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Abstract

Image retrieval and clustering are two important tools for analysing and
organising images. Dissimilarity measure is central to both image retrieval
and clustering. The performance of image retrieval and clustering algo-
rithms depends on the effectiveness of the dissimilarity measure.

‘Minkowski’ distance, or more specifically, ‘Euclidean’ distance, is the most
widely used dissimilarity measure in image retrieval and clustering. Eu-
clidean distance depends only on the geometric position of two data in-
stances in the feature space and completely ignores the data distribution.
However, data distribution has an effect on human perception. The argu-
ment that two data instances in a dense area are more perceptually dissim-
ilar than the same two instances in a sparser area, is proposed by psychol-
ogists. Based on this idea, a dissimilarity measure called, ‘mp’, has been
proposed to address Euclidean distance’s limitation of ignoring the data
distribution.

Here, mp relies on data distribution to calculate the dissimilarity between
two instances. As prescribed in mp, higher data mass between two data
instances implies higher dissimilarity, and vice versa. mp relies only on
data distribution and completely ignores the geometric distance in its cal-
culations.

In the aggregation of dissimilarities between two instances over all the
dimensions in feature space, both Euclidean distance and mp give same
priority to all the dimensions. This may result in a situation that the final
dissimilarity between two data instances is determined by a few dimen-
sions of feature vectors with relatively much higher values. As a result,
the dissimilarity derived may not align well with human perception.

The need to address the limitations of Minkowski distance measures, along
with the importance of a dissimilarity measure that considers both geo-
metric distance and the perceptual effect of data distribution in measuring
dissimilarity between images motivated this thesis. It studies the perfor-
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mance of mp for image retrieval. It investigates a new dissimilarity mea-
sure that combines both Euclidean distance and data distribution. In ad-
dition to these, it studies the performance of such a dissimilarity measure
for image retrieval and clustering.

Our performance study of mp for image retrieval shows that relying only
on data distribution to measure the dissimilarity results in some situations,
where the mp’s measurement is contrary to human perception. This the-
sis introduces a new dissimilarity measure called, perceptual dissimilarity
measure (PDM). PDM considers the perceptual effect of data distribution
in combination with Euclidean distance. PDM has two variants, PDM1
and PDM2. PDM1 focuses on improving mp by weighting it using Eu-
clidean distance in situations where mp may not retrieve accurate results.
PDM2 considers the effect of data distribution on the perceived dissimilar-
ity measured by Euclidean distance. PDM2 proposes a weighting system
for Euclidean distance using a logarithmic transform of data mass.

The proposed PDM variants have been used as alternatives to Euclidean
distance and mp to improve the accuracy in image retrieval. Our results
show that PDM2 has consistently performed the best, compared to Eu-
clidean distance, mp and PDM1. PDM1’s performance was not consistent,
although it has performed better than mp in all the experiments, but it
could not outperform Euclidean distance in some cases.

Following the promising results of PDM2 in image retrieval, we have stud-
ied its performance for image clustering. k-means is the most widely used
clustering algorithm in scientific and industrial applications. k-medoids is
the closest clustering algorithm to k-means. Unlike k-means which works
only with Euclidean distance, k-medoids gives the option to choose the
arbitrary dissimilarity measure. We have used Euclidean distance, mp and
PDM2 as the dissimilarity measure in k-medoids and compared the re-
sults with k-means. Our clustering results show that PDM2 has perfromed
overally the best. This confirms our retrieval results and identifies PDM2
as a suitable dissimilarity measure for image retrieval and clustering.
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1 Introduction

In this information age, a tremendous amount of data is collected ev-
eryday from different sources and stored in databases. This data has no
value unless they are effectively analysed to extract useful information and
knowledge. Information retrieval and clustering are two essential tools for
letting every organisation have the ability to analyse the data collected.
Information retrieval is the activity of obtaining information from a given
database that is relevant to the information needs of a user. Clustering is
the grouping of data instances into multiple sets, such that the instances
in the same set are more similar to each other than to those in other sets.

Images are an important part of available information and are becom-
ing an integral part of human communications. Organisations use them
as a part of their daily activities in various sectors including business,
medicine, education, and entertainment. The creation, storage, manipu-
lation, and transmission of images have become less costly and more ef-
ficient. People can even capture, store, transmit and print images using
their mobile telephones. Consequently, the quantity of images and their
users are growing rapidly. For example, Google, Facebook and Instagram
deal with millions of images. This presents a big challenge for those who
design and implement retrieval and clustering systems.

Evaluation of dissimilarity between two instances has a key role in many
different techniques and algorithms introduced for information retrieval
and clustering. For example, in content-based information retrieval, the
task is to rank instances in a given database based on their similarities to
a given query instance [6]. Whereas in clustering, the task is to group data
into clusters based on their similarity. One of the main challenges relating
to the indexing or grouping of similar images, is the measurement of their
dissimilarity for organisation and retrieval purposes.

Similarity measure is a numerical value to show how alike two objects are
and often falls between 0 (no similarity) to 1 (complete similarity). On
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the other hand, a dissimilarity measure is a numerical value that shows
how different two objects are, and can have the value from 0 (objects are
similar) to ∞ ( objects are different).

1.1 Dissimilarity measures commonly used in im-
age retrieval and clustering

In datasets, an entity is represented as a data instance defined by a fixed
number of selected features or properties. Let M be a collection of N data
instances where each instance x is represented as d-dimensional feature
vector, x = {x1, x2, ..., xd}, and xi be the ith dimension of the vector. Let
D(x, y) be the measure of dissimilarity of two instances x and y.

The analysis of image dissimilarity in many areas has been dominated by
geometric models [6, 117]. These models represent objects as points in cer-
tain coordinate space, such that the observed dissimilarity between two
data instances, D(x, y), correspond to distances between the respective
points. The higher the distance between x and y, the greater dissimilar-
ity between them. Minkowski distance (also known as lp where p > 0) is
the most widely- used distance measure [6].

The Minkowski distance of x and y is calculated by aggregating their ge-
ometric distances in every dimension. Euclidean distance (also known as
l2 − norm) is a popular choice of distance measure in image retrieval and
[6, 135] clustering [110].

1.2 Motivation

Although Minkowski distance, specifically Euclidean distance, has per-
formed well in many application they have limitations which we will dis-
cuss in the following section. To address these limitations a data depen-
dent dissimilarity measure, mp has been proposed [5]. Overcoming the
limitations of Minkowski distance, along with the importance of a dissim-
ilarity measure that consider both geometric distance and the perceptual
effect of data distribution motivated this thesis.
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1.2.1 Limitations of Minkowski distances

Minkowski distance (e.g. Euclidean distance) has two major limitations.
It has been observed that the performance of geometric distance measures
is not consistent in different datasets with varied data distributions [6].
There is an argument that the variation in performance of geometric dis-
tances may occur because they only rely on the geometric position of two
instances in the feature space and completely ignore the data distribution.
Psychologists have expressed their concerns about geometric distance in
measuring the dissimilarity between two instances [6, 62, 117]. They have
argued that data distribution has an influence on the judged similarity be-
tween two data instances. Karmasul [62] introduced a similarity model
which suggests two instances in a relatively dense region would be less
similar than the same two instances located in a less dense region. For ex-
ample consider evaluating the similarity between two red apples in two
different contexts, where the two red apples are among green apples as
shown in Figure 1.1 and among red apples as shown in Figure 1.2.

	 	
	 	

	
	 	 	

	 	 	 	

	

Figure 1.1: Two red apples in a group of green apples look more similar.

	
    

 
   

    

Figure 1.2: Two red apples in a group of other red apples look more dis-
similar compared to Figure 1.1.

The two red apples among green apples are perceptually more similar
than the same two red apples among other red apples. The same two red



4

apples that have the same geometric distance in a specified feature space
among other red apples look perceptually more dissimilar only because
there are more instances of the same kind in that context. This highlights
the important role of data distribution in evaluation of dissimilarity.

The other limitation with the Minkowski distance measures is that it gives
the equal weight to all dimensions when combining distances. This may
result in a situation where the dissimilarity between two instances is deter-
mined by a few dominant dimensions. There is a tendency that the small
number of the dimensions of feature vectors with relatively much higher
values dominate the overall dissimilarity value. As a result, the dissimilar-
ity derived might not align well with how humans perceived dissimilarity.

1.2.2 Mass-based dissimilarity

To address the discussed limitation of Minkowski distance measures with
ignoring the data distribution, a data dependent dissimilarity measure has
been proposed [5]. This measure is called mp and it focuses on the data
distribution of the dataset instead of simply measuring the geometric dis-
tance between two instances. The measure, mp is developed based on a
dissimilarity model proposed by Krumhausl [62] and a psychological ar-
gument suggesting that two instances in a sparse region are perceptually
more similar than in a dense region. In this measure, the dissimilarity
between two instances, x and y, is measured by considering data distribu-
tion.

1.3 Thesis aims

Motivated by the need to address the limitations of Minkowski distance
measures, along with the importance of a dissimilarity measure that con-
siders both geometric distance and the perceptual effect of data distribu-
tion in evaluating the similarity between images, this thesis aims to:

• Investigate suitability of mp dissimilarity measure for image retrieval.

• Develop a new dissimilarity measure that incorporates the geometric
distance and data distribution between two images in the feature
space.

• Study the performance of the proposed dissimilarity measure for im-
age retrieval.
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• Study the performance of the proposed dissimilarity measure for
clustering of images.

1.4 Thesis Contribution

This thesis makes the following main contributions:

1. It studies the suitability of using mp as a dissimilarity measure for
image retrieval.

2. It introduces a new dissimilarity measure called Perceptual Dissim-
ilarity Measure (PDM), for images. The proposed measure deter-
mines the dissimilarity between two images in the feature space based
on Euclidean distance in a specified feature space and the density of
data in the region covering the two instances. Two variants of the
new dissimilarity measure has been proposed: PDM1 and PDM2.
The two variants of the proposed dissimilarity measure have the fol-
lowing characteristics:

• They incorporate the perceptual effect of data distribution on
the human similarity judgment with geometric distance.

• The proposed weighting system in both variants moderates the
potential undesired effect of a few dimensions with much higher
values in calculating the total dissimilarity with Euclidean dis-
tance and mp.

3. It studies the effect of considering region density along with geomet-
ric distance in measuring the dissimilarity between images in image
retrieval. It analyses the relationship of the proposed perceptual dis-
similarity measure with Euclidean distance, mp and compares their
performances.

4. It studies the effect of considering the perceptual effect of region den-
sity along with geometric distance in clustering of images. It analy-
ses the relationship of the proposed perceptual dissimilarity mea-
sure with Euclidean distance and mp in clustering images. It com-
pares the performances of PDM with Euclidean distance and mp in
K-medoids. It also compares their results with k-means that uses
Euclidean distance as the dissimilarity measure.
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The results of our first contribution and PDM1 stated in the second contri-
bution are published in:

• Hamid Shojanazeri, Shyh Wei Teng, Dengsheng Zhang, Guojun Lu,
A Hybrid Data Dependent Dissimilarity Measure for Image Retrieval,
in Digital Image Computing: Techniques and Applications (DICTA),
2017.

The results of the PDM2 stated in the second contribution, along with third
contribution are published in:

• Hamid Shojanazeri, Shyh Wei Teng, Dengsheng Zhang, Sunil Aryal,
guojun Lu, A Novel Perceptual Dissimilarity Measure for Image Re-
trieval, in Image and Vision Computing New Zealand (IVCNZ), 2018.

The results of our fourth contribution are also published in:

• Hamid Shojanazeri, Sunil Aryal, Shyh Wei Teng, Dengsheng Zhang,
guojun Lu, Image clustering using a similarity measure incorporat-
ing human perception, in Image and Vision Computing New Zealand
(IVCNZ), 2018.



2 Related Works

This chapter presents a critical review of the literature relevant to the re-
search presented in this thesis. This includes image retrieval, clustering
and dissimilarity measures. The focus of this thesis is on developing a
new dissimilarity measure for image retrieval and clustering. Images are
represented using extracted features. Feature extraction is a common com-
ponent in image retrieval and clustering. More specifically, this chapter
presents the image retrieval framework and methods proposed in this area
along with image feature extraction methods. Also, we review the clus-
tering methods proposed in the literature and the common dissimilarity
measures used in image retrieval and clustering.

2.1 Image retrieval

The development of the Internet, different image capturing devices, such
as digital cameras, smart phones and cheaper storages, has led to a rapid
increase in the number of available images and users. Efficient image re-
trieval tools are required in various domains, including remote sensing,
education, fashion, crime prevention and medicine. As a result, many
general purpose image retrieval methods have been developed that can
be categorised into two groups: text-based and content-based [72].

The text-based method was first introduced in 1970s. In this method, the
images are manually annotated by text descriptors, which are then used
by a database management system (DBMS) to perform image retrieval. There
are two main limitations with this method. First, a considerable level of
human labour is required for manual annotation. Second, is the anno-
tation inaccuracy which is due to the subjectivity of human perception
[32, 72, 102]. To overcome the above limitations in a text-based image re-
trieval system, content-based image retrieval (CBIR) was introduced dur-
ing the early 1980s . In CBIR, images are represented by their visual con-

7
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tents, such as colour, texture and shapes. They are then ranked based on
their similarity to the query [72]. Therefore effective feature extraction
methods and dissimilarity measures are the essential components of this
method. Some of the early stage commercial and prototype developments
in CBIR systems are QBIC [15] , Photobook [95], Virage [46], Netra [78]
and SIMPLIcity [121]. In recent years ,image retrieval has become a part
of Google search engine and many other softwares, which have been de-
veloped to manage the photo libraries based on their contents.

Humans tend to use high-level features (concepts), such as keywords and
text descriptors, to interpret images and measure their similarity. The fea-
tures automatically extracted using computer vision methods are mostly
low-level features e.g. colour, texture, shape and spatial layout [72]. There
is a gap between the extracted low-level features and high-level concepts
used by humans. The gap between the high-level concepts in a user’s
mind and, low-level features extracted from images, effect the performance
of CBIR systems [142].

Three types of query types have been mainly discussed in CBIR in [32,
72]. Type 1: Retrieval based on low-level features such as colour, texture
and shape. A query from this type is query by example, ‘find pictures
like this’. Type 2: Objects retrieval of a given type identified by extracted
features. The example of this query type is, ‘searching an object inside
an image such as a human in an image of a beach’. Type 3: Retrieval
by concept presented in the image, this involves a significant amount of
high-level logic about the purpose of the objects or scenes in an image. The
example of this type of query is ’named events’, of pictures with emotional
or religious significance. Considering the query as, ‘searching pictures of
a festival’, this includes images of people with happy facial expressions
in addition to many objects that can be related to a ceremony. Therefore,
the link between different objects should conclude a concept. The gap
between low-level features and high-level concepts are reflected in queries
of Type 2 and 3 queries.

In Type 1 query retrieval users are usually required to submit an exam-
ple image as a query. However, in a case where the user does not have
an example image, semantic image retrieval, as in Type 2 and 3, is more
convenient for the user. In Type 2 and 3, the user can use keywords as the
query, unlike Type 1, which requires the user to have an example image.

The survey in [72] reviews the methods that aim to bridge the semantic
gap between low-level features and high-level concepts and mainly cate-
gorises them into: using object ontology, using machine learning tools and
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using relevance feedback (RF) in retrieval method.

The Type 3 query is complicated as it targets multiple objects and the link
between them. The query of Type 2 usually involves image segmentation
[72]. Image segmentation, partitions an image into non-overlapping re-
gions, each of which is homogeneous in one or more features and maximal
in terms of this homogeneity. Type 1 query involves using low-level fea-
tures from entire image for retrieval purposes. There are two fundamental
components in image retrieval systems: (1) image feature extraction, (2)
dissimilarity measure. A schematic flow of an image retrieval framework
is illustrated in Figure 2.1.
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Figure 2.1: Image retrieval framework

In the following section we will review different components of an image
retrieval framework with the focus on feature extraction and dissimilarity
measurement.

2.2 Image Features

An image retrieval method is likely to be more effective if it can extract
distinct visual information from images. Some of the methods for feature
extraction aim to extract the visual properties from the whole image, while
some other methods first detect distinct key areas (points), then extract in-
formation from the neighbourhood of detected areas. A robust represen-
tation of an image can be achieved using the features that are invariant
to image transformations such as rotation, scale, translation and affine de-
formations. In the following, we will review various feature extraction
methods.
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2.2.1 Colour features

Colour is one of the most important features, and they are defined by
colour spaces, such as RGB, LUV, HSV, HMMD [134]. A histogram is a
helpful tool in colour image analysis [68]. The colour histogram describes
the colour distribution of an image. It quantises a colour space into dif-
ferent bins and counts the number of pixels belonging to each colour bin.
They are invariant to the rotation and translation of image content. Many
researchers have used colour histograms and developed variations of it to
represent the images [47, 54, 68, 93, 111]. Colour histograms do not capture
the spatial information. Colour moments are one of the simplest features.
They are used in many retrieval methods [34, 35, 42, 56, 98, 118, 128]. The
common moments are mean, standard deviation and skewness. Usually
they are calculated for each colour channel (component) separately, there-
fore resulting in nine features that form the feature vector. These features
are useful when they are calculated for region or object.

The colour coherence vector (CCV) incorporates spatial information into the
basic colour histogram. The colour structure descriptor (CSD) is also a histogram-
based descriptor. The CSD histogram is created by moving a structuring
element (e.g., square) throughout the image. Bin i of the histogram indi-
cates how many times the structuring element contains at least one pixel
with colour. If the window is of size 1 pixel, the CSD is an ordinary his-
togram. The dominant colour descriptor (DCD) is also a variation of his-
togram which selects a small number of colours from the highest bins of a
histogram [34]. The number of colours (bins) selected as DCD depends on
the threshold of bin height. MPEG-7 recommends that 1-8 colours are suf-
ficient to represent a region. Unlike the traditional histogram, the selected
colours in DCD are adapted to the region instead of being fixed in the
colour space. Thus, the colour representation with DCD is more accurate
and compact than the conventional histogram. However, the similarity or
distance calculation of two DCDs needs many-to-many matching.

2.2.2 Texture features

Another important feature that is widely used in image retrieval (due to
its discriminative power) is texture. Texture extraction methods have been
broadly classified into spatial and spectral methods in [134]. In spatial
method, texture features are extracted by computing the pixel statistics or
finding the local pixel structures in the original image domain. The spatial
texture feature extraction methods can be further classified as structural,
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statistical and model based. Structural methods describe textures using a
set of texture primitives (texon or texture elements) and their placement
rules [99, 112]. Textons are organised into a string descriptor, and syntac-
tical pattern recognition methods are used to find the similarity between
two descriptors. Local binary pattern (LBP) is one of the powerful texture
features in this category [123]; a special case of texture spectrum proposed
in 1990 [90, 122].

