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ABSTRACT 

Following the transduction of light by the photoreceptors in 

the retina, information about stimulus color and fine detail is 

separated from information about gross form and movement. 

Information regarding these stimulus characteristics is then carried 

via parallel pathways through the magno and parvo cellular layers of 

the geniculate to the cortex where it is analyzed in separate areas. 

This article reviews the parallel and serial analysis of visual 

information in the brain, and provides clinical examples illustrating 

failures in the analysis process. 

KEYWORDS 

Vision, visual system, information processing, retina, cortex, 

lateral geniculate nucleus, parallel processing, serial processing, M 

pathway, P pathway, magnocellular, parvocellular, motion, form, 

color, glaucoma, Alzheimer's disease, dyslexia, amblyopia, agnosia, 

transient, phasic, X, Y. 
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Vision is the sense that connects humans to the external world 

of light, form, and color. The concept of vision has undergone great 

changes from the early Greek theories of emanation through the 

eyes, to our present-day understanding of how visual information is 

processed in the brain to produce a perception. According to 

Polyak, 1 the early Greeks believed that substances emanating from 

the eyes reached out to objects and sensed them in a manner similar 

to palpation. About 100 AD, Galen described the optic nerve as a 

hollow tube that conveyed a "visual spirit" from the brain to the 

retina and then on to the lens which was the "principle receptor 

organ." The visual spirit then conveyed the information gathered by 

the lens back to the brain via the retina. This idea of vision 

prevailed, more or less intact, until the early half of the 17th 

century when Kepler and Descartes advanced the theory that light 

rays from each point on an object give rise to a point image on the 

retina. 

Since the time of Kepler and Descartes, discoveries in optics, 

anatomy, and physiology have contributed greatly to the 

understanding of visual information processing. Within the last four 

decades, it has become clear that there are several parallel but 

interconnected pathways that carry visual information in the brain. 

Along these parallel pathways, information is processed and 

analyzed serially as it passes through different nuclei and cortical 

areas. At the end of the parallel visual pathways, information is 

recombined to create a unified perception, but the mechanisms for 

creating this perception are not yet well understood. At present, 

most of the research in this area is directed toward developing a 
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better understanding of the pathways themselves and their 

functions. 

Early in evolution, the visual system developed a single 

pathway that conveyed information serially from the retina to an 

area called the optic tectum. In the tectum (which is analogous to 

the superior colliculus of mammals), sensory inputs elicited motor 

activity designed to facilitate capture of prey or avoidance of 

predators. This reflexive system is still present in humans and is 

designed primarily to direct the foveas toward peripheral visual, 

auditory, or tactile stimuli. 

As evolution progressed and the cortex developed, new 

pathways were added to the older subcortical pathway. These new 

pathways conveyed information from the retina via the lateral 

geniculate to the visual cortex. At least two relatively separate 

cortical pathways evolved, perhaps at different times, which can· be 

identified on the basis of response characteristics of the cells 

within them and the information they carry. 

When discussing parallel processing in the visual system, care 

must be taken to specify which set of parallel pathways is being 

considered. Depending on the context, the term "parallel pathways" 

can refer to the subcortical (colliculus) and cortical pathways which 

in the older literature are sometimes called the ambient and focal 

pathways, respectively. 2-4 Alternatively, the term "parallel 

pathways" can refer to the two relatively separate channels that 

carry form and motion information to the cortex. In this article, the 

term will be used exclusively in reference to the pathways carrying 

information to the cortex. 
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PARALLEL PROCESSING IN THE CAT VISUAL SYSTEM 

Extensive research on the visual system of cats in the late 

sixties and early seventies led to the original concept of parallel 

processing in the retino-geniculo-striate system. Three major cell 

types were identified in the cat and designated as the X, Y, and W 

types. Following the definition of these cells, it was theorized that 

the X and Y type cells carried different kinds of information along 

parallel pathways to the cortex. 5-13 Based on their response 

characteristics, the X cells were found to convey information on 

spatial form and pattern, whereas the Y cells convey information on 

temporal and spatial motion. 13· 14 Along these pathways, visual 

information is carried serially from the retina to the lateral 

geniculate nucleus (LGN), and then on to various areas of the 

cortex. 15 

RETINA 

Parallel visual pathways originate in the retina. In 1966 

Brown and Major found two groups of retinal ganglion cells that 

differed on the basis of their dendritic field sizes. 16 Subsequently 

Leicester and Brown identified three major cell types which came to 

be known as the alpha, beta, and gamma cells. 17 • 18 At about the 

same time, Enroth-Cugell and Robson described two groups of cat 

ganglion cells with different physiological responses which they 

called X and Y cells. 19 Later a third class of retinal ganglion cells, 

called W cells was also identified.20 The terms alpha, beta, and 

gamma are no longer in common use to describe ganglion cells; they 

have been replaced by the X, Y, and W nomenclature which probably 

describe the same populations of cells as alpha, beta, and gamma.1 8 
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RESPONSE CHARACTERISTICS OF X, Y AND W CELLS 

The X cells constitute about 50% of the total retinal ganglion 

cell population, the Y cells account for about 20-30%, and the W 

cells account for the other 20-30%. 1 0 ·21 Much more information is 

available describing the X and Y cells than the somewhat more 

complicated W cells. 

Both X and Y cells have concentric, circular receptive fields, 

the X cells have fields that are smaller than those of the Y cells by 

about a factor of two.22 •23 The receptive field size of X cells is 

typically about 1 degree, whereas the field of a Y cell can be even 

greater than 4 degrees.24 

The Y cell axons are also bigger than the X cell axons and 

conduct neural impulses faster. Typical conduction rates for Y cell 

axons range between 35-45 m/sec, whereas X cell axons conduct at 

about 20-25 m/sec.25 Within their receptive fields, the X cells 

exhibit linear spatial summation characteristics, as opposed to the 

nonlinear characteristics displayed by Y cells.19,26 

INFORMATION CARRIED BY X ANDY CELLS 

When a cat is presented with a light stimulus, the X and Y cells 

respond quite differently. The X cells give a prolonged or sustained 

response throughout the duration of stimulus presentation, and the 

response may even continue for a short period after the stimulus 

ends. For this reason the X cells are sometimes called tonic cells. Y 

cells typically give a brief transient response to stimulus onset 

and/or offset and therefore are called phasic cells.27 Because of 

these response characteristics, the Y cells are better suited than 

the X cells for conveying information about rapidly moving or 
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flickering stimuli. Conversely, the smaller receptive fields of the X 

cells make them better suited for conveying information about fine 

spatial detail. X cells respond well to spatial frequencies in the 

range of 5-9 cpd, as compared to the 2-3 cpd maximum response 

range for Y cells.22 ·23 In general, the X cells respond well to high 

spatial and low temporal frequencies, and the Y cells are relatively 

more sensitive to low spatial and high temporal frequencies. 

