Does accidental phoropter tilt have a significant effect on determination of correcting cylinder?

Michael M. Sloane
Pacific University
Neil A. Falasca
Pacific University

Recommended Citation

Sloane, Michael M. and Falasca, Neil A., "Does accidental phoropter tilt have a significant effect on determination of correcting cylinder?" (1978). College of Optometry. 506.
https://commons.pacificu.edu/opt/506

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

Does accidental phoropter tilt have a significant effect on determination of correcting cylinder?

Abstract
Does accidental phoropter tilt have a significant effect on determination of correcting cylinder?
Degree Type
Thesis
Degree Name
Master of Science in Vision Science
Committee Chair
Niles Roth
Subject Categories
Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

DOES ACCIDENTAL PHOROPTER TILT HAVE
A SIGNIFICANT EFFECT ON DETERMINATION
OF CORRECTING CYLINDER?

MICHAEL M. SLOANE
and
NEIL A• FALASCA

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE DOCTORATE OF OPTOMETRY.

ACKNOWLEDGEMENTS

We thank the subjects for their cooperation and Dr. Niles Roth, whose commints and suggestions aided us in the pursuit of this study.

Advisor

INTRODUCTION

The aim of this study is to determine if there is a significant effect on cylindrical power and axis determination with two and one-half and five degree phoropter tilt about an axis perpendicular to the frontal plane.

In our reviem of the literature we have not found any mention of phoropter tilt and its effect on correcting cylinder determination. We have written to Robert E. Bannon of American Optical Company (1972) in hopes of securing additional background information on previous works in this area. He has informed us that he knows of no such work. He mentions phoropter tilt around the X axis, and its effect on aphakic prescriptions. HYPOTHESIS

It would be expected that a phoropter tilt of two and onehalf degrees will produce a significant change of cylindrical power and/or axis, Whereas a more noticeable tilt of rive degrees will produce a greater error.

METHODS \& MATERIALS

Our equipment consisted of a plastic protractor to which was attached a piece of wood with dimensions of $12 x l x 3 / 8$ inches. The point of attachment at the mid point of the $0-180$ base line of the protractor was accomplished by a small bolt, washer and nut assembly. This enabled the slat of wood, which was centered about the nut-bolt assembly, to rotate through the 180 degree arc of the protractor. A bisecting vertical line was inscribed on the slat. This was to facilitate the reading of the protractor
scale. A small bubble level from a phoropter was fastened to the top of the slat by contact cement. The level was centered about the wertically inscribed line (Flg. 1).

In this experiment, the instrument used was a Bausch and Lomio Green's Refractor. The subject was seated in the examining chair and the head rest was adjusted to maintain the head in a constant vertical position throughout the test. The phoropter was aligned so the ocular portals were centered about the subject's eyes. Our measuring device was then placed upon the two perpendicular posts that hold the rotary prisins, cross cylinders, and maddox rod. The device was applied in such a manner that the 0-180 degree baseline of the protractor rested upon these posts. The slat of wood was now rotated through the 180 degree arc of the protractor until the bubble in the level was centered. In all our subjects this "level" pesition
corresponded to the 90 degree mark on the protractor. This indicated that there did not appear to be any anatomical displacement between the two eyes of each of our subjects. At this point an astigmatic cloci dials red green (Bichrome) test, and Jackson Cross Cyiinder for refinement of axis and power were applied. These findings were recorded as our "level" readings. The phoropter was then tilted 2.5 degrees to the cliniciaris right. This was accomplished by rotating the slat 2.5 degrees counterclockwise of the 90 degree position of the protractor, then the phoroptor was tilted to the right until the bubble in our meanuring device was centered. At this point the subject was instructed not to tilt his head to compensate for the phoropter tilt. The J.C.C. procedure was performed starting with the "level" finding in place. This new finding was recorded as our 2.5 degree rightfinding. The same procedure was done for a 5 degree right, 2.5 degree left, and 5 degree left phoropter tilt.

The eight subjects in this expeximent were Pacific University optometry students, ranging in age from 24 to 34 years. The subjects were senior optometry students, well trained and experienced for this type of testing. They had previous knowledge of the aim of this experiment. They were selected according to the following criteria: The subjects were to have no existing pathology. In addition, the subjects were chosen on the basis of their degree of astigmatic correction. Two subjects had cylinder of the magnitude of onehalf diopter. Three subjects had between one and two diopters
of cylinder, and three had over two diopters of correction. DATA WORKUP AND RESULTS

Cylinder powers for each eye were standardized, where necessary; by calculating the 90° or 180° component depending on which of these was closer to the power meridian of the given cylinder. Thus, these standardized values automatically took into account shifts of cylinder axis associated with phoropter tilt. For example, for a level finding of $-5.75 D C$ ax 20 , the power in the 90° meridian is -5.08D (Subj. D.G., O.D.). With 5° left phoropter tilt the cylinder correction became -5.50DC ax 15 or -5.13D in the 90° meridian. The difference between level reading and 5° left tilt reading is, therefore, -0.05 D in the 90° meridian. This calculation was done for all cylinder corrections equal to or greater than 1.00 D , and the differences were tabulated (Table I). Corrections of several eyes were less than l.OODC. These were not inm cluded in the workup, but are listed on the data sheet as indicators of the retest variations,i.e., a test for possible unforseen artifacts.

