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A Novel No-reference Subjective Quality Metric for 

Free Viewpoint Video Using Human Eye Movement  

Abstract. The free viewpoint video (FVV) allows users to interactively control 

the viewpoint and generate new views of a dynamic scene from any 3D position 

for better 3D visual experience with depth perception. Multiview video coding 

exploits both texture and depth video information from various angles to encode 

a number of views to facilitate FVV. The usual practice for the single view or 

multiview quality assessment is characterized by evolving the objective quality 

assessment metrics due to their simplicity and real time applications such as the 

peak signal-to-noise ratio (PSNR) or the structural similarity index (SSIM). 

However, the PSNR or SSIM requires reference image for quality evaluation and 

could not be successfully employed in FVV as the new view in FVV does not 

have any reference view to compare with. Conversely, the widely used subjective 

estimator- mean opinion score (MOS) is often biased by the testing environment, 

viewers mode, domain knowledge, and many other factors that may actively 

influence on actual assessment. To address this limitation, in this work, we 

therefore devise a no-reference subjective quality assessment metric by simply 

exploiting the pattern of human eye browsing on FVV. Over different quality 

contents of FVV, the participants’ eye-tracker recorded spatio-temporal gaze-

data indicate more concentrated eye-traversing approach for relatively better 

quality. Thus, we calculate the Length, Angle, Pupil-size, and Gaze-duration 

features from the recorded gaze trajectory. The content and resolution invariant 

operation is carried out prior to synthesizing them using an adaptive weighted 

function to develop a new quality metric using eye traversal (QMET). Tested 

results reveal that the proposed QMET performs better than the SSIM and MOS 

in terms of assessing different aspects of coded video quality for a wide range of 

FVV contents. 

            Keywords: Eye-traversal, Eye-tracking, Free viewpoint video, Gaze-trajectory, HEVC,  

                             QMET, Quality assessment.        

1   Introduction 

The video quality evaluation (VQE) is a promising research area due to its wide range 

of applications in the development of various video coding algorithms [1][2]. The 

technical coding areas involved with the FVV are characterized by the view generation 

using multiview video coding (MVC) and the view synthesis. This process first goes 

through the image warping and then a hole filling technique e.g. the inverse mapping 

technique or spatial/temporal correlation as simple post processing filtering [3][4]. 

Since the synthesized view is generated at a virtual position between left and right 

views, there is no available reference frame for quality estimation of FVV [5]. Usually 

the quality estimation is performed in two ways: objective and subjective, where the 

former one is more widely used due to its simplicity, ease of use and having real-time 

applications. Thus, a good number of citable researches have been conducted based on 

the objective image quality estimation [6]-[8]. The quality estimation could be further 



categorized into full-reference (i.e. original videos as reference), reduced-reference (i.e. 

existence of partial signals as reference) and no-reference schemes. Among them, the 

applications of full-reference metrics such as the SSIM or PSNR have been restricted 

to the reference based situations only and these metrics lose their suitability in 

estimating different qualities of FVV where the reference frame is not available.  

To address the limitations of full-reference metrics, a number of no-reference based 

research works have recently come into light for quality evaluation [10]-[12]. The 

introduced statistical metrics may not be suitable to some high quality ranges since the 

quality perception in these area is mostly due to perceptual human visual system (HVS) 

features, rather than to the statistics of the image [13]. However, different features of 

the HVS are not actively studied in the existing schemes. The authors in [14] carried 

out the human cognition based objective quality assessment system using eye-tracking 

technology and evolved more realistic ground truth visual saliency model to improve 

their algorithm. Actually, the eye-tracking has become a non-intrusive, affordable, and 

easy-to-use tool in human behavior research today that allows to measure visual 

behavior as it objectively monitors where, when, and what people look at. With very 

few exceptions, anything with a visual component can be eye tracked not necessarily 

by using the tracking device itself, rather simply employing the software based eye-

tracking simulator [15]. 

