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A COUNTEREXAMPLE TO DE PIERRO’S CONJECTURE ON THE
CONVERGENCE OF UNDER-RELAXED CYCLIC PROJECTIONS

ROBERTO COMINETTI, VERA ROSHCHINA, AND ANDREW WILLIAMSON

Abstract. The convex feasibility problem consists in finding a point in the intersection
of a finite family of closed convex sets. When the intersection is empty, a best compro-
mise is to search for a point that minimizes the sum of the squared distances to the sets.
In 2001, de Pierro conjectured that the limit cycles generated by the ε-under-relaxed
cyclic projection method converge when ε ↓ 0 towards a least squares solution. While
the conjecture has been confirmed under fairly general conditions, we show that it is
false in general by constructing a system of three compact convex sets in R3 for which
the ε-under-relaxed cycles do not converge.
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1. Introduction

The convex feasibility problem consists in finding a point in the intersection of finitely
many nonempty closed convex sets C1, . . . , Cm in a Hilbert space H. A solution can be
approximated by the method of cyclic projections which loops through this finite list
of sets by iteratively projecting the current iterate onto the next set in a cyclic manner.
Under mild conditions —for instance, if one of the sets is bounded— this process converges
weakly either to a feasible point in the intersection of the sets, or to a limit cycle if this
intersection is empty (see [7]). In the case of two sets C1, C2 ⊆ H the iteration reduces
to von Neumann’s alternating projection method (cf. [8]) which converges to a two-point
cycle that solves the minimal distance problem

min
x1∈C1
x2∈C2

‖x1 − x2‖,

provided that the latter has a solution. Such variational characterisation does not exist
for three or more sets. It was shown in [1] that for m ≥ 3 there is no function Φ : Hm → R
such that for any collection of compact convex sets C1, C2, . . . , Cm ⊆ H the limit cycles
are precisely the solutions of the minimisation problem

min
xi∈Ci

Φ(x1, x2, . . . , xm).
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This lack of variational characterization can be countered by considering an under-
relaxed version of the cyclic projection method. It was conjectured in [6] that the corre-
sponding limit cycles converge towards a solution of the least squares problem

(1) S = arg min
u∈H

m∑
i=1

d(u,Ci)
2.

Here d(u,C) = minx∈C ‖x− u‖ denotes the distance from u ∈ H to the closed convex set
C. We recall that the minimum in d(u,C) is attained at a unique point ΠC(u) which is
the projection of u onto C, and which is characterised as follows: a point w ∈ C is the
projection of u ∈ H onto C if and only if1

(2) 〈v − w, u− w〉 ≤ 0 ∀v ∈ C.
The under-relaxed cyclic projection method fixes a relaxation parameter ε ∈ (0, 1] and

on each iteration an ε-step is taken towards the next projection, namely, given an initial
point u0 ∈ H for all k ∈ N ∪ {0} we iterate as

(3)


ukm+1 = ukm + ε(ΠC1(ukm)− ukm)
ukm+2 = ukm+1 + ε(ΠC2(ukm+1)− ukm+1),

...
ukm+m = ukm+m−1 + ε(ΠCm(ukm+m−1)− ukm+m−1).

Note that the standard cyclic projection method corresponds to the choice ε = 1.
Let uεk = (ukm+1, ukm+2, . . . , ukm+m) ∈ Hm be the m-tuple generated on the k-th loop

of the under-relaxed iteration (3). Under mild conditions these m-tuples converge weakly
when k →∞ to an ε-cycle uε = (uε1, u

ε
2, . . . , u

ε
m) ∈ Hm such that

(4)


uε1 = uεm + ε(ΠC1(u

ε
m)− uεm),

uε2 = uε1 + ε(ΠC2(u
ε
1)− uε1),

...
uεm = uεm−1 + ε(ΠCm(uεm−1)− uεm−1).

As a matter of fact, [4, Propositions 1.1 and 1.3 and Corollary 1.3] show that for any
starting point u0 the tuple uεk converges weakly to an ε-cycle uε if and only if the set
of solutions to (4) is nonempty. Note that the solution to (4) may not be unique, so
that in general the limit cycle uε might depend on the initial point u0. To illustrate
this observation and to give intuition for the subsequent discussion, we consider a simple
example.