Statistical texture features characterises texture as a measure of low-level
statistics of grey level images. The common spatial domain for statistical
features are moments [74, 99], Tamura texture features [50, 112, 130] and
features derived from grey level co-occurrence matrix (GLCM) [74, 92].
Statistical features are compact and robust because they are derived from
great support. However, they are not sufficient to describe the large vari-
ety of textures.

In model based methods, texture is interpreted using stochastic (random)
or generative models. Model parameters characterise the underlying tex-
ture property of the image. Examples of popular texture models are; Markov
random field (MRF) [17, 24, 71, 74, 81, 118], simultaneous auto-regressive
(SAR) model, and fractal dimension (FD) [17, 24]. As these models involve
optimisation, they are usually computationally expensive.

In spectral texture, feature extraction methods, an image is transformed
into frequency domain and then the feature is calculated from the trans-
formed image [67] . The common spectral methods include Fourier trans-
form (FT), discrete cosine transform (DCT) [77], wavelet [34, 92], and Gabor
filters [80, 112, 137, 140]. FT and DCT are very fast to compute but are not
scale and rotation invariant. Wavelet is both efficient and robust, however
it only captures horizontal and vertical features. Among them all, Gabor
features are most robust because they captures image features in multi-
orientations and multi-scale. Recently, researches on multi-resolution anal-
ysis have shown that curvelet features have significant advantages over
Gabor features and wavelet features, because curvelet features are more
effective in capturing curvilinear properties, like lines and edges [140].

2.2.3 Shape features

Shape is known to be an important cue for human to identify and recog-
nise real world objects. Shape features have been employed for image
retrieval in many applications. Shape feature extraction methods can be
broadly classified into two major groups: contour-based and region-based



12

methods [136]. Contour-based methods calculate shape features only from
the boundary of the shape, while region-based methods extract features
from the entire region. Because contour-based methods use only a portion
of the region, they are more sensitive to noise than region-based methods,
as small changes in the shape significantly affect the shape contour. There-
fore, image retrieval methods usually employ region-based shape features.
A number of commonly used simple region shape descriptors are; area,
moments, circularity and eccentricity. The area-based descriptor is used
in a number of works [31, 82, 115, 128, 130]. Circularity and moments are
used in [31, 128, 130]. Circularity measures the ratio of area to boundary.
Eccentricity is the ratio of the length of the major axis to that of minor axis
[82]. Individual simple shape descriptors are not robust. Therefore, they
are normally combined to create a more effective shape descriptor.

In order to retrieve an image from a large database, descriptors need to
be invariant to rotation, scale and translation. Image moments as region
based shape features are introduced as good candidates that meet these
criteria. However, geometric image moments suffer from information re-
dundancy and high computational complexity. Zernike moments intro-
duced by [113] using orthogonal basis function claimed to address the
problem with information redundancy and computational complexity of
geometric moments.

2.2.4 Local features

Local features have greatly improved image representation and recogni-
tion performance [73]. The purpose of local features is to provide a robust
representation of the local structures that are essential to images and in-
variant to many image transformations, such as scaling, rotation, transla-
tion and affine deformation. Local features have to be stable, repeatable
and distinctive, so that images can be matched through the measurements
of local features. The extraction process of local features can be divided
into four phases: key-points detection, region refinement around each
key-point, region content normalisation and descriptor computation. Key-
points detection can be classified into two main methods. One is dense
sampling that divides an image into dense grids and set key-points on
the crosses of the grids. It then extracts overlapped regions around key-
points. This method aims to provide a full coverage of the whole image.
The second method is sparse interest point detection. This method aims
to detect a set of key-points that can be reliably localised under varying
imaging conditions, viewpoint changes, object transformation and also in
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the presence of noise [73].

There have been several key-points detection methods proposed in the
past. The Hessian detector searches for image locations with strong deriva-
tives in two orthogonal directions [10]. The popular Harris/Förstner de-
tector was explicitly designed for geometric stability [41, 48]. A detec-
tor for blob-like features that searches for scale space extrema of a scale-
normalised, Laplacian of Gaussian (LoG) proposed in [70]. It is shown in
[76] that the scale-space Laplacian can be approximated by a difference of
Gaussian (DoG). The Harris-Laplacian operator was proposed to increase
the discriminative power compared to the Laplacian and DoG operators
[83, 84]. The discussed methods up to here extract local features that are
invariant to translation and scale changes. The other important challenge
in many applications is to find features that can be reliably extracted un-
der large viewpoint changes [73]. Both the Harris-Laplace and Hessian-
Laplace detectors can be extended to yield affine covariant regions. A dif-
ferent method for finding affine covariant regions has been proposed by
Matas et al, which starts from a segmentation perspective [9].

After key-points detection and scale invariant region refinement, the next
step is normalisation for orientation invariance. This is typically done
by rotating the region by the angle of its dominant orientation. Once
regions of interest have been extracted, their content needs to be repre-
sented. The Scale Invariant Feature Transform (SIFT) introduced by [76]
has been proven to have generally good performance with any kind of
region detector. The SIFT descriptor encodes the image information in a
localized set of gradient orientation histograms to achieve robustness to
illumination variations and small positional shifts. For each (orientation-
normalised) scale invariant region, image gradients are sampled into a
regular grid, and are then entered into a larger 4 × 4 grid of local gra-
dient orientation histograms. Computation efficiency became a concerned
while the local feature detector and descriptor became more popular. The
Speeded-Up Robust Features (SURF) method [9] has been designed as an
efficient alternative to SIFT.

For specific object recognition, interest point detector in conjunction with
patch descriptor is quite effective due to its repeatability and distinctive-
ness. While for generic object recognition, such a sparse set is often insuf-
ficient. Instead, dense sampling of local features is suggested for category
level recognition due to its full coverage of an image [89]. A combina-
tion of dense sampling and key-points detection, to form dense interest
points proposed in [116]. Dense interest points are repeatable and cover
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the whole image.

The feature extraction using dense local descriptors is composed of the fol-
lowing three steps: (i) extraction of local image features (e.g.SIFT descrip-
tors), (ii) feature quantisation to build visual dictionary, (iii) encoding of
the quantised local features in an image descriptor (e.g. a histogram of the
quantised local features).

The procedure of obtaining image level features from local descriptors is
shown in Figure 2.2. To make use of local features for the encoding phase,
it is required to partition the local descriptor space into informative re-
gions. This step is called feature quantisation. These regions are called
visual words and a collection of visual words is called a visual vocabu-
lary /dictionary. Clustering is used for feature quantisation to produce the
visual words. K-means is the most widely used clustering algorithm in
this step for feature quantisation. The next step involves the encoding of
quantised local features. The baseline method in for this phase is bag of
words (BOW), introduced in [25, 66, 107]. It computes a histogram of vi-
sual words (quantised local features), and basically counts the frequency
of the occurrence of each visual word in the image. The effectiveness of
feature extraction has considerable effect on the performance of image re-
trieval.

	

Dense Local 
Features  Clustering 

Visual Dictionary 

Encoding	

Image	Level	Features	
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Figure 2.2: Dense local features extraction procedure
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2.3 Dissimilarity measures in image retrieval

Once images are represented by their extracted features, a user can search
for similar images in the database. Dissimilarity measurement is the sec-
ond component in CBIR in which the query image is compared with other
database images. Evaluation of similarity between the query image and
the database images is performed by calculating the difference between
the query feature vector and the database feature vectors by using dissim-
ilarity measures. In the following sections we present two categories of
dissimilarity measures: geometric distances and non-geometric dissimi-
larity measures.

2.3.1 Geometric distances

Geometric distances are dissimilarity measures which are based on geo-
metric models. They mainly rely on the geometric position of data in-
stances in the feature space and are the most widely used measures in
image retrieval. In the following section we review some of the most com-
monly used ones in image retrieval. The comparative study in [135] eval-
uated the performance of six common dissimilarity measures in image re-
trieval. The measures compared in [135] are as follows.

Minkowski distance: Minkowski (lp − norm) distance is defined as:

lp(x, y) = ‖x− y‖p =

(
d

∑
i=1
|xi − yi|p

) 1
p

(2.1)

where if p = 1, l1 is city block distance, and if p = 2, l2 is Euclidean
distance (ED).

Cosine distance: Cosine distance is a dissimilarity measure that measures
the cosine of the angle between two vectors using the inner product of
the vectors. This distance measure focuses on the direction of two vectors
rather than the length of them and it is defined as:

dcos(x, y) = cos (θ) =
x · y

‖x‖ · ‖y‖ =
∑d

i=1 xiyi√
∑d

i=1 x2
i

√
∑d

i=1 y2
i

(2.2)

X2 Statistics: Chi square or X2 statistics is used to investigate if the distri-
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bution of features is different from each other. It is defined as:

dx2 (x, y) =
d

∑
i=1

xi − Ei

Ei
(2.3)

where Ei =
xi+yi

2 [135].

Histogram intersection: The histogram intersection proposed by to mea-
sure the similarity between colour histograms of two images. It has the
ability of partial matching where sizes of features vectors do not match.
For example the size of feature vector of the query image is less than the
size of the database image feature vectors [135]. It is defined as:

dhist (x, y) =
d−1

∑
i=1

min (xi − yi)

|x| (2.4)

Quadratic distance: Unlike the other mentioned distances that only con-
sider similarity between each dimension, and do not make use of infor-
mation across dimensions, quadratic distance is proposed to consider the
similarity across dimensions.

dquad (x, y) =
[
(x− y)t C (x− y)

] 1
2 (2.5)

where C = [cij] is N × N matrix of similarity coefficient between dimen-

sions i and j. C = [cij] is given by cij =
1−dij
dmax

where dij =
[
xi − yj

]
Mahalanobis distance: Mahalanobis distance is special form of quadratic
form distances where the correlation between features has been consid-
ered by using covariance matrix. It is defined as :

dmah =
[
(x− y)Σ−1 (x− y)

] 1
2 (2.6)

in a case if features xi are statistically independent and have different vari-
ances it can be defined as:

dmah (x, y) =
N−1

∑
i=0

(xi − yi)
2

σ2
i

(2.7)

which is the weighted l2 distance. This distance gives more weight to di-
mension with smaller variance and gives less weight to dimension with
larger variance [135].
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The results of the experiments for image retrieval using shape features in
[135] show that ED, along with city block and x2 distance, had the best per-
formance. In [79], authors compared the performance of sum of squared
of absolute differences, sum of absolute difference, maximum value, Can-
berra, city block, Minkowski (p=3) and ED in image retrieval. In the fol-
lowing section we mention the definition of these distances that are not
defined in the above distances.

Sum of absolute difference: The sum of absolute difference (SAD) is pro-
posed by [100] distance metric and frequently used for as dissimilarity
measure in CBIR [100]. This distance calculates the the sum of the dif-
ferences of the absolute values of the two feature vectors. This distance
metric is defined as:

dSAD (x, y) =
d

∑
i=1
|xi| − |yi| (2.8)

Sum of the squared absolute difference: This metric is a special case of
SAD where the dissimilarity is calculated based on the sum of the squared
differences of absolute values of the two feature vectors. This distance
metric is defined as:

dSSAD (x, y) =
d

∑
i=1
|xi|2 − |yi|2 (2.9)

The squaring highlights the big differences.

Maximum distance: This maximum distance metric also known as Cheby-
shev distance, is used to get the largest value of the absolute differences of
corresponding dimensions in feature vectors [101] and defined as:

dmax (x, y) = max (|xi| − |yi|) (2.10)

The distance value is the maximum of the difference of the features of
the pair of images, which shows the maximum dissimilarity of the two
images.

Canberra: To normalise the large distance values from city block distance
Canberra distance has been proposed which is the weighted City block L1
distance. It is defined as:

dCanberra (x, y) =
d

∑
i=1

|xi − yi|
|xi|+ |yi|

(2.11)
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The results of the study [79] on the mentioned distances show that ED
performed the best and above all other distance measures in this study.

2.3.2 Non-geometric dissimilarity measures

The other category of dissimilarity measures are the non-geometric ones
that do not rely on the geometric distance between of two data instances.
These dissimilarity measures are not commonly used in image retrieval. In
the following section we describe one of the recently developed measures
that focuses on data distribution.

Mass-based dissimilarity : Recently, to address the limitation of Minkowski’s
distance with ignoring the data distribution, a mass-based dissimilarity
has been proposed by [6]. This dissimilarity measure is called mp and
is based on the data distribution. The name of mass-based dissimilarity
comes from the fact that mp calculates the dissimilarity based on the data
mass between two instances. The main idea behind this measure is the
perceptual effect of data distribution as described in Chapter 1, Section
1.2.1. The number of data (data mass) in the region covering two instances
has been used as a proxy of data distribution. In the next chapter, we will
describe this measure in greater detail and study the suitability of this dis-
similarity measure for image retrieval.

2.4 Clustering

Clustering is the unsupervised classification of data (observations, objects
and feature vectors) into groups or clusters [53]. The objective of clustering
is to group the data into clusters in such a way that maximises the similar-
ity between data instances within a same cluster (intra-clusters) and min-
imises the similarity between data instances from different clusters (inter-
clusters). The need to organise the huge amount of unstructured data into
meaningful groups, categories, partitions, or classes in different domains
has made clustering a valuable tool in data analysis [53, 58]. Clustering has
been used to analyse and find hidden patterns in data for different appli-
cations such as pattern recognition, machine learning [20, 36, 37], statistics,
biology, sociology [7, 85, 96, 104] and information retrieval [21, 30, 58, 94].
More specifically, it has been used for image clustering [86, 106], image
retrieval [19, 103, 132] and image segmentation [4, 45, 57, 63, 87]. Clus-
tering procedure consists of feature extraction, definition of dissimilarity
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measure and clustering or grouping [53]. The image feature extraction has
been discussed in Section 2.2. Later in this chapter, the dissimilarity mea-
sures used in clustering methods will be reviewed. First in the following
section, we will provide an overview of different clustering methods.

Before the overview of clustering methods, we provide the notations and
definitions as follows. A data instance is represented by a feature vector
as Xi = {xi1, xi2, ..., xid} where d is the dimension of the feature space. A
Cj is a group of data instances assigned to a cluster and expressed by :

Cj =
{

Xj
1, Xj

2, ..., Xj
nj

}
, where nj is the number of data instances in cluster

Cj.

2.4.1 Clustering methods

Clustering output can be classified as hard or soft (fuzzy) assignment. In
hard clustering, each data instance belongs only to one cluster, while in
fuzzy, each data instance belongs to each cluster with a certain probability
[53]. Clustering methods are mainly classified into two main categories,
”Hierarchical” and ”Partitioning” algorithms [52, 53]. In hierarchical clus-
tering the output is a nested series of partitions and it has two main cat-
egories: agglomerative or divisive. In agglomerative methods, the algo-
rithm considers each data instance as a distinct (singletone) cluster and
successively merges them based on a stopping criterion. Divisive algo-
rithms, on the contrary, consider the entire dataset as a single cluster and
start splitting it into other clusters until meeting a stopping criterion. Par-
titioning algorithms, partition the dataset into a number of clusters and
optimise (usually locally) a clustering criterion [52].

2.4.1.1 Hierarchical clustering

Hierarchical clustering methods have mostly been used in biology, sociol-
ogy and behavioural sciences. Divisive algorithms are not very popular
and limited to few [58]. The most popular agglomerative algorithms are
single-link [108], complete-link [29, 61], average-link and Ward’s method
[85, 124]. The main attribute that characterises the variation of hierarchical
clustering algorithms is their criterion in merging two clusters, that is, the
method of evaluation of similarity between clusters [53, 58].

The single-link clustering is defined by considering the distance between
a pair of clusters as the minimum distance between all pairs of data in-
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stances. Minimum distance between pairs of clusters is the criterion for
combining them. Despite of simplicity of single-link for implementation,
it has not achieved good results compared to some other agglomerative
clustering methods [58].

The complete-link [29, 61] is a variation of single-link where the distance
between a pair of clusters is defined as the maximum distance between
all pairs of data instances [53]. The average-link is another variation of
single-link which use the average distance instead of maximum or mini-
mum distance. Producing clusters of outliers has been cited as the draw-
back of this method. The complete-link algorithm has the tendency of
producing compact clusters, while in single-link clusters, they are usually
elongated [53, 58].

In Ward’s [124] method, the criterion to merge two clusters is that it min-
imises the sum of squared errors within the cluster. In this algorithm two
clusters will join if the resulted cluster minimises the total square error
within that cluster using ED between centroids. Although this method
is recognised to achieve high accuracy among hierarchical methods, but
there is a concern that it has the tendency of producing spherical clusters.
This can impose some limitations on its performance in different applica-
tions [53, 58].

Generally the procedure in hierarchical methods can be summarised as the
following steps [53, 58]:

• Calculating the dissimilarity matrix between all pairs of data instances
in the dataset, considering each data instance as a cluster.

• Merging each cluster with the most similar cluster based on the cri-
terion of similarity in the algorithm and updating the dissimilarity
matrix to reflect the merge operation.

• Stopping in case of meeting stopping criterion or repeat the previous
step.

Some of stopping criteria proposed in the literature reviewed in [58] are as
follows: number of iteration when it reaches to n-1, predefining K num-
ber of clusters, all data instances are in one cluster, defining a threshold
for the average dissimilarity within a cluster, maximum distance between
data instances in clusters reaches a threshold, and when relative similarity
within cluster reaches a threshold.

Hierarchical methods are more versatile than partitioning methods, how-
ever they are more expensive in terms of time and computation complex-
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ity [53, 58]. Also, in the majority of these methods, finding a center or
representative for clusters is not addressed.

2.4.1.2 Partitioning clustering

Partitioning clustering methods output a single partition of the dataset
(consists of multiple clusters), instead of the dendrogaram in hierarchi-
cal methods. Unlike hierarchical methods that build the clusters grad-
ually, partitioning methods learn the clusters directly [12]. Partitioning
methods build clusters either by relocating the data instances between ini-
tial defined subsets or by identifying highly populated areas as clusters.
This leads to two classes of methods, namely, relocating partitioning and
density-based partitioning methods.

Relocating partitioning clustering: These methods optimise an objective
function by relocating the data instances between clusters. A further cat-
egorisation for these methods is probabilistic methods , k-means and k-
medoids [12]. In the following we review these methods.

