The relationship between the size of a contact lens and the percentage of the corneal cylinder used with a toric base curve contact lens to provide an optimum fit

Gary L. Mastolier
Pacific University
William D. Butler
Pacific University
Bruce J. Brewer
Pacific University

Recommended Citation

Mastolier, Gary L.; Butler, William D.; and Brewer, Bruce J., "The relationship between the size of a contact lens and the percentage of the corneal cylinder used with a toric base curve contact lens to provide an optimum fit" (1978). College of Optometry. 498.
https://commons.pacificu.edu/opt/498

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

The relationship between the size of a contact lens and the percentage of the corneal cylinder used with a toric base curve contact lens to provide an optimum fit

Abstract
The relationship between the size of a contact lens and the percentage of the corneal cylinder used with a toric base curve contact lens to provide an optimum fit
Degree Type
Thesis
\section*{Degree Name}
Master of Science in Vision Science
Committee Chair
Subject Categories
Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

The Relationsinip Between the Size of a Contact Lens and the Percentage of the Corneal Cylinder used with a Toric Base Curve Contact Lens to Provide an Optimum Fit

Presented to
College of Optometry
Pacific University

In Partial Fulfillment of the Requirements for the Degree of Doctor of Optometry
by

Gary L. Mastolier
William D. Butler
Bruce J. Brewer
Page
INYRODUCTION 1
PURPOSE 3
REVIEG OF THE LIterature 3
METHOD 1
DISCUSSTON 10
FIGURE 1 10
FIGURE 2 14
FIGURE 3 15
FIGURE 4. 16
FIGURE 5 17
Figure 6 19
FIGURE 7 19
CONCLUSTON. 20
SUMMARY. 21
AREAS FOR FURTHER STUDY 22
APPENDIX A (Example of data recording sheets) 24
APPENDIX B (Summary of lens evaluation for each subject) 25
The toric base curve contact lens is relatively recent in the field of contact ienses, being incroduced in 1950 by Noel Stimson. ${ }^{\text {l }}$ Many practitioners prefer not to fit the more complex toric base curve lens possibly for three major reasons. Brungardt ${ }^{2}$ reports that of 4,000 contact lenses he has fitted, only five percent of the corneas hed sufficient toricity to require a toric base curve. Many forms of the conventional spherical contact iens can be prescribed for the majority of patients, thus reducing the demand for toric lenses.
Secondly, the induced cylindrical optical component is a problem with the toric base curve lens. It will be in the direction opposite to the corneal astigmatism, which then will most often be induced against-the-rule astigmatism and will be additive to the normally expected residual astignatism of against-the-rule. ${ }^{3}$ The magnitude of the induced astigmatism is approximately equal to one third of the cyinder of the lens when measured in air with a lensometer. ${ }^{4}$ A bitoric lens is usually necessary to complete the fitting.
${ }^{1}$ Robert B. Mande 11 , Contact Iens Practice: Basic and Advanced, Springifieid, 1966, p. 330.
$2_{\text {Theodore P }}$. Grosvenor, Concact Lens Theory and Practice, Chicago, 1963, p. 278.
${ }^{3}$ Toid. p. p. 277.
${ }^{4}$ Louis J. Gerard, Cornen 1 Contact Lenses, Saint Louis, 1964, p. 286.

The last factor is the problem of lens fabrication and verification. The present method of crimping the lenses to achieve the desired toric surface will have to be devised by the opticai laboratories before the toric lenses will be completely accepted by the practicioners. ${ }^{1}$

The length of the fitting procedure of the toric base curve lens is approximately five times that of the conventional spherical lens. ${ }^{2}$ Although the economic return is not of this magnitude, the potential self-satisfaction and benefit to the patient that otherwise could not be fitted with contact lenses justifies the time and effort involved infitting the coric lenses. Many patients for the first time enjoy the benefits of fully corrected acuity, reduced aberrations: and aniseikonia of the spectacle lenses, and improved binocular perEormance.

```
\({ }^{1}\) Dr. Sharp, Lecture at Pacific University, 1968.
\({ }^{2}\) Grosvenor, p. 278.
```


Abstract

The purpose of this thesis is to determine it an optimum $f i t$ is a function of a relationship between the size and the percentage of the corneal cylinder used with the concave surface of a contact iens.

- REVIEN OF THE LITERATURE-

A coric base curve contact lens should be used with the toric cornea when a spherical base curve does not result in an optimum bearing relationship between the contact lens and the cornea. This Was evicuenced by an unacceptablefuoroscein pattern of excessive pooling and bearing, poor lens centration, and excessive lens movement and rocking. Korb ${ }^{1}$ reports that the lens-cornea bearing relationship must be evaluated in terms of the optical zone diameter of the iens, because the peripheral portion of the cornea is often more toric in the direction of with-the-rule.

To provide the uniform lens-cornea bearing relationship, the toric base curve must conform to the toric surface of the cornea and also permit the normal physiology of the cornea to be maintained. Because the toric lens design reduces rotationg rocking, and lag, the problems of venting are greater than for a spherical lens.

