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Abstract. Internet of Things (IoT) image sensors for surveillance and monitor-

ing, digital cameras, smart phones and social media generate huge volume of 

digital images every day. Image splicing and copy-move attacks are the most 

common types of image forgery that can be done very easily using modern photo 

editing software. Recently, digital forensics has drawn much attention to detect 

such tampering on images. In this paper, we introduce a novel feature extraction 

technique, namely Sum of Relevant Inter-Cell Values (SRIV) using which we 

propose a passive (blind) image forgery detection method based on Discrete Co-

sine Transformation (DCT) and Local Binary Pattern (LBP). First, the input im-

age is divided into non-overlapping blocks and 2D block DCT is applied to cap-

ture the changes of a tampered image in the frequency domain. Then LBP oper-

ator is applied to enhance the local changes among the neighbouring DCT coef-

ficients, magnifying the changes in high frequency components resulting from 

splicing and copy-move attacks. The resulting LBP image is again divided into 

non-overlapping blocks. Finally, SRIV is applied on the LBP image blocks to 

extract features which are then fed into a Support Vector Machine (SVM) classi-

fier to identify forged images from authentic ones. Extensive experiment on four 

well-known benchmark datasets of tampered images reveal the superiority of our 

method over recent state-of-the-art methods.  

Keywords: Digital forensics, splicing attack, copy-move attack, Discrete Co-

sine Transformation, Local Binary Pattern, Support Vector Machine. 

1 Introduction 

Today, Internet of Things (IoT) has emerged as an integrated technology in our daily 

life. According to Business Insider Intelligence [1], there will be more than 24 billion 

IoT devices by 2020 which results in approximately four devices per person living on 

earth. Our everyday essential devices such as wearable sensors, visual sensors, home 

appliances, security devices, etc. are increasingly being connected to the Internet. 

Among them, visual sensors play a vital role in physical and cyberspace security and 

surveillance. Digital social media platforms like Facebook and Instagram are being 

flooded with millions of images each day. For many cutting-edge applications, people 
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rely on image data more than any other form of data. However, sophisticated digital 

image editing tools and software have become available. They are very easy to use and 

they can generate fake images that appear to be very natural. The forged images gener-

ated by these tools do not leave any trace for human visual system. Hiding facts, spread-

ing negative propaganda, disrupting operational and decision-making processes have 

become very common in today’s online media. Among all the possible image tampering 

operations, splicing and copy-move are the most notorious and commonly used attacks 

on digital images [2]. Image splicing forgery is done by copying one or more portion 

of an image and pasting it on another image, while in copy-move forgery, one or more 

objects of an image is copied and then are pasted on the other part of the same image.  

As we know that ‘a picture is worth a thousand words’, an artificially altered image 

can have devastating consequences. During the 2017 G-20 summit in Germany, AP 

photojournalist Markus Schreiber captured the image in Fig. 1a prior to the first work-

ing session on the very first day of the summit. Later this picture was most likely edited 

and uploaded in social media as Fig. 1b by a Russian journalist and Putin loyalist Vla-

dimir Soloviev [3]. Although he soon deleted the post from Facebook, it already spread 

all over the world and introduced new debate and confusion in world politics. In the 

same way, an altered image can mislead the world leaders in making business decision, 

taking political steps or even starting a nuclear war. 

  
(a) Authentic image (b) Spliced image 

Fig. 1. Image splicing example 

Modern photomontage does not leave any trace for naked eyes, yet they can be identi-

fied through digital forensics. The existing methods for identifying image forgery can 

be roughly divided into two categories: active and passive. Active methods (e.g., [4]) 

rely on injecting digital watermark or signature into the original image. To verify the 

authenticity of an image, the receiver checks if the digital watermark or signature is 

unchanged or not. Unfortunately, most of the image sensors do not have the capability 

to integrate complex digital watermarking functionalities because of high cost and re-

source requirements. As a result, active techniques are not commonly observed and 

practised in today’s data driven IoT network. On the other hand, passive approaches 

(e.g., [5, 6]) do not need such prior knowledge, require less resources, and hence have 

drawn much attentions in digital forensics in recent years. The main idea behind passive 

(blind) detection is that an altered image might not be visibly identifiable as tampered, 

but tampering obviously introduces disturbance in the structural and statistical charac-

teristics of an image. To be more specific, image tampering introduces new micro-pat-

terns and sharp edges along the boundary of the pasted area. From signal processing’s 
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point of view, splicing and copy-move artifacts are the ‘noise’ inserted into a clear sig-

nal. 