DISTRIBUTION AND PROJECTION OF X AND Y CELLS 

In the cat retina, X cells are distributed across the entire 

retina with their density peaking sharply within the area centralis. 

The Y cells are also distributed across the entire retina, but their 

density peaks just outside the area centralis. X cells project their 

axons mainly to the LGN, whereas the Y cells project equally to both 

the LGN and the superior colliculus.22,25,28,29 

LATERAL GENICULATE NUCLEUS 

Based on autoradiographic studies, the laminated portion of 

the cat lateral geniculate nucleus can be divided into six major 

subdivisions which are designated as A, A 1, C, C1, C2 and C3.30 A, 

C, and C2 receive their inputs predominately from the contra-lateral 

eye, and layers A 1, and C1 receive predominately ipsi-lateral 

inputs. 30 Of the LGN layers, A and A 1 have been studied in most 

detail with each having been found to contain a mixture of cells that 

receive their inputs from the X, Y and W type ganglion cells. Like 

ganglion cells, cat LGN cells are also designated as X, Y, and W types 

on the basis of the their response patterns and the types of ganglion 

cells that project to them. 
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In the cat LGN, X and Y pathways are not well segregated 

anatomically. Both lamina A and A 1 contain a mixture of X and Y 

cells (40% X cells, 33% Y cells, and 25% interneurons) with the 

relative proportion of Y cells increasing mediolaterally in these 

laminae.3 1 Layer C also contains a small proportion of X and Y cells, 

but most of the input to this layer comes from W type ganglion 

cells.10,21 

The Y cells in the LGN are larger (493 um 2 average area) than 

the X cells (219 um 2 average area),32 and have larger receptive 

fields (1.3-3 degrees) than the X cells (0.7-1.3 degrees).3 3 

RESPONSE CHARACTERISTICS OF X ANDY TYPE LGN CELLS 

Y cells in the LGN receive fast-conducting afferents from Y 

type retinal ganglion cells and send information to the visual cortex 

via large, fast conducting axons. Conversely, the LGN X cells receive 

slow-conducting afferents from X type retinal ganglion cells and 

send their information via slow conducting axons to the cortex.5 

Like their retinal counterparts, the X cells respond well to 

higher spatial frequencies in the range of 5-8 cpd,34 ,35 whereas the 

Y-cells respond best to lower frequencies of about 2 cpd.5· 34 With 

respect to moving stimuli, the Y cells respond well at temporal 

frequencies of 5-11 degrees/sec as compared to 1- 2 degrees/sec 

for X-cells.5 •34 

In the cat LGN, the information carried within the X and Y cell 

pathways is processed to some degree,36 but the exact nature of 

this processing is not yet totally clear. Cells in the two pathways 

seem to be capable of exerting an inhibitory effect on one 

another, 5 •37 and cortical feedback loops affect the cells in the two 
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pathways in yet to be understood ways. It is clear, however, that at 

the level of the LGN in cat, visual information is being carried by 

two relatively independent and parallel pathways. 

VI1SUAL CORTEX 

In the visual cortex of cat, the X and Y pathways remain 

relatively separate. From the LGN, the projections of the X cells go 

mainly to area 17, whereas projections from the Y cells go to both 

areas 17 and 18.6-9 • 38 Within area 17, the projections of the X and 

Y cells remain separate with the X cells projecting to the lower half 

and below layer IV and the Y cells projecting to the upper half and 

above. 39 •40,41 The cortical cells receiving X pathway inputs show a 

strong response selectivity to vertically or horizontally oriented 

stimuli, whereas the cells in the Y pathway are very weakly 

selective to stimulus orientation.4 2 

Beyond the visual cortex in cat, X and Y visual information 

flow to the suprasylvian cortex for further processing.43.44 This 

area receives direct input from the LGN as well as cortical 

input45, 46, and contains binocular cells with very large receptive 

fields.43,47 ,48 Receptive fields in this area are selectively tuned 

for stimulus motion4 7 •48 and orientation, but it is unclear how the 

X and Y pathways converge to create the response characteristics of 

the suprasylvian cells. 

SUMMARY OF PROCESSING IN CAT 

As visual information leaves the retina, it is encoded by three 

major ganglion cell types: X, Y, and W. The W cells send a large 

proportion of their axons to the superior colliculus, whereas the X 

and Y cells mainly carry information to the cortex via the LGN. 

10 



Functionally, the X and Y pathways carry quite different kinds of 

information; the cells in the X pathway are specialized for detail 

vision and the Y pathway cells are specialized for motion detection. 

It is unclear why the visual system evolved these two pathways to 

carry information from retina to cortex. It is possible that they 

evolved at different times, with the movement sensitive Y cell 

pathway evolving first, but there is no clear evidence to support the 

sequential evolution theory. 

PARALLEL PROCESSING IN THE PRIMATE VISUAL 

SYSTEM 

If the cat visual system uses parallel pathways to carry visual 

information through sequential processing areas of the brain, it is 

reasonable to expect a similar design in the visual systems of 

primates. Indeed, primates have been found to have parallel 

pathways which have been designated the M and P pathways based on 

the fact that they pass through the magna, and parvocellular layers 

in the LGN. 

Just as in cat, the visual system in primates, begins with 

separate information channels in the retina, continues with 

information carried via separate pathways serially through the LGN 

and primary visual cortex, and then, perhaps unlike the cat, 

terminates by distributing stimulus feature information to a large 

number of separate cortical areas for analysis. 

RETINA 

In the retina, two anatomically distinct populations of 

ganglion cells have been identified.49-51 These populations are 

commonly referred to as the P and the M type retinal ganglion 
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cells52 ,53 on the basis of the LGN parvo and magnocellular layers to 

which they project. 54 The P cells have also been called midget, 1 

type 8,50 and P-beta49 ganglion cells; and the M cells have been 

called parasol, 1 type A, 50 and P-alpha49 cells. Currently, the 

names P an M seem to be the most popular, however. 