Probabilistic methods: In these methods the underlying assumption is
that the data instances to be clustered are drawn from a mixture model of
several distributions. The main assumption is: the area around the mean
of the model that the data instances are drawn from constitutes a clus-
ter. Hence, the cluster is associated with the some parameters from the
distribution such as mean and variance [12, 53]. The probability (likeli-
hood) of the assignment of a data instance to a distribution can be esti-
mated that it leads to a soft assignment (each data instance belongs to a
distribution with a certain likelihood). Expectation Maximisation (EM) as
a well-known method in this category and has two steps: (i) perform the
soft assignment (ii) find the approximation to a distribution given the soft
assignment. This leads to finding a mixture model parameters that max-
imise the log-likelihood. The process continues until the log-likelihood
convergence is achieved. There are other methods to find a better local
optimum which are comprehensively reviewed in [12].

k-means :As there are a large number of possible ways to partition a dataset
into k number of clusters, finding a best way is impossible. Hence, parti-
tioning methods usually optimise a criterion function which is either de-
fined locally (within a cluster) or globally (for the whole dataset) [52, 53,
58]. Sum of squared error (SSE) is the most intuitive and widely used cri-
terion (objective) function in partitioning methods. The SSE for k clusters
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of a dataset, X is defined as:

SSE(X, k)
k

∑
j=1

n

∑
i=1

∥∥∥X(j)
i − Cj

∥∥∥ (2.12)

where Cj is the centroid of the jth cluster and Xi is a data instance in X. Par-
titioning clustering methods has the advantage to determine the number
of clusters that is expected as the output. Generally, partitioning methods
using SSE is consists of the following steps [53]:

• Selecting the initial partitions of the dataset with specified number
of clusters and centers.

• Assigning each data instance to a closest cluster center and recom-
puting the cluster center based on the new cluster.

• Updating the representative of the clusters.

• Repeating the two previous steps until it converges and cluster mem-
bership becomes stable.

k-means [49] is the most common and well-known of partitioning meth-
ods that has been widely used in scientific and industrial applications [12].
It has been proposed using the idea known as Forgy’s method [58, 126].
The name comes from the partitioning of the dataset to k number of clus-
ters which are represented by the mean (average) of data instances in each
cluster called centroid. k-means makes use of SSE as objective function.
Despite the popularity of k-means, there are some concerns about it. The
results strongly depend on the initialisation step where centroids are se-
lected randomly, as there can be a huge difference between local and global
optimum, the right choice of k, the sensitivity of k-means to outliers and
the fact that it just supports the numerical attributes (features). Also, the
choice of SSE as the objective function limits k-means to work only with
ED. Many studies have proposed different methods to address these lim-
itations, a comprehensive review of k-means extensions can be found in
[12, 52]. We will discuss the details of k-means method and its depen-
dency to ED in Chapter 5. K-means has been frequently used in image
analysis.

The study [106] used ’colour moment’ and Block Truncation Coding (BTC)
as the features to represent the images from Corel dataset. Authors have
proposed to use k-means algorithm to cluster the dataset images,and their



23

results show an acceptable performance. The other study in [86], exploited
two different clustering methods to group the images represented by colour
features. In this study, authors first have applied hierarchal clustering,
then, the k output clusters of this stage have been used as the input for
k-means clustering. Finally the clustered images have been used for the
purpose of image retrieval to improve the accuracy of top ranked images.

We have discussed the image segmentation as a component in some im-
age retrieval when dealing with objects in image in Section 2.1. The study
in [63], proposed a variation of k-means clustering where initial centers
are selected using a density estimation method. The proposed clustering
method has been used for image segmentation based on colour features.
Also, k-means has been used as a step before applying the improved wa-
tershed segmentation method in [87]. Using k-means in [57, 87] has been
proposed as a primary segmentation to address the limitations of water-
shed segmentation in over segmentation.

k-medoids :Unlike k-means, where clusters are represented by the mean
of data instances assigned to a cluster, k-medoids represent a cluster using
one of its assigned data instances. The data instance that represents a clus-
ter in k-medoids is simply called, ’medoid’. k-medoids is not limited to
numerical attributes. The objective function considered in this method is
minimising the sum of dissimilarities in a cluster. As the objective function
is not minimising SSE as considered in k-means, the choice of dissimilarity
measure is not limited to ED. The use of medoids instead of centroids also
alleviates the sensitivity to outliers as peripheral cluster data instances do
not affect the updating of medoids[12]. After selection of medoids, clus-
ters are defined as subsets of data instances close to respective medoids.

PAM (Partitioning Around Medoids) is the earliest method implemented
the k-medoids idea, followed by its extension for large applications, CLARA
(Clustering LARge Applications) [59]. In PAM, first medoids are selected
randomly. An iterative process updates the medoids by considering each
of the data instances in a cluster as medoids until the objective function
is satisfied. CLARA relies on sampling to handle the large datasets, and
it uses PAM to cluster a sample drawn from the dataset to identify the
medoids. It uses the identified medoids for the assignment of the data
instances which are not present in the sample. The process of sampling
will iterate for a predefined number of times to alleviate the bias effect of
sampling [12, 59]. CLARANS (Clustering Large Applications Based Upon
Randomized Search) is another extension of PAM which uses a graph in
context of clustering of spatial databases [12, 88]. Details of k-meodids
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implementation will be discussed further in Chapter 5.

Density-based clustering :Density-based clustering is based on the idea
that a set of data points in Euclidean space can be split to a set of its con-
nected components. This implements the concept of connectivity for par-
titioning a set of data instances in the feature space. A cluster is defined as
a connected dense set of data instances/points, the cluster can grow in the
direction that density leads. This enables density-based methods to dis-
cover arbitrary shapes of clusters and embed a natural resistance against
outliers [12]. One of the drawbacks with density-based methods is their
weakness in handling clusters with different densities. The density-based
methods require metric space and this naturally makes them suitable for
spatial database clustering. Important concepts in these methods are den-
sity, connectivity and boundary which can be measures in term of local
distribution of neighbours [12].

The main representative method in this category is DBSCAN (Density
Based Spatial Clustering of Applications with Noise) which uses two pa-
rameters of ε and Minpoints to the define the following concepts used in
this method:

• An ε- neighbourhood of x which is the Nε = {x, y ∈ X, d (x, y) ≤ ε},

• A core point (a point with a neighborhood consisting of more than
MinPts points), points in the neighbourhood of a core point are directly-
reachable points.

• A density-reachable point of a core point x is a point in the ε- neigh-
bourhood of one of a directly-reachable point of x.

• A density-connectivity translates to two points, x,y, being density-
reachable from each other.

So, based on these definitions, all the data points in a dataset are cate-
gorised into: directly or density reachable from a core point and outliers.
The points which are not related to any core points are considered as out-
liers. The non-core points in a cluster represents the boundary of that clus-
ter. DBSCAN suffers from the limitation of detecting meaningful clusters
in datasets with varying densities. Ordering points to identify the cluster-
ing structure (OPTICS) is proposed in [3] based on the idea of DBSCAN
and to address the mentioned limitation. In OPTICS, first data points in
the dataset are ordered such that points which are spatially closest become
neighbours. In addition to this, a special distance is defined for each data
point that represents the required density for a cluster.
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Recently, Ting et al (2016) [114], proposed a new method based on the mass
estimation to address the limitation in DBSCAN with varying density. Un-
like DBSCAN which was based on ε-neighbourhood, in this method a µ-
neighbourhood is defined that considers the data mass (number of data
points in the area covering the target points). In this method core point is
defined based on the mass around it, instead of the Minpoints in a ε dis-
tance of a neighbourhood of that point. The mass around a point should
reach to a certain threshold where makes this method not relying on the
a ε distance. Relying on ε distance to define the core points in DBSCAN
raises its limitation in identifying the clusters with varying densities.

2.5 Dissimilarity measures in clustering

The discussed clustering methods make it obvious that dissimilarity is a
fundamental concept in definition of a cluster. A dissimilarity measure is
essential in almost all of the clustering methods to evaluate the similarity
of two data instances in the feature space [53]. Due to the variety of feature
types, scale, and the aspect of similarity that an expert needs to investigate
from the data, the choice of dissimilarity measure has a great importance
and affect on the output of clustering. In the following section, we will
review the most common dissimilarity measures in clustering methods.

2.5.1 Geometric distances

In this section, we review some geometric distance choices in clustering. A
distance that measures dissimilarity between two instances and denoted
by d

(
Xi, Xj

)
should satisfy the metric properties of:

• d (Xi, Xi) = 0

• d
(
Xi, Xj

)
= d

(
Xj, Xi

)
• d

(
Xi, Xj

)
= 0 if and only if Xi = Xj

• d
(
Xi, Xj

)
≤ d (Xi, Xm) + d

(
Xm, Xj

)
Popular distance measures used in clustering have been reviewed in [12,
53, 58]. The most well-known dissimilarity measure used in clustering is
ED as shown in equation 2.1 where p = 2. ED is intuitive and has been
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used commonly to measure the dissimilarity of objects in two or three di-
mensional space. It has been shown that it works well with compact or
isolated clusters. Some of the concerns about this measure are as follows.
It has the tendency that dimensions of feature vectors with relatively large
values dominate the others [53]. The performance of ED varies consid-
erably depending on the application in hand [6]. Additionally, ED relies
only on the geometric position of two data instances in the feature space
and completely ignores the effect of data distribution in its dissimilarity
calculation [6, 62]. Despite of these concerns, ED has been widely used
in clustering and it is the main distance measure used in k-means method
and its extensions, which are popular clustering methods[52].

To address the concern about the adverse effect of features correlation on
distance measure, Mahalanobis distance has been proposed as we dis-
cussed in Section 2.3. The definition of Mahalanobis distance has been
shown in equation 2.6. Manhattan distance, as defined in equation 2.1
where p = 1, has been reported as a distance metric more robust to out-
liers in clustering [58].

2.5.2 Non-geometric dissimilarity measures

There are few dissimilarity measures in the literature that consider the
neighbourhood of data instance in the feature space in calculating the dis-
similarity between two data instances [53]. Mutual neighbour distance
(MND) has been proposed in [44] and defined as:

MND
(
Xi, Xj

)
= NN

(
Xi, Xj

)
+ NN

(
Xj, Xi

)
(2.13)

where NN
(
Xi, Xj

)
is the number of neighbours Xj with respect to Xi. The

higher number of neighbours between two instances shows the higher dis-
similarity. MND has been used for clustering [43], however it does not
satisfy the metric properties of a distance [53, 139].

The other dissimilarity proposed in this group is shared nearest neighbour
(SSN) [55]. To estimate the SSN between two data instances, the N nearest
neighbours of each of them is calculated. The greater number of shared
nearest neighbours shows a higher confidence on their similarity. In [55],
a shared nearest neighbor graph is constructed from the similarity matrix
as follows. A link is created between a pair of points, p and q, if and only
if p and q have each other in their N nearest neighbours lists. This process
is called k-nearest neighbor sparsification. The weights of the links between
two points in the SNN graph can either be simply the number of near
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neighbours that the two points share, or one can use a weighted version
that takes the ordering of the nearest neighbours into account. This dis-
similarity measure has been used in the clustering method presented in
[33].

This measures is not metric (does not satisfy the triangle inequality). Rely-
ing only on the neighbouring instances implies that it is possible to make
any two arbitrary patterns similar only by encoding them with sufficiently
large features. Consequently, any arbitrary patterns are equally similar,
unless we use some additional domain information [53]. This imposes a
potential limitation for these methods. In addition to this, these measures
are not suitable to be used in algorithms such as k-means that has been
used widely in both scientific and industrial applications.

2.5.3 Summary

In this chapter we have reviewed the works closely related to the subject
of this thesis. Image retrieval framework has been reviewed along with
their most important components, feature extraction and common dissim-
ilarity measures used in these methods. We have discussed clustering,
its different methods and common dissimilarity measures used in cluster-
ing. Through the study of literature, we have identified that despite of
limitations associated with ED, as discussed in the Introduction chapter, it
has been one of the most widely used distance measures, for both image
retrieval and clustering. In addition to this, k-means is one of the most
popular clustering methods for numeric features, which also used ED as
its distance measure. Data distribution as considered in mp has a percep-
tual effect on human judgment of similarity. In the next chapter, we will
study the suitability of mass-based dissimilarity measure proposed in [5]
for image retrieval. Also, we will investigate a novel dissimilarity measure
that addresses limitations of ED by incorporating the data distribution.



3 A Novel Perceptual Dissimilar-
ity Measure

As we discussed in previous chapters, dissimilarity measure is central to
image retrieval for evaluation of similarity between the query and other
data base images in the feature space. Also it is fundamental in data/image
cluster definition for minimising the intra cluster similarity and maximis-
ing the inter cluster similarity. In the Introduction chapter, we have briefly
mentioned the limitations of geometric distances, specifically ED. Also, we
have explained our motivation for developing a new dissimilarity mea-
sure, to overcome the limitations of ED and utilising the potentials of
mass-based dissimilarity. Through our study of the literature, we have
identified that ED is the most common distance measure that has been
most widely used in image retrieval and clustering methods. In this chap-
ter, we first discuss the ED and its limitations in greater detail. Then we
study the suitability of mp [5, 6] for image retrieval. Section 3.4 presents
our main contribution; developing a novel perceptual dissimilarity mea-
sure that combines the perceptual effect of data distribution and ED. The
last section summarises this chapter.

3.1 Euclidean distance

The distance between two points in the the Euclidean space is the length
of the line segment directly connecting them and is known as Euclidean
distance (ED). We will use ED and distance interchangeably here after in
this thesis. Distance between two points of x and y (one dimension) is the
absolute value of their difference [64]:

ED = |x− y| =
√
(x− y)2 (3.1)

28
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Generalisation of ED for multiple dimensions is as follows: consider x and
y as two d-dimensional vectors, then the ED between them will be [64]:

ED(x, y) = |x− y| =
(

d

∑
i=1

(xi − yi)
2

) 1
2

(3.2)

ED satisfies the metric principles:

• The minimum value for the distance between two data instances is
zero when they are identical.

• The distance between two data instances when they are different is
a positive number.

• The distance is symmetric which means distance between data in-
stance x and y is the same as distance between y and x.

• The triangle inequality: considering three data instances, the dis-
tance between a pair of instances is smaller than the sum of distance
between the other two pairs of them.

Equation 3.2 is the aggregation of the distance between two data instances
in each dimension to calculate the total distance. The ED calculations com-
pletely depend on the geometric position of each data instance in the fea-
ture space and the distribution of neighbouring data has no impact on
that. However, psychologists argue that human perception of dissimilar-
ity is affected by the distribution of the data in the neighbourhood around
the two data instances [62]. This effect is completely ignored in distance
calculation of ED. An example of the perceptual effect of data distribution
is presented in Chapter 1, Section 1.2.1.

The other limitation with ED is that it gives the equal weight to all dimen-
sions when combining distances. This may result in a situation where the
dissimilarity between two instances is determined by a few dominant di-
mensions. There is a tendency that the small number of the dimensions
of feature vectors with relatively much higher values dominate the overall
dissimilarity value. As a result, the dissimilarity derived might not align
well with how humans perceived dissimilarity.

Figure 3.1 shows the colour histograms for two beach images and one im-
age from building class of Corel dataset. ED finds the smaller distance
between the beach image in Figure 3.1 (a) and the building image in Fig-
ure 3.1 (b) compared to the second beach image in Figure 3.1 (c). This
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dissimilarity is not aligned with human perception. As we can see, the
difference between the largest values in the colour histogram of the beach
image in Figure 3.1 (d) and the building image in Figure 3.1 (e) is about
5000. However, this difference between the histogram of the two beach
images in Figure 3.1 (d and f) is more than 10,000. ED gives equal weight
to all dimensions when combining distances. As a result, a few dimen-
sions with relatively much higher values contribute substantially to the
total distance calculated, whereas the contribution from the remaining di-
mensions might be negligible to impact the final distance value. For ex-
ample in Figure 3.1 (a), the colours of the sand (around histogram bins
28, 59 and 90), on the beach dominate the distance calculated, whereas
the detailed colours, such as the skin colours of people (around histogram
bins 21, 43 and 74), though perceptually important when comparing simi-
larity between these images, are not dominant enough to impact the final
distance measurement.
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(a) Beach (d) RGB histogram of beach

	

(b) Building (e) RGB histogram of building

	

(c) Beach (f) HSV histogram of beach

Figure 3.1: Two images from beach and an image from building class of
Corel dataset along with respected RGB colour histograms

These issues demonstrate ED may not be most suitable to measure percep-
tual similarity between images in some situations.

3.2 Mass-based dissimilarity (mp)

To address the limitation of ED in ignoring the data distribution, a data
dependent dissimilarity measure has been proposed by Aryal et al [5, 6]
called mp. The idea of mp is based on the perceptual effect of data dis-
tribution when human judge similarity. In the Introduction chapter, we
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mentioned the example of two red apples in two different contexts, where
two red apples are among green apples and are among red apples. In other
words, two data instances in a relatively denser region of the feature space
are perceived to be less similar than the two objects of equal distance but
located in a sparse region.

.

The measure mp uses the neighborhood data to make decisions about the
similarity of two data instances. It considers the data distribution in a
region that covers the two instances. mp works as follows: in each dimen-
sion i, it defines a region Ri(x, y) which encloses x and y, and computes
data mass in Ri(x, y) as the measure of dissimilarity of x and y instead of
their distance. Data mass is the number instances falling in Ri(x, y). mp is
defined as:

mp(x, y) =

(
1
d

d

∑
i=1

(
|Ri (x, y)|

N

)p
) 1

p

(3.3)

where

• |Ri (x, y)| is the data mass in region of Ri (x, y),

• N is the total number of instances in the dataset,

• Ri (x, y) = [min (xi, yi)− σ, max (xi, yi) + σ],

• σ is a small number and σ ≥ 0.

Although mp employs the same power mean formulation as lp, the core
calculation is based on mass rather than distance. It signifies the degree
of dissimilarity: the higher the measure, the more dissimilar the two in-
stances are; just like lp.

Calculation of mp is expensive as it requires a range search in each dimen-
sion, so to address this problem a new implementation has been proposed
in [6]. In this new implementation, a histogram is used and the real values
in each dimension i are divided into m bins. The number of instances in
each bin is computed in a preprocessing step, and then data mass between
two points can be computed using the number of bins between them. An
illustration of defining Ri (x, y) using bin implementation is shown in Fig-
ure 3.2.
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Figure 3.2: Illustration of mp, data mass calculation between two data
points x and y.

3.3 Evaluating suitability of mp for image retrieval

Since mp was introduced as an alternative to ED, which is the most widely
used measure in image retrieval, it is necessary to investigate the perfor-
mance of a dissimilarity measure that relies only on data distribution in
this context. In this section, we evaluate the suitability of mp for image re-
trieval and compare its performance with ED using three image datasets.
In the following section we first introduce the benchmark datasets used
for our experiments. Then we present the feature extraction and evalua-
tion metrics, followed by experimental results and discussion.

3.3.1 Benchmark datasets

To evaluate the performance of mp for image retrieval, we have selected
three different image datasets. These datasets have their own character-
istics in terms of image concepts and ground truth. In the following we
introduce these three datasets.

eBay [119]: This dataset is a collection of 528 images of objects which are
categorised into 11 classes based on their colour. Images in the red class
are shown in Figure 3.3 as a sample of eBay dataset. As we can see in each
class, different objects with the same colour are collected. The ground
truth (class label) is the primary colour in images and objects of the target
colour are segmented in dataset images. Figure 3.4 provides a sample of
images from eBay dataset along with their mask images that the primary
colour objects are segmented in them.
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Figure 3.3: Images in red class of eBay dataset

Original image Mask image

Figure 3.4: Sample of images from pink class in eBay dataset and their
mask images
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Texture [65] : It has 1,000 images categorised in 25 classes and each class
has 40 images. Each class represents a different texture, such as wood,
wallpaper, water and brick. Figure 3.5 shows a sample of this dataset from
the brick class.

