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RESEARCH Open Access

Commensal microbiota modulate gene
expression in the skin
Jacquelyn S. Meisel1, Georgia Sfyroera1, Casey Bartow-McKenney1, Ciara Gimblet1, Julia Bugayev1,
Joseph Horwinski1, Brian Kim2, Jonathan R. Brestoff3, Amanda S. Tyldsley1, Qi Zheng1, Brendan P. Hodkinson1,
David Artis4 and Elizabeth A. Grice1*

Abstract

Background: The skin harbors complex communities of resident microorganisms, yet little is known of their
physiological roles and the molecular mechanisms that mediate cutaneous host-microbe interactions. Here, we
profiled skin transcriptomes of mice reared in the presence and absence of microbiota to elucidate the range of
pathways and functions modulated in the skin by the microbiota.

Results: A total of 2820 genes were differentially regulated in response to microbial colonization and were enriched in
gene ontology (GO) terms related to the host-immune response and epidermal differentiation. Innate immune response
genes and genes involved in cytokine activity were generally upregulated in response to microbiota and included genes
encoding toll-like receptors, antimicrobial peptides, the complement cascade, and genes involved in IL-1 family cytokine
signaling and homing of T cells. Our results also reveal a role for the microbiota in modulating epidermal differentiation
and development, with differential expression of genes in the epidermal differentiation complex (EDC). Genes
with correlated co-expression patterns were enriched in binding sites for the transcription factors Klf4, AP-1, and
SP-1, all implicated as regulators of epidermal differentiation. Finally, we identified transcriptional signatures of
microbial regulation common to both the skin and the gastrointestinal tract.

Conclusions: With this foundational approach, we establish a critical resource for understanding the genome-wide
implications of microbially mediated gene expression in the skin and emphasize prospective ways in which the
microbiome contributes to skin health and disease.

Keywords: RNA sequencing, Cutaneous transcriptome, Germ-free mice, Host-microbe interactions, Skin microbiome

Background
As a barrier to the external environment, the skin har-
bors microbial communities that are both topographic-
ally diverse and temporally complex [1–4]. These
microbes are postulated to have important functions in
skin health [2], including colonization resistance to block
invasion of pathogenic bacteria and regulation of the cu-
taneous inflammatory and immune response [5–7]. The
skin must sense, interpret, and respond to microbial
signals from the environment, orchestrating responses
appropriate for the stimuli while maintaining barrier
function and protecting itself from pathogenic infection.

Abnormal host-microbe interactions are associated
with cutaneous disorders like atopic dermatitis, acne,
and psoriasis [8–14], but the exact mechanisms under-
lying the microbial contributions to disease development
and progression are currently unknown. Identifying the
complete range of host functions and pathways evoked
by the skin microbiota will improve our understanding
of disease pathogenesis and reveal new preventative and
therapeutic targets.
The full extent of cutaneous functions regulated by the

skin microbiota remains unknown and previous work has
focused heavily on characterizing the response of specific
pathways to microbial colonization. Recent work in mouse
models demonstrates that the commensal microbiota,
along with hair follicle morphogenesis, is responsible for
recruitment of regulatory T cells during neonatal life [15].
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Regulatory T cells additionally establish and mediate im-
mune tolerance to skin commensal bacteria during a
defined window of development [16]. Skin commensal
bacteria also promote interleukin 1 (IL-1) signaling and ef-
fector T cell functions, suggesting a role for the microbiota
in driving and/or mediating inflammatory skin disorders
[6]. Other work has highlighted the contributions of spe-
cific types of bacteria in inducing T cell responses via in-
teractions with skin-resident dendritic cell subsets [17].
Complement, an ancient and evolutionarily conserved
arm of the innate immune system, may also be regulated
in the skin by colonization with the commensal micro-
biota [18]. While these studies and others have established
roles for the microbiota in shaping cutaneous immunity,
the broad spectrum of host functions that are elicited
and/or mediated by the microbiota, as well as their under-
lying molecular mechanisms, remains uncharacterized.
Here, we aimed to identify the molecular signals that

mediate the cutaneous host response to the resident skin
microbiota on a genome-wide scale, thereby elucidating
the full range of cutaneous responses evoked by the
microbiome. We used sterile, germ-free mice that have
never been exposed to microbiota and compared their
cutaneous transcriptome to that of mice conventionally
raised in the presence of microbiota. We reasoned that,
similar to previous work performed in the gastrointes-
tinal tract [19–25], this experimental design would allow
us to identify genes and pathways in the skin under tran-
scriptional modulation by the microbiome.
Differentially expressed genes were enriched for those

related to immunity and epidermal differentiation and de-
velopment. Further analysis revealed an enrichment of
microbially regulated genes in the epidermal differenti-
ation complex, a syntenic cluster of genes regulated in a
tissue-specific manner with critical roles in epidermal bar-
rier formation [26]. Analysis of coordinately regulated
genes suggests that genes under the transcriptional con-
trol of Klf-4, AP-1, and SP-1 are microbially regulated.
Finally, we identify genes that are similarly regulated by
the microbiota in both the skin and gastrointestinal tract,
highlighting commonalities in the molecular signals that
govern host-microbe interactions at both barrier sites.
Collectively, this work provides a critical foundation and
resource for understanding cutaneous gene regulation by
the microbiota, while establishing the molecular signals
governing host responses to microbial colonization.