A nondirectional t test of the significance of differences between all 5° tilt readings and corresponding level readings ($n=20$), indicates that the obtained differences would probably occur about 8% of the time from random causes alone. This inference pertains to cylinder powers ranging from l.00D to 5.75 D with a mean and stendard deviation of 2.00 D and l.38D, respectively. The same test applied to the $2 \frac{1}{2} \frac{0}{2}$ readings indicated that the obtained amounts of cylinder change, with this much tilt, would probäbly occur randomly about 16% of the time。

ISCUSSION

The foregoing analysis of results with this sample leads to the inference that phoropter tilt of $2 \frac{1^{\circ}}{}{ }^{\circ}$, right or left, probably has negligible effect on determination of correcting cylinder. This conclusion is based on the estimated probability of occurrence of the observed differences from only random causes, 16%. However, accidental phoropter tilt of 5° appears to have a more significant effect on correcting cylinder (8% level of significance).

These conclusions may seem surprising until one realizes that tilting a phoropter around its pivot, which is a considerable distance from the eye's axis, has more of a decentering than a torsional effect on the correcting cylinder. This is so even if the phoropter is steady, and the patient tilts his head. In any case, excessive tilt should be avoided, and precautions should be taken during the examination to ensure that the initial alignment remains unchanged. This is particularly important when using a phoropter that has a friction lock, since slippage of this kind of lock can occur during examination. A further safeguard against misalignment is the use of a headrest.

Uncertainty about the suitability of a cylinder correction for a given patient can be reduced further by following Borish's suggestions for using a trial frame. The tentative correction is put into the trial frame and the patient wears it for specific activities. Any needed modifications should be made in the trial frame until the correction is found acceptable.

Since this study seems to be the avant garde in this area, further study is indicated, using larger samples.

TABLE I
Level Readings and 5° Phoropter Tilt Values $L=$ Level R dg. $T_{R}=$ Rt. Tilt Val. $T_{L}=L_{i}$. Tilt Val.
$\theta=$ Angle between std. Merid. (90 or 180) and Cyl. Axis
$P_{P 0}=$ Par. D $90 \quad P_{180}=$ Par. a $180 \quad d=$ Diff: between stanclardized

$$
P_{\theta}=P_{c y} / x \sin ^{2} \theta
$$

power a) 40 or 180 and standardized Level Rdgr.

$$
\begin{aligned}
& n=20, \sqrt{n}=4.47, \sum . d^{2}=2.91, \quad \sum d=-2.97, \bar{d}=\overline{0.15} \\
& \quad s_{d}^{2}=0.13, s_{d}=0.36 \\
& t=\frac{\bar{d} \sqrt{n}}{5_{d}}=\frac{\overline{0.15} \times 4.47}{0.36}=1.86 \quad \text { signif. at } 8 \% \text { Level }
\end{aligned}
$$

$t_{19 \text { gif. }} \quad \alpha$
G.N.

$$
\begin{aligned}
& \text { sI }-1.25 \times 80 /-1.75 \times 163 \\
& 2.5 L-1.25 \times 75 /-2.00 \times 160 \\
& \text { Level }-1.00 \times 83 /-1.50 \times 173 \\
& 2.5 R-75 \times 85 /-1.75 \times 165 \\
& 5 R-1.00 \times 90 /-1.75 \times 165
\end{aligned}
$$

J. M.
$5 \mathrm{~L}-2.00 \times 21 / 2 /=1.75 \mathrm{~K} 275$
2. $5 \mathrm{~L}-2.00 \times 21 / 2 /-1.25 \times 1721 / 2$

Level -1.50 X 2 I/2 / -1. 50×175
2.5R-1.50 X 2 1/2 / - $1.50 \times 1721 / 2$
$5 \mathrm{R}-1.75 \times 5 /-1.25 \times 180$
G. W.

5L. -1.25 X $130 / 2 . .75$ X 110
2. $5 \mathrm{~L}-.75$ X $89 /-.75$ X 103

Level -.75 X $95 /-1.00$ X 100
2.5R -. $75 \times 100 /-1.50 \times 100$
$5 R-.50 \times 100 /-2.00 \times 102$
A. D.
$5 \mathrm{~L}-.50 \times 115 /-2.00 \times 80$
2. $5 工-.50 \times 1171 / 2 /-2.25 \times 80$

Level -. 50 X $120 /-1.75$ X 82 1/2
2. $5 \mathrm{R}-.50 \mathrm{X} 117 \mathrm{l} / 2 /-2.00 \mathrm{X} 90$
$5 R-.50 \times 1171 / 2 /-2.25 \times 871 / 2$
I.S.

5L - 2. 25 X $174 /-2.75$ X 165
2.5L $-2.25 \times 179 /-2.75 \times 172$

Level -2.00 x $180 /-2.25 \times 172$
2.5R-1.75 X 3/-2.50 X 175
$5 R-1.75 \times 5 /-2.75 \times 174$
B. B.
$5 \mathrm{~L}-.50 \times 160 /-.25 \times 35$
2.5I -. $75 \times 165 /-.25 \times 25$

Level -. $75 \times 165 /-.25$ X 20
$2.5 \mathrm{R}-.50 \times 167 /-.50 \times 112$
$5 R-1.25 \times 155 /=.75 \times 14$
D.G.

$$
\begin{aligned}
& 5 L-5.50 \times 15 /-1.25 \times 10 \\
& 2.5 L-5.00 \times 20 /-1.50 \times 10 \\
& \text { Level }-5.75 \times 20 /-1.50 \times 20 \\
& 2.5 R-5.50 \times 20 /-1.75 \times 20 \\
& 5 R-5.25 \times 20 /-1.75 \times 20
\end{aligned}
$$

M.S.

5L P1 / - . 75×171
2.5L-.25 X $135 /-.75 \times 2$

Level -. 25 X 110 / -. 75 X 180
$2.5 R-.25 \times 130 /-.75 \times 175$
$5 R-.25 \times 121 /-.50 \times 10$

Bannon, R.E. (1972): Personal Communication.
Borish, I. (1970): Clinical Refraction, 3rd ed., Professional Press.

