Comparison of the one meter tangent field to critical fusion frequency field on patients showing a visual field defect

N Chung
Pacific University
W Force
Pacific University
R Rotsaert
Pacific University

Recommended Citation

Chung, N; Force, W; and Rotsaert, R, "Comparison of the one meter tangent field to critical fusion frequency field on patients showing a visual field defect" (1961). College of Optometry. 227.
https://commons.pacificu.edu/opt/227

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

Comparison of the one meter tangent field to critical fusion frequency field on patients showing a visual field defect

Abstract
Comparison of the one meter tangent field to critical fusion frequency field on patients showing a visual field defect
Degree Type
Thesis
Degree Name
Master of Science in Vision Science
Committee Chair
Detleff T. Jans
Subject Categories
Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

COMPARISON OF THE ONE METER
 TAMGENT PIELD TO CRTHICAT FUSION
 FREQUENCY FIELD ON PATIENTS SEOWING
 A VISUAL FTELD DEFECT

CLINIGAL YPAR THESIS

BY

N. OHUNG
W. FORCE

K。 ROTSAERT

2961
Acknowhamements are due to Dre Detieffr. Jans. Pacieqo minversity, for the use of the Stroboscope for this study and for the technical faformation and gutamee rendered to ut by nim.
Aoknowledgements are also due to the students gnd out patients from the Optometric Olinio of Pacific Thiversitys without whose participationg we the following olingoians: N. Ghurge 霟 Force, and \bar{n}. Rotsaert would have been unable to accomplish this study.

TABLE OF COWTENTS

I. INTEODTOTION
A. Statemont of Problem 1
E. Eeview of Literature 2
C. Source of Data, Methods and Procedure 4
II. BODY OF EERORT
A. Brier Acoount of Data, Methods and Proeadure 6
B. Data and Interpretation of Pindings 9
III. STJMMARY
A. Concluaions end Disoussione 24
E. Fecommendations 26
APPENDLX

STATEHENT OF THZ ROBLEM

It is the purpose of this atucy to sorvelate the finding of the ©.F.F. Fields to internal pethology of the eyo as axprossed or determined by central visual fields.

IHPORTANCE OF THIE STUDY
The importance of the atudy lies in the area of cilinical procedure
and practice. We shall attempt to determine the feasibllity of
C.F.F. Fiald studies as a means of cazly detaction of pathology
as applied by the indivjaual prattioner.

REVTEN OF THE LSTERATURE
Wany studies have been mode of the efietts of dasase pro－

 193 phillips mad the first study of flicker ficlas on pat－ ients．He restrioted his tests to 17 areas of the visual fiela， and even today his targets are considered adequate and his con－ trols good．He found that 2.5 cm．targeta gave oentral flicker fusion frequency（ F 。F。Fo）of 48 fleshes per second，with gradusl decrease toward the periphery，while ghmiluz 3.5 cm ．targets eave a contral P ．F．of 49, with ingresee in lowegroe peripheral inm tervals to $56,50,44$, and 41 ．He found dacrease in FoF．F in eIght shlasmal and two parietel brein tumore．The two peristal cases had normal visuel acuity and fielda．

M12e日 statea that the eye ta more sensitive to F．F．F．in the periphery（ $20^{\circ}-30^{\circ}$ ）than centraly，and FoF。F．is therefore pore likely to detect defects from diseases which effect tha per－生pheral fitalds fitrst．

According to Minem For．Finvolver not only local rod and cone function but is influenced by the interaction of verious Firts of the retina ana optic pathway．From the rod free area． It is low，due to greater visual imase persistamoe．It is moch higher frow the peripheral reting．Phillps，Werner and Enzers found docress in F．F．P．in pationts with normal acutby and fields who had brein lealons．

Lindberg，Jemason，Bowden，and Furiegin their thesis found that the graetest sensitytur to flloker at the central fixation
point, followed by decreasing andituty at each of the 10,20 , and 30 degres intervals reapectively. The loweat sensitivity area is found at the superion 30° visual field.

One of the prime considerations of our atudy wat the early detection of glatuoma. wileg litilized his C.F.F. techniques in
 In the peryphery but showed typleal contral seotomas. The floker fialds were deprestod generally 15 to 20 flashes per second and there vere large sector and arcuate defects. In cage "B the ©. F. Po fields were slightly depressed peripherglly and there was bsinge of the blind spot.

