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ABSTRACT: 

One of the theories in the development of amblyopia is binocular 

inhibition. Support for this theory come from neurotransmitter 

studies. Dopamine is a modulatory neurotransmitter and may have a 

significant role in normal visual maturation and in the cortical 

plasticity during the critical period. This preliminary study assessed 

and compared, through autoradiographic techniques, the dopamine 

distribution in human fetal and neonatal visual cortex to adult 

primary visual cortex. The results shows a laminar and ontogenic 

distribution of dopamine receptor binding sites in adult and child 

visual cortex,with binding most distinct in layer IVc. The results 

suggests a role for dopamine in early visual development. 



The word amblyopia is derived from the Greek word "amblys" for dull and 

"ops" for eye; hence meaning a dullness of vision. Clinically, it is defined as a 

best corrected visual acuity worse than 20 I 40. It is estimated to affect up to 5% 

of the population(l). Functional amblyopia, is the most studied type of 

amblyopia and is defined by von Noorden (2) as a reduced visual acuity 

without ophthalmoscopically detectable anomalies of the fundus. The 

reduced visual acuity is attributed to a functional cause, rather than to an 

organic one. Functional amblyopia develops as a result of unequal and/ or 

confusing visual input from the two eyes to the striate cortex. Visual 

confusion results from unilateral strabismus, where the foveas of the two 

eyes are aimed at different positions in space resulting in retinal rivalry and 

an adaptation through suppression and subsequent amblyopia in the 

strabismic eye. In form vision deprivation, through conditions such as 

anisometropia (high unequal refractive error) ,cataracts, opaque cornea, 

vitreous clouding and prolonged uncontrolled patching, the foveas project to 

a common visual direction but the retinal image from one or both eyes is out 

of focus producing unequal visual input(1,3). A postnatal critical period of 

susceptibility to amblyopia is a common factor in all forms of functional 

amblyopia(l-4). The limits of this critical period in humans, unlike the 

monkey and the cat, are not known. Many authors approximate this period 

to occur from birth to about seven years of life(1,4). For monkeys and cats the 

critical period occurs from one to sixteen weeks and three to four months 

respectively(S-7). It is during this period when early abnormal visual 

experience can permanently alter normal visual maturation. This almost 

"now or never "process of vision in this period is when the proper 

formation of connections are most reliant on proper and adequate visual 

stimulation. The earlier the visual deprivation, and the more severe, the 
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worse the damage to the visual system; and yet the earlier the treatment, the 

better the prognosis. Conditions that are amblyogenic in children under 

seven will not cause amblyopia in older children and adults(1,4), and 

treatment is most effective during this critical period. It seems then that the 

brain is more "plastic" during this period. 

Many clinical and animal studies are aimed at understanding the 

mechanism involved in the neural plasticity during this critical period, in the 

hopes of preventing , treating and reversing functional amblyopia. 

Physiological and anatomical studies of visual deprivation in cats and 

monkeys have provided models of the mammalian visual system to further 

understand the nature of normal and abnormal visual development. Visual 

deprivation in the form of monocular lid suture, binocular lid suture and 

enucleation made for important discoveries about the development and 

plasticity of the visual system. Visual deprivation through whatever form 

has its manifestations in the lateral geniculate nucleus(LGN) and the striate 

cortex. In normal cats and monkeys, there are ocular dominance columns in 

the striate cortex consisting of a columnar arrangement of parallel bands of 

about 400~-tm in width; formed from the segregation and uniform distribution 

of geniculocortical afferents from left and right eye input at layer IV c not 

dependent on visual experience(8-ll). The cells in layer IV are monocularly 

driven; and those outside are binocularly driven(12). 

