testing on the secondary image.  In Section 5.11, the reasons why 

the chosen models were all of simple linear form are considered. 
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5.2 A BASIC PIXEL-BASED REGRESSION MODEL  
 
As a preliminary, a pixel-based regression model was fitted using only 6 predictors - the 6 

untransformed TM bands. 

This served the twofold purpose of developing the procedures and of providing some 

preliminary indication of whether this methodology was inherently superior to the CD average 

reflectance approach described in Chapter 4. 

A 1 in 500 random sample1 of 1398 pixels in the primary study area was selected for regression 

analysis.   At the same time the number of pixels in each CD was counted. An imputed ground 

truth population pg was calculated for each pixel by dividing the CD population Pg (estimated 

using the methods discussed in Chapter 4) by the number of pixels.  This is based on an 

assumption of constant population density across all the pixels in a particular CD, and as such is 

quite unrealistic, especially for the large rural CDs.  Subsequently these estimates were refined 

(see Sections 5.3 and 5.7). 

A stepwise regression analysis (see Section 2.8) of estimated pixel population pg on the 6 TM 

bands resulted in all bands except band 2 being selected.  The final prediction equation (with 

variables in order of entry) was: 

 gp̂ =  0.0237 + 0.0298 b1 - 0.0212 b3 + 0.00336 b4 - 0.0120 b5 + 0.0222 b7 

with s = 0.3461  R2   = .258 

The fit of this model was extremely poor.  A plot of ground truth values vs. estimated values 

and a normality plot of residuals indicated pronounced skew in the imputed population 

distribution and so a logarithmic transformation was applied to clarify the nature of the 

underlying problems.  Stepwise analysis resulted in the following prediction equation (with 

variables in order of entry):  

log gp̂  = - 1.867 - 0.0220 b5 + 0.0434 b7 + 0.0107 b4 + 0.0404 b1 - 0.0401 b3  

with s = 0.5485   R2   = .264 

Whilst the overall fit was no better, a plot of ground truth values vs. estimated values for this 

model clarified the central problem: the very different population densities in the rural and 

urban areas.  To explore the extent to which explicit modelling of this factor could improve the 

fit, a dummy or indicator variable for rural/urban difference was added, together with 

multiplicative interaction terms, and stepwise analyses performed again for both untransformed 

and logarithmic models.  In the resulting prediction equations the  coefficient of the indicator 

                                                 
1   See Section 2.11.3 for a discussion of sample sizes. 
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variable “rururb” represents the average difference in the dependent variable between rural and 

urban areas, and the variables suffixed with ”ru” represent the corresponding differences in the 

coefficients of the various TM bands; in effect separate regression relationships for urban and 

rural areas are represented in a single equation.   

The prediction equations (with variables in order of entry) are: 

gp̂  = 1.258 - 1.237 rururb + 0.00867 b1 - 0.0212 b5 + 0.0212 b5ru  - 0.00908 b1ru + 

0.0289 b7 - 0.0288 b7ru  

with s = 0.2513       R2  = .610 

and 

log gp̂  = - 0.162  - 1.679 rururb - 0.0251 b1ru + 0.00532 b4ru + 0.00768 b1 - 0.00312 b5 

+ 0.00866 b7ru 

with s = 0.2696       R2  = .822 

The R2 values showed a substantial improvement. As well as the overall difference in 

population density, the significant interaction terms indicated that the relationship between 

imputed population and TM reflectances is different in the urban and rural areas, which is also 

apparent in the plot of ground truth values vs. estimated values for the logarithmic model.  It 

was also apparent from the plots that most of the improvement in the fit was associated with the 

rural/urban differences; within each of these groups the relationships were not strong.  Clearly 

the crude broad-brush manner in which CD ground truth populations had been equally 

distributed amongst all pixels was likely to be a major contributing factor, particularly with CDs 

with low population density.  Accordingly, it was decided to persevere no further with this 

broad-brush approach, but rather to move immediately to a two-stage methodology with an 

initial classification stage.  

 
5.3 CLASSIFICATION OF PIXELS FOLLOWED BY REGRESSION 
 
5.3.1 Supervised land use classification: categories and training sets 
 
The essential aim of the classification phase of the study was to distinguish residential land use 

from all other categories.  Nevertheless, it was (correctly) anticipated that better discrimination 

might be achieved if other land uses/ land covers were separated into relatively homogeneous 

categories. 

Accordingly, the twelve broad categories listed in Table 5.1 were defined.  Five were land use 

categories pertaining to the (generally urban) built environment.  The other seven were land 

cover categories pertaining to rural areas and urban open space.  
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Table 5.1  Categories of Land Use and Land Cover 
 

Residential 
Industrial 
Commercial 
Public use 
Road 
Bare ground: dark coloured soils 
Bare ground: light coloured soils 
Dry grass, pasture, crops 
Green grass, pasture, crops 
Native eucalypt forest and scrub 
Pine plantation 
Water 

 
For all categories except residential, training sets were selected visually using local knowledge 

and a quasi-natural colour RGB image of the study area.  In the case of the residential category, 

the training set consisted of the 25 urban CDs for which more than 90% of the total CD area 

was statutorily zoned as residential in 1984 (Harvey and Taylor, 1984). 

 
5.3.2 Initial classification based on the 6 TM bands 
 
On the basis of the selected training sets, each pixel in the image was classified into one of the 

12 land use categories, using a maximum likelihood classification based on all 6 TM bands.  

There was no attempt at this stage to select the most discriminating variables. 

The resulting classification was displayed using a 12 colour pseudocolour display (see Image 3).  

Whilst some classes were not well separated (e.g. industrial and commercial), the residential 

class appeared to be reasonably well delineated in the urban areas.  However, this was much less 

so in the rural areas, where a number of features including many roads, some paddocks, and 

even a swamp were classified as residential. 

It appeared that residential areas are characterised not only by the reflectance levels (i.e. colour) 

of individual pixels, but also by the mottled spatial pattern of neighbouring pixels. 

As a result, an investigation was begun into texture measures.  (See Section 2.5 for theoretical 

development.) 

Notwithstanding the indifferent quality of this preliminary classification, the regression 

modelling phase was proceeded with. 

The pixel classifications were saved as a new data band, and a 1 in 50 random sample of pixels 

classified as residential (1402 pixels) was selected for regression analysis.  At the same time, a 

count was made of the number of residential pixels in each CD.  An imputed ground truth 

population pg was calculated for each pixel by dividing the estimated CD population Pg by the 
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number of residential pixels.  This is based on an assumption of constant population density 

throughout the residential pixels of each CD. 

A stepwise regression analysis of estimated pixel population pg on the 6 TM bands resulted in 

all  bands except band 4 contributing significantly to the regression model.  The final prediction 

equation (with variables in order of entry) was  

  gp̂ =  0.928 + 0.0890 b1 - 0.0405 b5 - 0.134 b3 + 0.0656 b7+ 0.109 b2 

with s = 0.862    R2  = 0.444 

 
5.3.4 Application to the full image: population density estimates 
 
The regression equation obtained was used to calculate a population estimate for every pixel 

classified as residential in the full image.  All pixels classified as non-residential were assigned 

zero population.  The resulting data band was displayed in a pseudocolour display (see Image 7) 

which, since the pixels are of constant size, can be interpreted as population density.  This 

display has similar visual characteristics to the residential classification.  It conforms quite well 

with expectations in the urban areas, but population is clearly over-estimated in many parts of 

the rural area. 

 
5.3.5 CD population estimates: preliminary evaluation of the model   
 
Using the CD identification band, the pixel population estimates were aggregated to produce 

satellite-based population estimates PS for each CD.  These were divided by CD areas to 

produce CD population density estimates DS. The  two sets of estimates were compared with the 

corresponding ground truth figures PG and DG using the graphical and analytic methods of 

Section 4.5.  The R2 values obtained were .802 for population density and .163 for population.  

The result for population density was quite promising, but as was found in Chapter 4, the 

overestimation of low densities in the large rural CDs led to greatly inflated population 

estimates and the low value of R2 

A more detailed examination of this basic model is delayed until Section 5.6.  We now consider 

a number of strategies which were investigated for improving upon it.  

 
5.3.6 Strategies for improving the model   
 
It was considered that the basic classification/regression approach was limited by at least four 

factors:   
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• inaccuracy of residential/non-residential classification 

• weakness of the linear relationship between population and the untransformed TM bands. 

• inaccuracy of imputed pixel populations. 

• scale effects, especially the discontinuity between rural and urban densities. 

These factors are addressed in the following sections by: 

Extending the set of variables used for both classification and prediction by incorporating 

spectral and spatial transformations at the pixel level. 

Improving the regression modelling by iterative refinement of the imputed ground truth pixel 

populations.  

 
5.4 DATA TRANSFORMATIONS  
 
5.4.1 Spectral domain transformations 
 
There was no a priori reason to believe that the relationship between population and spectral 

response should be linear (see Section 1.3.2).  A number of standard spectral domain 

transformations (see Section 2.4) were applied to the 6 TM bands, giving rise to 61 derived 

variables.  These are summarised in Table 5.2. 

A band difference to band sum ratio is a monotonic mapping of a band-to-band ratio from (0,∞)  

onto (-1,1).  A hue transformation can be regarded as an extension of the 2 dimensional linear 

scale of the difference-to-sum ratio to a 3 dimensional circular scale representing the relative 

weightings of three bands.  

 
Table 5.2  Summary of Spectral Domain Transformations 

 
Generic 

name 
Number of  
variables 

Description 
 

nbi   6 normalised band 
rij 15 band to band ratio 
dsij 15 band difference to band sum ratio 
PCi   6 principal component 
rHSI123   3 rectangular hue/saturation/intensity: bands 1,2,3 
rHSI125   3 rectangular hue/saturation/intensity: bands 1,2,5 
tHSI123   3 triangular hue/saturation/intensity: bands 1,2,3 
tHSI125   3 triangular hue/saturation/intensity: bands 1,2,5 
cHSI123   3 cylindrical hue/saturation/intensity: bands 1,2,3 
cHSI125   3 cylindrical hue/saturation/intensity: bands 1,2,5 
TVI34   1 transformed vegetation index: bands 3,4 
Total 61  

 
 



ESTIMATES BASED ON INDIVIDUAL PIXELS 

 

103

 

5.4.2 Preliminary screening of potential discriminators/predictors 
 
Because of disk storage constraints it was decided to visually screen the derived variables before 

proceeding to the regression analysis.  This was done for the practical reason that the 

1412×1008 pixel primary test image required almost 1.5 Mb per band (1 byte integer) for the 6 

basic data channels, and 6 Mb per band (4 byte floating point) for the derived variables.  There 

would be a similar further storage requirement for each spatial transformation at the next stage 

(see Section 5.5.3).   

The screening criterion used was the extent to which each variable could discriminate between 

known residential and non-residential areas.  This is related to the classification phase rather 

than the regression phase, reflecting the fact that visual qualitative relationships are more easily 

assessed visually than quantitative ones.  It was judged that any variable which was unable to 

discriminate at a gross qualitative level would be unlikely to contribute more finely detailed 

quantitative information.  

Another limitation of such a screening is that it is univariate, whereas the following analyses 

would be multivariate.  It is conceivable that a variable which does not contribute a lot of 

information in isolation may make an important incremental contribution in conjunction with 

other variables.  Nevertheless, resource limitations dictated that such a screening be undertaken.   

Each variable was displayed in turn in a pseudocolour image, with a variety of standard colour 

enhancement transformations applied to the image histogram.  These included: 

• 100% histogram stretch: actual input data range is linearly mapped onto the full 1-255 

display range 

• 99% trim: the bottom 0.5% of values are set to 1, the top 0.5% to 255, and the remainder 

linearly stretched 

• 95% trim: the bottom 2.5% of values are set to 1, the top 2.5% to 255, and the remainder 

linearly stretched 

• histogram equalisation: a piecewise linear transformation resulting in an approximately 

uniform distribution of displayed colours 

• Gaussian equalisation: a piecewise linear transformation resulting in an approximately 

Gaussian distribution of displayed colours 

• interactive user-defined piecewise linear transformation: enables the user to selectively 

enhance the colour sensitivity in selected data ranges 

• interactive thresholding: an extreme case of the previous method: a user-specified stepped 

transformation which results in a classification image based on ranges of values of a 

single variable.  
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Of the raw TM bands, only band 5 showed any substantial discrimination capacity.   

Nevertheless all 6 raw bands were retained in the analyses which followed, in recognition of the 

widely accepted hierarchical principle that models containing complex terms should also 

include the simpler terms from which they have been generated. 

Of 55 derived variables, 37 were assessed as having little discriminating power and were 

discarded. 

Two further variables, the fourth and fifth principal components, discriminated moderately well, 

but it was decided to exclude these variables on the grounds that principal component structure 

is largely determined by the content of a particular image, and so a procedure based on a 

particular principal component is unlikely to be robust when applied to other images. 

The remaining 14 transformed variables are listed in Table 5.3.  As the third column of the table 

indicates, all 14 variables exhibited characteristic levels in residential areas, though the strength 

of the discrimination varied.  The particular characteristic level within the distribution of 

variable values was different for different variables, but in each case, residential areas were 

characterised by intermediate rather than extreme values.  This has implications for regression 

modelling, since it suggests that any relationship between these variables and population is 

likely to be non-linear. 

 
Table 5.3  Selected Spectral Transformations 

 
Variable     Description Visually assessed degree of discrimination 

between residential and non-residential areas 
  Level  Texture  
   Spatial 

SD 
Spatial 
COV 

PDTI 

nb1 normalised band 1 high discernable - discernable 
nb2 normalised band 2 moderate - - - 
r14 ratio band 1 to band 2 moderate discernable - discernable 
r15 ratio band 1 to band 5 high moderate - discernable 
r25 ratio band 2 to band 5 moderate - - discernable 
r57 ratio band 5 to band 7 discernable - - - 
ds15 diff/sum ratio bands 1, 5 high discernable - discernable 
ds25 diff/sum ratio bands 2, 5 moderate - - - 
ds35 diff/sum ratio bands 3, 5 discernable - - - 
ds57 diff/sum ratio bands 5, 7 discernable - - - 
chue123 cylindrical hue bands 1, 2, 3 discernable - - discernable 
chue125 cylindrical hue bands 1, 2, 5 moderate discernable - moderate 
rhue123 rectangular hue bands 1, 2, 3 discernable - - - 
rhue125 rectangular hue bands 1, 2, 5 moderate - - discernable 

 
Many of the variables in Table 5.3 involve a comparison between, on the one hand one or other 

of the relatively short visible wavelengths (bands 1, 2, 3) and on the other hand the longer 

infrared wavelengths (bands 4, 5, 7).  The strongest discriminators were all ratios involving 
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band 1 in the numerator and band 5 in the denominator.  Water, which reflects energy in the 

visible wavelengths but not in the infrared (Harrison and Jupp, 1989), has the highest values on 

these variables.  Vegetation and bare soil generally have higher reflectances in the band 5 range 

than in the band 1 range, and hence have relatively low values on these variables.  This is 

apparent in the pseudocolour image of variable ds15 (Image 5) where water is shown as red 

(high values) and the rural areas as blue (low values).  The commercial and industrial areas of 

the urban area are also red, indicating a preponderance of constructed surfaces such as bitumen 

and roofing materials which have relatively strong reflectivity at shorter wavelengths (Forster, 

1980; Curran, 1985), whilst in the residential areas intermediate (yellow) values predominate, 

indicating a mixture at sub-pixel scale of built and natural surfaces.  Many of these variables 

were also observed to exhibit a more mottled texture in residential areas than in other areas, 

which is consistent with a mixture of built and natural elements at the scale of 30m pixels. 

 
5.4.3 Spatial domain transformations 
 
To explore the aspect of inter-pixel variation more closely, four texture measures (spatial filters) 

were calculated for each of the 6 TM bands and the 14 derived variables in Table 5.3.   

These measures were spatial variance, spatial standard deviation (SD), spatial coefficient of 

variation (COV), and the pairwise difference texture index (PDTI) defined and discussed in 

Section 2.5.  All were based on a 3×3 pixel neighbourhood.  Each texture measure was 

displayed in a pseudocolour image in which the level of the displayed texture variable 

represented the amount of local variation in the underlying variable. 

The spatial variance and standard deviation are standard and widely used texture measures. The 

coefficient of variation, by expressing the standard deviation in proportional terms, removes any 

scale dependence.  The pairwise difference measure was used because simulation trials (see 

Section 2.5) had indicated that it might distinguish residential areas better than the other 

measures. 

Examination of the 80 (4×20) resulting pseudocolour images showed that none of the 

coefficients of variation were useful as discriminators, but some measure of discrimination was 

achieved by one or more of the other texture measures in the case of 10 variables: TM bands 1 

and 2 and eight of the derived variables (see Table 5.3 and Image 6).  

 As the variance and standard deviation contain equivalent information and either can be 

generated from the other, only the standard deviations were stored for future use.  Hence,  20 

(2×10) spatial transformation variables were added to the 20 variables from Section 5.4.2., 

resulting in 40 candidate discriminator/predictor variables in all.  These were calculated and 

stored for each pixel in the full image. 



ESTIMATES BASED ON INDIVIDUAL PIXELS 

 

106

 

5.4.4 Provision for non-linearity and interactions 
 
The 40 variables identified in Section 5.4.3 were augmented in two ways.  Firstly, because the 

residential class was represented by intermediate values on most of the derived variables, it was 

decided to incorporate square terms for each of the 6 basic bands and the 14 spectral 

transformations at the regression stage.  

Secondly, because residential areas were characterised by a combination of both the level and 

the spatial variation or texture of some of the variables, it was decided to allow for the 

possibility of interactive effects. Within the framework of linear modelling, the standard 

procedure is to incorporate cross product terms (see Section 2.10), and so 20 such terms were 

calculated, with each of the 10 variables for which texture measures had been calculated being 

multiplied by its two texture measures.   

This completed the suite of 80 variables, of which 40 were calculated for the whole image, a 

further 20 (the interaction terms) for both discriminant analysis and regression analysis samples, 

and the final 20 (the square or quadratic terms) only for the regression analysis samples, since 

linearity of between group differences is not a requirement in discriminant analysis. 

 
5.5 CLASSIFICATION USING TRANSFORMED EXPLANATORY 

VARIABLES  
 
5.5.1 Selection of classification variables 
 
The final selection of classification variables was made by applying stepwise discriminant 

analysis (see Section 2.7) to a 1 in 10 sample of pixels (7486 pixels) from the training sets 

described in Section 5.3.  The sample size was designed to ensure that the smallest classes, such 

as roads, were adequately represented.  

Five subsets of the 60 variables described in the previous section were explored in a series of 

stepwise discriminant analyses.  Decisions made in the light of emerging trends resulted in five 

classification structures being explored.  These variable subsets and classification structures are 

described and classification results summarised in Table 5.4. The variables selected from subset 

D are listed in Appendix F. 

In each case, after stepwise selection of variables and determination of linear discriminant 

functions, a maximum likelihood classification was made of all pixels in the sample set.  Since 

the actual class of each training set pixel was known, the allocated classes could be compared 

with the actual classes in a classification or confusion matrix. Table 5.4 shows that the initial 

analysis based on the 6 TM bands and the twelve classes as defined resulted in 90% of all pixels 

and 80% of residential pixels being correctly classified. 
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Table 5.4  Summary of Stepwise Discriminant Analyses 
 

Classification structure 
1: 12 classes 2: 11 classes 3: 10 classes 4: 10 classes 

 
Variable 

subset v CA% CR% v CA% CR% v CA% CR% v CA% CR% 
A 6 6 90 80 6 91 85 6 92 84 6 93 84 
B 20 16 91 76 20 92 83 20 91 85 20 93 85 
C 14 10 80 47 14 89 71 14 87 67 14 88 67 
D 40 37 92 87 37 93 92 37 92 91 37 93 90 
E 60 48 93 86 50 93 92 50 93 91 50 94 91 

 
Key: 
Variable subsets Classification structures 
A 6 TM bands 1 12 classes as defined in Table 4.10 
B As for A + 14 spectral transformations 2 Public use class omitted 
C 14 spectral transformations only 3 Commercial, industrial & public use combined 
D As for B + 20 spatial transformations 4 Comm. & ind. combined, public use omitted 
E As for D + 20 interaction cross-product terms   
 
v  = number of variables selected by the stepwise procedure 
CA% = % of all classes correctly classified (rounded to nearest %) 
CR% = % of residential class correctly classified (rounded to nearest %) 
 
Progressive inclusion of transformed variables resulted in incremental improvements to both 

classification rates.  The lowest rates occurred with model C, the only one not in the hierarchical 

sequence.  This suggests that between them the most discriminating 10 of the 14 spectral 

transformations do not contain as much information as the 6 basic bands.  

It was observed that much of the misclassification occurred between the four main “built 

environment” classes: commercial, industrial, public use and residential.  The public use class in 

particular, consisting of hospitals, schools, and Sovereign Hill Historical Park, was not well 

discriminated, being almost entirely misclassified into one of the other three classes.  There was 

also considerable confusion between industrial and commercial.  Accordingly three variants of 

the classification structure were investigated; firstly the public use category was omitted 

altogether, and the pixels in that class regarded as “unknowns” to be classified; secondly, 

commercial, industrial and public use were combined into a single category; and thirdly, 

commercial and industrial were combined and public use omitted.  Table 5.4 shows that whilst 

these variations did not change the overall classification rate very much, the classification of 

residential pixels was improved in each case by something in the order of 5 percentage points.  

However, as in any classification scheme, there is a tradeoff between two types of 

misclassification. The aim of maximising the correct classification of residential pixels has to be 

balanced against the aim of minimising the incorrect classification of non-residential pixels as 

residential.  Examination of the confusion matrices (an example is given in Appendix F) showed 

that most of the increase in the correct residential classifications were pixels which under 

structure 1 had been classified as road or grass.  Conversely, there was an increase in the already 

substantial proportions of commercial, industrial and public use pixels classified as residential.  
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In addition, a number of bare ground pixels were classified as residential under structures 2-4, 

which was not the case under structure 1. 

These considerations suggested that the increase in the classification rate for residential pixels 

under structures 2-4 was probably spurious (the pixels concerned probably were actually road or 

grass within residential areas), whilst the cost, in terms of misclassification of other pixels in 

industrial, commercial and rural areas as residential, was real.  Accordingly, it was decided to 

proceed on the basis of the original 12-class structure.     

The object of this exercise was to maximise the separation of one class from all of the others.  

However, the discriminant analysis criterion, like the maximum likelihood classification 

criterion, is to maximise the separation of all the classes.   The best overall separation may not 

give the best separation of residential vs. the rest.  As a long shot, in the light of the discussion 

of spectral characteristics in Section 5.4.2, a fifth scheme was tried, with just three classes: 

“Residential”, “Water” and “Other”.  However, as expected, averaging the other 10 classes in 

multivariate space resulted in an over-arching class which could not be distinguished from the 

residential class at all, and so the 12-class structure was proceeded with.   

There were strong similarities in the lists of variables chosen by each of the stepwise analyses 

for the hierarchy of models B, D, and E.  In particular, the first 4 variables selected in each case 

were ds25, b5, b7 and b4.  This being so, it was decided to proceed to the next stage 

(classification of the full image) not on the basis of sets of variables arising out of all of the 

analyses of models A-E, but rather to use a cumulative sequence of subsets of variables from 

model D (see Appendix F for a listing of the variables).  Since the initial set of discriminators 

was the set of 6 TM bands, it was decided by way of comparison to examine the first 6 variables 

from model E, then the first 10, 15, 20 and so on.  The classification rates for these models are 

shown in Table 5.5.  

It is interesting to note that of the four most consistently selected discriminating variables, the 

first two (ds25 and b5) were identified in the preliminary visual screening (Section 5.4.2) as 

having discriminating potential, but the other two (b7 and b4) were not, illustrating the point 

previously made that univariate screening cannot predict how variables will interact in a 

multivariate context.  

The remaining 21 variables are a jumbled mixture of most types of variable.  Again, as has 

previously been discussed, the exact composition and disposition of variables in the list would 

probably be quite sample-dependent, but it was hoped that with such a large training sample the 

discriminating capability would be reasonably robust. 
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Table 5.5  Summary of the Selected Sequence of Discriminant Analyses 
 

Variables  CA% CR% 
6 TM bands 90.3 79.7 
First 6 variables 88.4 73.9 
First 10 variables 90.7 79.4 
First 15 variables 91.4 81.5 
First 20 variables 92.1 83.9 
First 25 variables 92.5 87.4 
First 30 variables 92.5 86.9 
First 37 variables 
(limit of stepwise selection) 

92.6 86.9 

        CA% = % of all classes correctly classified  
        CR% = % of residential class correctly classified  

 
Another issue in classification is that of the incorporation of prior probabilities (see Section 

2.6.1).  In the absence of any prior information about the relative abundance of the various 

classes, the default is to assume that they are equally likely to occur.  A common alternative 

approach is to set the prior probabilities proportional to the sample sizes in the training set.  This 

approach was examined but discarded for three reasons:  firstly, in all cases except the 

residential class, the training samples were visually chosen convenience samples, not random 

samples nor proportional samples from the classes;  secondly, the relative preponderance of the 

various classes is not the same for different images; and thirdly, the rates and patterns of 

misclassification were not substantially nor consistently changed.  It was decided henceforth to 

use equal prior probabilities. 

 
5.5.2 Classification of the image 
 
Clearly there was little change in classification rates beyond 25 variables. Consequently, only 

the first 25 selected variables were calculated and stored for each pixel in the full image.   

For each of the subsets of these variables listed in Table 5.5, each pixel in the image was 

classified into one of the 12 land use categories, using a maximum likelihood classification 

based on the basis of the selected training sets.  

The resulting classifications were displayed using a 12 colour pseudocolour display.  It was 

decided that the only discernible change relative to the classification based on the 6 TM bands 

occurred when 25 variables were employed, at which point there was a noticeable reduction in 

the number of pixels in particular rural areas which were incorrectly classified as residential (see 

Image 4). Nevertheless, it was decided to proceed to the regression stage using the 4 

classifications shown in boldface in Table 5.5.  
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5.6 REGRESSION USING TRANSFORMED EXPLANATORY VARIABLES  
 
5.6.1 Selection of regression models 
 
Each of the 4 pixel classifications was saved as a new data band.  In each case a 1 in 50 random 

sample of pixels classified as residential was selected for regression analysis (sample sizes of 

1402, 1499, 1340 and 1364).  Each time, a count was made of the number of residential pixels 

in each CD, and an imputed ground truth population pg was calculated for each pixel by dividing 

the estimated CD population Pg by the number of residential pixels.  As before, this was based 

on an assumption of constant population density throughout the residential pixels of each CD. 

Stepwise regression analyses of estimated pixel population pg on various subsets of the 80 

candidate predictor variables were carried out.  The results are summarised in Table 5.6. 

Table 5.6  Summary of Stepwise Regression Analysis 
on Pixels Classified as Residential 

 
Classification variables 

6 TM bands First 6 First 15 First 25 
 

Variable 
subset v R2 v R2 v R2 v R2 

A 6 5 .444 5 .462 6 .400 6 .386 
B 20 10 .489 7 .503 7 .440 5 .406 
C 40 8 .491 7 .502 8 .449 5 .406 
D 40 10 .532 14 .559 10 .473 8 .452 
E 60 17 .559 14 .580 11 .485 11 .469 
F 80 13 .569 19 .599 11 .492 13 .489 
G 100 14 .576 24 .605 12 .489 13 .490 

 
Key: 
v = number of variables selected by the stepwise procedure 
Variable subsets 
A 6 TM bands 
B As for A + 14 spectral transformations 
C As for B + 20 squared terms 
D As for B + 20 spatial transformations 
E As for D + 20 interaction cross-product terms 
F As for E + 20 squared spatial transformations (variances) 
G As for F + 20 squared terms from B 
 
The first model in Table 5.6 is the initial classification/regression model of Section 5.3.3.  The 

evidence of Table 5.6 suggests that the investment in spectral and spatial transformations has 

paid modest dividends.  Proceeding down the first column, we see that with a classification 

based on the simplest set of variables (the 6 TM bands), increasing the range of potential 

predictors in the regression step leads to a modest increase in R2.  Proceeding across the table, 

as the number and complexity of variables used in the classification phase is increased, so the 

R2 of the subsequent regression phase is decreased.  After some preliminary diagnostic 

examinations of the regression outputs, it was decided to postpone a consideration of issues 

such as transformation of the dependent variable, and instead proceed to the next step of 
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applying the regression equations obtained to the full image. To explore the impact of the 

refinements in either or both of the classification and regression phases it was decided to carry 

forward the 4 models shown in boldface in Table 5.6.  With regard to the first of these, based on 

the 6 TM bands, it was decided for reasons which are discussed in Section 5.7.1 to retain all 6 

variables, including band 4 which did not contribute significantly to the fit.  (For details of the 

models, see Appendix F). 

 
5.6.2 Application to the full image: population density estimates 
 
The 4 regression equations obtained in Section 5.6.1 were used in turn to calculate a population 

estimate for every pixel classified as residential in the full image.  All pixels classified as non-

residential were assigned zero population.  The resulting data bands were displayed as 

pseudocolour displays.  The resulting images  were similar to Image 7 based on the first 

classification/regression model, but appeared to show some improvement in the form of less 

spurious population in rural areas. 

 
5.6.3 CD population estimates  
 
Using the CD identification band, the pixel population estimates for each of the 4 models were 

aggregated to produce satellite-based population estimates PS for each CD.  These were divided 

by CD areas to produce CD population density estimates DS. The  two sets of estimates were 

compared with the corresponding ground truth figures PG and DG using the graphical and 

analytic methods of Section 4.6.  Whilst the plots were reasonably linear in each case, the width 

of the spread and the magnitude of the R2 values both at the pixel level and the CD density level 

made it clear that for all the refinement to date, the methodology was inherently limited by the 

quality of the imputed ground truth pixel populations which formed the base on which 

everything else was built.  It was decided to investigate the iterative refinement procedure 

discussed in Section 2.9.  A discussion of the regression results is postponed until after the next 

section, where the uniterated and iterated models are compared.  

 
5.7 ITERATIVE REFINEMENT OF THE REGRESSION MODELS 
 
5.7.1 Application of the iterative procedure 
 
Each of the four chosen regression models (referred to in this section as 6/6, 6/13, 25/6 and 

25/13 reflecting the number of variables used in the classification and regression phases) was 

iterated using the procedure described in Section 2.9. A program was written which took, as 

input from Minitab, the current values of the DV (the current imputed population of each pixel 

in the tests set) and the residuals of the fitted model, summed the residuals for each CD, and 



ESTIMATES BASED ON INDIVIDUAL PIXELS 

 

112

 

output new values of the DV (new imputed populations) calculated using the adjustment 

formula (described in Section 2.9.1 and derived in Section 7.2.2).   

With regard to the first of these, based on the 6 TM bands, it was decided to retain all 6 

variables including band 4 which did not contribute significantly to the fit, the rationale being 

that it may become significant when the data was adjusted i.e. there may be an  underlying 

relationship between population and band 4 which was masked by the poor quality of the initial 

raw data estimates.  This was borne out in the implementation; after 2 iterations all 6 bands 

were significant at the .01 level and remained so from then on. 

The values of R2 and the regression coefficients of the 6/6 model after each iteration are shown 

in Table 5.7.  This illustrates two features that were common to all four models.  Firstly, in each 

case the R2 value increased sharply after the first iteration, and continued to increase 

monotonically but at an ever diminishing rate.  After about 6 iterations the magnitude of the 

increase had diminished to something in the order of one-tenth of a percentage point per 

iteration.  Secondly, the magnitude of all of the regression coefficients in this model but one 

(that of b1) also increased at an ever diminishing rate (this was also true of most but not all the 

coefficients in the other models).  This was not unexpected, considering the geometry of the 

bivariate case discussed in Section 2.9, and might be expected to lead to estimates which better 

reflect the range of variation in the population densities of individual pixels.  A corollary of this 

increased range was that the proportion of negative estimates increased with each iteration.  

Trading this off against the extent of convergence, it was decided at this point to work with six 

iterations. (This was later reviewed – see Chapter 7.) 

 
Table 5.7  Iterative Refinement of a Regression Model for Pixel Population  

based on the 6 TM bands 
 

 Iteration 
Coefficient 0 1 2 3 4 5 6 7 8 9 10 
Constant 1.033 1.161 1.357 1.556 1.736 1.889 2.019 2.126 2.215 2.289 2.350

b1 0.087 0.119 0.128 0.129 0.127 0.124 0.120 0.117 0.115 0.112 0.110
b2 0.114 0.164 0.187 0.199 0.206 0.211 0.214 0.217 0.219 0.221 0.222
b3 -0.136 -0.192 -0.215 -0.225 -0.229 -0.230 -0.231 -0.231 -0.232 -0.232 -0.232
b4 -0.003 -0.005 -0.008 -0.009 -0.011 -0.013 -0.014 -0.015 -0.016 -0.017 -0.017
b5 -0.039 -0.058 -0.068 -0.074 -0.079 -0.082 -0.084 -0.086 -0.088 -0.089 -0.090
b7 0.064 0.096 0.113 0.124 0.131 0.137 0.142 0.146 0.149 0.152 0.154
R2 0.444 0.751 0.819 0.838 0.845 0.849 0.851 0.852 0.854 0.854 0.855

% increase  69.1 9.1 2.3 0.8 0.5 0.2 0.1 0.2 0.0 0.1
 
 

Table 5.8 summarises the fit of the four models without iteration and after 6 iterations.  Note 

that in the case of the two 13-variable models, the iterative procedure was applied to the set of 



ESTIMATES BASED ON INDIVIDUAL PIXELS 

 

113

 

variables originally selected rather than the selection process being repeated at each iteration.  

The latter procedure was explored, but resulted in negligible further improvement.  

 
 Table 5.8  Coefficients of Determination for Four Regression Models for Pixel Population: 

With and Without Iterative Refinement 
 

Model  
6/6 6/13 25/6 25/13 

R2 without iteration .444 .569 .386 .492 
R2 after 6 iterations .851 .877 .834 .846 

 
 

It can be seen that whilst the iteration procedure substantially improved the fit of all four 

models, the improvement was greatest in the simpler models which utilised only the basic 6 TM 

bands in the regression phase.  Of course it must be emphasised that the substantiveness of these 

improvements was purely speculative at this stage, based as they were on optimal manipulations 

of incompletely determined data values.    

 
5.7.2 Application of iterated models to the full image: population density estimates 
 
As was described in Section 5.6.2 for the raw (uniterated models), the 4 regression equations 

obtained after iteration were each used to calculate a population estimate for every pixel 

classified as residential in the full image.  All pixels classified as non-residential were assigned 

zero population.  Again, when these were displayed as pseudocolour images (see Image 8) there 

was some evidence of further improvement in the form of less spurious population in rural 

areas.   

 
5.7.3 Some technical issues  
 
As with the aggregate models considered in Chapter 4, some problems were encountered at this 

stage with the distribution and range of estimated pixel populations.  The populations assigned 

to urban pixels under both classification schemes were symmetrically distributed with a range 

from about 0.2 to 6 persons per pixel.  However,  for various reasons (the extended nature of 

rural dwellings and associated outbuildings and the radiometric similarity of country roads and 

residential streets being obvious ones) under both classifications the number of residential 

pixels was overestimated in the low population density rural areas, resulting in assigned 

populations in the range 0.1-0.4 persons per pixel.  Because these areas were so extensive they 

contributed a substantial proportion of pixels to the sample, and the resulting mixture 

distribution was very positively skewed.  Logarithm and square root transformations of the 

dependent variable were considered but because of the difficulty of implementing the iterative 
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process (based on additive constraints) in the context of nonlinear transformations to the data, it 

was decided to postpone closer examination of this strategy until the iterative procedure had 

been evaluated.  

Another related issue was that, even with the raw linear models, the fitted population estimates 

for some pixels were negative.  As was discussed above, the iterative process increases the 

spread of the assigned pixel populations, which further exacerbated this rather counter-intuitive 

result. These negative populations were essentially caused by the over-estimation in the number 

of residential pixels in rural areas, and it was felt that in statistical terms they might constitute a 

self-compensating correction.  However, it was decided to examine the effect of setting a zero 

threshold i.e. setting all negative estimates to zero. 

 
5.8 CD POPULATION AND POPULATION DENSITY ESTIMATES: 

COMPARISON OF THE MODELS   
 
Table 5.9 and the accompanying Figure 5.1 summarise the performance of the four linear 

regression models developed, each in four variant forms: raw; iterated; thresholded; iterated and 

thresholded, in terms of their capacity to accurately estimate the population densities of the 138 

CDs in the primary study area.  Table 5.10 and Figure 5.2 present a parallel summary based on 

total population rather than population density.  

The 16 models were compared with regard to accuracy of estimates of CD density and CD 

population.  The criteria included:  

• extent of bias indicated by intercepts and slope coefficients; 
• strength of relationship, indicated by coefficient of variation R2; 
• accuracy of estimation for individual CDs, indicated by error standard deviation s, and mean 

and median relative errors; 
• accuracy of estimation of total population for the study region and the urban area; 
• overall visual assessment of plots. 

 
Four models stood out from the rest as performing consistently well on all criteria.  These were 

the iterated and iterated + thresholded variants of the 6/6 and 25/6 models.  In summary, the best 

predictive performance was achieved by a classification phase based on either the 6 

untransformed TM bands or an extended set of 25 variables, followed by an iterated regression 

based on the 6 untransformed TM bands only, and optionally followed by an adjustment of 

negative pixel population estimates to zero. 

It was concluded that whilst it is possible to model more complex relationships between 

population and reflectance characteristics of the individual residential pixels within a particular 

sample by the use of a range of spectral and spatial transformations, the refinements identified 
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and implemented in this analysis were not robust and did not translate into improved estimates 

of CD or regional aggregates.    

In particular, the spectacularly worst results were obtained for the 6/13 model, which was 

extremely volatile, producing large negative population estimates for a number of CDs.  On 

investigation, these were due in each case to a very small number of pixels with pathologically 

negative fitted values (the worst case being –192!).  Further examination showed that the most 

heavily weighted terms in this model in both positive and negative directions were some of the 

spatial variation terms, particularly those involving the pairwise difference measure.  These 

terms contributed much to the fit of the model to the data from the training set, but were also its 

downfall when distributional tails not represented in the sample data were revealed in the full 

image.  The pixels most effected were on shorelines.  They were classified as residential 

because of their spectral makeup without reference to spatial characteristics, but were then 

rather too emphatically assigned low population on the basis of the strong linear spatial feature.  

The fact that this problem did not occur with the 25/13 model is probably due to the inclusion of 

spatial characteristics at the initial classification stage. 

Table 5.9  Summary of Selected Models for Estimating Census Collection District 
Population Densities: Based on a Two-phase Pixel Classification and Regression 

Procedure 
 

Model 
type 

Number of 
classifiers 

and  
predictors 

Variant 
of 

model 

D vs. D̂  
Regression coeffts.* 
(unforced & forced) 

R2 
 

s 

      
2 6/6 Raw 

Thresholded 

Iterated 

Iterated & thresholded 

-138 + 1.54;    1.45 

-138 + 1.55;    1.45 

-41 + 1.14;    1.12 

-52 + 1.14;    1.12 

.80 

.80 

.82 

.82 

493 

493 

476 

461 

2 6/13 Raw 

Thresholded 

Iterated 

Iterated & thresholded 

 

Not calculated  

See text 

  

3 25/6 Raw 

Thresholded 

Iterated 

Iterated & thresholded 

-150 + 1.51;    1.41 

-150 + 1.51;    1.41 

-51 + 1.14;    1.11 

-65 + 1.15;    1.11 

.79 

.79 

.81 

.80 

504 

504 

490 

491 

4 25/13 Raw 

Thresholded 

Iterated 

Iterated & thresholded 

268 + 1.47;    1.67 

0 + 1.50;    1.50 

634 + 1.01;    1.37 

132 + 1.10;    1.17 

.73 

.79 

.67 

.79 

577 

504 

642 

506 

     *   Intercept + slope; slope when forced through origin.



 

 

116 

 
Figure 5.1  Population Density Estimates for 138 Census Collection Districts in the Primary Study Area: 

Ground Truth vs. Remote Sensing Estimates from Four Variants of Four Models 
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Figure 5.1  Population Density Estimates for 138 Census Collection Districts in the Primary Study Area: 
Ground Truth vs. Remote Sensing Estimates from Four Variants of Four Models 

(continued) 
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Table 5.10  Summary of Selected Models for Estimating Census Collection District Populations 
Based on a Two-phase Pixel Classification and Regression Procedure  

 
Ballarat Statistical District 

(n=138) 
Ballarat urban area 

(n=122) 
Model 
type 

Number 
of 

classifiers 
and  

predictors 

Variant 
of 

model D vs. D̂  
Regression coeffts.1 
(unforced & forced) 

R2 
 

s Mean 
% 

error 

Median 
%  

error 

Est. 
total 
pop. 

Total
% 

error2 

D vs. D̂  
Regression coeffts.1 
(unforced & forced) 

R2 
 

s Mean 
%  

error 

Median 
%  

error 

Est. 
total 
pop. 

Total
% 

error2 

                 
1 6/6 Raw 

Thresholded 

Iterated 

Iterated & 
thresholded 

443 + .225;    .693 

444 + .224;    .691 

203 + .646;    .932 

281 + .473;    .825 

.16 

.16 

.50 

.37 

237 

237 

184 

205 

53.7 

53.8 

29.5 

36.6 

29.2 

29.2 

14.9 

17.0 

80173 

80245 

79160 

85370 

+1 

+1 

-0 

+8 

196 + .845;    1.18 

196 + .845;    1.18 

134 + .806;    1.01 

140 + .790;    1.00 

.60 

.60 

.65 

.65 

166 

166 

155 

156 

32.7 

32.7 

24.7 

24.9 

26.0 

26.0 

14.0 

14.3 

54848 

54850 

66824 

67315 

-22 

-22 

-5 

-4 

2 6/13 Raw 

Thresholded 

Iterated 

Iterated & 
thresholded 

 

Not calculated  

See text 

             

 

 

 

3 25/6 Raw 

Thresholded 

Iterated 

Iterated & 
thresholded 

442 + .224;    .686 

443 + .223;    .684 

235 + .577;    .897 

325 + .394;    .780 

.17 

.17 

.44 

.31 

237 

237 

194 

215 

51.4 

51.6 

31.3 

38.8 

28.3 

28.3 

17.3 

17.8 

81147 

81239 

80888 

87062 

+2 

+3 

+2 

+10 

214 + .780;    1.14 

214 + .780;    1.14 

158 + .757;      .99 

165 + .738;      .98 

.55 

.55 

.59 

.59 

176 

176 

167 

168 

32.2 

32.2 

26.1 

26.3 

25.0 

25.0 

15.3 

16.2 

56549 

56551 

67262 

67869 

-19 

-19 

-4 

-3 

4 25/13 Raw 

Thresholded 

Iterated 

Iterated & 
thresholded 

460 + .412;    1.07 

407 + .333;    .875 

505 + .300;    1.18 

214 + .701;    1.04 

.22 

.21 

.11 

.46 

229 

230 

245 

191 

52.7 

43.9 

73.6 

26.0 

41.4 

32.5 

51.4 

16.2 

56174 

69037 

31869 

70745 

-29 

-13 

-60 

-11 

204 + 1.10;    1.57 

170 + .985;    1.31 

378 + .663;    1.52 

122 + .934;    1.14 

.59 

.62 

.27 

.64 

168 

162 

224 

158 

48.3 

32.4 

63.1 

21.7 

41.2 

28.9 

42.3 

15.4 

41134 

50271 

36340 

59254 

-41 

-28 

-48 

-16 

1 Intercept + slope; slope when forced through origin  2 Ground truth populations are: BSD 79179; Urban 70222  
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Figure 5.2  Population Estimates for 138 Census Collection Districts in the Primary Study Area: 
Ground Truth vs. Remote Sensing Estimates from Four Variants of Four Models 
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Figure 5.2  Population Estimates for 138 Census Collection Districts in the Primary Study Area: 
Ground Truth vs. Remote Sensing Estimates from Four Variants of Four Models 

(continued) 
 

0   
1   

3000200010000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

0   
1   

3000200010000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

0   
1   

180016001400120010008006004002000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

0   
1   

200010000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

 
25/6 raw           25/6 thresholded at zero    25/6 iterated         25/6 iterated & thresholded at zero 

 
 

0   
1   

200010000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

0   
1   

200010000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

0   
1   

10000-1000

1400

1200

1000

800

600

400

200

0

rspop
gt

po
p

0   
1   

150010005000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

 
25/13 raw          25/13 thresholded at zero     25/13 iterated   25/13 iterated & thresholded at zero 
 

 
 

 



ESTIMATES BASED ON INDIVIDUAL PIXELS  121 

With regard to the classification phase, the use of a range of spectral and spatial transformations 

did improve the rate of correct classifications of residential pixels in the training set, and a 

visual assessment (and the point in the previous paragraph) suggested that this did translate into 

an incrementally better classification for the whole image.  Ultimately however this too failed to 

produce improved estimates of population or population density. 

On closer inspection of the four models, it was clear that zero thresholding had the clear effect 

of inflating non-urban population estimates.   