[^0]Remba suggests the flatter meridian of the base curve should be . 250 flatter than the flattest corneal meridian. The steeper should also be flatter than the steepest corneal meridian, the proportion being approximately one-eighth the amount of the corneal toricity. The mean opeical zone recommended was 7.5 mm and the mean lens diameter was 8.8m, or about $0.5-1.0 \mathrm{~mm}$ smaller than a spherical contact lens. Goldberg ${ }^{2}$ suggests a larger dianeter iens reduces the lens rotation and stabilizes meridional orientation. This requires a smaller optical zone diameter to produce adequate venting. Fenestration and truncation may also be necessary if the larger lens size is used.
Korb reports a sumary of the toric base-curve lenses utilizing a trial lens method of ficting. In all cases, the flater meridian of the base curve was flatter than the flattest corneal meridian by an average of 0.75 D and an optical zone diameter of 7.5 mm . The sceeper meridian of the base curve was closer to the steepest corneal meridian, averaging 0.37 mm flatter with a 7.5 mm optical zone diameter. The amount of corneal toricity was not reflected consistentiy in the amount of toricity of the base curve. With-the-rule astigmatism required greater lens toricity on the average, while against-the-rule astigmatism required less lens toricity than was measured with the keratometer. Baidvin and Schick ${ }^{3}$ report that the minimum difference between the two meridians of the toric base curve should be 0.3 m for little or no rotation of the contact lens. Several guidelines are given for varying

[^1]from the most comon toric base curve of two-thirds of the corneal toricity for the steeper meridian and on "k" for the flatter meridian. If the optical zone is fitted extremely small, the difference between the meriaians of the toric base curve can be as great as the corneal toricity. If the corneal toricity is low, the meridional base curve difference may only be one-half of the corneal toricity; while the base curve difference for high cormeal toricity may be as much as 80 per cent. If the optical zone diameter is to be large, the flatter meridian may be fitted flatter than "K"; but if it is to be small, the flatter curve may be fitced steeper than "K".

The overall diameter of the toric base curve lens should be less than the spherical lens since the bearing area is increased. Thus, the smeller the lens diameter, the closer the base curve meridians may parallei the cornea. If the lenses are small; the problems of venting are reduced. The peripheral curve is then usually thin and steep, and may not be necessary at all if the lens is fitted relatively flat on the base curve. Conversely, if the optical zone is large. or the base curve is closeiy parallel to the cornea, the peripheral venting will have to be increased.

Grosvenor states that the toric base curve lenses are generally smali with a bevel or peripheral curve of an average of 0.4 mm . wide. The toric base curve is made to parallel the toric cornea if only the central keratometer readings are taken. ${ }^{2}$ The toricity is based on the peripheral keratoneter readings if these are taken.

```
\({ }^{1}\) Grosvenor, p. 269.
2 rbid.
```

Girard ${ }^{i}$ recomends fitting the flatter meridian of the coric base curve parallel to the flattest comeal meridian and che steeper meridian steeper than the flattest corneal meridian by one quarter of the corneal coricity. A smaller lens diameter, not to exceed 8.5 mm , is also recomended.

Haynes ${ }^{2}$ iliustrates the effect achieved theoretically by changing the lens size, but not the toric base curve or the percentage of the cornea fit by the toric lens. A diameter of 5.50 mm and a toric base curve with the meridians parallel to the central keratometer readings should result in uniform minimal central clearance, which indicates a large unfform bearing zone. By increasing the total lens diameter to 9.0 mm but retaining the same parallel toric base curve, the fluorescein pattern would change to distinct peripheral touch with apical clearance. The periphery of the lens is resting on the intermediate zones of the cornea because the peripheral toricity generally increases over that of the central toricity. The resultant poor venting could be changed by adding a toric peripheral curve, resulting in the contour principle of fitting.

Haynes ${ }^{3}$ further states that in order to fit a large optical zone diameter, the fit will have to be correspondingly flat. The ideal bearing relationship will then be lost. Consequently a smaller optical zone diameter should be used for the toric base curve lens.

Louis J. Girard, Corneal Contact Lenses, Saint Louis, 1964, p. 285.
${ }^{2}$ Philip R. Haynes, Encyclopedia of Contact Lens Practice, Vol. II, 9th Supplement, Chapter IX, 3-15-61, P. 6.
${ }^{3}$ Ibid., P. II.

$$
-7-
$$

Korbl states that a non-circular design lens is necessary for most toric base curve lenses in order to totally stop lens rotation. It is more critical with the more toric corneas with more than average iid pressure. Often the toric cornea also has a greater diameter difference With the vertical meridian betng the shorter diameter.

Symptons of a tight fit are of a greater proportion with toric base curves, possibly a result of fittle or no lens rotation to aid tear and heat exchange. ${ }^{2}$ A perforation of the lens may be the best solution if the desired bearing relationship is achieved, but venting remains a problem. Factors that affect the rotation or the lens are the actions of the lids, the toricity of the cornea, the base curves used, the lens thickness, the overall dyameter of the lens, and the shape of the lens. ${ }^{3}$ Korb ${ }^{4}$ reports the best success was achieved when a small circular optical zone diameter was used. This is achieved by using a toric peripheral curve oppostie that of the toric base curve.
${ }^{1}$ Korb, p. 41.
2
${ }^{2}$ Ibid., p. 45.
3
3bid. P. 47.
"Donald R. Korb, "A Preliminery Report of Continuing Performance of Toric Inner Surface Contact Lenses", Contacto, Vol. 5, 符10, Oct. 1961, P. 319.

The patients for the thesis were screened for possible subjects on the following basis:

1. Minimum of two diopters of corneal cylinder.
2. Anticipated cooperation of the patient in the lengthy time needed for the study.
3. If possible, present contact lens patients would be preferred.
4. Motivation to wear contact lenses.
5. No contraindications to the wearing of contact lenses.

Three pairs of lenses with a diameter of 9.4 m were prescribed from the central keratometer readings and the subjective reraction for each patient. The flatter meridian of che toric base curve was made parallel to "Rti and the steeper meridian of the base curve was varied from $60 \%, 70 \%$, and 80% of the corneal cylinder for the three pairs of lenses.