Monocular lid suture, the most studied form of visual deprivation, 

characterize amblyopia in its severity. Monocular deprivation(MD) in early 

life of cats and monkeys, produce morphological and physiological changes in 

the lateral geniculate nucleus and the striate cortex. Changes in the LGN are 

secondary to cortical changes and are mainly morphological from the cell to 

the axon terminal(13-17). Cells in deprived geniculate laminae are smaller 
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than those of the nondeprived eye but have normal physiological responses 

to stimulation of the deprived eye(7,8,16) . The terminals from the deprived 

pathway afferents are smaller and end on smaller spines which can make 

synaptic potentials less effective in driving the postsynaptic cell(14). These 

changes in the LGN can account in part for the inability of the deprived eye to 

stimulate cortical neurons . In spite of the cell shrinkage in the LGN there is 

not an associated cell atrophy in layer IVc of the striate cortex (8,10,11) 

suggesting that monocular deprivation affects the cortex and the LGN 

differently. The striate cortex is more severely affected by monocular 

deprivation in that there is a loss of binocular cells; and very few cells can be 

driven by the deprived eye(7,9-ll) .' There is a shrinkage of the ocular 

dominance stripe of the deprived eye and an expansion of stripes of the non 

deprived eye(10,11,18). These changes in the ocular dominance columns are 

virtually permanent, occur rapidly and at a critical post natal period of 

susceptibility(lO,ll) . If the deprived eye is unsutured so that both eyes are 

exposed to light, there is no change in the cortical columns. However, with 

reverse suturing(the deprived eye is opened and the non-deprived eye is 

sutured), there is an expansion of the columns of the once deprived eye and a 

contraction of the nondeprived eye columns(19,20). It seems that it is not 

enough to just restore activity to the deprived eye but the activity must be 

greater than that from the nonderived eye. The expansion of the columns of 

the deprived eye through reverse suture suggests two theories for the 

development of the ocular dominance shift in monocular deprivation. 

The first is that binocular competition in monocular deprivation 

causes the underactive weak geniculocortical afferents from the deprived eye 

to become permanently displaced(8,18,21). Reverse suturing results in the 

active sprouting and regrowth of these cortical afferents from their shrunken 
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zones into regions of cortex from which they had previously been 

removed(10,19) . Clinically, this theory of binocular competition implies an 

irreversible loss of visual function. The alternative theory is that binocular 

inhibition results in the suppression of physiologically active deprived 

afferents by the nondeprived eye; and in reverse suture there is a release of 

this suppression(19,20). Since the inputs from the once deprived eye are now 

more active than the previous nondeprived eye, there could be a 

strengthening of pre and post synaptic afferents(21). Crawford, et al (22), 

suggests there is a reorganization of cortical connections rather than a loss of 

neurons. Perhaps the release of suppression precedes the sprouting and 

regrowth of axons. The clinical implications for the reversal of amblyopia 

based on the latter theory are much more favorable . Furthermore, many 

neurochemical studies seem to support the binocular inhibition theory. 

Norepinephrine(NE) and Gamma aminobutyric acid(GABA) are the earliest 

neurochemicals studied with respect to cortical plasticity in the visual system. 

Several lines of evidence suggest that GABA is an inhibitory 

neurotransmitter involved in intracortical inhibition in mammalian visual 

cortex(23-26). GABAergic inhibition has a fundamental role in determining 

orientation and direction sensitivity of visual neurons in the striate cortex of 

cats(23,24,26,27). Following from evidence of GABAergic inhibition, many 

experiments were carried out to determine the role of this inhibiton in the 

suppression of afferent inputs from the deprived eye by the non deprived eye 

and in the development of an ocular dominance shift from monocular 

deprivation during the critical period. To test the influence of intracortical 

GABAergic inhibition in cortical plasticity, a GABA antagonist, bicuculline 

was used. Disinhibition by bicuculline should in theory reduce the ocular 

dominance shift by releasing the suppression of afferent inputs from the 
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deprived eye. All of the studies using intravenous and iontophoretic 

application of bicuculline in cats reared under abnormal monocular 

experience showed a reduction in the ocular dominance shift and a 

restoration of binocularity influenced by blockade of GABAergic inhibitory 

synapses.(24,25,28-30). Furthermore, Silito et al.,(28,30) found that some of the 

cells in the dominant eye receive input from the nondominant eye which are 

suppressed by a selective GABA- mediated process. 