Figure 3.5: Images in brick class of Texture dataset

Corel [69]: This dataset is a collection of 1,000 images categorised into 10
classes. The images are a mixture of objects and natural scenes. Some
example of classes in this dataset are beach, mountain, flower and bus.
Figure 3.6 shows a sample of images in the beach class.
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Figure 3.6: Images in beach class of Corel dataset

3.3.2 Feature extraction

We can see that the three benchmark datasets present different types of
images. To represent these images from these datasets, we need to extract
appropriate features that matche the characteristics of each dataset. We
will use common features which are matched for the datasets. In the fol-
lowing section we describe the feature extraction process for each of these
datasets.

3.3.2.1 HSV colour histogram

We have mentioned that the eBay dataset has the ground truth of colour, so
colour features are our choice to represent the images in this dataset. Our
primary purpose for choosing eBay dataset is the intuitive nature of colour
as compared to more complex image features. Colour histograms repre-
sent the distribution of colour in an image. They are rotation invariant
and have been used in image retrieval studies [134]. A colour histogram
of an image is produced first by quantising of the colours (components of
colour space) in the image into a number of bins, and counting the number
of image pixels in each bin.

We now explain the colour space used for histogram extraction in this
work. A colour space is the specification of a coordinate system and sub-
space within that system where a single point represents a distinct colour
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value. This representation is used for image analysis like extraction of
colour histograms. Each colour space has its own merits and demerits de-
pending on the application and hardware specification where it is going to
be used. Hue Saturation Value (HSV) is one of the popular colour spaces.

A three dimensional representation of the HSV colour space is a hexacone,
where the central vertical axis represents the Intensity (value). Hue is de-
fined as an angle in the range [0, 2π] relative to the red axis with red at
angle 0, green at 2π/3, blue at 4π/3 and red again at 2π. Saturation is the
depth or purity of the colour and is measured as a radial distance from
the central axis with value between 0 at the center to 1 at the outer surface.
For V=0, as one moves higher along the Intensity axis, one goes from Black
to White through various shades of grey. On the other hand, for a given
Intensity and Hue, if the Saturation is changed from 0 to 1, the perceived
colour changes from a shade of grey to the most pure form of the colour
represented by its Hue. Looking from a different angle, any colour in the
HSV space can be transformed to a shade of grey by sufficiently lower-
ing the Saturation. The value of Intensity determines the particular grey
shade to which this transformation converges. When Saturation is near 0,
all pixels, even with different Hues, look alike and as we increase the Sat-
uration towards 1, they tend to get separated and are visually perceived
as the true colours represented by their Hues.

We have chosen to use colour histogram in HSV colour system to represent
eBay dataset. We have divided each dimension of HSV colour system to
30 bins and extracted the histogram, so the final histogram feature has 90
dimensions.

3.3.2.2 Local Binary Patterns

Local Binary Patterns (LBP) [90, 122] is a simple yet very efficient texture
operator, which labels the pixels of an image by thresholding the neigh-
bourhood of each pixel and considers the result as a binary number. Due
to its discriminative power and computational simplicity, LBP texture op-
erator has become a popular approach in image retrieval and classifica-
tion. LBP features are extracted from an image as follows.

• Divide an image into square blocks e.g 16× 16.

• For each pixel in the block, compare each pixel to its 8 neighbours.

• Neighbours with value greater than the centre’s pixel, will be as-
signed as 1 and 0 otherwise. This way each pixel is described by 8
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binary digits.

• Compute the histogram over each block counting the frequency of
occurring values.

• Concatenate the histogram of each block to obtain the image level
features.

We have extracted the LBP features from Texture dataset that resulted in
feature vectors of 236 dimensions.

3.3.2.3 SIFT bag of words (BOW)

The Corel dataset has been categorised in classes such as beach, building
and animals. Through the literature [11, 16, 133] SIFT BOW has been used
to represent the Corel dataset. As discussed in Chapter 2, Section 2.2.4,
SIFT features proposed by David Lowe [75] in 1999 is one of the popular
local features being used in image retrieval [120, 141]. They are scale in-
variant and share some properties with the neuron responses of an inferior
temporal cortex in primate vision [75]. To obtain the image level features
using dense SIFT, we need to go through the encoding process. BOW is
the baseline of the encoding methods, which has been used successfully
in image retrieval [18, 105, 120, 129, 141]. The procedure of extracting SIFT
features and BOW has been discussed in Chapter 2, Section 2.2.4. We will
just briefly describe the steps as follows:

• Extracting SIFT features from images

• Quantising features using the k-means clustering, we quantise the
extracted features to N number of visual words.

• Building the BOW histogram by finding the frequency of occurrence
of each visual word in the image.

The number of visual words is usually determined based on the exper-
iments on the dataset. The study in [11] has used 50 visual words and
the authors in [16] have used 100 visual words for SIFT BOW to repre-
sent Corel dataset. Also, the experiments in [133] on the size of visual
words ranged between 50 to 250 of Corel dataset and show a comparable
performance for the choice of 100 visual words. The other study [14] com-
pared the performance of SIFT BOW with different dictionary sizes from
100-2,100 for a dataset called ”OT” which is very similar to Corel dataset.
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Their results show visual words of 100 had similar performance with 500,
1700. Also, it has performed slightly better than using 1900 and 2100 visual
words. Based on our study of the literature and computational complexity
trade off, we have chosen to use the SIFT BOW with 100 visual words in
this work to represent the images in Corel dataset.

3.3.3 Evaluation metrics

This section presents the evaluation metrics for image retrieval that we
will use in this work. Precision- Recall curves are common metrics to eval-
uate the performance of an algorithm in image retrieval [28]. In image
retrieval, the retrieved image would be considered as relevant or non-
relevant based on the ground truth provided in the dataset. A retrieved
image would be considered as relevant if it is from the same class with the
query, however, if it is from a different class with the query, it would be
known as non-relevant. Based on these definitions precision and recall are
defined as follows:

Precision =
# (relevant images)
# (retrieved images)

(3.4)

Recall =
# (relevant retrieved images)

# (relevant images)
(3.5)

Precision is the fraction of retrieved images that are relevant and Recall is
the fraction of relevant images that are retrieved [22]. We can also define
them as :

P =
TP

(TP + FP)
(3.6)

P =
TP

(TP + FN)
(3.7)

where a true positive (TP) is a retrieved image which is relevant. False
positive (FP) is a retrieved image which is non-relevant. False negative
(FN) is a relevant image which is not retrieved. We will use P-R curve to
evaluate the performance of ED, mp and PDM for image retrieval in this
work.
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3.3.4 HSV colour histogram weighting

This section presents our proposed weighting system for extracting the
HSV colour histograms that let each of HSV components contribute pro-
portionally based on their importance for humans perception. HSV colour
space has been described in Section 3.3.2.1, as the selected colour space to
extract colour histograms for the images of the eBay dataset. As suggested
in [109, 141], Hue has more importance in distinguishing the perceived
colour and two other components have equal importance in feature repre-
sentation using colour histogram. To balance the contribution from each
of the HSV colour system components in the feature space, we propose
a weighting that assigns higher weight to Hue and equal weights to Sat-
uration and Value components. To apply the proposed weights for HSV
colour histogram, we will modify equations 3.2 and 3.9 for calculation of
ED and mp as follows:

ED(x, y) =

(
d

∑
i=1

HSVWi × (xi − yi)
2

) 1
2

(3.8)

mp(x, y) =

(
1
d

d

∑
i=1

HSVWi ×
(
|Ri (x, y)|

N

)p
) 1

p

(3.9)

where HSVWi is the respective weight of each of the HSV components for
each dimension. For example, consider the HSV colour histogram as hav-
ing 90 dimensions (bins) in total, 30 bins for each of the HSV components
and the weights of 50%, 25% and 25% for HSV components. In this case
HSVWi for H component (first 30 bins) would be 50% and 25% for the S
and V components (second and third sets of 30 bins).

To determine the appropriate weight for different HSV components, we
have performed image retrieval experiments on the eBay dataset using ED
and mp as dissimilarity measures. We have extracted colour histograms
with 30 bins for each HSV component. Figures 3.7 and 3.8 show the re-
trieval results of eBay dataset using ED and mp as dissimilarity metrics.
We have experimented with different sets of weights ranging from (50%, 25%, 25%)
to (80%, 10%, 10%). The weights of 60% for Hue, 20% for Saturation and
20% for Value components have shown the optimum performance. So we
have chosen this set of weights for our experiments in this work.
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Figure 3.7: Image retrieval results on eBay dataset using HSV colour his-
togram with different sets of weights on ED.

Figure 3.8: Image retrieval results on eBay dataset using HSV colour his-
togram with different sets of weights on mp.

3.3.5 Experimental result for evaluating the performance
on mp

In this section, we present the retrieval results of three benchmark datasets.
Figures 3.9- 3.11 show the retrieval results using precision-recall curves.
As we can see, mp does not have a consistent performance. Retrieval re-
sults from Texture dataset in Figure 3.10, show mp outperforms ED, while
retrieval results from the two other datasets in Figures 3.9 and 3.11 show
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ED performed better. mp has been proposed to address the limitation of
ED, relying only on geometric position of two instances in the feature
space and ignoring the data distribution. mp has the strength of using
perceptual effect of data distribution in measuring the dissimilarity and
thus was expected to perform better than ED. In the next section we will
discuss the performance of mp.

Figure 3.9: Image retrieval results of eBay dataset using ED and mp as
dissimilarity measures.

Figure 3.10: Image retrieval results of Texture dataset using ED and mp as
dissimilarity measures.
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Figure 3.11: Image retrieval results of Corel dataset using ED and mp as
dissimilarity measures.

3.3.6 Discussion on mp’s performance

In this section, we discuss the limitations of mp that resulted in its inconsis-
tent retrieval performance for different datasets. mp is a data-dependent
dissimilarity measure and relies on data distribution. Data distribution
has an effect on the perceived similarity as considered in mp. However,
the ED between two instances should not be ignored, as it intuitively cor-
responds to the defined dissimilarity in the real three-dimensional world,
specifically when the magnitude of vectors in feature space matters. mp
calculates the dissimilarity between two instances solely based on data
distribution in the region covering the two instances. Consider the follow-
ing example. We have two pairs of data instances: the instances of the first
pair are perceptually similar but they are located in a dense region while
the second pair are perceptually dissimilar but are located in a sparse re-
gion. mp will consider the second pair to be more similar than the first pair,
contrary to the perceptual similarity. This example shows that mp alone is
not suitable to measure perceptual dissimilarity between images.

An effective dissimilarity measure should be accurately mimic the hu-
man’s judgment of dissimilarity. mp considers the lower data mass be-
tween two instances as lower dissimilarity and vice versa. ED measures
the difference between magnitudes of two features using their geometric
position in the feature space. mp and ED have their own strengths. As
both of them measure the dissimilarity from different aspects that par-
tially complies with human judgment of dissimilarity, they should not be
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in extreme conflict. In some situations, mp will find two instances similar
due to low data mass between them, while they have a large distance. In
other situations, mp may find two instances dissimilar based on high data
mass between them while they are perceptually similar and have small
distance. In such situations, mp may not retrieve accurate results.

To illustrate this situation, we investigate mp through a visual example.
We discuss mp’s limitation through a few dimensions of the feature space.
As mp aggregates the dissimilarity over all dimensions of feature vectors.
considering such a limitation in multiple dimensions affects its perfor-
mance in calculation of total dissimilarity. Consider the retrieval perfor-
mance of mp for eBay dataset, Figure 3.9, where mp did not work better
than ED. In the following we choose a visual example from eBay dataset
to explain how the discussed situation can adversely affect the dissimilar-
ity measured by mp.

The example in Figure 3.12, shows two similar images (green images) and
one non-similar image (white shoe) along with their feature vectors. mp
finds the white shoe more similar to the green shoe compared to the green
pot based on the high data mass between them. This is contrary to human
judgment of dissimilarity. In the following, we first explain the scenario
that we use to analyse the mp’s limitation is explained. After this, an ex-
ample is presented in accordance with this scenario.

The following scenario is used to discuss mp’s limitation. mp combines the
data masses over all dimensions to calculate the overall dissimilarity. As
discussed both mp and ED measure the dissimilarity that is partially com-
plies with human perception of dissimilarity. Therefore, these two should
complement each other and should not be in extreme conflict. We will
show that the distance between feature values of two perceptually similar
images in a specific dimension is very low, however, the data distribution
in that dimension results in a high data mass between them. This will re-
sult in high dissimilarity measured by mp which is very different with the
dissimilarity measured by ED. On the other hand, we will show that dis-
tance between feature values of two non-similar images (green and white
shoe) in a specific dimension is relatively high while due to data distri-
bution in that dimension of feature space the data mass is very low. This
results in very low dissimilarity measured by mp, which is very different
from the measurement of ED. The details of this example are as follows.

Figures 3.12 (d, e and f ) show the colour histograms of the selected images
from eBay dataset, in which ground truth is based on colour and images
of the same colour are considered as relevant. To calculate the dissimi-
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(a) Green shoe (d) HSV Histogram of Green Shoe

(b) Green pot (e) HSV Histogram of Green pot

(c) White shoe (f) HSV Histogram of White shoe

Figure 3.12: Sample of images from eBay dataset and their colour his-
tograms
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larity, mp uses the data mass between two instances in each dimensions
then aggregates them. In this example feature vectors are HSV colour his-
tograms with 90 dimensions and their values ranges between 0 and 1, the
total number of images (feature vectors) being 528 in the dataset.

We select one dimension of feature space and show how features are dis-
tributed in that dimension. Figure 3.13 shows the feature distribution in
Dimension 6 of the feature space, which has very dense and sparse re-
gions. This figure shows how many of the 528 data instances in the dataset
have the value falling in each of the intervals of (0-0.1, 0.1-0.2,...0.9-1). As
shown in Figure 3.13, the number of the instances that has values between
0-0.1 is much higher compared to the rest of the intervals. So, if the values
of two instances in the feature space fall between 0 and 0.1, the data mass
between them will be very high compare to falling in other intervals.

In Figure 3.12 values of HSV colour histograms for the green shoe, green
pot, and white shoe in Dimension 6 are 0.1,0.03 and 1. Therefore, feature
values of two similar images, green shoe and green pot fall in the interval
of 0-0.1, which is a very dense region and the data mass between them is
400. However, the feature values of the green pot and the white shoe falls
in a sparse region where the data mass is only 144.

The distance between the green shoe and the green pot is 0.07, which is
much smaller compared to 0.9 between the green and white shoe. In this
situation, mp will find the green shoe more similar to the white shoe in Di-
mension 6 due to lower data mass between them compared to green pot.
Having very dense and sparse regions in this data distribution resulted in
the situation that dissimilarity measured by mp is in conflict with ED. Con-
sidering this situation in multiple dimensions results in a low dissimilarity
mass measured by mp between two perceptually dissimilar images com-
pared to two perceptually similar images. This is in conflict with human
perception of dissimilarity.

Also, similar to ED, mp gives equal weight to all dimensions when aggre-
gating the data masses. This may result in a situation where the dissim-
ilarity between two instances is determined by a few dimensions. There
is a tendency that the small number of the dimensions of feature vectors
with relatively much higher data masses dominate the overall dissimilar-
ity value. As a result the measured dissimilarity may not align well with
humans perception. We name this limitation of ED and mp, the effect of
dominant dimensions, and refer to it in the rest of this thesis. In the next
chapter, we will provide more visual examples and analysis from all three
datasets.
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Figure 3.13: A sample of a skewed distribution from features in Dimension
6 of eBay dataset.

3.4 Image dissimilarity measure incorporating hu-
man perception

In this section we propose a new dissimilarity measure to address the limi-
tations of mp and ED. Our proposed dissimilarity measure will incorporate
the perceptual effect of region density and ED. The data mass between two
instances is used as a proxy for region density. We propose two variants
for our new dissimilarity measure as described in the following sections.
In the first variant we focus on improving mp and overcoming its limita-
tions by using ED. mp has its limitations due to ignoring the distance, and
we propose a weighting using ED to improve its performance. The sec-
ond variant focuses on the ED’s limitation of not considering any impact
of data distribution on perceived dissimilarity. To address this limitation,
we propose to incorporate the effect of data distribution by weighting the
ED in each dimension using the data mass.

As mentioned previously, both ED and mp gives equal weight to all di-
mensions when combining distances or data masses. This may result in
a situation where the dissimilarity between two instances is determined
by a few dimension. There is a tendency that the small number of the di-
mensions of feature vectors with relatively much higher distance or data
masses dominate the overall dissimilarity value. As a result the measured
dissimilarity by ED and mp may not align well with human perception.
The proposed weighting in both variants of the proposed dissimilarity
measure helps to moderate this effect.

The tendency that a few dimensions with very much higher data masses
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dominate the overall dissimilarity value measured by mp, and it may not
align with humans perception, will be moderated with assigning small
distances as the weight in the first variant. In the second variant, to ad-
dress the tendency that a few dimension with very much higher distances
dominate the overall distance value measured by ED, where it may not
align with humans perception, the log of data mass has been considered
as the weight. Therefore, in dimensions that the distances have relatively
much higher values but they are located in a sparser region, assigning low
data masses as the weight for these dimensions help to moderate this ef-
fect. In the next two sections, the proposed weighting for both variants of
our proposed dissimilarity measure is discussed in detail.

3.4.1 Perceptual dissimilarity measure 1 (PDM1)

The first variant of the new dissimilarity measure we are proposing is
called Perceptual Dissimilarity Measure 1 (PDM1). It uses the ED as a
weight for mass-based dissimilarity where mass-based dissimilarity may
fail to retrieve accurate results. Generally, when we calculate the dissimi-
larity between two instances using mp one of the following four cases may
occur.

• Case 1: mp is small (data instances are in a sparse region) and ED is
small also;

• Case 2: mp is small (data instances in a sparse region), but ED is large,

• Case 3: mp is large (data instances in a dense region) and ED is large
also,

• Case 4: mp is large (data instances in a dense region), but ED is small.

In Cases 1 and 3, mp and ED are not in conflict. However, in Cases 2 and
4, their measurements are opposite of each other and using mp alone may
not be effective. Both mp and ED measure the dissimilarity from a different
aspect that partially complies with humans perception. Therefore, they
should not be in extreme conflict, but complement each other. In cases 2
and 4, ED has small dissimilarity between two instances while mp finds
them highly dissimilar. The mp’s measurement of dissimilarity in these
cases may not align well with how humans perceive dissimilarity.

As the definition of the four abovementioned cases are based on sparse/
dense region and small/large distance, we need to define them. A thresh-
old is defined in each dimension to identify sparse/dense region and small/large
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distance. The threshold is the mid-point of minimum and maximum val-
ues of data mass and distance values between a query and all other data
instances in the dataset.