Results
Commensal microbiota modulate the cutaneous transcriptome
To measure the genome-wide impact of microbial
colonization on cutaneous gene transcription, we se-
quenced and compared the mRNA transcriptome of skin
from mice raised in the absence of microbiota to conven-
tionally raised mice (Fig. 1a). Poly-A enriched RNA

isolated from murine germ free (GF; n = 9) and specific
pathogen free, conventionally raised (SPF; n = 7) skin was
sequenced on the Illumina HiSeq 2000 to obtain over 1.2
billion paired-end reads (median of 60 million reads per
sample, see Additional file 1: Table S1 for sample summar-
ies) of good quality (Additional file 2: Figure S1A). Reads
were mapped to the mouse reference genome using the
STAR aligner [27], in conjunction with AlignerBoost [28].
Of reads that aligned to the mouse reference genome, an
average of 88% of reads per sample were assigned to a fea-
ture (Additional file 2: Figure S1B), and the majority
mapped to protein coding RNA (Additional file 2: Figure
S1C) with sufficient coverage (Additional file 2: Figure
S1D). Gene counts were filtered and normalized in
NOISeq [29, 30], yielding a total of 15,448 features for
analysis (Additional file 3: Dataset S1). ARSyNseq [31]
was used to control for batch effects associated with dif-
ferent sequencing runs (Additional file 4: Figure S2).
Biological replicates of GF and SPF skin cluster together

as demonstrated by non-metric multidimensional scaling
(Fig. 1b). A total of 2820 genes were differentially expressed
between GF and SPF skin (FDR-corrected p value < 0.1,
Fig. 1c, Additional file 3: Dataset S1). Of these, 730
genes were differentially expressed by a twofold
difference or greater between GF and SPF skin: 408 up-
regulated and 322 downregulated in the absence of
microbiota.
Weighted gene correlation network analysis (WGCNA)

[32], an unsupervised method for correlating patterns of
gene expression, created a scale-free network with 13 cu-
taneous gene modules (Fig. 1d, Additional files 5 and 6:
Figure S3A-C, Dataset S2). Ninety percent of all genes
were assigned to modules, with the majority belonging to
modules M1 and M2 (5613 and 5259 genes, respectively).
Genes in each module were significantly enriched in dif-
ferent biological processes, including RNA processing and
metabolic processes (M1), the immune response (M2),
transport (M3), and inflammatory response and keratino-
cyte differentiation (M4) (Additional file 7: Table S2).
While colonization status clustered closely to and was cor-
related with the M4 module (ρ = 0.45, p = 0.08), only the
M1 (ρ = − 0.58, p = 0.02) and M2 (ρ = 0.6, p = 0.01) mod-
ules were significantly correlated with the presence of
microbiota (Additional file 5: Figure S3D). The majority of
differentially expressed genes (DEG) downregulated in
SPF skin were assigned to the M1 and M3 modules, while
those upregulated in SPF skin were predominantly found
in the M2 and M4 modules (Fig. 1d).

Cutaneous immune response genes are differentially
regulated by resident microbiota
Gene ontology (GO) analysis of the 730 DEGs with an
FDR-corrected p value > 0.1 and > twofold difference in
expression revealed a variety of biological processes
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modulated by the commensal microbiota
(Additional file 8: Dataset S3), including “immune re-
sponse” (FDR-corrected p value 3 × 10− 24, Fig. 2a). DEGs
contained within GO terms related to the immune re-
sponse were generally upregulated in SPF skin (Fig. 2b).
For instance, of the 428 genes in our dataset that were
characterized by the GO term “innate immune re-
sponse,” 82 are differentially expressed (Fig. 2c).
Seventy-two of these “innate immune response” DEGs
are upregulated in SPF skin and include genes encoding

pattern recognition receptors (Tlr1, Tlr7, Tlr8, Tlr9
Tlr13), interferon regulatory factors (Irf7), and the com-
plement cascade (C3, C1qa, C1qb, C1qc, Cfp, Cfb,
C3ar1). DEGs encoding antimicrobial proteins were also
upregulated in SPF skin, including Slpi and Ccl6.
Molecular function GO terms enriched in the DEGs

contained terms related to host-microbe interactions
and the immune system, such as “cytokine activity” (GO
0005125), “cytokine receptor binding” (GO 0005126),
“toll-like receptor binding” (GO 0035325), and

a b

c d

Fig. 1 Gene expression profiles differ between SPF and GF skin. a Dorsal skin collected from GF and SPF mice was subject to polyA-enriched RNA
sequencing to identify transcriptional modulation by skin microbial communities. b NMDS plot based on filtered, normalized, batch effect-corrected
read counts from each sample, showing that samples cluster together by condition. Blue triangles indicate SPF samples, and magenta squares indicate
GF samples. c Volcano plot highlighting differentially expressed genes. Each dot represents a gene. Gray dots indicate DEGs. Magenta dots indicate
DEGs with at least twofold enrichment in GF mice, while blue dots indicate DEGs with at least twofold enrichment in SPF mice. The x-axis is the log
fold change in normalized gene expression and the y-axis depicts the log10 absolute value of the difference in expression between the two conditions.
d Barplot indicating WGCNA gene modules to which the 730 DEGs with a twofold difference belong
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Fig. 2 (See legend on next page.)
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“interleukin-1 receptor binding” (GO 0005149) (FDR-
corrected p values all < 0.05). Analysis of DEGs within
the GO term “cytokine activity” revealed differential
expression of cytokines/chemokines involved with hom-
ing of T cells to the skin, including Tslp, Cxcl9, and
Ccl28, all upregulated in SPF skin. Interleukin-1 family
cytokine genes were also upregulated in SPF skin com-
pared to GF, including IL-1β, Il-33, Il1f8 (also known as
Il-36β), Il1f9 (also known as Il-36γ). In particular, IL-36γ
has been implicated in plaque psoriasis [33], and
Cathepsin S (Cpss), recently shown to activate IL-36γ
[34], was also upregulated in SPF compared to GF skin.
Genes encoding pro-inflammatory cytokines, such as Il-
33, were upregulated by the microbiota, as were anti-
inflammatory cytokines such as Il-10.
KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathway analysis corroborated enriched GO terms and
identified significant enrichment of the pathways “comple-
ment and coagulation cascades” (ko04610), “Staphylococcus
aureus infection” (ko05150), “cytokine-cytokine receptor
interaction” (ko04060), and “toll-like receptor signaling
pathway” (ko04620) (FDR-corrected p value < 0.05).

