Blur effects on clock-dial cylinder determination

David L. Klement
Pacific University
Donald R. Turner
Pacific University

Recommended Citation

Klement, David L. and Turner, Donald R., "Blur effects on clock-dial cylinder determination" (1974). College of Optometry. 382.
https://commons.pacificu.edu/opt/382

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

Blur effects on clock-dial cylinder determination

Abstract
Blur effects on clock-dial cylinder determination
Degree Type
Thesis
Degree Name
Master of Science in Vision Science
Committee Chair
Niles Roth
Subject Categories
Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

BLUR EFRECTS ON CLOCK-DIAL CYLINBER DETERMINATION

David L. Klement
and
Donald R. Turner

Submitted in partial fulfillment of the requirements for the degree Doctorate of Optometry.

$$
\text { May } 10,1974
$$

Approved by

ACKNOMLEDGRMENT

We thank Dr. Niles Roth for his help and understanding.

INTRODUCTION

The aim of this study is to determine how the cylinarical power and axis determination using the Clock Dial test is afiected by different amounts of blur. The cylinder axis and power determined by the use of the Jacleson Cross Cylinder provide the reference values for our comparisons.

Standard methods for etermining the pretest blur lens include: a) reducing the fogging lens until the $20 / 40$ acuity line can barely be identified; sinilarly, b) reducing the forgoing lens until the 20/30 acuity line can first be distinguished; or c) if a sunburst or clock dial is used, the stopping place is the point where any of the lines appears maximally distinct and/or black. Hebbard* also suggests beginning rith $a+.75$ diopter sphere placed over the static retinoscopic correction, provided that this reduces the acuity to $20 / 25$ or less.

HYPOTHESIS

It would be expected that a pretest blur of +.50 diopter relative to criterion c) above, would give the most accurate clock dial finding for a patient's cylindrical power and axis determination. Other amounts of blur should make the patient's discrimination more difficult, and would therefore cause the results to be less accurate. (See page 4 for further remarks.)

PROCEDURE

We designated our fogging lenses relative to a control lens which we determined by the following procedure. We started with the subject's habitual Ienses in the phorometer. At this point we perioxmed a $20 / 40$ blur, an astigmatic clock dial, a red-green

[^0]biochrome test, and a Jackson Cross Cylinder Test (J.C.C.) Ior refinement of axis and power. For the J.C.C., in particular, we extrapolated to the nearest .12 diopter of power and to the nearest 1 degree in axis. Our final contiol lens consisted of the J.C.C. cylinder (in minus cylinder form) reduced by . 50 diopter to induce a standard astigmatic interval in a known meridian. Combined with this induced astigmatism was a sphere which we determined by using the Tmehart on an AO projector slide. Here we added +.75 diopter sphere. Reducing the plus sphere in a 25 diopo ter steps, we instructad the patient to report when the carker lines stopped becoming dariser. We now increased the plus sphere until the patient first noticed thesesame lines become just slightly blurred, or Iess dark. The sphere of the control Iens is . 25 diopter moxe minus than this sphere, and is combined with the cylinder previously mentioned. It is reletive to the control lens that the different amounts of blur were chosen.

Varying amounts of blur from +.25 diopter to +1.00 diopter were then added, and the effects on the clock dial findings were compared. For each amount of blur the cylinder power was tested on the Tmchart withalines of the T parallel and perpendicular to cylinder the cylinder axis of the control lens. With changingnlens power, the blacker lines change by 90°, and the midpoint of this range was taken as the cylinder parer. Fijth the control cylinder restored, the cylinder axis was independently established for each standard Blux by changing the orientation of the Tmchart until first one set of lines was reported darker, and then the other set was reported darlier. The recorded cylinder axis was 45° from the midpoint of, this range.

SAMPLE
All twenty subjects for this investigation were members of the Pacific University faculty and student body, representing a total population of forty eyes. The spherical refractive errors ranged from -3.25 D to +5.00 D with eight eyes being hyperopic and the rest myopic, while the cylinder power ranged from -. 12D to -3.50D.