Example 1. Consider the following system of three sets: two line segments

C1 := co {(−2, 2, 1), (−2, 2,−1)}, C2 := co {(2, 2, 1), (2, 2,−1)},
and the cylinder

C3 := {(x, y, z) |x2 + y2 ≤ 1, |z| ≤ 1}.
The least square solution set is given by the vertical segment

S =

{(
0,

5

3
, z

)
: |z| ≤ 1

}
.

1If C = coA is the convex hull of a set A it suffices to check (2) for v ∈ A.
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If we start from a point u0 = (x0, y0, z0) at height z0, all the iterates remain in the plane
z = z0 and so does the limit cycle uε which therefore depends on z0 (see Fig. 1). Now, if

S

C1

C2

C3

u0z0=0.5 S
C1

C2

C3

u0z0=-0.5

Figure 1. The under-relaxed projections for ε = 1
2

and different starting
points in Example 1.

we consider a fixed u0 and we let ε ↓ 0 the limit cycle shrinks towards the point in the
least squares segment S at height z0. Thus, the initial point u0 serves as an ‘anchor’ that
provides some hope for the limit cycles uε to converge as ε ↓ 0.

S

C1

C2

C3

u0
z0=0

Figure 2. The iterative process for ε = 3
4

and ε = 1
4

and the same starting
point in Example 1.

Following [6], we consider a fixed starting point u0 and we focus on the existence of
the limit as ε→ 0 for the corresponding limit cycle uε, that is

(5) u = lim
ε↓0

uε.

Note that by letting ε → 0 in (4) it readily follows that if the limit exists it must be of
the form u = (ū, ū, . . . , ū) for some ū ∈ H (which again may depend on u0).

Together with the limit cycles uε, the following iterative process was considered in [6].
Given a fixed sequence λk → 0 with

∑
k λk = +∞ define vk = (vkm+1, vkm+2, . . . , vkm+m)
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inductively by setting for i = 1, . . . ,m

vkm+i = vkm+i−1 + λkm+i (ΠCm(vkm+i−1)− vkm+i−1) .

In this case we are interested in the existence of the limit

(6) v = lim
k→∞

vk

which again is necessarily of the form v = (v̄, v̄, . . . , v̄) for some v̄ ∈ H.
In [6] it was conjectured that the convergence of the ε-cycles (5) and of the modified

process (6) are tied to the existence of solutions to the least-squares problem (1), namely

Conjecture 1 ([6, de Pierro]). The least squares solution set S is nonempty if and only
if for any starting point u0 the limits (5) and (6) exist with both ū and v̄ in S.

This conjecture has been confirmed under various conditions. In [5] it was proved for
families of affine subspaces of Rn, a result which was extended in [3] to the infinite dimen-
sional setting under a metric regularity condition. Beyond the case of affine subspaces,
[2, Theorem 2.8] describes several geometric conditions under which Conjecture 1 is true.
The approach in [2] established a connection between the asymptotics of the ε-cycles uε

and the steepest descent trajectory u̇(t) = −∇Φ(u(t)) where Φ(x) = 1
2m

∑m
i=1 d(x,Ci)

2 is

the least squares objective (up to the constant factor 1
2m

). By exploiting this connection,
[2, Theorem 3.3] proves Conjecture 1 under a mild geometrical condition. In particu-
lar this condition holds automatically for the case of alternating projections where only
m = 2 sets are involved [2, Corollary 3.4].

All these known results require some additional condition so that it remains as an open
question whether the conjecture holds in full generality as stated by de Pierro. Our goal
is to disprove the conjecture by constructing a system of three compact convex sets in R3

for which the limit (5) does not exist. Our main result is as follows.

Theorem 1. There exist compact convex sets C1, C2, C3 in R3 such that for all ε ∈ (0, 1]
there is a unique ε-cycle uε satisfying (4). Moreover uε diverges for ε → 0 so that the
limit (5) does not exist.

