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Abstract 

One of the leading causes of serious visual impairment in young children is 

congenital cataracts (1). Cataracts and subsequent reductions in vision are the result of 

opacification of the lens. The human lens is primarily made up of water-soluble proteins 

called crystallins, which are divided into three groups, alpha, beta, and gamma (2). 

Mutations in all three of the types have been found to cause the formation of cataracts, 

although the exact mechanisms remain elusive (3). An autosomal dominant mutation in 

human alphaA crystallin was discovered to be the cause of one type of congenital cataract 

in humans (3). In order to study the mechanism by which this mutation results in cataract 

formation it is necessary to first study the normal form of human alphaA crystallin. This 

project accomplishes the expression, isolation, and purification of human alphaA 

crystallin. 

Introduction 

The human lens is a unique and complex organ. Its primary function is to 

eliminate retinal blur. The strict control of lens transparency is required to achieve this 

goal (4). Proper nutrient metabolism as well as regular folding of the lens crystallins, 

which make up 90% of the lens proteins, are essential to maintaining transparency (2,5). 

There are three classes of crystallins in the lens, alpha, beta, and gamma, which interact 

and pack together in a complex manner so that light can pass through the lens with 

minimum scattering. Any disruption in the ordered packing of the crystallin proteins 

would lead to cataracts. The exact three dimensional structures of all the crystallins are 

not yet known, but based on their secondary structures, they are thought to be made up 



mainly of beta sheet and alpha helical subunits, which ultimately influence their folding 

tendencies into three dimensional structures (2,6). The purpose of this project is to 

express and purify human alphaA crystallin so that it can be further studied. 

Alpha crystallin is the largest of the three crystallins, based on molecular weight 

(2), and comprises 40-50% of total lens proteins (5,7). There are two main subtypes of 

alpha crystallin, alphaA and alphaB (2). Although their N-terminal regions differ, 
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alphaA and alphaB share a 57% C-terminal sequence homology. Therefore, despite some 

similarities, these proteins differ in their relative functions (5,7,8). AlphaB appears to be 

produced in response to stress in many non-ocular tissues in the body (8,9). AlphaA, on 

the other hand, appears to play a major structural role in the lens, and is not found to be 

abundant in any other human tissue (8). Approximately 32 subunits of alphaA and 

alphaB come together via hydrophobic interactions to form a multimer of approximately 

800kDa (6,8,10). In part, this considerable size and complexity has limited the study of 

alpha crystallin's structure (8,9). 

A conserved region of 100 amino acids in both alphaA and alphaB crystallin 

make them distant relatives of a functionally related group of proteins called heat shock 

proteins (HSP's) (9,11). However, strong evidence suggests that alphaA is the more 

stable of the two alpha crystallins (7). HSP's have been studied in a number of different 

organisms, and although their structures may be vastly different, their universal function 

appears to be to aide in proper protein folding and breakdown, and to maintain the correct 

conformations of proteins during times of stress (11). 

The proteins in the lens are formed during fetal development and do not continue 

to replicate throughout life. In this static environment, where there is a lack of protein 



turnover, repair and maintenance mechanisms are of paramount importance (5). A 

protein that assists in the folding of other proteins, is called a molecular chaperone (11). 

In the lens, alphaA is believed to demonstrate molecular chaperone-like activity (5,7,11). 

Ensuring the correct folding of the other crystalhns and protecting them from incorrect 

aggregations is essential to maintaining proper lens transparency (11). By recognizing 

unfolded or partially denatured regions, and sequestering them, alphaA crystallin may be 

the vital link in understanding cataract formation. 
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By studying the normal aging process of the lens, which results in cataracts, it has 

been shown that the crystallins become more insoluble over time (2). High molecular 

weight aggregates of the crystallins begin to appear and increase in size with age (2). 

Breakdown in the proper folding of the crystallins and the formation of disulfide bridges 

between proteins may account for the formation of these aggregates (2). The role of 

alphaA crystallin appears to be to prevent these processes from occurring and therefore 

plays a vital role in preventing or slowing cataract formation (8). 