A major portion of images that are targeted for tampering are security sensitive im-

ages captured through security and surveillance cameras installed in factory ware-

houses, shops, financial institutes, military installations, government vaults, border de-

fence etc. These images are mostly in gray scale due to the nature of their applications, 

lighting condition and recording time (e.g., night time). Again, color images can also 

be converted into gray scale images. All these justify the advancement of detecting 

attacks on gray scale images as the attack detection methods for gray scale images can 

be used in both gray and color images.  

Although many researchers have proposed different approaches to image forgery 

detection with promising accuracy, there are still scopes for the advancement of these 

techniques using innovative features that are more discriminative and sensitive to the 

tampering artifacts produced by splicing and copy-move attacks. To achieve this, in 

this paper, firstly, we introduce a novel feature extraction technique, namely Sum of 

Relevant Inter-Cell Values (SRIV) for propagating the effects of splicing and copy-

move attacks into all features more explicitly than representing it using typical features 

such as histogram or higher order statistical moments based features. Secondly, using 

SRIV features, we then propose a passive (blind) detection method using Discrete Co-

sine Transformation (DCT) and Local Binary Pattern (LBP) for detecting splicing at-

tacks on image. Since LBP can enhance the local changes among the neighbouring DCT 

coefficient values, first we identify the micro-patterns introduced by splicing operation 

applying 2D block DCT transformation on image and then, apply LBP in those DCT 

coefficients. For propagating the effects of the changes into all features, we then extract 

the features using our proposed SRIV technique applied to the LBP image 2D array. 

Finally, we feed these features to support vector machine (SVM) for learning and clas-

sification. Improved classification accuracy over recent methods described in [5] and 

[6] using four benchmark datasets substantiate the efficacy of our proposed SRIV tech-

nique and image forgery detection approach. 

2 Related Works 

A number of approaches have been proposed in recent years to detect image tampering. 

They differ mainly on the techniques they adopt to model the structural and statistical 

changes in forged images. The works reported below utilized SVM for classification 

once features have been extracted from an image. Among them, the authors who im-

plemented their work based on gray scale image used Columbia dataset [7] while others 

used different color datasets [8-10].  

In [11], Ng et al. proposed bicoherence features to detect image splicing and sug-

gested several methods to improve the capabilities of bicoherence features for splicing 

detection. They achieved as high as 72% detection accuracy over their own gray image 

dataset named Columbia [7]. Later, this dataset turned into one of the most popular 

benchmark datasets for gray scale image splicing detection. Hilbert-Huang transform 
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(HHT) and moments of characteristics function of wavelet sub-band were used to ex-

tract features in [12]. It was the first work to utilize HHT to identify image splicing. 

The authors reported 80.15% detection accuracy. Chen et al. in [13] adopted statistical 

moments of characteristics functions of wavelet sub-band and 2D phase congruency to 

identify splicing artifacts and achieved 82.32% detection accuracy.  

A few researchers adopted run-length based approach to identify image splicing. 

Dong et al. [14] investigated the disturbance of pixel correlation and rationality intro-

duced by image splicing operation . They proposed a run-length and edge statistics 

based approach to identify spliced images from authentic ones and attained 76.52% 

accuracy. Later, this method was improved by He et al. [15] in terms of accuracy 

(80.58%), computational cost and feature dimensionality.  

Shi et al. [16] proposed a method based on a natural image model where statistical 

moment features and Markov features are extracted from a given image as well as from 

multi block DCT of the same image. He et al. [17] expanded the original Markov fea-

tures by Shi et al. and modelled the splicing artifacts based on Markov features in DCT 

and DWT domains. Unlike [16], they considered both intra-block and inter-block cor-

relation among DCT coefficients. Although methods in [16] and [17] achieved satis-

factory result on Columbia dataset, the detection accuracy was reduced to 84.86% and 

89.76%, respectively when applied on CASIA 2 dataset [10] which is a more challeng-

ing dataset in nature [17]. In [18], Wang et al. proposed a method to identify splicing 

attacks by modelling the edge information of image in chroma space as a finite-state 

Markov chain and considered its stationary distribution as features. This method 

achieved 95.6% accuracy on CASIA 2 dataset. 