Note that by compactness the least-squares problem (1) has a solution in this case.
The counterexample is even more striking since the ε-cycle uε is unique and therefore
it is independent of the initial point: for each u0 ∈ H the under-relaxed iteration (3)
converges for k → ∞ towards this unique ε-cycle uε, and de Pierro’s conjecture fails.
Similarly the limit (6) may fail to exist: to see this fix λk ≡ ε for a large number of
iterations so that vk comes close to uε, after which we shift to a smaller λk ≡ ε′ again for
a sufficiently large number of iterations so that vk comes close to uε

′
. Proceeding in this

manner for a suitable chosen sequence of ε’s we can force the full sequence vk to oscillate
between different cluster points of uε.

The rest of this paper is structured as follows. Section §2 presents the counterexample.
In §3 we discuss a two-dimensional reduction and we establish the equivalence between
three- and two-dimensional cycles. In §4 we study the properties of the two-dimensional
cycles. Finally, the proof of Theorem 1 is presented in §5.
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2. The counterexample

Our counterexample is a variant of Example 1 consisting of the two line segments

C1 := co {(−2, 2, 1), (−2, 2,−1)}, C2 := co {(2, 2, 1), (2, 2,−1)},
as before, and the compact convex subset of the unit cylinder (see Fig. 3)

C3 := co {pk | k ∈ N}, pk = (cos tk, sin tk, (−1)k)

where {tk} is a monotonically increasing sequence with t1 = π
4

and tk → π
2

as k →∞.

C1

C2

C3

p1 p3

p2 p4

Figure 3. The sets C1, C2 and C3 for the sequence tk = π
2
(1− 1

2k
).

The least square solution set is again the segment S = {(0, 5
3
, z) : |z| ≤ 1}. Indeed,

observe that the 3-tuples {((−2, 2, z), (2, 2, z), (0, 1, z)) | |z| < 1} realise the relevant dis-
tances in (1) for the optimal least-squares solutions for Example 1. Since our new set C3 is
a subset of the original cylinder in Example 1 and also contains the set {(0, 1, z) | |z| ≤ 1},
the least squares solutions are the same for these two problems.

Also, one can easily check that all the pk’s are extreme points of C3. As will be seen
in the sequel, the main feature of C3 is the infinite sequence of facets co{pk, pk+1, pk+2}
with alternating slopes which forces the limit cycles uε to oscillate as ε → 0 between
the planes z = −1 and z = 1, “shadowing” the zig-zag path P that connects the points
p1, p2, p3 . . .

In the subsequent analysis we will consider the vertical projections onto the xy-plane.
Namely, for each u = (x, y, z) ∈ R3 we denote u′ = (x, y) and we consider the projected
sets C ′1, C

′
2, C

′
3. Letting a = (−2, 2), b = (2, 2) and vk = (cos tk, sin tk), these projections

are (see Fig. 4)

C ′1 = {(x, y) | (x, y, z) ∈ C1} = {a},
C ′2 = {(x, y) | (x, y, z) ∈ C2} = {b},(7)

C ′3 = {(x, y) | (x, y, z) ∈ C3} = co {vk | k ∈ N} .
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a}=C1{ ' b}=C2{ '

v1

v2
v3

C3
'

Figure 4. The projections C ′1, C
′
2, C

′
3 of the sets C1, C2, C3 onto the xy-plane.

Note that the zig-zag path P projects vertically onto the path P ′ within the xy-plane
going through the points v1, v2, v3, . . . which lies on the boundary of C ′3. Conversely for
each point p′ ∈ P ′ the vertical line through p′ meets the set C3 at a unique point p which
is in fact in P . We denote z(p′) the corresponding height so that p = (p′, z(p′)) ∈ P .

3. Reduction to two dimensions

Our first goal is to show that the vertical projection onto the xy-plane establishes a
one-to-one correspondence between the three-dimensional ε-cycles for C1, C2, C3 and the
two-dimensional ε-cycles for the projected sets C ′1, C

′
2, C

′
3.

In the sequel we define the support of an ε-cycle (u1, u2, u3) as the triple (w1, w2, w3)
formed by the projections of u3, u1 and u2 onto C1, C2 and C3 respectively, that is

(8) w1 := ΠC1(u3), w2 := ΠC2(u1), w3 := ΠC3(u2).