Analysis of skin immune cell populations supports gene
expression findings
Because the skin is composed of heterogeneous cell pop-
ulations, and differential infiltration by immune cell
subtypes may account for some differences in observed
gene expression, we compared GF and SPF skin cellular
populations. Toluidine blue staining for mast cells did
not reveal significant differences in counts between SPF
and GF skin (Additional file 9: Figure S4A), nor did im-
munofluorescence staining of CD3, a pan T cell marker
(Additional file 9: Figure S4B).
Flow cytometry was used to further quantify a variety

of different cell populations in the skin of SPF and GF
mice. No significant differences were observed between
GF and SPF skin in frequency of myeloid (CD11b+) cells,
dendritic (CD11c+) cells, neutrophils (Ly6G+), non-
hematopoietic (CD45−) cells, or T cells (CD3+) (Fig. 2d).
In SPF skin, however, Ly6C+ monocytes were signifi-
cantly increased in frequency (Fig. 2d). We also saw
increased IL-1α production in myeloid, dendritic,
macrophage, and non-hematopoietic cell populations in
SPF compared to GF skin (Additional file 9: Figure S4C),

similar to previous reports of the cutaneous immune
microenvironment [6]. Although the frequency of F4/80+

macrophages did not differ (Fig. 2d), an increased
frequency of IL-1β producing F4/80+ macrophages was
observed in SPF skin, in line with our RNA sequencing
data that identified IL-1β as differentially expressed
(Additional file 9: Figure S4C, D). Overall, these results
support our transcriptome findings of differential gene
expression related to cytokine activity and the immune
response and confirm previous reports of the cutaneous
immune microenvironment.

Epidermal differentiation is regulated by the commensal
microbiota
The GO term “keratinocyte differentiation” was significantly
enriched in DEGs (FDR corrected p value 2.2 × 10− 5). Of
the 101 genes in our dataset that fall under this category,
eight were significantly downregulated and 12 were signifi-
cantly upregulated in response to microbial colonization.
Notably, nine of these genes are found in the epidermal
differentiation complex (EDC), a cluster of genes found
on murine chromosome 3 encoding proteins involved
in terminal differentiation and cornification of keratino-
cytes and implicated in cutaneous diseases such as
psoriasis and atopic dermatitis [35]. There are 61 total
genes in the murine EDC; 33 were retained in our fil-
tered, normalized dataset, 27 were significantly differ-
entially expressed between GF and SPF mice, and 12 of
these DEGs had at least a twofold change in expression
(Fig. 3a). This includes late cornified envelope genes
(Lce1d, Lce1e, Lce1f, Lce1g, Lce1h, Lce1i, Lce1j, Lce1k)
and small proline rich region genes (Sprr1a, Sprr2a3,
Sprr4), which encode cornified envelope precursors
with protein cross-linking function, all upregulated in
SPF compared to GF skin. Other DEGs localizing to the
EDC included those encoding the S100 small calcium
binding proteins. These include S100a7a (psoriasin)
and S100a9, both encoding antimicrobial and/or chemo-
tactic proteins which are expressed under a variety of epi-
dermal insults including psoriasis and wound healing [36].
Previous studies have demonstrated that Escherichia
coli, a Gram-negative bacterium rarely found on human
or murine skin, induces expression of S100A7 and
S100A15 when heat killed cultures or conditioned
media are incubated with keratinocytes in vitro [37, 38].

(See figure on previous page.)
Fig. 2 Gene ontology analysis identifies immune response terms enriched in DEGs. a REVIGO treemap showing cluster representatives of Biological
Process GO terms that are significantly enriched in the DEGs (FDR-corrected p value < 0.05). Larger boxes indicate greater significance, as the box sizes are
determined by the absolute value of the log10 p value. b Barplot depicting the number of DEGs in each of the high-level significant Biological Process GO
terms from part A. c Heatmap of the log normalized gene expression of DEGs in the GO term “Innate Immune Response”. d Flow cytometry analysis of GF
and SPF mice (n = 5 each) identified no significant differences between GF and SPF skin in regard to myeloid (CD11b+) cells, dendritic (CD11c+) cells,
macrophages (F4-80+), neutrophils (Ly6G+), non-hematopoietic (CD45−) cells, and T cells (CD3+). However, Ly6C+ monocytes were significantly increased in
frequency in SPF compared to GF skin (T test, p value < 0.01). All populations (except CD45−) were pre-gated on live, CD45+ cells
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Fig. 3 (See legend on next page.)
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Additionally, Flg and Rptn are DEGs encoding the struc-
tural proteins filaggrin and repetin, respectively, and were
upregulated in SPF mice.
DEGs outside of the EDC but also involved in kera-

tinocyte differentiation included the cell adhesion
protein cadherin-3 (Cdh3); hornerin (Hrnr), a filaggrin-
like S100 protein; and keratin 16 (Krt16), a structural
protein recently shown to regulate innate immunity in
response to epidermal barrier stress [39]. Genes upregu-
lated in GF mice included those encoding the transcrip-
tion factors Msx2 and Foxn1. Notably, Foxn1 knockout
results in the nude phenotype, characterized by skin
defects including impaired keratinization and hair for-
mation [40], and genetically interacts with Msx2 up-
stream of the Notch signaling pathway [41].
The enrichment of DEGs annotated with the