RESTULTS
For analysis of the data, several statistical tests were performed:

1. the mean of the differences between the J.C.C. cylinder power and the respective cylinder power recorded for each blur.
2. the mean of the djfferences between the J.C.C. cylinder axis and the respective cylinder axis recorded for each blur.
3. the standard deviation of these same differences for both power and axis.
4. the variance of these differences for both power and axis.
5. Pearson's product-moment correlation coefficient between each J.C.C. and each blur value for both power and axis.
6. Pearson's product-moment correlation coefficient between each J.C.C. and its respective original clock-dial measurement for both power and axis.
7. Studeat's t value for significance of differences
between the means of the data points correlated
for both power and axis, and the means of the J.C.C.

DISCUSSION AND CORCLUSTONS

Comparing the differences of the means of the blur lenses with the mean of the J.C.C for power and axis, certain trends can be seen. The large difference between means for the +1.00 blur lens power indicates that with this much fog the power discrimination becomes very difficult for the patient to make. Because the patient is looking through so much plus, he prefers, on the average, an extra .25 diopter of minus cylinder. Likem wise, the large difference between means for the $\div .25$ blur lens axis indicates that with $\mathbb{H} i s$ little fog, the axis discrimination becomes very difficult for the patient to make. Because he is looking through so little plus, and all the lines are so much clearer, it is hard for him to determine when the change in darlkness occursí. Consequently, the 4.50 or +.75 blur lenses would be preferred for use in the clock dial test because the errors are minimum for both cylinder porer and axis determination. This is in general agreement with our hypothesis and with Hebbard's recommendation for lens control.

The correlation coefficients are all quite high, which shows that the differences between the J.C.C. and the clocl dial findings are relatively constant. The t-test for significance indicates the ${ }^{\text {difficulty }}$ previously mentioned for determining cylinder power through $a+1.00$ blur and cylinder axis through a +.25 blur. A difference of this magnitude would only occur if due to chance 2% of the time with +1.00 blur, and 14% of the time with +.25
\%It is likely that accommodative fluctuations influence judpements excessively when inadequate blum is used.
blur. There is no significant difference between either the standard deviations or the variances.

There are probably many sources of error in this investigation, as thexe are in any experiment. However, the three major sources are (1) inaccuracies in the equipment; (2) relatively small sample population; and (3) patient and examiner bias.

	mean of Diffarences	Standard Deviation	Variance
+. 25 blur	. 14 Diopter.	. 17	2.92×10^{-2}
+. 50 blur	. 19 Dibuter	. 20	. 34
+. 75 olur	. 18 Diopter	. 17	. 03
+1.00 bius	. 18 Djopter	. 20	4.07×10^{-2}

	mean of Differences	Standard Daviation	Variance
+. 25 blus	18.58 Degrees	19.35	374.46
+. 50 blur	20.55 Degrees	20.32	412.98
+.75 blur	15.50 Degrees	21.73	472.35
+1.00 blur	16.82 Degraes	21.20	449.26

Tabla 3. CERRELATICN MITH J.C.C. FOR CYLINDER pOMER AND AXIG.

	H0:JER		AXIS	
	Diffarence of fieans	Correlation Coefficient	Difference of ineans	Correlation Coefficient
+. 25 blur	. 040	-97	6.47°	. 90
+. 50 blur	. 04 D	.97	$2.85{ }^{\circ}$. 88
+.75 blus	.03 J	. 96	$4.15{ }^{\circ}$. 75
+1.00 blur	. 260	. 69	1.52°	- 89
Originel C.D.	. 01 D	. 96	2.00°	. 94

Table 4. t-TEST FER SIGNIFICANCE OF DIFFERENCES BETUEEN THE means of the data points ccraelated for both power and akis, and the deans of the J.C.C.

FDMER
t-value probability t-value probability
+.25 blur $1.28 \quad .20 \quad 1.52 \quad .14$
+. 50 blur
+. 75 blur
+9.00 blur
Griginal C.D.
-2.25
.02
.75

AXIS
.59
.55
$-. .68$
.50
.34
.73
. 65

$$
0.0 .
$$

O.S.
M.J.