Unlike objective quality evaluation, the subjective studies could yield valuable data 

to evaluate the performance of objective methods towards aiming the ultimate goal of 

matching human perception [16]. Thus, a number of quality assessment algorithms 

have been proposed which are closely related to the studies of human visual attention 

and cognition. The study in [17] proposed a no-reference model using blur and 

blockiness metric to improve the performance of objective model based on eye-tracker 

data. The authors in [18] introduced a model to judge the video quality on the basis of 

psychological merits including- the pupil dilation and electroencephalogram signalling. 

Albanesi et al. [19] used the eye-gaze data to create a voting algorithm to develop a no-

reference method. Using the scan path of eye movements, Tsai et al. [20] subjectively 

assessed the perceived image and its colour quality. Conversely, the widely used 

subjective testing method- MOS [21][22] is often biased by the testing environment, 

viewers mode, expertise, domain knowledge, age range, and many other factors which 

may undesirably influence the effectiveness of actual quality assessment process. The 

authors in [23] although introduced a subjective metric, their initial work is based on 

the single view video where the viewing angle is fixed for users. Moreover, their 

introduced approach highly depends on threshold selection for each feature and incur 

with the lack of proper correlation setting among features. The most importantly, their 

metric does not perform well in different contents and resolutions of the videos. The 

proposed method is a significantly extended version of their work where the major 

amendments include the employment of FVV i.e. in the no reference scenario, 

increasing number of features, better correlation analysis of features, performing 

content and resolution invariant operation on features, synthesizing them by an adaptive 

weighted function, comparing the new metric with PSNR, SSIM, and MOS, and 

eventually employing two widely used estimators the Pearson Linear Correlation 



Coefficient (PLCC) and Spearman Rank-Order Correlation Coefficient (SRCC) to 

justify the effectiveness of the proposed QMET for a range of FVV sequences.  

 
(a) Good quality contents of the  

Newspaper sequence 

 
(b) Eye-traversal for good quality 

contents   

 
(c) Pupil-size variation for different 

qualities 

 
(d) Poor quality contents of the  

Newspaper sequence 

 
(e) Eye-traversal for poor quality 

contents   

 
(f) Gaze-duration variation for 
different qualities 

Fig. 1. More concentrated eye-traversing approach is perceived for relatively better quality 

contents (e.g. Newspaper sequence image in (b)). The opposite is noticed in (e) for which the 

pupil-size sharply increases in (c), while the gaze event duration notably decreases in (f). 

Let us first concentrate on Fig. 1 in which (a) and (d) represent a Multiview video 

sequence namely Newspaper encoded as good and poor quality respectively, while (b) 

and (e) demonstrate the eye traversing approach of a viewer for good and poor quality 

image contents respectively. The tracked gaze plots indicate more concentrated eye-

traversal for relatively better quality contents. Now if we determine Length (L) and 

Angle (A) features for each gaze plot, they could better inform about the viewers nature 

of browsing (i.e. smooth or random as indicated in Fig. 1 (b) and (e)). Since we also 

discover that the quality variation has an impact on both the Pupil-size (P) and Gaze-

duration (T) variation presented in Fig. 1 (c) and (f), hence we calculate four cardinal 

features- L, A, P, and T for each potential gaze plot (PGP) from the gaze trajectory of 

the whole sequence. The PGPs in this test are defined by the fixations (i.e. visual gaze 

on a single location) and saccades (i.e. quick movement of eyes between two or more 

phases of fixations). Then we carry out content and resolution invariant operation on 

the features and adaptively synthesize them using a weighted function to develop the 

proposed QMET. The higher QMET score promises good quality video as the viewers 

could better capture its content information with smooth global browsing. Experimental 

results reveal that the quality evaluation carried out by the QMET could better perform 

compared to the objective metric SSIM, and the subjective estimator MOS. The 

proposed QMET is expected to use as an impressive substitute to the MOS in evaluating 

the objective metrics towards aiming the goal of matching human perception. Since the 

eye tracker data could be easily captured today by directly employing the software 

based eye-tracking simulator [24] (i.e. device itself is no longer required), the utility of 

the QMET could also be more flexible using such simple simulator generated data set. 