Mechanisms have been proposed as to the role of GABAergic inhibition in 

the formation of ocular dominance shift. First, Duffy et al.,(29) suggest that 

there is an active GABAergic inhibition of deprived eye afferent inputs and 

consequently, the associated amblyopia will not result in permanent 

irreversible loss of visual function. However, Silito et a1.,(28)suggest that 

GABAergic inhibition has a passive role in formation of ocular dominance 

columns. They believe that the //redistribution" of excitatory inputs at the 

cortex is more significant in the development of the ocular dominance shift 

in monocular deprivation. Further support from Mower, et al.,(25) showed 

that GABA inhibition in visual cortical ocular dominance columns is 

enhanced in animals reared under abnormal monocular experience and is 

functionally biased by changes in excitatory connectivity and magnifies these 

changes to produce the overall pattern of physiologically abnormal ocular 

dominance columns. Ramoa, et al., (24) have shown that bicuculline 

infusion reduced the selectivity of cortical cells, which allowed them to 

respond to a larger range of stimuli. Consequently they propose that 

reduction of cortical plasticity with bicuculline infusion is due to an increase 

probability of correlated activity between spontaneous discharge from the 

closed eye and cortical activity evoked by open eye afferents. This theory 

follows the Hebbian model of synaptic transmission modulation by temporal 
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correlation between pre- and post synaptic activity (31). Although all of the 

above studies show that bicuculline can decrease cortical plasticity and the 

formation of ocular dominance shift as a result of abnormal monocular 

experience, they all have indicated that GABAergic inhibition is not the only 

mechanism at work in the formation of ocular dominance shift. 

Kasamatsu and Pettigrew(32-33), and Pettigrew and Kasamatsu(34), 

showed that intraventricular injection during the critical period in 

monocularly deprived kittens, of the neurotoxin 6-hydroxydopamine (6-

0HDA) specific for catecholaminergic cells (i .e. noradrenergic and 

dopaminergic) reduced cortical plasticity and prevented the formation of the 

ocular dominance shift. Subsequent work using intracortical microinfusion 

of 6-0HDA showed a consistent decrease in cortical plasticity(35-38). 

Furthermore, Gordon, et al.,(39) showed behavioral evidence for the 

reduction of cortical plasticity in monocularly deprived kittens where the 

acuity of the deprived eye was better on the first day after eye opening in 

those kittens treated with intraventricular 6-0HDA. 

Strong evidence suggesting a role of NE in cortical plasticity came from 

the NE intracortical infusion studies which increased plasticity in a dose 

dependent manner in monocularly deprived kittens previously treated with 

either intraventricular or intracortical infusion of 6-0HDA; and decreased 

binocularity in monocularly deprived adult cats outside the critical period 

(33,40,41). Furthermore, Kasamatsu et al.,(42) found that increasing 

endogenous norepinephrine levels through electrical stimulation of the 

locus coereleus could produce an ocular dominance shift in monocularly 

deprived adult cats, with no prior treatment of 6-0HDA. 

To further investigate the mechanism of NE in cortical plasticity. 

Kasamatsu and Pettigrew(43-45) studied the effect of iS-adrenergic receptors 
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using an antagonist, D,L,propranolol. Perfusion of this antagonist into kitten 

visual cortex prevented the formation of an ocular dominance shift in 

monocularly deprived cats(45). They found that there was a concentration 

dependent effect on suppressing cortical plasticity(46). Ontogenic studies of 

iSadrenoreceptor binding by Shaw, et a1.,(47,48) and Jonsson and Kasamatsu 

(49) showed that the maturation of iS-adrenergic receptor binding follow the 

time course of the critical period in cats. They found that receptor binding 

peaked at about 7-9 weeks reaching a value 150% of adult, and from 11 weeks 

on the binding maintained a constant adult value. In comparison with the 

catecholamine levels which increased 12-13 times in concentration from 

infancy to adult and continued to increase in adult. These results gave good 

evidence of the possible role of iS-adrenergic receptors in NE mediated cortical 

plasticity. Evidence of the cellular events initiated by iS-adrenergic activation, 

came from the findings by Kasamatsu(SO) that intracortical infusion of 

dibutyryl cyclic adenosine monophosphate, a chemical analog of cAMP, 

increased plasticity in kittens treated with 6-0HDA. From the above studies, 

Jonsson and Kasamatsu (49) have proposed that the effects of NE on cortical 

plasticity is mediated by a NA-iS-adrenoreceptor-cAMP system in visual 

cortex. 