Then, the system (4) can be written as

(9)
u1 = (1−ε)u3 + εw1,
u2 = (1−ε)u1 + εw2,
u3 = (1−ε)u2 + εw3,

from which it follows that the ui’s can be recovered as convex combinations of the wi’s

(10)

u1 = (1−ε)2w2+(1−ε)w3+w1

ε2−3ε+3
,

u2 = (1−ε)2w3+(1−ε)w1+w2

ε2−3ε+3
,

u3 = (1−ε)2w1+(1−ε)w2+w3

ε2−3ε+3
.

Proposition 1. Let C1, C2, C3 defined as in §2 and C ′1, C
′
2, C

′
3 their xy-projections. Then

the triple (u1, u2, u3) is an ε-cycle for C1, C2, C3 with support (w1, w2, w3) if and only if
the following two properties hold:

(i) the points u1, u2, u3, w1, w2 and w3 lie in a plane orthogonal to the z-axis;
(ii) the projections (u′1, u

′
2, u
′
3) on the xy-plane are an ε-cycle for the two-dimensional

sets C ′1, C
′
2, C

′
3 with support (w′1, w

′
2, w

′
3).
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Proof. Fix some ε > 0. We first prove the necessity. Let (u1, u2, u3) be an ε-cycle for
C1, C2, C3. It is not difficult to see that any such cycle must lie in a plane orthogonal to
the z-axis. Indeed, for any point u = (x, y, z) with |z| ≤ 1 we have

ΠC1(u) = (−2, 2, z) and ΠC2(u) = (2, 2, z).

It follows that (w1)z = (u3)z and then the first equality in (9) yields (u1)z = (u3)z.
Similarly (w2)z = (u1)z so that the second equality in (9) yields (u2)z = (u1)z. Hence
(u1)z = (u2)z = (u3)z and the third equality in (9) implies (w3)z = (u2)z. Altogether

(u1)z = (u2)z = (u3)z = (w1)z = (w2)z = (w3)z

which proves (i).
In order to prove (ii) let us first note that for the projections on the xy-plane we have

u′1 = u′3 + ε(w′1 − u′3), u′2 = u′1 + ε(w′2 − u′1), u′3 = u′2 + ε(w′3 − u′2),
Moreover since the sets C ′1 and C ′2 are singletons, we clearly have

w′1 = a = ΠC′
1
(u′3), w′2 = b = ΠC′

2
(u′1),

so that it remains to show that w′3 = ΠC′
3
(u′2). Let p′ = ΠC′

3
(u′2) and suppose by contra-

diction that p′ 6= w′3 so that ‖p′ − u′2‖ < ‖w′3 − u′2‖. Then we have

‖p′ − u′2‖2 = ‖p′ − w′3‖2 + ‖w′3 − u′2‖2 + 2〈p′ − w′3, w′3 − u′2〉 < ‖w′3 − u′2‖2,
and therefore

(11) 2〈p′ − w′3, u′2 − w′3〉 > ‖p′ − w′3‖2 > 0.

Since C ′3 is the projection of C3 on the xy-plane, there exists some point p ∈ C3 such that
p = (p′, z) ∈ C3 for z ∈ [−1, 1]. Moreover, since (u2)z = (w3)z it follows that

〈p− w3, u2 − w3〉 = 〈p′ − w′3, u′2 − w′3〉 > 0

which violates the property (2) of projections and the fact that w3 = ΠC3(u2). This
contradiction implies that p′ = w′3 and establishes (ii).

Let us next prove the converse. Let (u′1, u
′
2, u
′
3) be a two-dimensional cycle with support

(w′1, w
′
2, w

′
3). The point u′3 lies on the boundary of C ′3 and there is a unique height

z = z(u′3) ∈ [−1, 1] for which the lifted point u3 = (u′3, z) belongs to the zig-zag path
P ⊆ C3. We claim that the points ui = (u′i, z) for i ∈ {1, 2, 3} constitute an ε-cycle for
the sets C1, C2, C3 with support wi = (w′i, z). Indeed, we have

u1 = u3 + ε(w1 − u3), u2 = u1 + ε(w2 − u1), u3 = u2 + ε(w3 − u2).
Clearly w1 = ΠC1(u3) and w2 = ΠC2(u1) so it suffices to show that w3 = ΠC3(u2). To this
end we note that for all p ∈ C3 and its projection p′ on the xy-plane we have

(12) 〈p− w3, u2 − w3〉 = 〈p′ − w′3, u′2 − w′3〉.
Since w′3 = ΠC′

3
(u′2) = ΠC′

3
(u′3) the expression in (12) is non-positive and hence invoking

(2) we conclude that w3 is the projection of u2 onto C3 as was to be proved. �

Using the previous result, we may deduce the existence and uniqueness of an ε-cycle.