2 Proposed Method  

The first phase of the proposed quality metric design is to conduct the coding quality 

variation and different segments preparation which is executed by employing the 

HEVC [25] reference software HM15.0 [26]. These quality varied videos were then 

watched by a group of ten participants and their eye-tracking data were analyzed using 

four quality correlation features, i.e. L, A, P, and T. The content and resolution invariant 

operations were performed on the features and then synthesized by an adaptive 

weighted function to develop a new metric- QMET. The entire process is presented as 

a process diagram in Fig. 2 and the key steps are detailed in the following sub-sections. 

 

Fig. 2. Process diagram of the proposed QMET development. 

2.1 Data Capture and Pre-processing 

The participants (including males and females) who were recruited from the University 

had normal or corrected-to-normal vision and did not suffer from any medical condition 

that might be adversely influenced by our project [ethical approval no. 2015/124]. They 

fall within the 20-45 age band and are undergraduate/postgraduate students, PhD 

students, and lecturers of the University. A number of multiview sequences which are 

used in this test comprise the resolution type of 1920×1088 and 1024×768 (detail to be 

found in [27]). To avoid the biasness with color or contrast, initially we design 

experiment using the gray scale components only. We generate three different quality 

types of each video including Excellent (using quantization parameter QP=5), Fair 

(QP=25), and Very-poor (QP=50) and randomly display them to the participants. 

Calibration and a trial run was performed so that the participants feel comfort about the 

whole process. Upon their satisfaction, the Tobii eye tracker [28] was employed to 

record their eye movements. As the device recorded data at 60HZ frequency and 

allocated frame rate was 30 (fps), each frame could accommodate two gaze points and 

a single whole video covered 9000 gaze plots having 1800 for each quality segment.  

2.2 Correlation Analysis of Features 

The Length (L- in pixel) of the ith potential gaze plot is calculated using the two 

dimensional Euclidean distance with respect to the (i+1)th gaze plot, while the Angle 

(A- in degree) of the ith plot is calculated by using the reference of its (i-1)th and (i+1)th 

values (where i={1,2,…,n} and the values of L and A are not calculated for the 1st and 

nth plots). The pupil-size (P- in mm) and Gaze-duration (T- in ms) on the other hand, 

are determined for each ith plot by averaging the values of left and right pupil size and 

the eye-tracker recorded timestamp data respectively for all the sequences by 



employing MATLAB R2012a (MathWorks Inc, Massachusetts, USA). The overall 

calculated results indicate that L, A, P features have a proportionate and T feature has 

an inversely proportionate correlation with the video quality degradation as depicted in 

Fig. 3.  

  

  

Fig. 3. The Length (L), Angle (A), and Pupil-size (P) features have a proportionate 

correlation, while the Gaze-duration (T) feature has an inversely proportionate 

correlation with quality degradation. 

 

This time, we evaluate the contribution of each individual feature in the context of 

distinguishing different aspects of coded video quality using dissimilar quality segment 

and observe that none of them could discretely be the best representative in 

distinguishing different qualities. We determine the individual Q-score (i.e. calculated 

pseudo score of the QMET) for each feature by employing the equations (1)-(4), where 

Q1, Q2, Q3, and Q4 denote the Q-score for individual L, A, P, and T respectively.      

              𝑄1 = 𝐿𝜕𝐿                                                                     (1) 

              𝑄2 = 𝐴ⱷ𝐴                                                                    (2)          

              𝑄3 = (𝑃/2)ᵹ𝑃                                                             (3) 

              𝑄4 = √2𝑇
(ℵ/√2𝑇)