The power of the subjective refraction in the flattest meriaian of the corneal cylinder corrected for the corneal plane was incorporated in the flattest meridian of the base curve of the contact lens.

The peripheral curve was kept a constant on all lenses at 0.1 mm width and 16 mm radius. The blend was also a constant of 9.5 mm radius and 0. Imm width, leaving the optical zone diameter constant in proportion to the size of the lens. The lens thickness was kept to the minimal thickness possible.

The 60% lens at the 9.4 mm diameter was the first to be evaluated, followed by the 70% and 80% at the $9.4 m m$ diameter. If it were determined that a reduction in size would improve any or all of the three pairs of lenses, the appropriate lenses were reduced in size by 0.5 mm . The same peripherai curves and blends were re-established on the lenses. In addition, anterior bevels were added in a standard manner. A 60 degree fine stone was applied to reduce the edge thickness to just short of a knife edge, followed by the 90 degree stone for a transitional curve
between the 60 degree and the convex curve of the concact. If the lens Was of significant minus power, additional curves were applied with the inverted cones by adding an additional ten degrees per diopter of minus to a maximum of 120 degrees for a minus four diopter lens or greater.

The 60%, 70%, and 80% lenses at a sime of 8.9 mm were then evaluated. If needed, the size was again reduced by 0.5 mm to 8.3 mm , which was the smaliest size used in the study. The minimum time the lenses should be worn before the lens fit was evaluated was set at four hours.

The criteria used to evaluate the fit was as follows:

1. Subjective symptons.
2. Lens position, lag, and rotation.
3. Refraction.
4. Acuities, with and without the refraction.
5. Fuorescein pattern.
6. Keratometry.
7. Siit lamp evaluation of both the fit of the lens and of the effect of the fit on the physiology of the cornea.

Lens position was recorded in the vertical direction utilizing a number system of one to five and in the horizontal direction by a letter system of A to E. Number three was centered vertically, number one for a superior limbal touch, and number five for an inferior limbal touch. Letter A was used to record a 1 mbal touch at 180° and letter E for a limbal touch at 0°.

Eight subjects were used for the study. Subjects one, six, seven, and eight did not wear contacts prior to the study. The remaining subjects were unsuccessful or semi-successful in the wearing of contact lenses. The subjective refraction and central koracometric findings used for the determination of the original lens prescription are shown in Figure one.

- Figure i-

Reratometer Readings	Corneal cyinder	Subjective
i. O.D. 42.25/44.75 at 76	2.500	-0.25-3.25 X 165
0.S. 41.87/44.62 at 86	2.75D	$40.25-3.50 \times 172$
2. O.D. $40.00 / 44.50$ at 74	4.500	+1.25-5.00 X160
O.S. 39.75/43.75 at 104	4.000	+2.00-4.75 X017
3. O.D. $40.62 / 44.62$ at 88	4.00 D	$+1.75-2.75 \times 003$
0.S. $40.37 / 46.12$ at 85	5.75 D	+1.75-4.87 X 177
4. O.D. 42.25/44.87 at 98	2.62 D	p1 -1.75 $\times 180$
0.S.42.75/45.12 at 90	2.37 D	+0.50-2.00 X009
5. O.D. 41.87/44.37 at 103	2.500	-2.25-3.00 X014
O.S. $42.00 / 45.00$ at 72	3.00 D	-1.25-3.50 X166
6. O.D. 42.12/44.37 at 94	2.250	
O.S. 41.87/44.25 at 84	2.37 D	
7. O.D. 39.25/4.5.50 at 112	6.25D	+0.50-1.75 2035
O.S. 39.25/45.12 at 72	5.87D	-1.00-1.75 X 155
8. O.D. $42.25 / 44.37$ ate 88	2.12 D	$-3.00-1.75 \times 179$
0.5. $41.62 / 44.50$ at 87	2.87D	-1.75-3.50 X 177

Subject one was female, characterized by sifght exophenalmos, a palpebral aperature height of 12 mm , and relatively littie lid tension.

Subject two was femaie, with left unilateral exotropia and amblyopia of $20 / 100$ In the left oye. Bilateral, rotary, nystagmus with periodic movement of the tropic eye suggesting a remnant of binocularity was in evidence berore the fitting. After fitting with initial and all subsequent lenses, the objectively observed magnitude and percent of strabismus was reduced to approximately 20 percent."r The subject's habits, corneal specifications, suitable lid tension, and extreme motivation all combined to warrant inciusion in the thesis despite the contraindications of the hyperopia, strabismus, and amblyopia.

Subject number three was a previous contact lens wearer who had not been examined in over five years and was having considerable difficuley in wearing contact lenses. The symptoms had gradually increased during the five months prior to acceptance as a thesis subject.

The biggest problem encountered with this subject was the extremely discorted corneas, especially on the right eye which had originally been fit with a spherical base curve lens. Both corneas were also observed to be iowered in senstivity to pain. In fact, the left eye showed a 3 mm circular abrasion socated centrally on the cornea of which the patient was totally unaware.

After considerable difficulty was encountered in attempts to fit this subject with thesis lenses, it was decided to have the subject go without any contact lens wear for whatever time was required for keratometric findings to stabilize.

Spectacles were worn during the period of non-contact lens wear and corneal change required changing spectacle lenses twice to maintain
acuity. Five weeks were required for stabilization of keratometric readings after which it was observed that keratometer mires were no longer distorted and corneal cylinder had increased from 1.500 to 4.000 on the left eye and from 3.620 to 5.750 on the right eye.