Considering all of this, together with the principle of parsimony and in particular the notion that 

simplicity is more likely than complexity to lead to robustness, it was decided to proceed with 

the simplest 6/6 procedure i.e. to use only the 6 untransformed TM bands for both classification 

and regression. 

The regression equation is summarised in Table 5.11A.  This equation, in conjunction with a 

maximum likelihood classification based on the 6 TM bands, produced estimated population 

densities of individual CDs with R2=.82, and estimated CD populations with R2=.50 overall and 

R2=.65 in the urban areas.  The mean and median relative errors in CD estimates were 29.5% 

and 14.9% respectively for the region overall, and 22.7% and 14.0% for the urban area.  The 

total population of the study area was estimated to within 1% accuracy, and that of the urban 

area was underestimated by 5%.   

 
 
5.9 TRANSFORMATIONS OF THE DEPENDENT VARIABLE  
 
When the linear model was examined more closely (see Chapter 7) it became clear that its 

performance was best in the middle range of population densities and worst at the extremes, 

where it tended to underestimate high densities and overestimate low densities.  In the light of 

these shortcomings, and considering the positively skewed distribution of the imputed pixel 

populations, it was decided to investigate the use of square root and logarithmic transformations 

of the pixels. 

The iterative refinement procedure was appropriately modified to accommodate the 

transformations.  Linear models were estimated for the square root of the pixel population, and 

for the natural logarithm of the pixel population.  Both initial models had R2=.47 and R2
b=.41.  

Each model was refined iteratively.  Convergence to within .002 in R2
b was achieved in 5 

iterations for the square root model  (R2
b=.79) and 3 iterations for the logarithmic model 

(R2
b=.77).  The resulting regression equations are summarised in Table 5.11. 
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Table 5.11  Alternative Regression Models for Estimating the Population Associated with 
a Pixel Classified as Residential 

 
A. Linear model 

∑
=

+=
nbands

i
iipixel bccp

1
0ˆ  

Predictor 
(TM band) 

Coefficient Standardised  
coefficient 

Standard 
deviation 

t p 

Constant 2.0187  0.1361 14.83 0.000 
b1 0.12024 0.647 0.00521 23.10 0.000 
b2 0.21398    0.647 0.01407 15.21 0.000 
b3 -0.23112 -0.928 0.00816 -28.31 0.000 
b4 -0.01381 -0.069 0.00265 -5.20 0.000 
b5 -0.08401 -0.809 0.00241 -34.85 0.000 
b7 0.14158 0.732 0.00471 30.05 0.000 

R2=.82 
B. Linear model (based on zero threshold) 

∑
=

+=
nbands

i
iipixel bccp

1
0ˆ  

Predictor 
(TM band) 

Coefficient Standardised  
coefficient 

Standard 
deviation 

t p 

Constant  1.5767  0.1580 9.98 0.000 
b1 0.11343 0.683 0.00604 18.77 0.000 
b2 0.17801 0.603 0.01633 10.90 0.000 
b3 -0.18380 -0.826 0.00947 -19.40 0.000 
b4 -0.01582 -0.088 0.00308 -5.13 0.000 
b5 -0.05599 -0.603 0.00280 -20.01 0.000 
b7 0.08772 -0.508 0.00547 16.04 0.000 

R2=.75 
C. Square root model 

2

1
0 )(ˆ ∑

=

+=
nbands

i
iipixel bccp  

Predictor 
(TM band) 

Coefficient Standardised  
coefficient 

Standard 
deviation 

t p 

Constant 0.70326  0.07347 9.57 0.000 
b1 0.06782 0.754 0.00281 24.13 0.000 
b2 0.10343 0.646 0.00760 13.62 0.000 
b3 -0.11272 -0.935 0.00441 -25.58 0.000 
b4 -0.00307 -0.032 0.00143 -2.15 0.032 
b5 -0.03164 -0.629 0.00130 -24.32 0.000 
b7 0.05175 0.553 0.00254 20.35 0.000 

R2
b=.79 

D. Logarithmic model 

)exp(ˆ
1

0 ∑
=

+=
nbands

i
iipixel bccp  

Predictor 
(TM band) 

Coefficient Standardised  
coefficient 

Standard 
deviation 

t p 

Constant -2.1388  0.2633 -8.12 0.000 
b1 0.16268 0.771 0.01003 16.21 0.000 
b2 0.21593 0.578 0.02737 7.89 0.000 
b3  -0.25917 -0.920 0.01606 -16.13 0.000 
b4 0.00510 0.023 0.00511 1.00 0.318 
b5 -0.05622 -0.482 0.00472 -11.91 0.000 
b7 0.09912 0.456 0.00923 10.74 0.000 

R2
b=.77 
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As a corollary of these analyses, because of the counter-intuitive nature of the occurrence of 

negative population estimates, the modified zero-threshold iterative refinement procedure was 

also applied in the linear case.  The resulting modified linear equation is also summarised in 

Table 5.11. 

The similar form of the central linear function in each of these four models is consistent with the 

spectral relationships discussed in Section 5.4.2.  The standardised regression coefficients take 

into account the range of variation of each predictor and hence give a better indication of the 

relative contribution of each variable.  Each formula can be thought of as beginning with a 

benchmark or datum (around 2 persons per pixel in the case of the linear equation), and 

adjusting up or down according to a fairly evenly weighted comparison between on the one 

hand bands 1, 2 and 7, and on the other hand bands 3 and 5, with band 4 playing a more minor 

role.   Within pixels classified as residential, higher population is associated with higher levels 

of bands 1, 2 and 7, and with lower levels of bands 3 and 5. 

As for the earlier models examined, the regression equations were each used to calculate a 

population estimate for every pixel classified as residential in the full image.  All pixels 

classified as non-residential were assigned zero population.  When these were displayed as 

pseudocolour images there was some evidence of further improvement in the models with a 

transformed population variable, in the form of less spurious population in rural areas.   

The population densities and total populations of the 138 CDs in the primary study area  were 

also estimated.  The results are summarised in Table 5.12 and Figure 5.3.   

The original linear model performed better than the modified linear model and the other two 

models on such criteria as higher R2 values, slope coefficients near unity, and accurate estimates 

of total population.  However, when this model was applied to the secondary study area some 

questions of robustness arose, and in particular some issues relating to the negative population 

estimates it produced in areas of low population density.  The modified linear model, though it 

was developed with zero thresholding, could still produce negative estimates when applied to a 

full image, and so it held no obvious advantage over the original linear model and was used no 

further at this stage (it was revisited later in the context of a broader theoretical examination – 

see Chapter 7).  The two models involving transformations were investigated further by 

applying them to the secondary study area.  A more detailed evaluation and comparison is 

carried out in that context in Section 6.3. 
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Table 5.12  Comparison of Estimated Population Densities and Populations for Census Collection Districts1:   
Based on a Two-phase Procedure of Classification with Various Regression Models  

 
 

Statistical District Urban areas  
 
 

Model 
 

D vs. D̂  
Regression coeffts.1 
(unforced & forced) 

R2 
 

s Mean 
% 

error 

Median 
%  

error 

Est. 
total 
pop. 

Total
% 

error2 

D vs. D̂  
Regression coeffts.1 
(unforced & forced) 

R2 
 

s Mean 
%  

error 

Median 
%  

error 

Est. 
total 
pop. 

Total
% 

error2 

Population density             
  

Linear -41 + 1.14 1.12 .82 476     -59 + 1.15 1.12 .75 507   
 

 

Linear (zero threshold) -78 + 1.27 1.22 .81 482     -112 + 1.29 1.22 .75 512   
 

 

Square root 39.6 + 1.15 1.18 .79 506     72 + 1.14 1.18 .72 538   
 

 

Logarithmic 232 + .856 .956 .71 595     355 + .803 .956 .63 624   
 

 

Population             
 

 

Linear 203 + .646 .930 .50 184 29.5 14.9 79160 -0 134 + .806 1.01 .65 155 24.7 14.0 66824 -5 

Linear (zero threshold) 302 + .471 .867 .36 207 34.3 22.5 79620 +1 155 + .820 1.06 .64 158 32.8 20.6 62498 -11 

Square root 192 + .725 1.02 .49 185 29.0 17.5 72644 -8 134 + .886 1.11 .61 163 25.9 16.2 60854 -13 

Logarithmic 219 + .608 .914 .43 196 36.0 18.0 80595 +2 207 + .648 .943 .47 192 26.3 15.9 69406 -1 

1 n: Ballarat Statistical District 138; Ballarat urban 122 
2 Intercept + slope; slope when forced through origin 
3 Ground truth populations are: Ballarat Statistical District 79179; Ballarat urban 70222 
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Figure 5.3  Population Density and Population Estimates for Census Collection Districts1: 
Ground Truth vs. Remote Sensing Estimates 
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1 Ballarat Statistical District: n=138 
 
 
5.10 THE FORM OF THE MODEL 
 
It is also worth considering why, after examination of so many spectral and spatial 

transformations, a simple linear form of model was ultimately selected. 

With regard to the spectral dimensions, there is a conceptual and computational relationship 

between band differences embodied in the central linear function and the band ratios which 

were seen in Section 5.4.2 to correlate to some extent with human habitation.  Figure 5.4 

portrays the relationship between the level curves (contours) of a ratio and a difference of two 

positive variables.  The difference (y-x) ranges over (-∞,∞) with a central value of zero. The 

ratio ranges over (0,∞), with a “central” value of 1.  The level curves of the difference are 
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parallel lines, those of the ratio are radial lines.  In a restricted region of the positive x-y 

quadrant, the two measures provide similar but subtly different alternative frameworks for 

quantifying differences.  Of course, in the logarithmic model, subtraction corresponds to 

division of the untransformed data, and so differences in the linear function represent ratios of 

powers of the band values. 

Figure 5.4  Contours of Differences and Ratios 
 

 
 
  y           y 
 
 
 Direction of increase   y-x =0   Direction of increase 
           in y-x        in y/x    y/x = 1 
 
 
 
 
 
 
 
 
 
 
    0      x        0      x 
 
 
 
The multivariate linear functional form can provide a first order approximation to almost any 

spectral transformation over a limited range.  It is conjectured that the relationship between 

population and spectral characteristics may be too approximate and noisy for any higher order 

refinements to be robust.   

As to spatial transformations, none of the statistical measures employed emerged either as 

strong discriminators of residential pixels or as strong surrogates of population among 

residential pixels.  This was an unexpected result considering the visual perception of a 

characteristic mottled texture in residential areas, the promising simulation results (Section 2.5), 

and the successful use of texture measures by Webster (1996).  However, Webster’s measures 

were not localised texture measures, but rather were measures of homogeneity and pattern 

regularity (relating to urban street grids) calculated over larger areas (as in Chapter 4 of this 

report). 

With regard to the failure of the simulation results to be reflected at the image classification 

stage, the problem would seem to have two aspects.  Firstly, in a real image, linear features such 

as shorelines and rural roads are often extremely noisy and ill-defined at the local pixel level, 

and only become manifest perceptually because of their extension in one direction.  Hence even 
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with high levels of noise, the simulation conditions may have been a very simplistic 

approximation to the reality.  Secondly, even if a particular measure is able to discriminate these 

particular features well, it may be that this very specific focus is lost in the broad brush 

statistical approach of discriminant analysis and maximum likelihood classification.  The 

problem is to detect a particular class of pixels which is relatively small in number overall but 

which potentially has a disproportionate misclassification impact on the residential class, and 

hence on population estimates.    

In the present study, a methodology was developed for effectively reclassifying pixels at a later 

stage of the analysis using contextual information about average population density (see Section 

6.3). 

 
5.11 SUMMARY  
 
In this chapter a two-phase procedure of classification followed by regression modelling has 

been investigated.  Starting from the baseline of a single regression equation for all pixels, and 

with ground truth population estimates based on an assumption of uniform population density 

within each CD, two crucial steps for improving the estimation model were developed.   The 

first was an initial classification of pixels into residential and non-residential, and the second 

was the iterative refinement of the initial estimates of pixel population during the regression 

modelling stage. 

After extensive examination, it was found that the use of spectral and spatial transformations of 

the six TM bands at both classification and regression stages led to improved model fits within 

the training set data.  However these improvements were not robust, in that when they were 

applied to the whole image, they did not result in any improvement in the estimated population 

densities or populations of individual CDs, or of urban or regional totals. 

Three candidate models were selected for further investigation, all involving at their core a 

simple linear function of the six TM bands, but in two cases utilising square root and 

logarithmic transformations of the dependent variable.  The efficacy of these dependent variable 

transformations is considered further in Section 6.3. 
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Chapter 6 
 
Application of Estimation Algorithms to 
a Second Geographical Area 
 
6.1 INTRODUCTION 
 
The validity of the procedures developed in Chapters 4 and 5 was investigated by applying them 

to a second image.  The CD aggregate method of Chapter 4 is discussed (and dispensed with) in 

Section 6.2.  The individual pixel method of Chapter 5 is considered in Section 6.3.  In response 

to problems which were identified, a number of refinements were made, which are reported in 

Section 6.4. 

The secondary study area was thought to be geographically, culturally and temporally similar to 

that of the primary Ballarat study area, being an urban/rural area centred on the neighbouring 

provincial city of Geelong (see Section 3.2), taken from the same Landsat TM scene of 

February 14, 1988.  Consequently, it was expected to provide a reasonable test of validity but 

only the most moderate test of robustness (see Section 2.11.1). 

Ground truth population and dwelling data values were calculated for this second area using the 

methodology of Section 3.6 (see Appendix D).  The image was radiometrically corrected for 

haze and geometrically corrected for earth rotation skew, as outlined in Chapter 3.  It was then 

co-registered to the CD boundaries using a cubic warp based on 27 ground control points (see 

Figure 3.2) with nearest neighbour resampling. 

As for the primary image, the CD boundaries were overlaid in vector form on the TM image for 

purposes of display.  For purposes of analysis, they were also used to define 225 regions on the 

image, and hence, using the ER Mapper IF INREGION( ) function, a data band containing the 

CD identification of each pixel was also defined.  This band formed the essential link between 

the remote sensing data based on pixels and the ground truth data based on CDs. 
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6.2  ESTIMATION BASED ON CENSUS COLLECTION DISTRICT 
AGGREGATES 

 
Twelve representative models which used CD aggregates for estimating population (six models) 

and dwelling densities (six models) were chosen from those considered in Chapter 4.  The 

results of applying these models to the 225 CDs of the secondary image are summarised in 

Tables 6.1 to 6.4.  Table 6.5 shows some key indicators of comparative performance of these 

models on the primary and secondary image. In Figure 6.1 plots of the first and the sixth model 

for each of population density and dwelling density are compared for the primary and secondary 

study areas. 

For the six population models, the R2 values for Ballarat increased monotonically from .537 to 

.843;  for Geelong the range was .453 to .741, with the value for model 6 being lower than that 

for model 5.  Correspondingly, the residual standard deviation s was in each case larger for 

Geelong than for Ballarat.  These figures indicate a general degradation of performance when 

applying any of the estimating equations to the secondary image.  A similar pattern of reduced 

correlation and accuracy was observed for the dwelling density models. 

As well as reduced correlation, there was also evidence of bias, with consistent underestimation 

of both population and dwelling densities in the secondary study area.  Eleven of the twelve 

slope coefficients were considerably higher than unity, indicating that the ground truth values 

tended to be larger than the remote sensing estimates.    

Nevertheless, the plots for model 6 (Figure 6.1) confirm that the relationship between D and D̂  

remained linear, indicating that the underlying form of the link between population density and 

the particular linear combination of remote sensing characteristics chosen in Ballarat remained 

valid for the Geelong data.  The reduction in the level of correlation and the associated broader 

spread of points on the Geelong plots is to be expected when validating any procedure (see 

discussion in Chapter 2).  However the slope changes suggested some more systematic 

calibration problem requiring investigation.   

As to the relative robustness of the 6 model types, the first two models, which were only 

included as a starting point, and which were quite inadequate even on the primary data, were 

also the least robust with regard to the slope coefficient. At the other extreme, the slope 

coefficient of .885 for the dwelling density model 6 stands out as an obvious anomaly.  On 

closer inspection, models 6 for both population and dwelling densities are anomalous in other 

ways also.  The population model 6 had a lower R2 and larger s than model 5 (Table 6.1), in 

contrast to the result for Ballarat (Table 4.10), where model 6 was clearly better in both 

respects.  Whilst the dwelling model 6 did have the largest R2 and smallest s (Table 6.2), the 

margins were much less than for Ballarat (Table 4.11).  
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Table 6.1  Application of Population Density Models based on Primary Study Area CD Aggregates to Secondary Study Area 
 

Model 
type 

Class 
of 

 predictors 

Number 
of 

predictors 

Regression equation D vs. D̂  
Regression coeffts.* 
(unforced & forced) 

R2
b 

 
s 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
4 
 
 

4 
 

 
72.3 – 135.6 b5 + 332.0 b7 -151.0 b3 + 61.6 b4  
 
 
(-1.4 – 2.33 b5 + 5.37 b7 + 1.22 b4 – 2.04 b3)2 

 

 
-329+1.59  ;  1.40 

(Fig 7.1B1) 
 

147+1.43  ;  1.52 

 
.453 

 
 

.448 
 

 
878 

 
 

882 

3 Mean, (mean)2 

 
 

6 
 

(-171.34 – 0.140 s1 + 9.220 b1 + 0.0344 s7 
+ 4.874 b4 – 1.952 b5 – 0.0359 s4)2 

 

-148+1.27  ;  1.20 .599 
 

752 

4 Ratios & difference 
to sum ratios 
 

 
4 

(345.35 – 68.41 r57 – 275.56 r14 + 226.89 d14  
+ 120.30 r15)2 

 

40+1.17  ;  1.19 .601 
 

750 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

 
9 

(75.20 – 2.19 b5 – 245.20 b7c – 70.36 b4c  
+ 0.171 b7v + 0.851 b4 + 2.88 b7 – 0.124 b1v  
+ 69.57 b1c + 70.37 b5c)2 

 

345+1.04  ;  1.19 .741 
 

605 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

 
6 

(530.10 + 0.278 rh123 – 92.34 r14 – 60.81 r57  
+165.91 ds35 – 1.308 rh125 – 0.370 rh125s)2 

 

64.3+1.09  ;  1.11 
(Fig 7.1B2) 

.718 
 

630 

*   Intercept + slope; slope when forced through origin 
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Table 6.2  Application of Dwelling Density Models based on Primary Study Area CD Aggregates to Secondary Study Area 
 

Model 
type 

Class 
of 

 predictors 

Number 
of 

predictors 

Regression equation D vs. D̂  
Regression coeffts.* 
(unforced & forced) 

R2
b 

 
s 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
4 
 
 

4 
 

 
89.7 - 49.77 b5 + 110.49 b7 + 23.81 b4 - 44.18 b3 
 
 
(-0.879 - 1.451 b5 + 3.119 b7 + 0.784 b4 - 1.051 b3)2 

 

 
-228+1.69  ;  1.34 

(Fig 7.1B3) 
 

-5.9+1.54  ;  1.53 

 
.564 

 
 

.556 
 
 

 
286 

 
 

289 

3 Mean, (mean)2 

 
7 (-176.63 + 0.0101 s5 + 12.147 b2 - 0.266 s2  

+ 0.019 s7 + 6.540 b4 - 0.050 s4 - 3.035 b5)2 

 

17.3+1.11  ;  1.13   
 

.717 
 

231 

4 Ratios & difference 
to sum ratios 
 

5 
 
 

(160.0 - 27.9 r57 - 153.6 r14 + 58.8 d17 
 - 33.3 r47 + 146.6 r15)2 

 

10.9+1.15  ;  1.16 .730 
 

225 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

9 (59.21 - 1.29 b5 - 169.32 b7c + 0.130 b7v  
-34.37 b4c + 0.508 b4 + 35.46 b5c + 1.42 b7  
- 0.0715 b1v + 37.68 b1c)2 

 

125+.985  ;  1.13 .796 
 

197 
 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

8 (312.05 - 72.85 r14 + 0.260 b3 - 0.520 b2s  
+ 244.92 ds15 - 30.45 r57 - 165.42 ds25  
-0.716 rh125 - 0.158 rh125s)2 

 

-33.7+.916  ;  .885 
(Fig 7.1B4) 

.815 
 

187 

  *   Intercept + slope; slope when forced through origin 
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Table 6.3  Summary of Estimated Census Collection District Populations  
Based on Application of Population Density Models based on Primary Study Area CD Aggregates to Secondary Study Area 

 
Geelong Statistical District 

(n=225) 
Geelong urban area 

(n=214) 
 

Model 
type 

 
Class of 

 predictors Slope 
(forced) 

R2 s Mean 
% error 

Median 
% error 

Est. tot. 
(% error*) 

Slope 
(forced) 

R2 s Mean 
% error 

Median 
% error 

Est. tot. 
(% error*) 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
.06 

 
 

.14 

 
.00 

 
 

.00 

 
267 

 
 

268 
 

 
202 

 
 

141 

 
37.7 

 
 

40.7 

 
221132 
(+50%) 

 
179991 
(+22%) 

 

 
.67 

 
 

.86 

 
.05 

 
 

.04 

 
254 

 
 

255 

 
59.6 

 
 

55.3 

 
36.5 

 
 

39.5 

 
134990 
(-5%) 

 
114035 
(-20%) 

3 Mean, (mean)2 

 
.12 .00 267 151 26.7 222618 

(+51%) 
 

.60 .04 256 57.2 25.7 147294 
(+4%) 

4 Ratios & difference 
to sum ratios 
 

.17 .00 267 142 25.8 208987 
(+41%) 

.65 .03 256 54.2 24.4 142035 
(-0.2%) 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

.10 .00 267 188 23.0 179135 
(+21%) 

.78 .06 252 41.9 22.1 119238 
(-16%) 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

.08 .00 267 126 18.4 217264 
(+47%) 

.89 .21 231 39.9 17.1 138354 
(-3%) 

 
* Ground truth populations are: GSD 147910; Urban 142250 
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Table 6.4  Summary of Estimated Census Collection District Dwelling Counts 
Based on Application of Dwelling Density Models based on Primary Study Area CD Aggregates to Secondary Study Area 

 
Geelong Statistical District 

(n=225) 
Geelong urban area 

(n=214) 
 

Model 
type 

 
Class of 

 predictors Mean 
% error 

Median 
% error 

Est. tot. 
(% error*) 

Mean 
% error 

Median 
% error 

Est. tot. 
(% error*) 

 
1 
 
 

2 

 
Band mean 
 
 
Band mean 

 
223.5 

 
 

137.4 

 
36.8 

 
 

42.4 

 
75249 

(+47%) 
 

56914 
(+11%) 

 

 
70.8 

 
 

58.9 

 
35.3 

 
 

41.0 

 
50916 
(+3%) 

 
40154 
(-19%) 

3 Mean, (mean)2 

 
150.2 21.5 71017 

(+39%) 
57 20.9 51345 

(+4%) 
 

4 Ratios & difference 
to sum ratios 
 

121.2 24.1 63983 
(+25%) 

55.7 22.7 49917 
(+1%) 

5 Mean, std dev, 
variance,  coefft of 
variation 
 

176.6 20.8 60062 
(+18%) 

39.15 19.8 43532 
(-12%) 

6 Mean & std dev of 
spectral 
transformations at 
pixel level 
  

164.5 21.7 96547 
(+89%) 

53.1 20.7 62537 
(+27%) 

 
* Ground truth dwelling numbers are: GSD 51078; Urban 49411 
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Table 6.5  Comparison of Twelve Population and Dwelling Density Estimation Models for Primary and Secondary Study Areas 
 

  Primary study area: Ballarat  Secondary study area: Geelong  
Model 
type 

Class 
of 

 predictors 

D vs D̂  
Coefft 

( forced) 

R2
b s Region 

Median 
% error 

Region 
Total 

% error 

Urban 
Median 
% error 

Urban 
Total 

% error 

D vs D̂  
Coefft 

( forced) 

R2
b s Region 

Median 
% error 

Region 
Total 

% error 

Urban 
Median 
% error 

Urban 
Total 

% error 

  
Population density estimates 

        
 

      

 
1 
 
2 

 
band mean 
 
band mean 

 
1.00 

 
1.05 

 
.537 

 
.557 

 
739 

 
739 

 
31.0 

 
32.9 

 
- 
 

+91 

 
28.5 

 
30.5 

 
+26 

 
+7 

 
1.40 

 
1.52 

 
.453 

 
.448 

 
878 

 
882 

 
37.7 

 
40.7 

 
+50 

 
+22 

 
36.5 

 
39.5 

 
-5 
 

-20 
 
3 

 
mean, (mean)2 

 
1.04 

 
.755 

 
550 

 
24.1 

 
+13 

 
20.0 

 
+7 

 
1.20 

 
.599 

 
752 

 
26.7 

 
+51 

 
25.7 

 
+4 

 
4 

 
ratios & difference to sum ratios 

 
1.03 

 
.762 

 
541 

 
20.9 

 
+16 

 
19.4 

 
+2 

 
1.19 

 
.601 

 
750 

 
25.8 

 
+41 

 
24.4 

 
-0 

 
5 

 
mean, std dev, variance,  coefft of 
variation 

 
1.01 

 
.780 

 
521 

 
23.0 

 
+41 

 
21.0 

 
-2 

 
1.19 

 
.741 

 
605 

 
23.0 

 
+21 

 
22.1 

 
-16 

 
6 

 
mean & std dev of spectral 
transformations at pixel level 
  

 
1.02 

 
.843 

 
441 

 
17.4 

 
+14 

 
13.6 

 
+1 

 
1.11 

 
.718 

 
630 

 
18.4 

 
+47 

 
17.1 

 
-3 

  
Dwelling density estimates 

              

 
1 
 
2 

 
band mean 
 
band mean 

 
1.00 

 
1.06 

 
.560 

 
.584 

 
265 

 
258 

 
32.7 

 
37.5 

 
- 
 

+49 

 
28.0 

 
29.5 

 
+30 

 
+9 

 
1.34 

 
1.53 

 
.564 

 
.556 

 
286 

 
289 

 
36.8 

 
42.4 

 
+47 

 
+11 

 
35.3 

 
41.0 

 
+3 

 
-19 

 
3 

 
mean, (mean)2 

 
1.02 

 
.817 

 
171 

 
22.9 

 
+22 

 
19.6 

 
+4 

 
1.13 

 
.717 

 
231 

 
21.5 

 
+39 

 
20.9 

 
+4 

 
4 

 
ratios & difference to sum ratios 

 
1.02 

 
.832 

 
164 

 
18.7 

 
+17 

 
16.0 

 
+3 

 
1.16 

 
.730 

 
225 

 
24.1 

 
+25 

 
22.7 

 
+1 

 
5 

 
mean, std dev, variance,  coefft of 
variation 

 
1.00 

 
.878 

 
139 

 
21.6 

 
+37 

 
18.5 

 
-0 

 
1.13 

 
.796 

 
197 

 
20.8 

 
+18 

 
19.8 

 
+12 

 
6 

 
mean & std dev of spectral 
transformations at pixel level 
  

 
1.01 

 
.924 

 
111 

 
16.0 

 
+9 

 
15.4 

 
+1 

 
.885 

 
.815 

 
187 

 
21.7 

 
+89 

 
20.7 

 
+27 
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This most complex of all the models, based on a hybrid methodology of spectral transformation 

at pixel level followed by aggregation and averaging at CD level, did not live up to its 

considerable promise in the primary analysis phase.  It would appear that this procedure might 

be over-fitted, over-engineered and over-tuned, attaining high performance on the primary 

image at the cost of a lack of robustness.  The intermediate model types 3, 4 and 5 were 

consistent with regard to slope bias, but model 5 had much higher R2 values (the highest in the 

case of population density). 

Turning to the final measures of performance, the estimated populations of each CD and the 

population and dwelling totals for the entire study area and for the urban section, it is apparent 

from Table 6.4 that the estimates for individual CDs were even worse than in the case of 

Ballarat.  The median percentage errors were higher in Geelong, both for the overall region and 

for the urban area, in all but two cases, both involving model 5.  As in the case of Ballarat the 

Geelong region totals were extravagantly overestimated in all cases.  As has been discussed in 

Chapter 4, in Ballarat this was primarily due to the overestimation of the low densities in the 

large rural CDs. In the case of Geelong, this effect is further exacerbated by the presence of 

some large industrial sites in medium sized non-urban CDs (an oil refinery, an aluminium 

smelter, a car assembly plant, a cement works and a salt works), all of which were assigned 

large spurious populations by the remote sensing algorithms.  Both Iisaka and Hegedus (1982) 

and Lo (1995) reported similar problems with a few non-residential or otherwise anomalous 

study units. 

The combined effects of scale and nonlinearity lead to some non-intuitive results. For example, 

the (forced) slope coefficients for density are greater than 1.0 for all models but one, whilst the 

slope coefficients for urban population counts were considerably less than 1.0.  However, in 

spite of all this, both population and dwelling totals for the urban area were quite accurately 

estimated by some of the intermediate models, particularly model 4. 

These results prompted a closer examination of the demographic characteristics of the two study 

areas, which are summarised in Table 6.6.  Some unexpected differences emerged.  

The first four rows of Table 6.6 show the basic measures and counts.  Then follow four 

characteristics: population density, dwelling density, persons per dwelling and percentage of 

dwellings which are non-separate houses, each calculated in two ways: as the ratio of the 

relevant regional totals, and as the mean of the corresponding ratio for each CD.  In the case of 

the two densities, the two methods lead to very different results because of the great variations 

among CDs both in size and density.  For persons per dwelling and percentage of non-separate 

dwellings there is no such variation, and the two results are almost identical.  The two study 

areas were compared by forming ratios of each of the indices described. 



APPLICATION OF ESTIMATION ALGORITHMS TO A SECOND GEOGRAPHICAL AREA 

 

136

Figure 6.1  Population and Dwelling Density Estimates for Census Collection Districts: 
Ground Truth vs. Remote Sensing Estimates from Base and Enhanced Models 

 
A.  Primary image: Ballarat 
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B.  Secondary image: Geelong 
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Table 6.6  Demographic Characteristics of Primary and Secondary Study Areas 
 

Demographic 
characteristic 

Primary study 
area: Ballarat 

Secondary study 
area: Geelong 

Ratio 
Geelong: Ballarat 

 BSD* Urban GSD** Urban Region Urban 

Area (sq.km.) 613.89 74.85 351.9 107.15 0.57 1.43 

Population 79179 70222 147910 142250 1.87 2.03 

Number of dwellings 26971 24368 51078 49411 1.89 2.03 

Number of non-separate houses 5154 4721 9989 9586 1.94 2.03 

Population density (persons/sq.km.) 129.0 938.2 420.3 1327.6 3.26 1.42 

Mean CD population density 1556.9 1758.3 2133.3 2241.3 1.37 1.27 

Dwelling density (dwellings/sq.km.) 43.93 325.56 145.15 461.14 3.30 1.42 

Mean CD dwelling density 562.6 635.6 798.2 807.2 1.42 1.27 

Persons per dwelling ratio 2.94 2.88 2.90 2.88 0.99 1.00 

Mean CD Persons/Dwelling ratio 2.96 2.90 2.93 2.91 0.99 1.00 

% Non-separate houses 19.11 19.37 19.56 19.40 1.02 1.00 

Mean CD % non-separate houses 18.94 20.01 19.76 19.71 1.04 0.99 

 *   Ballarat Statistical District  
 ** Geelong Statistical District 
 
  

The closest points of similarity were the ratio of persons to dwellings (occupancy ratio), which 

was almost identical at around 2.9 persons per dwelling for both areas overall and for both 

urban areas; and the percentage of non-separate dwellings, which again was almost constant at 

19-20%. 

There were however a number of differences.  GSD had little more than half the area of BSD, 

but almost double the population.  A much larger proportion of GSD than of BSD was urban, 

but even within the urban areas, the population density was 42% higher overall and the mean 

CD population density was 27% higher in Geelong than Ballarat.  Since the occupancy ratios 

were the same for the two areas, the comparative figures for dwelling density were the same. 

The similarity of the proportions of non-separate dwellings suggests that the higher densities in 

Geelong are not associated with more multi-dwelling structures, but rather with houses which 

are either smaller or closer together, or some combination of both, perhaps in different areas. 
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Figure 6.2 shows plots of the discrepancies )ˆ( DD− 1 against D for models 4 and 6. In the case 

of population for both models and in the case of dwellings for model 6, there is a strong 

tendency in the case of Geelong for higher densities to be underestimated and lower densities 

overestimated.  The same effect can be observed in a less pronounced form in the Ballarat data, 

mainly in association with a few high density outliers. The same problem was noted by 

Langford et al. (1991) and it is also apparent in the reported results of Iisaka and Hegedus 

(1982) and Webster (1996) though it was not discussed by them. 

There is an attenuation or lack of sensitivity whereby the extremes of variation in density are not 

reflected in the remote sensing estimates.  This may be an inherent consequence of the use of 

CD aggregates, related to the sensitivity issue discussed in the context of iterative refinement of 

the regression models in Section 5.6.1.  Be that as it may, the effect has been exaggerated in the 

case of Geelong by the overall higher density.  The nascent tendency in the Ballarat plots has 

become more pronounced in the Geelong plots because of the large number of CDs either with 

characteristics similar to the outliers in Ballarat (mainly associated with institutions or public 

housing), or with densities over 3000 persons/sq.km.  As always, extrapolation beyond the 

range of the training data, in this case to higher range of population densities, is fraught with 

risk. 

For no obvious reason, the trends described are not in evidence in model 6 for dwelling density, 

where the pattern of overestimation and underestimation is less dependent on density in the case 

of Ballarat, and where in the case of Geelong the trend is reversed by a dense cluster of CDs 

with densities around 1000 for which the density is overestimated.   

In the light of these patterns of over- and under-estimation, it is possible to explain the apparent 

contradiction between the fact that on average individual CD densities are underestimated by all 

but one of these models, and yet in a number of cases reasonably accurate estimates are 

produced of total population and dwelling numbers for the whole Geelong urban area.   

The contradiction is an artifact of the use of CDs as the unit of aggregation.  CDs are designed 

to have approximately equal populations  (within fairly broad tolerances), and so CD area is 

inversely related to population and dwelling density.  As a result, when population totals are 

calculated by multiplying the density estimate for each CD by its area and summing, there is a 

tendency for a counterbalance between slight overestimation of density over relatively large 

areas and more substantial underestimation of density over relatively small areas.   

                                                 
1 The usual convention of defining a residual as )ˆ( DD − has been reversed because the emphasis is on 

assessing the remote sensing estimate with reference to the benchmark of the ground truth figure.  
Technically, these discrepancies are not in fact residuals (see Section 2.12.2)  Note also that the scales 
have been chosen to maximise the spread of points on each plot, to facilitate visual comparison of the 
shapes of the plots. 
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Figure 6.2  Estimation Error vs. Population or Dwelling Density 
 

A.  Primary image: Ballarat 
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B.  Secondary image: Geelong 
Population density model 4: ratios of band means 

0   
1   

6000500040003000200010000

1000

0

-1000

-2000

-3000

-4000

popdens

ep
4

Population density model 6: pixel spectral transfms 

0   
1   

6000500040003000200010000

2000

1000

0

-1000

-2000

-3000

-4000

popdens

ep
6

Dwelling density model 4: ratios of band means 

0   
1   

200010000

500

0

-500

-1000

dwelldens

ed
4

 

Dwelling density model 6: pixel spectral transfms 

0   
1   

200010000

500

0

-500

dwelldens

ed
6

 
0 Urban    + Rural 
 



APPLICATION OF ESTIMATION ALGORITHMS TO A SECOND GEOGRAPHICAL AREA 

 

140

In summary, it seems that a methodology based on CD means and ratios of CD means can be 

tuned to model small area population and dwelling densities quite well in a single study area. 

Performance of models on the initial study area increases with complexity, but there would also 

appear to be some tradeoff between complexity and robustness.  In general, the models are not 

robust to large variations in population density within the study area, or to moderate 

demographic differences between different study areas.  In particular, there seems to be an 

attenuation effect, whereby the remote sensing estimates of density vary over a smaller range 

than the actual densities.  This may be an artifact of the CD size distribution.  A weighted least 

squares approach might bring about some improvement.  A wider range of training data might 

also result in greater robustness. 

Notwithstanding these limitations, considering the accuracy of the estimates of urban totals 

produced by the “intermediate” models, it is tempting (though risky from a sample size of 1!) to 

speculate that these results are not fortuitous.  The linearity of the relationships exhibited in the 

secondary study area suggest there might be a kernel which is relatively robust above a 

threshold density, but which is then degraded by mechanisms associated with the multilevel 

analysis.  It is conceivable that the use of CDs as the unit of aggregation both causes the 

problem of bias, but also provides the obverse mechanism for removing the bias in estimates of  

larger aggregations.  It may be that the procedure is inherently more robust with respect to 

larger aggregations than it is with respect to the unit of spatial analysis, in this case CDs. 

If this were the case, and if it remained the case at different scales, then analogously the 

methods of Chapter 5 based on individual pixels might be expected to be more robust at the 

level of CDs.  

It was concluded that modelling at the level of CD aggregates had not produced a methodology 

which was either very accurate or very robust for estimating population at the level of CDs.  

Nor was there any obvious avenue for dealing with the problems identified, which were 

inherently at sub-aggregate level, whilst working with aggregates.  Consequently, the remainder 

of the study was focussed on modelling at the level of individual pixels. 

  
6.3 ESTIMATION BASED ON INDIVIDUAL PIXELS 
 
A two-stage procedure for estimating population on the basis of the characteristics of individual 

pixels was developed in Chapter 5.  This procedure consists of a classification step followed by 

an estimation step for pixels classed as residential. Three different estimation formulae (which 

estimated population, square root of population and logarithm of population respectively) were 

derived by regression modelling.  The procedure was first applied to the Geelong image as a 

“black box” with no further training or refinement.   
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A maximum likelihood classification was carried out, using the covariance structure of the 6 

TM bands from the Ballarat training sets to define the classes.  The land cover classes in the 

Geelong image were not the same as Ballarat, perhaps the most extreme difference being the 

presence of the sea waters of Corio Bay, which were largely classified as industrial (which in a 

sense they probably are!).  However, the residential class appeared to have been well 

discriminated.    

The three different population estimation formulae were then applied.  In each case, all non-

residential pixels were set to zero population, and the final regression equation from Chapter 5 

was applied to the values of the 6 TM bands for all residential pixels. 

As before, aggregate figures for each CD were derived from these images, and compared with 

the ground truth populations and population densities.  The results are compared with the 

corresponding results from the primary Ballarat study area in Tables 6.7 and 6.8, and Figure 6.3. 

With regard to the linear model for population density, Figure 6.3 shows moderate to strong 

positive correlations in the Geelong figures, with rather more spread than for Ballarat at the high 

density end, and with rather more outliers for which the population density was markedly 

underestimated.  Also as with Ballarat, most of the CDs for which the population density was 

overestimated have very low densities, and so do not stand out visually, although there are one 

or two moderately overestimated points at higher densities.  On detailed examination, much of 

the underestimation was associated with the presence of large institutions, as was the case with 

the Ballarat data, but in addition in Geelong there was considerable underestimation in a pocket 

of contiguous inner city CDs containing many small old workers’ cottages and terraced houses.  

This is a neighbourhood which has no parallel in Ballarat.  Geelong is a port city with more 

large heavy industry; Ballarat was founded on gold mining, and is laid out more spaciously.  

Whilst there are many old miners’ cottages, they tend to be on large allotments on the eastern 

side of the urban area, which is relatively sparsely settled to this day.  It was established in 

Section 6.2 that the population density in the Geelong study area was considerably higher than 

that of the  Ballarat study area, the ratios on two different measures between the two urban areas 

(which dominate the population density regressions because of the higher densities) being 

1.42:1 and 1.27:1 (see Table 6.6).  

The greater spread in the Geelong data was borne out by the somewhat lower values of R2 (.74 

overall, .69 for the urban area, and .85 when the 13 most extreme outliers were removed, 

compared to .82, .75 and .91 respectively for Ballarat). These moderate reductions of 8, 6 and 6 

percentage points respectively indicated a substantial degree of robustness in the underlying 

form of the relationship established from the Ballarat data.   
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Table 6.7  Comparison of Estimated Population Densities for Census Collection Districts1 in Primary and Secondary Study Areas: 
Based on a Two-phase Pixel Classification and Regression Procedure 

 
Statistical District Urban areas Statistical District: outliers omitted  

 
Model 

G. truth  v Rem. sens. 
Regression coeffts. 2 
(unforced & forced) 

R2 
 

s G. truth  v Rem. sens. 
Regression coeffts. 2 
(unforced & forced) 

R2 
 

s G. truth  v Rem. sens. 
Regression coeffts. 2 
(unforced & forced) 

R2 
 

s 

Linear             

Ballarat -41 + 1.14 1.12 .82 476 -59 + 1.15 1.12 .75 507 - 52.9 + 1.10 1.07 .91 312 

Geelong 168 + 1.42 1.51 .74 603 239 + 1.38 1.51 .69 616 70.3 + 1.42 1.46 .85 433 

Geelong                   
(local classification) 

- 23.7 + 1.21 1.20 .73 615 0 + 1.20 1.20 .68 630 - 39.0 + 1.18 1.16 .81 485 

Square root             

Ballarat 39.6 + 1.15 1.18 .79 506 72 + 1.14 1.18 .72 538     

Geelong 349 + 1.51 1.74 .70 650 46 + 1.45 1.74 .65 660     

Geelong                   
(local classification) 

365 + 1.10 1.28 .61 745 491 + 1.04 1.28 .54 754     

Logarithmic             

Ballarat 232 + .856 .956 .71 595 355 + .803 .956 .63 624     

Geelong 827 + 1.12 1.62 .53 815 984 + 1.03 1.62 .47 810     

Geelong                   
(local classification) 

1382 + .385 .819 .25 1025 1575 + .326 .819 .20 995     

1 n: Ballarat SD 138; Ballarat urban 122; Ballarat SD with outliers omitted 133;  
Geelong SD 225; Geelong urban 214; Geelong SD with outliers omitted 212  (216 with local class). 

2 Intercept + slope; slope when forced through origin 
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Table 6.8  Comparison of Estimated Populations for Census Collection Districts1 in Primary and Secondary Study Areas: 
Based on a Two-phase Pixel Classification and Regression Procedure 

 
 Statistical District Urban areas 

 
Model 

G. truth  v Rem. 
sens. 

Regression coeffts. 2 
(unforced & forced) 

R2 
 

s Mean 
% error 

Median 
% error 

Est. 
total 
pop. 

% 
error3 

G. truth  v Rem. 
sens. 

Regression coeffts. 2 
(unforced & forced) 

R2 
 

s Mean 
% error 

Median 
% error 

Est. 
total 
pop. 

% 
error3 

Linear                 

Ballarat 203 + .646 .93 .50 184 29.5 14.9 79160 -0 134 + .806 1.01 .65 155 24.7 14.0 66824 -5 

Geelong 388 + .573 1.24 .25 231 41.2 32.3 105655 -29 281 + .849 1.38 .38 206 36.2 32.2 96729 -32 

Geelong                   
(local classification) 

583 + .114 .66 .05 261 55.2 22.1 147361 -0 468 + .332 .93 .15 241 34.5 21.3 130754 -8 

Square root                 

Ballarat 192 + .725 1.02 .49 185 29.0 17.5 72644 -8 134 + .886 1.11 .61 163 25.9 16.2 60854 -13 

Geelong 383 + .700 1.50 .23 234 46.1 43.1 87806 -41 305 + .958 1.66 .31 216 43.3 32.6 115723 -19 

Geelong                   
(local classification) 

590 + .110 .711 .04 263 59.5 30.8 137412 -7 500 + .304 1.04 .10 247 38.9 29.8 137412 -3 

Logarithmic                 

Ballarat 219 + .608 .914 .43 196 34.3 22.5 80595 +2 207 + .648 .943 .47 192 32.1 20.6 69406 -1 

Geelong 461 + .535 1.54 .14 249 46.9 46.6 82678 -44 449 + .608 1.65 .15 241 45.9 46.9 96729 -32 

Geelong                   
(local classification) 

616 + .059 .593 .02 266 71.4 41.6 156777 +6 615 + .078 .734 .02 258 54.2 40.8 130754 -8 

1 n: Ballarat SD 138; Ballarat urban 122; Geelong SD 225; Geelong urban 214 
2 Intercept + slope; slope when forced through origin 
3  Ground truth populations are: BSD 79179; Ballarat urban 70222;  GSD 147910; Geelong urban 142250. 
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Figure 6.3  Population Density and Population Estimates for Census Collection Districts1: 
Ground Truth vs. Remote Sensing Estimates for Primary and Secondary Study Areas 
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Figure 6.3  Population Density and Population Estimates for Census Collection Districts1: 
Ground Truth vs. Remote Sensing Estimates for Primary and Secondary Study Areas 

(continued) 
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1  n: Ballarat SD 138;  Geelong SD 225 
 
However, there was a problem of scale.  The slopes of the various lines of best fit range from 

1.07 to 1.15 for Ballarat, and from 1.38 to 1.51 for Geelong – an increase of some 30-35%.  