                                                         (4) 

here, ∂, ⱷ, ᵹ, and ℵ are the weighting factors of L, A, P, and T features respectively. Let 

us briefly discuss the formation of equations to produce different Q-scores using the 

power law. A power law is a functional relationship between two quantities, where a 

relative change in one quantity results in a proportional change in the other quantity, 

independent of the initial size of those quantities: one quantity varies as a power of 

another [29]. In our case, the relative value change of the features is unknown, and their 

corresponding reproduced Q-score is unknown as well, however, whether they have 

proportionate or inversely proportionate relation is known. For example, lower L 

indicates higher quality and respective higher Q-score, but still, we do not know how 

much. Since the value change of L for each quality segment is not significant (e.g. 0.08 

for Excellent and 0.12 for Fair and the maximum average does not exceed 0.50), it could 

be best represented only by its power representation since smaller power with smaller 

base produces a higher score. Thus, a clear score difference among different quality 



segments could be produced. The features A, and P similarly work as L with power-

weight multiplication, however, since T has an inversely proportionate relation with Q-

score, the power-weight division woks here in the same manner as presented in 

equations (1)-(4). The rationality of using the Q-score is to predict a better picture of 

the QMET performance change for various changes of L, A, P, and T within a sizable 

format that ranges from 0 to 1.  

Since L, A, P, and T features could jointly advice about how far, how much, how 

large, and how long respectively in the spatiotemporal domain, we synthesize them by 

developing an adaptive weighted cost function as equated by 𝑄 = 𝐿𝜕𝐿 × 𝐴ⱷ𝐴 × (𝑃/2)ᵹ𝑃 ×

√2𝑇
(ℵ/√2𝑇)

). The purpose of this multiplication is to keep a persistent relation of L, A, 

P, and T features with the reproduced Q-score. As the normalized value of the features 

varies within the range 0 to 1 and their manipulation in equations (1)-(4) also follow 

this range to yield the quality score, thus, their multiplication could better reproduce 

the ultimate result within the predefined limit. Note that the weight for ∂, ⱷ, ᵹ, and ℵ in 

the equations (1)-(4) is fixed with 0.5 in this test. This is because we further calculate 

the slope at each point changing the quality (i.e. Excellent, Fair, and so on) and 

determine their average for a number of weights. Since the calculated average using 

weight 0.5 outperforms the other weight combinations, we fix it for the entire 

experiment to best distinguish different quality segments which is demonstrated in Fig. 

4. The distribution of other combination among features and weights might work better; 

however, the tested results demonstrate a good correlation of QMET with other metrics. 

    

Fig. 4. The synthesizing operation using Length, Angle, Pupil-size, and Gaze-duration features 

could better distinguish different quality segments. 

 

2.3 Invariant Operation on Features 

Let us first ponder the content (left in Fig. 5) and resolution (right in Fig. 5) based 

unprocessed L of two example sequences e.g. Poznan_Street and Newspaper presented 

in Fig. 5. The calculated variations between the highest and lowest values are 41.72% 

and 28.63% according to the contents and resolutions respectively. Since the human 

vision is not equally susceptible to different video contents and resolutions, we, 

therefore, carry out the invariant operation on features. The content invariant operation 

follows a number of steps. First, we calculate the L of the PGPs as mentioned in 

Section- 2.2; Second, figure out the average of potential gaze plot (x) and potential gaze 

plot (y) and entitle them the centre C(x,y); Third, with respect to C(x,y), we estimate the 

two dimensional Euclidean distance of all PGPs and sort the calculated values of length 

by lowest to the highest order. The rationality of this ordering scheme is due to 



prioritizing the foveal central concentration on pixels by partially avoiding the long 

surrounded parafoveal, or perifoveal fixations [30] that might occur even with attentive 

eye browsing; Fourth, to determine the object motion area according to the best viewing 

strategy, we take the average of first ʯ sorted values (75% in this test as it could help 

QMET in obtaining the highest score) which is the foreseen radius of captured affective 

region; Fifth, the radius is then employed as a divisor of calculated lengths for each 

PGP in the First step.  

  

Fig. 5. The video content and resolution based unprocessed Length. 