C.D.	pl -2.25×165	
R.G.	$-.75-2.25 \times 165$	
J.C.C.	$-.75-2.75 \times 175$	
CONTROL	pl -2.25×175	
	power	axis
+.25 blur	-2.62	177
+.50 blur	-2.62	180
+.75 blur	-2.87	180
+1.00 blur	-2.50	170

G.W.

C.D.	$-7.25-1.25 \times 180$	$-7.00-2.50 \times 15$	
R.G.	$-8.25-1.25 \times 180$	$-7.75-2.50 \times 15$	
J.C.C.	$-8.25-1.25 \times 175$	$-7.75-3.00 \times 5$	
CONTROL	$-7.75-1.25 \times 175$	$-8.25-2.50 \times 5$	
	power	axis	power
+.25 blur axis	-1.25	151	-3.00
+.50 blur	-.75	150	-3.00
+.75 blur	-1.25	150	-2.87
+1.00 blur	-1.25	150	-2.87

O.D. O.S.
G.G.

C.D.	$-2.50-1.25 \times 168$	$-1.25-.75 \times 30$	
R.G.	$-3.50-1.25 \times 168$	$-2.50-.75 \times 30$	
J.C.C.	$-3.50-1.25 \times 165$	$-2.50-.75 \times 175$	
CONTROL	$-3.25-.75 \times 165$	$-2.50 \cdots .25 \times 175$	
	power	axis	power
+.25 blux	-1.25	180	-1.12

R.H.

C.D.	$-1.75-1.75 \times 105$	
R.G.	$-2.00-1.75 \times 105$	
J.C.C.	$-2.00-2.00 \times 100$	
CONTROL	$-1.50-1.50 \times 100$	
	power	axis
+.25	-2.12	82
+.50	-2.00	73
+.75	-1.87	74
+1.00	-2.25	72

-2.00	-1.25×90
-2.50	-1.25×90
-2.50	-1.00×87
-2.25	$-.50 \times 87$
power	axis
-1.12	75
-1.00	35
-1.25	86
-1.12	93

O.D.
W.C.

S.M.
C.D.
R.G.
J.C.C.

CONTROL

	power	axis
+.25 blur	-.75	37
+.50 blur	-.75	35
+.75 blur	-.87	37
+1.00 blur	-.75	35

O.D.
O.S.
D.K.

C.D.	$-.75-2.75 \times 180$	$-1.50-3.75 \times 180$	
R.G.	$-1.62-2.75 \times 180$	$-1.87-3.75 \times 180$	
J.C.C.	$-1.50-3.25 \times 180$	$-1.75-3.50 \times 180$	
CONTROL	$-1.75-2.75 \times 180$	$-1.50-3.00 \times 180$	
	power	axis	power
+.25 blur axis	-2.87	45	-3.37
+.50 blur	-3.00	61	-3.75
+.75 blur	-2.87	70	-3.50
+1.00 blur	-2.87	72	-3.62

D.S.

C.D.	$-.75-.50 \times 120$	$-.25-.62 \times 135$	
R.G.	$-1.50-.50 \times 120$	$-1.25-.75 \times 135$	
J.C.C.	$-1.25-.75 \times 160$	$-1.50-.50 \times 157$	
CONTROL	$-1.00-.25 \times 160$	-1.25	
	power	axis	power
+.25 blur	-.12	172	-.25
+.50 blur	-.25	170	-.37
+.75 blur	-.25	170	-.25
+1.00 blur	-.50	172	-.37
+1.50			

O.D. O.S.
$J . R$.

C.D.	$-.25-.50 \times 60$	$p 1-.62 \times 110$	
R.G.	$-.75-.50 \times 60$	$-.25-.62 \times 110$	
J.C.C.	$-.75-.75 \times 60$	$-.25-.25 \times 110$	
CONTROL	$-.25-.25 \times 110$	$-.25-.25 \times 20$	
	power	axis	power
+.25 blur	-.62	70	-.25

D.V.