Mutations in the genes of all three types of crystallins have been found to cause 

cataracts (3,10,12). Of particular interest to this project was the discovery of an 

autosomal dominant congenital cataract (ADCC) due to a mis-sense mutation in the 

human alpha crystallin gene (CRYAA), by Litt et al. Litt et al studied a particular family, 

in which 13 individuals, over 4 generations, were afflicted with congenital cataracts. 

Genetic testing showed that the same mis-sense mutation on chromosome 21 existed in 

all afflicted family members while other family members lacked the mutation (3). The 

single base pair change in the DNA sequence of the alpha crystallin gene results in an 

amino acid arginine(R116) being converted to a cysteine(C116) residue (3). 
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Although this small change may appear moderately harmless on the surface, each 

of these two amino acids have significantly different properties, when considered in 

terms of their effects on secondary structure of a protein. As was previously mentioned, 

the crystallins are primarily made up of alpha helices and beta sheets. Although any of 

the 20 amino acids can be incorporated into alpha helices and beta sheets, certain ones are 

more stable and sterically suitable for these structures than others (10). Cysteine is a key 

player in the formation of disulfide bridges, and is therefore capable of disrupting alpha 

helix and beta sheet formations (10). Disulfide bridges play a role in proper protein 

folding and any changes in the formation of these bridges can have profound effects on 

the final structure. 

In order to determine if alphaA crystallin's structure is being altered by the mis­

sense mutation, one must first study the normal form of alphaA crystallin. Little is 

known about the exact three-dimensional structure of alphaA crystallin at this time. 

Many theoretical models have been proposed, mainly spherical or globular in nature, and 

are largely based on its secondary structure (6,11). By determining the exact folding 

nature of both normal alphaA and the mutated form of alphaA, it may be possible to 

determine how the mutation leads to cataract formation. Three-dimensional studies of 

the two forms of alphaA, including nuclear magnetic resonance (NMR) and electron spin 

resonance (ESR) may ultimately be employed to detennine the differences between the 

two similar proteins. This project focuses on the expression and purification of 

normal human alphaA crystallin. 
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Materials and Methods 

Figure 1 

Flowchart of Events with pCAL Coning System 

Step One: Conversion of RNA into eDNA 

+ 
Step Two: Ligation of alphaA eDNA into E. coli Cloning Vector 

• Step Three: Confirmation of Cloning reaction by separation on SDS-PAGE 

• Step Four: Ligation of alphaA eDNA into E. coli Expression Vector 

• Step Five: Induction of Protein Expression 

• Step Six: Separation of alphaA Protein from other E. coli Proteins 

• Step Seven: Confirmation of Presence of alphaA Protein by Immunoreactivity 

• Step Eight: Purification of alphaA Protein with Calmodu1in Resin 

• Step Nine: Cleavage of Calmodulin Binding Protein Tag 

Step One 

Total human RNA was previously extracted from donor lenses (13). A eDNA 

copy of the genetic material was produced via reverse transcriptase-polymerase chain 

reaction (RT-PCR) and gene specific primers. Once the eDNA of alphaA was obtained, 

primers were designed specifically to allow ligation into the pCAL-N-EK expression 

vector shown in Figure 2 (Stratagene Cloning Systems, La Jolla, CA) 



Figure 2 

17/acO 
pi'IOmoter pCAL·n-EK 

vector 
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T7 terminator 

The pCAL vector was chosen in part because it contains a Calmodulin binding 

peptide (CBP) tag. This allows alphaA DNA to be inserted as the "fusion protein" in the 

diagram. Once alphaA is ligated into the vector, it allows for easy purification with a 

Calmodulin affinity resin. Also contained in the pCAL vector is a recognition site for a 

site-specific protease enterokinase (EK), located between the CBP tag and the alphaA 

insert. This protease (EK) can later be used to cleave the CBP tag, leaving only the 

alphaA protein. The T7 promotor is highly effective, allowing efficient multiplication of 

the vector and alphaA insert. 