Many researchers regard the primate P and the M cells to be 

the counterparts of the X and Y cells in cat, 49-51 ·54 but there are 

some significant differences between the primate and cat cells. A 

third class of retinal ganglion cell, with morphological 

characteristics similar to cat W cells have also been identified in 

primates, 50 but these cells will not be considered in this review. 

RETINAL DISTRIBUTION 

The M and P cells constitute approximately 1 0% and 80% of the 

total retinal ganglion cell population, respectively.5 1 ,54 It is now 

believed that the density of both the M and P cells peak in the 

fovea, 51 ,55 but early reports suggested that the proportion of P to M 

cells was higher in the fovea with M cells being relatively 

rare.55,56 A more recent report suggests that the 1 to 8 ratio of M 

to P cells holds across most of the retina including the foveal 

region. 54 The only area on the retina where the ratio does not hold 

is the peripheral nasal region where the M-cells constitute about 

20% of the ganglion cells population.54 This increase in density is 

consistent with speculation that the ability of the M cells to detect 

rapid peripheral movement would have survival and evolutionary 

value. 
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MORPHOLOGICAL CHARACTERISTICS 

Physical sizes of the cell bodies, neuronal axons, and dendritic 

fields increase with retinal eccentricity for both M and P cells, but 

the M type ganglion cells are typically larger the P cells at all 

retinal eccentricities.49- 51 It is not correct to make the general 

statement that M cells are "big cells" and P cells are "small cells," 

because a peripheral P cell could be larger than a more centrally 

located M cell. It is reasonable to state, however, that for a given 

retinal eccentricity, M cells are bigger than P cells. 

RECEPTIVE FIELDS 

The receptive fields of both the P and M cells are concentric, 

and organized in a center-surround fashion.56,5l A very high 

proportion of the P cells show chromatic opponent responses, but a 

few show no evidence of color coding. Conversely, the M cells 

produce almost exclusively broad-band, non-chromatic opponent 

responses. SS,58 The broad-band cells generally have larger center 

sizes than the color opponent cells, with their receptive field sizes 

increasing considerably with retinal eccentricity.56 It is usually 

assumed that the M cell pathway carries luminance information, and 

the P cell pathway carries the information required for color 

vision. 59 ' 60 

RESPONSE CHARACTERISTICS 

In general, the primate P cells, like the cat X cells, give a 

sustained response to visual stimuli, and the M cells, similar to the 

Y-cells, give a phasic or transient response. 55 ·61 The M cells 

respond to variations in contrast, and are very sensitive to 

flickering stimuli.62 Because of their broad-band response 
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characteristics, the M cells are especially sensitive to achromatic 

luminance flicker, and respond best to contrast changes at temporal 

frequencies of around 1 0 Hz. 63 The high temporal frequency 

sensitivity of the M cells and the relatively reliable responses of 

these cells to temporal stimuli suggests that they are well suited 

for the detection of motion.6 4 

Unlike the M cells, P cells respond strongly to chromatic 

flicker. 63 Single unit measurements of P cell chromatic flicker 

responses demonstrate that P cells can detect flicker at frequency 

modulations of 10 Hz or more, but the human sensitivity for the 

detection of chromatic flicker falls steeply for frequencies above 2 

Hz. It has been speculated that even though P ganglion cells can 

detect rapid chromatic flicker, the high frequency signals in the 

chromatic pathway are not available for detection at higher centers 

on the P pathway. 6 3 

SELECTIVE DAMAGE TO THE P PATHWAY 

Acrylamide monomer is a neurotoxic agent that selectively 

damages cells in the parvocellular pathway.57 ,65-67 In animals 

treated with this agent, the only ganglion cells detected were M 

cells that responded to low spatial frequency signals of about 1 cpd, 

modulated at high temporal rates.5 7 This study provides additional 

evidence to support the concept that the M cell pathway is 

responsible for detecting large, fast moving, achromatic stimuli, 

and the P pathway is responsible for detecting fine details in slow 

moving chromatic stimuli. 
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OPTIC NERVE AND TRACT 

As the axons from the M and P ganglion cells leave the retina, 

they pass through the optic nerve and tract on their way to the LGN. 

The fibers of the P pathway are located more centrally in the optic 

nerve as opposed to the M pathway fibers which are located more 

peripherally. 68 In the optic tract, P cell degeneration resulting 

from acrylamide monomer administration indicates that the 

parvocellular pathway passes through the dorsolateral aspect of the 

tract. 6 5 

Ogden and Miller69 have demonstrated that the optic nerve 

fibers vary in diameter from 0.4-0.6um, and their conduction rates 

vary from 1.3 to 20 m/sec. They also showed that a linear 

relationship exists between the axonal diameter and conduction 

velocity. These size and conduction time ranges indicate the range 

of possible differences between P and M pathway axons. 

It has been shown in developmental studies that the fibers 

from the central retina mature a little ahead of those from the 

peripheral retina and that the fibers of the M stream precede those 

of the P stream in development.70 These differences raise the 

possibility of selective damage to the two pathways depending on 

when during development the damage occurred. They also suggest 

that the if damage does occur early in development, the M pathway 

might be more vulnerable. 

LATERAL GENICULATE NUCLEUS 

Axons from the ganglion cells pass into the LGN where they are 

segregated into the parvocellular and magnocellular portions of the 

nucleus. Because of this anatomical segregation, the physiological 
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characteristics of the M and P pathways have been studied most 

extensively at the level of the LG N. 

The LGN is composed of six layers with the two ventral layers 

containing the large magnocellular cells; the remaining four layers 

contain the smaller parvocellular cells.7 1• 72 The nasal fibers from 

the contralateral eye terminate in layers one, three, and six, and 

temporal fibers from the ipsilateral eye terminate in layers two, 

four, and five (layers are numbered from dorsal to ventral)? 3 

Based in part on their smaller size, the density of cells in the 

parvocellular layers is greater than the density in the magnocE;!IIular 

layers, and the density is also greater in the layers receiving input 

from the contralateral eye as compared to those receiving input 

from the ipsilateral eye? 4 

RESPONSE CHARACTERISTICS OF LGN CELLS 

The response properties and conduction velocities of cells in 

the LGN are very similar to those of their retinal counterparts? 5 

Both P and M geniculate cells have concentrically arranged receptive 

fields 76 with the M cells having larger receptive fields, by a factor 

of 1.6 or more.77 The M cells also have shorter response latencies 

of about 1.6 msec, as compared to latencies of about 2.5 msec for 

the cells in the parvocellular layers.58 •7 8 Parvo cells receive input 

from axons with medium conduction velocities and they themselves 

conduct at medium velocities to the striate cortex. In contrast, M 

cells receive inputs from large, high velocity ganglion cell axons and 

send information to the cortex along their own large, high velocity 

axons.75•78 
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In general, cells in the magnocellular layers respond best to 