Proposition 2. For each ε ∈ (0, 1) there exists a unique ε-cycle (u1, u2, u3) for C1, C2, C3,
and a unique ε-cycle (u′1, u

′
2, u
′
3) for C ′1, C

′
2, C

′
3.
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Proof. In view of the one-to-one correspondence between the three- and two-dimensional
ε-cycles established in Proposition 1, it suffices to consider the two-dimensional case.
The existence of an ε-cycle (u′1, u

′
2, u
′
3) follows from the compactness of the sets C ′1, C

′
2, C

′
3

and general results in [6]. In order to prove its uniqueness let us consider two ε-cycles
(u′1, u

′
2, u
′
3) and (u′′1, u

′′
2, u

′′
3). Proceeding as in (10) we get the following equalities in terms

of their corresponding supports

u′3 =
(1− ε)2w′1 + (1− ε)w′2 + w′3

ε2 − 3ε+ 3
and u′′3 =

(1− ε)2w′′1 + (1− ε)w′′2 + w′′3
ε2 − 3ε+ 3

,

and since w′1 = w′′1 = a and w′2 = w′′2 = b we obtain

(ε2 − 3ε+ 3)(u′3 − u′′3) = (w′3 − w′′3).

Now, w′3 and w′′3 are the projections of u′3 and u′′3 onto C3 so that ‖w′3−w′′3‖ ≤ ‖u′3−u′′3‖,
and since ε2−3ε+3 > 1 on (0, 1) it follows that u′3 = u′′3 and w′3 = w′′3 . From this equality
and property (10) for the two-dimensional cycles we readily get u′1 = u′′1 and u′2 = u′′2. �

4. Two-dimensional cycles

Let (u′1, u
′
2, u
′
3) be an ε-cycle for the sets C ′1, C

′
2, C

′
3 with support (w′1, w

′
2, w

′
3). Proceed-

ing as in (10) we get

(13)

u′1 =
(1−ε)2w′

2+(1−ε)w′
3+w

′
1

ε2−3ε+3
,

u′2 =
(1−ε)2w′

3+(1−ε)w′
1+w

′
2

ε2−3ε+3
,

u′3 =
(1−ε)2w′

1+(1−ε)w′
2+w

′
3

ε2−3ε+3
.

In particular, since w′1 = a and w′2 = b, the last equality implies

ε2−3ε+3
(1−ε) (u′3 − w′3) = (1− ε)(a− w′3) + (b− w′3).

Since w′3 = ΠC3(u
′
3) it follows that u′3 − w′3 is a normal vector to C ′3 at w′3. Choose any

nonzero vector d within the xy-plane orthogonal to u′3 − w′3, so that

(14) 0 = (1− ε)〈a− w′3, d〉+ 〈b− w′3, d〉.
We note that 〈a−w′3, d〉 6= 0 since otherwise a−w′3 and b−w′3 would be colinear, which
is clearly impossible, and therefore from (14) we get

ε = 1 +
〈b− w′3, d〉
〈a− w′3, d〉

.

We use the intuition gained in the preceding discussion to prove the following key result.

Proposition 3. Let k ∈ N and set dk = vk+1−vk
‖vk+1−vk‖

. Then, for any point c ∈ [vk, vk+1) the

triple (w′1, w
′
2, w

′
3) = (a, b, c) is the support of the ε-cycle (u′1, u

′
2, u
′
3) corresponding to

ε = ε(c) = 1 + 〈b−c,dk〉
〈a−c,dk〉

∈ (0, 1).