Primers were specifically designed to allow ligation to a specific section of 

alphaA DNA. Primers must be able to anneal to the alphaA DNA, and also to separate 

from the alphaA DNA during the different phases of the PCR reaction. Once the gene 

specific primers were designed, lf..Ll of alphaA eDNA was amplified by PCR. Standard 

PCR protocol was performed in a thermal cycle machine, using 2.5 units of Tag 

Polymerase. The PCR products were then resolved on a 1% agarose gel and stained with 

Ethidium Bromide. The bands were excised from the gel and weighed. The amplified 
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DNA was then purified from the agarose gel and an optic density (OD) reading was taken 

to determine the concentration of DNA. (An OD reading equal to 1 at 260nm equals 

50~g/rnL microgram of double stranded DNA.) The alphaA DNA was then ligated with 

l~L of pCAL vector and incubated at room temperature for four hours. 

Step Two 

Transfmmation of the ligation product into the XLl-Blu strain of E. coli cells 

was performed. As the XLl-Blu strain of E. coli lacks the T7 promoter region necessary 

for protein expression, it was specifically used to amplify the alphaA DNA insert, while 

keeping protein expression to a minimum. The ligation vector product was incubated 

with the XLl-Blu cells in culture broth (SOC medium) at 37°C for one hour on a shaker. 

Several aliquots of the transformation reaction mixture were plated onto agar plates 

containing Ampicillin, to prevent contaminating bacteria growth. The plates were 

inverted and incubated at 3rc overnight. 

Step Three 

Several colonies of cells were picked from the agar plates described above and 

allowed to amplify in culture broth overnight at 37°C. Culture broths of E. coli were 

spun down and cells were lyzed with strong detergents. The plasrnids from the lysed 

cells were isolated. These plasmid preparations were screened for the presence of the 

alphaA insert using gene specific primers to alphaA in a PCR reaction. The PCR 

products were visualized on a 1.5% agarose gel. 

Step Four 

Positive colonies were transformed into BL21(DE3)pLysS cells. These DE3 cells 

are another strain of E. coli cells. The DE3 cells contain the T7 promoter region and are 
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therefore used for protein expression of the alphaA insert. By varying the growth 

conditions of the DE3 cells using IPTG, overexpression of the alphaA protein is possible. 

Once again, the transformation reaction mixtures were plated onto agar, containing 

Ampicillin, and were incubated overnight at 37°C. 

Several colonies were picked and the transformed DE3 cells were cultured 

separately in Luria culture broth (LB broth) containing Ampicillin, Chloramphenicol, and 

Glucose for three hours, with continuous shaking at 37°C. In order to monitor the growth 

of the cells, an OD reading at 600nm was periodically taken. 

Step Five 

Once an adequate concentration of cells was acquired, half the cells were stored 

undisturbed at 4 oc as a control. To the other half of the cells, Isopropyl-beta-D­

thiogalactopyranoside (IPTG) was added to induce protein expression. The induced cells 

were shaken at 37°C for two hours. A small portion of cells were then centrifuged down 

into pellets and stored in a 30% glycerol stock at -80°C to allow cells to be amplified in 

the future as needed. 

Step Six 

To determine levels of protein induction, E. coli proteins from the celllysates 

were first separated from alphaA protein on a sodium dodecyl sulfate-polyacrylamide gel 

(SDS-PAGE). Protein concentration of the cell lysate was determined by a modified 

biuret method according to manufacturers instructions (BCA Protein Assay, PIERCE, 

Rockford, II). The protein samples were diluted to approximately the same concentration 

and were separated on an SDS-PAGE gel. The gel was stained with Coomassie Blue to 

visualize the bands of the expressed proteins. 
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Step Seven 

To confirm that the desired protein had been expressed, an immunoblot was 

performed using a specific anti-alpha crystallin antibody. Proteins separated on the SDS­

PAGE gel were transferred to blotting paper, polyvinylidene difluoride (PVDF), by 

electrophoresis using NOVEX mini-apparatus according to manufacturers protocol 

(NOVEX Experimental Technology, San Diego, CA). Following incubation with the 

primary anti-alpha antibody, positive immunoreactivity was detected by incubating with 

secondary goat-antirabbit IgG antibody, conjugated to alkaline phosphatase. An 

immunoreactive band was visualized by color development upon cleavage of alkaline 

phosphatase substrate. 

Step Eight 

After confirmation of alphaA expression, the expressed protein was purified. The 

alphaA protein was cleaved from the Calmodulin binding protein of the pCAL vector. 