Zhang et al. [5] and Alahmadi et al. [6] proposed their methods utilizing both DCT 

and LBP. They mainly differ based on the order of DCT and LBP application on image 

blocks and feature extraction technique. Zhang et al. applied LBP operator on the mag-

nitude component of 2D-DCT coefficients of the gray scale input image. They extracted 

features by calculating the histogram of the resultant LBP 2D array. In contrast, Alah-

madi et al. divided the chrominance channels of the input image into blocks. Then LBP 

is applied and the resultant LBP 2D array of each block is transformed into frequency 

domain using 2D-DCT. Finally, features were extracted by calculating the standard de-

viation of the corresponding inter-cell DCT coefficients. Both the methods are promis-

ing in terms of detection accuracy. Inspired by the ability of DCT and LBP to generate 

discriminative features of authentic and spliced images, we propose a new feature ex-

traction technique and using it, an image forgery detection approach, which is described 

in the following section.  

3 Proposed Method 

Image splicing and copy-move attacks are very widespread attacks on images. The de-

tection mechanism is a binary decision problem – whether an image is forged or not. 

These attacks introduce structural and statistical changes in the host image which, in 

turn, affect features that can be extracted to describe the image. Therefore, a number of 

techniques need to be applied on the images before final features can be derived to feed 
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into a chosen classifier. Figure 2 depicts the overall mechanism in our proposed method 

and its key components are described in the following sections. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Proposed image splicing and copy-move detection system 

3.1 Converting images into gray scale 

We have implemented our system using four benchmark datasets commonly used for 

image splicing and copy-move detection. Among them, one dataset is already in gray 

scale and remaining datasets are in color space. As a result, we converted color datasets 

into gray scale. It is worth noting that many applications in surveillance and security 

system rely on gray scale images that are collected in night time environment. 

3.2 Block division of input image 

Splicing and copy-move operation can be applied in different ways on host images. 

Again, different image fragments may be pasted into different parts of the host image. 

It is not expected to be able to identify the splicing artifacts by one single block size. 

Hence, for different types of images, different sized block divisions are essential to 

identify discriminative features of the forged images. Our proposed method performs 

block divisions in two phases. In the first phase, we divide an input image into square-

sized blocks. The second phase is explained later in Section 3.5. We have tested our 

system with different block sizes: 4x4, 8x8 and 16x16 as well as combining features 

from all three mentioned blocks. The following procedure divides an image into blocks. 

Let 𝐼𝑤𝑏×ℎ𝑏 be a gray scale image of size 𝑤𝑏 × ℎ𝑏 pixels. We divide 𝐼𝑤𝑏×ℎ𝑏 into 𝑤 × ℎ 

non-overlapping blocks of size 𝑏 × 𝑏 pixels. The resultant image block 2D array is,  

                                              𝐼𝑤𝑏×ℎ𝑏 = ⌈

𝐼1,1
𝑏×𝑏 ⋯ 𝐼1,𝑤

𝑏×𝑏

⋮ ⋱ ⋮
𝐼ℎ,1
𝑏×𝑏 ⋯ 𝐼ℎ,𝑤

𝑏×𝑏
⌉  .                                                 (1) 

3.3 Block discrete cosine transformation (BDCT) 

Image tampering introduces new micro patterns and sharp edges along the affected re-

gions. It changes the local frequency distribution by altering regularity, smoothness, 
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continuity of the tampered image and thus it disturbs the natural correlation between 

image pixels [16]. It is essential to reduce the diversity of image content and magnify 

the effects of image splicing and copy-move attack before final feature extraction. To 

represent the degree of content change of an image, it is converted into frequency do-

main. BDCT has shown promising result in representing pixel domain changes in local 

frequency distribution as it exhibits excellent decorrelation and energy compaction 

properties [19]. We apply 2D-DCT on the blocks of 𝐼𝑤𝑏×ℎ𝑏 to generate DCT coeffi-

cients. Let 𝑌𝑤𝑏×ℎ𝑏  be the resultant transform domain coefficient after applying 2D-