Although there is much support for the role of NE in cortical plasticity, 

there are other studies which seem to question this role. Bear, et al.,(37) 

showed that neonatal kitten given systemic injections of 6-0HDA had a 

decrease of NE levels but not of cortical plasticity. Furthermore endogenous 

reduction of NE either through local injections of 6-0HDA into the locus 

coeruleus(Sl) or lesions of the catecholaminergic bundles did not suppress 

cortical plasticity. According to Kasamatsu(46) there are three main factors to 

consider that can account for the negative findings in the studies. First, 
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systemic injections of 6-0HDA do not confine the effects of NE to visual 

cortex and thus cannot provide a cause and effect relationship. Second, the 

interval between 6-0HDA infusion and MD can variably affect plasticity: with 

a shorter interval there is greater decrease in cortical plasticity(52), but if the 

interval is long enough there may be a regeneration induced plasticity of NE 

terminals or a supersensitivity of NE related receptors(52). Third, 

Kasamatsu(46) states that the validity of interpreting ocular dominance shifts 

is affected by factors such as microelectrodes used, the distance between 

successively recorded neurons and length of electrode track. 

As significant as the experiments are, that the catecholamine NE may 

have an important role in synaptic plasticity in the visual cortex, it is 

important to take into consideration that the neurotoxin 6-0HDA used in 

these studies is not only selective for noradrenergic terminals. 6-0HDA taken 

up from the cerebral spinal fluid has been implicated in the destruction of 

both dopaminergic and noradrenergic axon terminals in the brain (53,54) . 

Thus, one cannot rule out the significance of dopamine in studies of NE 

mediated cortical plasticity in the visual system. 

Dopamine is a modulatory neurotransmitter with two receptor 

subtypes D1 and D2 that are opposite in function and account for its effects 

(55). The D1 receptor subtype activation results in the stimulation of 

adenylate cyclase and formation of cAMP; whereas the stimulation of D2 

inhibits adenylate cyclase activity(55,56). 

Norepinephrine and dopamine have also been shown to have a 

neuromodulatory role in cortical excitability in the rat and. cat visual 

cortex(57,58). Norepinephrine and dopamine both decreased the firing 

frequency of cortical cells and enhanced the signal to noise ratio(57,58). Other 

immunohistochemical studies provide evidence of dopaminergic 
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innervation from the ventromedial mesencephalic tegmentum to the visual 

cortex of rats(53,59) and cats(59,60) found mainly in laminae VI. Functional 

significance of this innervation is based on laminae VI intracortical and 

subcortical connections. Input to laminae VI is from LGN. Output fibers 

from laminae VI project to layer IV and to the LGN. From this, it is suggested 

that lamina VI serves in the regulation of geniculate afferent activity through 

dopamine modulation of laminae VI output to layer IV or to the LGN(59). 

Furthermore, biochemical and radioautographic studies in adult cats and rats 

show the presence of dopamine in the primary visual cortex independent of 

noradrenergic neurons and the existence of dopamine binding 

sites(57,58,61,62). These studies, suggest a possible regulatory role for 

dopamine in norepinephrine mediated cortical plasticity in the rat and cat. 

To date in human visual cortex, unlike the cat and rat, the presence of 

dopamine as a neurotransmitter has not yet been established nor its role in 

normal and abnormal visual development. The aim of this project is to 

assess, through autoradiographic techniques, human fetal and neonatal 

dopamine receptor distributions in the primary visual cortex and compare 

them to adult human visual cortex, in area 17 of the brain. This study may 

provide us with basic information necessary to predict changes in chemical 

circuitry which result from abnormal visual development prior to and/ or 

during the critical period in humans. 
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MATERIALS AND METHODS 