“keratinocyte differentiation” GO term prompted us to
further examine other gene subsets that are involved in
the development and differentiation of the epidermis.
This revealed a variety of transcription factors and regu-
lators critical to skin developmental processes including
Ptch2, Sox9, Edar, Wnt10b, and Hoxc13, all of which
were upregulated in GF compared to SPF skin (Fig. 3b).
To further investigate these findings and the potential

structural consequences to the skin barrier, we assessed
gross morphology of SPF and GF skin by performing
hematoxylin and eosin staining of histological sections.
As shown in Fig. 3c, no differences in the thickness of
epidermis or other structural alterations were observed.
Immunofluorescence was also used to visualize markers
for differentiation, proliferation, and injury. Staining for
cytokeratin 6a (K6A) did not differ between SPF and GF
mice and was localized to the hair follicle (Fig. 3d), the
site of constitutive expression. Since K6A expression in
the interfollicular epidermis is a hallmark response to
wound healing [42], we conclude that the barrier integ-
rity is similar in SPF and GF mice. Supporting this, the
gene encoding K6a (Krt6a) was not differentially
expressed. Ki-67, a marker of cellular proliferation [43],
was significantly increased in GF skin (Fig. 3e), corrobor-
ating the finding that the gene encoding Ki-67 (Mki67)
was also significantly upregulated in GF skin. Loricrin, a
major component of the cornified envelope and a
marker of keratinocyte terminal differentiation [44],

appeared qualitatively to be increased in SPF skin by im-
munofluorescence (Fig. 3f ), suggesting increased
terminal differentiation in SPF compared to GF skin.
Expression of Krt1, another marker of terminal differen-
tiation, was also significantly increased in expression in
SPF mice (Additional file 9: Figure S4E); however, there
was no significant difference in expression of Krt14,
expressed primarily by proliferating basal keratinocytes
[45]. Together, our transcriptional and histological find-
ings suggest that the balance between epidermal prolifer-
ation and differentiation is altered in response to
microbial colonization.

Colonization state shifts gene expression networks for
epidermal differentiation and development processes
To investigate gene-gene regulatory relationships, we
identified gene pairs with similar expression patterns in
GF and SPF states using differential gene correlation
analysis (DGCA) [46]. We focused on a subset of all
DEGs with high relative expression, moderate to high
dispersion, and significant co-expression patterns across
both colonization conditions. Post-filtering, 661 genes
were positively correlated with at least one other gene
and 14,707 of 230,860 possible gene pairs were signifi-
cantly positively correlated in both SPF and GF skin
(Fig. 4a). Additionally, 605 of these 14,707 positively cor-
related gene pairs exhibited a significant change in correl-
ation between the two colonization states, indicating an
underlying change in modular connectivity profiles.
Notably, Loricrin, which encodes a major component of
the cornified envelope, and Serpina12, a serine protease
inhibitor that has been implicated in the keratinocyte des-
quamation process [47, 48], are both significantly upregu-
lated in the presence of commensal microbiota and are
also significantly positively correlated in GF and SPF con-
ditions (Fig. 4b). However, a significant decrease in the
correlation coefficient between the two genes is observed
in SPF compared to GF skin (Fig. 4b, q, < 0.05), suggesting
an alteration in the gene networks controlling epidermal
development in response to microbial colonization.
Genes with positive correlations in both colonization

states (n = 661) were further scrutinized for shared tran-
scription factor binding sites in oPOSSUM3 [49]. For
improved resolution, these genes were also stratified by

(See figure on previous page.)
Fig. 3 Genes in the epidermal differentiation complex (EDC) are under microbial regulation. a The mean relative expression of genes found in
the EDC in SPF compared to GF mice. A value of 1 indicates equal expression in the two groups. Colors of the bars indicate DEGs, and error bars
represent propagated SE of the ratio SPF/GF. EDC genes are grouped as previously described [35]. b Boxplot of normalized gene expression of
differentially expressed transcription factors and regulators critical to skin developmental processes. c–f Histology and immunofluorescence staining of SPF
and GF skin sections. Dotted line inset boxes indicate the area that is magnified in the figure to orient the reader. White arrowheads are examples of
positive cells. Significance testing was performed on an aggregate of three experiments with 3 GF and 3 SPF mice each. A * indicates a p value < 0.05 by
T test. Scale bars represent 50 μm. c Hematoxylin and eosin staining and epidermal thickness measurements. d Cytokeratin 6A (K6A) staining. e Ki67
staining for proliferating cells. f Loricrin staining as a marker of differentiation
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whether they were upregulated in GF (n = 196) or SPF
(n = 465) skin. Twenty-eight total transcription factors
(TF) were enriched in our positively correlated gene list
(Fig. 4c, Additional file 10: Figure S5). Strikingly, Klf4,
an important regulator of epidermal differentiation and
barrier formation [50, 51], was the most significant TF
across all three gene groupings, validating the relevance
of our selected gene set.
Other significantly enriched TFs, such as SP-1 and

AP-1, were more discriminatory of colonization status
than Klf4. In our analysis, SP-1 was more significant in
predicted regulation of GF compared to SPF genes, while
AP-1 was predicted to be more significant in regulating
SPF genes when considering the Fisher score metric
(Fig. 4c). SP-1 has been implicated in regulating epider-
mal barrier function and, in conjunction with AP-1, reg-
ulates keratinocyte-specific gene expression in vitro [52].
Klf4 and SP-1 have predicted binding sites in both Lori-
crin and Serpina12, while AP-1 is predicted to only tar-
get Loricrin. Together, these findings suggest that the
commensal microbiota differentially regulates underlying
gene networks under the control of these TFs in the
skin.