Mf les 7 aleo showed that $1 f$ the $0 . F$. Prelds are taken on a perimetax (i.e. target at conatant distance from the eye) the frequency doss not drop off as abruptly in the periphery as it does on tests on the tangent sereen. Futhermore Miles onducted G.F.F. fields on pationts who show definite scotomatous areas with normel fields method. His general conclusions were that G.F.F. fields in thas typa of pationt show general overall depression.

SOURCE OF DATA, MEPHODS, INSTHUNENTATION AND PROCEDURE
All of the patients in this study were obtained from the Fbedfic Intuersity optometwio cinio. Most of these patients hed been used in previous study by Bonde, GIImore, and Bostwick ${ }^{\text {w }}$ wreln they correlated the coll multiple target screbner to gtanderd osatrel field studies. Rhese partioular petients ali dicpleyod derinta fiela derects.

In sach cas our routine consisted of ploting of the Wasi fialds on the one meter tangent soreon and 0.E.F. field study.

A pertsble stroboscope (mmufactured by the aoneral padio Corporation, Cambridge 39, Hass.) was used in the C.F.F. study. It is called the "Surobotac". Previous adaptation of the strobe oscope used was accomplished by removing the flash tube and bhe Feflector, ond solaering the ends of gix footi, form wire cable to the lugs on the fiakh tube socket. The four prongs of the flash tube itself wert than solered to the appopriate wres of the cable tha last tro or thrae fect of the cable were passed through a rigid metol tibe or rod to form a wand by means of which the ligiti can be controllea in its movement in front of the transent screen. The bulb (flosh tuba) was then emelosed Dy a discerded retinoscope hardie whth a 24 mm elroular opening over a portion of the bulb. This opening was covered with transe lucent paper (tea beg material) to diffuse the light.

The paticnt was seated one meter may from one mater black tangent soreen. the wand wa held at the centar of the tangent screan and the patiant was shown whet was meant bywas firg perceived at which time ho wat to slgnal by tapplng.Whlle toukng the conter readug the pationt looked at tha wand,but for all otner meadings, fixation xemalnod at the acregngoentry fixation pornt. The tert was poriormad in a room ofsevar foot gandles illumunation while tha patient had the an-exfuined eys boblugba. It shoulo be mentioned nt this pointthat the f tandard teonnaqe for Light adaptation of the oye

A BRTEF ACOOWT OF DARA, METHODS, AND PROCEDURES
Fic recordad all of our data on the Bausch E Lonb one meter tanesnt serean record sheet. Our first step was to take nore mal one meter tengent screen perimetric field. All sootomatous and sbormal (2.e. enlarged P.E.S.) areas whe rocorded as found. Our next atep was to perform C. F, F. ficid on the game patitent. All retalnge were taken directly off the low scele of the strobozoope and later modified to oycles per seond. The following mathematicel formula was used:
$\frac{\text { Number from stroboscope } x 100}{60}$
Theef were recorded in the eight major meridiane at 10, 20, and 30° Intervals. Readings wer teken alone and impediately inside any plotted scotomatous areas. Fesdings were also taken at the s'parior, Inferfor, nasal, and temporal sides of the pos.

The basis fot determining incressed or decreased function was the thesia atudy of Linaborg, Jemieson, Bowden, end Furie ${ }^{6}$.
 ehart as found by the above thesis. Miguram 2(i.e. key sheet) show the differences in each meridian at 10,20 and 30° intervala as subtracted from the central fixation point C.F.F. meading. The oriterion for aienificant decrese in function is as follows: The subjects $0 . \mathrm{F}_{\mathrm{F}} \mathrm{F}_{\mathrm{F}}$ rates in the indicatod aress were subtracted from his central G.F.F。rate and if this difforence sxoecded the differences indicated in the corresponding area shown by figure 2, pace B, it wes considered to be alenificent. All significant docreses based on the oriterion are identitied by square enclosure.

SUPERIOR

30°
C.F.f. Mends plotted on a fields chart

- C.FE MEANS FOR lImITS of PRSS.

DIAGRAM NO. 1

KY SheET

DIACTM䌦 3 .