temporal frequency modulations of about 20 Hz, whereas the 

parvocellular response peaks at around 1 0 HZ, with a gradual loss of 

sensitivity toward lower temporal frequencies and much more rapid 

loss toward higher frequencies. 58,77 

With respect to spatial frequency sensitivity, cells in the 

parvocellular layers that receive inputs from the foveal ganglion 

cells are capable of detecting spatial frequencies of up to about 40 

cpd, 77 but the spatial frequency response of these cells peaks at 

about 10 cpd. In distinction to the P cells, the M cells respond best 

to spatial frequencies of less than 2 cpd_77, 79 

Cells in the parvocellular layers process both color-opponent 

and broad-band information, whereas cells in the magnocellular 

layers process broad-band information only.58,75, 78 Effects of 

lesions of the magno and parvocellular layers support the idea that 

the M pathway is responsible for high temporal and low spatial 

frequency information, whereas the P pathway is the mediator of 

color vision and high spatial frequency information. 67 • 80 • 81 

SUB-PATHWAYS IN THE MAGNOCELLULAR LAYERS 

A clear consensus is not available among researchers on 

whether the magnocellular layers might contain sub-groups of cells. 

Kaplan and Shapley classified cells in the magno- and parvocellular 

layers as being equivalent to X or Y cat cells, mainly based on their 

spatial summation ability and the linearity or non-linearity of their 

responses. 79·82 Using these criteria, nearly all cells in the 

parvocellular layers, and 75% of the cells in the magnocellular 

layers were similar to X cells, with the remaining 25% of the cells 
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in the magnocellular layers being similar to Y cells. These results, 

along with work of Marrocco, et a1.58 suggest that is not accurate to 

equate all primate M cells with cat Y cells nor all P cells with X 

cells. 

STRIATE AND EXTRASTRIATE VISUAL CORTEX 

Most fibers from the LGN project to the primary visual cortex, 

known as Brodmann's area 17, area V 1, or the striate cortex. The 

striate cortex consists of 6 layers, numbered from outside to inside 

as layers I to v1,l 3 with a prominent band of LGN input fibers in 

layer IV. Layers Ill and IV are further divided into three 

subdivisions called a, b, and c, and layer IVc is further subdivided 

into IVc-alpha, IVc-beta, and IVc-gamma. 

ARCHITECTURE OF CORTICAL AREAS 

Cytochrome oxidase studies of the striate cortex have revealed 

a prominent array of blob-like structures, located mainly in layers 

II, and 11183. These blobs represent groups of cells that stain more 

densely than their neighboring cells in adjacent regions which are 

called inter-blob zones. A typical cytochrome oxidase staining 

pattern is also observed in visual area V2,83except that in this area 

the staining pattern takes the form of dark and pale stripes, with 

the dark stripes being classified as either wide or narrow. 

Fibers from the LGN project to layer IV of the striate 

cortex, 73 • 83 and from there information is conveyed to the blobs 

and inter-blobs of layers II and 111,83-85 and to layers V and v1.86 

Fibers from layers II and II I exit from the striate cortex and 

project to the extra-striate areas.83-85 Fibers from layer V 

1 8 



project to the superior colliculus, and those from layer VI project 

back to the LGN86 to provide feedback for this nucleus. 

Major extrastriate areas receiving direct visual input and/or 

fibers from area V1 include Brodmann's area 18 which consists of 

visual areas V2 and V3; Brodmann's area 19 which consists of visual 

areas V3a, V4, and VS; posterior parietal cortex; infero-temporal 

{IT) cortex; and the frontal eye fields.87 Visual area VS is now 

referred to as the middle temporal {MT) cortex, and area VSa is 

referred to as the medial superior temporal (MST) cortex. 

SERIAL AND PARALLEL PROCESSING OF INFORMATION IN THE CORTEX 

Most researchers now believe that the separation of 

information processing pathways represented by the M and P 

divisions of the LGN is continued in the cortex, however the 

separation is not as strict as it is in the geniculate. One of the more 

recent diagrams of parallel processing pathways in the cortex is 

shown as Figure 1. In this Figure, the P pathway from the LGN 

carries information to the cortex where it is divided for further 

processing of chromatic, form, and stereoscopic information. The 

outcome of processing in the form and color pathway (discussed 

below) results in a perception of what an object is, so this channel 

is often called the •what" channel. As information progresses 

serially through the channel, specific stimulus features, such as 

color, are distributed to a patchwork of cortical areas for detailed 

analysis. 
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Insert Figure 1 About Here 

Information from the M geniculate pathway is also processed 

extensively in the cortex to produce a perception of where an object 

is in time and space. This processing pathway is often called the 

"where" or the motion pathway (discussed below). 

THE FORM AND COLOR PATHWAY-ARCHITECTURE 

Fibers from the parvocellular layers of the LGN project to 

layer IVc-beta in the striate cortex.88 From there information 

travels via two routes with one set of fibers projecting to the 

inter-blob regions in layers II and Ill, 84 and another set projecting 

to the blobs.84 •86 The blobs also seem to receive some direct 

projections from the inter-laminar zone between the parvo and 

magnocellular layers of the LGN, but the function of this input is 

unknown. 88•89 

Outputs from the blob and inter-blob regions project to area 

V2, 83 with the inter-blobs projecting to the pale stripes, and the 

blobs projecting to the thick, dark stripes. Both of these areas then 

project to area V490 · 91 where there is some evidence that color 

and form information are processed in separate and distinct sub

areas. 92 From here, fibers project to the inferior temporal cortex, 

and the inferior convexity of the temporal lobe.93-96 There are 

further projections to the IT from the limbic structures, such as the 

amygdaloid complex,97-1 00 and hippocampus 101. 
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THE FORM AND COLOR PATHWAY-RECEPTIVE FIELD CHARACTERISTICS 