Similar to the content based lengths, we also observe a stunning variation of 28.63% 

for different resolution based lengths in Fig. 5 (right). As a result, we exploit a number 

of multiplication factors (passively act as compensators) eventually to neutralize the 

impact of various size video resolutions displayed on the screen. For example, assuming 

1024×768 resolution sequence as a reference, the unprocessed lengths of its higher and 

lower resolution sequences are multiplied by 0.75 and 1.25 respectively. Almost for all 

the sequences, since the eye-tracker recorded data demonstrates a good correlation 

among the highest to the lowest resolution videos, the multipliers could perform well 

in resolution invariant operation. The outcomes then turn into the normalized values 

ranging within 0 to 1. The resultant effect of content plus resolution invariant operation 

for L is revealed in the top-left of Fig. 6 which is undertaken for the final QMET 

scoring. Once the similar operations are performed on the features A, P, and T, the 

variation effects could be significantly minimized as illustrated in the top-right, bottom-

left and bottom-right respectively as demonstrated in Fig. 6. 

  

  

Fig. 6. The obtained values of L, A, P, and T (normalized) after performing the content and 

resolution invariant operation. 

 



2.4 The Development of QMET 

According to the hypothesis of the proposed algorithm, if relatively lower values of L, 

A, and P, and higher values of T belong to a PGP, it should produce higher QMET 

score. Thus, the QMET is calculated for all PGPs of each segment (i.e. Excellent, Fair, 

and Very-poor) of a sequence by adaptively synthesizing the features as follows: 

     𝑄𝑀𝐸𝑇 = 𝐿𝜕𝐿 × 𝐴ⱷ𝐴 × (𝑃/2)ᵹ𝑃 × √2𝑇
(ℵ/√2𝑇)

.                                                   (5) 

Where the weight for ∂, ⱷ, ᵹ, and ℵ is fixed with 0.5 as stated earlier. In an unusual 

case, if the normalized values of L and A become 0 for 30 consecutive frames (as the 

frame rate is kept 30 in this test), then a mimicking operation is performed. The 

rationality of allocating such operation is due to handling the consecutive 0s that may 

incur with the intentional eye fixation of participants to a certain PGP. Thus, the user 

data which have got stack over the frames are forcefully panelized by arbitrarily setting 

the value of L=0.1 and A =0.1. This operation is applicable only for the features L and 

A since P and T are still !=0 then. Note that during this test, we did not experience such 

unusual situation and carried out no such operation. 

3   Experimental Outcomes 

 

The QMET evaluated maximum and minimum scores for each quality segment using 

two example sequences are presented in Fig. 7 (a). For both sequences, the obtained 

score for the Excellent quality segment is the highest which gradually decreases with 

respect to the quality degradation and reaches its lowest for the Very-poor segment of 

quality. Compared to the Newspaper, the QMET score sharply decreases for the 

Poznan_Street sequence. This is because compared to its Excellent quality segment, the 

recorded supporting gaze data for the Very-poor quality incur with recurrent unsuitable 

feature values and produce a lower QMET score. Once we calculate the average score 

of each Max and Min for the individual quality segment, we notice that the average 

recognition of variation between the best and worst quality becomes 72.35% which 

indicate a clear quality distinguishing capability of the QMET. 

 

(a) Maximum (Max) to minimum (Min) QMET score 

at each quality segment using two test sequences 

 
(b) The QMET score has a proportionate correlation 

to the coded video quality (person and video-basis)   

Fig. 7. Different scoring orientations of QMET for a wide range of qualities (both the participant 

and video-basis). 



Fig. 7 (b) demonstrates the participant-wise and video-wise average QMET score for 

three different quality segments. The proposed QMET could obtain the highest score 

i.e. 0.78 and 0.71 for the Excellent quality segment according to both the video and 

participant as presented in Fig. 7 (b). This is because the participants could better 

capture information from the best quality contents with smooth global browsing. 

Conversely, for its lowest scores i.e. 0.25 and 0.21 at Very-poor segment, participants 

perhaps watch the video with a trial and error basis; i.e. try to capture content 

information but do not succeed due do its unpleasant quality and then immediately 

move to the next but still erroneous. As the number of such hits and miss browsing 

sharply increases with time, the quality score also decreases as plenty of inappropriate 

feature values incur with the scoring process. Therefore, for a sequence having really 

Poor~Very-poor quality, it becomes very unlikely to acquire higher quality score using 

the proposed QMET. 