DEGs under microbial regulation are common to the skin
and gastrointestinal tract
Modulation of gene expression by the gut microbiota
has been extensively studied in gastrointestinal tissues
[19–24]. To determine if genes and pathways are simi-
larly regulated by microbial colonization in both the skin

a

b

c

Fig. 4 DGCA analysis identified significantly correlated DEGs that share
potential transcription factor binding sites. a Matrix highlighting the
number of significantly correlated gene pairs from the filtered list of
DEGs. Each axis represents a condition (GF or SPF), with + indicating a
significant positive correlation between the gene pair, − indicating a
significant negative correlation, and 0 indicating the lack of a significant
correlation. Gene pairs that are positively correlated in both SPF and
GF skin are highlighted in the uppermost left corner. b The Loricrin
and Serpina12 gene pair is positively correlated in both colonization
conditions, but a significant loss of correlation is observed in SPF
compared to GF skin (q < 0.05). The x- and y-axes indicate the TMM
normalized, batch effect-corrected gene counts, and each dot represents
a single mouse, colored by their microbial condition. Colored lines and
shaded areas represent the linear regression lines and their respective
95% confidence interval for each microbial condition. c Analysis with
oppossum3 identified enriched transcription factors in positively
correlated DGCA gene sets, using Fisher scores to assess significance.
The y-axis identifies significant transcription factors, while x-axis
represents the significance metric. Higher values indicate greater
significance and the shape indicates whether the metric score
was 1 or 2 standard deviations (SD) above the mean. Fisher scores are
significant when greater than 1 SD above the mean. Size of each point
reflects the percentage of all DGCA +/+ DEGs containing a binding
region for each TF and color indicates colonization status of the DGCA
+/+ DEGs
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and gastrointestinal tract, we compared our dataset to a
2015 study that examined gene expression profiles of
control (conventionally raised SPF) mice to GF mice and
mice treated with antibiotics to deplete microbiota [23].
Our data shared 995 of these DEGs; 55 of which were
significant with at least a twofold change in expression
in both datasets (Fig. 5a, genes listed in Fig. 5b). For
each gene, Morgun et al. attributed the observed differ-
ential expression in the gut tissue to direct effects of an-
tibiotics on host tissue (ABx), depletion of normal
microbiota in the gut (M), and/or growth of antibiotic
resistant bacteria (ABresM). Compellingly, genes under
microbial regulation in both the skin and GI tract were
mainly attributed to the depletion of the normal micro-
biota rather than to side effects of antibiotic usage
(Fig. 5a).
The 37 DEGs shared in the gut and skin that are

upregulated during microbial colonization include genes

related to the immune response, such as the comple-
ment cascade (C1qc, C1qb), cytokines and chemokines
(Il-33, Ccr2, Ccr5, Ccl5, Ccl6, Cxcl8, Cxcl9), and toll-like
receptors (Tlr1) (Fig. 5b). In particular, IL-33 has been
implicated in multiple inflammatory disorders of both
the skin and gut. Transgenic expression of IL-33 in mur-
ine skin causes spontaneous dermatitis to develop [53]
and, in humans, may modulate filaggrin expression and
thus skin barrier function [54]. IL-33 is also implicated
in colitis in humans and in mouse models [55, 56],
suggesting a general role for IL-33 signaling in the medi-
ation of host-microbe interactions at epithelial barrier
surfaces. Ebi3 is a subunit of the heterodimeric cytokine
IL-27, which plays an essential role in regulating cellular
proliferation during skin wound repair [57] but similarly
mediates intestinal epithelial cell proliferation [58].
Eight genes were downregulated by the microbiota in

both the skin and gut. Interestingly, three of these

a b

Fig. 5 Comparison to published gut transcriptome dataset identifies shared DEGs under microbial regulation. a Venn diagrams highlighting 55 DEGs
shared between skin and gut that are regulated by the microbiota. Gut transcriptome data was downloaded from a previously published study [23].
The center square identifies the total number of shared DEGs between the skin (x-axis) and gut (y-axis) datasets in each colonization category. The Venn
diagrams highlight DEGs upregulated in the presence (blue, top) and absence (magenta, bottom) of microbiota, respectively, and whether these genes
were differentially regulated in the gut in response to microbial colonization (M), colonization of antibiotic resistant microbes (ABresM), or direct effects
of antibiotics on host tissue (ABx) or any combination of the above. b Heatmap showing log2 fold change of the 55 DEGs shared between the gut and
skin datasets, with parenthesis next to gene names indicating whether these genes were differentially regulated in the gut in response to microbial
colonization (M), colonization of antibiotic resistant microbes (ABresM), direct effects of antibiotics on host tissue (ABx), or any combination of the above
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genes encode mitochondrial proteins involved in solute
transport (Slc25a37), oxidative demethylation (Sardh),
and acyl-CoA metabolism (Acsm3), suggesting con-
served roles for the microbiota at both tissue types in
cellular metabolism. Edn3, or endothelin 3, is the ligand
for endothelial receptor type B (Ednrb), which is
expressed by neural crest-derived lineages during devel-
opment, namely melanocytes (in the skin) and enteric
neurons (in the gut) [59]. Trpm6 and Wnk4 are both
involved in ion transport in the colon [60], but their
role in skin is unclear.
Ten genes were differentially expressed in opposite di-

rections in the gut and skin in response to microbial
colonization. Genes upregulated by microbiota in the
skin but downregulated by microbiota in the gut, include
very large interferon-inducible-GTPase (Gvin1), toll-like
receptor adaptor molecule 2 (Ticam2), and a predicted
gene (Gm1966). Conversely, genes upregulated by
microbiota in the gut but downregulated by microbiota
in the skin, include GTP cyclohydrolase I feedback
regulator (Gchfr), phosphodiesterase 9A (Pde9a),
MARCKS-like 1 (Marcksl1), nuclear RNA export factor
7 (Nxf7), sphingomyelin phosphodiesterase, acid-like 3B
(Smpdl3b), glutathione peroxidase 2 (Gpx2), and uridine
phosphorylase 1 (Upp1). The discordant expression of
these genes suggests distinct roles and/or require-
ments for tissue homeostasis and tolerance in the gut
and skin.