This seemed to be related to the overall higher population density in Geelong, since the 

differential fell midway between the two population density ratios quoted in the previous 

paragraph.  It is dealt with in the next section. 

With regard to CD populations, the fit was much worse for the Geelong data than for Ballarat, 

both with regard to R2 values (.25 overall and .38 for the urban area, compared with .50 and .65 

respectively for Ballarat), and regional and urban totals (underestimations of 29% and 32% 

respectively, compared with underestimation errors of <1% and 5% respectively in Ballarat).  

The underestimation of the totals was obviously related to the similar underestimation of 

population densities.  The low correlation levels were largely attributable to a relatively small 

number of quite  extreme outliers. As for Ballarat, populations of many of the large rural CDs 

were greatly overestimated, because of the propensity for overclassification of rural pixels as 

residential. 
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As has been discussed in Section 6.1, this was further exacerbated in the case of Geelong by the 

presence of some large industrial sites in medium sized non-urban CDs.  One inner urban 

largely industrial CD, and two outer suburban CDs also stand out as having had their 

populations over-estimated.  In the case of the two CDs on the urban fringe, it is conjectured 

that this may have been associated with residential development works. 

It was these dual problems of overestimation at low densities and underestimation at high 

densities which prompted the exploration of curvilinear models.  However, the pattern of 

Geelong results for the square root model, with regard to both population density and 

population, was marginally worse than that of the linear model, as it had been for the Ballarat 

data.  The logarithmic model was the least robust of all, with greater reduction in R2 values, and 

least accurate population estimates.  These trends are also apparent from Figure 6.3.  Since it 

now seemed that neither of these models was going to provide a feasible alternative to the linear 

model, further thought was given to how the linear model might be made more robust.   

 
6.4 MODIFICATIONS TO THE PIXEL-BASED ESTIMATION PROCEDURE 
 
6.4.1 A proposed explanation of scaling error 
 
After some consideration, it was decided that the scale problem with the linear model was 

occurring at the classification stage rather than the regression stage.  To illustrate why this is so, 

consider a hypothetical pair of CDs of equal area (let us say 1 sq. km. for simplicity and without 

loss of generality) – one in Ballarat with a population of say 1000 persons and hence a 

population density of 1000 person/sq. km., and the other in Geelong with a population of 1300 

persons and hence a population density of 1300 person/sq. km. Suppose initially that all pixels 

in each CD are classified as residential.  In each case, population associated with each pixel is 

assigned using the “population formula” - the linear combination of TM bands developed in 

Chapter 5.   Pixels with high values (i.e. those at the “built environment” end of the scale) will 

be assigned higher populations and pixels at the lower end of the scale (the “natural materials” 

end) will be assigned lower  populations.  

Now the greater number of people in the Geelong CD than the Ballarat CD must be 

accommodated in some combination of 3 ways:  

(1) more dwellings of the same average size 

(2) the same number of dwellings but of larger average size 

(3) the same number of dwelling structures of the same average size. 



APPLICATION OF ESTIMATION ALGORITHMS TO A SECOND GEOGRAPHICAL AREA 

 

147

Cases (1) and (2) imply similar average population densities within dwellings in the two areas – 

this would seem to be a reasonable expectation in two culturally similar areas in close physical 

proximity.  Case (3) implies more people per structure, which could come about in four ways: 

(3a) more crowded private dwellings 

(3b) a higher density type of accommodation – more multi-dwelling structures (flats, 

townhouse etc) 

(3c) in particular, multi-storey multi-dwelling structures 

(3d) multi-storey single dwellings. 

Working backwards from the end of the list, (3d) is regarded as the least likely to lead to 

anomalies in remote sensing estimates, since residents in multi-storey houses are likely to be 

reasonably affluent, and the land area saved by “going up” is likely to be utilised for larger 

carports and other outbuildings which will have the same spectral signature as a larger house.  

Case (3b) and more especially (3c) do provide a mechanism for housing extra population which 

is “hidden” from the satellite sensor.  However, except in the case of institutions, this was 

expected to make a relatively minor contribution in the present instance.  It is considered further 

in Section 6.3.4. 

Case (3a) provides a  mechanism for anomalies within both study areas, notably the 

underestimation of population density in areas of public housing, but there is no reason to 

expect a differential effect between Ballarat and Geelong. 

All of which leaves a mix of cases (1) and (2) as the most likely mechanism.  Each of these 

should lead in the Geelong scenario to more pixels with spectral characteristics at the high 

population end of the scale and fewer at the low population end.  To the extent that the 

populations of individual pixels remain within the range where the regression equation can be 

validly applied, a proportionately higher population estimate for the CD should result.   

And yet that appeared not to be the case.    

The above argument was conditional on two propositions: 

(1) that all pixels were classified as residential, and 

(2) that the populations of individual pixels remained within the range where the regression 

equation could be validly applied. 

The methodology of Section 6.3 used both a classification scheme and a regression equation 

developed on the Ballarat training sets. The higher levels of population density encountered in 

Geelong would have been under-represented if represented at all in Ballarat, which is relevant to 

both of these propositions, but especially the first of them. 
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In practice, even in a “purely” residential CD, not all pixels were classified as residential.  It was 

conjectured that in Geelong CDs with high population densities, many pixels might be assessed 

by the Ballarat-trained classification algorithm as belonging to another class (commercial and 

industrial would seem to be the most likely classes to be thus confounded).  In this way, some of 

the pixels in fact associated with high contributions to the CD population would be assessed as 

having zero population. 

The issue of the validity of the regression equation seemed both harder to address and, 

fortuitously, less serious.  It was judged to be less serious because any reduction in validity 

would be a gradual process at each end of the scale, unlike the misclassification problem, which 

is sudden and profound in its effect.    It was harder to address because it was hoped to establish 

a reasonably robust relationship which did not require re-estimation, with the need for ground 

truth population data, at each implementation. 

Classification, on the other hand, requires only qualitative ground truthing in the form of 

training areas representative of the residential class and an appropriate set of other classes (they 

need not be the same classes for different areas).  This is a routine image processing activity in 

the remote sensing context, and requiring it to be done afresh for each image does not limit or 

invalidate the general approach.  

Accordingly, it was decided to perform a second classification of the Geelong image, based on 

local training sets. 

 
6.4.2 Local classification of the secondary study area 
 
Twelve broad categories listed in Table 6.9 were defined.  Nine corresponded to a greater or 

lesser degree with classes used in the primary study area. The other three - sea water, salt works 

and quarry – related to prominent features which had no parallel in Ballarat.  It was decided not 

to include the remaining three Ballarat classes, one of which (pine plantation) was not present in 

the Geelong image and the other two of which had been relatively small in extent and not well 

discriminated in the Ballarat image. 

For all categories, training sets were selected visually using local knowledge and a quasi-natural 

colour RGB image of the study area.  A maximum likelihood classification based on the 6 TM 

bands was carried out and the results displayed in a pseudocolour image, which was then 

visually compared with the corresponding image based on the Ballarat training sets.  As 

expected, a greater number of pixels, particularly in inner urban areas, appeared to have been 

classified as residential.  Unfortunately, the same was true of many rural areas, which was to 

exacerbate the problem of overestimation in these areas. 
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Table 6.9  Categories of Land Use and Land Cover: 
Comparison of Classes Used in the Two Study Areas 

 
Ballarat Geelong 
Residential 
Industrial 
Commercial 
Bare ground: dark coloured soils 
Bare ground: light coloured soils 
Dry grass, pasture, crops 
Green grass, pasture, crops 
Native eucalypt forest and scrub 
Pine plantation 
Fresh water 
Public use 
Road 
 

Residential 
Industrial 
Commercial 
Dark soils  
 
Light soils & dry grass, pasture & crops 
Light green vegetation: grass, pasture, crops 
Dark green vegetation: forest and scrub 
 
Fresh water 
 
Road 
Sea water 
Salt works 
Quarry 

 
The population algorithm was then applied to this classification, and the results again displayed 

in a pseudocolour image, which was then visually compared with the corresponding image 

based on the Ballarat training sets.  As expected, population values seemed higher overall, and 

the peaks seemed more intense. 

As before, aggregate figures for each CD were derived from this image, and compared with the 

ground truth populations and population densities.  The results are compared with the results 

from the primary Ballarat image and the earlier Geelong image in Tables 6.7 and 6.8 and Figure 

6.3. 

With regard to population density, the improvement over the Ballarat-trained model was as 

anticipated.  The slope coefficients ranged from 1.16 to 1.21 (down from 1.38 to 1.51), leaving 

a margin of inconsistency between Geelong and Ballarat figures (1.07 to 1.15) of only 5-10%.  

This was attained at the cost of marginal reductions in the R2 values.  The residual discrepancy 

may be due to bias in the regression formula developed from the lower density Ballarat training 

set, but it may also relate to cases (3b) and (3c) of  Section 6.4.1 – the effect of multi-dwelling 

or multi-storey structures.   This is considered in the next section.   

With regard to CD populations, the effect of the locally trained classification was more mixed.  

Population estimates for some of the low density outlier CDs exhibited great volatility.  Some 

swung in the direction of overestimation and some swung in the opposite direction – the 

estimated populations of two CDs were actually negative.  This problem is due to a combination 

of the tendency towards overclassification of rural pixels as residential, combined with the fact 

that the linear population estimation formula can produce negative estimates at the low density 
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end of the scale.  As a result of these few quite extreme outliers, the R2 values for this model 

plummeted to negligible levels. 

It seems that the accuracy of estimates in low density areas is quite sensitive to the range of 

variation in the residential class.  The overclassification of rural pixels as residential was 

perhaps exacerbated by the fact that the selection of residential training sets in the secondary 

study area was less precise, not being informed by either the detailed local knowledge nor the 

supporting objective information than had been the case in the primary study area.  

Notwithstanding this, the estimates of the total populations for both region and urban areas were 

much improved (underestimation by <1% and 8% respectively), and were comparable in 

accuracy with those obtained for the primary study area. 

Whilst the square root and logarithmic models also produced reasonably accurate estimates of 

the overall regional and urban populations, the accuracy of estimates for individual CDs was 

substantially degraded, as is apparent from the appearance of the plots as well as the reduced R2 

values.  As a result, it was decided at this stage to continue with the linear model only. 

 
6.4.3 Adjustments for under-estimation and over-estimation  

 
In the results from the linear model for both study areas there remained, at all but the lowest 

densities, a bias towards under-estimation.  This was manifested both in the estimated 

population densities of individual CDs, and also in the estimates of the total populations of the 

regions and of their urban areas.  In terms of the regional totals, this tendency was to some 

degree counterbalanced by a tendency toward overestimation in the (generally non-urban) areas 

with the lowest densities, though this was coupled with an instability which led in some cases to 

quite substantial negative estimates.  It had been hoped that logarithmic and square root 

transformations of population might overcome these problems, but this did not come to fruition 

because of the overall volatility and lack of robustness in the resulting models.  It was decided 

instead to explore ways to apply corrections to the linear model at the extremes of density. 

 
6.4.4 CD-based adjustment for multiple dwelling structures  

 
As discussed in Section 6.4.1, it was considered that the  overestimation might be due to the 

presence of a “hidden” component of population associated with multiple dwelling structures.  

Whilst some such structures were present in the suburban CDs constituting the Ballarat training 

set, it was conjectured that the population formula might not be robust to higher densities.  

Since 1986 census figures were available for the proportion of dwellings in each CD which 

were of other types than separate houses, it was decided to investigate the effect of upwardly 

adjusting the estimated population of each CD by this figure or a proportion of it.  Considering 
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that such structures were present in the training set it was conjectured that adjusting by the full 

amount would over-compensate and hence lead to overestimates.  It was decided to first try this 

on the Ballarat data, and if it did lead to overestimation, then adjust by some lower proportion 

until the estimation bias was removed.  

The results are shown in Tables 6.10 and 6.11 and Figure 6.4.  The initial adjustment was to 

multiply the remote sensing population density of each CD in the Ballarat study area by the 

factor (1+ pnsh), where pnsh = proportion of non-separate houses.  This is referred to  in Table 6.5 

as model 1.  As anticipated, this resulted in the population density being overestimated, with a 

ground truth vs. remote sensing regression coefficient of 0.93.  

Since the target slope coefficient of 1.0 was about midway between this value and the 

unadjusted slope value, the second adjustment factor tested was (1+ 0.5pnsh).  The results (model 

2 in Table 6.10) show regression coefficients close to 1.0.  No separate calculations were done 

for the urban area in Table 6.10.  This is because the urban area dominates density calculations 

and so the results are similar to those for the whole region, with a somewhat lower R2 value as a 

result of reducing the range of the data by omitting the low density rural CDs (see Table 6.7). 

The same adjustment was applied to the Geelong data, resulting in the figures shown in Table 

6.10 (Geelong model 2).   

The residual discrepancies which remain between the slope coefficients for Geelong and 

Ballarat (3-4% or 6-7% forced through origin) may be due to bias in the regression formula due 

to its being derived from the lower density Ballarat training set. 
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Table 6.10  Comparison of Estimated Population Densities for Census Collection Districts1 in Primary and Secondary Study Areas: 
Based on a Two-phase Pixel Classification and Regression Procedure with Adjustments for Extreme Densities 

 
Statistical District Statistical District: outliers omitted  

 
Model 

G. truth  v Rem. sens. 
Regression coeffts. 2 
(unforced & forced) 

R2 
 

s G. truth  v Rem. sens. 
Regression coeffts. 2 
(unforced & forced) 

R2 
 

s 

1   Ballarat  (CD adj 1)4 -18.4 +   .94 .93 .80 499     

2   Ballarat  (CD adj 2)4 -36.4 + 1.03 1.02 .81 484 -56.9 + 1.00 .98 .91 308 

3   Ballarat  (CD adj 2+3)4 -29.2 + 1.03 1.02 .81 484 -49.9 + 1.00 .98 .91 308 

4   Ballarat  (Pixel adj)5 -14.3 + 1.05 1.04 .82 460 -28.9 + 1.01 1.00 .91 309 

2   Geelong  (CD adj 2)4 47.4 + 1.07 1.09 .69 665 13.5 + 1.04 1.04 .78 513 

3   Geelong  (CD adj 2+3)4 62.0 + 1.06 1.09 .69 664 28.3 + 1.03 1.05 .78 512 

4   Geelong  (Pixel adj 4)5 -21.0 + 1.10 1.09 .73 618 -53.4 + 1.07 1.05 .82 467 

1  n: Ballarat SD 138; Ballarat SD with outliers omitted 135; Geelong SD 225; Geelong SD with outliers omitted 214, 215. 
2  Intercept + slope; slope when forced through origin 
3  Ground truth populations are: BSD 79179; Ballarat urban 70222;  GSD 147910; Geelong urban 142250. 
4  CD population density adjustments  
     Adjustment 1: CD population densities multiplied by (1 + proportion of non-separate houses) 
 Adjustment 2: CD population densities multiplied by (1 + 0.5 × proportion of non-separate houses) 
 Adjustment 3: Population densities of rural CDs halved 
5  Pixel population adjustments: zero threshold; low density threshold coefficients 1.0, 1.0; power coefficient 1.07 
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Table 6.11  Comparison of Estimated Populations for Census Collection Districts1 in Primary and Secondary Study Areas: 

Based on a Two-phase Pixel Classification and Regression Procedure with Adjustments for Extreme Densities 
 

 Statistical District Urban areas 
 

Model 
G. truth  v Rem. sens. 
Regression coeffts. 2 
(unforced & forced) 

R2 
 

s Mean 
% error 

Median 
% error 

Est. 
total 
pop. 

% 
error3 

G. truth  v Rem. sens. 
Regression coeffts. 2 
(unforced & forced) 

R2 
 

s Mean 
% error 

Median 
% error 

Est. 
total 
pop. 

% 
error3 

3   Ballarat  (CD adj 2+3)4 192 + .66 .93 .53 177 28.5 16.3 79745 +1 151 + .71 .91 .61 164 27.4 15.1 73212 +4 

4   Ballarat  (Pixel adj)5 149 + .75 .93 .57 170 28.7 16.1 81437 +3 117 + .80 .97 .66 153 25.4 14.2 70187 -0 

3  Geelong  (CD adj 2+3)4 523 + .20 .77 .09 256 47.2 21.6 152344 +3 489 + .26 .85 .12 245 57.8 19.9 142866 +0 

4   Geelong  (Pixel adj)5 561 + .13 .65 .06 259 37.6 20.8 164642 +11 458 + .31 .87 .15 240 34.4 17.2 142717 +0 

1  n: Ballarat SD 138; Ballarat urban 122; Geelong SD 225; Geelong urban 214 
2  Intercept + slope; slope when forced through origin 
3  Ground truth populations are: BSD 79179; Ballarat urban 70222;  GSD 147910; Geelong urban 142250. 
4  CD population density adjustments  
 Adjustment 2: CD population densities multiplied by (1 + 0.5 × proportion of non-separate houses) 
 Adjustment 3: Population densities of rural CDs halved 
5  Pixel population adjustments: zero threshold; low density threshold coefficients 1.0, 1.0; power coefficient 1.07 
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Figure 6.4  Population Density and Population Estimates for Census Collection Districts1: 
Ground Truth vs. Adjusted Remote Sensing Estimates for Primary and Secondary Study 

Areas 
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1  n: Ballarat SD 138;  Geelong SD 225 
 
 
6.4.5 CD-based adjustment for inflated counts of residential pixels in rural areas  

 
In Section 6.4.2 accurate population estimates were obtained for the whole of each study area 

(see Table 6.8).  However, the urban area populations were somewhat underestimated (by 5% in 
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Ballarat and 8% in Geelong), and by implication the non-urban area populations were 

correspondingly overestimated, for reasons which have been discussed.  In fact, since the rural 

sections contributed only a small proportion to the population of the total region (11% in 

Ballarat and 4% in Geelong) the over-estimation of the small rural populations was very great in 

proportional terms (around 50% in Ballarat and 200% in Geelong), though not so in absolute 

terms. 

A mechanism for downward adjustment of the population estimates for the non-urban areas was 

now considered.   

When a regression analysis of ground truth vs. remote sensing population density was carried 

out on the rural CDs of the primary Ballarat study area, the regression coefficient was close to 

0.5.  Considering this and the over-estimation figures above, the adjustment of halving the 

estimated population densities in rural areas was explored. 

As anticipated, this made little difference to the results for population density (model 3 in Table 

6.10).  With regard to the regression results for population (model 3 in Table 6.11), whilst the 

volatility of the outliers (both positive and negative) was somewhat damped by this adjustment, 

there was still enough volatility to render the standard statistics meaningless.  However, the 

final resulting estimates of total population for both regions and both urban areas were all 

accurate to within 4%.  

 
6.4.6 Pixel-based high and low density adjustments 

 
The two adjustments described in the previous sections will not suffice if the goal is to have a 

population estimation algorithm which is at least in principle able to be applied in a reasonably 

automated fashion to a TM image, without the need for ancillary structural information such as 

CD boundaries and without the need for human judgements about urban/non-urban delineations.  

The first adjustment required ancillary data; the second required human intervention and was 

both ad hoc and post hoc, being informed by known ground truth values.  Furthermore, if we 

specify that estimates for any area, however small, must be feasible, then negative pixel 

estimates are not acceptable.  

The final modifications investigated at this stage were designed to automate both the high and 

low density corrections, at least to the extent of requiring only an initial calibration step, and at 

the same time to overcome the problem of negative estimates.   

An immediate and pragmatic solution to the problem of negative estimates is very simple – 

reassign negative values to zero i.e. apply zero thresholding.  This was considered in Chapter 5 

but rejected on the grounds that it would further inflate the already high estimates of population 

in low density areas.  The problem is that both the negative estimates and the overall 
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overestimation have the same root cause - the overclassification of pixels as residential in low 

density areas.  Attempting to fix one aspect of the problem makes the other worse.  The 

alternative is to go to the root cause and essentially redress the overclassification by carrying out 

what is termed a contextual re-classification (Barnsley and Barr, 1996) i.e. a reclassification 

based on information about not only the particular pixels, but neighbouring pixels as well. 

Contextual information in the form of statistical texture measures were tried without success at 

the initial classification stage (see Section 5.3).  However, having derived initial population 

estimates, there is now more contextual information available of a different sort, making it 

possible to apply a rule-based approach to re-classification (see Section 2.10.2).   

The method is essentially to re-classify some of the residential pixels in low density areas as 

non-residential, by reassigning them zero population.  Prima facie, the most appropriate pixels 

to reassign to zero are those which have been assigned the lowest (positive) values.  Thus the 

problem becomes one of identifying pixels in low density areas with low positive estimates. 

To do this, areas of low average population density (typically the non-urban areas) had to be 

identified, preferably in a way that did not require direct human intervention. This was done by 

calculating average population density using a mean-based averaging filter.  A 7×7 pixel 

window was chosen, which represents an 210m×210m square with an area of 4.4 ha or around 

10 acres, which is around the scale of inner urban CDs and towards the lower end of rural-

residential block size.   

It was observed that, whilst there is a continuum of densities at the high end of the scale, the 

boundary between urban and non-urban is characterised by a sharp discontinuity in average 

density.  Because of this, the average density band was essentially equivalent to an urban/non-

urban dichotomy overlaid on the residential/non-residential classification which had already 

been made.   

The procedure adopted was as follows.  Firstly, all negative pixel estimates were reset to zero.  

Secondly, the average population density was calculated and saved as a new band (see Image 9). 

The third step was to identify pixels in low density areas which also had low individual values.  

This was done by setting thresholds on both the average population density band and the 

(individual pixel) population band. All pixels which fell below both thresholds had their 

population reset to zero.  

These corrections were applied to the Ballarat image. After some experimentation values of 1.0 

were chosen for both low density thresholds.  The thresholds can be interpreted as follows: in 

areas where the average population density over an area of 210m×210m is less than 1 person per 

30m×30m (i.e. 1111 persons/sq.km.), any pixel with an estimated population of less than 1 

person is regarded as having been misclassified and has its population reset to zero.  Whilst this 
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threshold is much higher than the ABS criterion of 200 persons/sq.km. used to classify CDs as 

urban, many urban CDs have non-residential sections which lower the overall population 

density.  In purely residential suburban CDs population densities are generally above 1000 

persons/sq.km..  In the primary study area, this was the case in 88 out of the 122 CDs classified 

as urban.  

The final correction, targeted mainly at the high density end of the scale, was very 

straightforward by comparison. Since population estimates ranged between 0 and around 5, it 

was reasoned that raising these estimates to a power fractionally larger than unity would slightly 

but progressively increase estimates above 1, and at the same time slightly reducing estimates 

below 1, which would have the desired effect of increasing population estimates in areas of high 

density, and provide an additional (though minor) corrective effect at the low density end of the 

scale. 

The power coefficient was selected to “tune” the model to produce an accurate total for the 

urban area of the primary image.  After some experimentation the value of 1.07 was selected. 

When the algorithm with these chosen settings was applied to the full test image in each area, 

the peppering of small non-zero populations in rural areas was, as expected, noticeably reduced 

(see Image 10).  Population estimates were derived for the CDs as previously described, and 

compared with ground truth values.  The results are shown as model 4 in Tables 6.10 and 6.11 

and in Figure 6.4.    

In the case of the primary Ballarat study area, the results for population density were closely 

comparable with those of model 3, being slightly better on some criteria and not quite as good 

on others.  The results for population compared to model 3 were: better correlations; higher 

estimate for regional population; and a much more accurate estimate for urban population (as it 

was calibrated to produce).  Enlarged views of the urban area are shown in Images 11 and 12. 

In the case of the secondary Geelong study area, the results for population density were again 

mixed, with higher correlations but greater bias in slope.  The urban population total was also 

very accurately estimated, but that was also the case for model 3.     

Overall regional population was the only area in which model 4 performed noticeably worse 

than model 3, in particular by overestimating the regional population by 11%, or 8% more than 

model 3.  This was not a surprising result, considering that much of the overestimation in non-

urban Geelong was associated with industrial rather than rural areas.  The confounding of 

industrial with residential areas is more likely to take the form of relatively high (spurious) 

population densities over relatively small areas compared to the rural pattern of slightly inflated 

low densities over larger areas.  A low density filter will not help in detecting these 

misclassifications.  
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That being the case, in the light of the comparative performance of models 3 and 4, and 

considering the methodological advantages associated with model 4, the final assessments of 

this phase of the analysis are now made with reference to model 4, which in summary involved: 

• classification of each pixel in the image into residential and non-residential, using maximum 

likelihood classification based on the 6 untransformed TM bands and local training sets 

selected from the image; 

• a linear regression equation for residential pixel population, trained on a sample of 

residential pixels in the primary study area, based on the 6 untransformed TM bands and 

incorporating iterative re-estimation; 

• contextual reclassification as non-residential (zero population) of low population pixels (< 1 

person per pixel) in areas of low average population density (< 1 person/pixel over a 7×7 

pixel area); 

• high density adjustment via a power coefficient of 1.07 

 
6.4.7 Examination of remaining discrepancies 
 
The right half of Table 6.10 (with outliers omitted) and Figure 6.4 show that in the primary 

study area, in all but a few CDs there was a strong concordance between ground truth CD 

population density and the estimates derived from TM data using this model.  The same can be 

said of the secondary area, although the relationship is not quite so strong.  With regard to actual 

CD population, the relationship is weaker again, although again most of the substantial 

disagreement occurs in relatively few CDs  (less than 10% of the total in each case).  However 

with regard to total urban population, the results in both primary and secondary study areas 

were extremely accurate. 

The errors from model 4 (discrepancies between the estimates from model 4 and the ground 

truth values) for both population density and population of each CD are plotted in Figure 6.5 

against both population density and population.  These plots confirm that in all respects, the 

gross discrepancies are associated with a small number of CDs. 

The first pair of plots (error in population density vs. population density) show that in both 

study areas, in spite of the adjustment for high densities incorporated in model 4, there remained 

a tendency towards underestimation at higher densities.  In each case, this was most pronounced 

in the anomalous CDs which were identified previously, and which are summarised in Table 

6.12. The second pair of plots (error in population density vs. population) show that in general, 

there was not such a strong relationship between error in estimated CD population density and 
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CD population. In particular, the outlier CDs with underestimated high densities did not 

necessarily have particularly high populations. 

With regard to error in population, in the first pair of plots (error in population vs. population 

density) many of the same high density outliers stand out, not surprisingly, with underestimated 

populations.  However, equally large discrepancies (larger in the case of Geelong) occurred 

amongst CDs with low density.  Here, there was a difference in the pattern observed in the two 

study areas.    

In the case of Ballarat, whilst there was a tendency for low density populations to be 

overestimated, there were also a few low density CDs whose population was considerably 

underestimated.  In particular, the populations of 5 of the 16 non-urban CDs were 

underestimated, 2 of them considerably so.  This suggests that the remaining problem of 

overestimation in low density areas will not be uniformly improved by raising the low density 

threshold adjustments. 

In the case of Geelong, there remained very large overestimation discrepancies in a number of 

low density CDs, both urban and non-urban.  As has already been discussed, the larger 

industrial base of Geelong is a major contributing factor to the worst of these (see Table 6.12).  

Conversely, just as in the case of Ballarat, underestimation was generally associated either with 

institutional anomalies, with public housing estates or with more recent outer suburban 

residential development which has occurred in the absence of and probably in lieu of large scale 

public housing development.  Housing estates of this type, which are much more extensive in 

Geelong than Ballarat, have been periodically developed in the post World War 2 period 

essentially to house industrial workers.  Hence it would appear that the presence of large-scale 

industry is the root cause of much of both the overestimation (in industrial areas) and the 

underestimation (in associated residential areas).2 

                                                 
2 The fact that the two effects tend to cancel one another out over the whole region recalls the words of 

the old Tennessee Ernie Ford song: 
You load 16 tons and what do you get 
Another day older and deeper in debt 
Saint Peter don’t you call me ’cause I can’t go 
I owe my soul to the company store. 

There is a certain grim irony in the fact that from the heavenly perspective of the orbiting satellite, many 
workers are in effect assigned to the “company store” rather than to their homes! 
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Table 6.12  Census Collection Districts with Discrepant Estimates of Population Density and/or Population 
 

A. Primary study area: Ballarat 
 

Underestimation 
 

CD 
number 

Population 
density 

discrepancy1,2 

Population 
discrepancy2 

Characteristics 

68 -2678  Includes geriatric hospital 

91 -2266  Public housing 

8 -1676  Includes general hospital 

88 1601 -543 Public housing 

89 -1136  Public housing 

 
Overestimation 

 
CD 

number 
Population 

density 
discrepancy1,2 

Population 
discrepancy2 

Characteristics 

73  +582 Rural, includes racecourse, horse breeding & training establishments 

74  +630 Extensive rural, includes motels, some industrial, and airport incorporating former defence forces camp facilities 

63  +728 Mixture of residential, industrial/commercial, municipal saleyards, extensive park with sports facilities 

1 Persons/sq.km. 
2 CDs are listed because of extreme discrepancies on one or either criterion (or both criteria).  Only the extreme values are listed.   
 Cutoff points for inclusion in table are: population density ±1000; population  ±500 
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Table 6.12.  Census Collection Districts with Discrepant Estimates of Population Density and/or Population (continued) 
 

B. Secondary study area: Geelong 

Underestimation 

CD 
number 

Population 
density 

discrepancy1,2 

Population 
discrepancy2 

Characteristics 

200 -3702 -568 Includes geriatric institution 
16 -2485 -578 Public housing 
28 -2082  Public housing 
42 -1949 -517 Public housing 
50 -1948  Adjacent to public housing 
52 -1848  Public housing 

219 -1590  Recently developed outer suburban residential 
218 -1590  Recently developed outer suburban residential 
68 -1486  Public housing 
48 -1450 -556 Public housing 
81 -1320  No obvious cause 

221 -1255  Recently developed outer suburban residential 
67 -1196  Adjacent to public housing 
31 -1185  Adjacent to public housing 
25 -1110  Public housing 

109 -1085  Includes general hospital 
45 -1081  Public housing 
36 -1030 -790 Public housing 

8 -1030  Close to public housing 

1 Persons/sq.km. 
2 CDs are listed because of extreme discrepancies on one or either criterion (or both criteria).  Only the extreme values are listed.   
 Cutoff points for inclusion in table are: population density ±1000; population  ±500 
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Table 6.12.  Census Collection Districts with Discrepant Estimates of Population Density and/or Population  (continued) 
 

B. Secondary study area: Geelong 

Overestimation 

CD 
number 

Population 
density 

discrepancy1,2 

Population 
discrepancy2 

Characteristics 

22  507 Rural residential 
61  509 Mixed industrial, residential, schools & churches 

106  524 Concentration of hotels, motels & sports facilities 
95  580 Cement works, market gardens 

3  593 Rural 
122  608 Large park, residential 

4  698 Rural residential 
57  701 Mixed industrial, motels, highway, residential 
89  873 Industrial + railway yards 
79  1017 Industrial 

222  1027 Rural: marsh 
18  1330 Mixed industrial, residential, sports facilities 

1  1402 Rural: river flats 
32  1415 Industrial: salt evaporating pans 
21  1443 Rural: marsh 

121  1941 Industrial + racecourse 
34  2338 Rural residential 
59  2410 Industrial: vehicle assembly plant 
43  2726 Rural: river flats 
20  3848 Rural + former salt works and aluminium smelter 

1 Persons/sq.km. 
2 CDs are listed because of extreme discrepancies on one or either criterion (or both criteria).  Only the extreme values are listed.   
 Cutoff points for inclusion in table are: population density ±1000; population  ±500 
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Figure 6.5  Estimation error in Census Collection District population density and 
population for each study area: by population density and by population 
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The nature of these remaining discrepancies suggests two things.  Firstly, population density is 

consistently underestimated in areas of concentrated public and similar housing.  However, 

these are not necessarily the areas with the highest population densities; other CDs with similar 

or higher density are more accurately estimated.  This suggested that public housing areas were 
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not in spectral terms “out of range” of the regression model, but rather that the relationship 

between the spectral characteristics and population was not correctly calibrated for these areas.  

It is postulated that this is because of relative overcrowding in these areas – small rooms in 

small houses on small blocks.  The same spectral mix of built and natural elements which would 

elsewhere be associated with moderate population density, is in these areas associated with 

somewhat higher population density.  Because of the relative scarcity of such areas in Ballarat, 

they were underweighted relative to Geelong in the regression training set.  If the postulated 

explanation is true, then giving such areas higher weighting in the training set would 

presumably improve the fit of estimates in such areas.  However this may well occur at the 

expense of accuracy in other areas i.e. the same total uncertainty may just be more evenly 

distributed across all residential areas.  An alternative strategy which should improve the 

accuracy of fit overall, would be to classify residential areas into two strata rather than just one, 

and establish separate regression relationships for each.  However, this would involve an 

additional cost in procedural complexity, and would require extra “on the ground” knowledge. 

Secondly, with regard to the other sources of discrepancy, essentially the problem is one of 

classification.  Other approaches to classification, such as those outlined in Section 1.3.2, may 

produce some improvement, but there is likely to be a limit beyond which further gains are 

difficult to achieve within a parametric modelling framework.  With regard to the residual 

variation of estimates for rural areas, considering the sparse habitation of Australian rural areas 

in comparative global terms, it is arguable that the signal-to-noise ratio may be too low to 

enable reliable discrimination between the spectral signature of human residency and that of 

other human artifacts such as roads and sheds and the patchwork of agricultural and pastoral 

activities.  With regard to the problem of overestimation in industrial areas and other anomalous 

non-rural areas, and in the light of earlier discussions about underestimation of population 

concentrations associated with institutional accommodation and the like (including metropolitan 

high rise accommodation), there must come a point where further refinement of parametric 

procedures leads to such diminishing returns that a final recourse to the incorporation of 

ancillary information about known anomalies becomes a more effective way to proceed. 

 
6.5 SUMMARY 
 
The CD aggregate models developed in Chapter 4 and the pixel-based models developed in 

Chapter 5 were tested on the secondary image of Geelong.   

It was concluded that some of the improvement which had been achieved in the CD aggregate 

models in the case of the primary image through increased complexity, were not robust to the 

transition to the secondary image.  Overall, the model which performed best on the urban areas 
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of both images was the “middle ranking” model based on ratios of CD band means, which 

produced very accurate estimates of the total urban population in both cases.  Nevertheless, at 

the level of individual CDs, this model, like the rest, tended to underestimate the higher 

densities and overestimate the lower densities, and this was particularly the case in the 

secondary study area with its higher average density.  Like the other models, it grossly 

overestimated the regional totals for both primary and secondary study areas.  It was concluded 

that procedures based on CD aggregates were not robust to variation in density either within or 

between study areas, and that it would be difficult to address this shortcoming given the 

aggregated nature of the data. 

When the pixel-based models were applied to the secondary image, it was found that the 

logarithmic and square root models were not at all robust, in that very variable results were 

produced.  The performance of the linear model was much more consistent, but the estimates 

produced were badly biased.  The problem of bias was largely overcome by retraining the initial 

pixel classification on the secondary image, which is a routine and straightforward task in 

remote sensing analysis.  As with the CD aggregate methods, there remained a residual 

tendency to underestimate population in high density areas and to overestimate it in low density 

areas, but because of the disaggregated basis of the analysis, it was possible to devise methods 

to overcome these problems to some degree.  

When the population density and population estimates produced by this model for individual 

CDs were compared with ground truth data, there was a strong underlying concordance in the 

urban sections of both study areas, overlaid by a scattering of problematic cases the nature of 

which have been identified and explained, and for which remedies have been proposed.   

Notwithstanding the limitations of the model with respect to individual CDs, it seemed quite 

robust with respect to large urban aggregates.  Having been tuned to produce an extremely 

accurate estimate of total urban population in the primary study area, it produced an almost 

equally accurate estimate of total urban population in the secondary study area. 

With this basic framework established, it was decided to undertake a further exploration of the 

properties of the iterative re-estimation procedure with a view to optimising its performance 

before proceeding to submit the methodology to a wider range of validation testing. 
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Chapter 7 
 
The Iterative Re-Estimation Algorithm 
 
7.1 INTRODUCTION 
 
An iterative algorithm for refining regression estimates from incompletely determined data was 

introduced in Section 2.9.    

The algorithm was applied to training data from the primary image (Section 5.7) where it 

produced the best results of the many models tested.  Consequently it was adopted as a key step 

in the methodology developed and evaluated throughout the remainder of Chapters 5 and 6.   

In applying this algorithm, ad hoc decisions were made about sampling strategies and sample 

sizes, and about the number of iterations of the algorithm to be used.  It was decided, before 

proceeding to a wider range of validation testing, to explore the sampling variation and 

convergence properties of the algorithm with a view to devising a more considered strategy for 

its implementation.  These investigations are reported in Sections 7.3 and 7.4. 

We first show in Section 7.2 that the iterative re-estimation algorithm is a normal-based OLS 

approximation to an EM (expectation-maximisation) algorithm for maximum likelihood 

estimation. 

 
7.2 THE RELATIONSHIP OF THE ITERATIVE RE-ESTIMATION 

ALGORITHM TO THE EM ALGORITHM 
 
7.2.1 The EM algorithm 
 
The general EM algorithm can be represented schematically as in Figure 7.1.  The contours 

(which in practice would be far more complex than those illustrated) represent a function of two 

sets of variables, each set represented schematically by a single dimension – a vector of 

parameters θ, represented by the vertical dimension, and a vector of  data values x represented 

by the horizontal dimension.  The function of x defined by conditioning on a particular value of 

θ, say θ0, is the joint probability (density) function f(x|θ0).  The function of  θ defined by 

conditioning on a particular value of x, x0, is the likelihood function L(θ|x0).  The value of θ at 
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which this function is maximised is the maximum likelihood estimate of  θ given the particular 

sample data x0. 

Figure 7.1  Schematic Representation of the EM Algorithm 
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The EM algorithm is used in situations where f(x;θ) = L(θ;x) is difficult to define or analyse, 

but where some extra information (usually some extra detail about the data) would simplify the 
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formulation and analysis.  We represent the embellished or augmented data by y and the 

density/likelihood function by g(y|x;θ) = Q(θ;y|x).  

The conditional notation reflects the fact that the (wholly or partially) unobserved y values are 

constrained throughout to be consistent with the observed x. The algorithm proceeds by 

alternately re-estimating the conditional expectation of y (the E step), and maximising the 

likelihood conditional on the current value of y (the M step).    

 
7.2.2 The iterative re-estimation algorithm 
 
In the case under consideration, the elements of the y vector are the unknown notional 

populations of each pixel classified as residential, and x is the vector of known totals of these 

for each CD. 

We postulate a linear regression model with independently and identically distributed N(0, σ2)  

random errors: 

y~N(sβ, Σ) 

where  s is a vector of explanatory remote sensing variables (augmented by a 

constant term) 

   β is a vector of regression parameters to be estimated 

   Σ=σ2I is a diagonal error covariance matrix. 

In this case 
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For distributions of the exponential family, the E step essentially involves replacing y in the 

expression for L(β:y) with its expected value, conditional on the current value of β, βj and on x 

(Navidi, 1997).   

i.e. we require E(y|x), given that y~N(rβj, Σ) 

The M step: Maximise the expected value E[L(β:y)] with respect to β, and thereby obtain an 

updated estimate βj+1. 

The procedure 

In the iterative re-estimation algorithm (Section 2.9), the M step consists of re-estimating the 

least squares regression line.  Subject to the assumptions of normality, constant variance and 

independence, and the equivalence of least squares and maximum likelihood, this is equivalent 

to a standard M step.   

However, the E step was originally conceived heuristically in terms of perturbing the y values to 

reduce the residuals from the currently fitted line. In effect, rather than E(y|x), we find the 

conditional mode of y, i.e. the value of y which maximises the likelihood L(β:y) conditional on 

βj and on x.  This is done by minimising the sum of squared residuals 

2
i )(∑ βiy s-  

subject to the CD totals x.   

From this perspective, the problem can be characterised as follows: find a set of adjusted y 

values within each CD subset which minimises the sum of squares of the residuals subject to the 

sum of the residuals remaining constant.  This can be equivalently formulated in terms of 

residuals thus: given the set of residuals ri, find a set of adjusted residuals ai such that 
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i.e. the solution is to make all the residuals equal by redistributing the total of the original 

residuals (K) equally.  This can be achieved by adjusting the values of the dependent variable as 

follows: 

rryryy iiiadji +−=+= ˆ)(  

7.2.3 Relationship to the EM algorithm 
 
For the foregoing procedure to be equivalent to an exact EM algorithm, two conditions must be 

met: 

The least squares estimate must be equivalent to a maximum likelihood estimate (in both E and 

M steps); 

The maximum likelihood estimate of y|x (i.e. the mode) must be equivalent to the expected 

value (in the E step). 

The first of these requires that the covariance matrix of the conditional distribution of y|x must 

be diagonal.  The second requires that the mode and the mean of the distribution of y|x be equal. 

It will be shown (Proposition 1) that under the original assumptions, the distribution of each 

element of y|x is normal, with expected value equal to the modal value calculated by least 

squares, but (Proposition 2) that the covariance matrix of the conditional distribution of y|x is 

not diagonal. 

Proposition 1:  

Under the original assumptions, the conditional distribution of each element of y|x is normal, 

with  
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where  Yij is the population of pixel j in CD i 
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Ci = ∑
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is the known population of CD i (or a known proportion of the 

CD population) 

   ni is the number of pixels contributing to Ci 

This is equal to the value calculated by least squares. 

Proof 

For simplicity and without loss of generality, we consider a particular CD, and omit the i suffix. 

Let Yj be the notional population of pixel j.   
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Thus the conditional expected value is found by incrementing the current expected value (the 

fitted value from the previous regression step) by a constant equal to the mean of the residual 

values for all pixels in the CD.  This is the same result as that obtained by least squares above. 

Proposition 2:  

The covariance matrix Σ is not diagonal under the conditional constraint of fixed CD totals. 
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 Proof 

This is most obvious in the case of n=2 where 

cYY =+ 21  where c is constant 

We have 

)var(0),cov(),cov(),cov(),cov( 11111121 YYYcYYcYYY −=−=−=  

In general, with  

cYi =∑  

we have 

∑∑

∑

≠≠

≠

−−=−=

−=

jik
kii

jk
kii

jk
kiji

YYYYYcY

YcYYY

,

),cov()var(0),cov(),cov(

),cov(),cov(

 

It follows that either all of the covariances in the summation are zero, in which case cov(Yi,Yj) = 

-var(Yi) is not zero, or at least one of the other covariances is not zero. 

Hence, in general the populations of pixels within a particular CD are mutually correlated, given 

that we know the CD totals.  If we assume that the populations of pixels from different CDs are 

uncorrelated, then the covariance matrix of the conditional distribution will exhibit blocks of 

local correlation down the diagonal within each CD group of pixels.  The extent of departure 

from diagonality will diminish in relative terms with increasing sample size, both within each 

CD, and overall1 .   

As a quite separate issue, if there is spatial correlation between the populations of neighbouring 

pixels, then the original assumption of independently distributed random errors will not be met, 

and there will be departures from diagonality in the unconditional covariance matrix, which will 

further contribute to lack of diagonality in the conditional covariance matrix. 

 
7.2.4 Conclusion 
 
This algorithm, which might be characterised as an approximate EM or perhaps MM 

(Maximisation Maximisation) algorithm, is closely related to the ECM (Expectation Conditional 

Maximisation) algorithm (Meng and Rubin, 1993), which also has multiple conditional 

maximisation steps, and in spirit to the gradient algorithms of Titterington et al. (1985) and 

                                                 
1 This is reminiscent of the concept of m-aymptotics and n-asymptotics  in the analysis of categorical data 

(Hosmer and Lemeshow, 1989). 
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Lange (1995).  It its most general form, ECM has both multiple M steps and an E step, whereas 

the present algorithm can be characterised as having either, but not both. In the context of the 

normal distribution, such distinctions are not so marked as in the more general case. 

It is conjectured that the iterative re-estimation algorithm is asymptotically equivalent to the EM 

algorithm.  As such, for large sample sizes, the sequence of parameter estimates obtained might 

be expected to converge to the maximum likelihood estimates based on the true (unknown) y 

values.  However, Titterington et al. (1985) cite a number of examples of slow convergence and 

multiple maxima, and Lange (1995) also alludes to  “multiple modes of the likelihood surface”.  

In the presence of multicollinearity, sensitivity of individual parameter estimates to sampling 

variations in the data corresponds to a complex likelihood surface with flat topped ridges and 

ill-defined maxima.  This would be expected to lead to just such convergence problems.  In the 

present study this has been demonstrated to be the case both by Monte Carlo simulation and 

empirically (see following sections and Chapter 8).  As will be demonstrated, and has been 

discussed in Section 2.11.5 on multicollinearity, this does not necessarily invalidate the use of 

the procedure for producing improved population estimates. 

 
7.3 SAMPLING VARIATION 
 
The initial regression analysis of data from the primary image (Section 5.2) was carried out on a 

random sample of 1402 (2%) pixels classified as residential.  It was decided on the basis of the 

rate of convergence of R2 values to iterate 6 times. 