 

(a) Quality variation identification by PSNR 

 
(b) Quality variation identification by SSIM 

 

(c) Quality variation identification by QMET 

 
(d) Quality variation identification by MOS 

 

(e) Four metrics estimated average variations 

 
(f)Four metrics assessed maximum variations 

Fig. 8. In the Figure, (a~d) reveal the average quality variation identification carried out by 

the PSNR, SSIM, QMET, and MOS for the Excellent and Very-poor quality segments of free 

viewpoint videos which is more explicitly presented in (e), while (f) indicates the maximum 

achievable difference (e.g. the difference between the highest score of Excellent quality and 

the lowest score of Very-poor quality segment) obtained by four metrics. 

 



This time, for better justifying the performance of QMET against the PSNR, SSIM, and 

the MOS using the FVV, two different quality segments (i.e. Excellent and Very-poor) 

have been taken into account. The calculated average score of four metrics for these 

segments are reported in Fig. 8 (a)-(d). The obtained percentages of variations between 

the highest score (for Excellent quality segment) and the lowest score (for Very-poor 

quality segment) using PSNR, SSIM, QMET, and MOS are 57.39, 32.49, 78.51, and 

69.71 as represented in Fig. 8 (e). The outcomes indicate that the QMET estimated 

average quality segregation score outperforms the rest of the metrics. This is because 

viewers could better capture good quality synthesized video content with smooth global 

browsing. Conversely, the poorly reconstructed synthesized views incur with the 

localized edge reconstruction and crack like artifacts. Thus, the recorded gaze data of 

poor contents indicate participants’ haphazard means of browsing (being affected by 

unsuccessful attempts due to unpleasant quality) that could not meet the balanced 

feature correlation criteria and generate lower QMET score. Fig. 8 (f) indicates the 

maximum achievable difference (e.g. the difference between the highest score of 

Excellent quality and the lowest score of Very-poor quality segment) picked out by the 

four metrics where the MOS could outperform the other metrics. The Very-poor quality 

segment of some synthesized video (e.g. Newspaper) incur with an arbitrarily 

nominated lower score such as 0.05 (out of 1.0) which lead to such stunning variations. 

The calculated results for free viewpoint videos in Fig. 8 indicate that the improvement 

using the subjective assessment such as MOS could perform better than those of the 

objective metrics PSNR and SSIM. This is mostly due to the PSNR and SSIM do not 

find an available reference image to calculate the score in this regard. However, 

according to Fig. 8 (e), the human visual perception based QMET could demonstrate 

relatively improved performance compared to the MOS in terms of segregating 

different aspects of coded video quality. 

 

Fig. 9. The performance comparison of PSNR, SSIM, QMET, and MOS metrics on the 

Excellent, Fair, and Very-poor quality segment using FVV. Lower the calculated variation for 

a segment better the metric performance is presumed. 

 

Now, two interesting observations: first, if different video contents are coded using the 

same quality (e.g. QP=5 for Excellent), the reproduced scores should not have stunning 

variations. However, the PSNR could not follow this trend and for most of the quality 

segments, its variation goes the highest as revealed in Fig. 9. Thus, it might lose its 



suitability for a wide range of free view video sequences. On the other side, for the 

Very-Poor quality segment, the participants perhaps provide some unusually perceived 

arbitrary score for which the MOS reaches its apex and its proficiency drops down in 

this regard. This is also an example that mandates the development of another 

subjective metric other than MOS that could opt for relatively fairer scoring. Although 

the QMET performs better than PSNR and MOS, the SSIM appears most stable in this 

regard. This is because the SSIM is a perception-based model that considers 

degradation in an image mainly by recognizing the change in structural information. 

To justify the second observation, i.e. even the same sequence is coded with a range 

of qualities, the recognition of quality variation should be prominent which has been 

verified by employing two ranges of variations (Excellent ~ Fair and Fair ~ Very-poor) 

and reported in Fig. 10. For the first range of segments, all the metrics with free view 

video although perform in a similar manner, the QMET appears the most responsive in 

differentiating the range of qualities. The SSIM tends to be the least responsive metric 

in this regard. For the second range of segments (i.e. Fair ~ Very-poor), the QMET and 

the MOS reach their apex to indicate their best performance in the context of quality 

segregation. Interestingly, for both range of segments, the subjective estimators 

perform relatively better compared to the objective ones. 