New contact lenses were ordered using the thesis criteria. Once again probiems of fitting were encountered in that the patient had normally smail palpebral fissures (7mm or less) and extremely tighe lids. It was quickly observed that contact lenses wouid need to be very small and therefore, the 30% lenses were reduced to 7.9 mm before a decent, comfortable fit was obtained. This put the lenses outside the criteria of the thesis and the patient was no longer considered part of the study. The patient is now increasing wearing time with the 80% thesis lenses at 7.9 mm ; no other lenses being wearable.

Subject four was male, wearing spherical lenses at the beginning of the study. Excessive lens movement and injection with prolonged wear was observed.

Subject five was female, wearing bitoric lenses originally. Acuity was reduced to $20 / 30$ in the right eye and $20 / 25$ in the left eye. The keratometer findings were flatter in the right eye by 1.12/0.37 at 100° and $1.50 / 0.50$ at 90° in the left eye. Spectacle lenses were prescribed to allow the corneal meridians to stabalize and return to normal.

Subject six was a female who had small palpebral fissures and extremely tight lid tension. This subject vas included in the study because of a lack of available subjects. This was an unfortunate choice, as these factors restricted the lens sizes and fitting evaluation. This subject was dropped from the study for these reasons.

Subject number seven was a female non-contact lens wearer with high corneal toricity of 6.25 D on the right eye and 5.870 on the ieft eye. The subject was a binocular amblyope, having never enjoyed good acuity. Compounding the probiem was a high esophoric pattern which was not observed in the beginning.

The refraction thru the first three pairs of thesis lenses $(60,70$, 80%) indicated a need for an additional 46.000 which seemed to indicate that the lenses were either orienting 90° removed from proper orientation or that the powers as prescribed were placed along the wrong meridians. The lenses were re-verified and were determined to be correct as prescribed. Marking the lenses along the flattest meridian and observing the lens orientation verified the lenses were oxienting correctiy. New lenses were then prescribed with the newiy found sphere value. Once again extreme blur was the major complaint and subjective refraction indicated a need for another +2.000 of sphere power.

As a result of insurficient plus correction why ch antagonized an already high esophoric pattern, the subject could not wear any of the thesis lenses so that wearing time and adaptation could be established while waiting for new lenses to be prescribed.

The third order of thesis lenses with +8.00 sphere power $0 . U$. were oniy recently fit. Snellen acuity was improved from 20/40 to 20/30 With the lenses, but this did not make a subjective difference. All of the lenses were touching the inferior ilmbus, which was possibly a result of the pius prescription This subject was dropped from the study because of insufficient time to cope with the problems encountered.

Subject eight was a male non-contact iens wearer. Only imited data was obtained because this subject proved unseliable, uncooperative, and was ecrminated.
-14-

The amount and distribution of the corneal cylinder of the individual subjects are shown in figure two. The majority of the corneal cylinder Was between two and three diopters "with-the-rule". The range extended from 2.12D to 6.25D.

FIGURE 2 -

$\begin{aligned} & \stackrel{5}{8} \\ & \stackrel{5}{5} \\ & \stackrel{0}{0} \\ & 0 \\ & \text { en } \end{aligned}$	$10 . D$.						
	4 O.S.						
	5 O.D.	10.5					
	$60 . D$.	40.0.					
	60.5.	$50 . s$.	20.5.		30.5.		
	80.0	8 O.S.	30.0.	$20 . D$.	7 O.S.	7	O.D.

The lens that best fit the toricity of each cornea is given in the following table. Tne second and third best fits are also given when they are acceptable. The minimum amount of corneal curvature changes acceptable were 0.75 D in either principle meridian. An acceptable fluorscein pattern could not include excessive pooling along the steeper meridian, inadequate venting; excessive tear layer thickness, or excessive lens touch.

Corneal Cylinder of Each Subject	Best Fie	Second Best	Third Best Fit
2.01-2.50			
10.0.	60\% at 8.9	50\% at 9.4	70\% at 8.4
5 O.D.	60% at 8.9		
4 0.s.	60\% at 8.9	80% at 3.9	
2.51-3.00			
10.5.	60% at 8.9	60% at 9.4	70\% at 8.4
5 O.S.	60% at 8.9		
4 O.D.	60% at 8.9	80% at 8.9	
3.51-4.00			
2 O.S.	70\% at 8.4	70\% at 8.9	80% at 8.4
$30 . D$			
4.01-4.50			
$20 . D$	70\% at 8.4	70% at 8.9	30\% at 8.4

One of the main fitting criteria is shown in figures four and five. This iniustrates the relatsonship of the corneal curvature changes with the lens size and percentage, The 60 percent lenses with a size of 8.4 mm are not shown as they proved to be unacceptable.

In figures four and five the plus values representing steepening of the corneal measurements. The minus values represent flattening of the corneal measurements relative to the oniginal keratometer measurements. Figure four illustrates changes in the flattest corneal meridian. Figure five illustrates changes in the steepest corneal meridian。

Ghange in flattest conneal meridian (ak) AS A FUNCTION OF LEES SIZE AND PERCENTAGE

CHANEE ON STEPPEST CORNEAL MERDDAN (AR) as afunction of lens size bno pexcentage

FOURE 5

0

Comparison of the size and percentage of the acceptable ienses isshown in figure six. In contrast, the resultant subjective cyinder isgiven for all lenses in figure seven. The resultant cylinder should beprescribed for the convex surface of the lens, resulting in a bitoriclens design: A positive resultant cylinder indicates the inducedcylinder from the toric base curve iens is in excess of the amount re-quired, while the minus indicates an undercorrection.