After induction and pelleting of the cells, they were lysed with a mixture ofLysosyme, 

Pepstatin A, dithiothreitol (DTT), and phenylmethanesulfonyl fluoride (PMSF). The 

cells were centrifuged to separate the soluble proteins, the supernatant, from the cell 

remnant pellet. The supernatants were incubated with a Calmodulin binding resin 

column for three hours. This resin binds to the tag on the expressed protein. The resin 

was spun down to separate the resin from the binding buffer containing unwanted E. coli 

proteins. A portion of the supernatant buffer was removed from the resin in preparation 

for visualization on an SDS-PAGE gel. The resin was washed several times with binding 

buffer and portions from these washes were also prepared for a gel. A buffer containing 

EGT A was used to elute alphaA. Samples of these elutions along with the washes, 
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supernatant buffer, and a sample of unbound alphaA were all visualized on a SDS-PAGE 

gel. After purification of the protein, an attempt was made to cleave off the CBP tag. 

Step Nine 

The elutions from the column were first equilibrated with an Enterokinase (EK) 

cleavage buffer and were incubated with EK protease overnight at 3rC. The results of 

the cleavage reaction were subsequently separated on an SDS-PAGE gel. 

After several unsuccessful attempts at cleaving the CBP, it was decided to try a 

second expression kit that did not include a binding tag. It was believed that the alphaA 

crystalline remained bound to the resin and therefore an alternate method was required to 

purify the protein. Subsequently the pCR-T7/CT TOPO-TA expression kit was chosen 

(Invitrogen Corporation, Carlsbad, CA). Although this kit would make purification of 

the expressed protein more difficult, due to the lack of a binding tag, it was felt that it was 

a necessary step in order to get purified native alphaA protein. 

Alternate Cloning Method 

Methods to express protein using the TOPO kit parallel those procedures 

described above with the pCAL kit, with the notable exception of the tag. Briefly, the 

TOPO kit method is described below. 

Ligation into TOPO Cloning Vector 

The alphaA DNA was ligated into the T7/CT TOPO vector. The ligated vector 

was then transformed into Top lOP' cells. These cells were amplified and the alphaA 

ligated insert was purified using a minispin kit according to manufacturer's protocol 

(Qiagen Inc., Valencia, CA). 
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Transformation into Expression Cells and Protein Induction 

Plasmids containing alphaA were transformed into DE3 expression cells and 

incubated at 37°C to culture several liters of cells. Protein expression was induced with 

IPTG and allowed to incubate. The DE3 cells were lysed and the supernatants containing 

the soluble proteins were separated onto an SDS-PAGE gel. 

Immunoreactivity and Sequence Confirmation 

Immunoblotting was performed to detect alphaA. The alphaA protein was 

purified using anion-exchange and gel filtration chromatography. DNA sequencing 

further confirmed the presence of alphaA insert and agreed with the published sequence 

(GenBank Accession No. U05569). 

Results 

Transcription and PCR Reactions (pCAL kit) 

AlphaA crystallin was cloned and expressed. The following figures outline the 

results at each step within the process. The first step in cloning alphaA was the PCR 

transc1iption of the gene as shown in Figure 3. Using the gene specific primers, alphaA 

eDNA was transcribed from donor RNA and amplified via PCR. The PCR reactions 

were visualized on agarose gels (lane 2, 3, and 4) with known molecular weight 

calibrating basepair (bp) standards (lane 1 ). 

Figure 3 

600bp 
Marker 

Lanes 1 2 3 4 
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The lack of bands in lane 4 in Figure 3, indicates a colony in which cloning was not 

successful. Heavy bands of approximately 600bp when compared to standards, are 

evident in lanes 2 and 3 in Figure 3, and correspond to the size of the alphaA eDNA plus 

the CBP tag. This indicates the presence of alphaA eDNA and confirms that the 

transcription and PCR reactions were successful. 

Ligation and Transformation 

After amplification, the alphaA eDNA was ligated into the pCAL vector and 

cultured in a strain of E. coli cells. Following isolation of the plasmids from selected 

colonies, a PCR screen was performed (Figure 4) to confirm ligation and aliquots were 

separated on an agarose gel (lanes 1,2,3). 