It was now decided to take replicate samples to examine the extent of sampling variation in both 

the initial regression results and in the iterated results.  This was extended to include a 

systematic examination of the effects of varying three factors: 

• data source (residential class or residential classification training set) 

• sample size 

• number of iterations 

The data source previously used had been the full residential class, because it was more broadly 

representative in scope than the residential training set, which was sampled from relatively 

homogeneous suburban residential areas.  However the residential class was subsequently found 

to include, at the low population density end, many pixels misclassified as residential, the 

inclusion of which might be expected to bias the regression.  It was thus worth examining the 

tradeoff between the effects of under-representation in the more restricted residential 

classification training set data and spurious representation in the full residential class. 
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Initially, a sample of 14270 (20%) pixels classified as residential was randomly subdivided into 

10 disjoint subsamples each of 1427 pixels, and the complete set of 6345 pixels in the 

residential training set was subdivided into 5 disjoint subsamples each of 1269 pixels. 

Linear regression models using the 6 TM bands as explanatory variables were fitted to the two 

larger samples and to the 15 subsamples.  In each case the procedure was iterated 30 times.  

Appendix G shows a sample of the regression coefficients and R2 values after 0, 1, 6, 29 and 30 

iterations. 

A number of points were apparent from these results.  Firstly, there were both similarities and 

differences between the results for the two data sets.  In each case the values of R2 increased 

monotonically for all subsamples, sharply after the first iteration, and thereafter at a diminishing 

rate.  In each case, the values of R2 were reasonably consistent across subsamples.   

As to differences, the initial fit was not so good in the training set data, and the initial regression 

coefficients (apart from the constant) tended to be considerably smaller in magnitude.  The rate 

of convergence of R2 values was also slower, as is evidenced by the magnitude of the difference 

between the 29th and 30th iterations.  These differences are consistent with a data source which is 

more homogeneous with respect to the dependent variable.  Further examination confirmed that 

whilst the residential training set encompassed the full range of spectral responses, the initial 

imputed populations fell into a narrower band than was the case for the full residential class.   

 With regard to the effect of the re-estimation procedure, the levels of R2 reached by the 30th 

iteration were somewhat higher in the case of the training set data.  This is again consistent with 

a more homogeneous set of CDs, where the potential for linearising by re-allocation notional 

population between pixels might be expected to be greater.  Of course it does not follow that 

such a model necessarily has greater predictive power – it may just indicate a greater potential 

for capitalising on chance in the more homogeneous data set. 

Whilst the initial regression coefficients (apart from the constant) tended to be considerably 

smaller in magnitude in the training set data, these differences had greatly diminished by the 

30th iteration, the increases in the magnitudes of the coefficients being much more marked in the 

training set data than in the residential class data. 

It was also the case that whilst the range of initially imputed populations was much less for the 

training set data than for the residential class data, this difference too had diminished by the 30th 

iteration, with both sets of estimates having a similar range, and in both cases including negative 

values. 

Finally, it was noticeable that whilst the initial coefficients were reasonably consistent between 

subsamples within each data set, the iterative procedure produced much greater divergence 

between subsamples.  This was not unexpected in the presence of multicollinearity (see Section 
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7.2.3), but again (as discussed in Section 2.11.5) it need not necessarily detract from predictive 

performance. 

In summary, it seemed that using the residential training set rather than the residential class as 

the source of training data might ultimately lead to similar prediction equations, although 

convergence would be rather slower.  Alternatively, it may be the case that both sets of data 

were being over-linearised, and that the earlier results from the training set data, with lower 

magnitude coefficients suggesting less sensitivity of population to differences in spectral 

reflectance, might ultimately be more appropriate.   

To explore this issue further it was decided to undertake a simulation study. 

 
7.4 SIMULATION 
 
The simulation study included a systematic examination of the effects of varying six factors: 

• underlying relationship between population and spectral reflectances 

• level of random error in the relationship 

• data source for estimating the relationship  

• sample size 

• number of iterations 

• suppression of negative estimates at each iteration  

 
7.4.1 Simulated populations 
 
The empirical spectral data from the two sets of pixels described in the previous section were 

used as the basis of several simulated statistical populations of pixel populations. (The two 

terminologies come into unavoidable conflict here!) 

Three underlying relationships between pixel population and spectral reflectances were 

simulated, based on the regression equations obtained from the full “class” data set (n=14270) 

and “training set” data set (n=6345) after 10 iterations.    

Because the “class” data had led to negative estimates from the very first iteration, two versions 

of the population relationship based on this data were used: one obtained when negative 

estimates were not readjusted to zero at each iteration, and the other obtained when negative 

estimates were readjusted to zero (see Section 2.9.2).  This distinction was not drawn for the 

relationship derived from the training set data because few negative values were produced by 

the tenth iteration in that case.   
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The three underlying population relationships are summarised in Table 7.1. 

 
Table 7.1  Underlying Pixel Population Models Used for Simulation  

 
  Band Coefficients 
Model Source Const b1 b2 b3 b4 b5 b7 

1A Res. class 
 

2.13808 0.13243 0.17399 -0.17622 -0.03143 -0.05826 0.08553 

1B Res class with 
 –ve adjustment 

2.98236 0.13959 0.18791 -0.20670 -0.02571 -0.09284 0.13577 

2 Res. training set 
 

3.49571 0.00294 0.11197 -0.12913 -0.01534 -0.07410 0.16400 

 
 
To each of these relationships was added three levels of normally distributed random error: 

none, moderate (σ=0.5) and high (σ=1.0).  The standard deviations in the context of estimated 

pixel populations ranging  from zero to maxima in the range 5 to 9.  

Thus there were 9 simulated population relationships in all: 3 basic equations each with 3 levels 

of error superimposed.   

Finally, all negative populations thus generated were reset to zero.  Following the addition of 

random error and the adjustment of the negative populations, the underlying relationships in 

each of the 9 scenarios were re-estimated by OLS for later use (see Section 3.4.3). 

 
7.4.2 Monte Carlo sampling from the simulated populations 
 
It was considered that a sample size of at least 1000 was necessary to ensure a reasonable 

sample size within each of the 138 CDs represented in the residential class and the 25 CDs 

represented in the training set.  The re-estimation procedure in its most exact from is predicated 

on all the residential pixels from each CD being used.   The bias and/or loss of precision 

introduced by using only a sample of pixels from each CD will be greater for small samples, 

which are more likely to be unrepresentative of the CD as a whole.  Small samples also limit the 

extent to which population can be redistributed between pixels.   It was decided to compare 

sample sizes of 1000 and 5000 in the training set population and 1000, 5000 and 10000 in the 

class population.   Because the largest sample size in each case was approaching the size of the 

population, measures based on samples of this size would give an indication of the upper limit 

to the capacity of this procedure to recover the true pixel populations.  

The iterative re-estimation algorithm was applied, both with and without the readjustment of 

negative estimates at each iteration described in the previous section. 

A subset of the complete factorial combination of factors, considered sufficient to illuminate the 

various issues, was selected and implemented.  For each selected  combination, 10 simulation 
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runs of 10 iterations were implemented.  Regression coefficients and R2 values were recorded 

after each iteration.  The procedure was implemented in a Minitab macro.  

 
7.4.3 Assessment criteria 

 
The results of the simulations were compared on the basis of four criteria, each calculated after 

iterations 0, 1, 5 and 10.  Three of these were averaged over the ten replications and the fourth 

was a measure of sampling variation between replications. 

Regression coefficients 

In theory, an EM algorithm should converge to the maximum likelihood estimate of the relevant 

parameters, in this case the regression coefficients.  However, as discussed in Section 7.2.4, 

there were reasons for not expecting that to be the case.  The preliminary results of Section 7.3 

made it clear that there would be substantial sampling variation in the regression coefficients.  

Nevertheless it was of interest to investigate whether there was any underlying relationship 

between the “average” or expected rate and extent of convergence of the algorithm and the 

different settings of the various factors.  

In the context of normal errors the maximum likelihood estimates in the present context are the 

OLS estimates found by regression analysis on the true populations of the pixels in the sample.  

The true population parameters could be regarded as the coefficients of the equations listed in 

Table 7.1, but because of the readjustments to the negative values it was decided to replace 

these parameters by the coefficients of a regression equation fitted to the final population values 

assigned  to all pixels in the population.  

Two criteria were chosen to address the issue of how accurately the estimates of the regression 

coefficients generated by the iterative refinement algorithm converged to (i) the OLS estimates 

and (ii) the true population parameters.  

It was decided to exclude the constant term from consideration on the ground that since the 

origin of the explanatory variables was distant from the range of the observed spectral data in 

both data sets, in the presence of multicollinearity the constant term would be expected to be 

quite volatile.   

Accordingly, the first measure calculated was the root mean square average of the discrepancies 

between the estimated value of each regression coefficient and its “target value” (OLS estimate 

or population parameter), averaged across the 6 TM bands (but excluding the constant) and the 

10 simulations. 
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The second measure was the same measure calculated for only TM bands 4, 5 and 7, these being 

least affected by multicollinearity and hence being more likely to converge in a well-behaved 

fashion to the target values. 

These are indicators of average or expected performance, not measures of sampling variation.  

Inspection of the results of individual simulations confirmed that as expected, and as reported in 

Section 7.3 for the empirical data, variation between the 10 replications under each condition 

increased in each case as the number of iterations increased.  Sampling variation decreased as 

sample size increased, as would be expected, particularly since the largest sample size in each 

case was close to the finite population size. 

Values of these two measures are tabulated in Table 7.2.  Table 7.2 is in four parts.  Part A and 

B show the first measure, based on the RMSE across the 6 band coefficients.  Part A shows the 

results for models 1A and 1B, derived from the residential class with and without adjustments 

for negative values at each iteration.  Part B shows the corresponding results for model 2, 

derived from the residential training set data.  Parts C and D show corresponding results for the 

second RMSE measure, based on the coefficients for bands 4, 5 and 7.   

Population Estimates 

The other two criteria were designed to bypass the effects of multicollinearity and directly 

address the question of how well the true populations for the sample of pixels were recovered 

by applying the estimated regressions.   

Under each of the combinations of factors examined, the estimated population of each pixel in 

the sample was compared with the true population of the pixel, and a root mean square average 

value calculated for the sample. This was done after iteration 0, 1, 5 and 10 iterations.  The 

RMS deviation from the mean population of all pixels in the sample (i.e. the standard deviation 

of the populations, without the correction for degrees of freedom) was also incorporated for a 

baseline comparison.  The RMS averages of these 5 sets of deviations, and the standard 

deviations of these RMS errors, calculated across the 10 replications, are tabulated in Table 7.3.  

Mean values for the 10 replications were also calculated, and in every case were almost 

identical to the RMS averages. 

In this case the standard deviations are of interest because it was conjectured that 

notwithstanding the sampling variation in the regression coefficients in the presence of 

multicollinearity, the accuracy of population estimation should be consistent from sample to 

sample.  Of course these results are indicative only, since they are based only on the sample 

data, with no external validation. 
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7.4.4 Interpretation and conclusions 
 
The results of the simulations are now assessed with respect to the 6 factors listed at the 

beginning of Section 7.4, on the basis of the 4 criteria defined in Section 7.4.3, which for 

convenience in this section are referred to as follows: 

6-coefficient:  RMSE based on estimates of 6 TM band regression coefficients 

3-coefficient:  RMSE based on estimates of 3 TM band regression coefficients 

population accuracy: RMSE based on population estimates for individual pixels 

sampling variation: sample to sample variability in the population accuracy 

Whilst R2 values are not reported in Table 7.2, similar patterns were observed as in Section 7.3.  

Initial R2 values were in the range .45-.55 for samples from the residential class and .25-.35 for 

samples from the more homogeneous residential training set.  In all cases  R2 rose 

monotonically but at a diminishing rate.  By the tenth iteration, values ranged from around .9 to 

.99.  In each case, the level reached can be related to the combination of form of model, source 

of sample and sample size.  However, the R2 values after iteration have no intrinsic diagnostic 

use, since they reflect the effect of capitalisation on chance within the samples.  Indeed in many 

cases, the levels reached after 10 iterations were much higher than the value in the simulated 

population, and hence were quite spurious and misleading. 

Turning to the more informative measures presented in Tables 7.2 and 7.3, first a disclaimer!  

Viewed as a designed experiment this study involved 6 factors each at 2 or 3 levels, with 4 

dependent variables.  Considering the processing required for each observation (simulation run), 

it was not feasible to implement a complete design, or to undertake a formal and rigorous 

inferential analysis of the main effects and the many interactions.  Rather, the investigation was 

strategically targeted, incremental and exploratory, with a view to obtaining some guidance as 

to an appropriate combination of settings to apply when implementing the algorithm. 

As expected, rapid convergence was not observed with respect to the two coefficient criteria.  

As expected, the values of the 3-coefficient criterion were generally lower than those of the 6-

coefficient criterion, but the rates of convergence seemed to be similar.  Convergence was 

generally monotonic up to 5 iterations, but in many cases there was little further improvement 

or even divergence between 5 and 10 iterations.  Convergence was generally marginally better 

with respect to the true population parameters than the OLS sample estimates.  In general 

improved convergence was observed with larger samples.  Interestingly, the level of error in the 

population data did not have a discernible effect under any conditions. 
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Table 7.2  Summary of Simulation Results: Estimates of Regression Coefficients1 

 

A. Models derived from residential class data; RMS discrepancies in 6 regression coefficients 
 
Simulated  Est. from Residential class Residential training set 
population  Neg adjust No Yes No Yes 
relationship Neg Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Iter OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop 
Residential No 0 0 0.0509 0.0513 0.0495 0.0494 0.0499 0.0497 0.0509 0.0513 0.0495 0.0494 0.0499 0.0497 0.1152 0.1102   0.1152 0.1102   

class   1 0.0265 0.0265 0.0216 0.0216 0.0206 0.0206 0.0268 0.0268 0.0219 0.0219 0.0209 0.0209 0.1059 0.1005   0.1059 0.1005   
   5 0.0267 0.0263 0.0295 0.0297 0.0265 0.0267 0.0223 0.0222 0.0186 0.0188 0.0158 0.0160 0.0947 0.0887   0.0953 0.0894   
   10 0.0316 0.0313 0.0320 0.0322 0.0258 0.0261 0.0234 0.0234 0.0179 0.0180 0.0141 0.0143 0.0927 0.0868   0.0941 0.0882   
  0.5 0 0.0492 0.0507 0.0492 0.0487 0.0496 0.0491 0.0492 0.0507 0.0492 0.0487 0.0496 0.0491 0.1152 0.1083   0.1152 0.1083   
   1 0.0253 0.0260 0.0214 0.0210 0.0206 0.0201 0.0255 0.0262 0.0216 0.0212 0.0208 0.0203 0.1061 0.0987   0.1061 0.0987   
   5 0.0254 0.0247 0.0275 0.0277 0.0249 0.0251 0.0219 0.0214 0.0188 0.0187 0.0161 0.0160 0.0954 0.0875   0.0960 0.0881   
   10 0.0298 0.0292 0.0288 0.0291 0.0236 0.0238 0.0233 0.0228 0.0169 0.0167 0.0131 0.0128 0.0938 0.0860   0.0951 0.0871   
  1.0 0 0.0486 0.0502 0.0477 0.0483 0.0481 0.0487 0.0486 0.0502 0.0477 0.0483 0.0481 0.0487 0.1138 0.1045   0.1138 0.1045   
   1 0.0273 0.0262 0.0213 0.0208 0.0207 0.0202 0.0273 0.0262 0.0213 0.0208 0.0207 0.0202 0.1050 0.0952   0.1050 0.0952   
   5 0.0269 0.0226 0.0248 0.0233 0.0227 0.0208 0.0256 0.0212 0.0204 0.0189 0.0181 0.0162 0.0950 0.0846   0.0954 0.0850   
   10 0.0307 0.0268 0.0247 0.0233 0.0205 0.0185 0.0278 0.0236 0.0176 0.0161 0.0135 0.0115 0.0937 0.0835   0.0948 0.0843   
 Yes 0 0 0.0449 0.0453 0.0449 0.0453  0.1057 0.1020   0.1057 0.1020   
   1 0.0223 0.0224 0.0224 0.0225  0.0994 0.0956   0.0994 0.0956   
   5 0.0231 0.0228 0.0199 0.0198  0.0932 0.0892   0.0934 0.0894   
   10 0.0284 0.0282 0.0222 0.0222  0.0930 0.0891   0.0936 0.0897   
  0.5 0 0.0426 0.0473 0.0426 0.0473  0.1057 0.1022   0.1057 0.1022   
   1 0.0207 0.0242     0.0208 0.0243     0.0997 0.0959   0.0997 0.0959   
   5 0.0217 0.0210 0.0198 0.0198     0.0941 0.0898   0.0942 0.0900   
   10 0.0266 0.0259 0.0228 0.0226     0.0942 0.0899   0.0947 0.0904   
  1.0 0 0.0418 0.0418     0.0418 0.0418     0.1045 0.0928   0.1045 0.0928   
   1 0.0232 0.0209     0.0232 0.0209     0.0989 0.0869   0.0989 0.0869   
   5 0.0238 0.0200     0.0236 0.0195     0.0939 0.0817   0.0940 0.0818   
   10 0.0280 0.0247     0.0272 0.0235     0.0943 0.0824   0.0947 0.0826   

 
1 Ten simulations were carried out for each indicated combination of function/population sampled from/sample size/negative adjustment.  Each simulation was iterated 10 times. Table entries are the 

RMS discrepancy between the regression coefficients for the 6 TM bands (excluding the constant) obtained after iterations 0, 1, 5 and 10 and the (1) the coefficients obtained by OLS applied to the 
true pixel populations in the sample and (2) the population parameters. 
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Table 7.2  Summary of Simulation Results: Estimates of Regression Coefficients1 

 (continued) 
 

B. Model derived from residential training set data; RMS discrepancies in 6 regression coefficients 
 
Simulated  Est. from Residential class Residential training set 
population  Neg adjust No Yes No Yes 
relationship Neg Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Iter OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop 
Residential No 0 0 0.0731 0.0765     0.0731 0.0765  0.0850 0.0984 0.0840 0.1100 0.0850 0.0984 0.0840 0.1100 

training   1 0.0615 0.0628     0.0615 0.0628  0.0738 0.0910 0.0719 0.1002 0.0738 0.0910 0.0719 0.1002 
set   5 0.0484 0.0535 0.0484 0.0535  0.0524 0.0808 0.0496 0.0849 0.0524 0.0808 0.0496 0.0849 

   10 0.0445 0.0538 0.0445 0.0538  0.0437 0.0792 0.0421 0.0821 0.0439 0.0792 0.0422 0.0821 
  0.5 0 0.0714 0.0715     0.0714 0.0715  0.0855 0.0841 0.0843 0.1059 0.0855 0.0841 0.0843 0.1059 
   1 0.0603 0.0601     0.0603 0.0601  0.0744 0.0730 0.0723 0.0961 0.0744 0.0730 0.0723 0.0961 
   5 0.0480 0.0474 0.0480 0.0474  0.0536 0.0521 0.0501 0.0813 0.0536 0.0521 0.0501 0.0813 
   10 0.0444 0.0435 0.0444 0.0435  0.0451 0.0439 0.0428 0.0791 0.0453 0.0440 0.0429 0.0791 
  1.0 0 0.0682 0.0696     0.0682 0.0696  0.0845 0.0815 0.0832 0.1124 0.0845 0.0815 0.0832 0.1062 
   1 0.0582 0.0588     0.0582 0.0588  0.0738 0.0707 0.0715 0.1029 0.0738 0.0707 0.0715 0.0967 
   5 0.0477 0.0468 0.0477 0.0468     0.0536 0.0505 0.0498 0.0876 0.0536 0.0505 0.0498 0.0820 
   10 0.0451 0.0434 0.0451 0.0434     0.0453 0.0424 0.0426 0.0845 0.0454 0.0425 0.0426 0.0796 

 
1 Ten simulations were carried out for each indicated combination of function/population sampled from/sample size/negative adjustment.  Each simulation was iterated 10 times. Table entries are the 

RMS discrepancy between the regression coefficients for the 6 TM bands (excluding the constant) obtained after iterations 0, 1, 5 and 10 and the (1) the coefficients obtained by OLS applied to the 
true pixel populations in the sample and (2) the population parameters. 
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Table 7.2  Summary of Simulation Results: Estimates of Regression Coefficients1 

 (continued) 
 

C. Models derived from residential class data; RMS discrepancies in 3 regression coefficients 
 
Simulated  Est. from Residential class Residential training set 
population  Neg adjust No Yes No Yes 
relationship Neg Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Iter OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop 
Residential No 0 0 0.0445 0.0444 0.0442 0.0442 0.0441 0.0441 0.0445 0.0444 0.0442 0.0442 0.0441 0.0441 0.0528 0.0561   0.0528 0.0561   

class   1 0.0282 0.0281 0.0264 0.0264 0.0258 0.0258 0.0286 0.0284 0.0267 0.0267 0.0262 0.0262 0.0365 0.0390   0.0365 0.0390   
   5 0.0153 0.0154 0.0090 0.0090 0.0075 0.0075 0.0182 0.0181 0.0154 0.0154 0.0145 0.0145 0.0239 0.0217   0.0230 0.0211   
   10 0.0163 0.0165 0.0063 0.0064 0.0041 0.0042 0.0175 0.0173 0.0154 0.0154 0.0149 0.0149 0.0286 0.0252   0.0230 0.0202   
  0.5 0 0.0435 0.0434 0.0435 0.0430 0.0434 0.0430 0.0435 0.0434 0.0435 0.0430 0.0434 0.0430 0.0529 0.0542   0.0529 0.0542   
   1 0.0277 0.0274 0.0260 0.0255 0.0255 0.0250 0.0278 0.0275 0.0261 0.0256 0.0256 0.0252 0.0366 0.0373   0.0366 0.0373   
   5 0.0153 0.0150 0.0089 0.0085 0.0075 0.0072 0.0170 0.0165 0.0134 0.0129 0.0125 0.0120 0.0239 0.0219   0.0232 0.0213   
   10 0.0161 0.0160 0.0063 0.0062 0.0043 0.0042 0.0162 0.0157 0.0125 0.0120 0.0120 0.0115 0.0286 0.0265   0.0233 0.0212   
  1.0 0 0.0419 0.0414 0.0420 0.0410 0.0419 0.0409 0.0419 0.0414 0.0420 0.0410 0.0419 0.0409 0.0518 0.0508   0.0518 0.0508   
   1 0.0272 0.0262 0.0252 0.0242 0.0248 0.0239 0.0272 0.0263 0.0252 0.0242 0.0248 0.0239 0.0358 0.0343   0.0358 0.0343   
   5 0.0158 0.0144 0.0088 0.0079 0.0076 0.0067 0.0162 0.0146 0.0104 0.0093 0.0094 0.0083 0.0238 0.0219   0.0232 0.0213   
   10 0.0165 0.0154 0.0063 0.0059 0.0044 0.0040 0.0155 0.0140 0.0078 0.0067 0.0068 0.0055 0.0285 0.0277   0.0242 0.0230   
 Yes 0 0 0.0267 0.0266     0.0267 0.0266  0.0365 0.0380   0.0365 0.0380   
   1 0.0158 0.0158     0.0158 0.0158    0.0262 0.0268   0.0262 0.0268   
   5 0.0157 0.0158 0.0118 0.0119    0.0275 0.0254   0.0273 0.0252   
   10 0.0189 0.0190 0.0118 0.0118    0.0324 0.0300   0.0302 0.0278   
  0.5 0 0.0256 0.0275     0.0256 0.0275    0.0360 0.0382   0.0360 0.0382   
   1 0.0153 0.0167     0.0153 0.0167     0.0259 0.0270   0.0259 0.0270   
   5 0.0153 0.0152 0.0128 0.0128     0.0277 0.0256   0.0275 0.0254   
   10 0.0184 0.0181 0.0134 0.0132     0.0327 0.0303   0.0307 0.0283   
  1.0 0 0.0245 0.0236     0.0245 0.0236     0.0345 0.0330   0.0345 0.0330   
   1 0.0152 0.0138     0.0152 0.0138     0.0250 0.0229   0.0250 0.0229   
   5 0.0154 0.0142     0.0147 0.0133     0.0274 0.0259   0.0273 0.0258   
   10 0.0182 0.0173     0.0165 0.0154     0.0323 0.0316   0.0312 0.0304   

 
1 Ten simulations were carried out for each indicated combination of function/population sampled from/sample size/negative adjustment.  Each simulation was iterated 10 times. Table entries are the 

RMS discrepancy between the regression coefficients for the 6 TM bands (excluding the constant) obtained after iterations 0, 1, 5 and 10 and the (1) the coefficients obtained by OLS applied to the 
true pixel populations in the sample and (2) the population parameters. 
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Table 7.2  Summary of Simulation Results: Estimates of Regression Coefficients1 

 (continued) 
 

D. Model derived from residential training set data; RMS discrepancies in 3 regression coefficients 
 
Simulated  Est. from Residential class Residential training set 
population  Neg adjust No Yes No Yes 
relationship Neg Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Iter OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop OLS Pop 
Residential No 0 0 0.0731 0.0765     0.0731 0.0765  0.0850 0.0984 0.0840 0.1100 0.0850 0.0984 0.0840 0.1100 

training   1 0.0615 0.0628     0.0615 0.0628  0.0738 0.0910 0.0719 0.1002 0.0738 0.0910 0.0719 0.1002 
set   5 0.0484 0.0535 0.0484 0.0535  0.0524 0.0808 0.0496 0.0849 0.0524 0.0808 0.0496 0.0849 

   10 0.0445 0.0538 0.0445 0.0538  0.0437 0.0792 0.0421 0.0821 0.0439 0.0792 0.0422 0.0821 
  0.5 0 0.0714 0.0715     0.0714 0.0715  0.0855 0.0841 0.0843 0.1059 0.0855 0.0841 0.0843 0.1059 
   1 0.0603 0.0601     0.0603 0.0601  0.0744 0.0730 0.0723 0.0961 0.0744 0.0730 0.0723 0.0961 
   5 0.0480 0.0474 0.0480 0.0474  0.0536 0.0521 0.0501 0.0813 0.0536 0.0521 0.0501 0.0813 
   10 0.0444 0.0435 0.0444 0.0435  0.0451 0.0439 0.0428 0.0791 0.0453 0.0440 0.0429 0.0791 
  1.0 0 0.0682 0.0696     0.0682 0.0696  0.0845 0.0815 0.0832 0.1124 0.0845 0.0815 0.0832 0.1062 
   1 0.0582 0.0588     0.0582 0.0588  0.0738 0.0707 0.0715 0.1029 0.0738 0.0707 0.0715 0.0967 
   5 0.0477 0.0468 0.0477 0.0468     0.0536 0.0505 0.0498 0.0876 0.0536 0.0505 0.0498 0.0820 
   10 0.0451 0.0434 0.0451 0.0434     0.0453 0.0424 0.0426 0.0845 0.0454 0.0425 0.0426 0.0796 

 
1 Ten simulations were carried out for each indicated combination of function/population sampled from/sample size/negative adjustment.  Each simulation was iterated 10 times. Table entries are the 

RMS discrepancy between the regression coefficients for the 6 TM bands (excluding the constant) obtained after iterations 0, 1, 5 and 10 and the (1) the coefficients obtained by OLS applied to the 
true pixel populations in the sample and (2) the population parameters. 
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 Table 7.3  Summary of Simulation Results: Estimates of Population of Individual Pixels 

 
A.  Models derived from residential class data; RMS errors in pixel populations averaged over samples 

 
Simulated   Est. from Residential class Residential training set 
population   Neg adjust No Yes No Yes 
relationship Neg Error level Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Basis of est.           
Residential No 0 Mean 1.3227 1.3204 1.3203 1.3227 1.3204 1.3203 1.3319  1.3319  

class   Iteration 0 0.6518 0.6536 0.6562 0.6518 0.6536 0.6562 1.1087  1.1087  
   Iteration 1 0.4130 0.3828 0.3800 0.4166 0.3864 0.3836 0.9702  0.9702  

   Iteration 5 0.3013 0.2453 0.2383 0.3106 0.2550 0.2472 0.7518  0.7551  
   Iteration 10 0.3134 0.2400 0.2294 0.3071 0.2477 0.2399 0.6576  0.6689  
  0.5 Mean 1.3596 1.3559 1.3596 1.3559 1.4143  1.4143  
   Iteration 0 0.7581 0.7564 0.7581 0.7564 1.2075  1.2075  
   Iteration 1 0.5746 0.5500 0.5759 0.5513 1.0824  1.0824  
   Iteration 5 0.5035 0.4691 0.5064 0.4715 0.8928  0.8953  
   Iteration 10 0.5106 0.4668 0.5047 0.4668 0.8153  0.8233  
  1.0 Mean 1.4715 1.4649 1.4715 1.4649 1.6222 1.6056 1.6222  
   Iteration 0 1.0061 0.9983 1.0061 0.9983 1.4525 1.4347 1.4525  
   Iteration 1 0.8890 0.8668 0.8891 0.8669 1.3546 1.3350 1.3546  
   Iteration 5 0.8489 0.8220 0.8491 0.8219 1.2144 1.1869 1.2155  
   Iteration 10 0.8527 0.8208 0.8493 0.8189 1.1605 1.1214 1.1640  
 Yes 0 Mean 1.1962 1.1962 1.2032  1.2032  
   Iteration 0 0.5795 0.5795 1.0295  1.0295  
   Iteration 1 0.3576 0.3592 0.9216  0.9216  
   Iteration 5 0.2638 0.2584 0.7407  0.7412  
   Iteration 10 0.2799 0.2567 0.6486  0.6506  
  0.5 Mean 1.2364 1.2364 1.2920  1.2920  
   Iteration 0 0.7059   0.7059   1.1350  1.1350  
   Iteration 1 0.5501 0.5505 1.0400  1.0400  
   Iteration 5 0.4978 0.4955   0.8865  0.8868  
   Iteration 10 0.5059 0.4960   0.8118  0.8129  
  1.0 Mean 1.3657   1.3657   1.5159  1.5159  
   Iteration 0 0.9776   0.9776   1.3934  1.3934  
   Iteration 1 0.8846 0.8846 1.3222  1.3222  
   Iteration 5 0.8565   0.8561   1.2119  1.2120  
   Iteration 10 0.8606   0.8583   1.1608  1.1611  
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Table 7.3  Summary of Simulation Results: Estimates of Population of Individual Pixels 
(continued) 

 
B. Model derived from residential training set data; RMS errors in pixel populations averaged over samples1 

 
Simulated   Est. from Residential class Residential training set 
population   Neg adjust No Yes No Yes 
relationship Neg Error level Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Basis of est.           
Residential No 0 Mean 0.7162   0.7162 0.7625 0.7645 0.7625 0.7645

training    Iteration 0 0.5018   0.5018 0.6048 0.6026 0.6048 0.6026
set   Iteration 1 0.4289 0.4289 0.5000 0.4939 0.5000 0.4939

   Iteration 5 0.3488 0.3488 0.3194 0.3029 0.3194 0.3029
   Iteration 10 0.3227 0.3227 0.2517 0.2257 0.2517 0.2261
  0.5 Mean 0.8700   0.8700 0.9114 0.9060 0.9114 0.9060
   Iteration 0 0.7051   0.7051 0.7860 0.7771 0.7860 0.7771
   Iteration 1 0.6561 0.6561 0.7102 0.6985 0.7102 0.6985
   Iteration 5 0.6084 0.6084 0.6016 0.5856 0.6016 0.5856
   Iteration 10 0.5944 0.5944 0.5711 0.5529 0.5712 0.5529
  1.0 Mean 1.1621   1.1621 1.2357 1.2193 1.2357 1.2193
   Iteration 0 1.0555   1.0555 1.1529 1.1343 1.1529 1.1343
   Iteration 1 1.0269 1.0269 1.1063 1.0863 1.1063 1.0863
   Iteration 5 1.0006 1.0006   1.0452 1.0237 1.0452 1.0237
   Iteration 10 0.9934 0.9934   1.0298 1.0076 1.0299 1.0076
1  The figure tabulated is the RMS average value, calculated over 10 samples, of the RMS error in individual pixel population estimates. 
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 Table 7.3  Summary of Simulation Results: Estimates of Population of Individual Pixels 

(continued) 
C. Models derived from residential class data; RMS errors in pixel populations: variation between samples 

 
Simulated   Est. from Residential class Residential training set 
population   Neg adjust No Yes No Yes 
relationship Neg Error level Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Basis of est.           
Residential No 0 Mean 0.0271 0.0088 0.0052 0.0271 0.0088 0.0052 0.0237  0.0237  

class   Iteration 0 0.0295 0.0081 0.0034 0.0295 0.0081 0.0034 0.0304  0.0304  
   Iteration 1 0.0255 0.0082 0.0039 0.0252 0.0081 0.0038 0.0420  0.0420  

   Iteration 5 0.0238 0.0090 0.0030 0.0207 0.0084 0.0033 0.0615  0.0620  
   Iteration 10 0.0257 0.0137 0.0036 0.0197 0.0077 0.0030 0.0580  0.0647  
  0.5 Mean 0.0284 0.0089 0.0284 0.0089 0.0177  0.0177  
   Iteration 0 0.0296 0.0086 0.0296 0.0086 0.0227  0.0227  
   Iteration 1 0.0232 0.0078 0.0232 0.0078 0.0327  0.0327  
   Iteration 5 0.0207 0.0055 0.0197 0.0058 0.0479  0.0483  
   Iteration 10 0.0219 0.0074 0.0194 0.0057 0.0435  0.0487  
  1.0 Mean 0.0392 0.0113 0.0392 0.0113 0.0171 0.0073 0.0171  
   Iteration 0 0.0371 0.0102 0.0371 0.0102 0.0203 0.0075 0.0203  
   Iteration 1 0.0327 0.0091 0.0327 0.0091 0.0268 0.0081 0.0268  
   Iteration 5 0.0304 0.0075 0.0304 0.0077 0.0360 0.0097 0.0362  
   Iteration 10 0.0303 0.0079 0.0299 0.0081 0.0333 0.0103 0.0358  
 Yes 0 Mean 0.0222 0.0222 0.0248  0.0248  
   Iteration 0 0.0241 0.0241 0.0336  0.0336  
   Iteration 1 0.0196 0.0196 0.0445  0.0445  
   Iteration 5 0.0209 0.0174 0.0619  0.0621  
   Iteration 10 0.0271 0.0188 0.0589  0.0622  
  0.5 Mean 0.0233 0.0233 0.0157  0.0157  
   Iteration 0 0.0239   0.0239   0.0246  0.0246  
   Iteration 1 0.0175 0.0175 0.0344  0.0344  
   Iteration 5 0.0151 0.0142   0.0479  0.0480  
   Iteration 10 0.0174 0.0142   0.0438  0.0459  
  1.0 Mean 0.0364   0.0364   0.0149  0.0149  
   Iteration 0 0.0331   0.0331   0.0207  0.0207  
   Iteration 1 0.0290 0.0291 0.0268  0.0268  
   Iteration 5 0.0264   0.0264   0.0345  0.0346  
   Iteration 10 0.0262   0.0258   0.0319  0.0323  
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Table 7.3  Summary of Simulation Results: Estimates of Population of Individual Pixels 
(continued) 

 
D. Model derived from residential training set data; RMS errors in pixel populations: variation between samples1 

 
Simulated   Est. from Residential class Residential training set 
population   Neg adjust No Yes No Yes 
relationship Neg Error level Sample size 1000 5000 10000 1000 5000 10000 1000 5000 1000 5000 

based on adjust σ Basis of est.           
Residential No 0 Mean 0.0169   0.0169 0.0185 0.0042 0.0185 0.0042

training    Iteration 0 0.0169   0.0169 0.0137 0.0038 0.0137 0.0038
set   Iteration 1 0.0168 0.0168 0.0126 0.0041 0.0126 0.0041

   Iteration 5 0.0222 0.0222 0.0207 0.0046 0.0207 0.0046
   Iteration 10 0.0268 0.0268 0.0283 0.0057 0.0283 0.0057
  0.5 Mean 0.0235   0.0235 0.0145 0.0026 0.0145 0.0026
   Iteration 0 0.0197   0.0197 0.0130 0.0028 0.0130 0.0028
   Iteration 1 0.0171 0.0171 0.0131 0.0031 0.0131 0.0031
   Iteration 5 0.0196 0.0196 0.0150 0.0030 0.0150 0.0030
   Iteration 10 0.0227 0.0227 0.0166 0.0031 0.0167 0.0031
  1.0 Mean 0.0320   0.0320 0.0219 0.0046 0.0219 0.0046
   Iteration 0 0.0280   0.0280 0.0214 0.0050 0.0214 0.0050
   Iteration 1 0.0264 0.0264 0.0207 0.0052 0.0207 0.0052
   Iteration 5 0.0277 0.0277   0.0195 0.0051 0.0195 0.0051
   Iteration 10 0.0292 0.0292   0.0200 0.0050 0.0201 0.0050

1  The figure tabulated is the standard deviation, calculated over 10 samples, of the RMS error in individual pixel population estimates. 
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Reassigning negative estimates after each iteration had little effect on the results for the samples 

from the residential training set, where negative estimates were less likely to occur.  In the case 

of the samples from the residential class, this did improve the performance of the 6-coefficient 

criterion, but the reverse was evident with the 3-coefficient criterion.  

Considering the population accuracy criterion, the basic functionality of the algorithm was 

clearly evidenced, in that the accuracy of population estimates after iteration was greater than 

before.  Beginning with the most bland estimate of population, the mean for all pixels (which is 

functionally equivalent to counting residential pixels, as in some of the models of Langford et 

al., 1991 and Lo, 1995), an immediate gain was made by the initial regression, which was 

further enhanced by the iterative algorithm. 

The best results were achieved for the combination of a model based on the residential class and 

samples drawn from the residential class, where the proportional reduction in estimation error 

by the fifth iteration was almost 80% in the “no error” models, and around 40% in the “high 

error” models.  There was no further improvement, indeed a slight degradation of performance, 

by the tenth iteration in these cases.   

The other three combinations of model source/sample source exhibited less marked, but still 

substantial, effects.  In samples from the residential training set, the results were still improving 

after the tenth iteration, suggesting that more iterations might be of benefit for estimating the 

population of more typical suburban pixels, but that this might be achieved at the expense of 

loss of accuracy with respect to the more atypical pixels found in the broader distribution of the 

residential class. 

Reassigning negative estimates after each iteration had no effect on the accuracy of the 

population estimates under any circumstances. 

The values of the final criterion, which indicates the sample to sample variability in the 

population accuracy measure, were consistently smaller than those of the population accuracy 

measure itself, by a factor of at least 10.  Although this measure is calculated only with respect 

to the sample data in each case, it indicates that the accuracy of population estimates produced 

by these procedures is likely to be quite consistent, in relative terms, from sample to sample.  Of 

course, as the sample size is increased, this measure decreases, the decrease in this case being 

amplified by the finite size of the population. 

In framing this analysis, the central question at issue was whether to train the regression on data 

from the residential classification training set or from the full residential class. 
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The subjective and intuitive mental processes which contributed to that decision can be crudely 

approximated by the following schema. 

We argue as follows.  Empirical data from the two sources have led to two different models 

relating population to spectral signature (leaving aside the two variants of the model based on 

the residential class).  We do not know which of the two models better represents the reality of 

the relationship, but we have now examined the performance of procedures based on the two 

sampling strategies when applied to both versions of “reality”.   

We now construct a 2×2 tableau of “sampling strategy” vs. “actuality” (not unrelated to the 

familiar statistical illustration of Type I & Type II errors).  For each of the four criteria we have 

examined, we rank the four quadrants from 4 to 1, 4 representing the best performance and 1 

representing the worst (with ties averaged in the usual manner).  The rankings assigned are 

shown in Table 7.4.   

Table 7.4 can be interpreted as follows.  If the actual model is as suggested by the residential 

class data, then sampling from the residential class will lead to the best performance of all four 

scenarios.  A similar level of performance will be attained if the actual model is more like the 

one suggested by the residential training set data and sampling is from the training set.  The 

main difference emerges when the actuality and the sampling strategy are mismatched.  On the 

evidence of the simulation study its seems that sampling from the broad residential class is 

likely to be marginally more robust than sampling from the more narrowly defined residential 

class training set.  The margin is not great.  However, the former strategy also has the advantage 

that one can always reduce the scope of a data set by deleting outliers, but one cannot enhance 

the scope with data that one has not collected.   

Because the rankings were fairly consistent on the 4 criteria, the specifics of Table 7.4 could be 

changed, for example by giving a higher weighting to the 3rd criterion, accuracy of population 

estimates, without substantially altering the conclusion. 

 
Table 7.4 Assessment of Sampling Strategies 

 
  Sampling strategy 
  Residential class Residential 

classification training 
set 

 
Residential class 
 

 
4+4+3+2.5=13.5 

 
1+2.5+1+1=5.5 

 
 
“Actuality”:  
basis of model Residential 

classification training 
set 

 
2.5+1+3+2.5=9 

 
2.5+2.5+3+4=12 

Total score 22.5 17.5 
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It was concluded that, on balance, the original intuitive decision to sample from the residential 

class was justified.  

As to the other aspects, the results were clear cut with respect to the efficacy of increased 

sample size.  On the issue of how many iterations to use, the evidence was more mixed, but 

considering that under the preferred sampling scheme the best results had been obtained with 

five iterations, it was decided to retain the fixed number of iterations (six) which had been used 

in the earlier work.  This decision was subsequently reviewed (see Section 9.2.2).  It was also 

concluded that on balance, the procedure of reassigning negative estimates at each iteration was 

not justified. 

 
7.5 SUMMARY 
 
In this chapter, the iterative re-estimation regression algorithm has been placed in the broader 

theoretical context of the EM and related algorithms.   

The properties of the algorithm were examined, first through repeated sampling then by 

simulation.  As a result, it was decided: 

• to continue to apply the algorithm to data from the full residential class, rather than the 

residential classification training set; 

• to continue to use six iterations;  

• to increase the sample size; 

• not to reassign negative estimates at each iteration. 

With the tool of the iterative re-estimation regression algorithm better understood, the next step 

was to broaden the scope of validation to encompass a range of Australian images. 
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Chapter 8 
 
Normalised Population Estimation 
Models 
 
8.1 INTRODUCTION 
 
In Chapter 7, the first steps were taken towards exploring the robustness of the population 

estimation methodologies developed in Chapter 4 and Chapter 5.  The CD aggregate approach 

of Chapter 4 was found to be inadequate.  More success was had with the two phase pixel-based 

classification and regression methodology of Chapter 5, but only when the supervised 

classification phase was trained locally on the secondary image.  This was hardly surprising, for 

whilst the residential areas of the two images were reasonably similar in character, the range of 

other landcover and land use classes was rather different.  Nevertheless population estimates, of 

comparable quality to those obtained for the primary image, were obtained for the secondary 

image, using the same  regression equation for estimating pixel populations which had been 

trained on the primary image.   

It had been hoped in the earlier phase of exploring different spectral and spatial data 

transformations that some relatively invariant surrogate for population might emerge, but that 

had not been the case.  In testing a range of possibilities, nothing more robust was found than a 

simple linear combination of the 6 TM bands. The fact that the secondary image was closely 

related, both spatially and temporally, to the primary image was obviously crucial in this 

successful demonstration of limited robustness of the estimation equation.  But clearly, in its 

raw form such a function could not conceivably be invariant even under moderate seasonal 

differences in general level and angle of solar illumination, much less under seasonal or climatic 

differences in vegetation, geographic differences in soils and other ground cover, and cultural 

differences in intensity and pattern of residential and other land use.  

For the procedure to generalise further, some form of image-specific re-calibration or 

normalisation would be necessary.  Chapter 8 is an account of the testing of various normalising 

procedures on a number of further test images. 
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Section 8.2 outlines the demographic characteristics of the supplementary test areas, the spectral 

characteristics of the images, and the preliminary preparatory steps undertaken.  In Section 8.3, 

a number of minor adjustments to the estimation equation are reported, and three potential 

normalising transformations are outlined and compared.  Section 8.4 reports on their 

application. 

 
8.2 THE SUPPLEMENTARY  TEST AREAS 
 
8.2.1 Characteristics of the study areas and images  
 
The primary and secondary images were supplemented by 5 more images, one showing part of 

the primary Ballarat test area on another occasion, three showing the areas surrounding and 

including the major urban centres of Sydney, Brisbane and Adelaide and the other being centred 

on the remote mining town of Kalgoorlie.   Images 15, 17, 19, 21, and 23 are RGB images of 

each area; census collection district boundaries for each area are shown in Figure 8.1.  Some 

technical details of each image together with some demographic information about each area, 

are given in Table 8.1.  Further information about the population distributions is in Appendix H.   

In this Chapter, urban areas are defined in terms of population density of Census Collection 

Districts.  Two cutoffs were used: the basic ASGC criterion of 200 persons/sq.km. (ABS, 1998); 

and a higher value of 500 persons/sq.km, which was intended to exclude some anomalies such 

as partly developed CDs within urban areas and around the urban fringe. 

The issue of time differences between the TM images and the census data has been discussed in 

Section 3.6.  The population change in the cases of Adelaide, Sydney and the second Ballarat 

image was assessed as being less than 1%, which is comparable to the margin of error for the 

census process, and so no adjustments were made in these cases.  Of course, specific CDs where 

development had occurred in the intervening time would be more substantially affected, and 

would be expected to appear as outliers.  The issue of temporal mismatch was more 

problematical with Brisbane and Kalgoorlie (see Section 8.4.2). 