DCT on each block and it is given by, 

                                             𝑌𝑤𝑏×ℎ𝑏 = ⌈

𝑌1,1
𝑏×𝑏 ⋯ 𝑌1,𝑤

𝑏×𝑏

⋮ ⋱ ⋮
𝑌ℎ,1
𝑏×𝑏 ⋯ 𝑌ℎ,𝑤

𝑏×𝑏
⌉  ,                                              (2) 

where 𝑌i,𝑗
𝑏×𝑏 = 2𝐷­𝐷𝐶𝑇(𝐼i,j

𝑏×𝑏), 1 ≤ 𝑖 ≤ 𝑤, 1 ≤ 𝑗 ≤ ℎ. The 2D-DCT of an input block 

𝐼i,j
𝑏×𝑏 produces the output block 𝑌i,j

𝑏×𝑏 as, 

       𝑌i,j
𝑏×𝑏(p, q) = 𝛼𝑝𝛼𝑞 ∑∑𝐼i,j

𝑏×𝑏(𝑚, 𝑛) cos
𝜋(2𝑚 + 1)𝑝

2𝑏
cos

𝜋(2𝑛 + 1)𝑞

2𝑏
  ,      

𝑏−1

𝑛=0

𝑏−1

𝑚=0

(3) 

where 0 ≤ 𝑝 ≤ 𝑏 − 1, 0 ≤ 𝑞 ≤ 𝑏 − 1 and 

              𝛼𝑝 =

{
 
 

 
 
√
1

𝑏
, if 𝑝 = 0

√
2

𝑏
, otherwise

  ,                𝛼𝑞 =

{
 
 

 
 
√
1

𝑏
, if 𝑞 = 0

√
2

𝑏
, otherwise 

  .           (4) 

3.4 Local binary pattern (LBP) operator 

To identify and enhance different splicing artifacts, we employ LBP operator on the 

magnitude component of 𝑌𝑤𝑏×ℎ𝑏. LBP is a computationally inexpensive yet robust tex-

ture descriptor. The main idea for adopting LBP in our system is to enhance the local 

changes among the neighbouring DCT coefficient values because of the occurrences of 

micro-patterns and sharp edges that are introduced by splicing and copy-move attacks. 

LBP can effectively highlight these tampering artifacts and enhance them in the host 

images. In LBP, each pixel of a given 2D array is compared with its neighbouring pixels 

and an LBP code is generated for that pixel. It is computed as below: 

Let 𝐿𝑤𝑏×ℎ𝑏 be the resultant LBP array generated by applying LBP operator on the 

magnitude components of 𝑌𝑤𝑏×ℎ𝑏 and is given by, 

                                               𝐿𝑤𝑏×ℎ𝑏 =  𝐿𝐵𝑃𝑁,𝑅(|𝑌
𝑤𝑏×ℎ𝑏|)  ,                                              (5) 
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                                                 𝐿𝐵𝑃𝑁,𝑅 = ∑ 𝑔(𝑝𝑛 − 𝑝𝑐)2
𝑛  .

𝑁−1

𝑛=0

                                            (6) 

Here, 𝑁 is the number of neighbor pixels; 𝑅 is the radius and 𝑝𝑐 is the central pixel 

which is compared with each neighbouring pixel 𝑝𝑛(𝑛 = 0,1, … , 𝑁 − 1). In our pro-

posed method, we use 𝑁 = 8 and 𝑅 = 1. The function 𝑔(𝑝𝑛 − 𝑝𝑐) is given by: 

                                            𝑔(𝑝𝑛 − 𝑝𝑐) = {
1, 𝑝𝑛 − 𝑝𝑐 ≥ 0
0, 𝑝𝑛 − 𝑝𝑐 < 0

  .                                       (7) 

For 𝑁 = 8 and 𝑅 = 1, the central pixel 𝑝𝑐 compares its own value with neighbouring 

8 pixels. If the neighbor pixel’s value is greater than or equal to the central pixel value, 

then 1 is recorded; otherwise 0. Based on these comparisons, central pixel 𝑝𝑐 stores it’s 

LBP code. Figure 3 explains the procedure with an example. Here, the binary values 

are obtained after comparison between central pixel 𝑝𝑐 and the 8 neighboring pixels. 