Figure 4 Lanes 1 2 3 4 

600bp 
Marker 

When compared to molecular weight standards in lane 4, Figure 4 shows a heavily 

stained band in lane 1 corresponding to 600bp. This confitms the presence of alphaA 

insert with the CBP tag in the plasmid from one of the picked colonies of XL1-Blu cells. 

Lanes 2 and 3 are from colonies in which no ligation occurred. Thus, the band in lane 1 

demonstrates that ligation and transformation of the cloning cells was successful. 
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Induction and Expression 

After completion of cloning, the alphaA protein was expressed. The protein 

product of alphaA crystallin was expressed via transformation and induction of DE3 

expression cells with IPTG. Lysed portions of DE3 cells were run through a Calmodulin 

resin column in order to separate the alphaA protein from all the other cell proteins. Each 

pair of lanes, (1-2, 3-4, 5-6) in Figure 5, corresponds to the non-induced control and 

induced portions of DE3 cell colonies respectively. The elutions of these different cell 

lines were separated on an SDS-PAGE gel to visualize the expressed alphaA product 

(Figure 5). The heavily stained bands in lanes 2, 4, and 6 of Figure 5 approximately 

correspond to 25 kDa, when compared with the molecular weight markers in lanes 1 and 

7. This is in agreement with the expected molecular weight of the alphaA protein with 

the CBP tag attached. Figure 5 clearly shows that protein was induced in at least 3 

different colonies of DE3 cells. The presence of alphaA protein was definitively 

confirmed by detection with an anti-alpha antibody, as shown in Figure 6. The 

immunoblot showed an intensely stained band at 27kDa, just above the 25kDa marker 

(Figure 6). 

Figure 5 
Lanes 1 2 3 4 5 6 7 

Figure 6 
Lanes 1 

25kDa 
Marker 

2 
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This is where alphaA crystallin is expected to resolve by SDS-PAGE. No other proteins 

were detected in the immunoblot (lane 2), indicating specific immunoreactivity of the 

induced alphaA protein. 

Purification and Removal of Tag 

In order to separate the alphaA protein from the CBP, a cleavage reaction with 

Enterokinase was performed. The products of these reactions were resolved on a gel in 

Figure 7 (lanes 2 through 6) to confirm cleavage. 

Figure 7 Lanes 1 2 3 4 5 6 7 

25kDa 
Marker 

The lack of bands in lanes 2 through 6 in Figure 7 indicates an absence of the alphaA 

protein. The tagged alphaA remained bound to the column which resulted in the absence 

of protein in the elutions. Therefore, when the column was regenerated, the bound 

protein was discarded. Further attempts to cleave alphaA from the binding protein were 

made by varying the reaction conditions with similar negative results. This was 

surprising since the tag had been successfully cleaved off of a beta crystallin in a 

similarly designed study (14 ). 
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Cloning with TOPO Kit 

In order to express protein without a tag, a second system was employed. With 

the TOPO kit, alphaA eDNA was amplified using gene specific primers. The correct size 

of the eDNA was checked by separating the products on an agarose gel (figure 8). The 

alphaA was then ligated into ToplOF' cells which were cultured at 37°C. 

Figure 8 Lanes 1 2 3 4 5 

600bp 
Marker 

Bands in lanes 2, 3, and 4 of Figure 8 are consistent with the approximate length 

(600bp) for alphaA eDNA, when compared to the standard markers. After 

transformation and expression of alphaA protein in the TOPO system, the proteins were 

purified by anion exchange and gel filtration chromatography. The elutions from these 

columns were separated on an SDS-PAGE gel (Figure 9). The heavy bands in lanes 3 

(anion exchange) and 4 (gel filtration) correspond to the correct size of the alphaA 

crystallin protein. The other bands in lanes 3 and 4 are proteins, which were eluted from 

the chromatography column. However, they do not correspond to the correct molecular 

weight for alphaA crystallin. Lanes 1 and 2 of Figure 9 correspond to molecular weight 

markers and E. coli cell lysate respectively. 