The cells in the IVc-beta layer of the striate cortex 

demonstrate either single-opponent color coding or broad-band 

characteristics, but they lack orientation specificity in their 

receptive fields. 1 02- 1 04 These cells (and others) send information 

to the cells in the inter-blob region of V1 which demonstrate 

orientation specificity, and typically have broad-band center

surround characteristics. 1 04 Although the inter-blob regions 

receive input from single-opponent color coded cells, the cells in 

these regions respond best to selectively oriented contours 

regardless of the color and the relative brightness across the 

contour.84, 105,106 

Cells in the blob regions of V1 lack orientation selectivity in 

their receptive fields, but demonstrate either color-opponent or 

brightness selectivity. Their receptive fields have center-surround 

characteristics, and the color-coded cells demonstrate double

opponency characteristics. 1 04 ,1 0? It is hypothesized that the color 

coded blob cells receive· their inputs from the color-opponent 

parvocellular LGN cells, and the non-color coded blob cells receive 

their inputs from the parvocellular and/or the magnocellular broad

band cells.84, 104,105 

In area V2, the pale stripes receive their inputs from cells in 

the inter-blob regions of V1 and show the same receptive field 

characteristics as V1 inter-blob cells, except that some or all of 

the cells in the V2 pale stripe areas are sensitive to the length of a 

stimulus (i.e., are end-stopped).84 • 105 The thin dark stripes in area 

V2, like their counterparts in the V1 blobs, are not orientation 
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specific, but are mostly color coded, showing strong double

opponent characteristics.84 ·1 05 These cells also have an optimum 

stimulus size to which they respond very actively when a stimulus 

is placed anywhere in the visual field.1 08,109 

Less is known about the cells in area V4, but some cells in this 

area respond selectively to color, 11 0' 111 stimulus orientation, and 

direction of motion. 111 • 112 

Beyond area V4, the information from the visual pathways is 

mixed with other information and the cortical areas loose their 

strictly visual nature. For example, the inferior temporal cortex 

plays a role in visual discrimination, learning, and retention, as can 

be demonstrated by ablating the IT cortex in laboratory 

animals.1 13- 115 The cells in the IT cortex are selective to certain 

visual parameters such as, shape, color, and texture, or a 

combination of these. It has been suggested that a single cell in the 

IT cortex can represent a fairly specific set of stimulus features 

and would respond only when these features were present (i.e., it 

might be triggered only by a specific stimulus).1 16- 11 8 Cells 

selectively responsive to a specific complex stimulus such as a hand 

or a face have been identified in this region.117 · 119 

THE FORM AND COLOR PATHWAY-FUNCTION 

Information about the color and high spatial frequency details 

of a stimulus are separated from information about low spatial 

frequency and motion at the level of the retina. This high frequency 

and color information is carried largely by the P type ganglion cells 

to the parvocellular layers of the LGN, and then by the axons of these 

cells to cortical area V1. In V1, the color information is kept 
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separate by sending it to the blob regions and the form information 

is processed in the inter-blobs. This separation is also maintained 

in area V2, but, as information processing becomes more 

sophisticated at higher cortical levels, it begins to break-down and 

areas that have cells specifically responsive to combinations of 

stimulus features are found. Currently, it is believed that there may 

be over 30 of these specific areas with each having its own map of 

the visual world and being responsible for analysis of some general 

or specific stimulus characteristic. 120' 121 Evidence to support the 

concept that specific stimulus features are processed in different 

cortical areas will be presented in the section below on agnosias. 

Although it is reasonably ctear that stimulus details and color 

are processed via the P pathway, the pathway responsible for 

stereopsis is not that obvious. It was once thought that information 

carried through the magnocellular pathways played a chief role in 

determining stereoscopic depth.84 • 105 However, it is now 

suspected that stereopsis is not a unitary function and that both the 

magno- and parvocellular pathways are involved in the processing of 

information regarding depth.122-124 Information about fine 

stereopsis (up to about 20 min disparity) is now believed to be 

carried by the P pathway to the inter-blob system, 122-124 and 

information about coarse stereopsis and stereo-movement is 

processed by the magnocellular, broad-band channel.122 

THE MOTION PATHWAY-ARCHITECTURE 

Cells in the magnocellular layers of the LGN project to layer 

IVc-alpha in the striate cortex,8 8 and information then flows to 

layers IVb and v1.86 • 125 Fibers from layer VI project back to the 
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LG N86,125 to provide a feedback loop to the geniculate. There is 

also some evidence that the fibers from layer IVc-alpha of V1 may 

serve as inputs to the blob cells in layers II and Ill of this area.83-

85,89, 105 

Fibers from layer IVb exit from the striate cortex and project 

to the medial temporal cortex, which is a small area on the 

posterior bank of the superior temporal sulcus. 125-127 Fibers from 

layer IVb also project to MT90,9 1 via the thick, dark stripes in area 

V2. 83 From the MT, there are separate projections to other 

extrastriate areas such as the medial portion of the superior 

temporal sulcus (MST), and the ventral intraparietal cortex 

(VIP).128 Separate connections have also been identified from the 

MST to the frontal eye fields which are associated with eye 

movements, 128· 129 and to the posterior parietal cortex130, 13 1 

which has been implicated in certain forms of complex behavior, 

including attention. 131 · 132 

THE MOTION PATHWAY-RECEPTIVE FIELD CHARACTERISTICS 

In general, cells in the M pathway respond best to low spatial 

and high temporal frequencies. In the retina and LGN, M pathway 

cells encode information on moving targets by detecting any change 

in contrast over time. In layer IVc-alpha of the striate cortex, M 

pathway cells are predominantly broad-band, 1 03 and show a 

preference for specific stimulus orientations. 1 04 Cells in area V2 

respond selectively to stimulus distance, and, to some degree, are 

sensitive to the direction of motion.133 

At the level of the MT cortex, cells are selectively tuned to 

respond to stimulus orientation, direction, 134-138 depth, and 
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speed.137, 139 MT cells respond over a range of speeds from 2-256 

degrees/sec137,138,140 with best responses at about 32 

degrees/sec. The cells in the MT are not capable of differentiating a 

retinal image shift caused by movement of the target from 

movement of the eye itself, however, the cells in the MST can make 

this discrimination and respond differently under the two 

conditions. 141 

The cells in the MT and MST show other difference in their 

receptive field characteristics. 141 Cells in the foveal MT (MTf) 

prefer small moving spots of light, whereas those in the dorsal

medial MST (MSTd) prefer large, moving stimuli such as patterns of 

random dots; cells in the lateral anterior MST (MSTI) show mixed 

responses. 