Discussion
As a barrier to the external environment, the skin
must effectively orchestrate gene expression programs
to establish host-microbe commensalism and maintain
cutaneous barrier function. Here, by integrating
microbiome research with transcriptional genomics,
we investigated cutaneous gene expression profiles
from GF and SPF mice to determine how the skin
interprets exposure to the commensal microbiota on
a genome-wide scale. We identified a previously sup-
ported role for the microbiota in regulating immune
response pathways in the skin and more surprisingly
revealed that the microbiota influences epidermal de-
velopment and differentiation pathways. We also
identified commonalities in the genes and pathways
regulated by the microbiota in the gut and skin.
Together, these findings provide novel insight for
understanding the fundamental and diverse cutaneous
functions imparted by the commensal microbiota and
establish a critical resource for further exploration.
Previous work has established cell-type-, micro-

organism- and pathway-specific roles for the skin micro-
biota in cutaneous immunity. For example, different
skin resident microbes can control expression of

antimicrobial peptides [61]. Cutaneous IL-1 signaling has
also been shown to be augmented by the commensal
microbiota, subsequently promoting effector T cell func-
tions [6]. Commensal microbes are also responsible for ac-
cumulation of regulatory T cells via a Ccl20-Ccr6 axis in
neonatal skin [15]. The work herein collectively confirms
these findings at the transcriptome level, while revealing
additional immune pathways and responses elicited by the
skin microbiota.
Our high-throughput approaches revealed significant

transcriptional differences in response to microbial
colonization. Network analyses identified co-expressed
gene modules in the cutaneous transcriptome. Particu-
larly, two gene expression modules including a signifi-
cant proportion of genes under microbial regulation
contribute to the host-immune response. Upregulation
of innate immunity genes in the presence of microbes
could be associated with the higher levels of IL-1α
observed in SPF compared to GF skin. It is important to
note that these expression differences are not accompan-
ied by an increase in overall inflammation, supporting
the role of the microbiome in priming the cutaneous
immune response.
Our data suggest an increase in the proliferative cap-

acity of GF skin and the microbial regulation of genes in
the EDC. The enrichment of DEGs in this syntenic and
relatively gene-dense region may suggest some inter-
action between the microbiome, the epigenome, and
other regulatory mechanisms. While previous work has
shown that genes in the EDC are coordinately regulated
[35], it is intriguing to hypothesize that this regulation
may in part be modulated by the microbiota. We identi-
fied putative transcription factors associated with differ-
entially expressed, differentially correlated genes.
Although further investigation is required to elucidate
the exact mechanisms, our data suggest that genes regu-
lated by transcription factors such as Klf4, AP-1, and
SP-1 may be regulated in a colonization-dependent
manner. A similar phenomenon described in the gastro-
intestinal tract demonstrates that hundreds of genes
under negative regulation by the transcription factor
Hnf4 in zebrafish are microbially regulated, many of
which were homologs of genes associated with human
inflammatory bowel diseases [62].
Another noteworthy finding is the characterization of

genes that are transcriptionally modulated by the micro-
biome in both the gut and the skin, suggesting that while
microbiota across different tissues induce niche-specific
gene expression changes, they also stimulate similar
host-immune responses. A limitation of this study is that
in this model system, it is not possible to separate the ef-
fects of gut microbiota from skin microbiota. It is pos-
sible that the gut microbiota influences processes at
distal epithelia such as the skin, through intestinal
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absorption of microbiota-derived metabolites into the
bloodstream or through effects on immune cell stimula-
tion and/or programming [63]. Similarly, the skin micro-
biota may have physiological implications at distal sites,
which were not investigated here. Additionally, although
we used sex- and age-matched mice in this study and
confirmed synchronized hair cycles by histology, en-
dogenous host factors, such as sex, age, and hair cycle,
should be further investigated for their potential to mod-
ify cutaneous host-microbe interactions. Finally, our
study does not differentiate the effects of different spe-
cies/strains of microbiota on transcriptional responses in
the skin.
Our foundational approach focused on transcriptional

responses to the whole microbial community colonizing
conventionally raised SPF mice in comparison to GF
mice. Our work provides a framework for further inves-
tigation into how specific microbial lineages, host-
genetic variation, disease states, and environmental
challenges influence microbially mediated gene expression
in the skin.

Conclusions
Our results suggest that the skin microbiome mediates
two fundamental processes at the transcriptional level in
the skin: the immune response and epidermal develop-
ment and differentiation. The epidermal differentiation
complex was enriched in differentially expressed genes,
and differential gene correlation analysis suggests that
genetic networks underlying epidermal barrier formation
and differentiation are altered by the microbiota and
regulated by transcription factors such as Klf4, AP-1,
and SP-1.

Methods
Gene expression analysis
Library preparation
All mouse experiments were conducted under proto-
cols approved by the University of Pennsylvania Institu-
tional Animal Care and Use Committee. Mice were
born as GF or SPF at the University of Pennsylvania
and housed as such, 3-5 mice per cage, until they were
euthanized for tissue harvest. The skin was collected
from the dorsum of 8–10-week-old male C57BL/6 mice
and stored in RNAlater. Mice were confirmed to have
similar (telogen) hair cycle by histological analysis.
Poly-A enriched RNA was isolated from harvested GF
(n = 9) and SPF (n = 7) skin, and RNA-seq libraries
were constructed using the unstranded TruSeq RNA
Sample Prep Kit (Illumina). Consistent with ENCODE
recommendations, libraries were sequenced on the
Illumina HiSeq 2000 to obtain 100 bp paired-end reads
per skin sample.