To address the discussed limitations of Cases 2 and 4, we will use the dis-
tance between two instances to weight the data mass in dimensions that
have the situations described in these cases. The weighted mp is defined
as:

Wmp (x, y) =
1
d

d

∑
i=1

abs
(

Wi
|Ri (x, y)|p

N

) 1
p

(3.10)

PDM1 is defined as conventional mp in Cases 1 and 3, and weighted mp in
Cases 2 and 4 as follows:

PDM1 =


Cases1&3 mp(x, y) =

(
1
d ∑d

i=1

(
|Ri(x,y)|

N

)p) 1
p

Cases2&4 Wmp (x, y) = 1
d ∑d

i=1 abs
(

Wi
|Ri(x,y)|p

N

) 1
p

(3.11)

In Case 2 where data mass is low but distance is large, we set Wi to the dis-
tance between two instances, Wi = abs (xi − yi). This way Wi > 0 assigns
a higher weight to the data mass, to moderate the very low dissimilarity
resulted from low data mass.

In Case 4, where data mass is high between two points but distance is
small, we set the Wi as the normalised distance, Wi = abs(xi−yi)

maxm∈Dabs(xi−mi)
,

between two instances. maxm∈D is the maximum distance between the
query instance and all the data instances in the dataset in that dimension.
This way Wi assigns a lower weight to the high data mass. This moderates
the high dissimilarity resulted from high data mass. The low weight from
distance also moderates the effect of dominant dimensions with relatively
much higher data masses (in some dimensions) in overall dissimilarity
calculation of mp.

In PDM1, mp is the basis of dissimilarity calculations and ED has been
used as the weight in Cases 2 and 4. In dissimilarity calculation, Cases 2
and 4 may happen in some dimensions of feature vectors, PDM1 using the
weighted mp improves the situation in these dimensions.
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3.4.2 Perceptual dissimilarity measure 2 (PDM2)

In this section, we propose the second variant of our new dissimilarity
measure that combines the ED and data distribution. In this approach,
to consider the effect of data distribution on the final perceived dissimi-
larity, we will moderate the ED between two instances using the density
of the region. In the following, we first describe this variant of our new
dissimilarity measure, called Perceptual Dissimilarity Measure 2 (PDM2),
and then define the nature of region density effect on the final perceived
dissimilarity. In the last part, we discuss how region density should be
used as a weight for ED.

The effect of region density is explained as two instances located in a dense
region looking more dissimilar compared to locating them in a sparse re-
gion. Considering this, when dissimilarity between two instances is mea-
sured using ED, we need to proportionally weight it based on the density
of the region. We propose our PDM2 as:

PDM2 (x, y) =

(
d

∑
i=1

abs (xi − yi)× T (|Ri (x, y)|)p

) 1
p

(3.12)

where T (|Ri (x, y)|) is the transformation of data mass between x and y in
Dimension i of the feature vector, data mass has been used as a proxy of
region density. If ED is measured in a denser region, then a higher weight
will be assigned to that, while in a sparser region this weight is lower. So,
the perceived dissimilarity would be different depending on the density
of the region that distances are measured.

The weighting in PDM2 helps to moderate the effect of dominant dimen-
sions in ED calculation. If ED between two instances in a dimension is
large but they are located in a sparse region, the low weight of data mass
moderates the effect of dominant distance in this dimension.

3.4.2.1 Interaction Effect of Region Density on Euclidean distance

As we can see in equation 3.12, to weight the measured distance, the trans-
formation of data mass has been multiplied into that. In this section, we
explain why the effect of region density on the final perceived dissimilar-
ity is multiplicative.

The nature of data distribution effect on final perceived dissimilarity is
interactive. The interaction effect is said to exist when the effect of inde-



51

pendent variable on a dependent variable differs depending on the value
of a third variable, called a ’moderator’ variable. This effect is not addi-
tive, but a multiplicative effect [8, 23, 39, 51]. We define the effect of region
density on perceived dissimilarity as an interaction effect, as follows. In
our case, dependent variable is the final perceptual dissimilarity, which
depends on the ED between two data points. The ED between two data
points is an independent variable and data mass (region density) is the
moderator variable. The effect of ED on final perceptual dissimilarity will
differ depending on the region density. So, an interaction effect exists be-
tween ED and region density, which is multiplicative.

Also, multiplication is more robust to outlying values with significantly
large/ small ranges than addition, which can be dominated by those out-
lying values. We can see this varying value ranges in data masses as they
can range from the minimum of two (each defined region between two
data instances at least covers those two points) to a maximum which is the
number of data instances in the dataset.

3.4.2.2 Log Transform of region density

So far, we have discussed the multiplicative effect of the density of a region
on the perceived dissimilarity, and proposed to use it as a weight for ED.
In our proposed dissimilarity, the ED will be multiplied with data mass.
The values of data mass, |Ri (x, y)| in a dataset can range between 2 and
N (number of instances in the dataset). The minimum data mass is two as
the defined region between two instances enclose the two instances, and
in case there is no data point between them, the region includes at least
two points. The maximum could be the region that covers all the data
points in the dataset, N. So data mass may have a very varied range. As
shown in equation 3.12, we consider the effect of region density in each di-
mension of feature vector, and finally aggregate the dissimilarity in all the
dimensions. In this aggregation process, data masses with very large val-
ues, which represent denser regions, will dominate the final dissimilarity.
In this case, the effect of sparse regions/ low data mass, will not contribute
to the final dissimilarity calculation. To consider the region density effec-
tively in our new dissimilarity, we have to use a transformation of data
mass that balances the influence of very high and /or very low data mass
in some dimensions in the overall dissimilarity.

Logarithmic transformation is an established method to deal with highly
skewed data distributions [60, 91, 125]. We will use Logarithmic trans-



52

formation and Log transformation interchangeably from here after in this
thesis. The Log transformation changes a highly skewed data to a distri-
bution closer to normal and draws out the small numbers. As we men-
tioned we aim to use data mass as weight for ED and using Logarithmic
transform balances the contribution of very high and/or very low data
mass in some dimensions in the overall dissimilarity. Thus, we used log
transformation of |Ri (x, y)| i.e.,T (|Ri (x, y)|) = Log (|Ri (x, y)|). Figure
3.15, shows the Logarithmic transform of data masses presented in Figure
3.14. We can see that not only is the distribution less skewed, but also,
the dimensions with low data masses are drawn out in the distribution.
Therefore, Logarithmic transformation can serve for both of our purposes
in rescaling data masses and also giving all dimensions a balanced contri-
bution in final dissimilarity estimation as a weight.

Figure 3.14: Data masses between two feature vectors.

Figure 3.15: Log of data masses between two feature vectors.
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3.5 Summary

In this chapter, we have discussed the characteristics of ED, which has
been widely used in image retrieval and we highlighted its limitations in
detail. Also, we have evaluated the suitability of the mass-dissimilarity
measure, mp [5, 6] for image retrieval and discussed the potential situa-
tions where mp may have undesirable results. As we have explained, both
ED and mp are two dissimilarity measures that contribute to human judg-
ment of similarity from different aspects. Therefore, to overcome their
limitations and make use of their strengths, we have proposed a new dis-
similarity measure that incorporates both ED and perceptual effect of data
distribution. The proposed perceptual dissimilarity measure has two vari-
ants, PDM1 and PDM2.

In PDM1 the focus is on improving mp by proposing a weighting system
using ED. PDM2 incorporates the perceptual effect of region density and
ED. It weights the ED between two instances in each dimension by the
data mass between them. PDM1 and PDM2 are more robust dissimilarity
measures compared to ED and mp alone as they consider the strength of
both and address their limitations. In the following chapters we will study
the performance of PDM for image retrieval and clustering.



4 Performance Study of Perceptual
Dissimilarity Measure for Im-
age Retrieval

In previous chapters, we have discussed the importance of image retrieval
in the modern communication era and the essential role of an effective
dissimilarity measure in their performance. Based on our study of the
literature, we have identified that ED is the dissimilarity measure that is
most commonly used in image retrieval. Also, we have discussed the re-
cently proposed mass-based dissimilarity, mp, to address the limitation of
ED with ignoring data distribution. In Chapter 3, we have analysed the
characteristics of both ED and mp to overcome their limitations and have
proposed a new dissimilarity measure. The new dissimilarity measure
combines data distribution and ED. The proposed perceptual dissimilar-
ity measure, PDM, has two variants: PDM1 and PDM2.

PDM1 focuses on improving mp, by weighting the data mass with ED
where data mass may not work well. PDM2 focuses on improving ED by
using data mass as the weight to incorporate perceptual effect of data dis-
tribution. In this chapter we aim to improve the image retrieval accuracy
using our proposed dissimilarity measures. We study the performance of
PDM for image retrieval.

In the following, we begin by explaining our experimental set up, followed
by description of using PDM for image retrieval. Then, we will present
the empirical results. Section 4.4, compares the performance of PDM1 and
mp, followed by the comparison of PDM2 and ED in Section4.5. The final
section will summarise this chapter.

54



55

4.1 Experimental setup

To perform image retrieval experiments, we have used the same setup
used in Chapter 3, Section 3.3. Three image datasets: eBay, Texture and
Corel datasets are used as our benchmark datasets. We have used HSV
colour histograms to represent the eBay dataset, LBP for Texture dataset
and SIFT BOW for Corel dataset.

In Chapter 3, Section 3.3.4 a weighting system has been introduced for
HSV colour histograms. To apply this weighting for PDM1 and PDM2,
their equations 3.10 and 3.12 will change to :

PDM1(x, y) =

(
d

∑
i=1

HSVWi × PDM1(x, y)p

) 1
p

(4.1)

PDM2 (x, y) =

(
d

∑
i=1

HSVWi × (|xi, yi| × T (|Ri (x, y)|))p

) 1
p

(4.2)

p is set to 2 for all the equations in our experiments. We have evaluated
the results using precision-recall curves.

4.2 Performance study of the PDM for image re-
trieval

In this section we will discuss the use of our proposed dissimilarity in
image retrieval. In image retrieval, where one image is presented as the
query to the system and all the images in the dataset will be ranked and
retrieved based on the similarity to the query. In the following section
we first discuss the procedure to use PDM as the dissimilarity measure in
image retrieval.

4.2.1 How PDM works in image retrieval

This section describes the procedure of using PDM in image retrieval. In
Section 3.4.1, we have discussed the four cases that generally occur in
calculating the dissimilarity using data distribution as considered in mp,
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where in Cases 2 and 4 mp may not retrieve accurate results. We have pro-
posed PDM1 to address the mp’s limitations with these two cases by using
ED as the weight.

To evaluate the dissimilarity between two images, PDM1 works as fol-
lows. Having dataset and query images represented by their feature vec-
tors, first in each dimension of the feature space, PDM1 calculates the ED
and data mass between query and all the images in the dataset in all di-
mensions. Threshold is then defined which is the mid-point between the
minimum and maximum of ED/data mass between query and all dataset
images. Then, PDM1 checks the distance and data mass between them
against the threshold. If both distance and data mass are below or above
the threshold, PDM1 will use conventional mp as the dissimilarity mea-
sure. Otherwise, PDM1 will use weighted mp as defined in equation 3.10
to calculate the dissimilarity between the two images. Finally, it aggre-
gates the dissimilarities in each dimension of feature space to calculate the
overall dissimilarity.

PDM2 considers the effect of region density on the perceived dissimilar-
ity by weighting ED between two images in all the dimensions. Unlike
PDM1, PDM2 does not define any threshold. PDM2 is calculated using
equation 3.12.

4.3 Empirical results

This section presents the empirical results of image retrieval. First, we
present the overall retrieval results for each dataset using ED, mp, PDM1
and PDM2. This will be followed by presenting visual examples from
the respected datasets to provide more insight on the performance of the
mentioned dissimilarity measures.
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4.3.1 Retrieval results of eBay dataset

Figure 4.1 shows the retrieval results of eBay dataset using equations 3.8-
3.9 and 4.1- 4.2 to consider our proposed weights for the HSV colour his-
togram. Figure 4.1, shows that PDM2 performs the best overall for im-
age retrieval. ED performs the second best, followed by PDM1 and then
mp. As visual examples, Figures 4.2-4.3 show the top 10 retrievals for two
query images from eBay dataset using PDM2, PDM1, ED and mp. Non-
relevant retrieved images are marked as N-R.

Figure 4.1: Image retrieval results of eBay dataset using ED, mp, PDM1
and PDM2 as dissimilarity measures.
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Figure 4.2: Top 10 retrieval for Query 1 from eBay dataset
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Figure 4.3: Top 10 retrieval for Query 2 from eBay dataset
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4.3.2 Retrieval results of Texture dataset

Figure 4.4 shows the overall retrieval results of Texture dataset. It shows
that PDM2 has the best performance and PDM1 performs the second best
higher than mp and ED in the Texture dataset. As visual examples, Fig-
ures 4.5- 4.6 show the top 10 retrievals for two query images from Texture
dataset using the four mentioned dissimilarity measures.

Figure 4.4: Image retrieval results of Texture dataset using ED, mp, PDM1
and PDM2 as dissimilarity measures.
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Figure 4.5: Top 10 retrieval for Query 1 from Texture dataset



62

      

Query 1 2 3 4 5  
 

     

 6  7 8 9  10 
(a) Using PDM2 

      

Query 1 2 3  4 5 
 

     

 6 N-R 7  8  9 N-R 10 N-R 
(b) Using ED 

 

      
Query 1  2 3 4  5  

 

     

 6  7  8 N-R 9 N-R 10  
(c) Using !! 

 

      
Query 1  2 3  4 5 

 

     
 6 7  8  9 N-R 10 

(d) Using PDM1 
 

Figure 4.6: Top 10 retrieval for Query 2 from Texture dataset
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4.3.3 Retrieval results of Corel dataset

In a similar trend for Corel dataset, Figure 4.7 shows that PDM2 has the
best performance along with PDM1 higher than ED and mp. As visual ex-
amples, Figures 4.8- 4.9 show the top 10 retrievals for two query images
from Corel dataset using above mentioned dissimilarity measures.

Figure 4.7: Image retrieval results of Corel dataset using ED, mp, PDM1
and PDM2 as dissimilarity measures.
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Figure 4.8: Top 10 retrieval for Query 1 from Corel dataset
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Figure 4.9: Top 10 retrieval for Query 2 from Corel dataset

In the next three sections, we will provide a more in-depth comparison
and discussion on the performance of PDM1 versus mp, as well as the
performance of PDM2 versus ED and PDM1 versus PDM2. We will also
explain why PDM1 performs worse than ED in some cases.
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4.4 Performance comparison between PDM1 and
mp

PDM1 is proposed to address the limitations of mp. So in this section, we
study the performance of PDM1 and mp using visual examples of each
dataset. The next three sections present our performance study of PDM1
and mp for each dataset.

To analyse the performance of PDM1, we select some of the dimensions
as examples to illustrate Cases 2 and 4 through data mass and distance in
those dimensions. For example if in a dimension of feature vectors data
mass was high but distance is small between two images (Case 4), we will
then illustrate how PDM1 uses the proposed weighting to moderate the
dissimilarity in that dimension and address the respected Case of 2 or 4.
As the PDM1 combines the dissimilarity over all dimensions, considering
this effect in multiple dimensions explains its performance.

In our visual examples, we show the components that PDM1 uses for dis-
similarity calculations. PDM1 uses data mass between feature vectors of
two images, along with their distance to calculate the dissimilarity. We
present these components for all the dimensions of feature vectors.

4.4.1 Performance comparison between PDM1 and mp for
eBay dataset

This section presents our performance study of PDM1 and mp for the eBay
dataset. Figure 4.1 shows that PDM1 preforms better than mp. PDM1
has improved the retrieval results by incorporating ED with region den-
sity where mp may not be able to retrieve accurate results. We have used
weighted mp as in Equation 3.10, to address the limitations in Cases 2 and
4.

In the following examples, some dimensions of feature space are used to
show Cases 2 and 4, where mp retrieved a Non-relevant image. We show
the effect of PDM1 with using ED as the weight for mp in those dimensions
that improves the situation. Considering this improvement in multiple
dimension results in a retrieval of a relevant image.

In Figure 4.2 (c), mp ranks a relevant image, which appears in the fifth rank
of PDM1, lower than 10. It determines that the relevant image: the green
pot, is more dissimilar to the query due to the high data mass between
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them compared to the white shoe which is in its fifth rank. Relying only
on the data distribution of features results in this situation as explained in
Chapter 3, Section 3.4.1.

As an example, it is shown in Figures 4.10 (c-d) that in Dimension 6 of
features, the distance between the green shoe and the green pot is con-
siderably smaller compared to the white shoe. However the data mass
between the green shoe and the green pot is much higher compared to
green and white shoes. So, in this situation two green images are found
more dissimilar compared to the green and the white shoe images by mp in
that dimension. It is shown in Figure 4.10 (h) that PDM1 weights the data
mass by distance in Dimension 6 (where the data mass between the green
shoe and the green pot is above the threshold, while their distance is be-
low the threshold). In PDM1, weighting the data mass by distance results
in finding the green shoe and the green pot more similar in Dimension 6
compared to white shoe.

Also, PDM1 moderates the effect of dominant dimension in calculating
the dissimilarity by mp where a dimension with very high data mass could
influence the total dissimilarity between the green shoe and the green pot.
As in this example in Dimension 6 of feature vector, the high data mass
between the green shoe and the relevant image (green pot) could dominate
the lower data masses in other dimensions. PDM1 moderates this effect by
assigning a lower weight to the high data mass in that dimension. PDM1
has calculated the dissimilarity of 1149.22 between the green shoe and the
green pot, it ranked the green pot as fifth rank while the white shoe with
dissimilarity of 1398.74 has been ranked much lower as 58th.

Figure 4.11 is another example where we can follow the same scenario in
Dimension 3 of Figures 4.11 (c, e and g) and Dimension 80 of Figures 4.11
(d, f and h).
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(a) Query (left) and Rank 5th from mp (right) (b) Query (left) and Rank 5th from PDM1 (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

(g) PDM1 between images in (a) (h) PDM1 between images in (b)

Figure 4.10: Comparison of PDM1 and mp using visual examples of eBay dataset
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(a) Query (left) and Rank 1th from mp (right) (b) Query (left) and Rank 1th from PDM1 (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

(g) PDM1 between images in (a) (h) PDM1 between images in (b)

Figure 4.11: Comparison of PDM1 and mp using visual examples of eBay
dataset

Using HSV colour histogram and eBay dataset, PDM1 has not performed
better than ED.

The defined threshold may raise a potential limitation, as the points just
below and above the mid point will be considered as low/high data mass
or small/large distance. However, these border points are very close and
their difference does not represent the actual difference between low and
high data mass or small and large distance. PDM1 considers a border
point just below the threshold as located in a low data mass area (sparse
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region) and the one just above the threshold as located in a dense area,
however, they have very similar data masses. The same situation is for
distance values.