C.D.	$+5.25-1.25 \times 90$	
R.G.	$+4.75-1.25 \times 90$	
J.C.C.	$+4.75-.75 \times 97$	
CONTROL	$+5.00-.25 \times 97$	
	power	axis
+.25 Wlur	-1.00	110
+.50 blur	-1.00	110
+.75 blur	-.75	110
+1.00 blur	-.87	$?$

+5.25	-1.75×90
+5.25	-1.75 x 90
$+5.25$	-1.75×82
$+5.00$	-1.25×82
power	- axis
-1.75	80
-1.50	81
-1.50	80
-1.25	70

patient J.A.

patient L. C.	50	
C.D.	-3.00 sph	
R.E.	-3.75 sph	
J.C.C.	-3.75-. 37×100	
Control	$-3.50-.25 \times 10$	
	power	axis
+. 25 blus	$-3.25-25$	$\times 120$
+.50 blur	-3.00 $\quad-.37$	< 132
*.75 blur	$-2.75 \quad-.37$	$\times 123$
+1.00 blus	-2.50 -. 50	$\times 118$

Patient C. H.

	10		cs			
c.0.	--2.25	$-.50 \times 90$		-1.75	75×60	
R.G.	-3.25	-.50 $\times 90$		-2.25	75×50	
J.C.C.	-3.25	-. 75×145		-. 2.25	52×60	
Control	-3.25-.25 < 140			-2.00 sph		
		power	$3 \times \mathrm{is}$		pouer	axis
+.25 biur	-3.00	-. 75	$\times 142$	-1.75	-. 25	$\times 60$
+.50 5lar	-2.75	-1.00	$\times 147$	-1.50	-. 25	X 65
2. 75 blur	-2.50	-. 75	$\times 134$	-1.25	-. 25	x 62
*1.00 blur	-2.25	-. 75	$\times 142$	-1.03	-. 50	$\times 53$

Patient C.m.

	00	©S
C.D.	$+1.00-.25 \times 90$	+1.00 sph
R.G.	-. $25-.25 \times 90$	plano sph
J.C.C.	$-.25-12 \times 00$	plano -. 12×90
Control	+.25-.50 $\times 120$	$+1.00-.50 \times 180$
*. 25 blus	$\begin{array}{\|c} \underset{-}{\text { power }} \times \stackrel{1}{\downarrow} \\ +.50-.50 \times 85 \end{array}$	$\begin{array}{r} \text { powse } 3 \times \frac{1}{s} \\ +1.25-.12 \times 85 \end{array}$
+.50 blur	$4.75-.25 \times 85$	+1.50 sph \times ¢0
+.75 blur	+1.00-.50 600	$+1.75-.37 \times 90$
+1.00 blur	+1.25-.37 < 30	$+2.00-.37 \times 80$

Patient D. R.

	20		
C.5.	+. 50	-. 25×75	
R.G.	-. 75	-. 25×75	
J.C.E.	-. 75	. 12×33	
Control	plano-. 50×173		
		power	2xis
+.25 biur	+. 25	-. 37	$x \in 7$
+.50 blur	+. 50	-. 37	$\times 55$
+.75 blur	+.75	-. 12	$\times 79$
+1.00 blur	+1.00	-. 12	$\times 85$

$+.59-.75 \times 75$
$-.50-.75 \times 75$
$-.50-.62 \times 72$
-.25 sph power axis
: -62×80 $+.25-.87 \times 131$
$+.50 \quad-.37 \times 99$
$+.75 \quad-.62 \times 104$

Patient L. M.

	10		05	
C.D.	$+1.00-.50 \times 45$		+1.03-1.30 $\times 105$	
R.G.	+.25-. 50×45		$+1.00-1.00 \times 105$	
J.C.C.	+.25-.12 $\times 180$		+1.00-. 37×135	
Control	-. $25-.50 \times 90$		plano-.75×105	
	power	ヨ×is	power	exis
+. 25 dur	-lano -.12	$\times 145$	+.25 -.87	$\times 87$
+.50 bIU5	+.25 -. 12	$\times 170$	$\rightarrow .50-.37$	$\times 32$
+.75 blur	$+.30-.12$	$\times 178$	$+.75-.37$	$\times 10 ?$
+1.00 bluc	+.75 -.37	$\times 5$	$+1.00-.87$	$\times 97$

Qatient S. R.

Pratient N. R.

patiant. D. T.

[^0]: *Borish, I.M., Clinical Refraction, 3rd Edition, Professional Press, Inc., Chicago, Illinois, 1970, 了. 729.