 

Fig. 10. The PSNR, SSIM, QMET, and MOS metrics recognized percentage of quality 

variation for a range of quality segment differences. Higher the calculated percentage of 

variation detection in segments [X~Y], better the metric performance is presumed. 

For further performance estimation of four metrics, the calculated results using entire 

videos used in this test are reported in Table 1 by implementing both the PLCC and 

SRCC’s evaluation criteria. A good quality metric is expected to achieve higher values 

in both PLCC and SRCC [10]. According to both PLCC and SRCC’s judgement, the 

QMET reveal the similar performance compared to the PSNR, however, it could obtain 

relatively higher score compared to the SSIM and MOS. In fact, the obtained results of 

the proposed metric are promising given the fact that no information about the reference 

image is available to the QMET for evaluating quality. Since the scoring pattern of four 

metrics are approximately similar in terms of distinguishing different quality contents 

as illustrated in Fig. 9, Fig. 10, and Table 1, the proposed QMET could be well 

represented as a new member of the quality metric family and successfully employed 

as an impressive alternative to the subjective estimator MOS. It could also be employed 

to evaluate the effectiveness of using the objective metrics PSNR and SSIM since the 

QMET does not require any ground-truth reference for quality estimation.  



Table 1. Average performance of four metrics according to both PLCC and SRCC’s 

evaluation criteria. 

    Performance 

    Estimators    
PSNR SSIM     QMET    MOS 

PLCC    0.68    0.63       0.69    0.68 

SRCC    0.71    0.62       0.71    0.68 
 

 

The potential application of QMET could be the evaluation of synthesized views 

(images) reproduced by different FVV generating algorithms. A good number of 

contributions could be found in the literature which claim about the image quality 

improvement mostly depending on the objective metric PSNR, SSIM or the subjective 

estimator MOS. However, it is presented earlier that the subjective estimator MOS 

performs better than the objective metrics in most cases during evaluating the FVV 

quality. Since the proposed QMET is mostly correlated to the proximity of human 

cognition, its assessment process is presumed to be more neutral compared to the MOS 

for assessing different aspects of coded video quality. Moreover, since the view 

synthesis algorithms go through some post-processing phases such as inverse mapping 

or inpainting for crack filling, it is highly anticipated to obtain higher quality evaluation 

score using QMET especially for those algorithms successfully overcoming the crack 

filling artifacts.  

 

4   Conclusion 

 

In this work, a no-reference video quality assessment metric has been developed based 

on the free view video. The newly developed metric QMET could be an impressive 

substitute to the popularly used subjective estimator MOS for quality evaluation and 

comparison. In the metric generation process, the human perceptual eye- traversing 

nature on videos is exploited and discovered the patterns of Length, Angle, Pupil-size, 

and Gaze-duration features from the recorded gaze trajectory for varied video qualities. 

The content and resolution invariant operations are carried out prior to synthesizing 

them using an adaptive weighted function to develop the QMET. The experimental 

analysis reveal that the quality evaluation carried out by the QMET is mostly similar to 

the MOS and the reference required PSNR and SSIM in terms of assessing different 

aspects of quality contents. Eventually, the outcomes of four metrics have further been 

tested using the Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank-

Order Correlation Coefficient’s (SRCC) evaluation criteria which indicate that the 

QMET could relatively better perform compared to the MOS and the SSIM for a wide 

range of free viewpoint video contents. Since the eye-tracker data could be easily 

captured nowadays by directly employing the software based eye-tracking simulator 

(i.e. device itself is no longer required), the utility of the QMET could also be more 

flexible using such simple simulator generated data set. Work is undergoing for the 

project “View synthesis using Gaussian mixture modelling of images from adjacent 



views for free viewpoint and multiview video with eye-tracker-based quality 

assessment” where the newly developed QMET would be applied in a broader context 

such as increasing the number of free viewpoint videos and quality segments using the 

colour image components.  
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