COMPARISON OF THE SIEE OF THE contact lens and the percentage of The corneal cylinder used

The 60 percent lenses at a size of 8.9 mm were the optimum fits for corneal cyinder of two to three diopters. For corneal cylinder greater than three diopters, the 70 percent lenses at an 8.4 mm dismeter were necessary to achieve an optimum fit. The general trend for the second best fits were also 8.9 mm in dianeter with no apparent percentage preference. The third best fits tended to show smaller lens diameters and higher percentages of corneal cyinder.

Both principle corneal meridians tended to steepen more with the 9.4m and 8.9 mm diameter lenses at all percentages. The principle corneal meridians were changed least with the 8.4 mm diameter lenses. The 60 percent lenses produced the least corneal change at 8.9 mm . The 70 percent and 80 percent produced the least corneal change at 8.4 mm .

There was a significant relationship between the size and percentage of the lenses. The rank-correlation coefficient was $\% 0.525$ utilizing the bracket method of ranking in tie situations and 40.56 using the mid-rank method of averaging the tieing ranks! The tabuLated rank-correlation coefficient for the five percent level of confidence is $+0.364 .^{2}$ The null hypothesis of independence between the size and percentage of the lenses is rejected. This conciudes that there is a relationship between the variables. In comparison the calculated value of t is 3.27^{3}, winich is compared to the tabu-

[^2]
Abstract

Iated value of 2.05 for the five percent conficence levei. ${ }^{1}$ The 60 percent lenses generally resulted in less residual cyinder. The residual cylinder for the 70 percent lenses varied more, but generally was greater than the 60 percent and 80 percent lenses. There was Ilttle variance of the residual cylinder for the 80 percent lenses. The residual cylinder for the 8.4 mm lenses at 80 percent was siightiy greater than the larger lenses. This was not significant for the other percentage lenses.

- SUMARY -

Toric base curve lenses of varying percentages and sizes were evaluated for eight subjects. Three subjects were dropped from the study.

The 60 percent lenses at 8.9 mm diameter provided the best fit for moderate corneal cylnder. The 70 percent ienses at 8.4 mm diameter were required for greater corneal eyinnder.

Nost lenses generally resulted in corneal steepening. The $8.4 m \mathrm{~m}$ lenses generally resulted in the least corneal changes.

A significant relationship between the size and percentage of the ienses was shown. Larger lenses required a smaller percentage base curve.

The residual cylinder was less for the smaller percentage lenses and greater for the 70 percent lenses.
${ }^{1}$ Ibid., p. 415.

AREAS FOR FJRTHER STUDY

1. The analysis of the effect of the peripheral keratometer readings on the orientation of coric base curved contact 1enses.
2. The photographic analysis of the iluorescein patterns.
3. The effect of changing the blend of tine 60,70 , and 80 percent lenses at a standard site of $8.9 m$ on the fluorescein pattern and keratometer readings.
4. The continuation of our study using 70 and 80 percent of corneal eylinder and decreasing the lens size in 0.5 mm steps to 7.2 mm
5. The offect of estabishing peripheral curves for adequate venting of 60,70 , and 80 percent, 8.9 mm toric base curve lenses.

Arkin, Rerbert, Statisticat hethods, (4th ed., revised), (Barnes \& Noble, Inc., New York, 1959).

Baldwin, Hillian Ro, Comeal Contact Lenses: Fitting Procedures, (Chileor Compary Book Division, Nev York, 1962).

Dixon, Wilfred J., Incroduction To Statistical Analysis, (2nd ed.), (Megraw-Hill Book Company, Ince, New York, 1957).

Gerard, Louis J., Corneal Contact Jenses, (The C. V. Mosby Company, St. Louls, 1964).

Grosvenor, Theodore P.s Contact Lens Therapy and Practice, (The Professional Press, inc.g. Chicago, 1963).

Haynes, Philip Re, Encycloperia of Contact Iens Practice, Vol. II, 9th Supplement, Ch. IX, (March 15, ${ }^{\text {T }}$ ().

Korb, Donald Ro, Corneal Contact Lenses With Toric Zones and Sphericel or Toric Peripheral Zones", Encyciopedia of Contact Lens Practice, Vol. II, lOth Supplement, Ch. FX, (International Optics Pubisining Corporation, South Bent, May 15, 6l).

Korb, Donald Re, DiA Preliminary Report of Continuing Performance of Toric Mner Surface Contact Lenses ${ }^{\text {P }}$, ContactoVol. 5, $\# 10$, (National Eye Research Foundation, Oct. 1961).

Mandell, Robert Be, Contact Lens Practice: Basic and Advanced, (Charles C. Thomas Pubiisher, Springfield, i966).

Sharp, John L., Lecture at Pacific University, 1968.
MoNemar, Quinn, Psychologieat Scetistics, (John Wiley \& Sons, Inc. New York, 1955).

Veidman, Donald J., Young, Robert K. Introductory Statistics for the Behavioral Sciences, (Holt, Rinehart and Winston, New York, 1965).