 
8.2.2 Classification of the images 

 
Each of the 5 supplementary images in turn was co-registered to the CD boundaries as described 

in Chapter 3.  For each of the images in turn, a set of landcover/landuse classes was identified 

and training regions selected for each, as described in Section 5.3.1.  Several of these classes 

were common to all the images, whilst others, particularly those to do with vegetation were 

more image-specific.  The number of classes varied from 12 for the Kalgoorlie image to 22 for 

the Adelaide image.  This was by far the largest image in extent, which had been chosen to 

include a number of small country towns as well as Adelaide itself.  
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Table 8.1  Characteristics of Study Areas and Images 
 

 Image Region Urban section5 
Study area State Date  Size 

pixels/line 
×lines 

Pixel 
size  
m 

No. 
of 

CDs1 

No. 
 of 

SLAs2 

Pop.6 Area  
sq. km. 

Av. Pop. 
density 
p/sq.km. 

Pop.6 Area 
sq. 
km 

Av. Pop. 
density 
p/sq.km. 

Pop. 
% 

Area 
% 

Ballarat Victoria 14/2/88 1350×1008 30 138 6 79,179 634 125 64,564 48 1345 81.5 7.5 
Ballarat* Victoria 15/12/94 616 × 697 30 72 23 35,711 199 179 30,078 27 1114 84.2 13.3 
Geelong Victoria 14/2/88 1119×1174 30 224 8 147,910 352 420 132,366 68 1947 89.5 19.3 
Adelaide South Australia 2/2/97 5010 × 6187 25 2412 47 1,158,625 10735 108 1,001,099 580 1726 86.4 5.4 
Sydney New South Wales 8/12/96 2740 × 3678 25 5628 41 3,283,889 3524 932 3,138,640 1220 2573 95.6 34.6 
Brisbane Queensland 16/9/89 2965 × 3616 30 2605 2254 1,488,880 4623 322 1,253,117 770 1627 84.2 16.7 
Kalgoorlie Western Australia 27/9/89 1201 × 1078 30 51 1 30246 62 488 24,686 19 1299 81.6 29.7 

1   Census Collection Districts 
2 Statistical Local Areas 
3   This image included only a section of the primary study area.  In addition, the SLA structure in Victoria changed in 1994.  Parts of 2 new SLAs corresponded to parts of 5 of 

the old SLAs in the primary image. 
4 SLAs are smaller in the state of Queensland than in the other states. 
5 CDs with population density of at least 500 persons/sq.km. 
6. For primary Ballarat and Geelong study areas, populations are estimates of residential population as at 14/2/88.  For all other areas, populations are 1996 census counts.  
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Figure 8.1  Census Collection District Boundaries for Supplementary Study Areas 
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Figure 8.1  Census Collection District Boundaries for Supplementary Study Areas 
(continued) 
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Figure 8.1  Census Collection District Boundaries for Supplementary Study Areas 
(continued) 
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Figure 8.1  Census Collection District Boundaries for Supplementary Study Areas 
(continued) 
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As a consequence of its extent, it had by far the largest rural component of any of the images, 

and included a number of quite different climatic zones and agricultural and pastoral activities.  

Conversely, the region around Kalgoorlie is so sparsely inhabited that single CDs cover 

hundreds of square kilometres.   In this case the analysis was confined to smaller CDs in the city 

and its immediate surrounds.  Details of the classes are given in Appendix I.   

The most crucial class in each image was of course the residential class.  A broadly 

representative set of residential training regions were selected visually.  Regions generally 

consisted of several contiguous blocks of apparently homogeneous residential character, with 

residential streets included but excluding major arterial roads and visible features such as 

schools, churches, neighbourhood shopping centres and parks.   Checks made using street 

directories confirmed that judgements made on this visual basis were very accurate. 

In each case a maximum likelihood classification of the image was then made using the 6 TM 

bands.  The resulting classifications were displayed as color-coded images and inspected for 

face validity.  As was discussed in Chapter 5, misclassification between non-residential classes 

was not a matter for concern – the central issue was to discriminate between residential and non-

residential pixels.  As with the primary and secondary images, some problems of spurious 

classification of pixels as residential was observed.  As then, this problem took two forms: 

concentrated groups of pixels associated with particular features, natural or constructed; and 

more extended or diffuse misclassification in rural areas, associated with rural roads and with 

particular forms of agricultural activity.   

Table 8.2  Some Features Misclassified as Residential 
 

Built 
Airports (boundaries between runways/aprons and grass) 
Livestock markets 
Oil refineries 
Rural roads  
Salt evaporation pans 
Sewage treatment works 

Agricultural 
Market gardens 
Orchards 
Vineyards 

Natural 
Forest regenerating after fire 
Forest viewed through a diffuse smoke plume 
Forested shorelines 
Kelp in shallow water 
Marshes and mangroves 
Partly vegetated sand dunes 
Sandy shorelines 
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Some problem features where many pixels were characteristically misclassified as residential 

are listed in Table 8.2.  What they have in common is a combination at sub-pixel level of two or 

more of vegetation, pavement, water, and bare ground.  Such a mixture is spectrally similar to 

the mixture of vegetation, pavement, and metal or tile roofing materials which characterises 

residential pixels.  The effect of this misclassification on population estimates is discussed later 

in this Chapter.   

 
8.2.3 Spectral characteristics of the test images 

 
To compare the spectral characteristics of the seven test images, means, medians and covariance 

matrices for the 6 TM bands were calculated for: all pixels in the image; pixels in the residential 

class training sets; pixels in the residential class.  The band means are graphed in Figure 8.2 .   

Clearly, there were substantial differences between the mean levels of the TM bands, for all 

three aspects of the images.  The differences can be conjecturally related to differences in 

overall illumination level due to differences in latitude and season, climatic differences in 

vegetation, cultural differences in roofing materials, extent of paving and so on.   

As would be expected with a maximum likelihood classification the mean of the residential 

class is in each case close to the mean of the training set; hence the similarity in class and 

training set profiles.  There are however differences, and also differences with respect to spread, 

with the class variances generally being greater than the training set variances, especially in the 

longer wavelength bands (see Table 8.4).  Clearly, there is a need to adapt the population 

estimation equation trained on Ballarat, if it is to work on this range of images. 

 
8.3 ADJUSTMENT OF THE ESTIMATION EQUATION 
 
8.3.1 Preliminary adjustments 
 
Following the decisions made in the light of the simulation study (see Section 7.5), the 

regression equation was re-estimated from the larger 20% sample of 14270 pixels from the 

residential class of the primary Ballarat image.   The resulting equation is shown in Table 8.4.   

Two other changes were also instituted at this point.  Firstly, as was discussed in Chapter 3, the 

raw Ballarat image was recalibrated against 1996 Census boundaries registered to the AMG 

grid.  It was found that the nominal 30m pixels were in fact slightly larger than 30m in both 

directions, the estimated error in the area being 2.7% 

Since the later images had been resampled to exact 30m pixels, it was decided to rescale the 

estimation formula to a true 30m pixel size, by proportionally reducing all the regression 
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coefficients.  The rescaled coefficients are also listed in Table 8.4.  In the cases of the Adelaide 

and Sydney images the pixel size was 25m, necessitating a further rescaling of (25/30)2 = .6944. 

 
Figure 8.2  Spectral characteristics of the test images 
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Residential training sets: band means
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Residential classes: band means
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This is predicated on the reasonable assumption that the same proportional combination of the 

same materials leading to the same spectral response for the smaller pixel will be associated 
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with the same population density, or equivalently a proportionally smaller pixel population.  

This correction factor is not incorporated in the figures in Table 8.4. 

Secondly, it was decided not to incorporate the rather ad hoc high density power correction 

index (see Section 6.4.6) in the subsequent comparative valuations, the reasoning being that 

whilst this had been a useful gross correction in moving from Ballarat to the slightly higher 

densities of Geelong, in the context of the much higher densities which would be found in 

particular sections of the capital cities, a more specifically targeted approach would be more 

appropriate. 

 
8.3.2 Normalising adjustments 

 
Since it is clear that the linear relationship between pixel population and TM spectral 

reflectances estimated from the Ballarat image cannot be invariant for other images, we seek to 

re-express the relationship in some form which is invariant apart from some small number of 

easily estimated image-dependent parameters. 

The basic approach was to recast the linear function of raw TM reflectances as a linear function 

of reflectances re-expressed in relativity to some reference level for the image.  In all three 

cases, the reference level used was the mean reflectance. Three such normalising or invariance 

transformations were considered.  Each one implied a particular form of invariant relationship: 

additive or difference-based, multiplicative or ratio-based, and scaled additive or z-score based. 

The three models are summarised in Table 8.3. 

In the untransformed model, the constant term represents the population that would be assigned 

to a pixel which had zero reflectance in all bands.  Whilst some pixels (such as water) might 

have such a signature, this is well outside the range of pixels classified as residential.  The band 

coefficients represent the incremental change in population associated with each unit change in 

a particular band, subject to the other bands not changing. 

After additive normalisation the constant represents the population of a pixel with the mean 

reflectance level in every band. Again, the band coefficients represent the incremental change in 

population associated with each unit change in a particular band, subject to the other bands not 

changing. 

The value of  this function would remain unchanged for each pixel if the levels of each pixel 

within a particular band changed by the same amount.  Hence, this form of normalisation would 

be appropriate if the relationship between population and spectral reflectances were invariant 

apart from a constant translation or shift of level within each band.  No obvious mechanism for 



NORMALISED POPULATION ESTIMATION MODELS  

 

203

such a constant magnitude change from time to time or place to place suggested itself, so this 

approach was not expected to work very well. 

 
Table 8.3  Normalised Forms of the Population Estimation Model 

 
Transformation  Invariant indicator Form of equation 

Untransformed  i
i
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where 
p is the population of a pixel 
ci is the regression coefficient for band i 
bi  is the reflectance of the pixel in band i 
µi  is the mean pixel reflectance in band i 
σi  is the standard deviation of the pixel reflectances in band i 

 
With multiplicative normalisation, the constant term again represents the population that would 

be assigned to a pixel which had zero reflectance in all bands.  The band coefficients represent 

the incremental change in population associated, not with one unit change in a particular band, 

but with a change equal in magnitude to the mean level. 

The value of this function would remain unchanged for each pixel if the levels of each pixel 

within a particular band changed in the same proportions.  This form of normalisation would be 

appropriate if the relationship between population and spectral reflectances were invariant apart 

from proportional change within each band.  Hence this might be expected to compensate for 

seasonal and geographic effects relating to overall levels of illumination. 

With z-score normalisation, the constant represents the population of a pixel with the mean 

reflectance level in every band, as for additive normalisation.  The band coefficients represent 

the incremental change in population associated with a 1 standard deviation change in a 

particular band. 

If the standard deviation is constant this is obviously equivalent to additive normalisation.  It 

can also be shown that if the standard deviation is proportional to the mean, it is equivalent to 

multiplicative normalisation.   But it is more generally applicable.  So long as the relationship 

between population and reflectance is consistent relative to position of the pixel in the 

distribution of reflectances (for example if the greenest pixels always have the lowest 
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population, regardless of the absolute levels of green involved), this function will be invariant.  

Prima facie, this seemed to be the most promising transformation, since it is in a sense a 

generalisation which encompasses the other two methods. 

Relationships between the coefficients of the three normalised equations and the raw equation 

were established (see Appendix J), and these were used firstly to convert the raw Ballarat 1988 

equation into the three normalised forms.  The inverse transformation was then used to produce 

raw equations corresponding to each normalisation, for each of the other images. 

In calculating relevant means and standard deviations to use for normalisation, the choice had to 

be made between using the statistics for the residential training sets or the whole residential 

class for each image.  It had previously been decided (see Chapter 7), to sample from the whole 

residential class to estimate the coefficients of the regression equation, but it did not necessarily 

follow that the same choice would be correct for this purpose.  It was decided to investigate 

both approaches.  The resulting coefficients are listed in Table 8.4.  

The methodology described in this section is quite distinct from “band normalisation” (see 

Sections 2.3.2, 5.4.1).  In that case, compensation is made for differences in overall brightness 

between the individual pixels of an image, by expressing each band level as a proportion of the 

total of all bands for the pixel.  This calculation can be characterised as within pixels and across 

bands.  In the present case, the aim is to compensate for differences between images, by 

standardising each band value for each pixel by comparison with the values in the same band for 

other pixels. This calculation can be characterised as across pixels and within bands. 

 
8.4 APPLICATION OF NORMALISED MODELS 
 
8.4.1 Methodology 
 
Using the methodology described in Sections 5.6.2 and 5.6.31, the various population estimation 

equations were applied in turn to the various full images, estimated pixel populations were 

aggregated to produce CD estimates, and regression analyses were used to compare the remote 

sensing estimates with ground truth CD populations, with regard to a range of criteria 

previously described (Section 5.8).    

In each case, analyses were performed for the whole region and for the urban areas of the 

region, defined in terms of the population density of Census Collection Districts.  Two cutoffs 

were used: the basic ASGC criterion of 200 persons/sq.km. (ABS, 1998); and a higher value of 

                                                 
1 Because of software limitations on vector to raster conversion, the implementation was slightly different 

to that previously described.  Because of the large number of CDs in the capital city images, it was not 
possible to define a raster CD identification layer for all CDs simultaneously using the ERMapper 
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500 persons/sq.km, which was intended to exclude some anomalies such as partly developed 

CDs within urban areas and around the urban fringe. 

Two levels of low density thresholding were incorporated: each model was first fitted with no 

zero thresholding; then all negative pixel populations were reset to zero; then all low pixel 

populations in areas of low average population density were also reset to zero (see Section 

6.4.6).  Threshold values of 1.0 persons/pixel had been used previously for both individual pixel 

population and average pixel population over a 7×7 pixel window, but other settings were also 

experimented with at this point.  Because of the tendency of all models examined to 

underestimate urban populations, the average population threshold was lowered to a value 

commensurate with the urban density limit of 200 persons/sq.km.  An average population 

threshold of .27 persons/30 m pixel, which corresponds to 300 persons/sq.km., was chosen.  The 

rationale of the 50% margin was that the very presence of spurious population requiring 

readjustment would raise the average density above the background level.   In contrast, higher 

individual pixel thresholds of 1.5 and 2 persons per pixel were also tried in combination with 

the lower average threshold.  This was based on the observation that many pixels along rural 

roads or associated with farm outbuildings were spuriously assigned populations in the range of 

1 to 2 persons. 

 
8.4.2 Results 
 
Initially, the re-estimated regression equation (see Section 8.4.1) was applied to the 1988 

Ballarat image, without zero thresholding.  Two other models were also fitted: one based on the 

mean of the fitted values from the re-estimated regression model, and the other based on the 

regression equation trained on the residential classification training set.  These were fitted for 

purposes of elimination – to confirm the conclusion reached in the simulation study (Chapter 7) 

that they would produce inferior results to the preferred model.   

Table 8.5 shows that the alternative models (1 and 2) did as expected produce far worse results 

than the preferred model on the various criteria.  This was also borne out when these models 

were applied to other images. 

The results for the preferred model (3) are comparable (though not identical because of the 

changes discussed in the previous section) to the results in Tables 7.2 and 7.3 (Section 6.4).  As 

was the case each time it was applied, zero thresholding (model 4) degraded the performance, 

particularly in the non-urban areas, but this was reversed when low density thresholding was 

                                                                                                                                               
INREGION function.  Instead, ERMapper was used to calculate a mean value per pixel for each vector 
region, which was then multiplied by the CD area to produce an estimate of total CD population. 
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incorporated.  Both approaches to the choice of low density cutoffs, represented in Table 8.5 by 

models 5 and 6, resulted in similar performance characteristics. 

As has been discussed (Chapter 7), quite reasonable results had been obtained for Geelong even 

without normalisation for the geographically, temporally and culturally similar Geelong image.  

As a preliminary, the Ballarat 1988 equation was applied to the other images without 

normalisation.  As expected the results were grossly inaccurate with the total populations of the 

Ballarat 1994 study area being underestimated by 131% (i.e. a negative total population) and the 

Adelaide study area overestimated by 509% respectively. 

The normalisation methods were then explored, initially on the Ballarat 1994, Geelong, 

Adelaide and Brisbane images.   

Whilst none of the six possible combinations - three normalisation methods and two sources of 

normalisation statistics - performed clearly best on all criteria for all images, it was judged that 

the best results on most criteria for most images were produced by the z-score normalisation 

method based on the means and standard deviations of residential training sets.   Multiplicative 

normalisation based on the means of the residential training sets came a close second.  The 

remaining combinations involving additive normalisation and the use of the residential class 

statistics with any method generally produced lower estimates which were in general less 

accurate, and frequently produced negative estimates for whole CDs.   

A selection of the results obtained after refining the z-transformed models by thresholding are 

shown in Table 8.5 and Figure 8.3, and in Images 14, 22 and 24.   In a number of the test 

images, normalisation produced estimates which accord to a moderate degree with most criteria. 

Considering Ballarat 1994, the regression intercepts are relatively close to zero and the 

regression coefficients are quite close to unity.  The values of R2 (.89 overall and .82 in urban 

CDs) are higher, and the median relative errors for individual CDs are lower, than in the 

primary image.  The total urban population is overestimated by 5-6%.  The only clear failing is 

the substantial overestimation of the overall total and an associated rise in the overall mean 

relative error, indicating a large proportional overestimation of the small population in the few 

rural CDs.  This again raises the recurring theme of the spurious misclassification of rural pixels 

as residential.  In this instance it appears to be related to some extent to seasonal features such 

as mature potato crops which were not present on the primary image. 

This general pattern of performance indications is repeated, with somewhat lower levels of 

accuracy, in the cases of Geelong and Adelaide.   The R2 levels are somewhat lower, the mean 

and median relative errors somewhat higher, and the errors in total urban population are around 

8%.  In the case of the Adelaide image with its especially large rural component (see Table 8.1), 

the effect of over-estimation in non-urban areas is most marked.   
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Because the scale of the population plots for Adelaide, Sydney and Brisbane are dominated by a 

few extreme outliers in each case, these plots have been repeated with the most extreme outliers 

deleted.  In the case of Sydney, the same has been done with the population density plot. 

The performance in the case of Brisbane is similar to that of Adelaide with respect to totals, but 

less accurate with respect to individual CDs, as evidenced by values of R2 and mean and median 

relative errors.  This can be explained in terms of the 7 year gap between the image (1989) and 

the population data (1996).  The ground truth total populations for the region and the urban area 

in 1989 were estimated by geometric interpolation from the 1986 and 1991 census totals, and 

were some 16% lower than in 1996.  In Table 8.5, the remote sensing estimates of totals have 

been compared with these adjusted figures.  No such data was available at the level of 

individual CDs.  Many would not have changed in character or population at all.  Most of the 

change would be concentrated on the urban fringe where development had occurred in the 

intervening period, and perhaps in the inner suburbs also due to urban renewal with higher 

density developments.  Rather than apply a blanket overall correction factor, no adjustment was 

made to the individual CD populations.  As a result, an average underestimation bias of around 

16% would be expected to be largely made up of larger errors in a relatively small number of 

CDs.  There is evidence of this on the Brisbane plots, particularly at low estimated densities.  

This also helps to explain the larger average relative errors in Brisbane than in Adelaide. 

In both the Adelaide and Brisbane images, a large proportion of the over-estimation in total 

population was associated with particular features in a small number of CDs. Appendix K 

shows the 25 CDs whose populations were over-estimated by the greatest amount by one of the 

Adelaide models from Chapter 9 (the pattern of results was consistent though the details 

differed from model to model). This 1% of CDs contributed 6.6% of the estimated population, 

which was a substantial proportion of the 15% overestimation by that particular model for the 

whole region.  All of the CDs involved are either rural (generally with water or coastline), 

intensively agricultural, or large scale industrial/commercial.  Many of the types of anomaly 

listed in Table 8.2 and Appendix K could be identified in advance and removed using a binary 

masking overlay.  This strategy is discussed further in Chapter 10. 

Appendix K also lists the 25 CDs whose population densities were most under-estimated.  

These generally occurred in three areas: the central business districts of Adelaide and North 

Adelaide, where commercial and residential usage is not clearly visibly delineated and where 

multi-storeyed structures predominate; and the beachside suburb of Glenelg, where both old-

established small allotments and substantial modern multi-storeyed developments occur.  As 

was discussed in Section 2.12.1, these CDs are usually small in area and low in total population.  

Whilst the relative error of under-estimation may be large, the absolute error in population is 

not.  In this case, the combined error in the 25 CDs was .6% of the regional population. 
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The temporal mismatch in the data was similar in Kalgoorlie to that of Brisbane, exacerbated by 

the small total population and the small number of CDs.   However, there also seems to be an 

underlying overestimation bias associated with lower average population density (of which see 

more below). 

Table 8.4  Coefficients of the Normalised Models 
 

A. Normalisation by residential class statistics 
 

  Const B1 B2 B3 B4 B5 B7 
Ballarat 88 Coeffts 2.57752 0.14225 0.20537 -0.22033 -0.02290 -0.08650 0.12747

 Rescaled 2.50873 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 M 25.35589 18.81902 26.05240 60.63159 78.51048 36.57259
 SD 7.39498 4.21969 5.77789 6.93751 13.65267 7.45272
   

Normalised Ratio 2.50873 3.51061 3.76171 -5.58693 -1.35141 -6.60991 4.53749
formulae Difference 0.77030 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407

 Z 0.77030 1.02386 0.84347 -1.23907 -0.15463 -1.14944 0.92464
   

Geelong  M 27.96414 18.70358 28.60871 54.70186 83.53683 40.27778
 SD 7.24282 4.41075 6.27442 7.42300 18.16413 9.54733
   
 Ratio 2.50873 0.12554 0.20112 -0.19529 -0.02470 -0.07913 0.11265
 Difference 2.55020 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 1.41509 0.14136 0.19123 -0.19748 -0.02083 -0.06328 0.09685
   

Brisbane  M 68.35530 32.52362 38.86600 65.23861 91.69204 36.92705
 SD 8.38918 5.12961 7.97117 9.52699 17.22045 9.31466
   
 Ratio 2.50873 0.05136 0.11566 -0.14375 -0.02071 -0.07209 0.12288
 Difference -2.26774 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z -3.36508 0.12205 0.16443 -0.15544 -0.01623 -0.06675 0.09927
   

Kalgoorlie M 29.62490 26.20624 52.91602 67.69454 108.09001 59.55173
 SD 7.98476 5.82755 10.61907 7.70549 15.98650 10.03744
   
 Ratio 2.50873 0.11850 0.14354 -0.10558 -0.01996 -0.06115 0.07619
 Difference 5.99873 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 2.99727 0.12823 0.14474 -0.11668 -0.02007 -0.07190 0.09212
   

Adelaide M 74.10966 48.31584 57.71413 76.19752 109.92104 65.80383
 SD 11.29171 6.32893 10.08705 10.14706 24.68122 15.04392
   
 Ratio 2.50873 0.04737 0.07786 -0.09680 -0.01774 -0.06013 0.06895
 Difference -3.98286 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z -3.06335 0.09067 0.13327 -0.12284 -0.01524 -0.04657 0.06146
   

Ballarat 94 M 34.43451 24.91465 40.04149 82.78290 104.52559 50.49513
 SD 10.22058 5.80807 9.19648 12.18498 20.18240 11.14098
   
 Ratio 2.50873 0.10195 0.15098 -0.13953 -0.01632 -0.06324 0.08986
 Difference 3.98991 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 1.91016 0.10018 0.14522 -0.13473 -0.01269 -0.05695 0.08299
   

Sydney M 51.41667 35.93813 47.78788 88.34835 101.48724 55.85794
 SD 12.51859 7.32709 12.33321 13.68857 22.13872 17.02770
   
 Ratio 2.50873 0.06828 0.10467 -0.11691 -0.01530 -0.06513 0.08123
 Difference 0.29929 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 0.46304 0.08179 0.11512 -0.10047 -0.01130 -0.05192 0.05430
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Table 8.4  Coefficients of the Normalised Models 
(continued) 

 
B. Normalisation by residential classification training set statistics 

 
  Const B1 B2 B3 B4 B5 B7 

Ballarat 88 Coeffts 2.57752 0.14225 0.20537 -0.22033 -0.02290 -0.08650 0.12747
 Rescaled 2.50873 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 M 33.43023 22.49828 29.51254 56.94748 76.95767 39.87676
 SD 7.62383 4.25394 5.96737 7.86248 14.89824 7.78165
   

Normalised Ratio 2.50873 4.62853 4.49716 -6.32896 -1.26929 -6.47918 4.94743
formulae Difference 2.50443 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407

 Z 2.50443 1.05555 0.85032 -1.27970 -0.17525 -1.25430 0.96545
   

Geelong  M 33.89857 21.26987 29.82603 53.30037 71.68629 38.28784
 SD 8.38123 4.70813 6.30069 8.03055 12.99933 7.51390
   
 Ratio 2.50873 0.13654 0.21143 -0.21220 -0.02381 -0.09038 0.12922
 Difference 2.42870 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 3.61210 0.12594 0.18061 -0.20310 -0.02182 -0.09649 0.12849
   

Brisbane  M 76.04295 36.57842 44.01476 64.85020 91.98062 40.23501
 SD 8.35287 4.95409 7.74877 7.55262 14.32829 7.92737
   
 Ratio 2.50873 0.06087 0.12295 -0.14379 -0.01957 -0.07044 0.12296
 Difference -1.69912 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z -1.45775 0.12637 0.17164 -0.16515 -0.02320 -0.08754 0.12179
   

Kalgoorlie M 36.68581 29.43614 52.91477 70.81511 99.88356 55.41673
 SD 7.26669 4.47676 7.37771 7.13104 11.87222 7.65670
   
 Ratio 2.50873 0.12617 0.15278 -0.11961 -0.01792 -0.06487 0.08928
 Difference 6.00102 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 6.06810 0.14526 0.18994 -0.17345 -0.02458 -0.10565 0.12609
   

Adelaide M 78.77876 49.85804 57.92176 75.56577 99.41751 63.46181
 SD 12.30764 6.77303 10.45570 9.18836 17.94483 12.98379
   
 Ratio 2.50873 0.05875 0.09020 -0.10927 -0.01680 -0.06517 0.07796
 Difference -3.76675 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 0.24925 0.08576 0.12554 -0.12239 -0.01907 -0.06990 0.07436
   

Ballarat 94 M 40.32633 26.85710 41.12811 75.64645 96.85148 50.24763
 SD 10.31695 5.83369 8.94079 9.84239 16.76737 10.37206
   
 Ratio 2.50873 0.11478 0.16745 -0.15388 -0.01678 -0.06690 0.09846
 Difference 3.97859 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 4.26541 0.10231 0.14576 -0.14313 -0.01781 -0.07481 0.09308
   

Sydney M 58.33136 39.46428 54.15352 85.31479 107.03472 64.71005
 SD 10.90405 6.13890 10.31578 11.11162 18.22029 14.58351
   
 Ratio 2.50873 0.07935 0.11396 -0.11687 -0.01488 -0.06053 0.07646
 Difference 1.03750 0.13845 0.19989 -0.21445 -0.02229 -0.08419 0.12407
 Z 2.53933 0.09680 0.13851 -0.12405 -0.01577 -0.06884 0.06620
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Table 8.5  Summary of Selected Models for Estimating Census Collection District Population Densities  
Based on Local Classification and Normalised Regression Procedures 

 
 
Model Basis/ Thresholds Region Urban Area (CDs >500 persons/sq.km.) 
 Type T1 T2 b0 

unforced 
b1 

unforced 
b1 

forced 
R2 s Mean 

% error 
Median 
% error 

Total1 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median 
% error 

Total1 

% error 
Ballarat 1988     

1 RTS -194.3 1.32 1.21 0.80 475.4 90.3 21.4 50.8 -212.5 1.34 1.21 0.67 527.3 20.5 16.8 -9.3 
2 Mean -348.1 2.91 2.47 0.74 548.8 98.1 56.5 -0.3 -417.8 3.00 2.50 0.56 601.9 53.6 55.1 -52.7 
3 RC -28.0 1.06 1.05 0.82 458.4 29.4 16.7 0.9 -6.3 1.05 1.05 0.69 511.4 18.4 14.7 -2.0 
4 RC 0.0 -44.7 1.07 1.04 0.82 459.2 36.3 17.3 11.8 -21.3 1.06 1.05 0.68 512.4 18.5 14.9 -1.3 
      

5 RC 1.0 1.00 -15.4 1.06 1.05 0.82 457.9 27.6 16.7 1.1 15.9 1.04 1.05 0.69 511.0 18.2 14.8 -2.8 
6 RC 1.5 0.27 -23.2 1.06 1.05 0.82 459.1 27.6 16.3 -0.4 -2.2 1.05 1.05 0.68 512.4 18.4 14.9 -2.0 

Ballarat 1994     
 RC/ 1.0 1.00 30.1 0.94 0.96 0.89 263.5 35.0 13.5 17.4 110.5 0.90 0.96 0.82 279.9 16.9 11.7 4.8 
 ZNRTS 1.5 0.27 17.1 0.95 0.96 0.89 263.2 30.8 13.6 16.0 86.5 0.91 0.96 0.82 280.1 17.0 12.6 6.1 

Geelong      
 RC/ 1.0 1.00 -40.3 1.10 1.09 0.74 609.5 57.5 18.7 11.1 225.6 1.00 1.09 0.56 634.4 20.6 16.1 -7.9 
 ZNRTS 1.5 0.27 -69.7 1.11 1.08 0.77 559.9 60.8 18.4 13.7 188.3 1.01 1.09 0.61 578.8 20.1 16.2 -7.1 

Adelaide     
 RC/ 1.0 1.00 90.3 0.90 0.94 0.72 528.6 64.6 19.7 26.8 420.9 0.77 0.94 0.47 554.3 23.5 16.5 7.5 
 ZNRTS 1.5 0.27 80.1 0.90 0.94 0.72 529.4 78.9 19.6 28.3 406.3 0.77 0.94 0.47 554.8 23.7 16.3 7.9 

Sydney     
 RC/ 1.0 1.00 2568.7 1.03 2.28 0.02 5269.7 141.0 39.5 -26.8 3909.4 0.40 2.28 0.00 5362.2 42.5 38.1 -36.6 
 ZNRTS 1.5 0.27 2592.0 1.02 2.27 0.02 5271.9 142.8 39.4 -26.0 3963.1 0.37 2.28 0.00 5363.1 42.4 37.9 -36.2 

Brisbane     
 RC/ 1.5 1.00 289.7 0.96 1.09 0.54 891.6 291.5 24.6 27.8 671.1 0.81 1.09 0.36 940.7 28.6 21.1 4.6 
 ZNRTS 1.5 0.27 196.6 0.99 1.08 0.54 894.7 345.6 24.7 47.2 591.9 0.83 1.08 0.36 943.5 28.3 20.8 8.7 

Kalgoorlie     
 RC/ 1.0 1.00 687.9 0.48 0.85 0.35 563.7 37.1 31.7 11.7 1312.0 0.17 0.86 0.07 482.3 34.9 30.6 12.7 
 ZNRTS 

 
1.5 0.27 684.8 0.47 0.83 0.35 565.2 39.8 34.5 15.7 1315.3 0.16 0.83 0.07 483.2 36.4 32.6 16.7 

1 The total populations for Brisbane and Kalgoorlie have been compared with the estimated total population at the date of acquisition of the image.  For more details see text. 
 
Key: RC   Equation trained on a sample of pixels from the residential class of Ballarat 1988 
 RTS Equation trained on a sample of pixels from the residential class training set of Ballarat 1988 
 ZNRTS Z-score normalisation using the residential class training set statistics 
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Figure 8.3   Population Density and Population Estimates for Census Collection Districts 
Ground Truth vs. Remote Sensing Estimates from Normalised Ballarat 1988 Models 
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Figure 8.3   Population Density and Population Estimates for Census Collection Districts 
Ground Truth vs. Remote Sensing Estimates from Normalised Ballarat 1988 Models 

(continued) 
 

 
Adelaide: CD population density 

40003000200010000

8000

7000

6000

5000

4000

3000

2000

1000

0

rspd

gt
pd

 

 
Adelaide: CD population  

20000100000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

 
 
 
 
 
 
 
 

(Intentionally left blank) 

 
Adelaide: CD population  

(5 outliers deleted) 

6000500040003000200010000

1400

1200

1000

800

600

400

200

0

rspop

gt
po

p

 
 

 
Sydney: CD population density 

40003000200010000

200000

100000

0

rspd

gt
pd

 

 
Sydney: CD population  

6000050000400003000020000100000

2500

2000

1500

1000

500

0

rspop

gt
po

p

 
 

Sydney: CD population density 
(3 outliers deleted) 

40003000200010000

50000

40000

30000

20000

10000

0

rspd

gt
pd

 

 
Sydney: CD population  

(3 outliers deleted) 

0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

rspop

gt
po

p

 



NORMALISED POPULATION ESTIMATION MODELS  

 

213

Figure 8.3   Population Density and Population Estimates for Census Collection Districts 
Ground Truth vs. Remote Sensing Estimates from Normalised Ballarat 1988 Models 

(continued) 
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By far the worst results were obtained for Sydney.  There was a consistent under-estimation bias 

which is reflected in most of the indicators.  In addition, the values of R2 were close to zero.   

These results can be attributed to a combination of three factors, the third of which is an extreme 

aspect of the second: average population density; distribution of CD population densities; and 

the presence of extreme outlying and influential observations. 
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Changes in population density may or may not be detectable by remote sensing methods, 

depending on the mechanism of the change.  If the population of an area is increased by 

installing basement flats in existing structures, clearly that change would not be detected.  If an 

increase in population density is brought about by greater crowding in the horizontal plane, then 

in principle that change might be detectable by remote sensing methods, in terms of higher 

ratios of constructed surfaces to natural surfaces.  Up to a point, multi-level development has 

elements of both scenarios.  The extra population is hidden within the perimeter of the structure, 

but there are effects on the surroundings such as car parking spaces.  But without ancillary 

physical and/or cultural information, it does not seem possible that the population of residential 

tower blocks or mixed commercial/residential structures could be accurately estimated by 

remote sensing alone. 

The z-score transformation relates population to z-scores based on the spectral distribution in 

the training region A, calculates z-scores in the secondary region B, and allocates the 

appropriate populations.  A pixel at the centroid of the spectral distribution in region B will have 

z-scores of zero, and will be allocated the same population as a pixel at the centroid of the 

spectral distribution in region A.  Similarly, a pixel region B which lies one standard deviation 

above the centroid in every spectral band will be allocated the same population as a pixel at the 

same relative position in the spectral distribution in region A.  And so on.   

This can be brought undone either by a consistent underlying shift in mean population levels (as 

in the basement case), or by a difference in the shape of the spectral and/or population 

distributions, so that the population differentials associated with changes in the z-scores are not 

consistent in the two regions.  Both mechanisms would seem to operate in the case of Sydney 

relative to Ballarat. 

Sydney, alone amongst the study areas, has a substantial component of multi-level residential 

structures.  Table 8.1 shows that the average urban population density in Sydney is much higher 

than in the other areas.  But the margin of difference is not alone sufficient to explain the 

magnitude of the underestimation. Nor, considering the other study areas, is there a consistent 

relationship between average population density and bias in population estimates. 

Secondly, the distributions of all 6 spectral bands are quite symmetrical in the training sets of all 

7 test images. But because of geographical concentrations of high density development, the 

distribution of CD population densities is much more positively skewed in Sydney than in the 

other areas, suggesting a similar situation at pixel level although these cannot be directly 

observed. As a result, pixel population estimates allocated on the basis of matching spectral z-

scores will tend to underestimate the true populations at both ends of the distribution. 
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Further to the issue of skew in the Sydney distributions, there are a small number of extreme 

outliers.  The highest CD population density in Sydney is just under 200,000 persons per 

sq.km., associated with a CD consisting of just one tower block of public housing (not even the 

surrounding open space is included).  Later analysis will show (Chapter 9) that removal of this 

observation alone results in a substantial increase in R2.  

 
8.5 SUMMARY 
 
The regression equation for estimating pixel populations derived from the primary Ballarat 

image was applied to six other test images.  Three approaches to normalisation were assessed. 

It was concluded that normalisation via z-scores based on the means and standard deviations of 

the 6 TM bands in the residential class training sets provides a mechanism for training an 

estimation formula on one image and then applying it to another image.  The methodology 

appears to be moderately robust, particularly so far as urban areas are concerned, to 

geographical and temporal differences in season and climate, but less robust to differences in 

average population density or to differences in the shape of the statistical distribution of 

population densities within an image.  

Following the modest degree of success of this enterprise, and considering that it would be 

difficult to put any error bounds on estimates obtained in this way, it was decided to discontinue 

the search for a universal “holy grail” of population estimation, and to explore further the issues 

involved in the less ambitious but more realistic alternative approach of training an estimation 

equation on a small sample of population data from within an image, and applying the results to 

the full image. 
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Chapter 9 
 
Local Training of The Population   
Estimation Equation 
 
9.1 INTRODUCTION 
 
In this chapter, an approach is described for training an estimation equation on a small sample 

of population data from within an image, and applying the results to the full image.  The aim 

was to emulate a methodology for estimating a large regional population on the basis of a partial 

census of relatively small sections of the region, and to evaluate its feasibility. 

In Section 9.2 the selection of training samples from four test images is described.  In Section 

9.3 the estimation methods, the associated refinement of the samples and the results of applying 

the derived estimation equations to the full image are described and assessed. 

In Section 9.4, the many estimation equations derived are examined collectively, and their 

common characteristics are described and interpreted in terms of the spectral responses of 

different materials. 

 
9.2 SELECTION OF REGRESSION TRAINING SAMPLES  
 
In this phase of the investigation, it was decided to work with the images of Ballarat, Geelong, 

Adelaide and Sydney, since each of these had been acquired sufficiently close to the date of the 

ground truth census data for CD-based training to be feasible. 

In each case, samples were taken from pixels classified as residential (see Section 8.2.2). In 

each case a sample of CDs was selected.  In two cases (the original Ballarat 1988 sample and 

one of the Adelaide samples), a random sample of residential pixels was selected from the 

selected CDs.  In all other cases all residential pixels in the selected CDs were used1.  For ease 

                                                 
1 The initial fractional sample had been dictated by software workspace limitations at the time. Full CD 

samples were considered to be better, both with regard to the theory of the re-estimation algorithm, and 
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of constructing the rather unwieldy formulae required to sample from the images, the samples of 

CDs were systematic rather than random. It was reasoned that since CDs are numbered in 

contiguous blocks, a systematic sample ensured a wide and representative geographic spread, as 

was subsequently observed to be so.  The samples selected are summarised in Table 9.1.   

It was considered that for the methodology to be practically useful, the sample should 

encompass no more than a small fraction, say 10%, of the population to be estimated.  It was 

anticipated that whilst this might produce adequate sample sizes in large cities, it might severely 

limit the accuracy of estimates obtained for relatively small regional centres. 

The first sample from the Ballarat 1988 image was the 20% random sample of all pixels 

classified as residential in all 138 CDs, which was the basis of the work reported in Chapter 8.  

Subsequently, two disjoint 10% samples of 13 and 14 CDs were selected.  One 20% sample (14 

of 72) CDs was selected from the smaller Ballarat 1994 image, and one 5% sample of 11 CDs 

was selected from the 224 in the Geelong image. 

In the case of the more extensive Adelaide image, it was decided to investigate different sized 

samples.  Because sampling from the image was a lengthy and computationally expensive 

process (2 phases, each involving several hours, regardless of sample size), it was decided to 

take large samples and then take subsamples from them, rather than selecting separate disjoint 

smaller samples.  A total of 10 samples, three of  5% (around 120 CDs) and seven of 1% 

(around 25 CDs) were used.   

Sample 1 was a 1% sample consisting of a random sample of 20% of residential pixels from 5% 

of CDs (comparable to sample 1 for Ballarat 1988).  Sample 2  (5%) consisted of all the 

residential pixels from the same 5% of CDs.  Samples 3 and 4 were also 5% samples of CDs, 

disjoint from one another and from samples 1 and 2.  From each of samples 2, 3, and 4, two 

disjoint 1% subsamples (designated 21, 22, 31,  32, 41, 42) were selected.  

In the case of Sydney, three samples were used, two of 1% (56 and 57 CDs) and one of 2% (112 

CDs). 

 
9.3 APPLICATION OF LOCAL REGRESSION TRAINING 
 
9.3.1  Analysis of the samples 
 
Within each training sample, iterated regression analysis was used to obtain equations for 

estimating population.  After due consideration, 6 iterations had been used in all the empirical 

work to date based on the Ballarat 1988 image. 

                                                                                                                                               
because this was more likely to correspond to the reality of an operational procedure – having counted 
the population in particular area, one would want to use all of the information obtained. 
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Table 9.1  Regression Training Samples 

 
Image Sample nSLAs n 

CDs 
n 

CDs 
n 

CDs 
% of
CDs 

% of
each 

n 
pixels 

Deletions 

    U200 U500  CD  
  
BALLARAT 1988
 

6 138 120 110

 1  138 120 110 100 20 14270
     
 2  13 12 12 10 100 4312
     
 3 
 

 14 12 12 10 100 7656

BALLARAT1994 
 

 2 
(part) 

72 65 60   

 1  14 20 100 5700
 1r 
 

 11   5149 3 CDs with large +ve residuals 

GEELONG 1988 
 

8 225 207 194   

 1  11 10 10 5 100 9605
 1r1  10   9447 1 CD with large +ve residuals 
 1r2 
 

 9   3300 1 CD with large +ve residuals plus 
1 large rural CD 

ADELAIDE 1997 
 

47 2412 2151 2001   

 1  121 109 97 5 20 13095
 1r 
 

 117   12984 4 CDs with large +ve residuals 

 2  121 109 97 5 100 64797
 2r1  118   64577 3 CDs with large +ve residuals 
 2r2  117   48647 4 large rural CDs 
 2r3  114   48427 All of the above 
     
 21  25 19 17 1 100 22586
 21r1  24   22471 1 CD with large +ve residuals 
 21r2  24   14280 1 large rural CD 
 21r3  23   14165 All of the above 
     
 22  24 21 19 1 100 8960
 22r 
 

 23   8926 1 CD with large +ve residuals 

 3  121 108 100 5 100 105715
 3r1  120   73547 1 large rural CD 
 3r2  118   50059 3 large rural CDs 
 3r3  115   47283 6 large rural CDs 
     
 31  25 23 21 1 100 17848
 31r  24   10490 1 large rural CD 
     
 32  24 21 20 1 100 13330
 32r1  22   13033 2 CDs with large +ve residuals 
 32r2  23   7898 1 large rural CD 
 32r3 
 

 21   7601 All of the above 

 4  120 110 106 5 100 62823
 4r1  114   62173 5 CDs with large +ve residuals 
 4r2  118   56255 2 large rural CDs 
 4r3  112   55605 All of the above 
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Table 9.1  Regression Training Samples 
(continued) 

 
Image Sample nSLAs n 

CDs 
n 

CDs 
n 

CDs 
% of
CDs 

% of
each 

n 
pixels 

Deletions 

    U200 U500  CD  
     

ADELAIDE 1997 (cont.)   
 41  24 21 21 1 100 13074
 41r  23   13019 1 CD with large +ve residuals 
     
 42  24 21 21 1 100 10305
 42r 
 

 19   9377 3/2 CDs with large +ve/-ve 
residuals 
 

SYDNEY 1996 
 

41 5628 5451 5323   

 1  57 53 50 1 100 24116
 1r  51   23904 6 CDs with large +ve residuals 
     
 2  112 107 105 2 100 36277
 2r1  106   36185 6 CDs with large +ve residuals 
 2r2  98   35894 14 CDs with large +ve residuals 
     
 3  56 55 51 1 100 17995
 3r1  42   17080 14 CDs with large +ve residuals 
 3r2 
 

 49   17664 7 CDs with large +ve residuals 

 
 
However, because the results of simulations had been somewhat ambivalent on this point 

(Section 7.4.4), and because it was thought that rates of convergence might differ for samples 

from different images, it was decided at this point to derive two equations in each case, one 

based on 6 iterations and the other on convergence of R2 to within 0.001.  The number of 

iterations in the latter case ranged from 5 to 35. 

 Most of the chosen samples of CDs included examples of the two types of extreme discussed in 

Section 2.12.1 – viz. small urban CDs with very high population densities and very large rural 

CDs with low population densities.  It was considered that in small samples there was a risk that 

either of these types of CD might be over-represented which could bias the estimation equation 

to a significant degree.  Accordingly, samples in which such cases occurred were re-analysed 

after the deletion of each type of extreme case in turn. High density outliers were detected by 

examining residual plots of the iterated regressions (although these were based on pixels, the 

parallel striations associated with outlying CDs were clearly discernable).  Large low density 

rural CDs were identified by mapping the sample of CDs.  In each case, the average population 

density of deleted CDs was less than 10 persons/sq.km. 