THE MOTION PATHWAY-FUNCTION 

As its name implies, the motion pathway processes 

information about stimulus motion, and it probably also has a role in 

guiding the motion of the eyes and body. Following initial 

processing in the retina, LGN, and visual cortex, the M pathway 

passes information on to higher cortical areas and to subcortical 

areas responsible for moving the eyes. In these areas, the direction 

and velocity of a stimulus are analyzed, and the relative location of 

the stimulus with respect to the body and other objects is 

determined. The processing required to accomplish these tasks is 

quite complex, as is illustrated by considering the means by which 

the visual system is able to foveate or pursue a moving target. 

The generation and control of eye movements involves 

projections from the MT and superior temporal areas to the superior 
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colliculus, 128, 142 and to the pons 128, 143,144 which serves to 

guide pursuit and tracking eye movements. 145• 146 In turn, the pons 

is connected to the cerebellum 14 7-150 which contains a map 

related to eye movements, 15 1 as well as neurons that signal eye 

movement and retinal image slip velocities. 152 The cerebellum 

plays a role in the regulation of pursuit eye movements 152-155 by 

exerting control over the oculo-motor nuclei in the brain stem. 

To track a target in motion, the eyes have to execute a smooth 

pursuit movement matching the velocity of the target so that the 

image is held stable on the retina. To accomplish this, cells in the 

MTf and MSTI areas of the motion processing channel initiate the 

pursuit eye movement. Then, in reaction to the motion of the target 

to be pursued, another group of cells in the MSTd and MSTI indicate 

the perceptual consequences of the pursuit movement and provide 

feedback to guide the pursuit movement. 156, 157 It is this group of 

cells that detects a slip of the retinal image from the fovea during 

tracking and initiates a refixation movement to refoveate the 

moving target. Behavioral studies on monkeys show that lesions in 

the MT, MST and the pontine areas lead to defective pursuit eye 

movements. 145 • 158,1 59 Animals with these lesions try to make 

refixation movements during pursuits but are unsuccessful. The eyes 

of these animals always lag behind the actual position of the object, 

thus illustrating the importance of these motion pathway nuclei for 

control of eye movements. 
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CLINICAL PROBLEMS ILLUSTRATING SERIAL AND 

PARALLEL PROCESSING WITHIN THE VISUAL SYSTEM 

In humans, visual information is carried via separate, parallel 

pathways through a series of separate nuclei and cortical areas. 

Analysis of this configuration suggests that failures in the visual 

system could involve either an entire pathway or one of the analysis 

sites along a pathway. It appears that both types of failures do 

occur in humans; pathway failures have been associated with 

problems including glaucoma, Alzheimer's disease, dyslexia, and 

amblyopia, whereas specific processing site failures in the cortex 

are probably best illustrated by the agnosias. 

GLAUCOMA 

The major signs and symptoms associated with glaucoma 

include elevated intraocular pressure, optic disc changes, and visual 

field loss resulting from death of ganglion cells. One of the most 

commonly proposed causes of ganglion cell death is disruption of 

axon nutriture and/or metabolic transport 160 at or near the optic 

disc. Histological studies of retinal tissue from glaucoma patients 

have shown that there is a significant tendency for cells with larger 

sizes to die first as a result of the disease. This has lead to the 

conclusion that glaucoma affects cells in the M pathway prior to 

affecting the smaller cells of the P pathway .1 61 - 1 64 It would also 

account for the fact that a significant proportion of ganglion cells 

die before any effect is found using the conventional perimetry 

techniques that are best suited for detecting loss of P cell 

function. 16 1 • 165 
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Further evidence of large cell death in glaucoma patients 

comes from psychophysical tests that specifically evaluate 

magnocellular system function. Contrast sensitivity to low spatial 

frequency patterns (less than 2 cpd) modulated at high temporal 

frequencies (8 Hz) is impaired in patients with glaucoma,166,-170 

which definitely indicates an M cell problem. Further, in glaucoma 

patients who have had early intervention and return of their 

pressures to the normal range, responses to flicker contrast 

sensitivity testing show significant improvement.1 7 1 

These results illustrate a failure in one of the parallel visual 

pathways, and suggest better methods for assessing this type of 

failure. For example, a recent pilot study has demonstrated that 

flicker perimetry is more effective than conventional static 

perimetry in detecting glaucoma caused visual field defects.1 72 

Monitoring flicker contrast sensitivity in patients with elevated 

intraocular pressure might, therefore, help separate those who are 

experiencing cell death and must be treated, from those who only 

have ocular hypertension. 

ALZHEIMER'S DISEASE 

Alzheimer's disease has been described as .. A condition of 

gradual onset, which leads to impairment of recent memory, 

disorientation, confabulations, and retrogressive loss of remote 

memories. n 173 Pathologically the disease is characterized by 

neuronal loss, neurofibrillar tangles, and neuritic plaques occurring 

mainly in subcortical areas 17 4 such as the hippocampus, amygdala, 

locus ceruleus, 175• 176 and the neocortical association areas. 
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Primary neocortical areas such as the motor and visual cortices are 

relatively spared in Alzheimer's disease.17 7 

The vague visual symptoms reported by Alzheimer's disease 

patients have typically been attributed to psychogenic causes 

because it is not unusual for these patients to have 20/20 visual 

acuity and full fields. Such patients are often told that there is 

nothing wrong with their vision. Recently, however, changes in 

retinal ganglion cells 178 · 179 and optic nerve fibers 180 have been 

detected in patients and these signs must now be added to the 

constellation of neuropathological findings present in patients with 

Alzheimer's. 

The retina and the optic nerve of Alzheimer's patients show 

damage predominantly to the large retinal ganglion cells and their 

axons, 180, 181 which suggests a problem in the M pathway. 