Figure 9 

22kDa 
Marker 

Lanes 1 2 3 4 
Figure 10 

22kDa 
Marker 

Lanes 1 2 

The results of an Immunoblot, performed to confirm the presence of alphaA via 
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gel filtration chromatography, are shown in Figure 10. The heavily stained band in lane 1 

of Figure 10 shows the correct molecular weight of alphaA (without the CBP tag) and 

confirms the presence of alphaA protein. In order to ultimately complete this project and 

confinn the presence of alphaA protein, a sample of alphaA DNA was sent to the Core 

labs at OHSU for sequencing. The experimental sequence used for this project agreed 

with the published sequence for alphaA crystallin (GenBank Accession No. U05569). 

Thus, alphaA crystallin was successfully purified with the TOPO system. 

Discussion 

AlphaA crystallin was successfully cloned and expressed by two separate systems 

based on the following three lines of evidence. Initially, a positive PCR screening was 

obtained for both kits. Secondly, resolution of expressed protein on SDS-PAGE was 

achieved with both systems. Finally, immunoreactivity with a specific alphaA antibody 

was visualized with the two separate systems. 

The pCAL and TOPO systems require somewhat different protocols to achieve 

the same results. While the pCAL kit employs a built in purification step with its CBP, 

the TOPO kit requires a much less predictable method of purification. The TOPO kit 



requires the use of chromatography to isolate alphaA from the ligated vector in which it 

is amplified. 

The use of the pCAL kit, although it did not yield the desired outcome, did 

stimulate some interesting questions. Most importantly, why the enterokinase cleavage 

step failed? As the same kit was used in a simultaneous project with another crystallin 

with excellent results, it demonstrated that the pCAL kit does in fact work (14). The 

reason it failed with alphaA crystallin must lie in the nature of alphaA crystallin itself. 
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From more recent theories, it is suggested that the N-terminus of alphaA crystallin 

is buried and would not have been available for cleavage by the EK enzyme (6). TheN­

terminus may be buried within a single monomer of alphaA or it may be buried within 

the larger multimer of alphaA. Furthermore, the C-terminus and not theN-terminus has 

been shown to be available for modification during the aging process (15). Therefore, the 

logical reason for the lack of cleavage by the enterokinase with the pCAL system is that 

theN-terminal tag was buried and unavailable to the enzyme. 

The TOPO kit however, allowed the expression and purification of alphaA 

crystallin to be successfully completed. The lack of a binding tag eliminated the need for 

availability of theN-terminus of alphaA and, as such, the problem encountered with the 

pCAL kit disappeared. While additional purification steps were required, the alphaA 

protein obtained was approximately 90% pure (14). 

With alphaA crystallin available in soluble form, it may now be possible to study 

its three-dimensional structure via NMR and ESR techniques. The mutated form of 

alphaA crystallin, discovered by Litt et al, has also been created via site-directed 

mutagenesis (14). An initial agarose gel of the PCR cloning step of the mutated form of 



alphaA is shown in Figure 11 (14). In addition, primers have been designed for the 

mutated form of alphaA-crystallin to enable future projects (14). 

Figure 11 

Mutant wphaA 
eDNA 

Lanes 1 2 3 4 5 6 7 8 

The further expression and purification of mutated alphaA will allow the two 

types of alphaA to be comparatively studied. With these new achievements, it will be 
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possible to compare the two forms of human alphaA crystallin in their native forms. The 

remaining goals of studying the alteration of the three-dimensional configuration and 

determining and its role in the formation of congenital cataracts may prove invaluable to 

the future treatment and prevention of needless vision loss. 

Conclusions 

The expression and purification of alphaA crystallin is an important step in 

studying its role in cataract formation. Determining the biochemical nature of alphaA 

crystallin may elucidate the mechanisms by which cataracts develops. 