 In effect, this selective deletion strategy leads to a middle ground between sampling from the 

residential training set, which might be too narrow in definition, and the full residential class, 

which might be too broadly defined, particularly in the rural areas. 
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Using the methodology previously described (Sections 5.6.2, 5.6.3 and 8.4.1), the various 

population estimation equations were applied in turn to the various full images, estimated pixel 

populations were aggregated to produce CD estimates, and regression analyses were used to 

compare the remote sensing estimates with ground truth CD populations.   

In each case, a corresponding regression analysis was also carried out using only the CDs in the 

training sample.  These analyses provided internal validation measures against which the 

external validation measures, based on all CDs in the image, could be compared.  

Both sets of results are listed in Table 9.2.  A representative selection of plots, one set for each 

of the five images, is shown in Figure 9.1.  Images 16, 18 and 20 are also representative of this 

methodology. 

 
9.3.2  Results 
 
It was generally (though not invariably) found that equations based on the convergence criterion 

produced better results for the urban areas with regard to all the criteria previously described 

(Section 5.8) than those based on 6 iterations.  This was achieved at the cost of an increased 

level of overestimation in the low density rural areas. 

This effect had been anticipated in observations made previously regarding some of the 

simulation results (Section 7.4.4): “In samples from the residential training set, the results were 

still improving after the tenth iteration, suggesting that more iterations might be of benefit for 

estimating the population of more typical suburban pixels, but that this might be achieved at the 

expense of loss of accuracy with respect to the more atypical pixels found in the broader 

distribution of the residential class”. 

Table 9.2 shows only the results of the equations based on the convergence criterion. 

In Chapter 8, the effects of using various different combinations of low density cutoff settings 

was reported.  At this stage, it was decided to standardise for purposes of comparison on 

settings of 0.27 persons/pixel for smoothed pixel population and 1.5 persons/pixel for individual 

pixel population respectively (although for some models the results of an individual pixel 

setting of 2.0 are also reported). 

Considering firstly the “whole image” results, taken in the broad, the results of local regression 

training shown in Table 9.2 are better on most criteria for most of the five images than the 

corresponding results for the normalised Ballarat 1988 models shown in Table 8.5  In general R2 

values are as high or higher, most slope coefficients are closer to unity, most mean and median 

relative errors are lower, and most totals for overall regions and urban areas are more accurate.  
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Table 9.2  Summary of Selected Models for Estimating Census Collection District Population Densities  
Based on Local Training of Both Classification and Regression Procedures 

 
A. Results for the whole image  

 
Image Sample Sampling Thresholds1 Region Urban Area (CDs >500 persons/sq.km.) 

  fraction 
% of CDs 

T1 T2 b0 
unforced

b1 
unforced

b1 
forced 

R2 s Mean 
% error 

Median
% error 

Total 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median
% error 

Total 

% error 

Ballarat 1988        
 1 202 1.5 0.27 -23.2 1.06 1.05 0.82 459.1 27.6 16.3 -0.4 -2.2 1.05 1.05 0.68 512.4 18.4 14.9 -2.0 
   2.0 0.27 -18.6 1.05 1.05 0.82 459.1 27.1 16.7 -2.7 2.4 1.05 1.05 0.68 512.4 18.5 14.9 -2.2 
 2 10 1.5 0.27 -36.2 1.12 1.10 0.82 457.8 33.4 15.3 3.7 -11.4 1.11 1.11 0.69 511.7 17.8 13.3 -7.2 
   2.0 0.27 -27.0 1.12 1.11 0.82 457.6 30.3 15.4 -0.9 -2.7 1.11 1.11 0.69 511.6 17.9 13.4 -7.6 
 3 10 1.5 0.27 -35.9 1.04 1.02 0.81 463.6 30.1 17.3 4.7 -21.3 1.04 1.03 0.68 517.1 19.6 15.8 1.0 
   2.0 0.27 -31.5 1.04 1.02 0.81 463.6 29.3 17.0 2.2 -18.0 1.03 1.03 0.68 517.1 19.6 15.8 0.8 
Ballarat 1994        
 1 20 1.5 0.27 18.3 0.96 0.97 0.88 274.8 22.2 12.2 9.6 88.8 0.93 0.98 0.81 288.6 16.7 9.7 4.4 
   2.0 0.27 23.5 0.96 0.98 0.88 274.9 22.1 12.2 7.5 94.1 0.93 0.98 0.81 289.1 16.8 9.7 4.2 
 1r  1.5 0.27 -1.1 1.14 1.14 0.86 298.1 19.9 13.2 -5.2 52.3 1.11 1.14 0.77 319.7 18.2 12.7 -8.4 
   2.0 0.27 3.0 1.14 1.14 0.86 298.2 20.6 13.2 -6.6 56.3 1.10 1.14 0.77 319.8 18.2 12.7 -8.6 
Geelong        
 1 5 1.5 0.27 -71.6 0.97 0.94 0.74 594.3 79.7 20.8 37.6 253.5 0.86 0.95 0.55 616.6 23.6 17.4 7.1 
   2.0 0.27 -62.0 0.97 0.94 0.74 593.7 76.0 20.8 35.4 258.0 0.86 0.95 0.55 616.2 23.5 16.9 6.9 
 1r1  1.5 0.27 -122.8 1.07 1.02 0.75 583.3 78.9 18.3 30.8 179.7 0.96 1.03 0.57 606.2 20.6 15.3 -0.7 
   2.0 0.27 -112.4 1.07 1.02 0.75 582.5 75.4 18.4 28.6 184.2 0.96 1.03 0.57 605.7 20.6 15.2 -0.8 
 1r2  1.5 0.27 -324.0 1.13 1.00 0.78 539.4 96.4 17.7 42.7 -156.0 1.07 1.01 0.63 559.9 21.5 14.3 3.2 
   2.0 0.27 -320.9 1.12 1.00 0.78 539.4 95.2 17.7 42.0 -154.7 1.07 1.01 0.63 559.8 21.5 14.3 3.2 
Adelaide        
 1 13 1.5 0.27 149.6 0.94 1.01 0.70 544.4 48.5 18.1 13.8 535.9 0.77 1.01 0.44 569.3 20.7 15.2 -0.4 
   2.0 0.27 155.7 0.93 1.01 0.70 544.0 45.4 18.0 11.3 539.8 0.77 1.01 0.44 569.0 20.7 15.3 -0.5 
 1r  1.5 0.27 162.8 0.95 1.02 0.70 548.9 47.3 18.3 11.2 562.0 0.77 1.03 0.44 572.7 20.6 15.2 -2.6 
   2.0 0.27 169.2 0.95 1.03 0.70 548.5 44.2 18.1 8.6 566.0 0.77 1.03 0.44 572.4 20.6 15.1 -2.7 
        
 2 5 1.5 0.27 149.6 0.94 1.00 0.70 543.3 48.5 18.0 13.6 532.3 0.77 1.01 0.44 568.7 20.7 15.3 -0.2 
 2r1  1.5 0.27 147.7 0.95 1.02 0.70 543.6 48.6 17.7 13.0 533.5 0.78 1.02 0.44 568.8 20.2 15.2 -1.9 
 2r2  1.5 0.27 113.4 0.95 1.01 0.71 535.5 49.9 17.2 14.9 461.2 0.80 1.01 0.45 564.4 20.1 14.7 0.6 
 2r3  1.5 0.27 111.1 0.97 1.03 0.71 536.9 50.5 16.8 14.8 465.9 0.81 1.03 0.45 565.6 19.6 14.1 -1.2 
        

 1.  T1= individual pixel threshold  T2 = Average threshold  2.  20% sample of pixels from all CDs   3. 20% sample of 5% of CDs 
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Table 9.2  Summary of Selected Models for Estimating Census Collection District Population Densities  
Based on Local Training of Both Classification and Regression Procedures 

 
A. Results for the whole image  (continued) 

 
Image Sample Sampling Thresholds1 Region Urban Area (CDs >500 persons/sq.km.) 

  fraction 
% 

T1 T2 b0 
unforced

b1 
unforced

b1 
forced 

R2 s Mean 
% error 

Median
% error 

Total 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median
% error 

Total 

% error 

Adelaide (cont.)        
 21 1 1.5 0.27 183.2 0.92 1.01 0.69 555.1 50.5 18.8 14.9 605.4 0.74 1.01 0.43 576.5 21.2 16.1 -1.2 
 21r1  1.5 0.27 184.4 0.95 1.04 0.69 559.9 50.6 18.3 12.8 617.0 0.76 1.04 0.42 580.9 20.7 15.8 -4.2 
 21r2  1.5 0.27 136.0 0.94 1.00 0.70 551.0 57.4 18.6 21.4 533.8 0.76 1.00 0.43 577.6 20.8 15.5 1.4 
 21r3  1.5 0.27 138.7 0.96 1.03 0.69 560.8 58.9 18.6 14.8 557.5 0.77 1.03 0.41 586.7 20.4 15.1 -1.4 
        
 22 1 1.5 0.27 177.7 0.84 0.91 0.67 571.5 67.2 23.0 25.5 608.8 0.67 0.92 0.40 592.5 26.6 19.4 9.7 
 22r  1.5 0.27 172.7 0.88 0.95 0.67 572.3 63.2 20.4 21.9 611.3 0.70 0.96 0.40 592.5 24.4 17.6 5.3 
        
 3 5 1.5 0.27 95.0 1.03 1.08 0.71 537.4 47.9 17.3 7.2 439.1 0.87 1.08 0.45 565.3 20.0 14.7 -6.1 
   2.0 0.27 100.8 1.03 1.08 0.71 537.2 45.3 17.2 4.7 442.7 0.87 1.08 0.45 565.2 20.0 14.7 -6.2 
 3r1  1.5 0.27 79.4 1.04 1.08 0.72 529.8 48.4 16.7 7.9 402.4 0.89 1.08 0.46 559.1 19.6 14.3 -6.0 
 3r2  1.5 0.27 88.8 1.03 1.07 0.72 532.4 51.1 16.9 10.8 428.9 0.87 1.08 0.46 560.9 19.6 14.3 -5.5 
 3r3  1.5 0.27 37.1 1.03 1.05 0.75 502.1 47.7 15.0 13.1 289.4 0.91 1.05 0.51 534.5 18.0 12.6 -2.3 
        
 31 1 1.5 0.27 54.1 1.07 1.10 0.72 530.0 49.0 17.0 6.5 351.0 0.93 1.11 0.46 562.0 19.6 14.3 -7.0 
 31r  1.5 0.27 21.3 1.06 1.07 0.73 518.7 54.5 16.1 14.5 280.4 0.94 1.07 0.47 552.9 18.7 13.1 -3.4 
        
 32 1 1.5 0.27 0.3 1.03 1.03 0.75 500.2 59.5 15.7 20.6 235.8 0.93 1.04 0.52 530.1 18.9 12.8 -0.8 
   2.0 0.27 7.4 1.03 1.03 0.75 500.2 56.3 15.5 17.7 241.1 0.93 1.04 0.52 530.1 18.9 12.8 -0.9 
 32r1  1.5 0.27 22.1 1.05 1.06 0.74 509.5 53.1 16.0 12.8 275.0 0.93 1.06 0.50 539.8 19.1 13.4 -3.3 
   2.0 0.27 28.5 1.04 1.06 0.74 509.5 51.4 16.3 10.5 279.8 0.93 1.06 0.50 539.8 19.1 13.4 -3.4 
 32r2  1.5 0.27 113.4 0.95 1.01 0.71 535.5 49.9 17.2 14.9 461.2 0.80 1.01 0.45 564.4 20.1 14.7 0.6 
 32r3  1.5 0.27 10.5 1.05 1.05 0.74 507.3 61.6 15.8 20.5 270.5 0.93 1.06 0.50 536.9 19.0 13.2 -2.6 
        
 4 5 1.5 0.27 48.9 1.01 1.03 0.74 513.0 49.1 15.6 13.4 318.8 0.89 1.03 0.49 545.3 18.8 13.3 -0.8 
 4r1  1.5 0.27 66.0 1.02 1.05 0.73 519.9 46.9 16.1 9.6 357.0 0.89 1.06 0.48 551.3 19.0 13.6 -3.2 
 4r2  1.5 0.27 27.6 1.01 1.03 0.74 505.0 51.4 15.5 16.3 276.5 0.90 1.03 0.50 537.8 18.5 12.9 -0.2 
 4r3  1.5 0.27 46.7 1.03 1.05 0.74 512.0 47.7 15.6 11.1 315.4 0.91 1.05 0.49 544.2 18.6 13.1 -2.8 
        

 1.  T1= individual pixel threshold  T2 = Average threshold  2.  20% sample of pixels from all CDs   3. 20% sample of 5% of CDs 
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Table 9.2  Summary of Selected Models for Estimating Census Collection District Population Densities  
Based on Local Training of Both Classification and Regression Procedures 

 
A. Results for the whole image  (continued) 

 
Image Sample Sampling Thresholds1 Region Urban Area (CDs >500 persons/sq.km.) 

  fraction 
% 

T1 T2 b0 
unforced

b1 
unforced

b1 
forced 

R2 s Mean 
% error 

Median
% error 

Total 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median
% error 

Total 

% error 

Adelaide (cont.)        
 41 1 1.5 0.27 48.9 1.01 1.03 0.74 513.0 49.1 15.6 13.4 318.8 0.89 1.03 0.49 545.3 18.8 13.3 -0.8 
 41r  1.5 0.27 117.8 0.97 1.02 0.68 566.7 59.8 19.4 18.2 525.0 0.79 1.03 0.39 594.6 21.6 16.2 -0.3 
        
 42 1 1.5 0.27 14.3 0.93 0.94 0.74 507.7 65.7 19.4 31.2 248.7 0.84 0.94 0.50 540.9 22.4 16.3 10.2 
 42r  1.5 0.27 55.7 0.97 1.00 0.75 504.2 49.5 16.4 14.8 312.0 0.86 1.00 0.51 535.2 19.7 13.7 2.2 
        
Sydney 1 1 1.5 0.27 2185.6 0.73 1.28 0.05 5182.9 140.0 29.1 6.1 2815.5 0.57 1.29 0.03 5294.5 34.6 27.7 -2.6 
   2.0 0.27 2186.0 0.73 1.28 0.05 5182.4 138.3 28.8 5.5 2814.5 0.57 1.29 0.03 5294.2 34.6 27.7 -2.7 
 1r  1.5 0.27 2489.5 0.68 1.35 0.04 5214.1 119.4 28.8 -1.9 3175.4 0.50 1.35 0.02 5318.6 34.5 28.1 -9.2 
   2.0 0.27 2489.1 0.68 1.35 0.04 5213.7 117.5 28.8 -2.5 3173.8 0.50 1.36 0.02 5318.4 34.5 28.2 -9.3 
        
 2 2 1.5 0.27 1541.7 0.96 1.39 0.06 5150.8 161.0 26.5 7.1 2175.2 0.79 1.39 0.03 5274.1 32.4 25.1 -2.2 
 2r1  1.5 0.27 1713.7 0.95 1.44 0.06 5168.5 153.1 25.0 2.7 2392.8 0.76 1.44 0.03 5288.6 31.5 23.9 -6.2 
 2r2  1.5 0.27 1836.9 0.95 1.52 0.05 5186.1 144.6 23.8 -2.3 2578.6 0.73 1.52 0.02 5303.6 30.9 22.7 -10.6 
        
 3 1 1.5 0.27 1727.1 0.80 1.20 0.07 5133.9 178.1 33.2 23.0 2279.4 0.67 1.20 0.04 5252.7 37.7 31.2 8.1 
   2.0 0.27 1729.5 0.80 1.20 0.07 5133.5 176.8 33.2 22.4 2280.1 0.67 1.20 0.04 5252.4 37.7 31.3 8.0 
 3r1  1.5 0.27 2074.2 0.85 1.44 0.05 5178.4 134.6 27.8 -1.7 2711.5 0.67 1.44 0.03 5291.3 33.6 26.6 -10.5 
   2.0 0.27 2075.1 0.85 1.44 0.05 5177.9 133.0 27.8 -2.2 2710.4 0.67 1.44 0.03 5290.9 33.6 26.6 -10.7 
 3r2  1.5 0.27 1962.2 0.81 1.32 0.06 5161.1 153.3 30.0 10.0 2557.6 0.66 1.32 0.03 5275.7 34.8 28.3 -2.4 
   2.0 0.27 1964.0 0.81 1.32 0.06 5160.6 151.9 30.1 9.4 2557.4 0.66 1.32 0.03 5275.3 34.8 28.4 -2.6 
        

1.  T1= individual pixel threshold  T2 = Average threshold  2.  20% sample of pixels from all CDs   3. 20% sample of 5% of CDs   
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Table 9.2  Summary of Selected Models for Estimating Census Collection District Population Densities 
Based on Local Training of Both Classification and Regression Procedures 

(continued) 
B. Results for the regression training sample 

 
Image Sample Sampling Thresholds1 Region Urban Area (CDs >500 persons/sq.km.) 

  fraction 
% 

T1 T2 b0 
unforced

b1 
unforced

b1 
forced 

R2 s Mean 
% error 

Median
% error 

Total 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median
% error 

Total 

% error 

Ballarat 1988        
 1 202 1.5 0.27 -23.2 1.06 1.05 0.82 459.1 27.6 16.3 -0.4 -2.2 1.05 1.05 0.68 512.4 18.4 14.9 -2.0 
   2.0 0.27 -18.6 1.05 1.05 0.82 459.1 27.1 16.7 -2.7 2.4 1.05 1.05 0.68 512.4 18.5 14.9 -2.2 
 2 10 1.5 0.27 -56.5 1.04 1.01 0.95 202.0 12.5 11.4 3.4 -66.9 1.04 1.01 0.94 211.7 11.5 11.4 2.8 
   2.0 0.27 -45.4 1.03 1.01 0.95 202.4 11.7 11.6 2.5 -55.6 1.04 1.01 0.94 212.0 11.4 11.6 2.1 
 3 10 1.5 0.27 -0.2 1.02 1.02 0.92 316.7 15.9 10.5 -5.3 -5.9 1.02 1.02 0.87 346.9 12.5 6.2 -1.1 
   2.0 0.27 3.0 1.02 1.02 0.92 316.8 15.5 7.1 -7.8 -2.8 1.02 1.02 0.87 347.0 12.6 6.2 -1.2 
Ballarat 1994        
 1 20 1.5 0.27 -101.7 1.03 0.97 0.86 260.3 29.8 12.8 23.6 -20.9 1.00 0.99 0.77 247.7 11.0 9.5 5.6 
   2.0 0.27 -98.6 1.03 0.97 0.86 259.1 26.8 12.7 22.3 -18.4 1.00 0.99 0.77 247.7 11.0 9.5 5.6 
 1r  1.5 0.27 -141.1 1.23 1.12 0.84 281.4 17.6 10.1 5.1 -171.8 1.27 1.14 0.68 292.6 12.2 9.5 -6.2 
   2.0 0.27 -136.9 1.23 1.12 0.84 281.2 16.6 9.0 4.1 -168.1 1.27 1.14 0.68 291.9 12.2 9.5 -6.3 
Geelong        
 1 5 1.5 0.27 -5.4 0.90 0.89 0.91 382.6 68.8 13.1 63.0 95.4 0.86 0.90 0.87 398.9 14.2 11.7 11.9 
   2.0 0.27 1.7 0.89 0.89 0.91 382.3 65.9 13.1 60.1 101.2 0.86 0.90 0.87 398.8 14.0 11.7 11.5 
 1r1  1.5 0.27 4.0 0.96 0.96 0.90 392.2 63.2 8.2 53.7 112.6 0.92 0.96 0.86 408.0 11.2 7.4 4.7 
   2.0 0.27 11.1 0.96 0.96 0.90 391.8 60.7 8.2 50.8 118.0 0.92 0.96 0.86 407.8 11.4 7.4 4.3 
 1r2  1.5 0.27 -235.6 1.11 1.01 0.95 272.8 105.9 9.1 92.1 -142.4 1.07 1.02 0.94 281.7 9.4 8.8 1.5 
   2.0 0.27 -230.8 1.10 1.01 0.95 273.5 105.5 9.7 91.4 -136.6 1.07 1.02 0.94 282.3 9.5 9.4 1.3 
Adelaide        
 1 52 1.5 0.27 73.9 0.99 1.03 0.79 461.6 48.7 16.8 15.9 464.5 0.83 1.04 0.56 474.3 18.2 14.4 -3.3 
   2.0 0.27 80.5 0.99 1.03 0.79 461.1 45.6 16.1 13.5 468.2 0.82 1.04 0.56 473.8 18.2 14.4 -3.4 
 1r  1.5 0.27 81.1 1.01 1.05 0.79 463.0 46.8 16.4 12.7 477.2 0.84 1.06 0.56 475.4 18.6 14.8 -5.4 
   2.0 0.27 87.9 1.01 1.05 0.79 462.6 43.8 16.1 10.4 481.3 0.84 1.06 0.56 474.9 18.6 14.8 -5.5 
        
 2 5 1.5 0.27 74.3 0.99 1.03 0.79 458.4 48.7 16.2 15.9 457.8 0.83 1.03 0.57 471.2 18.4 14.3 -3.0 
 2r1  1.5 0.27 70.7 1.01 1.04 0.79 459.7 48.4 15.9 14.8 457.2 0.84 1.05 0.56 473.6 18.2 13.8 -4.5 
 2r2  1.5 0.27 56.0 1.00 1.02 0.79 455.6 53.0 15.8 18.6 420.1 0.84 1.03 0.57 471.0 17.9 14.9 -2.1 
 2r3  1.5 0.27 50.9 1.02 1.04 0.79 458.2 52.8 16.0 17.7 420.3 0.86 1.05 0.56 475.2 17.8 14.3 -3.6 
        

1.  T1= individual pixel threshold  T2 = Average threshold  2.  20% sample of pixels from all CDs   3. 20% sample of 5% of CDs 
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Table 9.2  Summary of Selected Models for Estimating Census Collection District Population Densities  
Based on Local Training of Both Classification and Regression Procedures 

 
B. Results for the regression training sample (continued) 

 
Image Sample Sampling Thresholds1 Region Urban Area (CDs >500 persons/sq.km.) 

  fraction 
% 

T1 T2 b0 
unforced

b1 
unforced

b1 
forced 

R2 s Mean 
% error 

Median
% error 

Total 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median
% error 

Total 

% error 

Adelaide (cont.)        
 21 1 1.5 0.27 -73.5 1.14 1.11 0.79 558.7 115.1 19.8 42.2 322.3 0.98 1.13 0.48 628.1 21.8 15.9 -10.4 
 21r1  1.5 0.27 -79.4 1.19 1.15 0.79 567.3 115.0 22.6 39.0 321.3 1.02 1.18 0.46 640.7 22.4 18.2 -13.4 
 21r2  1.5 0.27 -105.1 1.15 1.10 0.79 560.5 148.6 23.7 57.5 247.4 1.00 1.12 0.45 645.8 19.8 14.1 -7.7 
 21r3  1.5 0.27 -106.1 1.20 1.14 0.78 579.2 153.7 26.5 56.5 285.5 1.02 1.16 0.41 670.6 20.3 15.5 -10.5 
        
 22 1 1.5 0.27 323.0 0.82 0.95 0.80 449.3 20.0 12.4 5.9 1501.6 0.37 0.95 0.30 375.3 16.2 12.3 1.7 
 22r  1.5 0.27 304.3 0.84 0.96 0.81 440.6 21.0 15.7 6.6 1445.7 0.40 0.96 0.36 358.8 15.6 14.9 0.1 
        
 3 5 1.5 0.27 91.4 1.03 1.08 0.76 474.0 49.1 17.2 14.3 537.3 0.82 1.08 0.46 491.6 19.9 15.3 -4.7 
   2.0 0.27 96.1 1.03 1.08 0.76 473.8 45.4 17.5 11.5 539.8 0.82 1.08 0.46 491.6 19.9 15.3 -4.8 
 3r1  1.5 0.27 64.6 1.05 1.08 0.78 456.7 53.1 16.6 17.3 459.7 0.86 1.08 0.49 477.5 19.4 14.9 -4.4 
 3r2  1.5 0.27 67.5 1.04 1.07 0.78 452.7 61.5 16.0 22.9 461.0 0.85 1.07 0.50 473.2 19.0 13.5 -3.7 
 3r3  1.5 0.27 19.9 1.03 1.04 0.82 404.2 52.4 12.4 22.2 301.6 0.90 1.04 0.59 429.0 17.5 10.3 0.1 
        
 31 1 1.5 0.27 -119.0 1.14 1.08 0.84 374.6 75.2 21.7 21.1 -35.5 1.11 1.09 0.72 398.7 19.5 17.9 -1.6 
 31r  1.5 0.27 -162.0 1.14 1.06 0.87 345.3 92.9 17.5 29.6 -170.3 1.15 1.06 0.75 371.9 19.1 16.1 1.8 
        
 32 1 1.5 0.27 51.0 1.01 1.03 0.91 311.1 14.5 8.7 4.1 372.6 0.88 1.03 0.60 336.6 8.7 7.4 -1.0 
   2.0 0.27 59.3 1.01 1.03 0.91 310.6 11.0 7.8 -0.1 384.4 0.87 1.03 0.60 335.7 8.7 7.4 -1.1 
 32r1  1.5 0.27 127.0 1.01 1.06 0.84 406.2 13.8 8.2 -2.8 812.6 0.71 1.06 0.37 423.9 12.7 7.4 -3.9 
   2.0 0.27 132.6 1.00 1.06 0.84 405.5 15.7 8.2 -6.1 811.5 0.71 1.06 0.37 423.5 12.6 7.4 -3.9 
 32r2  1.5 0.27 42.7 1.01 1.02 0.92 285.6 23.7 9.1 12.3 318.5 0.89 1.02 0.66 309.4 8.6 8.2 -0.8 
 32r3  1.5 0.27 69.6 1.02 1.05 0.90 320.2 17.8 8.3 4.0 455.5 0.86 1.05 0.58 343.1 9.5 5.6 -3.2 
        
 4 5 1.5 0.27 53.8 1.00 1.03 0.82 398.6 29.7 15.9 7.2 174.1 0.95 1.03 0.73 415.3 21.0 14.8 -0.9 
 4r1  1.5 0.27 75.7 1.01 1.05 0.81 412.2 28.9 17.1 4.0 211.8 0.95 1.05 0.71 427.7 21.3 15.6 -3.2 
 4r2  1.5 0.27 23.8 1.01 1.03 0.83 382.1 31.9 16.2 10.2 125.9 0.97 1.03 0.75 399.5 20.4 14.9 -0.2 
 4r3  1.5 0.27 50.7 1.02 1.05 0.82 398.4 29.4 16.5 5.5 170.8 0.97 1.05 0.73 414.9 20.8 15.1 -2.7 
        

1.  T1= individual pixel threshold  T2 = Average threshold  2.  20% sample of pixels from all CDs   3. 20% sample of 5% of CDs 
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Table 9.2  Summary of Selected Models for Estimating Census Collection District Population Densities  
Based on Local Training of Both Classification and Regression Procedures 

 
B. Results for the regression training sample (continued) 

 
Image Sample Sampling Thresholds1 Region Urban Area (CDs >500 persons/sq.km.) 

  fraction 
% 

T1 T2 b0 
unforced

b1 
unforced

b1 
forced 

R2 s Mean 
% error 

Median
% error 

Total 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median
% error 

Total 

% error 

Adelaide (cont.)        
 41 1 1.5 0.27 47.6 1.00 1.02 0.84 423.5 30.1 20.7 6.9 143.8 0.96 1.03 0.77 450.4 22.1 17.9 -4.0 
 41r  1.5 0.27 11.8 1.02 1.03 0.85 413.5 25.5 18.7 5.5 76.3 1.00 1.03 0.78 442.6 21.2 18.0 -1.8 
        
 42 1 1.5 0.27 51.0 0.97 0.99 0.86 377.0 27.0 12.9 13.8 178.0 0.91 0.99 0.71 402.8 17.5 10.7 1.0 
 42r  1.5 0.27 136.7 0.97 1.03 0.80 453.9 23.9 12.3 3.0 400.3 0.86 1.03 0.60 477.0 20.6 11.8 -3.4 
        
1 CD deleted4 31r  1.5 0.27 -198.9 1.16 1.06 0.84 351.8 21.9 16.8 6.2 -170.3 1.15 1.06 0.75 371.9 19.1 16.1 1.8 
        
Sydney        
 1 1 1.5 0.27 527.8 1.12 1.25 0.44 2256.1 57.3 31.7 24.3 1204.2 0.97 1.25 0.30 2370.4 32.0 29.1 -6.2 
 1r  1.5 0.27 813.0 1.10 1.31 0.39 2366.2 53.0 30.9 14.3 1629.6 0.91 1.32 0.23 2470.6 32.0 28.0 -11.5 
        
 2 2 1.5 0.27 666.4 1.06 1.24 0.15 3639.7 43.7 22.3 12.3 1049.4 0.95 1.24 0.10 3748.7 29.2 21.8 0.7 
 2r1  1.5 0.27 740.7 1.07 1.29 0.14 3651.9 41.7 22.4 7.8 1144.9 0.96 1.29 0.09 3760.0 28.3 22.0 -3.3 
 2r2  1.5 0.27 814.7 1.10 1.35 0.13 3675.0 39.9 21.5 2.7 1258.7 0.97 1.36 0.08 3782.1 27.5 18.6 -7.8 
        
 3 1 1.5 0.27 604.9 1.18 1.31 0.15 5347.7 53.9 36.8 25.8 1205.4 1.05 1.32 0.10 5591.0 37.0 33.3 8.2 
 3r1  1.5 0.27 986.1 1.31 1.58 0.12 5435.4 43.4 26.3 1.8 1723.1 1.13 1.59 0.08 5673.2 32.4 21.6 -11.8 
 3r2  1.5 0.27 840.2 1.24 1.45 0.13 5398.2 47.3 31.4 12.7 1517.6 1.08 1.45 0.09 5638.1 33.2 29.4 -3.0 
1 CD deleted4 3r2  1.5 0.27 -792.0 1.55 1.35 0.57 2306.6 46.4 31.3 12.6 -729.7 1.54 1.36 0.51 2422.6 31.9 29.4 -3.0 

1.  T1= individual pixel threshold  T2 = Average threshold  2.  20% sample of pixels from all CDs   3. 20% sample of 5% of CDs  4.  See text 
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Figure 9.1  Population Density and Population Estimates for Census Collection Districts 
Ground Truth vs. Remote Sensing Estimates from Locally Trained Models 
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Figure 9.1  Population Density and Population Estimates for Census Collection Districts 
Ground Truth vs. Remote Sensing Estimates from Locally Trained Models 

(continued) 
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Figure 9.1  Population Density and Population Estimates for Census Collection Districts 
Ground Truth vs. Remote Sensing Estimates from Locally Trained Models 

(continued) 
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As expected, the results for the smaller images of Ballarat and Geelong were more variable and 

sensitive to the specifics of the samples than for those of Adelaide.  For example, the sample 

number 2 from Ballarat 1988 included no CDs from the high density tail of the population 

distribution.  As a result, the equation based on this sample produced the smallest mean and 

median errors for individual CDs, but a consistent underestimation bias was evidenced in the 

low estimate for the total urban population.  In the case of Geelong,  the results for the urban 

area from a training set of only 9 CDs were almost as good as those for Ballarat, but the 

estimates blew out badly in the problematical industrial and rural CDs which have been 

discussed at length in Chapter 7.   

The results for Sydney, whilst much less biased than the very poor results obtained by 

normalisation, still exhibited much larger errors at CD level than was the case for Adelaide, and 

still had almost vanishingly small R2 values, indicating a continuing problem with multi-level 

residential structures and extreme population density outliers.  

Leaving aside the perennial problem of overestimation in the rural areas, which has been 

discussed in Section 8.4 and will be again in Chapter 10, with the exception of Sydney and one 
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of the Adelaide samples, the mean relative errors of estimation for individual CD populations in 

the urban areas were consistently in the order of 20%, and medians somewhat lower, indicating 

a positively skewed distribution, with a tail of larger errors in every case.    

Again, with almost every sample taken, from all five images including Sydney, it was possible, 

in many cases after judicious deletion of outliers, to produce an estimate of total urban 

population that was correct to within a few percent. 

 
9.3.3  Adaptive adjustments to training sets 
 
From an inferential perspective - when attempting to estimate an unknown population on the 

basis of sample data from a number of small areas - the question arises as to how much can be 

inferred from a training sample about the accuracy of estimates pertaining to the whole image.  

Further, since deleting outliers from the training sample can reduce bias, it may also be the case 

that information from the sample itself may assist in the decisions about which CDs, if any, to 

delete. 

These issues were addressed by comparing three key indicators for sample and image: two 

indicators of overall accuracy and one indicator of bias. The values of mean relative error, 

median relative error and relative error in the total population, obtained from all urban CDs in 

the image (Table 9.2 Part A), were compared with the values obtained for urban CDs in the 

training sample1 2(Table 9.2 Part B).   The difference between the two values of the three 

statistics was calculated in all 45 cases (excluding Ballarat 1988 sample 1, which was drawn 

from all CDs in the image).   

Figure 9.2 shows a number of plots pertaining to the analysis of these indicators and their 

differences.  In the sixth plot of each set, the samples have been grouped into 4 groups of 

similar sample size – around 10, 25, 50 and 120 CDs respectively. 

The pattern of results were similar for both the means and medians of the relative errors 

(Figures 9.2A and 9.2B).  The values for both sample and full image were first plotted against 

sample size, expressed for clarity of presentation as the square root of the number of CDs in the 

sample.  There were clear differences between images, with the values for Sydney being much 

larger than for the other images.  The values were generally higher for the image than for the 

corresponding sample, although as one cluster on Figures 9.2A3, 9.2A4, 9.2B3 and 9.2B4 show, 

this was not always so.  

                                                 
1 The full set of urban CDs in the training sample was used in each instance – not the reduced set. 
2 Urban criteria were used not only because of the predominantly urban focus of the study, but also 

because non-urban CDs were small in number in the samples, resulting in greater variation in sample 
results for non-urban measures.  
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Figure 9.2  Comparison of Three Key Indicators for Training Samples and Whole Images 
 

A. Mean relative error in estimates of urban CD populations 
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Figure 9.2  Comparison of Three Key Indicators for Training Samples and Whole Images 
(continued) 

 
B. Median relative error in estimates of urban CD populations 
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Figure 9.2  Comparison of Three Key Indicators for Training Samples and Whole Images  
(continued) 

 
C. Relative error in estimate of total urban population 
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2. Image error vs. √(sample size) 
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3.  Image error vs. sample error 
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Figures 9.2A3 and 9.2B3 show that for the less accurate Sydney estimates (top right of each 

plot), the mean and median values for sample and image were similar.  For lower values of 

mean and median, there was a greater differential between the sample values and the values for 

the whole image, the latter of which almost never fell below about 18% for the mean and 13% 

for the median.  In each case, plots 5 and 6 give some indication that the difference between 

results for sample and image tend to diminish as sample size increases - a not unexpected result.    
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Of course these results are not independent of one another, being based on groups of variants of 

a very small number of independent samples.  Nevertheless, there are clear indications that the 

mean and median of the relative errors in the training sample can provide some guidance as to 

the mean and median relative errors than can be expected for the overall image.  On the basis of 

Figures 9.2A6 and 9.2B6, one could tentatively conclude that for a training sample made up of 

around 120 CD-sized areas, the mean and median relative errors for the overall image are 

unlikely to exceed those observed in the training sample by more than 5 percentage points. 

There is some slight evidence in Figures 9.2C1 and 9.2C2 that bias, as indicated by the relative 

error in the estimate of total population, is reduced as sample size increases.  Of more practical 

interest is the clear evidence in Figure 9.2C3 of a positive correlation (r=.61, p<.0005) between 

the relative errors in training sample and image.  There is also some evidence of “regression 

towards the mean”, with the  relative error tending to be smaller in magnitude for the image than 

for the sample  (Regression equation is: Image error = 0.034 + 0.585 Sample error).  Figure 

9.2C4 shows no evidence of a relationship between the magnitude of the difference and the size 

of the relative error (r=-.14, p=.355).  

Figures 9.2C5 and 9.2C6 give some indication, albeit based on limited evidence, that the 

differential between the relative error in the training sample and the overall image is inversely 

related to sample size – again a not unexpected result.  In all variants of the samples in group 4, 

with around 120 CDs, the difference between the relative errors for sample and image was less 

than 3%. 

These results suggest a methodology whereby an initial representative training set of CDs is 

selected and then exploratory deletions are made of two types of CD: those in which imputed 

pixel populations are substantially underestimated; and those with large areas and very low 

population densities.  The final training set is the one which minimises the relative error in the 

total for the urban area of the full training set as originally selected.  In this way, the training 

sample can be tuned to minimise bias. 

 
9.3.4  Estimates for Statistical Local Areas 
 
Finally, one representative set of estimates for each of Adelaide and Sydney were further 

aggregated to the level of Statistical Local Areas (SLAs).  The results are shown in Table 9.3 

and Figure 9.3. 

The Adelaide image encompassed 46 SLAs, with a mean population of 25187 and a mean area 

of 232.9 km.  The Sydney image included 41 SLAs, with a mean population of 80095 and a 

mean area of 86.0 sq.km..  The Adelaide SLAs are likely to be comparable in size and 

population with the suburbs of Harare used by Webster (1996).  The Leicester census wards 
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used by Langford et al. (1991) would seem to be intermediate in size between Australian CDs 

and SLAs, whilst the Tertiary Planning Units of Hong Kong used by Lo (1995) are comparable 

in area with Australian CDs, although they may well have larger populations. 

As expected, on the larger scale of the SLAs, much higher values of R2 (.97 for Adelaide) and 

much lower values of mean and median relative errors (9.7% and 5.6% for urban Adelaide) 

were obtained.  However, considering the magnitude of the increase in aggregation level (50-

fold in the case of Adelaide, 140-fold in the case of Sydney) the extent of the reduction in error 

levels might be regarded as modest.  This is presumably due to a substantial degree of positive 

spatial correlation between the errors in neighbouring CDs within an SLA. 

On the larger population scale of SLAs, the overestimation of population in particular rural CDs 

is greatly diminished in impact - perhaps a more realistic perspective.  In fact the linear fit was 

better for population than for population density.      

 
Figure 9.3  Population Density and Population Estimates for Statistical Local Areas 

Ground Truth vs. Remote Sensing Estimates from Locally Trained Models 
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Table 9.3  Summary of Selected Models for Estimating Statistical Local Area Population Densities and Populations 
Based on Local Training of Both Classification and Regression Procedures 

 
Image Sample Sampling Thresholds1 Region Urban Area (CDs >500 persons/sq.km.) 

  fraction 
% 

T1 T2 b0 
unforced

b1 
unforced

b1 
forced 

R2 s Mean 
% error 

Median
% error 

Total 

% error 
b0 

unforced
b1 

unforced
b1 

forced 
R2 s Mean 

% error 
Median
% error 

Total 

% error 

Adelaide         
SLAs 2r3 5 1.5 0.27 -9.7 0.99 0.98 0.97 152.2 47.5 18.3 14.7 72.1 0.94 0.98 0.89 210.4 9.7 5.6 4.7 
SLA population     -2731 0.97 0.92 0.97  1053 0.93 0.94 0.99   
        
Sydney        
SLAs 2 2 1.5 0.27 499.6 0.93 1.11 0.50 1184.1 22.5 13.2 7.1 887.6 0.81 1.11 0.35 1240.1 22.3 12.6 4.0 
SLA population     19176 0.71 0.80 0.86  19917 0.71 0.85 0.84   

2 CDs omitted2     12607 0.81 0.90 0.92  12509 0.83 0.92 0.91   
1.   T1= individual pixel threshold  T2 = Average threshold 
2. Two rural Sydney CDs in which regrowth after forest fire was misclassified as residential contributed very influentially to the regression relationship for population. 
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The Sydney SLA plot makes very clear the nature of the population estimation problem for that 

city.  Population densities were quite accurately estimated for 34 of the 41 SLAs whose average 

population densities were below about 4000 persons/sq.km..  Of the eight SLAs with average 

population densities above that threshold, the errors of underestimation were moderate in one 

case, substantial in four cases, and gross in three cases.  These constituted three inner central 

SLAs dotted with high-rise residential tower blocks, and a surrounding ring of inner suburban 

SLAs with a more even spread of lower multi-level residential structures.  The distance of the 

points above the regression line in these cases is a rough indicator of relative building heights in 

these SLAs. 

Notwithstanding these problems, the population contribution of these SLAs is relatively modest, 

and so in most cases they are not obvious on the population plot, and they do not greatly bias 

the estimate of total population. 

In this connection, it should be noted that the estimates of urban totals in Table 9.3  are higher 

than for the corresponding models in Table 9.2. This is because the urban cutoff of 500 

persons/sq.km. takes in a larger area when applied at SLA level than at CD level.   

The extreme outlying point on the right of the Sydney population plot was due almost entirely 

to two rural CDs within one SLA in which regrowth after forest fire was misclassified as 

residential.  This regression equation was recalculated without the spurious population 

contributions of these two very influential points (see Table 9.3). 

 
9.4 CHARACTERISTICS OF THE ESTIMATION EQUATIONS 
 
The data dependence of the regression coefficients and the reasons for it have been discussed  

(Sections 2.11.5, 7.2.4 et seq.).  However, the 94 (2×47) sets of coefficients selected from five 

different images in the preceding sections, were examined for any common features.  Because 

the magnitudes of the coefficients were quite variable, it was decided to examine the signs for 

consistency.  

Table 9.4  Numbers of Positive and Negative Regression Coefficients  
in 94 Estimation Equations 

 
Basis of equation 

6 iterations Convergence criterion 
 

Band 
+ - + -

Constant  37 10 43 4
B1 Blue 45 2 46 1
B2 Green 14 33 10 37
B3 Red 12 35 28 19
B4 Near infrared 38 9 37 10
B5 Mid infrared 1 46 0 47
B7 Mid infrared 46 1 47 0
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The results in Table 9.4 show that the regression coefficients have three very consistent 

features: positive valued coefficients for band 1 and band 7, and negative valued coefficients for 

band 5. This consistent pattern can be speculatively interpreted in terms of the characteristic TM 

spectral signatures of different materials.   

In Section 5.4.2, it was observed that the strongest discriminators between residential and non-

residential areas were ratios involving band 1 in the numerator and band 5 in the denominator.  

Constructed surfaces such as bitumen and many roofing materials have relatively strong 

reflectivity at the shorter wavelength of band 1 (Forster, 1980; Curran, 1985), whereas both 

vegetation and bare ground generally have higher reflectances in the band 5 range than in the 

band 1 range.  At the longer band 7 wavelengths, the reflectance of vegetation drops off 

somewhat compared to band 5, whilst that of bare ground (and presumably that of clay tiles 

also) stays fairly constant (Harrison and Jupp, 1989, p6).     

Considering these relativities between the responses of the three types of material at the three 

wavelengths, we can say that in all the regression models fitted to pixels classified as 

residential, conditional on the other bands remaining constant, increases in population density 

are consistently associated with higher reflectances in bands 1 and 7 (indicating the 

predominance of built surfaces), and lower reflectances in band 5 (indicating the predominance 

of natural surfaces).   

Discrimination between spectral responses of these three types of material is much less marked 

at the intervening wavelengths of TM bands 2-4 (Harrison and Jupp, ibid.).  To this fact, 

together with the substantial level of multicollinearity, can be attributed the less consistent 

pattern of signs from sample to sample displayed in Table 9.3. 

 
9.5 SUMMARY 
 
In this chapter, an approach has been described for training an estimation equation on a small 

sample of population data from within an image, and applying the results to the full image.  

It is concluded that the results obtained are more accurate and reliable than those obtained by 

normalisation of an estimation equation trained on another image. 

Methods have also been described and demonstrated for tuning the training sample to minimise 

estimation bias. 

Limited evidence has also been presented relating the accuracy of estimates for the full image to 

comparable measures from the training sample.  Potentially, error bounds for the various 
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estimates for the full image might be estimated in this way, though much more replication 

would be needed to establish reliable heuristics.    

It was also demonstrated that estimates for larger areas had lower relative errors. 

Finally, the many estimation equations derived have been examined collectively, and their 

common characteristics described and interpreted in terms of the spectral responses of different 

materials. 

It is contended that the methodology developed and tested in this chapter could form the basis 

of a feasible operational procedure for estimating a large regional population on the basis of a 

partial census of relatively small sections of the region. 

The full specification of such a procedure, together with a discussion of remaining problems and 

limitations, performance in relation to other published results, and directions for further 

research, are discussed in Chapter 10. 
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Chapter 10 
 
Conclusions and Recommendations: 
Towards a Feasible Operational 
Methodology for Population Estimation 
from Landsat TM Imagery 
 
In this chapter the study is reviewed and reflected upon.  Section 10.1 is a summary of the 

phases and milestones of the study.  Section 10.2 summarises the conclusions in terms of the 

research questions posed in Section 1.4.  In Section 10.3, the advantages of the individual pixel 

approach in preference to the CD aggregate approach are discussed in more detail.  In Section 

10.4,  the outcomes of the study are assessed in comparison to other related work.   Section 10.5 

gives a specification of the recommended model and procedure for population estimation. 

Section 10.6 outlines directions for further research.  Finally in Section 10.7 some possible 

applications of the methodology are suggested. 