SLIT LAMP:

OD: \qquad
Tichout C.I.: CS: \qquad

Fith C.L.: OS:
CCMMENS CA SLIT LAMP: \qquad

IENS CHAGGES ADD ADUUSTMETTS:

	CT	SYMPTOMS	POSITIOM	RETRACTYOA	FIUCPESCEIN	SI.IT LAMP	KERATOMETRY
	$\begin{array}{r} \\ 60 \% \\ \\ 0 \end{array}$	NONE	\# 40	$\begin{gathered} \text { p1. sphexe } \\ 0.50=0.37 \times 25^{\circ} \end{gathered}$	Slight ring Touch 0 II uniform inyer	Negstive	$\begin{aligned} & 0.255 / 0.625 \\ & 0.375 / 0.375 \end{aligned}$
9.4 $m m$	70%	NONE	\# 400	$\begin{aligned} & -0.25=0.25 \times 180^{\circ} \\ & +0.12 \text { sphere } \end{aligned}$	Uniform	Negative	$\begin{aligned} & 0.255 / 0.755 \\ & 0.755 / 1.375 \end{aligned}$
	$\begin{array}{r} \\ 80 \% \\ 0 \end{array}$	0 S BLURRY	解 非5	$\begin{aligned} & +0.25-0.50 \times 75^{\circ} \\ & 40.50-0.75 \times 80^{\circ} \end{aligned}$	Moderate Ring Touch	SIIght Punctate Staining o U	$\begin{aligned} & 0.505 / 0.755 \\ & 0.505 / 1.125 \end{aligned}$
	$\begin{array}{r} 0 \\ 60 \% \\ \\ 0 \end{array}$	NOME	44.5	ple sphere pl. sphere	Excellant	SIIght Centrel Bocma O U	$\begin{aligned} & 0.255 / 0.255 \\ & 0.125 / 0.125 \end{aligned}$
8.9 rom	$\begin{aligned} & 0 \\ & 70 \% \\ & 0 \end{aligned}$	$\begin{gathered} \text { LTD } \\ \text { IRRTATTON } \end{gathered}$	\#5 O U	$\begin{aligned} & 1.0 .25 \times 5^{\circ} \\ & +1.00 .0 .75 \times 130^{\circ} \end{aligned}$	Very Good Pattern	Negative	$\begin{aligned} & 1.125 / 1.625 \\ & 1.125 / 1.125 \end{aligned}$
	$\begin{array}{r} \\ 80 \% \\ 0 \end{array}$	VISION BLURRY	\#4.50 b	$\begin{aligned} & +0.25-0.75 \times 90^{\circ} \\ & +0.75-0.87 \times 85^{\circ} \end{aligned}$	Unitom	Negative	$\begin{aligned} & 0.625 / 0.12 \mathrm{~S} \\ & 0.505 / 0.25 \mathrm{~S} \end{aligned}$
	$\begin{array}{r} 0 \\ 60 \% \\ 0 \end{array}$	60\%	LENSES	ENOT REDU	C E T O 8.4	M	*
$\begin{gathered} 3.6 \\ \mathrm{~mm} \end{gathered}$	$\begin{array}{r} 0 \\ 70 \% \\ 0 \end{array}$	NONE	H.50 U	$\begin{aligned} & \text { p1. }-0.25 \times 180^{\circ} \\ & +0.75-0.50 \times 105^{\circ} \end{aligned}$	Acceptable	Negative	$\begin{aligned} & 0.25 / \mathrm{pl} \\ & \mathrm{pl} . / 0.50 \mathrm{~F} \end{aligned}$
	80%	VISION BLURRY	\#40 U	$\left\{\begin{array}{l} +0.25-0.50 \times 45^{\circ} \\ +1.00-1.25 \times 120^{\circ} \end{array}\right.$	Uniform	Negative	$\begin{aligned} & 0.25 \mathrm{~S} / \mathrm{pl} \\ & 0.37 \mathrm{~S} / 0.12 \mathrm{~F} \end{aligned}$