Alignment, filtering, and counting
Transcripts were aligned to the mouse reference genome
GRCm38.p4 v9 [64], using STAR [27] in conjunction
with AlignerBoost [28], and specifying a seed length of
25, 4% seed mismatch, 0% seed indels, 8% all mismatch,
and 3% all indels. Reads mapping to numbered and sex
chromosomes were retained. Read counts were gener-
ated using featureCount in the subread package [65] and
counts to ribosomal RNA were removed. Reads were
filtered in NOISeq [29, 30] using method 1, which
removes features with a sum of expression values less
than 1 count per million multiplied by the number of
samples in the condition. Post filtering, TMM
normalization was applied and technical batch effects as-
sociated with sequencing run were removed using
ARSyNseq [31].

Weighted gene correlation network analysis
Filtered, normalized, and batch effect-corrected gene
counts were input into the WGCNA R package [32]. A
signed-hybrid network was constructed specifying the
following parameters (power = 17, pamRespectsDendro
= FALSE, minModuleSize = 30, reassignThreshold = 0,
mergeCutHeight = 0.25). Gene ontology analysis of mod-
ules was performed by converting Ensembl gene IDs to
Entrez gene IDs with biomaRt [66] and using the func-
tion “GOenrichmentAnalysis” (parameters: organism
= “mouse,” nBestP = 5, ontologies = c(“BP”)).

Differential gene expression and gene ontology analysis
Differential gene expression was determined using
NOISeqBIO (q = 0.9, equivalent to FDR adjusted p value
of 0.1). Gene ontology (GO) [67] and KEGG pathway [68]
analysis were performed using the R package GOSeq [69],
and visualization was generated with REVIGO [70], allow-
ing medium similarity, using the “Mus musculus” data-
base, and the SimRel similarity measure.

Differential gene correlation and TFBS analysis
Gene correlation analysis was performed on all 2820
DEGs with the DGCA R package, using default parame-
ters unless otherwise specified [46]. Initially, genes were
filtered for low central tendency, retaining only genes
with average expression levels in the 75th percentile or
above in all tested genes. Genes were further filtered for
dispersion, retaining only genes with moderate to high
dispersion of expression values (above the 30th percent-
ile). The differential correlation analysis was performed
on all possible pairs using Pearson’s correlation
coefficient. Significance was determined through empir-
ical p values derived from Z scores obtained in compar-
ing the correlation values of the original expression data
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with correlation values of permuted expression data; 10
permutations were performed. Only genes with positive
correlations in both colonization states were further
considered. Prediction of overrepresented transcription
factor binding sites in the positive/positive correlated
genes was performed using a single site analysis with
default parameters in oPOSSUM3 [49]. Significance was
assessed using Fisher scores (significant when > 1
standard deviation above the mean) and Z scores
(significant when > 2 standard deviations above the
mean). Differences in the relative significance levels
between the two scoring methods result from the
different parameters and sample distributions used to
calculate each score. Additionally, Z scores consider
the total number of TFBS in a gene set, while Fisher
scores only consider the number of genes in a set
containing at least one TFBS.

Comparisons to previously published datasets
Significantly differentially expressed genes with at least a
twofold change in expression from a gut microbiome
dataset [23] were downloaded from published supple-
mentary data and imported into R.

Cellular characterization
Histology and immunofluorescence
Skin biopsies were collected from the dorsal side of SPF
and GF mice, fixed in 10% (w/v) formalin, embedded in
paraffin, and sectioned at 6 μm. Tissue sections were
stained with hematoxylin and eosin to characterize
epidermal thickness or with toluidine blue to identify
mast cells. For immunofluorescence, sections were
deparaffinized with xylene and rehydrated in down-
graded alcohol. Heat-inactivated antigen retrieval was
performed by incubating the tissue sections in 10-mM
sodium citrate buffer, pH 6.0, and subsequently washing
the sections with a PBS/0.2% Triton solution. Tissue
sections were blocked with 10% (v/v) normal goat serum
for 2 h at room temperature. After blocking, sections
were incubated with a primary antibody. The antibodies
that were used include anti-mouse Keratin 6A
(Biolegend), anti-mouse Loricrin (Biolegend), anti-
mouse CD3 (Abcam), and anti-mouse Ki67 (Abcam).
Following multiple washes, secondary antibodies, goat
anti-rabbit IgG-Alexa, and goat anti-mouse-Alexa 555
were applied for 1 h at room temperature and then
washed. Slides were mounted with prolong DAPI
(Molecular Probes) and examined under a fluorescent
microscope (Leica DM550B). Positive-stained cells were
counted in five fields per tissue section at × 400 magnifi-
cation, three tissue sections per mouse, and three mice
per group.

Tissue processing and flow cytometry
Skin biopsies were collected from the dorsal side of 5
SPF and 5 GF mice. A section of skin was harvested
from the dorsum of the mice following hair removal
with an electric trimmer equipped with a two-hole preci-
sion blade (Wahl) and treatment with a hair removal
lotion (Nair). Skin sections were then minced with a
sterile scalpel blade into ~ 2-mm sections and incubated
in 5 mL of RPMI containing 12.5 mg/mL of Liberase TL
(Roche) and 100 μg/mL of DNAse I (Sigma-Aldrich) for
120 min with vortexing every 30 min. The resulting sin-
gle cell solution was passed through a 40-μm cell
strainer and resuspended in cRPMI. For analysis of sur-
face markers and intracellular cytokines, cells were incu-
bated for 4 h with 10 μg/mL of brefeldin A, 50 ng/mL of
PMA, and 500 ng/mL ionomycin (Sigma-Aldrich).
Before staining, cells were incubated with anti-mouse
CD16/CD32 mouse Fc block (eBioscience) and 10% rat-
IgG in PBS containing 0.1% BSA. Cells were stained for
dead cells with LIVE/DEAD Fixable Aqua Dead Cell
Stain Kit (Molecular Probes) and surface markers (CD4
[eBioscience, clone RM4-5], CD8β [BioLegend, clone
YTS156.7.7], CD45 [eBioscience, clone 30-F11], TCRγδ
[BD Biosciences, clone GL3], Ly6G [eBioscience, clone
1A8-Ly6g], Ly6C [BD Biosciences, clone AL-21], CD11b
[eBioscience, clone M1/70], CD11c [eBiosciences, clone
N418], F4/80 [eBioscience, clone BM8]) followed by fix-
ation with 2% of formaldehyde and permeablization with
0.2% saponin/PBS. Intracellular cytokine staining was
performed for pro-IL-1β (eBioscience, clone NJTEN3),
IL-17 (eBioscience, clone eBio17B7). The data were col-
lected using LSRII flow cytometer (BD) and analyzed
using FlowJo software (Tree Star).