Then the 8-bit binary digit is formed starting from Least Significant Bit (LSB) to Most 

Significant Bit (MSB). Finally, the binary digit is converted into decimal and the LBP 

code is stored in place of central pixel 𝑝𝑐.  
 

Image DCT Coefficients         

 

0.17 0.09 0.15  MSB 1 0 0   LBP Code 

0.03 0.17 0.21 LBP Operator LSB 0 - 1  10010010 
146 

0.19 0.14 0.11   1 0 0   

Fig. 3. LBP code generation procedure 

3.5 Block division of LBP image 

In the second phase of block division, we divide the LBP image 2D array 𝐿𝑤𝑏×ℎ𝑏  into 

same size of blocks similar to the block division done in Section 3.2. We divide 𝐿𝑤𝑏×ℎ𝑏  

into 𝑤 × ℎ non-overlapping blocks of size 𝑏 × 𝑏 pixels. The resultant LBP image block 

2D array is given by, 

                                               𝐿𝑤𝑏×ℎ𝑏 = ⌈

𝐿1,1
𝑏×𝑏 ⋯ 𝐿1,𝑤

𝑏×𝑏

⋮ ⋱ ⋮
𝐿ℎ,1
𝑏×𝑏 ⋯ 𝐿ℎ,𝑤

𝑏×𝑏
⌉  .                                              (8) 

3.6 Apply SRIV and feature generation 

As shown in Fig. 2, in our proposed method, the SRIV features are derived from LBP 

codes generated using DCT coefficients. The main reason for adopting such approach 

in a specific order is that DCT coefficients represent the pixel value variations in the 

spatial domain, while LBP enhances the local changes among the neighboring DCT 

coefficient values, magnifying the changes of splicing and copy-move attacks in higher 

frequency components. To make the detection system more accurate, we need to pre-

serve the local changes captured by LBP as much as possible. Since splicing attacks 

usually make subtle changes in an image, these local changes can be regarded as outli-

ers. Mean is most affected by outliers than other statistical measures. The SRIV features 
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in our proposed method are based on an aggregation operator (sum). These features are 

similar to the mean based features as the number of blocks having a particular size (e.g., 

8x8) in a specific image remains always the same. Therefore, this vindicates the SRIV 

features can represent the local changes because of splicing and copy-move attacks 

more accurately than the standard deviation based features used in [6]  and the histo-

gram-based features applied in [5]. We experimented our method with different block 

sizes as mentioned in Section 3.2 and 3.5. Consequently, we have varying dimension-

ality of features as listed in Table 2. The SRIV features are computed as below: 

Let 𝑍𝑘
𝑤×ℎ be the 𝑘-th LBP code values of all blocks in 𝐿𝑤𝑏×ℎ𝑏. Therefore, 

                                   𝑍𝑘
𝑤×ℎ = [

𝐿1,1
𝑏×𝑏(𝑘) ⋯ 𝐿1,𝑤

𝑏×𝑏(𝑘)

⋮ ⋱ ⋮
𝐿ℎ,1
𝑏×𝑏(𝑘) ⋯ 𝐿ℎ,𝑤

𝑏×𝑏(𝑘)
] ,   1 ≤ 𝑘 ≤ 𝑏2 ,                       (9) 

where 𝐿𝑢,𝑣
𝑏×𝑏(𝑘) is the 𝑘-th LBP code of that block. Then the 𝑘-th feature 𝐹𝑘  on the 

whole image is calculated as, 

                                                      𝐹𝑘 =∑∑𝐿𝑢,𝑣
𝑏×𝑏(𝑘)

ℎ

𝑣=1

  .                                                   (10)

𝑤

𝑢=1

 

To justify our argument as mentioned before that the SRIV features are more discrim-

inative and more effective than the standard deviation based features, we extracted fea-

tures by our approach using both SRIV and standard deviation. For a representative 

sample, we selected one authentic image (Fig. 4a) and its spliced version (Fig. 4b) from 

CASIA 2 dataset. We then plotted the extracted features in a graph (Fig. 5) where x-

axis represents feature number and y-axis represent the feature values. From Fig. 5, it 

is clearly visible that the SRIV feature values vary more sharply than those of standard 

deviation for both the original and its spliced image. This is also evidenced by the fact 

that the standard deviation of SRIV feature values for both the original and its spliced 

image (0.18, 0.17) are higher than those of standard deviation based feature values 

(0.16, 0.15). All of these evidences show the SRIV features are more discriminating 

and hence more effective than those for standard deviation. 