	T 2		SYMPTOMS	Posinton	REFRACTION	FLUORESCEIN	SLIT IAMP	KERATOXETRY
9.4	60\％	0 D 0 S	Lid sensation OU Hazy sensation OU After 7 hours wear glare	$\begin{aligned} & \$ 5 \mathrm{C} \\ & \$ 5 \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{pl} .-0.37 \times 80^{\circ} \\ & =0.50-0.50 \times 75^{\circ} \end{aligned}$	No peripheral	Slight Central Edema	$\mathrm{pl} . / 0.62 \mathrm{~F}$ $0.125 / 0.375$
	70\％	0 D 0 S	No Iid semsation Giaze Nose rumning	$\begin{aligned} & \# 3 \mathrm{C} \\ & \$ 3 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { pl. }-1.00 \times 90^{\circ} \\ & =0.50 \cdots .25 \times 60^{\circ} \end{aligned}$	Very even with slight S \＆I pool． ing；slight ring tonch：sm．tear	Negative	$\begin{aligned} & 0.625 / 0.505 \\ & 0.625 / 0.62 S \end{aligned}$
	80%	$O D$ $O S$	Lid sensation OU Headache；glaxe Bums after 2 hrs．	$\text { 非 } 2 \div C$ \＃2 $2 \cdot 6$	$\begin{aligned} & -0.50-0.87 \times 50^{\circ} \\ & +0.50-0.50 \times 105^{\circ} \end{aligned}$	Even distribution Ring touch	Negative	$\begin{aligned} & 0.37 \mathrm{~S} / \mathrm{pl} . \\ & \mathrm{pl} . / 0.62 \mathrm{~F} \end{aligned}$
$\begin{array}{r} 8.9 \\ \mathrm{~mm} \end{array}$	60\％	0 D 0 S	No glare； 1 id sensation：inc． rotary nystagmus	F5 C $\$ 5 \mathrm{C}$	$\begin{aligned} & +0.25-0.50 \times 80^{\circ} \\ & \mathrm{pl.} .0 .75 \mathrm{X} 75^{\circ} \end{aligned}$	OU Strong I pool． ing：OU strong touch at 180°	Negative	$\begin{aligned} & 0.12 \mathrm{~F} / 1.00 \mathrm{~S} \\ & 0.12 \mathrm{~S} / 0.37 \mathrm{~S} \end{aligned}$
	70\％	0 D 0 S	Camot feel the lenses：no glare	排 50 $\$ 5-\mathrm{C}$	$\begin{aligned} & +0.25-1.00 \times 105^{\circ} \\ & \$ 0.75-1.00 \times 80^{\circ} \end{aligned}$	Slight ring touch silghe 1 pooling Mose ring touch Slight 1 pooling	Dye retention in several spots； improper cleaning	$\begin{aligned} & 0.12 \mathrm{~S} / 0.12 \mathrm{~F} \\ & 0.12 \mathrm{~F} / 0.75 \mathrm{~S} \end{aligned}$
	80%	0 D 0 S	5 hours glate	$43 \mathrm{C}$ $\$ 3 \mathrm{c}$	$\begin{aligned} & +0.25-1.00 \times 75^{\circ} \\ & +0.50-0.75 \times 75^{\circ} \end{aligned}$	Even distribution I \＆S pooling Slight OS ring touch	Negative	$\begin{aligned} & 0.25 s / 0.75 s \\ & 0.625 / 0.125 \end{aligned}$
$\begin{aligned} & 3.4 \\ & \mathrm{~mm} . \end{aligned}$	60%	01 05	```No glare Lid sensation I scleral vascular ization```	$\begin{aligned} & \text { 解 } \mathrm{C} \\ & \text { 非 } 5 \mathrm{C} \end{aligned}$	$\begin{aligned} & +0.25=0.50 \times 80^{\circ} \\ & +0.25=0.50 \times 75^{\circ} \end{aligned}$	Strong I pooling Apical touch at 180°	Negative	$\begin{aligned} & 0.125 / 0.12 \mathrm{~F} \\ & 0.125 / 0.25 \mathrm{~F} \end{aligned}$
	70%	OD	No lid sensation SIlght glare of the lighes	340 $\text { 非 } \mathrm{C}$	$\begin{aligned} & R_{0} G .50=0.50 \times 800^{\circ}=1.00 \times 100^{\circ} \\ & -0.75-0.25 \times 80^{\circ} \end{aligned}$	Very even，good circulation I ring only	Negativo	$\begin{aligned} & 0.50 S / 0.25 S \\ & 0.12 F / 0.75 S \end{aligned}$
	80%	$O D$ $0 S$	NORE	\＃4 D（poor） \＄4 B（poor）	$\begin{aligned} & +0.25-1.00 \times 75^{\circ} \\ & +0.50-0.75 \times 80^{\circ} \end{aligned}$	Even distribution Slight rixg touch	Negative	$\begin{aligned} & \mathrm{pl} . / 0.625 \\ & 0.125 / 0.255 \end{aligned}$

SUB	CT 4	SYMPTOMS	POSTTION	REFPACTYON	FLUORESCEIN	SLIT LAMP	ERRATOMETRY
$\begin{array}{r} 9.4 \\ \mathrm{~mm} \end{array}$	$\begin{array}{r} 0 \mathrm{D} \\ 60 \% \\ 0 \mathrm{~S} \end{array}$	None：both lenses feel good	\％ 00	$\begin{aligned} & \div 1.25-1.25 \times 100^{\circ} \\ & \div 0.25-0.50 \times 145^{\circ} \end{aligned}$	S \＆I pooling，on Good blend \＆peri phery，ou；os very good	Slighe edema，on Good tear layer， OU	$\begin{aligned} & 1.00 S / 1.005 \\ & 1.005 / 1.25 S \end{aligned}$
	$\begin{array}{r} 0 \mathrm{D} \\ 70 \% \\ 0 \mathrm{~S} \end{array}$	Both feel good； Monoc．Diplopia OU，w／o Ienses Injection at 8 hm	\＃Sou	$\begin{aligned} & +1.00-1.25 \times 110^{\circ} \\ & +0.62-1.00 \times 105^{\circ} \end{aligned}$	UndFom 0 U Better patcern， 0 D	Slight edema，OU Undeom tear layer， O U	$\begin{aligned} & 0.505 / 0.75 S \\ & 0.875 / 1.005 \end{aligned}$
	$\begin{array}{r} 0 \mathrm{D} \\ 80 \% \\ 0 \mathrm{~S} \end{array}$	None：lenses both feel good	\＃5 OU	$\begin{aligned} & \div 1.25-1.25 \times 112^{\circ} \\ & +0.75-1.00 \times 100^{\circ} \end{aligned}$		SIight edema，OUJ	$0.755 / 1.005$ $1.37 \mathrm{~S} / 1.37 \mathrm{~S}$
$\begin{array}{r} 8.9 \\ \mathrm{~mm} \end{array}$	$\begin{array}{r} 00 \\ 60 \% \\ 0 \mathrm{~S} \end{array}$	None；both feel good	$\begin{aligned} & \{5 \mathrm{~B} \\ & 75 \mathrm{D} \end{aligned}$	$\begin{aligned} & * 1.00-1.00 \times 88^{\circ} \\ & \div 0.25-0.75 \times 152^{\circ} \end{aligned}$	Inf：poolimg， 00 Temporal touch， 0 U	Negative， 0 U	$\begin{aligned} & 0.255 / \mathrm{pl} . \\ & 0.255 / 0.125 \end{aligned}$
	$\begin{array}{r} \mathrm{OD} \\ 70 \% \\ 0 \mathrm{~S} \end{array}$	None：both lenses feel good	据 4 B 排 4 D	$\begin{aligned} & +1.00-1.75 \times 92^{\circ} \\ & \mathrm{p1.}-1.25 \times 95^{\circ} \end{aligned}$	$\begin{aligned} & \text { Tompoxal touch, OU } \\ & \text { Good, O U } \end{aligned}$	Negative， 0 U	$\begin{aligned} & 1.005 / 0.37 S \\ & 0.505 / 0.50 S \end{aligned}$
	$\begin{array}{r} \mathrm{OD} \\ 80 \% \\ 0 \mathrm{~S} \end{array}$	None；both lenses feel．good	$\text { 复 } 5$ \＄5 D	$\begin{array}{r} 0.87=1.62 \times 90^{\circ} \\ \mathrm{pl} .=1.12 \times 95^{0} \end{array}$	Temporal touch，OU Good pattern，$O U$	Negative， 0 U	$\begin{aligned} & 0.75 S / 0.25 s \\ & 0.505 / 0.375 \end{aligned}$
$\begin{array}{r} 8.4 \\ \mathrm{~mm} \end{array}$	$\begin{array}{r} 0 \mathrm{D} \\ 60 \% \\ 0 \mathrm{~S} \end{array}$						
	$\begin{array}{r} 0 \mathrm{D} \\ 70 \% \\ \\ 0 \mathrm{~S} \end{array}$						
	$\begin{array}{r} 0 \mathrm{D} \\ 80 \% \\ 0 \mathrm{~S} \end{array}$	None；lenses feel good	$\begin{aligned} & \sharp 5 \mathrm{~B} \\ & \$ 5 \mathrm{D} \end{aligned}$	$\begin{aligned} & +0.75-1.25 \times 90^{\circ} \\ & +0.50-1.25 \times 85^{\circ} \end{aligned}$	Temporal touch，OU Good pattern，ou	Negative， 0 U	$\begin{aligned} & 1.00 \mathrm{~S} / 0.12 \mathrm{~S} \\ & 0.25 \mathrm{~S} / 0.12 \mathrm{~S} \end{aligned}$