Human brain tissue was obtained through a collaboration with the 

Dept. of Pathology, Vancouver General Hospital, Vancouver, B.C. from 

adult individuals who died accidentally or of sudden illness. The condition 

of the occipital poles and the primary visual area was evaluated visually and 

accepted if the tissue was less than 12 hours postmortem. Additionally, a 

check of individuals' available medical records determined if there was a 

history of neurological disease or an extended anoxic brain state prior to 

death. In each autopsy case the occipital poles were detached immediately 

after the brain was removed from the skull. Guided by description of the 

human primary visual cortex from Braak(63), 2 to 4 em of gyri surrounding 

the calcarine sulcus of both hemispheres were dissected away, cut into 4 em 

wide tissues blocks and frozen immediate I y on dry ice. Prior to freezing 

surface tissue landmark diagrams of each tissue block were drawn for 

orientation simplicity during sectioning. Finally the tissue blocks were 

doubly wrapped in saran wrap and aluminum foil, labeled, dated, frozen on 

dry ice then stored at -80C until ready for sectioning. Tissue blocks were 

thawed to -20C, oriented perpendicular to the calcarine sulcus for coronal 

sectioning and cut to a thickness of 16 microns on a Hacker-bright motorized 

cryostat. Identical serial sections were mounted two at a time onto subbed 

glass slides and stored at -20C until ready for use. 

Cortical blocks came from a 27wk old fetus, a 21 day old neonate and 

from three individuals aged 22, 41, and 76---all males. All tissues were 

obtained at autopsy within 12hrs. postmortem. For D1labeling, slides were 

10 



preincubated for 10 minutes at room temperature in 50mM Tris HCL, 20mM 

NaCl, 5mM KCL, 2mM CaC12, 1mM MgC12, and 10micro-molar sulpiride. 

For total binding, slides were incubated with 5nM [3H]SCH-23390 and for non

specific binding adjacent slides were incubated with 5nM eH]SCH-23390 and 

10micro-molar SKF-38393. After 1 hour, slides were rinsed twice 10 minutes 

each in 50mM Tris HCL with pH 7.4 at 4C and air dried. The specific activity 

of SCH-23390 is 70.91Ci/mmol. 

For D2 labelling, slides were preincubated with 50mM Tris, 154mM 

NaCL, 10mg/L Bovine Serum albumen with pH of 7.4 at room temperature 

for 10 minutes. Slides were incubated with 2.5nM [3H]-spiroperidol(SPD) for 

specific binding and other slides with 2.5nM eH]SPD and 100micro-molar of 

sulpiride for non specific binding at room temperature for 80 minutes. 

After film exposure, tissue sections were Nissl stained or developed for 

cytochrome oxidase activity and laminae appropriately identified 

architecturally(63). The autoradiograms were quantified using an MCID 

image analysis system Imaging Research Inc. St. Catherines, Ontario, Canada 

to determine relative [3H]SCH-23390 binding densities within laminae. 

Standards used were Amersham [3H] microscales in the range of 3.03 to 

109.08nCi/mg. Films were densitized using an MCID Imaging Research 

Inc.(St. Catherine's Ontario, Canada) image analysis system to determine 

binding capacities within laminae as described elsewhere(64). 
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RESULTS 

This is an investigation of the relative distributions of D1 and D2 

receptors in fetal, neonatal and adult visual cortex using the ligand [3H]SCH-

23390 to visualize D1 receptor binding and using the ligand [3H]SPD to 

visualize D2 binding. Nonspecific binding was high at 60% of the 

total[3H]SCH-23390 and [3H]SPD. 

Figure1(a-e) shows D1 [3H]SCH-23390 binding on coronal sections of 

primary human visual cortex from the 5 different ages. At the fetal age of 27 

weeks laminae patterns are not observed. Homogenous D1 binding exists at 

this age throughout the occipital pole. High but diffuse binding on the upper 

cortical layers is observed. In the D1 21 day old neonate a high density of 

cortical binding can be seen surrounding the calcarine sulcus with moderate 

binding in noncortical white matter areas. In the adult (Fig. 1 cde) heavy 

homogeneous D1 [3H]SCH-23390 binding occurs in all cortical laminae. 