Psychophysical tests on Alzheimer's patients also suggest damage 

to the M pathway. 182-185 Pattern electroretinographic studies 

show the dysfunction of the fast-conducting retinal ganglion cells 

and their cortical counterparts that would be expected if the M 

pathway was compromised. 182 · 183 Alzheimer's patients also show 

a decrease in contrast sensitivity for low spatial frequency gratings 

(0.5-2 cpd) alternated at a temporal frequency of 7.5 Hz, and this is 

consistent with an M pathway defect.184, 185 

DYSLEXIA 

The term dyslexia has many definitions ranging from an almost 

complete loss of the ability to understand word meanings to a 

simple reading difficulty. Suggested etiologies for dyslexia are 

equally wide ranging, with one group of researchers and clinicians 
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sure that the visual system is involved in the problem and another 

group equally sure that it is not. Some have argued that dyslexia is 

an auditory-linguistic problem arising from a poor understanding of 

the phonological structure of words.186, 187 This notion has been 

supported by anatomical studies that have demonstrated an atypical 

language area (the planum temporale) in the left hemisphere of 

disabled readers. 188· 189 

More recently, it has been suggested that dyslexia need not be 

secondary to a linguistic problem, but could involve a defect in the M 

cell or transient visual pathway. 190-200 In addition, it has been 

suggested that the transient pathways in other sensory 

systems,20 1-203 such as audition, could also be compromised in 

dyslexia, and this would result in a problem in processing any high 

temporal frequency information.201,204 

If such a defect does exist, its etiology is unclear. It is 

possible that neuronal input to higher centers can be affected by 

genetic defects or other extrinsic factors at different stages during 

early development. This, in turn, could affect development of the 

cortex, thereby creating an abnormal cytoarchitecture.205,206 On 

this basis, it has been hypothesized that the planum temporale might 

receive defective inputs from transient components of the auditory 

system. This could result in the previously described abnormality in 

this area.2 04 

INTERACTION OF PARALLEL PATHWAYS DURING READING 

The clinical signs and symptoms caused by a transient or M 

pathway, failure in dyslexia can best be understood by considering 

the theoretical model of reading proposed by Breithmeyer and 
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Ganz.207,208 According to this model, normal reading consists of a 

series of repetitive fixations and saccades.209 During each 

fixation, which lasts approximately 500 msec,21 0 the image of a 

small section of print is placed on the fovea and information about 

it is transmitted from the retina via the LGN to the cortex by the 

sustained pathway. When the fixation ceases, information still 

persists in the sustained pathway until it either fades or is erased. 

Following the fixation, a saccade takes place to position a new 

section of print on the fovea. The ability to detect stimulus 

features is greatly attenuated during this saccade,211-213 as well 

as during a short period slightly before and after it.214 One of the 

functions of this suppression is to reduce the perception of stimulus 

blur that would be produced by the eye movement; this phenomenon 

is commonly referred to as saccadic suppression.211-213 

During a saccade, the fast movement of contours across the 

retina activates the transient visual pathway which inhibits the 

sustained or P cell pathway. This causes the persistent image of the 

previous fixation held in the P pathway to be erased, thus making 

room for the information from the subsequent fixation.207 ·208 If 

the persistent image if not erased, the new image will be 

superimposed on the old image and confusion and/or poor reading 

will result. The process of erasing the image of a previous fixation 

during a saccade is commonly referred to as transient-on-sustained 

inhibition, and it forms a major theme in Breithmeyer's theoretical 

model of reading. 

3 1 



EFFECTS OF A DEFECT IN THE TRANSIENT PATHWAY ON READING 

Many studies have identified a transient system deficit in 

subjects with reading problems. Differences in visually evoked 

potential recordings, 19 1 contrast sensitivity,190,192,199,215 

duration of persistence, 190, 197•200 flicker contrast 

sensitivity, 190 • 195 and flicker masking effects 193 · 194 have all 

been found between disabled readers and controls, and in each case 

the difference is in the direction predicted by a deficit in the 

transient system. 

According to Breitmeyer's model, if the transient system is 

not working properly, it would fail to inhibit the sustained system, 

and thus fail to erase the image of a previous fixation before 

information from the next fixation was available. This would result 

in superimposition of the images and confusion. The reader faced 

with this problem might deal with it by increasing fixation 

durations (to allow persistent images of previous fixations to fade 

without saccadic suppression), by decreasing the number of letters 

per fixation, and/or by making extra saccades to build up more 

saccadic suppression. Such strategies might explain the increased 

number of fixations,217 saccades,218 and regressions219 commonly 

observed in dyslexic individuals. 

Though pursuit movements are usually not directly involved in 

reading, it has been found that pursuits are often abnormal in 

reading disabled individuals.21 9 This is also consistent with a M 

cell or transient pathway problem because there is a link between 

the motion processing centers in the brain which receive their 
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inputs from the M pathway, and the brain areas responsible for the 

generation and control of pursuit eye movements. 

MORPHOLOGICAL DIFFERENCES IN M CELLS OF DYSLEXICS 

If dyslexics have a problem in their M cell pathway, it might be 

possible to identify this problem by observing cells in the 

magnocellular layers of the LGN. Recently Livingstone, et al. have 

confirmed this possibility by identifying morphological 

abnormalities in the magnocellular LGN layers of a group of dyslexic 

individuals.204 They found the cells in the dyslexic's magnocellular 

layers to be much smaller than those of matched controls. The 

physiological consequence of this reduction in cell body and axon 

sizes would be a change in the M cell's transmission times which 

could result in a loss of synchronization of the fixation-suppression 

pattern in reading. 

THERAPY FOR DYSLEXIA BASED ON TRANSIENT PATHWAY DEFECTS 

If the balance between the M cell or transient pathway and the 

P cell or sustained pathway is defective in dyslexia, it should be 

possible to develop therapies or reading aids to re-balance the 

pathways. Disabled readers have shown improvement in visual 

search and reading performance when passages were presented with 

blurred images and with reduced the contrast. 196,220 Both of these 

stimulus changes would provide a relative advantage to the M cells 

that are more responsive to lower spatial frequencies than the P 

cells. It has also been suggested that a reduction in contrast could 

serve to decrease the amplitude of the sustained component of the 

visual response and re-establish normal temporal interactions with 

the poorly functioning transient system.1 9 6 
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It has also been suggested221 that the use of colored overlays 

in reading could re-balance the transient and sustained pathways, 

but it is unclear whether any effects of these filters are due to 

their color or to the changes in luminance contrast that the filters 

create. 

AMBLYOPIA 

Glaucoma, Alzheimer's disease, and dyslexia all illustrate 

problems primarily in the M or transient pathway. The problems in 

amblyopia might also involve the M pathway, but more commonly 

they involve a portion of the P or sustained pathway. Functional 

amblyopia is defined as a loss of visual acuity for which no organic 

cause can be detected by the physical examination of the eye. It is 

considered to be a result of form deprivation and/or abnormal 

binocular interaction usually associated with strabismus, 

anisometropia, or stimulus deprivation occurring during critical 

development periods. 