SUBJECT 5	SYMPTOMS	POSITYON	REFRACTION	Fluorescein	SLIT LAMP	keratometry
60%	could					
OS						
$\begin{array}{ll} 9-4 & 0 \mathrm{D} \\ \min . & 70 \% \end{array}$	NOT					
$\begin{gathered} 00 \% \\ 80 \% \\ 0 \mathrm{~S} \end{gathered}$	NEAR 9.4		'			
0 D 60% $0 S$	WARM AT tmes	\#15	$\begin{aligned} & 0.75-0.50 \times 112^{\circ} \\ & \mathrm{p} 1.0 .87 \times 105^{\circ} \end{aligned}$	Thmporal Touch 0 S Fairly Even	Negative	$\begin{aligned} & 0.50 \mathrm{~F} / 0.62 \mathrm{~S} \\ & 0.37 \mathrm{~F} / 0.25 \mathrm{~S} \end{aligned}$
$\begin{array}{cc} 8.9 & 0 \mathrm{D} \\ \text { min. } & 70 \% \\ \hline \end{array}$	FLare	75	$\begin{aligned} & -1.50-0.87 \times 112^{\circ} \\ & \div 0.50-1.25 \times 93^{\circ} \end{aligned}$	$\begin{gathered} \text { Fairly Even } \\ \text { ov } \end{gathered}$	Negative	$\begin{aligned} & 0.25 \mathrm{~F} / 0.87 \mathrm{~S} \\ & 0.50 \mathrm{~F} / 0.87 \mathrm{~S} \end{aligned}$
$\begin{gathered} 0 \mathrm{D} \\ 80 \% \\ 0 \mathrm{~S} \end{gathered}$	O S Hot	\#F5	$\begin{aligned} & +0.50-1.00 \times 90^{\circ} \\ & 0.50-1.00 \times 120^{\circ} \end{aligned}$	Even Thin P Curve	Negative	$\begin{array}{r} \mathrm{p} 1 . / 1.00 \mathrm{~S} \\ 0.75 \mathrm{~F} / 1.62 \mathrm{~S} \end{array}$
$\begin{array}{r} \text { OD } \\ 60 \% \\ \\ O D \end{array}$						
$\begin{array}{cc} 8 \mathrm{~m} . & 0 \mathrm{D} \\ \min . & 70 \% \\ & 0 \mathrm{~S} \end{array}$						
	HOT O U	\#5	$\left\{\begin{array}{l} 0.50-1.00 \times 75^{\circ} \\ 0.50-1.25 \times 83^{\circ} \end{array}\right.$	Thin and Even O U	Slight Edema 0 U	$\left\lvert\, \begin{aligned} & 0.125 / 1.00 \mathrm{~S} \\ & -0.25 \mathrm{~F} / 0.25 \mathrm{~S} \end{aligned}\right.$

[^0]: ${ }^{1}$ Donaid R. Korb, "Corneai Contact Lenses with Toric Opeical Zones and Spherical or Toric Peripheral Zones, Encyclopedia of Contact Lens Practice, Vol. II, iOth Supplement, Chapter IX, 5-15-6I, p. 20.

 2 Mandell, p. 333.

[^1]: IMandel1, p.333.
 ${ }^{2}$ Tbid. P. P. 334.
 3Winliam R. Baldwing and Charles R. Shick, Corneal Contact Lenses: Fitting Procedures, New York, 1962, p. 83.

[^2]: Herbert Arkin, Statistical Methods, 4 th ed, revised, New York, 1959, P. 86.
 ${ }^{2}$ Robert K . Young, Introductory Statistics for the Behavioral Sciences, New York, 1955, p. 421.

 3
 Arking p. 210