Within area17 a dense band is visible. This layer, laminae IVds is the primary 

input layer for thalamocortical afferents from the geniculate nucleus. 

Figure2(a-e) shows D2 [3H]SPD binding on coronal sections from the 

same 5 subjects. At the fetal age of 27 weeks(fig.2a) moderate binding occurs 

in the superficial layers with low to moderate D2 binding occurring in the 

deeper layers. Overall less binding exists for D2 receptors than Dt . In the 

neonate layer IVds is distinctly visible unlike that for D1 while binding in 

other layers remains the same. There is moderate binding in some portions 

of layer II and III but not in others, a possible section thickness 

variation. Again high density of D2 receptors are definitely found in the 

supragranular region of cortex surrounding the calcarine sulcus . In the 

adult(Fig. 2c-e), D2 binding is similar to D1, with homogenous binding in all 

cortical laminae and lamina IVcfS distinctly visible. 
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Figure 1: Distribution of D1 receptors in human visual cortex. a-27 week old 

fetus. b-21 day old neonate. c-e: adults ages 41, 76, 22 respectively. Dis dorsal, 

M is medial, CS is calcarine sulcus. Bar is Smm. 
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Figure 2: Distribution of D2 receptors in human visual cortex. a-27 week old 

fetus. b-21 day old neonate. c-e: adults ages 41, 76, 22 respectively. Dis dorsal, 

M is medial, CS is calcarine sulcus. Bar is Smm. 
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DISCUSSION: 

This preliminary study shows a laminar and ontogenic distribution of 

both D1 and D2 receptors in human visual cortex. Unlike that found in cat 

and rat where no binding is observed in the geniculate input layer(59,61), the 

most significant result of this study is IVds binding of both D1 and D2 in adult 

visual cortex. Binding is more distinct in layer IVc, than in all other layers for 

all ages . 

One might conclude from these experiments that D1 receptors are 

found in the superficial layers early in gestation and move in to the deeper 

layers in the period prior to 21 weeks of life. At 21 weeks postpartum, more 

homogenous moderate binding is observed. Later, laminar changes occur, 

possibly during the critical period, whereby higher binding is seen in laminae 

IVc. This new Dt distribution is maintained throughout adult life. D2 

binding is similar to Dt at 27 weeks gestation. D2 has significant binding in 

the superficial layers and lower to moderate binding on the deeper 

infragranular layers III-VI. In the 21 day old neonate D2 binding is 

significantly different than Dt; there is a distinct IV c band of D2 receptors. 

This implies a different, possibly more significant, role for D2 receptors in 

early visual development than D1 receptors. This pattern of D2 receptors 

continues through until adulthood. 

Similar autoradiographic studies have also shown the presence of 

Dt(65) and D2(66) receptor binding sites in adult and child human visual 

cortex. Unlike this present study, Cortes et al.(65) and Camps et al.(66) have 

found higher relative dopamine binding in the deeper layers for both age 

groups and no significant binding occurring in the geniculate input layer 

IV c for both Dt and D2 receptors. The reasons for this discrepancy are not 

clear and thus indicates the need for further investigation. 
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The presence of dopamine receptors in fetal visual cortex may suggest 

a role for dopamine in early visual development. Elaboration of this study 

with emphasis on ages within the critical period and in comparison with 

amblyopic human visual cortex matched age to age would provide a better 

opportunity to understand the receptor changes which occur in association 

with abnormal visual experience and the effects of dopamine in the chemical 

circuitry involved with neural plasticity. Until it is established that 

dopamine is a neurotransmitter in the human visual cortex and post mortem 

amblyopic human tissue pre and post critical period is available to study, we 

must depend on information derived from rat and cat visual cortex on which 

to suggest a modulatory role for dopamine in NE mediated cortical plasticity 

and abnormal visual development in humans. 

In conclusion, although at present there is no pharmacological 

treatment for amblyopia, the currerlt treatment is early diagnoses and early 

intervention. Through vision training and lenses, we as primary care 

practitioners can improve, in some cases significantly, the quality of vision 

and visual perception in amblyopic patients. 
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