Proof. Let us first show that ε(c) is well defined. From Figure 5 we see that a− c makes
an acute angle with dk so it has a positive projection α(c) = 〈a−c, dk〉 > 0. Similarly b−c
has a negative projection β(c) = 〈b− c, dk〉 < 0, whereas α(c) +β(c) = 2〈a+b

2
− c, dk〉 > 0.

Combining these facts it follows that ε(c) = 1 + β(c)
α(c)

is well defined and belongs to (0, 1).
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vkvk+1 c

a+b
2

a b

Figure 5. Geometric argument for the proof of Proposition 3

Let us now consider (u′1, u
′
2, u
′
3) computed from (13) using (w′1, w

′
2, w

′
3) and ε = ε(c).

In order to show that this is the (unique) ε-cycle with support (w′1, w
′
2, w

′
3) we note that

w′1 = a = ΠC′
1
(u′3) and w′2 = b = ΠC′

2
(u′1), so that it remains to prove w′3 = c = ΠC′

3
(u′2).

For the latter it suffices to check that u′2− c is orthogonal to the segment [vk, vk+1) at the
point c, which amounts to 〈u′2 − c, dk〉 = 0. Now, the second equation in (13) yields

u′2 − c = (1−ε)(a−c)+(b−c)
ε2−3ε+3

,

so that the result boils down to show 〈(1− ε)(a− c) + (b− c), dk〉 = 0. This is equivalent

to (1− ε)α(c) + β(c) = 0 which follows directly from ε = 1 + β(c)
α(c)

. �

5. Proof of Theorem 1

We are ready to prove Theorem 1 using the three sets C1, C2, C3 defined in §2.
From Proposition 2 we know that for each ε ∈ (0, 1) there is a unique ε-cycle uε. Hence,

for any starting point u0 the under-relaxed iterates uεk converge to this uε. Theorem 1
will be proved if we show that uε oscillates as ε→ 0.

Using Proposition 3 we see that for each point c ∈ P ′ in the projection of the zig-zag
path P the triple (w′1, w

′
2, w

′
3) = (a, b, c) supports a 2-dimensional ε-cycle (u′1, u

′
2, u
′
3) for

C ′1, C
′
2, C

′
3 where ε = ε(c). According to Proposition 1 we may lift this ε-cycle to the

height z(c) to get an ε-cycle (u1, u2, u3) for C1, C2, C3 with support (w1, w2, w3) where
ui = (u′i, z(c)) and wi = (w′i, z(c)) for i ∈ {1, 2, 3}.

Now, as c moves along the path P ′ towards v∞ the lifted point w3 = (c, z(c)) moves
accordingly along the zig-zag path P with the height z(c) oscillating between -1 and +1.
It follows that the ε(c)-cycle (u1, u2, u3) also oscillates between height -1 and +1.

To complete the proof it remains to show that ε(c) decreases to 0 as c moves along
P ′ towards v∞. Indeed, from Figure 5 we see that when c moves from vk to vk+1 the

projection α(c) decreases whereas −β(c) increases so that their quotient −β(c)
α(c)

increases

and therefore ε(c) decreases. Similarly, ε(c) also decreases (with a jump discontinuity at
c = vk) as we pass from one segment c ∈ [vk, vk+1) to the next c ∈ [vk+1, vk+2). Finally,
since clearly dk → (−1, 0) it follows easily that ε(c) ↓ 0 as c tends to v∞.
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Remark 1. Note that as ε ↓ 0 the ε-cycles uε = (uε1, u
ε
2, u

ε
3) shrink so that uε1 ≈ uε2 ≈ uε3.

With a little more work one can show that the accumulation points of the cycles uε are
precisely the triples of the form (ū, ū, ū) with ū a least square solution. Hence, the ω-limit
set of uε as ε ↓ 0 is the full least square solution set S = {(0, 5

3
, z) : |z| ≤ 1}.

Remark 2. The jump discontinuities of ε(c) at c = vk correspond to ranges of ε for
which the corresponding ε-cycle remain at height 1 (for k even) or height -1 (for k odd)
with w′3 ≡ vk. Note that although the support triple (w1, w2, w3) remains constant in
these ranges, the corresponding ε-cycle (u1, u2, u3) changes according to (10).
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