 
10.1 SUMMARY OF THE STUDY 
 
Two approaches to population estimation from Landsat TM imagery have been investigated, 

one based on data aggregated over Census Collection Districts, and the other based on data for 

individual pixels. 

Beginning from the most basic prediction model based on the Collection District means of each 

TM band, substantial improvements were achieved in the estimation of CD population and 

dwelling densities on the basis of CD aggregates of more complex remote sensing indicators.  

From the many models tested, six were chosen for further testing on the secondary image, five 

utilised the square root of the density, and involved progressively more complex CD aggregate 

functions of the TM bands: basic means; squares of means, ratios of means, variation measures; 

and means and variation measures of selected pixel-level spectral transformations. The effective 

R2 values of these models ranged from .54 to .84 for population density, and from .56 to .92 for 

dwelling density.  
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After testing on the secondary image, it was concluded that some of the improvement which had 

been achieved in the CD aggregate models in the case of the primary image through increased 

complexity, was lost in the transfer to the secondary image through lack of robustness.  Overall, 

the model which performed best on the urban areas of both images was a model based on ratios 

of CD band means, which produced very accurate estimates of the total urban population in 

both cases.  Nevertheless, at the level of individual CDs, this model, like the other models, 

tended to underestimate the higher densities and overestimate the lower densities, and this was 

particularly the case in the secondary study area with its higher average density.  Like the other 

models, it grossly overestimated the regional totals for both primary and secondary study areas.  

It was decided that procedures based on CD aggregates were not robust to variation in density 

either within or between study areas. 

The second approach involved a two phase procedure of classification followed by regression 

modelling.  After extensive examination, no significant benefit was found from the use of 

spectral and spatial transformations of the six TM bands at either classification or regression 

stages.  Three candidate models were selected for further investigation, all involving at their 

core a simple linear function of the six TM bands, but in two cases utilising square root and 

logarithmic transformations of the dependent variable, population.   

A crucial step in the estimation of the regression relationship was an algorithm for  iteratively 

re-estimating the imputed ground truth values initially assigned to each pixel.   The properties of 

the algorithm have been examined by repeated sampling and by simulation, and the algorithm 

has been placed in the broader theoretical context of the EM and related algorithms.   

When the pixel-based models were applied to the secondary image, the logarithmic and square 

root models were found to be not at all robust.  The performance of the linear model was more 

consistent, though there was a problem of bias which was largely overcome by retraining the 

initial classification phase on the secondary image.  As with the CD aggregate methods, there 

remained a residual tendency to underestimate population in high density areas and to 

overestimate it in low density areas, but because of the disaggregated basis of the analysis, it 

was possible to devise methods to overcome these problems to some degree.  

Comparing the best performances achieved using the two approaches, and considering both the 

advantages of simplicity and parsimony at the model development stage, and the advantages of 

spatial flexibility and GIS-compatibility of the outputs, the pixel-based method was considered 

to be clearly superior to the CD aggregate method.  

The robustness of the model developed and trained on the primary image was further explored 

by applying it, in various normalised forms, to five more Australian images, included three very 

extensive images of large cities and their environs.   
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It was concluded that z-score normalisation provided a methodology which was moderately 

robust, particularly so far as urban areas were concerned, to geographical and temporal 

differences in season and climate, but less robust to differences in average population density or 

to differences in the shape of the statistical distribution of population densities within an image.  

Finally, a less ambitious approach was developed and tested for training an estimation equation 

on a small sample of population data from within an image, and applying the results to the full 

image.  It was concluded that the results obtained are more accurate and reliable than those 

obtained by normalisation of an estimation equation trained on another image. 

Methods have been described and demonstrated for tuning the training sample to minimise 

estimation bias. Limited evidence has also been presented relating the accuracy of estimates for 

the full image to comparable measures obtained from the training sample.    

 
10.2 CONCLUSIONS  
 
In terms of the specific hypotheses listed in section 1.4, it was concluded: 

• That whilst linear population estimation models based on CD aggregates could be enhanced 

by the incorporation of spectral and spatial transformations of TM data, and by 

mathematical transformations of the dependent population variable, this enhancement was 

to some extent brought about by capitalisation on chance and did not translate into similarly 

improved performance on a separate validation set. 

• That the capability of linear population estimation models was enhanced by modelling the 

population of individual pixels rather than that of larger spatial aggregates, but only with the 

incorporation of iterative re-estimation of imputed pixel populations. 

• That the capability of linear population estimation models based on individual pixels was 

enhanced by classification of the pixels into different landcover/landuse classes. 

• That discrimination between the residential class and other landcover/landuse classes was 

not substantially enhanced by the incorporation of spectral or spatial transformations of TM 

data. 

• That classification of pixels in low population density areas was enhanced by the 

incorporation of a second stage of contextual reclassification. 

• That pixel-based models utilising just the 6 TM bands at both classification and regression 

modelling stages produced aggregate population estimates in the training set which were as 

accurate as those produced by much more complex aggregate-based models. 
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Regarding validity and robustness, it was concluded that the pixel-based model was moderately 

robust to variations in geographical location, land cover, climate, time and season, but much 

less robust to differences in intensity of human settlement. 

The final objective was to specify a feasible operational procedure for estimating population 

from TM imagery, with respect to the non-remote sensing inputs required, and the nature and 

extent of human intervention and interpretation required, and the  accuracy obtained. 

The recommended methodology is fully specified in Section 10.5.  Two phases of human 

intervention and interpretation are required: firstly, a comprehensive suite of landuse/landcover 

classes must be identified, and representative training sets must be selected for each class; 

secondly, a representative set of 10-100 small regression training areas (encompassing 1-5% of 

the population to be estimated) must be selected, and the total population of each area must be 

obtained.  

When this methodology was emulated in the study, the most accurate results were obtained for 

urban areas of moderate population density.  In such areas,  population estimates at the macro 

(major metropolitan centre) level were accurate to within 3%, estimates at the intermediate 

(Statistical Local Area, provincial city) level had mean errors in the order of 5-10%, estimates at 

the micro (Census Collection District) level had mean errors in the order of 10-20%.  It is 

conjectured that these levels of accuracy may be close to the limit attainable with this 

methodology. 

Errors were much greater in areas of extremely low or extremely high population density.  

Approaches to improving the accuracy of estimation in these areas are discussed in Sections 

10.5 and 10.6.   

 
10.3 ADVANTAGES OF PIXEL-BASED ESTIMATION 
 
Approaches to population estimation based on the use of remote sensing information aggregated 

over some extended spatial area suffer from a number of common limitations not shared by 

pixel-based methods.  Furthermore, pixel-based methods offer a number of advantageous 

features.    These, together with the small number of counter aspects, are summarised in Table 

10.1. 

As Table 10.1 shows, the only clear advantage of the aggregate–based methods is the obvious 

one – that in developed countries at least, ground truth population data for training is available 

at this level. 
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Table 10.1  Comparison of Pixel-based and Aggregate-based Estimation Methods 
 

Feature or aspect Aggregate-based methods Pixel-based methods 
Model building and training   
• Information about the relationship between population 

and spectral response 
Loss of detailed information  about spectral response on 
individual pixels  

Pixel-level population not known, but can be estimated 

• Mathematical form of model Usually complex – problem of capitalisation on chance Simple and robust 
• Sample size and degrees of freedom Small (relative to pixel-based methods) Large 
• Area (and population) needed for training (converse of 

sample size) 
Large (relative to pixel-based methods) Small 

• Suppression of anomalous spurious population 
features (masking) 

Difficult – areal incompatibility Routine 

• Addition of anomalous concentrations of population Feasible Routine 
• Classification and stratification  Possible via areal interpolation methods for some forms of 

model 
Routine 

• Incorporation of ancillary information  e.g. differential 
weighting by building heights or occupancy ratios 

Difficult if available on an incompatible areal basis Routine 

• Statistical texture measures Larger extent – wider range of measures available e.g. 
pattern-based 

Local neighbourhood measures only 

• Morphological approaches to classification Difficult? Areal incompatibility Routine via masking layer 
Estimation beyond the training set   
• Estimates for incompatible areas defined for the same 

training region 
Difficult – areal interpolation methods required. Routine 

• Estimates for similar areas to training set Defined comparable areas required Routine 
• Estimates for areas of arbitrary size and shape Difficult – areal interpolation methods required.  Also, 

models may not be robust to changes in scale. 
Routine 

• Estimates for other regions Normalisation generally not feasible A degree of robustness via normalisation 
General   
• Resolution & GIS Resolution very coarse Routine - pixel level is finer than administrative units and 

fine enough for most demographic applications.  However, 
difficult to validate below the scale at which population 
data is available 

• Mapping Without further analysis, limited to choropleth.  
Further data and areal interpolation analysis required for 
dasymetric mapping 

As above 
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However, in this study it has been demonstrated that pixel-based models of simple linear form 

can be trained on imputed pixel populations, which perform comparably with much more 

mathematically complex aggregate-based models with respect to training set criteria, and are 

also more robust.  That being the case, the comparison is very one-sided.  Because the size of a 

TM or other remote sensing pixel is below the scale of all administrative units and most 

demographic applications, the problems of areal interpolation (Goodchild and Lam, 1980; 

Langford, et al., 1991; Goodchild et al., 1993) do not arise.  Looked at another way, this 

problem is dealt with at the regression modelling stage when the pixel populations are imputed 

and re-estimated.   

In the training phase, the pixel-based approach has advantages with respect to sample size, 

degrees of freedom and training set flexibility, as well as much greater flexibility to incorporate 

ancillary information via extra raster or vector layers in the remote sensing image or GIS. 

In the validation and implementation phases, the flexibility and the lack of areal interpolation 

problems is manifest.   

It may be for these reasons that much of the work in this area published to date, which has been 

aggregate-based, has not proceeded beyond the training phase where a relationship is 

demonstrated at face value, to a more searching validation, implementation and evaluation 

phase. 

 
10.4 RESULTS, OUTCOMES AND PERFORMANCE 
 
The task of estimating human population from remote sensing imagery differs in three 

important respects from most other remote sensing applications.  Firstly, the phenomenon being 

investigated (population) is less directly linked to the remote sensing indicators (reflectances of 

materials) than is the case in most applications in the earth, biological and environmental 

sciences.  Secondly, the aim is to make quantitative estimates across the spatial dimensions of 

the image, rather than is often the case, qualitative or categorical classifications.  Thirdly, many 

remote sensing analyses are locally focussed and analytically specific, whereas the aim here was 

to establish a generic framework.   

With regard to the first two aspects, there is an expectation that there is an upper limit to the 

accuracy which is achievable in principle.  With regard to the third aspect, it is to be expected 

that different parts of the estimation process might have different degrees of robustness, 

depending on what aspect (season, geographical location, culture, etc.) is changed and by how 

much.   

The outcome of this study is a generic methodological framework for population estimation 

which it is contended could be made to work anywhere, at any time, with the appropriate inputs 
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of TM imagery, training information about land use, land cover and population, and where 

available, additional ancillary information.  How well it works, how accurately population is 

estimated, will always depend on the quality of those inputs.  Thus inaccuracy will always be 

partly inherent to the process, and partly amenable to reduction by improved inputs. 

In this study, the methodology has been emulated and evaluated, with very little ancillary 

information, in various contexts.  The accuracy of the estimates obtained has varied from image 

to image, for reasons which have been identified and discussed.   

In this section, the results obtained for the areas including and surrounding two of Australia’s 

four largest cities, Sydney and Adelaide, are compared with comparable published results from 

the last decade or so.   

Such comparisons are not extensive or straightforward, since there is a paucity of published 

work in the area, and reporting has not always been comprehensive.  Some of the purported 

results due to other researchers quoted in this section have been inferred by the author (and in 

one case calculated by him from published data).  These calculations and interpretations have 

been made in good faith and are believed to be accurate.  A comparative summary is set out in 

Table 10.2. 

Table 10.2 includes one indicator of variability or consistency (R2), one indicator of bias 

(relative error in the total population) and two indicators of overall accuracy (mean relative error 

and median relative error), as discussed in Section 2.12. 

As the results throughout this study indicate, it is one thing to demonstrate a relationship 

between some demographic characteristic and a set of remote sensing indicators, possibly quite 

complicated, in a single data set.  It is quite another to find relationships that have genuine 

predictive capability beyond the data from which they were derived. 

The results of Iisaka and Hegedus (1982) and Webster (1996) pertain only to a training set.  

Langford et al. (1981) undertook a degree of validation by attempting to recover a different set 

of areal subtotals for the same training area.  This is broadly comparable to the use of training 

set CDs to validate pixel-based models in the present study.  Only Lo (1995) trained his models 

on a subset of data, and applied them to a broader set, which constitutes genuine external 

validation, as has been undertaken in this study (though it might be said that ideally the 

validation set would not include the training set).  However, Lo’s quoted R2 values referred to 

the results in the training set. 

Bearing in mind this distinction, the final results quoted for Adelaide and Sydney from the 

present study compare very favourably on almost all points where they can reasonably be 

compared with the other studies.  The exception is the low values of R2 brought about by the 

presence of a relatively small number of extreme high population density outliers in the Sydney 
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data.   Some of the quoted training set values of R2 are quite high, and similarly high values 

have been obtained for training sets throughout this study, but that does not necessarily translate 

into accurate predictions, nor even high R2 values in a validation context. 

The relative errors in the urban totals range from –3% to +5%, compared to Lo’s which range 

from –10% to +8%.  The mean relative errors for both Adelaide and Sydney CDs are much less 

than Lo’s comparable figures for Hong Kong and Webster’s training set dwelling densities 

(calculated by the author) for Harare, though the Sydney figure exceeds Webster’s mean figure 

for Cardiff training set dwelling densities.   The median relative errors for Adelaide are much 

lower than Webster’s training set figures, and those for Sydney are comparable.  Lo’s research 

was based on SPOT imagery, which has higher resolution (smaller pixel size) than TM, which 

may or may not be advantageous (Webster, 1996; Barnsley and Barr, 1996), and also involved a 

lot of multi-level and multi-purpose structures. 

Only Webster’s report contained any comparable figures relating to lower density non-urban 

areas, although Langford et al. discussed the problems of overestimation at low densities.  

Again, whilst the results for non-urban areas in the present study are not very good, they are 

more consistent than the only other reported results.  There are no available benchmarks with 

regard to bias in non-urban results, because the only accessible reported total was based on a 

training set of equal grid squares, in which the total is automatically constrained to equal the 

correct value by the OLS analysis. 

Considering the spread of estimates obtained using many variants of the estimation equation, 

based on many training sets and applied across seven different test images, it is considered that 

the median relative errors in the range 10-15% obtained for the urban CDs of the Adelaide, 

Ballarat and Geelong images, and the median relative error of 6% obtained for the larger 

Adelaide SLAs, probably come close to the upper limit of accuracy that can be achieved with 

this methodology.   

In each case, the mean value is somewhat higher, as is characteristically the case for the skewed 

distribution of absolute values of deviations, but in many cases the margin is very large, 

indicating the influence of a small number of very large discrepancies.  These relatively large 

discrepancies usually fall at the extremes of population density, and should in principle be able 

to be reduced by incorporating various refinements which will be summarised in Sections 10.5 

and 10.6.  The methodology as applied in this study is believed to be close to fully functional at 

moderate levels of population density (200-3500 persons/sq.km.), and straightforwardly 

amenable to refinement at both high and low density extremes. 
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Table 10.2  Comparison of Some Results of This Research with Comparable Published Results 

 
       Urban area  

(Moderate to high density4) 
Whole region  
(if different) 

Source Location Nature of 
study area 

Scale of 
test unit 

Status of 
test units 

Dependent 
variable 

Density 
or count 

R2 Mean 
% error 

Median 
% error 

Total 

% error 
R2 Mean 

% error 
Median 
% error 

Total 

% error 
Iisaka & Hegedus (1982) Tokyo Urban Small Training Population Both5 .59-.70   06 Not applicable 
Langford et al. (1991) Leicester Mixed Large Training2 Population Count     .76-.85    
Lo (1995) Hong Kong Urban Small Validation Population Mixture  64-99  -5 .. +8 Not applicable 
 Hong Kong Urban Small Validation Dwellings Mixture .77-.883 63-77  -10 .. +4 Not applicable 
Webster (1996) Harare Mixed Small Training Dwellings Density .81 57 27   65 30  
 Cardiff Urban Small Training Dwellings Both5 .86 27 26   410 36 06 

Harvey (1999) Adelaide6 Mixed Small Validation Population Density .45-.51 18-20 12-14 -2 .. 0 .71-.75 47-51 15-17 +13 .. +16 
 Sydney6 Mixed Small Validation Population Density .03 32-35 25-28 -3 .. -2 .06 140-161 26-30 +7 
 Adelaide1 Mixed Large Validation Population Density .89 10 6 +5 .97 112 18 +15 
 Sydney1 Mixed Large Validation Population Density .35 22 13 +4 .50 23 13 +7 
 
1. SLA estimates based on one representative model 
2. Whilst Langford et al. discussed RMS errors in the context of an areal interpolation crossvalidation, the only comparable summary statistics quoted were the R2 values based on 

the training data. 
3. Lo’s reported relative errors were based on a validation set, but the two R2 values reported were based on the training data. 
4. Harvey urban figures are for CDs with population density > 500 persons/sq.km.. Webster figures (calculated by Harvey) are for dwelling densities > 200 dwellings/sq.km.  

Figures of Iisaka and Hegedus and of Lo are presumed to relate to densities above these thresholds.  No figures available for Langford et al. 
5. With analyses based on equal grid squares, count and density are equivalent.  With least squares analyses on such data, the totals are fixed by the analysis. 
6. Values based on whole-image results for models trained on 50 or more CDs, and the variant of each model chosen on the basis of performance on the training sample. 
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10.5 THE MODEL AND ITS IMPLEMENTATION 
 
10.5.1  The basic model and procedure 

 
The recommended procedure for estimating a genuinely unknown population is now specified.  

In brief, the procedure involves: 

• selection of classification training sets 

• performing supervised classification  

• selection of regression training areas 

• obtaining of ground truth population for the regression training sets 

• fitting of the regression model at pixel level 

• applying the model to all pixels in the image 

• smoothing the population estimates and performing contextual reclassification 

• checking for bias by generating aggregated estimates for training areas 

• if necessary, reducing training set and refitting the regression model 

Step 1 

Define a comprehensive set of land use /land cover classes, including a residential class.  Select 

training sets for each class and perform a supervised classification of the 6-band TM image. 

Step 2 

Assign zero population to all pixels classified as other than residential.  

Step 3 

Select a training set of around 100 representative small areas, ranging upwards from 20 ha in 

size, and including a range of residential densities from the highest down to 10 persons/sq.km.   

Step 4 

Obtain ground truth population figures for this training set.   

Step 5 

Extract from the image the spectral data for the set of pixels from the population training set 

classified as residential, and perform an iterated regression analysis on them to obtain an initial 

population estimation formula 

∑
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Step 6 

Use this formula to assign population values to all pixels in the image which are classified as 

residential.  

Step 7 

Apply a smoothing filter to the resulting population image. 

Step 8 

Use the smoothed and unsmoothed population bands to make a low density adjustment, by 

resetting the population of selected  pixels to zero, to compensate for over-classification as 

residential in low density rural areas. 

Step 9 

Aggregate the pixel estimates for each of the areas that make up population training set, and 

compare the aggregated estimates with the ground truth values. 

Step 10 

Make any required deletions from the training set to reduce bias. 

Repeat steps 5-10 as required. 

 

Steps 6-8 can be expressed mathematically thus: 
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 tp         is the pixel population reclassification threshold 

   tA          is the average population density reclassification threshold 

The first term in the equation represents the initial thresholding at zero, to remove negative 

population estimates.   The compound term in square brackets represents the resetting to zero of 

the population of any pixel which falls below both the average population density threshold tA 

and the individual pixel threshold tp. Values must be chosen for these coefficients. 
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10.5.2  Enhancements: adjustment for anomalies 
 
Two straightforward procedures are outlined here for improving the accuracy of estimates at 

high and low density extremes by incorporating ancillary information.  These are routine in 

principle, though the second may require some non-standard computational implementation in 

remote sensing or GIS software.  They require a modicum of human intervention and 

judgement, which is in any case required at the image classification stage.  Other potential 

enhancements requiring further research are considered in the next section. 

Suppression of spurious population associated with specific misclassified features 

Table 8.2 (Section 8.2.2) shows a number of features – built, agricultural and natural – for 

which many pixels were wrongly classified as residential and hence assigned spurious 

population.  A number of these features contributed substantially to the over-estimation of 

population in non-urban CDs.  In a practical population estimation exercise, some such features 

at least should be clearly identifiable.  It is  a routine matter to construct a binary masking 

overlay (set to 1 or 0) which when multiplied by the population estimates layer, has the effect of 

setting population to zero in these areas. 

Injection of concentrations of population  

This is the converse of the previous step.  Again, an overlay can be constructed in which known 

major anomalous concentrations of population, such as institutions and tower blocks, can be 

gleaned from ancillary sources and assigned to small regions or single pixels.  This layer is then 

added to the population estimates layer.   

With these enhancements, the mathematical specification of the model is as follows: 

[ ]
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where 

Am is the multiplicative anomaly adjustment factor, which takes the value 0 to suppress 

spurious population and 1 elsewhere. 

Aa  is the additive anomaly adjustment factor, which is used to inject known 

concentrations of population. 

In the present study: 

• The coefficients of the central linear equation were estimated by iterated linear regression 

on a training set of pixels within census collection districts for which populations were 

known. 
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• Averaging of population density was performed using a mean filter over a 7×7 pixel 

neighbourhood. 

• Various combinations of low density individual and smoothed thresholds were used, 

including (1,1), (1.5, 0.27) and (2.0, 0.27).  

• Anomaly correction factors were not explicitly included in calculations. 

 
10.6  DIRECTIONS FOR FURTHER RESEARCH 
 
The issues of over-estimation at low density and under-estimation at high density, reported in 

this and other recent studies, remain problematical.  The present methodology can produce 

reasonably accurate estimates of population within the range of typical Australian suburban 

densities.  But clearly further research is needed if acceptably accurate estimates of scattered 

rural populations or of inner city populations are to be attained.  Directions for further research 

will be considered under three headings: improving estimation at low population densities; 

improving estimation at high population densities; and other aspects. 

 
10.6.1   Improving estimation at low population densities 
 
The key here is better classification.  A beginning might be to define better targeted training sets 

for particular confounding features such as country roads and shorelines.  An alternative might 

be to incorporate a second complementary classification stage, using a non-statistical 

morphological approach for line detection (for example Ton et al., 1989). 

Other alternative approaches to classification in general reported during the past ten years 

include: analysis of fractal dimensions (De Cola, 1989; Lam, 1990); fuzzy set theory (Wang, 

1990; Gopal and Woodcock, 1994); mixed pixel or end member analysis (Smith et al., 1990); 

knowledge-based systems (Wharton, 1987; Moller-Jensen, 1990; Bolstad and Lillesand, 1992); 

neural networks (Chen et al., 1995; Foody et al., 1995; Foody, 1996); and genetic programming 

(Riolo and Line, 1995).   

The recent literature of contextual reclassification (Treitz et al., 1992; Gong and Howarth, 1992; 

Van Deusen, 1995; Barnsley and Barr, 1996; Sharma and Sarkar, 1998) may also provide useful 

insights. 

It may be that very specialised and sophisticated methods are needed to distinguish the faint 

genuine human signal from the imitative noise of a such a sparsely inhabited landscape as an 

Australian rural area. 
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10.6.2   Improving estimation at high population densities 
 
At the high density end, the problem is one of hidden population.  Landsat TM and similar 

sensors essentially operate in two dimensions, and to the extent that they can detect population, 

really do so on a “population per floor level” basis.    From this perspective, deleting high 

density outliers from a training set (Chapter 9) is essentially discarding those pixels for which 

the value of what might be termed the “floor truth” dependent variable is unknown. 

One approach to this problem would be to explicitly incorporate information about numbers of 

levels, or equivalently building height, into the models.  The ground truth pixel populations 

would be converted to populations per level, which would be used as the dependent variable to 

train the remote sensing estimation equation.  This would then be applied to the image, and the 

resulting estimates of population per level would be backtransformed using the height 

information, to produce population estimates.  Even very rough suburb-by-suburb estimates of 

average building height, which would be incorporated as a multiplicative overlay, would be 

expected to bring about substantial improvement in population estimates such as those of 

Sydney.   

This should not replace the specific pointwise anomaly corrections as described in the previous 

section, but should complement them.  One saving grace of large institutions and tower blocks 

is their visibility and regularity of shape, which makes such ad hoc adjustments quite feasible.   

The “average building height” layer would be used to correct for more widely distributed lower 

profile multi-level structures. 

A less precise alternative to modelling population per level would be to employ more than one 

residential classification, as was done by Langford et al. (1991) and Lo (1995).  This could be 

incorporated into the pixel-based methodology of the present study at the cost of considerable 

organisational complexity, with separate training sets being selected from within each 

residential stratum, and separate estimation equations being derived and applied. 

To the extent that high density comes about in the vertical dimension, this approach is 

essentially a discrete approximation to the explicit inclusion of height in the model. With the 

aggregate-based models used by Langford et al. and Lo, only this less precise discrete approach 

is feasible.  But with pixel-based models there is no such restriction (see Table 10.1).  

Considering that some judgements about height would in any case probably be used to inform 

the multi-stratum classification, I am inclined to think that the more direct approach would be 

just as feasible to apply, and more promising.  

A “pie in the sky” footnote is the fact that satellites exist with radar altimetry capability (for 

example European Space Agency ERS-1 and ERS-2), which in principle could measure the 
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heights of structures.  In practice, these satellites have limited narrow swathe coverage and are 

designed principally for monitoring the sea surface rather than land. 

Potentially more feasible nascent remote sensing methodologies for direct estimation of 

building heights are the analysis of shadows (Shettigara and Sumerling, 1998) and stereo image 

matching (Kim and Muller, 1998). 

 
10.6.3   Other aspects 
 
Some other applied lines of enquiry might include: 

• exploration of the sensitivity of the results obtained to changes of scale or sensor resolution, 

by simulation and/or using data from other multispectral sensors, such as MSS, SPOT 

multispectral and new generation higher resolution sensors (in the manner of Cushnie and 

Atkinson, 1985; Cushnie, 1986; Ng, 1990, and in the light of the decision frameworks 

established and applied by Woodcock and Strahler, 1987; Chavez, 1992; Atkinson and 

Curran 1997); 

• combined use of more than one sensor, such as TM plus SPOT panchromatic, or TM plus 

night-time illumination (Sutton et al., 1997); 

• exploration of the sensitivity of the procedure and the trade-offs involved with different 

classification schemes, different thresholding levels, different smoothing window sizes, etc; 

• application of the procedure in other non-Australian cultural settings; 

• applicability of the general approach to synthetic aperture radar (SAR) imagery. Some 

research was carried out in the 1980s into the use of radar imagery for population 

estimation, using selective imagery generated in Space Shuttle experiments (Harrison and 

Jupp, 1989; Henderson and Xia, 1997).  However this form of imagery has only recently 

become more generally available from orbital platforms. 

Some more theoretical investigations might include: 

• modelling with simulated data in order to better understand the relationships between 

population and the physical properties of different surfaces and materials, which underlie 

the central linear models identified in this study (Forster, 1980b; Curran, 1986); 

• probabilistic assessments of accuracy such as confidence intervals for totals, based on 

empirical distributions from repeated sampling or resampling methods such as 

bootstrapping (this would be very computationally intensive, and perhaps very image-

dependent); 
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• the use of generalised linear models, in particular Poisson-based models and spatially 

correlated error structures. 

• in the context of generalised linear modelling, development of an exact EM re-estimation 

algorithm. 

 
10.7  APPLICATIONS 
 
10.7.1   Direct use of the methodology: estimation of population 
 
In principle, the methodology established in this study, perhaps incorporating some of the 

embellishments suggested in the previous two sections, could be directly applied for the 

purposes of estimating population and mapping population distribution in countries where the 

demographic infrastructure is not well developed (Polle, 1996).  It has been demonstrated in this 

study (if demonstration were needed) that particular regression relationships, even when 

normalised, do not apply robustly across all geographic locations, seasons or cultural variations, 

even within a single nation.  Such an exercise will always require an initial investment in 

ground truthing and calibration of the regression component, as well as the usual training aspect 

of the land cover/land use classification.  

 
10.7.2   Indirect use of the methodology: hybrid methodologies 
 
A less ambitious application than unassisted population estimation might be the use of remote 

sensing estimates to modify, update or disaggregate other estimates. 

For example, in Australia intercensal estimates of resident population (e.r.p.) are currently 

available for SLAs and larger areas, and are updated annually with a lag of about 1 year.  Using 

image differencing techniques for change detection ( Jensen, 1982;  Griffiths, 1988; Royer et al., 

1988, Martin, 1989; Quarmby and Cushnie, 1989; Martin and Howarth, 1989), the changes in 

remote sensing population estimates between the last available e.r.p. date (or the last census 

date) and some later date could be used as an index which could in principle be applied to the 

last known “true” figure to provide updated estimates which could be more geographically 

flexible and more timely than those which are currently available.  

In the context of GIS and multi-level analysis, CD populations are frequently either assigned to 

the centroid of each CD or assumed to be uniformly distributed across the CD, for such areal 

interpolation purposes as assigning population to grid squares, defining catchments or 

estimating populations exposed to environmental influences.   

In the dasymetric approach of Langford et al. (Langford and Unwin, 1994; Fisher and Langford, 

1995; Fisher and Langford, 1996) remote sensing imagery was used to classify pixels and hence 
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to geographically distribute the known census populations within census enumeration districts.  

A similar approach was used by Lo (1995) in one of his estimation models. 

The same approach could be applied using estimates of individual pixel populations as derived 

in this study.  Again, as in the discussion of height data versus multiple residential 

classifications (Section 10.6.2), from the perspective of pixel populations, the use of a discrete 

classification is equivalent to assuming a constant (average) pixel population within each class.  

Hence, whilst the remote sensing population estimates for individual pixels are probably not 

highly accurate individually, it is conjectured that an allocation of known CD populations to 

other areas based on these estimates would be an improvement over the assumption of either a 

single uniform distribution, or a different uniform distribution in each residential class.   

To establish the validity of this conjecture, or of any dasymetric allocation, or indeed of any 

areal interpolation, ideally direct observations should be made at the micro level at which the re-

allocations are made, in this case pixels.  The indirect cross-validation performed by Langford et 

al. using grid squares with known population does not establish anything about the accuracy at 

the micro level.  The same can be said about the CD totals used for validation in the present 

study.  Nevertheless, the images of estimated population density exhibit some face validity in 

that little or no population is assigned to sports grounds, parks, waterways, major roads or 

commercial areas within residential CDs. 

 
10.7.3   Back to Earth 

 
It is contended that the methodology developed in this study could form the basis for 

operational procedures for estimating large regional populations using Landsat TM imagery 

supplemented by population censuses of relatively small areas. 

From a different perspective, when combined with data from other sources such as censuses, it 

provides a more finely honed alternative to existing methods of areal interpolation and 

dasymetric mapping. 

But whilst both types of application are possible in principle, practical questions remain about 

whether the levels of accuracy obtained are sufficient to be of any real use to anyone; about the 

extent to which it is possible to improve accuracy, both in principle and in practice; and about 

whether the procedures would be cost effective.   The question of the operationally feasibility 

and utility of remote sensing methods for population estimation remains open for consideration 

by geographic and demographic practitioners. 
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Image 1.    Ballarat Study Area 
Quasi natural colour RGB - TM bands 3, 2, 1 

 
 
 
 

 
 

Image 2.   Ballarat Study Area 
  Green-enhanced quasi natural colour RGB  

TM bands 3, 2+4, 1 
1986 Census Collection District boundaries 

overlaid 
 

 
 

Image 3.    Ballarat Study Area 
2 class MLC based on 6 TM bands 

(Red = residential) 
 
 
 

 
 

Image 4.    Ballarat Study Area 
 12 class MLC based on 25 spectral and spatial 

transformations of 6 TM bands  
(Red = residential) 

 

 
 

Image 5.    Ballarat Study Area 
Difference to sum ratio of TM bands 1 and 5 

(Pseudocolour: red = high, blue = low) 
 

 
 

Image 6.    Ballarat Study Area 
 Spatial variability in difference to sum ratio of TM 

bands 1 and 5 
Standard deviation over a 3 pixel × 3 pixel 

neighbourhood 
(Pseudocolour: red = high, blue = low) 
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Image 7.    Ballarat Study Area 
Estimated population density with classification 

and regression based on 6 TM bands.   
(Pseudocolour: red = high, blue = low) 

 
 

 
 

Image 8.    Ballarat Study Area 
Estimated population density with classification 

and iterated regression based on 6 TM bands. 
(Pseudocolour: red = high, blue = low) 

 

 
 

Image 9.    Ballarat urban area 
Estimated average population density based on 6 TM

bands with iterated regression, smoothed with a 
mean filter over a 7 pixel × 7 pixel neighbourhood. 

(Pseudocolour: red = high, blue = low) 
 
 

 
 

Image 10.    Ballarat Study Area 
Estimated population density based on 6 TM bands 

with iterated regression, low density contextual 
reclassification and high density enhancement. 

(Pseudocolour: red = high, blue = low) 

 
 

Image 11.    Ballarat urban area 
Quasi natural colour RGB - TM bands 3, 2, 1 

 
 

Image 12.    Ballarat urban area 
Estimated population density based on 6 TM bands 

with iterated regression, low density contextual 
reclassification and high density enhancement. 

(Pseudocolour: red = high, blue = low) 
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Image 13.    Geelong Study Area 
Quasi natural colour RGB - TM bands 3, 2, 1 

 
Image 14.   Geelong Study Area 

Estimated population density based on locally 
trained classification and normalised Ballarat 

regression model  
(Pseudocolour: red = high, blue = low) 

 
 
 
 
 

 
 

Image 15.    Ballarat Study Area (1994) 
Quasi natural colour RGB - TM bands 3, 2, 1 

 
 

Image 16. Ballarat Study Area (1994) 
Estimated population density based on locally 

trained classification and regression  
(Pseudocolour: red = high, blue = low) 
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Image 17.    Adelaide Study Area 
Quasi natural colour RGB - TM bands 3, 2, 1 

 
 
 

 
 

Image 18. Adelaide Study Area  
Estimated population density based on locally 

trained classification and regression  
(Pseudocolour: red = high, blue = low) 

 
 

 

 
 

Image 19.  Sydney Study Area  
Green-enhanced quasi natural colour RGB  

TM bands 3, 2+4, 1 
 

 
 

Image 20. Sydney Study Area  
Estimated population density based on locally 

trained classification and regression  
(Pseudocolour: red = high, blue = low) 
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Image 21.    Brisbane Study Area  
Quasi natural colour RGB - TM bands 3, 2, 1 
 

 
 

Image 22. Brisbane Study Area  
Estimated population density based on locally 
trained classification and normalised Ballarat 

regression model  
 (Pseudocolour: red = high, blue = low) 

 
 
 
 

 
 

Image 23.    Kalgoorlie Study Area  
Quasi natural colour RGB - TM bands 3, 2, 1 

 
 

Image 24. Kalgoorlie Study Area  
Estimated population density based on locally 
trained classification and normalised Ballarat 

regression model  
(Pseudocolour: red = high, blue = low) 
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Appendix A 
 

Transformations from RGB to HSI co-ordinates 
 

(Chapters 2, 4 and 5) 
 

RGB co-ordinates Normalised RGB co-ordinates HSI co-ordinates 
 
R = red   )/( BGRRr ++=    H = hue   
G = green   )/( BGRGg ++=    S = saturation 
B = blue   )/( BGRBb ++=    I = intensity 
 
 
Triangular HSI co-ordinates 
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Cylindrical HSI co-ordinates 
 

)(

)2(

/tan

)(

2
1

2

6
1

1

21

2
2

2
1

3
1

GR

BGR
where

H
S

BGRI

−=

−+=

=

+=

++=

ν

ν

νν
νν

 

 
Rectangular HSI co-ordinates 
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Note:  
 
The H co-ordinate is an angular measure which may range through a full cycle.  Both the scale 
and the zero point are arbitrary.  When computing triangular or cylindrical co-ordinates using 
the inverse cosine and inverse tangent functions, which are not defined over the whole range, 
appropriate adjustments have to be made quadrant by quadrant. 
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Appendix B 
 

Development and Comparative Evaluation of Texture Measures by Simulation 
 
Of the four types of texture measures used by Hsu (1978) and discussed in Section 2.5.3, the 

deviation- and proportion-based measures (types (i) and (iii)) take no account of the spatial 

pattern within the window.  This is the case regardless of the range or degree of quantisation of 

the data.  For this reason, such measures were considered unlikely to be adequate for the task of 

differentiating between characteristically amorphous residential areas and a number of non-

residential features with clear geometric structures. 

Considering the pairwise-difference measures and the wave-form measures, the former have the 

advantage of being simpler and faster to compute.  For this reason, it was decided to investigate 

the performance of several measures of this type by applying them to simulated data, based on a 

number of geometric patterns characteristically associated with residential and non-residential 

features, but also degraded by random noise. 

The aim was to find one or more pairwise-difference based texture measures with the capacity 

to differentiate between, on the one hand, the amorphous pattern characteristic of residential 

land-use, and on the other hand, a number of geometric patterns associated with common non-

residential features, which exhibit a similar level of spatial variance.  There was an intuitive 

expectation that such a measure should produce lower scores for the less "busy" geometric 

patterns than for an amorphous pattern. 

Window size 

As window size is increased, so too are edge effects, with pixels between two adjacent classes 

likely to be rejected.  Hsu (1978) reported that edge effects are substantial even with a 5×5 

window.  Also, processing time increases as the square of the window size or faster.  

Nevertheless, it was decided to model both 3×3 and 5×5 windows, to test whether these 

disadvantages were offset by substantially improved discrimination using the larger window. 

Simulated data 

Both 3×3 and 5×5 windows were used. Twelve test patterns were used, eight based on 

geometric patterns representing non-residential features, and four purely random representing 

residential land-use.  The patterns for a 3×3 window are shown in Figure 3.  The ninth pattern in 

each case formed the constant datum which was the basis of the four random test patterns. 

All of the test data simulated was in the range (0,1).  Initially, the low and high values were set 

to 0.25 and 0.75 respectively, except for the last pattern, where the datum was set at 0.5. 
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On the first eight patterns, there was then superimposed random variation, uniformly distributed 

with mean 0 and a maximum magnitude rmax, which could be varied from 0 to 0.25.  Thus the 

data could be made purely deterministic with values of 0.25 and 0.75, or it could be made to 

vary randomly over the whole range from 0 to 1, whilst retaining to a controlled degree the 

underlying geometric pattern. 

 
Figure 2.  Test patterns for a 3×3 window 

 
Alt VE DE 

H  L  H L  H  H L  L  H 
L  H  L L  H  H L  H  H 
H  L  H L  H  H H  H  H 

   
VL DL HVC 

L  H  L L  L  H L  H  L 
L  H  L L  H  L H  H  H 
L  H  L H  L  L L  H  L 

   
DC Dot Con 

H  L  H L  L  L H  H  H 
L  H  L L  H  L H  H  H 
H  L  H 

 
L  L  L H  H  H 

 
Alt Alternating high and low values (chess board) 
VE Vertical edge 
DE Diagonal edge 
VL Vertical line 
DL Diagonal line 
HVC Horizontal-vertical cross 
DC Diagonal cross 
Dot High central pixel, surrounded by low pixels 
Con Constant - all pixels high 

 
The ninth pattern was used as the basis of four patterns of random variation, each with a mean 

value of 0.5, but with four different amplitudes. 

The four patterns and their amplitudes were: 

Pattern Amplitude 

  R    rmax 

  R25    0.25  

  R25+ 0.25 + rmax 

  R50   0.50 
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The first of these represents an underlying homogeneity with a small amount of superimposed 

random variation.  In the second case, the data ranges from 0.25 to 0.75, which is the same as 

for the geometric patterns with no added randomness.  In the third case, the data ranges from 

0.25-rmax to 0.75+rmax, which is the same as for the geometric patterns with added 

randomness.  The fourth case represents the maximum possible random variation, across the 

whole range (0,1). 

 

In the context of distinguishing random residential patterns of variation from other more 

geometric features, it was reasonable to assume that the overall range of variation in the 

residential areas would be as great as the high-low difference in the geometric features.  On this 

basis, the third random pattern, R25+, was regarded as the most appropriate benchmark for 

comparison. 

Texture measures 

A total of 33 texture measures were examined, comprising eleven basic patterns of differences, 

with each being averaged in three ways - mean absolute difference (MA), mean squared 

difference (MS) and root mean squared difference (RMS).  Of the eleven basic patterns, two 

were deviation-based.  These were included for comparison, and to verify that they did fail to 

discriminate between the two types of pattern. 

The eleven basic methods were characterised as follows: 

Deviation measures: 

MV Deviation from the mean value of all pixels in the window 

CP Deviation from the central pixel value 

Pairwise-difference measures: 

AP   All pairs i.e. each pixel is compared with all others 

HVnn   Nearest neighbours - horizontal & vertical directions 

Dnn   Nearest neighbours - diagonal directions 

HVDnn  Nearest neighbours - all directions 

HV2nn  Second nearest neighbours - horizontal & vertical 

D2nn   Second nearest neighbours - diagonal 

HVD2nn  Second nearest neighbours - all directions 

Pnnt   Nearest neighbours around the perimeter (trimmed mean) 

MinD2nnPnnt Minimum of D2nn and Pnnt 

The first nine measures are self explanatory.  The last two are discussed in detail below. 
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For the deviation measures, the form of the statistics is as follows: 

1
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1
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MSRMS=  

 

where  xi = data value for pixel i 

  N = number of pixels in window = (window size)2  

R = reference value: either the mean or the central pixel value 

  

For the pairwise-difference measures, the form of the statistics is as  follows: 

P
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∈
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where  xi, xj = data values for pixels i, j 

 Si = set of j values which are paired with a particular i value 

 N = number of pixels in window = (window size)2  

 P = total number of pairs included in the summation 

Results 

The above specifications were implemented using Turbo Pascal. For each window size, three 

runs of 100 simulations were undertaken, with  rmax set to 0.00, 0.10 and 0.25.  The criterion 

was the mean value of the 100 calculated statistics from the simulation run, expressed as a 

percentage of the "residential benchmark" figure for the R25+ pattern. 

With no random noise, as was expected, the deviation based measures MV and CP are higher 

for all the geometric patterns than for the benchmark R25+ pattern, since the data from the 
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former are bimodal in the extreme. As an increasing degree of superimposed randomness was 

introduced this difference is reduced.  With r =0.25, there is very little difference between the 

scores for most patterns, with either MV or CP. 

Similar results were obtained for the measures AP, HVnn, HVDnn and HVD2nn.  The Dnn 

measure clearly distinguished the Alt and DC patterns from the R25+ pattern, at all levels of 

randomness.   The HV2nn measure offered further improvement, with clear discrimination of 

five of the eight geometric patterns.  With D2nn, all but two of the geometric patterns were 

clearly differentiated from the random pattern, the exceptions being VE and DE - vertical and 

diagonal edges. 

Having reached this point, it was decided to try to utilise the D2nn measure in conjunction with 

some other measure which could distinguish edges.  What was required was not an edge 

detector per se, but rather a complementary measure which would produce a lower score for an 

edge than for a random pattern - what might be called an "edge pass filter". 

An attempt was made to derive a suitable measure by essentially reversing the sign of a standard 

edge detector - the Sobel gradient operator (Abdou and Pratt, 1979).  This approach was 

rejected for two related reasons: 

(i) Because the Sobel operator is sensitive to the orientation of an edge, there is no obvious 

maximum value, nor is there a clear set of circumstances under which the maximum 

would occur.  Hence the complementary measure has no clear minimum corresponding to 

the zero of a measure such as D2nn. 

(ii) The Sobel operator is based on weighted sums of signed differences, and hence is not 

directly commensurate with the D2nn measure which is based on unsigned differences. 

An alternative measure was formulated which was based on unsigned pairwise differences, 

which was not sensitive to the direction of an edge, and which had a clearly defined zero.  It was 

however computationally somewhat more expensive than simple edge detectors.  This measure 

is the "perimeter nearest neighbour trimmed average" (Pnnt).  Its rationale is as follows.  In the 

case of a pure edge, the differences between nearest neighbours on the perimeter of the window 

are zero except at the two edge crossings, where the differences are large.  In the presence of 

superimposed random variation, the two edge crossings are still likely to produce larger 

differences than the other positions.  The Pnnt statistic is found by taking the absolute 

differences between nearest neighbours on the perimeter of the window, discarding the two 

largest values (trimming), and calculating the average of the remaining values. This measure 

had the desired property of producing low values in the VE and DE cases. 

The final statistic, (MinD2nnPnnt) which achieved the stated objective, is simply the smaller of 

D2nn and Pnnt.  i.e. The value assigned to the central pixel is the lesser of: 
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• the average of the absolute values of the differences between 2nd nearest neighbours in 

the diagonal direction (which in the case of a 3×3 window is just the average absolute 

difference between pixels in diagonally opposite corners), and 

• the average of all but the two largest of the absolute values of the differences between 

nearest neighbours around the perimeter of the window. 
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Appendix C 
 

Implementation of Procedures for Chapters 3 - 6 
(Methods for Chapters 8 & 9 are variants of these) 

 
 
MAJOR STEP 
 

 
DETAILS 

 
ERMAPPER (or other) PROCEDURES 

 
SEC. 