 

 
(a) 

 
(b) 

Fig. 4. Authentic image (a) and its spliced image (b) from CASIA 2 
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Fig. 5. Comparing the SRIV features with the standard deviation based features 

4 Experiments and results 

4.1 Description of datasets 

We have evaluated our proposed system using four publicly available and well recog-

nized benchmark datasets for image splicing detection: (i) Columbia gray [7], (ii) Co-

lumbia Uncompressed [8], (iii) CASIA 1 [9] and (iv) CASIA 2 [10]. We have summa-

rized the datasets used to evaluate our method in Table 1. 

Table 1. Summary of the datasets 

Dataset Image Size Image Type 
No. of Images 

Tampering Method 
Authentic Tampered Total 

Columbia 128 x 128 JPG 933 912 1845 Simple crop-and-paste 

Columbia 

Uncomp. 

757 x 568 - 

1152 x 768 
TIF, BMP 183 180 363 

Simple crop-and-paste, spliced im-

age from exactly 2 cameras 

CASIA 1 
384 x 256, 256 

x 384 
JPG 800 921 1721 

Photoshop with pre-processing; No 

post-processing 

CASIA 2 
240 x 160 - 900 

x 600 

JPG, TIF, 

BMP 
7491 5123 12614 

Photoshop with pre-processing 

and/or post -processing 

4.2 SVM Classifier and model validation 

We adopted SVM as classifier (LIBSVM [20]) as it shows promising performance in 

many application domains including splicing detection. Radial Basis Function (RBF) 

kernel was selected for this work. The regularisation parameter (𝐶) and variance of 

RBF kernel (𝛾) were chosen through grid-search method and sixfold cross-validation 

was used for model evaluation. For every experiment, similar to [5], we picked 5/6th of 

the tampered images and 5/6th of the authentic images to train the SVM classifier. The 

remaining 1/6th tampered images and 1/6th authentic images were used to test the trained 

classifier. MATLAB was used for feature extraction and data pre-processing. 
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4.3 Results and discussion 

We summarise the detection accuracy for features derived from block size of 4x4, 8x8, 

16x16 individually as well as their combined features (4x4 + 8x8 + 16x16) in Table 2. 

The effect of different sized block DCT varies from dataset to dataset. Our proposed 

method achieves detection accuracy of 85.64%, 94.49%, 95.40% and 99.76% over Co-

lumbia gray, Columbia Uncompressed, CASIA 1 and CASIA 2 datasets respectively. 

Additionally, the precision, recall and AUC (Area Under ROC curve) of our system is 

also reported in Table 2.   

Columbia gray dataset is a popular but older dataset with low resolution fixed di-

mension (128 x 128) JPG images. Our method performs best (85.64%) for block size 

of 8x8 on this dataset while block size 4x4 and 16x16 reduces detection accuracy by 

7% and 5%, respectively. Combined features from all three blocks provides 84.34% 

detection accuracy. Similar trend is observed for Columbia Uncompressed dataset 

where combining features from all blocks does not yield the best result. However, we 

achieved the best results by combining features for CASIA 1 (95.40%) and CASIA 2 

(99.76%) datasets. Our method has produced quite encouraging result in these datasets, 

which demonstrates the strength of the feature extraction and overall techniques used 

in our approach. 