4.4.2 Performance comparison between PDM1 and mp for
Texture dataset

This section presents our performance study of PDM1 and mp for Texture
dataset using the visual examples.

(a) Query (left) and Rank 10th from mp (right) (b) Query (left) and Rank 10th from PDM1 (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

(g) PDM1 between images in (a) (h) PDM1 between images in (b)

Figure 4.12: Comparison of PDM1 and mp using visual examples of Tex-
ture dataset
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In Figure 4.4, mp ranks a relevant image, which appears in the 10th rank
of PDM1, lower than 10. It determines that the relevant image: the wall-
paper, is more dissimilar to the query due to the high data mass between
them compared to the wood which is in its 10th rank. As an example, it
is shown in Figures 4.12 (d, f) that in Dimension 109 of features, the data
mass between wallpaper and the wallpaper in PDM1’s 10th rank is high,
at 600, and above the defined threshold, while the distance between them
is very small, 0.002 and below the threshold (Case 4). PDM1 will adjust the
high data mass by weighting it accordingly with distance. It is shown in
Figure 4.12 (h) that PDM1 weights the data mass by distance in Dimension
109. Using PDM1, the weighting of data mass by distance results in find-
ing the two wallpapers more similar in Dimension 109 compared to the
measurement from mp. Considering this moderation in multiple dimen-
sions ranks the non-relevant image: wood, lower than 10 in the retrievals
of PDM1.

Additionally, we can see that PDM1 moderated the effect of dominant di-
mension in calculation of mp. This effect is shown in the discussed exam-
ple where data mass in Dimension 109 between two wallpapers in Figures
4.12 (d, f and h) was very high. This could results in a situation where
other dimensions with lower data masses do not influence the overall
dissimilarity and the two wallpaper images are found dissimilar by mp.
PDM1 moderates the effect of very high data mass by weighting it using
the distance.

Following the same scenario, Figure 4.13 is another example where mp
may not retrieve an accurate result. We can see the above described sce-
nario in Dimension 5 of Figures 4.13 (d, f and h) and Dimension 112 of
Figures 4.13 (c, e and g).
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(a) Query (left) and Rank 8th from mp (right) (b) Query (left) and Rank 8th from PDM1 (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

(g) PDM1 between images in (a) (h) PDM1 between images in (b)

Figure 4.13: Comparison of PDM1 and mp using visual examples of Tex-
ture dataset

4.4.3 Performance comparison between PDM1 and mp for
Corel dataset

This section presents our performance study of PDM1 and mp for Corel
dataset. Along with previous visual examples, in the following two exam-
ples from Corel dataset retrieval are presented in Figures 4.8 and 4.9.
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(a) Query (left) and Rank 6th from mp (right) (b) Query (left) and Rank 6th from PDM1 (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

(g) PDM1 between images in (a) (h) PDM1 between images in (b)

Figure 4.14: Comparison of PDM1 and mp using visual examples of Corel
dataset

In Figure 4.8 (c), mp ranks a non-relevant image in its sixth rank while
the relevant image which appeared in the sixth rank of PDM1, is ranked
lower than 10 in mp’s retrievals. mp determines that the relevant image:
the dinosaur, is more dissimilar to the query due to the high data mass
between them compared to the bus which appeared in its sixth rank. The
dissimilarity measurement of mp is in conflict with human perception. As
an example, it is shown in Figures 4.14 (d, f) that in Dimension 2 of fea-
tures, data mass between the query and dinosaur in PDM1’s sixth rank is
high, at 700, and above the defined threshold which makes the relevant
image more dissimilar to the query in this dimension. However, the dis-
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tance between them is 2 (maximum distance in that dimension is 6), which
is below the threshold. So PDM1 will adjust the high data mass by weight-
ing it accordingly with distance. It is shown in Figure 4.14 (h) that PDM1
weights the data mass by distance in Dimension 2. Using PDM1, wight-
ing the data mass by distance in multiple dimensions results in finding the
two dinosaurs more similar compared to the bus in retrieval results.

Also we can see in Figures 4.14 (c, e) in Dimension 85 of features, data
mass between query and the bus is below the threshold, at 300, where the
distance between them is as high as meeting the defined threshold. The
low data mass results in situation where mp found the non-relevant image
similar to the query in this dimension. PDM1 weighted the data mass
accordingly with distance and data mass changed to 600.

Following our discussion from previous section, we can see that the data
masses in Dimension 2 of Figure 4.14 (f), could influence the total dis-
similarity by mp. This has been moderated in PDM1, Figure 4.14 (h) by
weighting it using the distance.

Figure 4.15 presents another example in Dimension 3 of Figures 4.15 (d, f
and h) and Dimension 88 of Figures 4.15 (c, e and g).



75

(a) Query (left) and Rank 2th from mp (right) (b) Query (left) and Rank 2th from PDM1 (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

(g) PDM1 between images in (a) (h) PDM1 between images in (b)

Figure 4.15: Comparison of PDM1 and mp using visual examples of Corel
dataset

4.5 Performance comparison between PDM2 and
ED

PDM2 basis for calculation of dissimilarity is ED. PDM2 weights the ED
between two images in each dimension of the feature space with the den-
sity of the region covering them. To study the effect of PDM2 on improve-
ment of image retrieval accuracy we need to compare its performance with
its base method, ED.
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In this section we discuss the performance of ED and PDM2, through vi-
sual examples in Figures 4.2- 4.9. To discuss the performance of PDM2, we
show the components that it uses for calculating dissimilarity between two
instances, which are distance and Log transformation of data mass. The
basis for calculation of PDM2 is ED, which is moderated by region density
as the weight. We show PDM2 in each dimension, to illustrate how region
density could moderate the ED between two images in the feature space.

4.5.1 Performance comparison between PDM2 and ED for
eBay dataset

This section presents the performance study of PDM2 and ED for eBay
dataset. As shown in Figures 4.2 and 4.3, PDM2 could retrieve all images
from the same class with query compared to ED and mp and PDM1. For
example, in Figure 4.2 (a) and using PDM2 all the top 10 retrieved im-
ages are from the class of green, the same colour with the query, however
in Figure 4.2 (b-d), ED and mp and PDM1 retrieved images from other
colours such as blue, pink and yellow. Figure 4.3 (a) also shows that top
10 retrieval using PDM2 are from the same class with the query which
is brown colour, compared to Figures 4.3 (b-d) that have more retrievals
from other colours such as, grey, red, purple and pink.

PDM2 improved retrieval results by considering both ED and the effect of
region density in estimating the final dissimilarity between two images.
Similar to the previous section, in the following examples we select a few
dimensions from the feature vectors of presented images to show how
relying only on distance could result in undesirable retrievals. Also, we
show how using log data mass between two images as a proxy of region
density to weight the distance could improve the situation in those di-
mensions. Finally, considering this effect in multiple dimensions resulted
in more accurate retrievals.

In Figure 4.2 (b), ED has ranked the green pot as a relevant image in its
seventh rank lower than a pink pot as a non-relevant image. This occurred
as ED relies only on the distance between colour histogram of query and
these two images and does not consider the data distribution. The green
pot has been ranked higher in retrievals of PDM2 in Figure 4.2 (a) and
the pink pot ranked lower than 10. Unlike ED, PDM2 considers if two
instances are located in a dense/ sparse region, then their distance will be
perceived differently.



77

(a) Query (left) and Rank 5th from PDM2 (right) (b) Query (left) and Rank 6th from ED (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Log data mass between images in (a) (f) Log data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 4.16: Comparison of PDM2 and ED using visual examples of eBay
dataset

Here we use examples in some dimensions of feature vectors to show how
PDM2 is calculated and improves the retrieval results. Figures 4.16 (c-d)
show that the distance calculated between the Dimension 8 of the query
(green shoe), the green and the pink pots are very similar, at 0.96 and 0.99.
However, in this dimension the distance between the query and the green
pot has been measured where two points are located in a denser region as
it is shown in Figure 4.16 (f), compared to the query and the pink pot, Fig-
ure 4.16 (e), where they are located in a sparser region. The Logarithmic
transformation of data mass between the green shoe and the green pot in
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Dimension 8 is 3.8, while it is 5.4 for the pink pot. Using the Logarith-
mic transformation of data mass as the proxy for region density assigns
higher weight to the distance of the query and the pink pot, which is mea-
sured in a denser area and vice versa. PDM2 in Figures 4.16 (g-h) shows
the weighted distances by the region density. The weighted distances in
Dimension 8 between the green shoe, the green and pink pots are 3.6 and
5.34. Although they have similar distances, PDM2 weighted their distance
and as a result pink pot in Dimension 8 is much more dissimilar to the
query compared to the green pot.

As we mentioned in the previous chapter, the second limitation with ED is
equal priority in aggregating the distances of all dimensions, which results
in a situation where a few dimensions with large distances can dominate
the others and influence the total dissimilarity. The weighting in PDM2
helped to moderate the effect of dominant dimensions in calculating the
distance. For example in Dimension 8, the large distance between the
green shoe and the green pot could influence the total distance. Consid-
ering this weighting in multiple dimensions moderate the distances and
resulted in the dissimilarity of 7.3 between the green shoe and the green
pot versus the dissimilarity of 7.8 between the green shoe and the pink
pot. PDM2 ranked the pink pot lower than 10 in its retrievals. Figure 4.17
is another example that illustrates the same scenario.
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(a) Query (left) and Rank 7th from PDM2 (right) (b) Query (left) and Rank 7th from ED (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Log data mass between images in (a) (f) Log data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 4.17: Comparison of PDM2 and ED using visual examples of eBay
dataset

4.5.2 Performance comparison PDM2 and ED for Texture
dataset

This section presents the performance study of PDM2 and ED for Texture
dataset. Similar to the previous section, we compare the performance of
PDM2 and ED using the visual examples of Texture dataset in Figures 4.5
and 4.6.

As shown in Figure 4.5, PDM2 and PDM1 as the dissimilarity measures
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(a) Query (left) and Rank 6th from PDM2 (right) (b) Query (left) and Rank 6th from ED (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Log data mass between images in (a) (f) Log data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 4.18: Comparison of PDM2 and ED using visual examples of Tex-
ture dataset
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could retrieve all images from the same class with query compared to ED
and mp. In Figure 4.5 (a) using PDM2 all the top 10 retrieved images are
from the class of wallpaper, however, in Figures 4.5 (b, d), ED and mp
retrieved images from another class: wood. In the following examples, we
discuss how PDM2 could improve the retrievals compared to ED.

In Figure 4.5 (b), ED ranked the wood, a non-relevant image, in its sixth
rank higher than a wallpaper (relevant image). This occurred as ED relies
only on geometric position of query and these two images in the feature
space and does not consider the data distribution. However PDM2 could
retrieve a relevant image in its sixth rank in Figure 4.5 (a) and ranked the
wood lower than 10.

Figures 4.18 (c, e) show that the distance between the query and the wall-
paper in Dimension 91 is much higher, at 0.02, compared to many other
dimensions. This makes these two images more dissimilar in this dimen-
sion measured by ED. However in this dimension of feature space these
two instances are located in a sparser area where data mass is only 160.
The Log of data mass between two wallpapers in Dimension 91 is 5.7 as
it is shown in Figure 4.18 (e). Using the Log transformation of data mass
as the proxy for region density, it assigned lower weight to the distance,
which is measured in a sparser area and vice versa. PDM2 in Figures 4.18
(g-h) show the weighted distances, where ED is moderated by the region
density.

In Figure 4.18 (d) we can see that in Dimension 107 the distance between
the wallpaper and wood (non-relevant image) is as small as 0.006. How-
ever, the distance has been measured in a dense area where the data mass
between the two points is 720. The Log of the data mass is 6.5 as shown in
Figure 4.18 (f). PDM2 assigned a higher weight to the distance measured
in denser area and resulted in moderated distance of 0.03. Considering this
weighting in other dimensions that moderate the distances and resulted in
smaller dissimilarity between the query and wallpaper compared to the
wood, PDM2 ranked the wood lower than 10 in its retrievals.

Also, PDM2 could moderate effect of dominant dimension in calculation
of ED through the discussed examples. As in Dimension 91. the large
distance could influence on total dissimilarity measured by ED. This effect
has been moderated in PDM2 using the relatively low data mass as the
weight for the distance in this dimension.
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(a) Query (left) and Rank 6th from PDM2 (right) (b) Query (left) and Rank 6th from ED (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 4.19: Comparison of PDM2 and ED using visual examples of Tex-
ture dataset

Figure 4.19 is another examples of a similar scenario where Figures (c, e
and g) in Dimension 206 show the large distance between the query and a
relevant image from the same class. However, they are located in a sparse
area and PDM2 uses the region density to weight and moderate the large
distance. Figures4.19 (d), in Dimension 131 show the small distance be-
tween the query and a non-relevant image, 0.0004, while being located in
a dense area (Log data mass of 6.39), PDM2 could moderate the dissimi-
larity between the two images in this dimension.
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4.5.3 Performance comparison between PDM2 and ED for
Corel dataset

This section presents the performance study of PDM2 and ED for Corel
dataset. In a similar trend the following examples are selected from Corel
dataset as shown in Figures 4.8 and 4.9.

(a) Query (left) and Rank 8th from PDM2 (right) (b) Query (left) and Rank 8th from ED (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Log data mass between images in (a) (f) Log data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 4.20: Comparison of PDM2 and ED using visual examples of Corel
dataset

As shown in Figures 4.8 and 4.9, PDM2 performed better than ED, mp
and PDM1 in retrieving relevant images. In Figure 4.8 (a) using PDM2
all the top 10 retrieved images are from the class of dinosaur; however, in
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Figure 4.8 (b-d), ED, mp and PDM1 retrieved images from other classes. In
the following examples, we discuss improvements made by PDM2, in the
retrievals compared to ED.

In Figure 4.8 (b), ED ranked a beach, a non-relevant image in its eighth
rank higher than a relevant image (dinosaur). However, PDM2 could re-
trieve a relevant image in its eighth rank in Figure 4.8 (a) and ranked the
beach lower than 10.

Figures 4.20 (c, e) show that the distance between the query and the di-
nosaur in Dimension 41 is 4, which is relatively large. However, they are
located in a sparser area with Log of data mass of 5.2. PDM2 in Figures
4.20 (g-h) shows the weighted distances, where PDM2 moderated the large
distance using the low region density.

In Figure 4.20 (d) we can see that in Dimension 2 the distance between
the query and the beach is as small as 1. However, the distance has been
measured in a relatively denser area where the data mass between the two
points is 600. The Log of the data mass is 6.39 as shown in Figure 4.20
(f). PDM2 assigned a higher weight to the distance measured in denser
area and resulted in a moderated distance of 6.39. Applying this weight-
ing in other dimensions that moderates the distances resulted in smaller
dissimilarity between the query and the dinosaur compared to the beach.
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(a) Query (left) and Rank 8th from PDM2 (right) (b) Query (left) and Rank 8th from ED (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Log data mass between images in (a) (f) Log data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 4.21: Comparison of PDM2 and ED using visual examples of Corel
dataset

Figure 4.21 is another example that illustrates the same scenario. Figures
4.21 (c, e) show in Dimension 53 the large distance between two flowers, at
3, which makes the relevant image more dissimilar to the query. However,
the distance has been measured in a sparser area where data mass is 300
and Log of data mass is 5.7. PDM2 assigns weight to the distance accord-
ingly, as shown in Figure 4.21 (g). In another situation in Figures 4.21 (d, f)
in Dimension 4 the distance is as low as 1, which shows small dissimilarity
between a non-relevant image and query in this dimension. However, the
distance has been measured in a dense region with data mass of 500, and
Log of data mass is 6.2. So, PDM2 as shown in Figure 4.21 (h) weighted
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the distance proportional to the density of the region to 6.2. This resulted
in increasing the dissimilarity between the non-relevant image and query
in this dimension.

The effect dominant dimension, in Dimension 53 of Figure 4.21 (c) having
large distance, has been moderated by lower weights of region density in
PDM2.

4.6 Performance comparison between PDM1 and
PDM2

Throughout our image retrieval experiments, PDM2 has worked better
than PDM1 and only in the Corel dataset PDM1 has similar perfromance.
PDM1 focuses on improving mp where in Cases 2 and 4, its measurements
may not align with human perception. So apart from dimensions that
these two cases occur in them, PDM1 uses conventional mp to measure the
dissimilarity in other dimensions. Despite of its good perfromance com-
pared to mp, there are two argument about PDM1: first, using a threshold
in defining the two Cases 2 and 4 may raise a limitation, second, in dimen-
sions that Cases 2 and 4 do not occur, it relies only on data distribution for
dissimilarity calculations.

Defining a threshold as a mid-point of minimum and maximum of dis-
tances/ data masses may raise a limitation, where two border points just
below/ above the theshold will be considered as small/ large distance or
low/ high data mass. However, border points are very close and their ac-
tual values does not represent this difference. For example, suppose the
threshold for data mass in a dimesion has been defined as 500. In this case
the region with data mass of 499 is considered as sparse region while the
region with data mass of 501, which has a very small difference with the
sparse region, will be considered as a dense region. This may affect the
perfromance of PDM1.

Although in Cases 1 and 3 the measurements of mp are aligned with mea-
surement of the ED but still PDM1 in those dimensions uses only the
strength of data distribution. However, combining this with strength of
ED which measure the dissimilarity from a different aspect could help to
improve the PDM1’s measurements.

On the other hand, PDM2 considers both the geometric distance and the
data distribution in all the dimensions for its calculations. PDM2 considers
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that ED between two instances is precieved differently depending on the
density of the region that the two instances are located. PDM2 uses the
log transfromation of data masses in all dimensions as the weight for ED.
Combining the strength of geometric distance and perceptual effect of data
distribution in all dimensions results in finding a dissimilarity which is
closer to human perception. In PDM2 unlike PDM1, there is no need to
define a threshold, and also, the combination of ED and data mass has
been considered in all dimension not only where two Cases 2 and 4 occurs.
This results in a consistently better perfromance of PDM2 comapared to
PDM1.

4.7 Summary

In this chapter, we have studied the performance of our proposed dissim-
ilarity measure for image retrieval. The proposed dissimilarity measure
is based on the strengths of both ED and mp and combines the ED and
region density. We evaluated two variants of the proposed dissimilarity,
PDM1 and PDM2 in our experiments. In PDM1, the basis for calculation
of dissimilarity is mp, which is weighted by ED in Cases 2 and 4 where it
may fail to express their actual perceived dissimilarity. In the second vari-
ant, PDM2, ED is basis for calculation of dissimilarity and region density
is used to moderate it in the final perceived dissimilarity.

The retrieval results of PDM1 and PDM2 are compared with ED and mp
alone. We provided a detail analysis of the strengths of our proposed dis-
similarity that resulted in more accurate retrievals. Additionally, we have
analysed the performance of PDM1 comapred to PDM2. Also, two vari-
ants of PDM have helped to moderate the effect of dominant dimension in
dissimilarity calculation by both ED and mp. Our results show that PDM2
consistently has achieved the best performance in all the image retrieval
experiments.