Preparation: Ch 3    
Set up basic 6-band TM dataset.  IMPORT from tape subsetter via µBRIAN. 3.4 
Calculate ground truth CD population and 
dwelling estimates. 

Projections based on census and other available figures. EXCEL spreadsheet 3.6 

Geometric correction of image. Remove earth rotation skew. PASCAL 3.7 
Co-register CD boundary co-ordinates 
 

Two stages: 
• Parametric corrections - origin, scale, aspect ratio, alignment. 
• Polynomial transformation - least squares fit to ground control points. 
 

 
PASCAL 
ERMAPPER - pixel addresses of GCPs. 
EXCEL & MINITAB - fit polynomial by least 
squares. 
PASCAL - polynomial transformation. 

 
 
3.7.5 
 
 
3.7.6 

Set up CD "regions" in 3 forms. 
 

• Vector overlay. 
• Regions CD1-CD138. 
• One data band containing CD IDs 1-138. 

IMPORT transformed co-ordinates. 
Edit co-ordinates into .ers header file. 
FORMULA:  IF INREGION ... × 138 

3.7.6 

CD Regression 
 - without & with transformations: Ch 5 

   

Calculate population and dwelling densities for 
each CD 

Density = 
       CD ground truth figure / CD area (number of pixels × pixel area) 

PASCAL 5.1 

Calculate CD aggregate measures for spectral 
variables 

• Export dataset including all candidate variables plus the CD ID band. 
• In 3 stages calculate for each CD: 

- means of each band 
- variation measures for each band 
- means and variation measures for selected band transformations 

PASCAL 5.1-5.5 

Investigate models Use stepwise multiple regression analysis to select best regression models 
for predicting population and dwelling counts.  Examine residuals for 
patterns which might suggest approaches for improvement. 
 

MINITAB 5.1-5.5 
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Pixel regression  
– without transformations: Ch 6.1 

   

Select best regression variables by statistical 
analysis of a sample of pixels. 

• Export dataset including all candidate variables plus the  band: 
 - CD ID 
• Sample from all pixels.  Assign ground truth population and dwelling 

estimates by dividing CD estimates by the number of pixels in the CD. 
• Use stepwise multiple regression analysis to select best regression 

models for predicting population and dwelling counts.  Examine 
residuals for patterns which might suggest approaches for 
improvement. 

PASCAL 
 
PASCAL 
 
 
MINITAB  

6.1 
 

Assign population and dwelling estimates to 
each pixel in full image. 

New data band:- use chosen regression model 
 

FORMULA 6.1 
 

Test procedure by estimating CD population 
and dwelling counts. 

• Obtain CD pop. and dwelling estimates  
 Export population and dwelling estimates plus the CD ID band.  Sum 

the estimates for each CD. 
• Compare with ground truth figures for each CD.  Calculate 

correlation, mean squared error, percentage errors. 
 

PASCAL 
 
 
MINITAB 

6.1 
 

Pixel classification and regression  
- without transformations: Ch 6.2- 

   

Set up supervised classification training sets. 
 

Twelve regions: 
       residential 
       others 

Chosen CDs - edit .ers header file . 
DEFINE REGION command 
 

6.2 

Carry out classification of full image. 
 

• Maximum likelihood classification: 
  → 10 regions each represented by a  
       classification overlay. 

• One data band coded with the 10 levels of classification (simpler to 
incorporate with regression equations into a single population and 
dwelling density estimation algorithm).  

CLASSIFICATION algorithm 
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Select best regression variables by statistical 
analysis of a sample of residential pixels. 

• Export dataset including all candidate variables plus the two bands: 
 - classification 
 - CD ID 
• Delete non-residential pixels and sample from those remaining.  

Assign ground truth population and welling estimates by dividing CD 
estimates by the number of pixels in the CD classified as residential. 

• Use stepwise multiple regression analysis to select best regression 
models for predicting population and dwelling counts.  Examine 
residuals for patterns which might suggest approaches for 
improvement. 

PASCAL 
 
 
PASCAL 
 
 
MINITAB  

 

Assign population and dwelling estimates to 
each pixel in full image. 
 

New data band: 
 residential - use chosen regression model 
 commercial - use a chosen value 
 all else - set to zero. 

FORMULA:  IF...THEN...ELSE  

Test procedure by estimating CD population 
and dwelling counts. 

• Obtain CD pop. and dwelling estimates  
 Export population and dwelling estimates plus the CD ID band.  Sum 

the estimates for each CD. 
• Compare with ground truth figures for each CD.  Calculate 

correlation, mean squared error, percentage errors. 

PASCAL 
 
 
MINITAB 

 

Pixel classification and regression  
- with transformations: Ch 6. 

   

Set up supervised classification training sets. 
 

Twelve regions: 
       residential 
       others 

Chosen CDs - edit .ers header file . 
DEFINE REGION command 
 

 

Calculate derived variables. 
 

New data bands: 
       band ratios, filters, intensities, texture 
       measures, etc 

FORMULA 
KERNEL 
OUTPUT TO DATASET. 

 

Select best classification variables by statistical 
analysis of a sample of pixels from the training 
regions. 

• New data band coded with 10 training sets, else NULL 
• Export dataset including this band. 
 Delete NULL pixels and sample from those remaining. 
• Use stepwise discriminant analysis to select best variables for 

classification. 

FORMULA:   IF INREGION...x 10 
PASCAL 
 
SPSS 

 

 



APPENDIX C 

 

274

 

Carry out classification of full image. 
 

• Maximum likelihood classification: 
  → 10 regions each represented by a  
       classification overlay. 

• One data band coded with the 10 levels of classification (simpler to 
incorporate with regression equations into a single population and 
dwelling density estimation algorithm).  

CLASSIFICATION algorithm 
 
 
 
 
 

 

Select best regression variables by statistical 
analysis of a sample of residential pixels. 

• Export dataset including all candidate variables plus the two bands: 
 - classification 
 - CD ID 
• Delete non-residential pixels and sample from those remaining.  

Assign ground truth population and welling estimates by dividing CD 
estimates by the number of pixels in the CD classified as residential. 

• Use stepwise multiple regression analysis to select best regression 
models for predicting population and dwelling counts.  Examine 
residuals for patterns which might suggest approaches for 
improvement. 

PASCAL 
 
 
PASCAL 
 
 
MINITAB  

 

Assign population and dwelling estimates to 
each pixel in full image. 
 

New data band: 
 residential - use chosen regression model 
 commercial - use a chosen value 
 all else - set to zero. 

FORMULA:  IF...THEN...ELSE  

Test procedure by estimating CD population 
and dwelling counts. 

• Obtain CD pop. and dwelling estimates  
 Export population and dwelling estimates plus the CD ID band.  Sum 

the estimates for each CD. 
• Compare with ground truth figures for each CD.  Calculate 

correlation, mean squared error, percentage errors. 

PASCAL 
 
 
MINITAB 

 

Application of algorithms to another 
geographical area: Ch 7 

   

Prepare secondary test image and ground truth 
data. 

As for Chapter 3.   

CD Aggregate method   7.1 
Calculate population and dwelling densities for 
each CD 

Density = 
       CD ground truth figure / CD area (number of pixels × pixel area) 

PASCAL  
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Calculate CD aggregate measures for spectral 
variables 

• Export dataset including all candidate variables plus the CD ID band. 
• Calculate for each CD: 

- means of each band 
- variation measures for each band 
- means and variation measures for selected band transformations 

PASCAL  

Calculate remote sensed estimates of 
population and dwelling densities for each CD. 

Use chosen regression models MINITAB  

Evaluate performance of models. Compare with ground truth figures for each CD.  Calculate correlation, 
mean squared error, percentage errors. 

MINITAB  

Pixel-based classification/regression method   7.2 
Calculate derived variables. 
 

New data bands: 
       band ratios, filters, intensities, texture measures, etc. 
 

FORMULA 
KERNEL 
OUTPUT TO DATASET. 

 

Carry out classification of full image. 
 

Use the classification structure determined by the analysis of the primary 
image. 

FORMULA 
 

 

Assign population and dwelling estimates to 
each pixel in full image. 
 

New data band: 
 residential - use chosen regression models 
 commercial - use a chosen value 
 all else - set to zero. 

FORMULA:  IF...THEN...ELSE  

Evaluate procedure by estimating CD 
population and dwelling counts. 

• Obtain CD pop. and dwelling estimates  
 Export population and dwelling estimates plus the CD ID band.  Sum 

the estimates for each CD. 
• Compare with ground truth figures for each CD.  Calculate 

correlation, mean squared error, percentage errors. 

PASCAL 
 
 
MINITAB 
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Appendix D 
 

Collection District resident population and dwelling count estimates as at 14/2/88 
 
The following spreadsheet excerpts show the calculations discussed in Section 3.6, for 

population and dwellings respectively, for the first 5 of the 138 Census Collection Districts 

(CDs) in the primary study area (Ballarat Statistical District).  Each row corresponds to one CD.  

Similar calculations were performed for the 225 Census Collection Districts (CDs) in the 

secondary study area (Geelong Statistical District). 

The methodology is as follows. 

1.   Population 
 
CD population data is only available as raw counts by place of enumeration from 5-yearly 

censuses - in this case data from 1981 and 1986 was used (the most recently available at the 

time of calculation in 1991).  Statistical Local Area (SLA) data is available from the censuses 

and from the ABS estimated resident population (e.r.p.) series. 

The procedure essentially involves two phases.   

Firstly, the 1986 CD e.r.p.s were estimated by comparing the 1986 SLA e.r.p.s with the 

corresponding 1986 SLA census counts, then applying the resulting differential to the CD 

counts.  (See column 23 of spreadsheet.) 

Secondly, the intercensal rate of population change for each CD was compared with that of its 

SLA.  This differential was then used, together with the annual  SLA e.r.p. figures, as a basis for 

extrapolating the e.r.p. of each CD beyond 1986.  (See columns 24 and 27 of spreadsheet.) 

For convenience of reference, the CDs have been numbered in alphabetical order of SLA, and in 

ABS field code order within each SLA.  These sequence numbers appear in columns 14 and 29. 

The columns of the population spreadsheets are as follows: 

0  Statistical Local Area (SLA) name 

1  SLAC81    SLA census count 30/6/81 

2  SLAC86    SLA census count 30/6/86 

3  SLAE81    SLA estimated resident population (e.r.p.) 30/6/81 

4  SLAE86    SLA e.r.p. 30/6/86 

5  SLAE87    SLA e.r.p. 30/6/87 

6  SLAE88    SLA e.r.p. 30/6/88 

7  Ratio SLAC86/SLAC81    SLA census count multiplier 81→86 

8  Ratio SLAE86/SLAE81    SLA e.r.p. multiplier 81→86 

9  Ratio SLAE81/SLAC81    SLA ratio of e.r.p. to census count 81 
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10  Ratio SLAE86/SLAC86    SLA ratio of e.r.p. to census count 86 

11  Ratio SLAE87/SLAE86    SLA e.r.p. multiplier 86→87 

12  Ratio SLAE88/SLAE87    SLA e.r.p. multiplier 87→88 

13  (Ratio 12)0.63       SLA e.r.p. multiplier 30/6/87→14/2/88 

    This period is 0.63 of one year. 

14  CD sequence number 

15   CD field code 81 

16  CDC81    CD census count 30/6/81 

CDs with an asterisk (*) in the field code column did not exist in 1981. Whilst CD 

boundaries are changed as little as possible from census to census, some changes are 

necessary, the most common being the splitting of a CD into 2 or more CDs where large 

population increases have occurred.  In the study area, 18 new CDs were created for the 

1986 census in this way.  In these cases, actual 1981 counts for CDs which were 

subsequently split, were distributed amongst their constituent 1986 CDs in the same 

proportions as the 1986 counts.  In this way imputed 1981 counts were obtained for both 

the new CDs and the residual reduced CDs.  In the absence of actual 1981 data for these 

areas, the implicit assumption has been made that growth rates were equal in all 

constituent parts of a split CD. 

17  CD field code 86 

18  CDC86    CD census count 30/6/86 

19  CD area (sq.km.) 

20  Ratio c18/c19    Average population density 30/6/86 (persons/sq.km.) 

21  Ratio CDC86/CDC81    CD census count multiplier 81→86 

22  Ratio c21/c7 

 
8681 multipliercount  censusSLA 
8681 multipliercount  census CD

→
→

=  

This compares the growth rate of each CD during the period 30/6/81 to 30/6/86 with that 

of the SLA in which it is located. 

23  CDE86     CD estimated resident population (e.r.p.) 30/6/86 = CDC86 ×  c10 

Obtained by multiplying the 1986 census count for each CD by the ratio of e.r.p to census 

count for the SLA in which the CD is located.  This assumes that this ratio is constant 

across all CDs in the SLA. 

24  CDE288U    Preliminary (unadjusted) CD e.r.p. as at 14/2/88 

     = CDE86 ×  ratio11 ×  ratio13 ×  ratio220.326 

Obtained by applying to the CD e.r.p. as at 30/6/86, the SLA e.r.p. multipliers for 86→87 

and 30/6/87→14/2/88, adjusted for each individual CD by the CD/SLA growth rate ratio.  
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Because this last ratio is based on a five-year  period, it is raised to the power 0.326 

(=1.63/5) to adjust it to the 1.63 year period under consideration. 

This procedure assumes that the relativities amongst CD growth rates observed during the 

period 81-86, remain unchanged through to 14/2/88. 

Regardless of the validity of this assumption, it can be shown that  this procedure has a 

small systematic bias towards overestimating the CD populations.  A final damping 

adjustment was made by rescaling so that sum of the CD estimates for each SLA 

corresponds to the overall SLA estimate. 

25  SLATOT    Sum of the preliminary CD estimates for each SLA 

26  SLAE288    SLA e.r.p. as at 14/2/88 = SLAE87 ×  c13 

Obtained by multiplying the SLA e.r.p. as at 30/6/87 by the multiplier for the period 

30/6/87→14/2/88. 

27  CDE288A    Final (adjusted) CD e.r.p. as at 14/2/88 

 = CDE288U ×  c26/c25 

 = Preliminary CD e.r.p. ×  
SLA for the e.r.p.s CDy  preliminar of Sum

SLA   wholefor the E.r.p.  

This adjustment ensures that the final estimates sum to the correct SLA figure.  The ratio 

c25/c26 ranges from 1.0006 (Buninyong) to 1.0098 (Sebastopol),  indicating that the 

extent of the bias in the basic estimation procedure is less than 1% in each case. 

 
2.   Dwellings 
 
All dwelling calculations were based on CD figures, including population estimates calculated 

in the population spreadsheet described above.  

As defined by ABS, a household is a person living alone, or two or more persons who live and 

eat together, in private residential accommodation, which includes houses, flats townhouses etc. 

but excludes hotels, motels, boarding houses, hospitals, staff quarters etc.  A private dwelling is 

the premises occupied by a household.  

The columns of the dwellings spreadsheets are as follows: 

0  CD sequence number 

1  Occupied private dwellings 30/6/86 

2  Caravans etc. in caravan parks 30/6/86 

3  Total occupied dwellings 30/6/86  

= c1+c2 

4  Unoccupied private dwellings 30/6/86 

5  Total private dwellings 30/6/86 

 = c3+c4 



APPENDIX D 

 

279

 

6  Separate houses 30/6/86 

7  Percentage of non-separate-house structures 30/6/86 

 = 
c5

6cc5−  ×  100 

8  Estimated resident population (e.r.p.) 30/6/86 

9  Estimated resident population (e.r.p.) 14/2/88 

These two figures were obtained from columns 23 and 27 of the population spreadsheet 

described above. 

10  Ratio c9/c8    Population multiplier 30/6/86→14/2/88 

11-15 These are the estimates for 14/2/88 corresponding to columns 1-5.  They were 

obtained by multiplying columns 1-5 by ratio 10.  This assumes that the occupancy ratio 

(the ratio of population to number of private dwellings) and the proportions in each 

category of dwelling remain constant. 

16  Percentage of non-separate-house structures 14/2/88 

This was set equal to c7, again assuming that the proportion of such dwellings had not 

changed. 
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Sample of Ballarat Ground Truth Population Calculations  

 
SLA SLA SLA SLA SLA SLA         
name C81 C86 E81 E86 E87 2/1 4/3 3/1 4/2 5/4 6/5 12^0.63

 1 2 3 4 5 6 7 8 9 10 11 12 13
     

Ballaarat  35681 34806 36700 36790 36860 36830 0.9755 1.0025 1.0286 1.0570 1.0019 0.9992 0.9995
Ballaarat  35681 34806 36700 36790 36860 36830 0.9755 1.0025 1.0286 1.0570 1.0019 0.9992 0.9995
Ballaarat  35681 34806 36700 36790 36860 36830 0.9755 1.0025 1.0286 1.0570 1.0019 0.9992 0.9995
Ballaarat  35681 34806 36700 36790 36860 36830 0.9755 1.0025 1.0286 1.0570 1.0019 0.9992 0.9995
Ballaarat  35681 34806 36700 36790 36860 36830 0.9755 1.0025 1.0286 1.0570 1.0019 0.9992 0.9995

 
 

CD  CDC81  CDC86     CDE86 CDE288U SLATO
T 

SLA288 CDE288A

No.       18/16 21/7 18*10 23*11*13*22^(0.2*
1.63) 

=5*13 =24*26/2
5 

14 15 16 17 18 19 20 21 22 23 24 25 26 27
      

1 70901 528 80901 433 3.09 140.1 0.8201 0.8407 458 433 36896 36841 432
2 70902 395 80902 377 0.23 1639.1 0.9544 0.9784 398 396 36896 36841 396
3 70903 432 80903 400 0.31 1290.3 0.9259 0.9492 423 416 36896 36841 416
4 70904 329 80904 303 0.35 865.7 0.9210 0.9441 320 315 36896 36841 314
5 70905 556 80905 561 0.21 2671.4 1.0090 1.0344 593 600 36896 36841 599

  
 
 

Sample of Ballarat Ground Truth Dwelling Number Calculations 
 

CD SEQ Occ 86 Cara 86 T  Occ 86 Unocc 86 Tot  h 86 Sep h  86 % NSH 86 CDE86 

   1+2 1+2+4  (5-6)/5  
0 1 2 3 4 5 6 7 8

1 160 0 160 28 188 148 21.28 457.68

2 155 0 155 17 172 138 19.77 398.49
3 165 0 165 21 186 129 30.65 422.80

4 101 0 101 10 111 96 13.51 320.27
5 171 0 171 10 181 160 11.60 592.98

 
 

CDE88  Occ 88 Cara 88 T Occ 88 Unocc 88 Tot  h 88 % NSH 88 
 9/8 1*10 2*10 3*10 4*10 5*10 =7 

9 10 11 12 13 14 15 16

432.46 0.94 151 0 151 26 178 21.28

395.62 0.99 154 0 154 17 171 19.77
415.63 0.98 162 0 162 21 183 30.65
314.29 0.98 99 0 99 10 109 13.51

599.48 1.01 173 0 173 10 183 11.60
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Collection District Aggregate-based Methods: Primary and Secondary Study Area 
Descriptive Statistics and Model Diagnostics 

(Sections 4.3-4.6, 6.2) 
 
Descriptive Statistics  
Variable             N       Mean     Median     TrMean      StDev    SE Mean 
b1                 138     32.744     33.540     32.814      5.714      0.486 
b2                 138     21.516     21.750     21.592      3.010      0.256 
b3                 138     29.417     29.215     29.483      4.125      0.351 
b4                 138     56.491     57.175     56.731      5.729      0.488 
b5                 138      79.24      76.93      78.39      12.49       1.06 
b7                 138     39.729     39.705     39.782      4.902      0.417 
Pop                138      573.8      538.5      565.6      258.1       22.0 
pixcount           138       4943        358       2044      15816       1346 
Popdens            138     1556.9     1500.0     1509.1     1105.5       94.1 
 
Variable       Minimum    Maximum         Q1         Q3 
b1              17.910     51.590     30.255     35.615 
b2              13.290     31.620     20.217     22.965 
b3              19.260     41.910     27.225     32.150 
b4              37.240     69.810     54.152     60.112 
b5               61.42     114.01      69.49      86.54 
b7              26.460     52.830     36.508     42.620 
Pop               20.0     1353.0      370.0      731.3 
pixcount           103     132186        233       1038 
Popdens            4.5     5142.2      639.8     2450.2 
 
Descriptive Statistics: rural-urban split 
 
Variable   Rur/urb           N       Mean     Median     TrMean      StDev 
b1         0               123     33.744     33.740     33.762      4.954 
           1                15      24.54      22.34      24.49       4.98 
b2         0               123     21.904     21.880     21.956      2.718 
           1                15     18.335     17.440     18.352      3.477 
b3         0               123     29.592     29.320     29.635      3.804 
           1                15      27.98      26.08      27.96       6.16 
b4         0               123     55.774     56.840     56.102      5.439 
           1                15      62.37      62.48      62.47       4.67 
b5         0               123     77.723     76.050     77.083     10.981 
           1                15      91.68      84.37      92.13      17.06 
b7         0               123     39.865     39.780     39.852      4.467 
           1                15      38.61      35.44      38.77       7.73 
Pop        0               123      579.1      539.0      571.7      263.0 
           1                15      530.1      534.0      523.1      215.8 
pixcount   0               123       1166        324        521       6282 
           1                15      35913      27156      30532      30839 
Popdens    0               123     1744.1     1733.0     1706.4     1023.4 
           1                15      21.76      19.97      21.47      10.88 
 
Variable   Rur/urb     SE Mean    Minimum    Maximum         Q1         Q3 
b1         0             0.447     19.760     51.590     31.500     35.970 
           1              1.28      17.91      31.90      20.31      29.56 
b2         0             0.245     13.520     31.620     20.530     23.350 
           1             0.898     13.290     23.150     15.490     22.400 
b3         0             0.343     19.460     41.910     27.590     32.000 
           1              1.59      19.26      36.86      22.80      34.76 
b4         0             0.490     37.240     67.080     53.570     59.650 
           1              1.21      53.71      69.81      59.48      65.89 
b5         0             0.990     61.420    113.650     68.490     85.190 
           1              4.40      63.41     114.01      79.91     108.91 
b7         0             0.403     27.590     52.830     37.190     42.590 
           1              2.00      26.46      48.71      33.00      47.06 
Pop        0              23.7       20.0     1353.0      375.0      735.0 
           1              55.7      254.0      898.0      337.0      729.0 
pixcount   0               566        103      69886        214        804 
           1              7963       9589     132186      18669      46568 
Popdens    0              92.3       16.0     5142.2      844.2     2555.6 
           1              2.81       4.49      42.87      13.12      31.38 
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Correlations 
 
        Popdens       b1       b2       b3       b4       b5 
b1        0.339 
b2        0.179    0.950 
b3       -0.091    0.767    0.919 
b4       -0.395   -0.474   -0.226    0.016 
b5       -0.515   -0.042    0.251    0.577    0.716 
b7       -0.120    0.585    0.783    0.918    0.266    0.757 
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Plots pertaining to Table 4.2 row 1 Ballarat population density 
 
Untransformed  
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A-Squared: 0.790
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Logarithmic transformation 
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Plots pertaining to Table 4.2 row 5 Ballarat population density 
 
Untransformed 

P-Value:   0.000
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Plots pertaining to Table 4.10 Ballarat population density model 6 
 
Absolute and relative errors in estimated population density by CD number and by ground truth 
population density. 
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Plots pertaining to Table 4.12 Ballarat population model 6 
 
Absolute and relative errors in estimated population by CD number and by ground truth 
population. 
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Plots pertaining to Table 4.11 Ballarat dwelling density model 6 
 
Absolute and relative errors in estimated dwelling density by CD number and by ground truth 
dwelling density. 
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Plots pertaining to Table 6.1 Geelong population density model 6 
 
Absolute and relative errors in estimated population density by CD number, ground truth 
population density, and estimated population density 
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Plots pertaining to Table 6.2 Geelong dwelling density model 6 
 
Absolute and relative errors in estimated dwelling density by CD number, ground truth dwelling 
density, and estimated dwelling density 
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Plots pertaining to Table 4.10 Ballarat population density model 4 
 
Absolute error in estimated population density by ground truth population density. 
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Plots pertaining to Table 6.1 Geelong population density model 4 
 
Absolute error in estimated population density by ground truth population density. 
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Plots pertaining to Table 4.11 Ballarat dwelling density model 4 
 
Absolute error in estimated dwelling density by ground truth dwelling density. 
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Plots pertaining to Table 6.2 Geelong dwelling density model 4 
 
Absolute error in estimated dwelling density by ground truth dwelling density. 
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Population and housing indicators 
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Appendix F 
 

Selected Results from Exploratory Discriminant Analysis and Regression Analysis on Samples from the Primary Image 
(Sections 5.5 & 5.6) 

 
Final ordered set of variables from which groups variables were selected for use for maximum likelihood classification 

 
Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable Step Variable 
1 
2 
3 
4 
5 

DS25 
B5 
B7 
B4 
CH125 

6 
7 
8 
9 
10 

RH125S 
B2S 
R25 
B2 
DS35 

11 
12 
13 
14 
15 

B3 
NB2 
R15 
CH123S 
R14 

16 
17 
18 
19 
20 

DS57 
NB1 
CH123 
DS15 
RH123 

21 
22 
23 
24 
25 

B1 
DS15S 
R25S 
R14S 
B1S 

26 
27 
28 
29 
30 

B2P 
R57 
CH125P 
CH123P 
RH125 

31 
32 
33 
34 
35 

B1P 
R25P 
DS15P 
R14P 
R15S 

36 
37 

NB1S 
CH125S 

 
Example of a confusion matrix 

2 25 92 3 4 0 0 0 28 0 7 52 213
0 60 11 0 0 0 0 0 0 0 0 11 82
0 4 44 1 9 0 0 0 10 0 0 29 97
0 0 11 1101 23 0 0 0 11 0 0 1 1147
0 0 10 42 581 0 0 0 0 0 0 5 638
0 0 3 0 4 2182 23 0 17 0 1 5 2235
0 0 1 0 0 1 164 0 0 0 0 0 166
0 0 0 0 0 0 0 25 0 0 0 0 25
0 0 1 1 0 0 0 0 53 0 0 0 55
0 25 0 0 0 0 0 0 0 2149 0 0 2174
0 0 0 0 0 0 0 0 0 0 25 0 25
1 4 33 12 4 0 0 0 8 0 19 539 620

.9 11.7 43.2 1.4 1.9 .0 .0 .0 13.1 .0 3.3 24.4 100.0

.0 73.2 13.4 .0 .0 .0 .0 .0 .0 .0 .0 13.4 100.0

.0 4.1 45.4 1.0 9.3 .0 .0 .0 10.3 .0 .0 29.9 100.0

.0 .0 1.0 96.0 2.0 .0 .0 .0 1.0 .0 .0 .1 100.0

.0 .0 1.6 6.6 91.1 .0 .0 .0 .0 .0 .0 .8 100.0

.0 .0 .1 .0 .2 97.6 1.0 .0 .8 .0 .0 .2 100.0

.0 .0 .6 .0 .0 .6 98.8 .0 .0 .0 .0 .0 100.0

.0 .0 .0 .0 .0 .0 .0 100.0 .0 .0 .0 .0 100.0

.0 .0 1.8 1.8 .0 .0 .0 .0 96.4 .0 .0 .0 100.0

.0 1.1 .0 .0 .0 .0 .0 .0 .0 98.9 .0 .0 100.0

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 100.0 .0 100.0

.2 .6 5.3 1.9 .6 .0 .0 .0 1.3 .0 3.1 86.9 100.0

CLASS
1  Industrial
2  Commercial
3  Public use
4  Dry grass
5  Green grass
6  Native forest
7  Pine plant
8  Dark soil
9  Light soil
10  Water
11  Road
12  Residential
1  Industrial
2  Commercial
3  Public use
4  Dry grass
5  Green grass
6  Native forest
7  Pine plant
8  Dark soil
9  Light soil
10  Water
11  Road
12  Residential

Count

%

Original

1 
Industrial

2 
Commercial

3  Public
use

4  Dry
grass

5  Green
grass

6  Native
forest

7  Pine
plant

8  Dark
soil

9  Light
soil 10  Water 11  Road

12 
Residential

Predicted Group Membership

Total

Classification Resultsa

92.6% of original grouped cases correctly classified.a. 
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Details of the four chosen regression models 
 

Model 6/A 
 

Predictor        Coef       StDev          T        P 
Constant       1.0333      0.2103       4.91    0.000 
b1           0.087223    0.008043      10.84    0.000 
b2            0.11376     0.02174       5.23    0.000 
b3           -0.13557     0.01261     -10.75    0.000 
b4          -0.002823    0.004101      -0.69    0.491 
b5          -0.039239    0.003724     -10.54    0.000 
b7           0.064379    0.007279       8.84    0.000 

 
S = 0.8623      R-Sq = 44.4%     R-Sq(adj) = 44.2% 

 
Model 25/A 

 
Predictor        Coef       StDev          T        P 
Constant       1.5870      0.1845       8.60    0.000 
b1           0.047860    0.007354       6.51    0.000 
b2            0.10985     0.01941       5.66    0.000 
b3          -0.119086    0.009827     -12.12    0.000 
b4          -0.006780    0.003366      -2.01    0.044 
b5          -0.029367    0.002848     -10.31    0.000 
b7           0.056081    0.005982       9.37    0.000 

 
S = 0.8017      R-Sq = 38.6%     R-Sq(adj) = 38.3% 

 
Model 6/F 

 
Predictor        Coef       StDev          T        P 
Constant      -0.9914      0.3698      -2.68    0.007 
b3           -0.04956     0.01333      -3.72    0.000 
b5           0.023197    0.004671       4.97    0.000 
ds57          -3.2204      0.5541      -5.81    0.000 
rh123       0.0021593   0.0006978       3.09    0.002 
ch123         0.42146     0.05549       7.59    0.000 
ch125         -4.0478      0.5159      -7.85    0.000 
r15r           72.590       6.555      11.07    0.000 
r15ri         -40.514       5.626      -7.20    0.000 
r15r2         -81.726       8.349      -9.79    0.000 
r14si         -2.0183      0.6609      -3.05    0.002 
ds15r         -44.924       4.621      -9.72    0.000 
ch123si      -0.21000     0.02485      -8.45    0.000 
b2si       -0.0017901   0.0004990      -3.59    0.000 

 
S = 0.7614      R-Sq = 56.9%     R-Sq(adj) = 56.5% 

 
Model 25/F 

 
Predictor        Coef       StDev          T        P 
Constant       0.9909      0.2474       4.00    0.000 
ds57          -3.2853      0.4591      -7.16    0.000 
rh123       0.0034466   0.0005456       6.32    0.000 
ch123s        0.42689     0.08204       5.20    0.000 
r15r           73.021       8.540       8.55    0.000 
ds15r         -61.707       9.060      -6.81    0.000 
ch123r        -0.3477      0.1416      -2.45    0.014 
r14si         -1.6891      0.5022      -3.36    0.001 
r25ri          12.980       5.126       2.53    0.011 
b2s2        -0.005105    0.001093      -4.67    0.000 
ch123s2      -0.07757     0.02877      -2.70    0.007 
r15r2         -276.07       42.99      -6.42    0.000 
ds15r2         195.98       52.97       3.70    0.000 
ch123r2       0.22557     0.07523       3.00    0.003 

 
S = 0.7331      R-Sq = 48.9%     R-Sq(adj) = 48.4% 
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Appendix G 
 

Sampling Variation in Results of Iterative Re-estimation  
 

(Sample of results from Section 7.3)  
 

Sample n it0 it1 it6 it29 it30 
rtsall 6345 2.60260 2.82460 3.29300 4.89030 4.94940 

 0.00660 0.01040 0.01010 -0.02480 -0.02590 
 0.01610 0.02990 0.08130 0.24130 0.24760 
 -0.02820 -0.04960 -0.10730 -0.21920 -0.22370 
 0.00190 0.00240 -0.00540 -0.06080 -0.06260 
 -0.02180 -0.03740 -0.06980 -0.06650 -0.06570 
 0.03700 0.06560 0.14180 0.19620 0.19660 
 15.96070 42.40700 82.13880 92.95730 93.09880 
   

rts1 1269 2.51260 2.68300 3.19110 5.01360 5.07010 
 0.00580 0.00910 0.00950 -0.01450 -0.01510 
 0.02000 0.03440 0.06590 0.08680 0.08750 
 -0.03020 -0.05210 -0.10170 -0.14580 -0.14700 
 0.00290 0.00430 0.00020 -0.04000 -0.04110 
 -0.02240 -0.03840 -0.07130 -0.07710 -0.07700 
 0.03950 0.06940 0.14470 0.20870 0.20980 
 15.91700 42.03870 80.07840 90.52680 90.67360 
   

rts2 1269 2.54320 2.68070 2.82850 3.85310 3.88610 
 0.01140 0.01730 0.01680 -0.01630 -0.01710 
 0.00640 0.01410 0.05430 0.16970 0.17320 
 -0.02960 -0.05150 -0.10910 -0.19600 -0.19840 
 0.00640 0.01020 0.01150 -0.01790 -0.01880 
 -0.02450 -0.04110 -0.07370 -0.07990 -0.07970 
 0.04000 0.07020 0.14790 0.20310 0.20350 
 18.87300 46.49540 81.27310 89.74130 89.82640 
   

rcall 14270 1.42420 1.68780 2.57750 3.61070 3.62080 
 0.07940 0.11580 0.14230 0.13360 0.13360 
 0.12330 0.17850 0.20540 0.12000 0.11720 
 -0.12730 -0.18530 -0.22030 -0.14790 -0.14550 
 -0.00920 -0.01430 -0.02290 -0.02960 -0.02960 
 -0.04020 -0.06050 -0.08650 -0.10820 -0.10870 
 0.06050 0.09060 0.12750 0.15530 0.15590 
 45.18720 80.65890 91.97080 92.59140 92.60360 
   

rc1 1427 1.66870 1.95530 2.39110 2.36650 2.36420 
 0.08170 0.11480 0.14110 0.16280 0.16320 
 0.12430 0.16570 0.14100 0.02970 0.02810 
 -0.13250 -0.18350 -0.20050 -0.15760 -0.15700 
 -0.01290 -0.01610 -0.00640 0.01640 0.01660 
 -0.04580 -0.06830 -0.10420 -0.13210 -0.13240 
 0.07330 0.10910 0.16310 0.19770 0.19790 
 46.87010 77.89880 87.14610 88.18450 88.19320 
   

rc2 1427 1.29380 1.40200 1.58310 1.43230 1.42940 
 0.07560 0.10910 0.13760 0.14470 0.14480 
 0.13310 0.18960 0.22330 0.20440 0.20410 
 -0.13680 -0.19650 -0.23960 -0.22960 -0.22940 
 -0.00490 -0.00580 0.00110 0.01490 0.01510 
 -0.03990 -0.05860 -0.07980 -0.08910 -0.08920 
 0.06140 0.08860 0.10980 0.10860 0.10860 
 44.41330 76.94710 87.33580 87.76790 87.77060 

rts = residential class training set 
rc  = residential class 
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 Appendix H 
 

Summary Statistics for the Distributions of CD Population and CD Population Density in 
the Supplementary Study Areas 

 
(Chapter 8) 

 
Sydney 
 
Variable             N       Mean     Median     TrMean      StDev    SE Mean 
gtpop             5628     583.49     566.00     577.43     221.98       2.96 
gtpd              5628       4424       3140       3812       5317         71 
 
Variable       Minimum    Maximum         Q1         Q3 
gtpop             0.00    2421.00     426.00     725.00 
gtpd                 0     194545       2074       5076 
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Note: 6 extreme outliers omitted from histograms  

 
 

Adelaide 
 
Variable             N         N*       Mean     Median     TrMean      StDev 
gtpop             2412          7     480.36     469.50     476.32     190.80 
gtpd              2412          7     1742.7     1936.7     1733.3      999.9 
 
Variable       SE Mean    Minimum    Maximum         Q1         Q3 
gtpop             3.88       0.00    1349.00     341.00     615.00 
gtpd              20.4        0.0     7916.7      952.7     2449.1 
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Brisbane 
 
Variable             N       Mean     Median     TrMean      StDev    SE Mean 
gtpop             2605     571.55     543.00     562.68     257.89       5.05 
gtpd              2605     1914.0     1951.8     1832.2     1320.8       25.9 
 
Variable       Minimum    Maximum         Q1         Q3 
gtpop             0.00    2142.00     388.00     731.00 
gtpd               0.0    10769.2      888.1     2676.5 
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Ballarat 94 
 
Variable             N       Mean     Median     TrMean      StDev    SE Mean 
gtpop               72      496.0      493.5      489.9      193.8       22.8 
gtpd                72     1234.3     1111.1     1222.2      784.8       92.5 
 
Variable       Minimum    Maximum         Q1         Q3 
gtpop            118.0     1196.0      357.2      639.0 
gtpd               6.5     2776.4      618.7     1875.2 
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Kalgoorlie 
 
 
Variable             N       Mean     Median     TrMean      StDev    SE Mean 
gtpop               51      593.1      551.0      574.4      271.8       38.1 
gtpd                51     1296.2     1439.9     1295.5      693.9       97.2 
 
Variable       Minimum    Maximum         Q1         Q3 
gtpop            130.0     1820.0      402.0      751.0 
gtpd              26.7     3017.1      619.4     1822.6 
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Appendix I 
 

Landuse/Landcover Classes in Supplementary Images 
(Chapter 8) 

 
Sydney Brisbane Adelaide Kalgoorlie Ballarat 1994 
   Smoke  
Sea water Sea water Sea water   
Fresh water Fresh water Clear water Fresh water Fresh water 
  Muddy water (Murray River & lake)   
Sand Sand Sand   
Surf & shallows  Surf & shallows   
Mid -green grass/crops Mid -green grass/crops Mid -green grass/crops  Mid -green grass/crops 
Lush green grass/crops Lush green grass/crops Lush green grass/crops  Lush green grass/crops 
Dry grass/crops  Dry grass/crops (east) Dry grass  
  Dry grass/crops (north)   
Crop (low in band 4)    Crop (low in band 4) 
Native forest (South) Native forest Native forest  Native forest 
Native forest (North)     
Native forest (West)     
Conifer Plantation    Conifer Plantation (established) 
    Conifer Plantation (young) 
 Coastal scrub & mangroves Coastal scrub & mangroves   
Open scrub   Open scrub - green Open scrub - light  
  Open scrub -khaki Scrub - medium  
   Scrub - dark  
Bare ground – development? Bare ground – light Bare ground Bare ground Bare ground – light (freeway const. & mining) 
Bare ground – agricultural Bare ground – medium   Bare ground - dark 
Bare ground – burnt Bare ground – dark (old coal mine)    
  Quarry   
  Intensive agriculture (vineyards)  Intensive agriculture (potatoes) 
Bitumen roads and pavements Bitumen roads and pavements Bitumen roads and pavements Bitumen roads and pavements Bitumen roads and pavements 
Concrete roads and pavements     
Railways     
  Salt pans Dry lakes / tailings pans  
Commercial Commercial Commercial Commercial Commercial 
Industrial Industrial Industrial Industrial/mining Industrial 
Residential Residential Residential Residential Residential 
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Appendix J 
 

Normalisation Formulae 
 

(Chapter 8) 
 
We postulate that there exists an invariant linear relationship between the population pj of a pixel j and 
some function of the bands f(bij) 

)(
1

0 ij

nbands

i
ij bfccp ∑

=

+=  for all j 

 

1. multiplicative normalisation.  Suppose 
i

ij
ij

b
bf

µ
=)(  where iµ  is the band mean for some class of 

pixels in the image.  Then 

∑
=

+=
nbands

i i

ij
ij

b
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0 µ

 

 
Suppose that in a training image we estimate a linear relationship 
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nbands

i
ij bttp ∑

=

+=
1

0  

 
It follows that we estimate 00 tc =   and  iTii tc µ=   where the T subscript refers to the training image. 
 
We apply this relationship to a second application image, in the form 
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It follows that we estimate 000 tca ==   and  
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iTi
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µ
==  where the A subscript refers to the 

application image. 
 
 
Similar arguments lead to the following relationships in the other two cases. 
 
2. Additive normalisation  iijij bbf µ−=)(  
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3. Scaled additive normalisation  
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Appendix K 
 

Summary of Least Accurately Estimated CDs in Adelaide Image 
(Chapter 8) 

 
A. 25 CDs with most overestimated population 
 

CD GT Pop GT Pop dens RS Pop Pop diff Area Description 
2210 158 3.38 4024.94 3866.94 Bolivar Sewage works, mangroves 
2103 291 4.63 3921.46 3630.46 Port Gawler Salt evaporation pans 
2264 263 19.6 3565.93 3302.93 Parafield Industrial, university, airfield 
1428 470 105 3688.00 3218.00 Regency Park Industrial 

32 342 3.12 3280.10 2938.10 Williamstown Reservoir, forest 
62 304 2.87 3178.85 2874.85 Port Gawler Salt evaporation pans 

703 482 14.6 3284.85 2802.85 McLaren Vale  Vineyards 
257 264 1.35 3060.79 2796.79 Cape Fleurieu Rural, coast 

2102 533 31.6 3231.29 2698.29 Virginia Vineyards, market gardens 
2198 81 6.77 2654.26 2573.26 Elizabeth Defence research centre 

38 288 2.3 2853.39 2565.39 Williamstown Adjacent to 32 
1427 581 46.2 3057.31 2476.31 Port Adelaide Swamp, rubbish tip 

72 480 11 2859.54 2379.54 Kersbrook Agricultural 
1727 1017 156 3376.21 2359.21 City Parklands, gaol, university, hospital, cemetery 

610 597 50.7 2901.55 2304.55 Lonsdale Oil refinery 
21 615 15.3 2909.75 2294.75 Barossa Vineyards 

2412 154 1.82 2343.19 2189.19 Cape Fleurieu Adjacent to 257 
256 256 1.6 2372.40 2116.40 Cape Fleurieu Adjacent to 257 
211 310 3.31 2408.81 2098.81 Goolwa Wetlands, dunes 
202 118 2.33 2178.23 2060.23 Hope Forest Unknown 
701 304 24.4 2339.67 2035.67 McLaren Flat Vineyards 

1173 111 13.4 2044.16 1933.16 Port Adelaide Industrial, waste land 
71 484 8.24 2386.61 1902.61 Kersbrook Agricultural 

1197 682 95.7 2544.53 1862.53 Outer harbour Industrial, waste ground 
11 477 33.9 2184.37 1707.37 Barossa Vineyards 

255 411 5.31 2063.54 1652.54 Cape Fleurieu Adjacent to 257 
 
B. 25 CDs with most underestimated population density 
 

CD GT Pop GT Pop Dens RS Pop Dens Pop Dens 
diff

RS Pop Pop diff Area Description 

820 456 7917 2672 5245 152.37 -303.63 Glenelg Retirement village 
791 431 6045 1141 4904 81.60 -349.40 Glenelg Small allotments 

1716 633 6029 1895 4134 201.62 -431.38 Nth Adelaide Mixed comm/res 
802 264 4898 1054 3844 56.28 -207.72 Glenelg Small allotments 

1729 935 3683 255 3427 68.81 -866.19 City Mixed comm/res 
1025 444 5692 2318 3374 187.17 -256.83 Keswick Small allotments 
1734 386 4323 1052 3270 93.91 -292.09 City Mixed comm/res 
1744 725 4148 1056 3092 180.21 -544.79 City Mixed comm/res 

801 280 4912 1860 3052 107.46 -172.54 Glenelg Small allotments 
1743 336 5037 2008 3030 130.79 -205.21 City Mixed comm/res 

793 332 5061 2157 2904 137.40 -194.60 Glenelg Small allotments 
1803 288 5227 2536 2690 128.84 -159.16 Glenside Leafy suburb 
1741 466 4024 1490 2534 173.73 -292.27 City Mixed comm/res 
1746 301 3529 1092 2437 93.53 -207.47 City Mixed comm/res 
1728 447 2535 128 2408 22.85 -424.15 City Mixed comm/res 
1733 240 2948 575 2374 43.60 -196.40 City Mixed comm/res 
2380 739 4178 1833 2345 366.35 -372.65 Gawler East Small allotments 
1721 234 3634 1331 2302 81.90 -152.10 Nth Adelaide Mixed comm/res 
1742 284 3329 1080 2249 89.78 -194.22 City Mixed comm/res 
1723 315 4831 2595 2236 155.05 -159.95 Nth Adelaide Mixed comm/res 
1722 847 3648 1419 2229 328.49 -518.51 Nth Adelaide Mixed comm/res 
1429 507 4085 1879 2207 227.70 -279.30 Regency Park Small allotments 
1710 481 4035 1847 2189 212.71 -268.29 Nth Adelaide Mixed comm/res 

794 403 3112 930 2182 121.37 -281.63 Glenelg Small allotments 
1713 314 4486 2333 2153 157.95 -156.05 Nth Adelaide Mixed comm/res 
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