It has long been known that amblyopic patients have problems 

performing tasks involving fine visual discrimination.222-228 

Similar results have also been obtained in animal studies.229-237 

Based on the definition of amblyopia, all patients have reduced 

acuities and impaired performance with high spatial frequency 

stimuli (greater than 2 cpd). This strongly suggests a problem in the 

P or sustained pathway which is responsible for processing this type 

of information. Some patients, however, also have a contrast 

sensitivity reduction at lower spatial frequencies, and this is 

consistent with a problem in the M pathway. 

34 



Although amblyopia primarily involves a spatial vision deficit, 

opinions are divided as to whether there is an associated temporal 

processing deficit. Several studies suggest that temporal 

information carried by the transient channel is essentially normal in 

amblyopia, 22 3· 224 but others report a deficit in temporal 

resolution238,239 which could be secondary to a defect in the 

spatial vision channels.239 Since the high spatial frequency P or 

sustained channel is also responsible for processing low velocity 

movement, it would make sense that a Joss of this information 

would create problems in analyzing the motion of a stimulus. 

Studies at the level of the LGN in cats reared with strabismus, 

and visual deprivation have identified defective responses from both 

X, 35,240 and Y cell populations.24 1 Monocular deprivation studies 

in primates have demonstrated that cells in the parvocellular layers 

of the LGN,242 •243 and JVc-beta layers of the striate cortex242 are 

preferentially affected. This is consistent with the concept that 

these cells are part of the pathway that carries information about 

high spatial frequencies, and that damage to them will result in the 

reduced acuity seen in amblyopia. However, there are other animal 

studies which suggest that both M and P pathways are affected in 

the same general manner.244 

To resolve these differences, many researchers now believe 

that there are several different types of amblyopia, each with 

different etiologies and different effects on the visual pathways. 

For example, Sherman234 suggests that complete visual form 

deprivation, as would be produced by lid suturing of laboratory cats 

affects the input to cells in both the X and Y pathways, however 
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defocussing the retinal image, as would occur in anisometropia, 

could affect the X pathway more than the Y pathway. 

In summary, it seems certain that the X or P pathway is 

affected in most or all cases of amblyopia, and, in some cases, there 

is M pathway involvement also. It is important to remember, 

however, that the entire P pathway is not affected in amblyopia. A 

major proportion of this pathway is responsible for conveying 

information about stimulus color, and defective color vision is not a 

symptom of amblyopia. This suggests that either amblyopia exerts a 

preferential effect on the form component of the P pathway at 

subcortical levels, or that it manifests in the cortex at levels where 

color and form information are analyzed in anatomically separate 

areas. 

AGNOS IAS 

As illustrated by the conditions discussed above, visual 

information is carried to the cortex along parallel pathways which 

are vulnerable to damage at many points. Beyond the primary visual 

cortex, the pathways fractionate into many individual areas which 

are responsible for analysis of specific stimulus components. 

Selective damage to these individual areas can produce strange 

perceptual impairments called agnosias. Depending on the actual 

site of the damage, the nature of the perceptual impairment in 

agnosia can vary.245 

Agnosias provide remarkable evidence for functional 

localization at higher visual centers. Consider, for example, the 

infero-temporal (IT) cortex in which some 1 0% of the cells have 

been found to respond only to specific stimuli such as a hand or 
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face. 117 • 119 A lesion in the IT that involves these cells can lead to 

a selective inability to recognize faces, while the ability to 

recognize other objects remains intact. This clinically observed 

condition is known as prosopagnosia.246-249 There are also reports 

of cases in which a patient can recognize an object when it is in 

motion, and fails to recognize the same object when it is static.2 50 

In another movement related agnosia, bilateral damage in the medial 

temporal or medial superior temporal cortical areas can manifest as 

a selective loss of movement perception without loss of any other 

perceptual capabilities. 8 7 

Other agnosias can affect the ability to recognize multiple 

objects simultaneously, or to perceive the color of objects. For 

example, strokes involving the posterior inferior occipital lobe can 

lead to the selective impairment of color perception known as 

achromatopsia. a? • 105 

In laboratory experiments, functional losses can be 

demonstrated very clearly by creating lesions with great precision 

and accuracy. 11 3- 115 In humans, however, visual agnosias very 

rarely occur in pure forms. This is because they are usually caused 

by vascular accidents or traumas that do not restrict damage to 

functionally discrete regions. Nevertheless, the clinical findings 

with human agnosia patients are consistent with the theory that at 

higher cortical centers visual information is processed by 

decomposing the stimulus into component parts and analyzing these 

components separately in discrete cortical areas. 
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SUMMARY 

During evolution, nature obviously decided that it was 

expedient to keep information on fine detail and color separate from 

information on gross form and motion. It is not clear whether this 

separation occurred because these pathways evolved at different 

times, or because there are processing advantages to such a 

separation, but parallel pathways flowing through a series of brain 

areas seems to be a universal design for the visual systems of 

primates. 

In the processing areas beyond the primary visual cortex, the 

strict separation of pathways begins to change somewhat, and a new 

pattern emerges. In the patch-work of areas beyond V4, specific 

stimulus features are extracted and analyzed individually. It seems 

almost as though nature developed these individual areas one at a 

time when it became desirable to analyze a new stimulus feature 

such a face, or multiple objects presented simultaneously. 

The complexity of the nuclei and cortical areas that together 

make up the P pathway is at least matched by the complexity of the 

areas responsible for visually guided movements of the eyes and 

body. Added to the complexity of the individual pathways are 

interactions such as the over 300 connections diagrammed by Van 

Essen, Anderson, and Felleman that are shown in Figure 2. 121 This 

degree of complexity makes it clear that the study of the visual 

system will keep researchers busy for many years to come. 

--- - -- - - ---- - -- ----- - - - - - ----- - - - - - ----- ------- - ------ ------ -

Insert Figure 2 About Here 

------------ ------------~-~· - · ------ ---- ---------------------
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From a clinical perspective, many disease entities are now 

beginning to make more sense based on an increased understanding 

of the ways in which the visual system conveys and analyzes 

information. In particular, the vulnerability of the larger cells in 

the M pathway helps to explain the problems associated with 

conditions like glaucoma, Alzheimer's disease, and dyslexia; but, it 

is not yet clear why the M pathway seems so vulnerable to damage. 

Is it because it develops ahead of the P pathway? Are there specific 

pathophysiologic process that affect it? Or, is there a special 

biochemical problem that renders cells in the M pathway less 

capable of repairing damage that they sustain? Answers to these 

questions will have major clinical implications for the millions of 

patients who suffer diseases associated with failures in the visual 

pathways. 
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