Fote: This key sheet shows the gross average diference of each major meridion (at $10^{\circ}, 20^{\circ}, 30^{\circ}$ intervals) as subtracted from the central fixation point average, These are taken directly fron di-gram no. I.
DATA AND INTERPRETATION OF ETHDINES
In this section ach fileld of ach ye of seven patients
will be represented by dagram and plastic overlay. Thediagram represents the of.F. fleld of the potienta with signif $=$iemnt decreased function being enclosed in squares. The plasticoverlay represents aress of abnormalty as dertved from the onemeter tangent field and plotted by conventional methods.

R1 R
8 igh J onlarged P.B.B. A marod deorease in fuotion ia dipla d in $10^{\circ}, 20^{\circ}$, a 50° areat. The only aret shouing no iear se in frmotion the upper manal quadrant of tho 10° area A Jedge shape sootoma is also present in the upper tomporal quadrant in the 30° ares.

CONGLTSIONS D DHOUSSION.
Fe found that in five of the seven cases the statement by Wias that thers is an inorease in function in the inferior nasal fimid was true. 贯e also found that where thers was defindte acotomatous or hemianoptio fras there was decrease in function along the dividing line. These findings it will be noted stredaled the aiviaing ine. This is dmonstrated in case number $\mathcal{E} \mathrm{S}_{\mathrm{B}} \mathrm{B}_{\mathrm{B}}$
 Harrington there is permisstole diference of about five Plashes per second batween the two eyes in the foveal area but the perfphery of the two flalds should be almost ldenticel. Comm parative stadies of the flichso rabe on the two ayes are par-
 Elaveoma which is demonstrated in case number $3, T . T$, number 5_{9}

Miles ${ }^{2}$ sates tiat in the periphery beyond 20° if there is mafomily low arop it may be dua to age changes or small pupils. The only possible example we found of this was in caso number 4, $\mathrm{E} \cdot \mathrm{B}_{\mathrm{g}}$

In those putienta that diaplayod acotometous ares the most We could bring our wand into this area was about three ew (20). Patients wers asked to report the 0 . F. F whan at legst one hal of the cironlar diak was visjble.

We find it diftitcult to make conclusion that a decrease in function wil always accompany aield that demonstrates lowered function by standard mothods. We foud that even in oyes that showed only an enlarged blind spot on the one metex terient sereen ther was an occesional decrease in function in the whole fiala
as measuret by tha G.F.F. method. It may also be concluded that an onlarged P.B.S. does not necesserily mean deareaso in function In C.F.F.field.

On the basis of our findings we foel there se hagh degree of correlation between the O.F.F. fields ond the one meter tengent screen mehod, espectally where a definite field defeot was found.

RECOHAENDA 2 IOMS.
It was found agan as in the study by Lindberg, fameisomp Eowden, and Furie that some of the subjeots sald that they were Influmeed or able to hear the sound of the flicker sooner thon it wea visusily perceived.
te alao foel thet we cannot make diagnosis of gitucoma becaue we do not hate a meacal diagnosis available to us. 霰e
 require the same care and length of time as the axamation Mith standerd methods of pertmetry.
 Intorprstation. American Journal of Ophthalmology 33:1060 (July) 1850
2. Iotd.
3. Phillipg, Gog Peroeption of Plioker in Lesions of whual Fathways, Brain 56: 464, 1983.
4. Werner, Ho: Critical Fuston Prequency in Chilaren with Prain Injury, American Journal of Paychology 45:594, 2942
5. Enzer, H, Stmonson, Tet al. Journal of Laboratory is Clinical Medicine. $29: 63$ (January) 1944 Ann Int. Med. $16: 701$. 1942
 lishment of Norms in Specific Areas of the Visual Fielde For Critical Fusion Frequeney as Determined By A Modifled strohoe scope, Paciefc Tiniversity Libracy, Thesis File, 1960.
7. wites, P. We, Flicker Fusion miolds Is The gifact of Age And Fupll Size, Americen Joumal of Ophthalmology, 3381069 (July) 1950
B. Bonde, Aos Gilmore, T., Bostwick, D., Valialty of me Multiple Target Screener in Screening visual Fiela Defocte Pacifio Thiversity: Thesis File, 1960
9. Harrington, D. Of The Visuel kicids, A Testbook and Atzes of Gifnical Perimetry, Page 65.