5 Performance Study of Perceptual
Dissimilarity Measure for Im-
age Clustering

In Chapter 2, Section 2.4, we have discussed clustering as a useful tool that
enables users to effectively extract useful information such as hidden pat-
terns and organise a massive amount of data. Basically, the definition of a
cluster is a group of similar data instances and the goal of clustering is to
minimise the intra-cluster dissimilarity and maximise the inter-cluster dis-
similarity. This highlights the fundamental role of a dissimilarity measure
in clustering.

In Chapter 3, we have studied the characteristics of ED and mp as two
measures from geometric distance and mass-based dissimilarity families.
We have proposed a new dissimilarity measure that combines ED and data
distribution. The proposed dissimilarity measure, PDM, has two variants,
PDM1 and PDM2. PDM1 focuses on addressing the limitations with mp,
where in two discussed Cases of 2 and 4, it may not work well. On the
other hand, PDM2 focuses on improving ED by incorporating the region
density as the weight for ED. PDM2 suggests that the distance between
two data points will be perceived differently under the effect of region
density.

In Chapter 4, we have studied the effect of both variants of PDM in image
retrieval experiments. The results show that PDM2 consistently produces
the best results compared to ED, mp and PDM1. The central role of a dis-
similarity measure in clustering and the promising results of PDM2 in im-
age retrieval, motivated us to use PDM2 as an alternative to ED (which is
widely used in clustering) to improve the accuracy of image clustering.

This chapter studies the effect of using PDM2 as the dissimilarity mea-
sure in improving the image clustering results. Also, we investigate the

88
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performance of our proposed dissimilarity measure for a number of other
standard clustering datasets as well. In the following section, first we in-
troduce the benchmark datasets used in this work. The second section will
discuss the two clustering methods: k-means and k-medoids in greater
detail. The third section will explain the use of PDM2 in both mentioned
clustering methods. Section 5.4 presents the clustering evaluation metrics
used in this work. This will be followed by presenting the empirical re-
sults and analysis. Section 5.7 discusses the use of PDM2 as an alternative
to ED in generating the codebook for SIFT BOW and its results for Corel
dataset. Finally, we will summarise this chapter.

5.1 Benchmark datasets

In this section, we describe the benchmark datasets used in this work for
the clustering purpose. We have selected 11 datasets of which three are
the image datasets used in the previous chapter for image retrieval ex-
periments. We will use the same set of features for the mentioned image
datasets. The other eight datasets are all standard datasets for clustering
and are publicly accessible on UCI machine learning repository [27]. The
descriptions of the eight clustering datasets are provided as follows.

Iris [38]: Iris is a real life dataset found in pattern recognition literature.
It includes three classes of 50 instances each where every class refers to a
type of iris plant. Each iris plant has been represented with four features
as, sepal length, sepal width, petal length and petal width.

Bank notes [26]: This is a real life dataset where data was extracted from
images that were taken from genuine and forged banknote-like specimens.
It has 1,375 instances categorised into two classes of ’forged’ and ’gen-
uine’. Wavelet transformation is used to extract features from images. This
dataset is represented by five features: variance of Wavelet Transformed
image, skewness of Wavelet Transformed image, curtosis of Wavelet Trans-
formed image, entropy of image, and class.

wdbc [1]: This is a real life dataset about breast cancer. Features are ex-
tracted from digitised images of fine needle aspirate (FNA) of a breast
mass. They describe characteristics of the cell nuclei present in the image.
This dataset has 569 data instances categorised into two classes malignant
(M) and benign (B). Each data instances is represented using 32 attributes.

Wine [2]: This is a real life dataset where, data are the results of a chemical
analysis of wines grown in the same region in Italy but derived from three
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different cultivators. It has 178 data instances categorised into three classes
and each instance described with 13 attributes.

Seeds [118]: This is a real life dataset that presents three different varieties
of wheat: Kama, Rosa and Canadian, 70 instances each. The soft X-ray
technique has been used to visualise the kernels. Each instance of kernel is
represented by seven attributes such as area, perimeter and compactness.

Column [13]: This is a biomedical dataset that provides three classes of
patients, Normal (100 patients), Disk Hernia (60 patients) and Spondy-
lolisthesis (150 patients), in total 310 patients. Each patient is represented
by six biomedical attributes.

Breast cancer [127, 138]: This is another real life dataset about breast can-
cers that gathered information from 699 patients and classified them to
malignant (M) and benign (B). Each patient is described using 10 biomed-
ical attributes.

Dim[40] : It is a high dimensional dataset that has 1024 instances cater-
gorised into 16 classes and each instance has been represented by 1,024
features.

Table 5.1 summarises the characteristics of mentioned datasets.

Table 5.1: Benchmark dataset characteristics

Dataset # Instances # Attributes # Classes /k
Corel 1000 100 10
Texture 1000 236 25
eBay 528 90 11
Iris 150 4 3
Bank notes 1372 5 2
wdbc 569 32 2
Wine 178 13 3
Seed 210 7 3
Columns 310 6 3
Breast cancer 699 10 2
Dim 1024 1024 16
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5.2 Clustering methods

As discussed in Section 2.4, clustering methods can be broadly categorised
into hierarchal and partitioning methods and the latter has been used fre-
quently in image clustering. Partitioning algorithms divide the data into
several subsets and an iterative process relocates the data points between
k clusters. A set of methods in this category starts with defining an ob-
jective function and the ultimate goal is to satisfy this function. Pair-wise
distances or similarities can be used to compute iter- and intra-cluster re-
lations. In iterative improvements, such pair-wise computations would
be too expensive. To address this problem cluster representatives are in-
troduced, where the distance is calculated between each data instance
and representative of the cluster. Depending on how representatives are
constructed, iterative optimisation partitioning algorithms are subdivided
into k-medoids and k-means methods [12]. As distances are essential
to these algorithms, we will focus on applying our proposed dissimilar-
ity measure in k-medoids. In k-means, choice of distance is limited to
ED, therefore, k-medoid is the most similar option to k-means that allows
choosing an arbitrary dissimilarity measure. Hence, we will use our pro-
posed dissimilarity measure in k-medoids.

We use the following definitions in this chapter for our clustering study.
Given a dataset M = {x1, x2, x3, · · · , xN} consists of data instances feature
vectors and k > 1 clustering can be defined as mapping of f : M →
{1 · · · k} where each xi is assigned to one cluster, Cj, 1 < j < k.

5.2.1 k-means

The name is derived from representing each of the k clusters by the mean
of its points, Cj, the socalled centroid. Considering the mean to represent
each cluster, it does not support categorical data, while it does have very
nice geometric and statistical properties for numerical data. The objective
function in kmeans is to minimise the sum of square errors (SSE) in a clus-
ter as discussed in Section 2.4.1.2. In fact, SSE is ED between data instances
in a cluster and the assigned centroid. Therefore, k-means works best with
ED. The classic k-means has the following steps:

1. Choose k centroids randomly

2. Calculate the distance of each point to all the centroids
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3. Assign each point to the closest centroid

4. Update the centroid by calculating the mean of all the points in one
cluster

5. Repeat steps 2-4 until it converges

Choosing the mean of the points in a cluster as the centroid minimises the
sum of squared distances of all points to that centroid. In the following, it
is shown that the mean of the data instances assigned as the centroid of a
cluster is the only choice that satisfies the objective function. Considering
the SSE of data instances to Centroid a we will have:

SSE(M, a) =
N

∑
i=1

(xi − a)2 =

N

∑
i=1

(
x2

i − 2xia + a2
)
=

N

∑
i=1

x2
i −

N

∑
i=1

2axi +
N

∑
i=1

a2 =

N

∑
i=1

x2
i − 2a

N

∑
i=1

xi +
N

∑
i=1

a2

(5.1)

To minimise the above expression is to take the differentiate in respect to
a which gives us:

S
′
(a) = −2

N

∑
i=1

xi + 2na (5.2)

This equation will be zero only if a = ∑N
i=1 xi
N which is the mean of the data

instances. So we can see that mean of the data instances within a cluster is
the only value that can minimize the sum of squared errors in a cluster.

5.2.2 k-medoids

In k-medoids, clusters are represented by one of its data points, the so-
called medoid. Unlike k-means that attempts to minimise the sum of
squared errors within a cluster, the objective function in k-medoids is to
minimise the sum of dissimilarities within a cluster. Therefore, it allows
us to choose an aribitary dissimilarity measure. Also, unlike k-means the
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choice of medoid is determined by the location of predominant fraction of
data, hence it is less sensitive to outliers.

In contrast to the k-means algorithm that randomly chooses k points as
the centeroids, k-medoids chooses medoids from the actual data points.
In the following section we presents the steps of PAM as the first and most
widely used algorithm based on k-medoids.

1. Select k of the data points as the medoids randomly

2. Assign each data points to its closest medoid

3. Calculate the total dissimilarity between the medoid m and all non-
medoid data points o

4. Swap the the m and o and recompute the total dissimilarity (sum of
dissimilarities of data points to the assigned medoids)

5. Undo the swap if the total dissimilarity in the previous step has in-
creased

In the following section, we will discuss the use of our proposed dissimi-
larity in clustering.

5.3 Clustering using PDM2

This section discusses the use of PDM2 in clustering. PDM2 has another
component in addition to ED, in that it combines the region density and
ED to measure dissimilarity between two data instances. We choose to use
PDM2 as the dissimilarity measure in k-medoids.

PDM2 will be used in the second step of the algorithm to calculate the dis-
similarity between the data instances and selected medoids. To use PDM2
we need to calculate two components, the data mass and the distance. The
Log transformation of data mass as a proxy of the density of the defined
region weights the the distance between the medoid and the data instance.

Later in this chapter, we will present the empirical results and analysis of
clustering using our benchmark datasets. First, in the following section,
we will present the clustering evolution metrics used in this work.
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5.4 Evaluation metrics

To evaluate the clustering results, we use class labels (ground truths) of
images. We use two metrics: Rand Index [131] and F-measure [97]. Rand
Index (RI) is defined as:

RI =
TP + TN

TP + FP + TN + FN
(5.3)

where TP is the number of pair of images with the same class labels as-
signed to the same cluster (true positives), TN is the number of image
pairs with different class labels assigned to different clusters (true nega-
tives), FP is the number of image pairs with different class labels assigned
to the same cluster (false positives), and FN is the number image pairs
with the same class labels assigned to different clusters (false negatives).
The Rand index (RI) measures the percentage of assignments that are cor-
rect.

F-measure is defined as:

RI =
2.P.R
P + R

(5.4)

Where p = TP
TP+FP is precision and R = TP

TP+FN is recall.

5.5 Empirical results

In this section we first describe the set up for our clustering experiments
followed by a presentation of empirical results in Section 5.5.2.

5.5.1 Experimental set up

As the clustering results of k-means and k-medoids are sensitive to the ini-
tial choice of random centroids or medoids, we conducted 40 runs of each
experiment and reported the mean and standard deviation of RI and F
over 40 runs. Because we know the number of class labels (C), the param-
eter k was set to C. RI and F were computed using class labels (ground
truths). The parameter p in mp and PDM2 was set as default to 2 to be
consistent with ED. All experiments are performed using standard Matlab
toolboxes.
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5.5.2 Empirical results

In this section we compare the clustering performance of PDM2 with ED
and mp when being used as dissimilarity measures in k-medoids. Also,
their performance will be compared to k-means as well. Results are pre-
sented in terms of average RI and F and standard deviation for k-means,
k-medoids(ED), k-medoid(mp) and k-medoids(PDM2).

Results in Tables 5.2 and 5.3 show that k-medoids (PDM2) outperformed
all three competitors with seven wins, three draws and one loss in terms of
RI. Also, it outperformed all other three competitors with 10 wins and one
draw in terms of F measure. The good performance of PDM2 in clustering
is consistent with our results in image retrieval. It is interesting to note
that k-medoids (mp) produced worse results than k-medoids (ED) in eight
datasets. k-medoids (ED) and k-Means (ED) produced similar results be-
cause they are essentially the same method with the only difference of
cluster centres being medoids and means, respectively. k-medoids(PDM2)
has achieved better results due to the consideration of the perceptual ef-
fect of data distribution in calculating the distance between two instances
in the feature space.

Table 5.2: The average ± standard deviation of RI over 40 runs

Datasets RI
k-means k-medoids(ED) k-medoid(mp) k-medoids(PDM2)

Corel 0.3984± 4.10e−4 0.4090± 1.64e−4 0.3480± 1.07e−2 0.4121± 2.46e−4
Texture 0.4533± 1.90e−3 0.4540± 2.50e−3 0.4559± 2.80e−3 0.4605± 1.70e−3
eBay 0.4344± 1.92e−4 0.4331± 4.17e−4 0.4158± 7.20e−3 0.4373± 2.08e−4
Iris 0.4399± 2.24e−16 0.4330± 9.62e−16 0.2968± 5.54e−3 0.4469± 1.12e−16
Bank notes 0.2624± 1.68e−16 0.2567± 7.23e−16 0.2357± 1.52e−2 0.2585± 3.81e−16
wdbc 0.2654± 3.73e−16 0.2654± 3.73e−16 0.2650± 3.73e−16 0.2654± 1.78e−16
Wine 0.3258± 1.68e−16 0.3361± 2.48e−16 0.2975± 1.68e−16 0.3361± 2.24e−16
Seeds 0.4372± 2.48e−16 0.4372± 2.48e−16 0.3651± 1.04e−2 0.4401± 1.12e−16
Columns 0.2785± 2.48e−16 0.2785± 2.48e−16 0.2694± 2.48e−16 0.2961± 0
Breast cancer 0.3037± 1.68e−16 0.3015± 5.62e−17 0.3098± 3.00e−3 0.3255± 2.48e−16
Dim 0.5± 0 0.5± 0 0.1852± 4.60e−3 0.5± 0
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Table 5.3: The average ± standard deviation of F over 40 runs

Datasets F
k-means k-medoids(ED) k-medoid(mp) k-medoids(PDM2)

Corel 0.1950± 5.40e−4 0.1939± 9.20e−4 0.2003± 4.10e−3 0.2297± 3.06e−4
Texture 0.2103± 1.29e−2 0.2185± 1.08e−2 0.2467± 1.24e−2 0.2586± 1.05e−2
eBay 0.4137± 3.01e−4 0.4172± 1.75e−4 0.4131± 2.90e−3 0.4192± 1.65e−5
Iris 0.8918± 4.49e−16 0.8977± 5.62e−16 0.5491± 9.67e−2 0.8988± 2.48e−16
Bank notes 0.6026± 2.48e−16 0.5952± 2.48e−16 0.4149± 2.88e−2 0.6166± 5.62e−16
wdbc 0.8443± 8.99e−16 0.8443± 8.99e−16 0.8443± 8.99e−16 0.8731± 5.34e−16
Wine 0.7148± 6.74e−16 0.7208± 6.74e−16 0.4428± 4.66e−16 0.7248± 6.74e−16
Seeds 0.8954± 3.37e−16 0.8954± 3.37e−16 0.7258± 0 0.8998± 4.49e−16
Columns 0.6744± 4.49e−16 0.6744± 4.49e−16 0.6423± 0 0.7314± 6.74e−16
Breast cancer 0.9584± 6.74e−16 0.9554± 0 0.7368± 9.93e−4 0.9594± 4.49e−16
Dim 1± 0 1± 0 0.1836± 1.40e−3 1± 0

In the previous chapter, Section 5.7, we discussed using PDM2 in cluster-
ing for codebook generation of SIFT BOW for Corel dataset. Here we use
two sets of SIFT BOWs of Corel dataset to evaluate their performance in
clustering. As presented in Tables 5.2 and 5.3, PDM2 has performed the
best for clustering of Corel dataset, so we will use it as the dissimilarity
measure for the comparison of two sets of SIFT BOWs of Corel dataset.
The two sets of SIFT BOWs are produced using two different codebooks,
one generated with conventional k-means and the other one, k-medoids
with PDM2, as dissimilarity measure.

Table 5.4: The average ± standard deviation of RI and F over 40 runs for
Corel dataset

Codebook generated by k-means (ED) Codebook generated by k-medoids (PDM2)
RI 0.4121± 2.46e−04 0.4193± 2.08e−04
F 0.2293± 3.04e−04 0.2339± 3.04e−04

Results in Table 5.4 show that SIFT BOW produced using the codebook
generated by k-medoids(PDM2) yields better clustering results. This fol-
lows our discussion on using PDM2 for codebook generation in previous
chapter and confirms the better retrieval results obtained by PDM2. In the
following section we discuss the effect of PDM2 in improving the cluster-
ing results.
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5.6 Performance study of PDM2 through visual
examples

In this section we study the performance of PDM2 for clustering. Section
5.6.1 provides visual examples of image clustering from the eBay dataset.
Section 5.6.2 presents our analysis on the PDM2 performance in clustering
through the visual examples.

5.6.1 Clustering visual examples

In this section, we present some visual examples from the eBay dataset
where images are categorised based on colours. These visual examples
will be used in the next section to provide further insight and analysis on
PDM2 performance in clustering. We have used the HSV colour histogram
to represent images in this dataset. We expect to get the clusters, which
gathers images of one particular colour.

Figures 5.1- 5.8 show that the images gathered in clusters belong to white
and orange colour from the four mentioned clustering methods. There-
fore, in the white cluster images those that are not white are non-relevant
and the same goes for the orange cluster. In the figures belonging to clus-
tering results of k-medoids the first image is the medoid of a cluster that
other images are assigned to. As we can see in Figure 5.1, k-medoids us-
ing PDM2 could gather 33 images of white colour in one cluster while this
number for k-medoid(ED) is 22 and for k-means is 19 as shown in Figures
5.2- 5.3. Figure 5.4 shows the cluster that gathered all the white and yel-
low images using mp as dissimilarity measure in k-medoids. Also, Figure
5.5 shows the k-medoids using PDM2 could gather 30 images of orange
colour in one cluster while this number dropped to 18 in k-medoid(ED)
and 21 for k-means in Figures 5.6- 5.7. k-medoids using mp could also
gather 22 images of orange colour in one cluster as shown in Figure 5.8.
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Figure 5.1: White cluster from k-medoids using PDM2
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Figure 5.2: White cluster from k-medoids using ED



100

     
1  2  3  4  5  

     
6  7  8  9  10  

     
11  12  13  14  15  

     
16  17  18  19  20  

     
21  22  23  24  25  

 
 
 

 
 
 

   

26  27  28  29  30  

     
31  32  33  34  35  

     
36  37  38  39  40  

     
41  42  43  44  45  

     
46  47  48  49  50  

  
51  52  

 
Figure 5.3: White cluster from k-means
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Figure 5.4: White cluster from k-medoids using mp
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Figure 5.5: Orange cluster from k-medoids using PDM2
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Figure 5.6: Orange cluster from k-medoids using ED
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Figure 5.7: Orange cluster from k-means
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Figure 5.8: Orange cluster from k-medoids using mp
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5.6.2 Discussion on performance of PDM2 for clustering

In this section, we use the visual examples from the previous section to
discuss the performance of PDM2 in clustering. We select specific exam-
ples from white and orange clusters and show the limitations of using ED
or data mass in some selected dimensions of feature space. Then, we will
show the effect of using PDM2 in those dimensions in addressing the dis-
cussed limitations. Generalising this effect to multiple dimensions will,
thereby, explain the better performance of PDM2 compared to ED and mp
alone.