Additional files

Additional file 1: Table S1. Sample summary statistics. Rows contain
the 16 samples analyzed; with columns containing associated sequencing
statistics and metadata. (XLSX 56 kb)

Additional file 2: Figure S1. Quality control of RNA-sequencing data.
(A) Mean quality score per base for each of the 16 samples. (B) Number
of reads mapping to the mouse reference genome for each sample. (C)
Relative abundance of reads mapping to each biotype. (D) Percentage of
the genome covered by mapped reads per sample. (EPS 1354 kb)

Additional file 3: Dataset S1. Results from differential expression
analysis. Rows contain the 15,448 features analyzed. Columns contain
Ensembl feature id, mean expression of GF samples, mean expression of SPF
samples, the NOISeq differential expression statistic theta, the probability of
differential expression (equal to 1-FDR-corrected p value when using
NOISeqBio, DEGs defined as those with prob. > 0.9), the log2 fold change
in expression (upregulated in GF > 0, downregulated in GF < 0), feature
length, chromosome, feature start and end coordinates, feature biotype,
and feature symbol. (XLSX 2289 kb)

Additional file 4: Figure S2. Batch effect correction improves dataset
quality. NMDS plot (A) based on filtered, normalized read counts, and (B)
on filtered, normalized, batch effect-corrected read counts from each sample,
showing that batch effect correction improves dataset quality. Each point
represents a single sample, with the color indicating condition (blue = SPF,
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magenta = GF) and shape indicating sequencing run. ARSyNseq was run with
the following parameters (factor = “RunName”, batch = TRUE, norm= “n”,
logtransf = FALSE). (EPS 642 kb)

Additional file 5: Figure S3. WGCNA identifies cutaneous gene
modules. (A) Hierarchical clustering of samples prior to network
generation (B) thresholding analysis, showing scale-free properties of the
network with a chosen soft threshold power of 17. Yellow line indicates
an R2 value of 0.8, orange of 0.85, and red of 0.9. (C) WGCNA cluster
dendrogram of genes in our dataset, with the module membership
highlighted below the dendrogram. Gray indicates genes not belonging
to any of the determined modules. Dendrogram represents hierarchical
clustering of eigengene modules in relation to each other and colonization
condition. (D) Correlation of each module to metadata. For each comparison,
the rho value is provided above the p value in parentheses. No modules are
significantly correlated with sequencing run. The color of each box in the
“Colonization Condition” column indicates the strength of the positive
correlation with SPF (blue) or GF (magenta) states. (EPS 6217 kb)

Additional file 6 Dataset S2. Results from WGCNA analysis. Rows contain
the features contained in each WGCNA module. Columns contain Ensembl
feature id, gene symbol, module name, module color membership, gene
significance (GS) for colonization condition (defined as the absolute value of
the correlation between the feature and metadata) and associated p value,
and module membership (MM) for each module (defined as the correlation
of the module eigengene and the gene expression profile) and associated
p value, the Entrez gene ID used for gene ontology analysis, and the
differential gene expression status. (XLSX 8459 kb)

Additional file 7: Table S2. WGCNA gene module characterization. Top
5 significantly enriched biological process gene ontology terms (Bonferroni
p < 0.05) associated with each WGCNA module. (XLSX 47 kb)

Additional file 8 Dataset S3. Results from gene ontology analysis. Each
worksheet contains differential expression analysis results for features in
the mentioned gene ontology categories. Blue and orange cells indicate
significant DEGs with and without a twofold change difference in
expression, respectively. (XLSX 367 kb)

Additional file 9: Figure S4. Analysis of skin immune cell populations
supports gene expression findings. (A) Toluidine blue staining for mast
cells. (B) Immunofluorescence staining of CD3, a pan T cell marker.
Significance testing was performed on an aggregate of three experiments
with n = 3 GF and SPF mice each. (C) Flow cytometry analysis of GF and
SPF (n = 5 each) of IL-1α and IL-1β production by cell subset. Comparisons
that are significantly different with a p value < 0.05 are denoted with * and
those with a p value < 0.01 with **. (D) Barplots showing normalized gene
expression values for IL-1α and IL-1β. Lines depict standard error and padj
represents the FDR-corrected p value (1-prob) calculated by NOISeqBio. (E)
Boxplot of normalized gene expression of terminal differentiation markers
Krt1 and Krt14, with padj indicating the FDR-corrected p value (1-prob)
calculated by NOISeqBio. (EPS 85855 kb)

Additional file 10: Figure S5. DGCA analysis identified significantly
correlated DEGs that share potential transcription factor binding sites.
Analysis with oppossum3 identified enriched transcription factors in
positively correlated DGCA gene sets, using Z scores to assess significance.
The y-axis identifies significant transcription factors, while x-axis represents the
significance metric, with higher values indicating greater significance, and the
shape indicating whether the metric score was 1 or 2 standard deviations (SD)
above the mean. Z scores are significant when greater than 2 SD above the
mean. Size of each point reflects the percentage of all DGCA +/+ DEGs
containing a binding region for each TF and color indicates colonization
status of the DGCA +/+ DEGs. (EPS 1582 kb)
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