Table 2. Overall detection accuracy in our proposed method with varying block size. Note that 

image in Columbia Uncomp., CASAI 1 and CASIA 2 are converted into gray scale 

Block 

Size 

 Feature  

Dimensionality 
Evaluation Columbia 

Columbia 

Uncomp. 
CASIA 1  CASIA 2  

4x4 16 

Accuracy (%) 78.5908 87.6033 72.8438 95.0844 

Precision 0.789 0.857 0.761 0.935 

Recall 0.773 0.900 0.718 0.945 

AUC 0.786 0.876 0.729 0.950 

8x8 64 

Accuracy (%) 85.6369 92.2865 93.5897 97.6453 

Precision 0.852 0.942 0.934 0.968 

Recall 0.859 0.900 0.947 0.975 

AUC 0.856 0.923 0.935 0.976 

16x16 256 

Accuracy (%) 80.8672 94.4904 87.7622 99.231 

Precision 0.803 0.944 0.875 0.988 

Recall 0.813 0.944 0.900 0.993 

AUC 0.809 0.945 0.876 0.992 

4x4 + 

8x8 + 

16x16 

336 

Accuracy (%) 84.336 94.2149 95.3963 99.7622 

Precision 0.830 0.944 0.946 0.996 

Recall 0.860 0.939 0.970 0.998 

AUC 0.844 0.942 0.953 0.998 

4.4 Comparison with recent methods 

Among various methods for detecting splicing and copy-move attacks (Section 2), two 

existing ones adopt both DCT and LBP in their systems and report good detection ac-

curacy. Since they have not reported results with all four datasets, to make a fair com-

parison, we implemented those two methods to get their detection capability for each 

dataset. The basic experimental setup remains the same as mentioned in Section 4.2. 

In [5], Zhang et al. found best accuracy for combined features extracted from block 

size 4x4, 8x8 and 16x16. They identified best parameters for SVM and RBF kernel 
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through grid-search method. In [6], Alahmadi et al. attained the best accuracy with 

16x16 blocks and LBP parameter P(neighbour) = 8, R(radius) = 1, SVM parameter 𝐶 

= 25 with RBF kernel 𝛾 = 2-5. We implemented their methods using their reported pa-

rameters. Table 3 depicts the comparison of detection accuracy among different meth-

ods across different datasets. It is clearly visible that our method’s overall accuracy is 

higher (up to 5%) than two existing state-of-the-art methods in all four benchmark da-

tasets. To the best of our knowledge, detection accuracy of 99.76% is the highest among 

all other methods available in the literature that deal with gray scale images. Our 

method outperforms others in terms of precision, recall and AUC in all cases except for 

recall in Columbia Uncomp. and precision in CASIA 1. Specially, our method attains 

better AUC, which is a more accepted performance metric, for all four benchmark da-

tasets.   

Table 3. Comparison of detection accuracies of the proposed method with [5] and [6] 

Dataset Evaluation 
Proposed 

Method 
Method in [5] Method in [6] 

Columbia 

Accuracy (%) 85.6369 81.1924 77.1816 

Precision 0.852 0.806 0.768 

Recall 0.859 0.827 0.772 

AUC 0.856 0.816 0.772 

Columbia 

Uncomp. 

Accuracy (%) 94.4904 92.8375 93.3884 

Precision 0.944 0.910 0.994 

Recall 0.944 0.950 0.872 

AUC 0.945 0.929 0.933 

CASIA 1 

Accuracy (%) 95.3963 92.5991 78.0886 

Precision 0.946 0.951 0.821 

Recall 0.970 0.909 0.755 

AUC 0.953 0.927 0.783 

CASIA 2 

Accuracy (%) 99.7622 84.1433 94.1965 

Precision 0.996 0.812 0.918 

Recall 0.998 0.793 0.935 

AUC 0.998 0.834 0.939 

5 Conclusion 

In this paper, we introduced SRIV, a novel feature extraction technique using which we 

proposed a robust model for detecting splicing and copy-move attacks on image data 

adopting both DCT and LBP in the mentioned order. These attacks change the pixel 

values in the spatial domain by introducing sharp edges, alien micro-patterns and so on. 

DCT shows excellent image pixel decorrelation and energy compaction properties 

which is used to capture the change in the spatial domain. Then, LBP is applied on the 

magnitude component of the 2D array returned by DCT to enhance the local changes 

among the neighbouring DCT coefficient values. Finally, SRIV is applied on the LBP 

image blocks to extract features. These features are used to train an SVM with RBF 

kernel to detect the tampered images. Experimental results confirm that our method 

outperforms other methods across four benchmark image forgery detection datasets. 

Future work will target detection of splicing and copy-move attacks on color images. 
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