The goal of expressing alphaA crystallin has allowed many interesting facts about 

alphaA crystallin to be uncovered. The invaluable information learned about the N-

terminal region of alphaA crystallin will allow future studies to be better designed. 
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AlphaA crystallin needs to be studied in greater detail to uncover the role it plays 

in the formation of cataract in both the young and old. The ultimate goal of prevention of 

the devastating point mutation in alphaA crystallin may also be achieved. Only with 

continued research of all the types of crystallins will the mechanisms of cataract 

formation be elicited and possible solutions be hypothesized. 
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Appendix A 

Glossary 

Materials Used 
eDNA- Complementary DNA synthesized by RNA-directed DNA polymerase using 

RNA as a template. 
CBP - Calmodulin Binding Protein Tag 
DIT - Dithiothreitol 
EGTA- Ethyleneglycol-bis-(beta-amino-ethyl ether)-N,N,N' ,N' -tetraacetic acid 
EK - Enterokinase enzyme 
Ethidium Bromide- A form of dye that prevents transcription and DNA replication by 

binding to specific regions of the DNA molecule. 
IPTG- Isopropyl-beta-D-thiogalactopyranoside 
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LB- Luria broth- Combination of NaCI, Tryptone, yeast extract, deionized water at a pH 
of7.0 

PVDF- Polyvinylidene Difluoride- filter membrane 
PMSF- Phenylmethanesulfonyl Fluoride 
RNA- A linear, usually single-stranded polymer of ribonucleotides. RNA encodes the 

information needed to synthesize proteins. 
SDS-PAGE -Sodium Dodecyl Sulfate- PolyAcrylamide Gel Electrophoresis 
SOC- Culture media containing of NaCl, Tryptone, yeast extract, MgC]z, MgS04, and 

filter sterilized 2M glucose solution 

Protein Chemistry Definitions 
Alpha helix- A secondary structure that occurs in many proteins; a right-handed helix 

with 3.6 amino acid residues per tum stabilized by hydrogen bonds. 
Beta sheet - A secondary structure, occuning in many proteins, resulting from the regular 

folding of polypeptide chains. 

C-terminus - The carboxyl end of a polypeptide chain of a protein molecule. 
N-terminus- The amino end of a polypeptide chain of a protein molecule. 

Ligation -The joining of two DNA strands by the formation of a phosphodiester bond 
between their terminal nucleotides. 

Mis-sense mutation- A mutation in which a codon (3 nucleotides in sequence) 
undergoes a nucleotide change such that it codes for a different amino acid, often 
resulting in the production of a nonfunctional protein. 

Monomer- A single polypeptide chain, that is able to combine with other like or unlike 
molecules to form larger polypeptide complexes. 

Multimer- A protein molecule composed of more than one polypeptide chain. 
Plasmid- A small, closed entity of double-stranded DNA forming an extrachromosomal 

self-replicating genetic element in many bacteria and some eukaryotes, often 
carrying genetic sequences that give the host cell a survival advantage such as 
resistance to antibiotics. 
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Point mutation - A mutation consisting of an alteration in a single nucleotide of a nucleic 
acid strand. 

Primer- A short single-stranded DNA fragment that is required to initiate polymerization 
of new DNA nucleotides. 

Promoter- A nucleotide sequence on a DNA strand that will initiate transcription. 
Protease- Any enzyme that catalyzes the hydrolysis of a protein into smaller substance 

parts. 
Secondary Structure- A protein structure; folding, twisting, coiled, often springlike chain 

resulting when hydrogen bonds form between the adjacent parts of a molecule, as 
in an alpha helix or beta sheet. 

Vector (Cloning)- A plasmid used in recombinant DNA experiments as an acceptor of 
foreign DNA. 

Vector (Expression)- A cloning vehicle designed to allow and promote the expression of 
an inserted gene. 

Techniques 
Anion Exchange Chromatography - A process in which anions in solution exchange with 

anions in an insoluble matrix or resin. 
Chromatography -A technique for separating components from a mixture by placing the 

mixture in a mobile phase that is passed over a stationary phase. 
ESR -Electron Spin Resonance 
Gel Filtration Chromatography- A separation technique based on molecular size in 

which the mobile phase is a liquid and the stationary phase consists of three­
dimensional networks of cross-linked polymer chains, such as beads of porous 
polymeric material 

NMR - Nuclear Magnetic Resonance 
PCR- Po~merase Chain Reaction- A process for amplifying a DNA molecule by up to 

10 to 109 fold; extremely important in biotechnology and in research. 
DNA Annealing- the renaturation of complementary single-stranded DNA molecules 

into double-stranded DNA following their earlier denaturation; involves the 
formation of hydrogen bonds between pairs of bases. 
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