In the white cluster PDM2 has included a white shoe in Figure 5.1.4 (this is
the image labeled as the fourth image in Figure 5.1), while this image has
not been picked in white clusters by k-medoids using ED and k-means.
However, an orange shoe has been included in the white clusters (Fig-
ure 5.2.4 and Figure 5.3.8) by both clustering methods of k-medoids(ED)
and k-means while the PDM2 did not include that irrelevant image in the
white cluster. This has occurred because the PDM2 considers the effect
of region density on the ED between two instances. PDM2 uses the Log
transformation of data mass as a proxy of region density to proportionally
weight the distance between two instances. Therefore, if the region de-
fined between two instances is denser, PDM2 assigns a higher weight to
the distance between them and vice versa.

In the following section, we show the effect of region density on distance
in our proposed dissimilarity measure through examples in some dimen-
sions of feature space. The following discussion for two cases will be con-
sidered in the visual examples. In the first case, we select a few dimensions
of feature vectors and show the distance between two similar images that
were high in those dimensions, which, is counter intuitive. Then, we show
the data mass between them in the same dimension which is low, which
means the two instances are located in sparse region. Following this, we
show how using the low data mass as the weight in PDM2 could moderate
the large distance between two similar images in those dimensions.

In a similar trend, we show the examples of dimensions where the distance
between two dissimilar images is small and is in conflict with human per-
ception. However, they are located in a dense region. The high weight
from high data mass of the region moderates the small distance between
them and makes it closer to humans perception. Considering these effects
in multiple dimension moderate the total dissimilarity between two im-
ages.
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We will discuss the same scenarios for mp as well and show the conflicts
when using data mass for dissimilarity measurement between two sim-
ilar images. Then, we will show how using PDM2 could address these
situations.

Figure 5.9 (c) shows the distance between the white image assigned as the
medoid of white cluster from k-medoids(PDM2) and another white shoe
included in this cluster. Also Figure 5.9 (d) shows the distance between
the same medoid and an orange shoe, which is not included in this cluster,
however it has been assigned to the white cluster by k-medoids(ED) and k-
means. There is a large distance of 0.89, between two white images (Figure
5.9 (c) ) in Dimension 5, while they have been located in a sparse region
where the data mass between them is 144. The log of data mass in this
region is 4.9 ( Figure 5.9 (e)). PDM2 assigned a lower weight to the ED
between these two images in this dimension.

On the other hand, the distance between the white medoid and the orange
shoe, Figure 5.9(d), in Dimension 10 is very small, at 0.02, while they have
been located in a dense area with data mass of 384. Log of data mass in
this region is 5.9 as shown in Figure 5.9 (f). In this case, PDM2 assigns
a higher weight to the ED of these two images in this dimension. Con-
sidering this weighting in other dimensions in the feature space resulted
in a higher dissimilarity of 15.3 between the white medoid and orange
shoe compared to white shoe with the dissimilarity of 9.6. In k-medoids(
PDM2) the orange shoe has not been assigned to the white medoid. How-
ever, in k-medoids(ED) and k-means, relying only on geometric position
of two images in the feature space resulted in assigning the orange shoe to
the white cluster.

Also, we can see that PDM2 moderates the effect of dominant dimensions
in calculating dissimilarity using ED. As we discussed, in Figure 5.9 (c) in
Dimension 5 of feature space the distance between two white images is
large, 0.89. The large value of distance in this dimension and some other
dimensions may dominate the others and effect the total distance calcu-
lated by ED. However, PDM2 helped to moderate this effect by weighting
the distance using the Log of data mass.

Figure 5.10 shows another example of similar scenario where a blue pot
has appeared in the orange cluster gathered by k-means and k-medoids(ED)
while it has not been included in the orange cluster by k-medoids (PDM2).
On the other hand, a relevant image of an orange dress, which has been in-
cluded in the orange cluster by k-medoids(PDM2), has not been appeared
in the orange clusters of k-medoids(ED) and k-means.
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In Figure 5.10 (c) the distance between the medoid assigned for the orange
cluster and the relevant image of the orange dress in Dimensions 81 is rela-
tively large, at 0.73, while the region covering these two instances is sparse
with data mass of 192. The Log of data mass in this region is 5.2. There-
fore, PDM2 assigns lower weight to the ED between these two images in
this dimension.

In the other case, Figure 5.10 (d) shows distance between the blue pot and
a medoid from the orange cluster in Dimension 7 is very small, at 0.03,
which is counter intuitive. However, they are located in a dense region
with the a data mass of 384. The Log of data mass in this region is 5.9.
Considering the high data mass, PDM2 assigned a higher weight to the
distance between the medoid from orange cluster and the blue pot in this
dimension. Applying this weighting in other dimensions resulted in the
higher dissimilarity between the the medoid from orange cluster with blue
pot, at 14.66, compared to the orange dress with a dissimilarity of 11.65.
Considering the resulting dissimilarity, the blue pot has not been assigned
to the orange cluster using the PDM2.

We can see that in Figure 5.10 (c) the effect of large distance in Dimension
81 in calculating the dissimilarity has been moderated by the weight from
the low data mass in the region in PDM2.
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(a) White medoid (left) white shoe using PDM2 (right) (b) White medoid (left) orange shoe from white cluster using ED (left)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Log of Data mass between images in (a) (f) Log of Data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 5.9: Comparison of white shoe from white cluster in k-medoids us-
ing PDM2 and orange shoe from white cluster in k-means and k-medoids
using ED
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(a) Orange medoid (left) orange dress using PDM2 (right) (b) Orange medoid (left) blue pot from orange cluster using ED (right)

(C) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Log of Data mass between images in (a) (f) Log of Data mass between images in (b)

(g) PDM2 between images in (a) (h) PDM2 between images in (b)

Figure 5.10: Comparison of orange shoe from orange cluster in k-medoids
using PDM2 and blue pot from orange cluster in k-means and k-medoids
using ED
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(a) Medoid of yellow cluster (left) White pot using mp (right) (b) Medoid of yellow cluster (left) yellow car using mp (right)

(c) Distance (ED) between images in (a) (d) Distance (ED) between images in (b)

(e) Data mass between images in (a) (f) Data mass between images in (b)

Figure 5.11: Comparison of white pot and yellow car from yellow cluster
in k-medoids using mp

(a) Medoid of orange cluster PDM2 (left) blue pot using mp (right) (b) Medoid of orange cluster (left) orange car using PDM2 (right)

(c) Data mass between images in (a) (d) Data mass between images in (b)

Figure 5.12: Comparison of data mass between orange medoid using k-
meodids PDM2, orange car using PDM2 and blue pot from k-medoids
using mp
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Figure 5.4 shows that in k-medoids(mp) there is an expanded cluster that
includes big numbers of images from different colours, especially white,
yellow and red. In the following section, through exploring examples of
data masses in some dimensions we will show why relying only on data
mass, as in mp may result in such a cluster.

In Figure 5.11, we can see that an image of a yellow shoe has been assigned
as the medoid for the cluster that gathers all the white and yellow images,
along with many red ones and a few other colours. Relying only on data
distribution and ignoring the distance between two instances made this
happen. For example in Dimension 89 of Figure 5.11 (e), we can see that
the data mass between the yellow medoid and irrelevant white image is
as low as 96. However, the distance between them is quite considerable, at
0.48, as shown in Figure 5.11 (c). In this case the low data mass as a basis
for calculation in mp suggests a small dissimilarity between the yellow
shoe and the white pot in this dimension. Considering the similar conflict
in other dimensions resulted in finding many white images closer to the
yellow shoe as the medoid of this cluster.

The blue pot shown in Figure 5.12 (a) has been assigned to the orange clus-
ter using mp but it has not been collected in orange cluster of k-medoids(PDM2).
Figure 5.12 (c) shows the data mass between the medoid from the orange
cluster of k-medoids(PDM2) and a blue pot, which has not been collected
in the orange cluster. Sum of data mass in all dimensions is 14982. Figure
5.12 (d) shows the data mass between the same medoid with an orange
car that has been appeared in the orange cluster of k-meodis(PDM2) but
not included in orange cluster of k-medoids(mp). Sum of data masses be-
tween these two in all dimensions is 16,608. In the event of relying only
on the data mass as in mp, the blue pot with lower data mass should be
closer to the medoid of orange cluster of k-meodis(PDM2). However, the
weighting system proposed in the PDM2 as previously discussed through
Figure 5.10 (b) resulted in it not picking the blue pot in the orange cluster
of k-medoids(PDM2).

5.7 Improving Codebook generation in BOW us-
ing the PDM2

In this section we present the results of using PDM in codebook generation
of BOW for Corel dataset. As discussed in Chapter 3, Section 3.3.2.3, in the
BOW feature extraction procedure there is a stage called ’feature quanti-



115

sation’ which produces the codebook. In this stage, the dense features ex-
tracted from dataset images are clustered in to N numbers of clusters. The
representative of each cluster is considered as a visual word. As a result
it produces N number of visual words which is known as codebook or vi-
sual dictionary. In the next stage, BOW builds a histogram from frequency
of occurrence of each the visual words in the codebook to represent each
image.

The most widely used clustering method used in codebook generation is
k-means, which uses ED as its dissimilarity measure [18, 105, 120, 129,
141]. Following the promising results of PDM2 for image retrieval, we
have proposed to use PDM2 as the dissimilarity measure in clustering to
generate the codebook. We have used PDM2 in codebook generation for
SIFT BOW of Corel dataset. To evaluate the performance of the new code-
book generated by PDM2 for image retrieval, we have compared it with
SIFT BOW produced using conventional codebook.

Figure 5.13 shows the retrieval results of two produced sets of SIFT BOWs
for Corel dataset, where PDM2 has been used as the dissimilarity measure
for retrieval purpose.

Figure 5.13: Image retrieval results on Corel dataset with SIFT BOW from
two sets of generated codebooks using ED and PDM2.

As shown in Figure 5.13, PDM2 as an alternative to ED in generating the
codebook produces features that improved the retrieval results. Previ-
ously, in Chapter 3 and 4, we have analysed the limitations of ED and
mp in measuring dissimilarity between two features vectors as both of
them rely only on distance or data mass between two instances. Also,
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we have discussed the effect of considering region density on human sim-
ilarity judgment of distance. Following the same scenario, conventional
k-means used for codebook generation inherits the limitations of ED in
measuring the dissimilarity between two features vectors.

In SIFT feature quantisation, k-means uses ED as the dissimilarity mea-
sure to calculate distance of each sampled SIFT vector with each of the k
randomly selected cluster centres. The centre of each of the resulted clus-
ters is considered as a visual word in the codebook. We have discussed
the central role of ED in cluster assignments for each vector. ED has been
identified with limitations of ignoring the role of data distribution in dis-
similarity calculation. Also, ED calculation of distance is under the effect
of dominant dimensions of features.

Exploiting PDM2 as the alternative to ED, weights the distance between
two feature vectors in each dimension by log of data mass in the region
covering them. This results in a codebook that the perceptual effect of
data distribution has been considered in choosing its visual words. Image
features produced from these visual words may be better aligned with
human judgment of similarity.

5.8 Summary

The performance of image clustering algorithms depends on the effective-
ness of dissimilarity measure used to compute pairwise similarities of im-
ages. A dissimilarity measure that relies solely on distance and ignores the
data distribution, or one that completely ignores distance does not lead to
the best effectiveness. The combination of both in a PDM2 results in more
effective similarity in clustering. In this chapter, we have compared the
effectiveness of ED, mp and PDM2 in the image clustering task using the
simplest and most widely used family of cluster algorithms: k-means and
k-medoids. We also used other standard benchmark clustering datasets to
evaluate the performance of PDM2. Our experimental results suggest that
the PDM2 produces better clustering results than ED (using distance only)
and mp-dissimilarity (using mass only). Also we have used PDM2 as an
alternative to ED in clustering to generate codebook for SIFT BOW. Our
results confirm the improvement in retrieval results using the proposed
method for codebook generation of SIFT BOW.



6 Thesis conclusions and future
work

This chapter concludes this thesis in the following sections and provides
potential future works in Section 6.2.

6.1 Thesis conclusions

The work presented in this thesis mainly focuses on developing a new dis-
similarity measure that incorporates the perceptual effect of data distribu-
tion with geometric distance. Also, we aimed to study the performance
of such a dissimilarity measure for image retrieval and clustering. The
following sections present the conclusions of this thesis.

6.1.1 Investigation of mp suitability for image retrieval

This thesis has investigated the suitability of mp in image retrieval. The
retrieval results and analysis show that mp may not be suitable dissimilar-
ity choice in some situations. Consider having two pairs of instances, the
first pair are perceptually similar and located in a dense region and the
second pair is perceptually dissimilar but located in a sparse region. mp
will find the second pair more similar compared to the first pair, contrary
to the human perception. In these situation, mp alone may not retrieve an
accurate result.

Similar to ED, mp gives equal weight to all the dimensions in aggregation
of data masses for total dissimilarity calculation. This results in situations
where a few dimensions with relatively much higher data masses influ-
ence the overall dissimilarity.

117



118

6.1.2 Proposed perceptual dissimilarity measure

This thesis has introduced a new dissimilarity measure, called ’perceptual
dissimilarity measure’ (PDM), which address the limitations of both ED
and mp. Both ED and mp have their strengths in measuring the dissimilar-
ity from different aspects that partially complies with humans perception.
PDM combines the strengths of mp and ED to yield more accurate results.
Two variants of PDM have been proposed PDM1 and PDM2.

PDM1 focuses on improving mp in situations where it may not retrieve
accurate results. PDM1 defines a threshold to identify the situations where
measurements from mp and ED are conflicting (the discussed Cases 2 and
4). PDM1 uses the ED to proportionally weight the data mass in these
situations. As a result, PDM1 assigns higher weight to the low data mass
between two data instances in Case 2, using the distance between them. In
case 4, PDM1 assigns a lower weight to the high data mass between two
data instances by weighting it using the normalised distance of them.

PDM2 considers the perceptual effect of region density on the perceived
distance between two instances. PDM2 uses log transform of data mass in
the region covering two instances as a proxy of region density. It weights
the distance between two instances by the log of transform of their data
mass in each dimension. As a result, the distance would be perceived dif-
ferently depending on whether it has been measured in a dense or sparse
region.

PDM1 and PDM2 have the characteristic of combining the perceptual ef-
fect of data distribution and ED to yield the results that are more consistent
with human perception. Additionally, the proposed weighting in PDM1
and PDM2 alleviate the effect of the domination of a few dimensions in
total calculation of dissimilarity with ED and mp.

6.1.3 Improving image retrieval using the perceptual dis-
similarity measure

PDM has been proposed based on the strengths of ED and mp in measur-
ing the dissimilarity. It addresses the limitations with these two measures
which has been discussed before. This enables us to exploit PDM in image
retrieval to improve the accuracy of the results. We have performed the
experiments using three image datasets: eBay, Texture and Corel.

Images in the eBay dataset are represented using HSV colour histograms.
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This thesis proposed a weighting system for extracting HSV colour his-
tograms that let each of the HSV components contribute proportional based
on their importance for human perception. The weighting system assigns
higher weight to hue and equal weights to saturation and value. The re-
sults from our experiments show 60% H, 20% S and 20% V components
yield the best retrieval results.

To evaluate the retrieval performance of PDM, it has been compared with
ED and mp. Throughout the image retrieval experiments, PDM2 has con-
sistently performed the best, while PDM1 has performed the second best
in the Texture and Corel datasets.

PDM1 has not outperformed ED in the eBay dataset. The performance of
PDM1 has been affected by the choice of the threshold in defining dense/
sparse regions and small/large distance. The threshold has been defined
as the mid point between the minimum and maximum of data masses/
distances between query and all dataset instances. This may raise the lim-
itation that border points will be identified, as in sparse/dense region or
small and large distance, although their actual difference does not reflect
that distinction.

6.1.4 Improving image clustering using perceptual dissim-
ilarity measure

Following the promising retrieval results of PDM2, this thesis has exploited
PDM2 as an alternative to ED to improve clustering results. Due to the re-
striction of k-means in working with ED, k-medoids have been used aas
they are capable of working with arbitrary dissimilarity measures. The
performance of PDM2 has been compared with k-medoids (ED) and k-
medoids (mp). Also, these results are compared with k-means. This thesis,
for the first time, used mp as the dissimilarity measure in the clustering.
mp has not achieved good results, as it could outperform the k-means and
k-medoids (ED) only in one dataset.

Clustering results show that PDM2 could outperformed the other two dis-
similarity measures, ED and mp with seven wins, three draws and one
loss in terms of RI. Also, it outperformed ED and mp with 10 wins and one
draw in terms of F measure. Considering the perceptual effect of data dis-
tribution along with ED in PDM2, it has resulted in gathering more similar
data instances in clusters.

In addition to this, following the promising results from PDM2, this the-
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sis has exploited PDM2 in clustering as an alternative to ED to generate
the codebook. We compared the SIFT BOW produced from codebooks
generated by k-means(PDM2) and k-means. Results show that the SIFT
BOW of the Corel dataset produced from the codebook generated by k-
means(PDM2) has yielded better retrievals. This occurred because of the
use of k-means(PDM2) for generation of codebook considers the percep-
tual effect of data distribution along with ED in selecting the visual words.

6.2 Future work

Dissimilarity measurement is fundamental in many applications such as
information retrieval, clustering, classification and anomaly detection. PDM2
has shown promising results in both image retrieval and clustering.

In machine learning, classification is the problem of identifying which cat-
egory a new data instances belongs to, based on the training set of data
instances whose category membership is known. Classifiers use a dissim-
ilarity measure to compare a new data with the trained data to identify it’s
membership. Minkowski distances are widely used in this classification.
We will study the performance of PDM2 for classification in the future.

Anomaly detection is an important task in data mining and it is the iden-
tification of instances or observations that do not conform to an expected
pattern in a given database. Some of the examples are bank fraud, errors
in a text and identification of a medical issue. Minkowski distances are
popular choices in this field as well, and it would be interesting to study
the effect of using PDM2 for anomaly detection in the future.

Previously, we have described the DBSCAN algorithm for clustering in
Chapter 2. Identifying core points is fundamental in DBSCAN. ED is the
distance measure used to identify the core points in this algorithm. DB-
SCAN suffers from finding the clusters with varying densities. Kai Ming
et al [114] proposed a new method to address this limitation by using mass
instead of ED. However, considering data mass and distance together has
not been explored in this clustering method. In the future we will propose
a variation of PDM that considers both data mass and distance and suits
DBSCAN clustering.
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