The correction of residual astigmatism with toric corneal contact lenses

James E. Vickers
Pacific University
Sanford F. Pelz
Pacific University

Recommended Citation

Vickers, James E. and Pelz, Sanford F., "The correction of residual astigmatism with toric corneal contact lenses" (1960). College of Optometry. 225.
https://commons.pacificu.edu/opt/225

This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact CommonKnowledge@pacificu.edu.

The correction of residual astigmatism with toric corneal contact lenses

Abstract

The correction of residual astigmatism with toric corneal contact lenses
Degree Type
Thesis
Degree Name
Master of Science in Vision Science
Committee Chair
C. B. Margach

Subject Categories
Optometry

Copyright and terms of use

If you have downloaded this document directly from the web or from CommonKnowledge, see the "Rights" section on the previous page for the terms of use.

If you have received this document through an interlibrary loan/document delivery service, the following terms of use apply:

Copyright in this work is held by the author(s). You may download or print any portion of this document for personal use only, or for any use that is allowed by fair use (Title 17, §107 U.S.C.).
Except for personal or fair use, you or your borrowing library may not reproduce, remix, republish, post, transmit, or distribute this document, or any portion thereof, without the permission of the copyright owner. [Note: If this document is licensed under a Creative Commons license (see "Rights" on the previous page) which allows broader usage rights, your use is governed by the terms of that license.]

Inquiries regarding further use of these materials should be addressed to: CommonKnowledge Rights, Pacific University Library, 2043 College Way, Forest Grove, OR 97116, (503) 352-7209.
Email inquiries may be directed to:.copyright@pacificu.edu

THE CORRLCTION OF RUSTDUAL ASITCHATLSM
 WTRE TORIC CORNLAL CONLHE LEWSES

A Thesis d'resuntid To The Faculty of Pacific Univeralty
In Partial Fuleinlment of Requivemuts
For The Degree of Doctor of Optometry
EY
Jamos it. VichersSanford F. YelzJanuary 1960

ACENOLLADCKLLMTS

We wish to express our appreciation to Dr. hoy Clunes who provided us with the topic, nocessary ingtructions and adviev in oxder that we might study this area of contact lenses. His outline ma consuitation heve been instrumental In any duccess wo mey nave acnieved.

It is to Dr. C. B. Margach that we enpress our most prateful thanks for his supervision of thes project and guidance in providing a finished paper.
e wish to thank The Plastac Contact Lens Co. and particulariy doe Ginefro, fr. for thelr help and ablity to be sule to provide us witn muon a lens that we wifft invegtigete this problem.

虽 are also grateful for the onoperation and the glven us by those people who were subjects in our study.

IELRODUCIIOL

One of the proclems which exists in fitting of contact Iersen by practitioners has been the presence of resictual astignatism. wo define residual astigmotism as any astig* Fatisan that we found subjuthemy with a well adapted contact leas patitent wasing his contact lenspa. It has been cubtomary to ussume that the antertor axface of the comea is made pharical by the combination of the contact lens and tear layer when person is wearing his lenses and A
any ugtigratism tount 13 due to one of the refracting shafeoes berind the anterior comeal surface or to an inmegiarity of the retinal surface. However, auch asamptions mave not offered any new insights into the hindilng of this problom.

Dur investigation of this area has been an attempt to produce a cormeal contact lens that will correct residual astignatzen. The suojects wo selected all revealed 0.75 D. or ore of atignatism through the ir spherical contacts. We have attempted to obtain a stable non-rotating toric lens by trunentlre a round lens in the maner shown in flgure 1 .

page 1.

REVIEK OF \&ERTMENI LTTERATURE

It is obrigiti opinion thet the mount of residusl astigmatism rarely exceeds 1.25 D. but in one unumal instance it was as much as 6.00%. An observation by obrie in fitting scleral lenses was that excessive pressure at the lambe may and can cause what seems to be lenticular (residual) astifmatism. ${ }^{2}$ The methods advooted by obrid for correcting residual astigntism are relieving pressure st the limbur, prescription or plano oylindrical spectacle lenses for mall exrors, and minding the cylunder on the comeal poption of solertil lenses. 3
mith the savent of combal lensea and their many advantages over the scieral lens, practitionars now have the probitn of patient who have shown a aubtantinl or monoyne amount of residual astiquatism whioh produced lowered viswal welity and discomfort.

Two types of torio lenaes are aveliable to the contact lens practitioner. The onvex toric gurface lens is the oniy one which is designed to comect residund astigmatime
a. Concave forto surface: The lde of a toric corneal lens wes presented as early as 1953* The lens tn the shape

2. Idium p.248
3. 工aitim p. 48

 Harch 1953.
 The poeteribor sumface of this lene was groma in a toric gurface and thereby provilued s better ficting lens with less rocking. In 1959 one of the manufacturers ${ }^{5}$ of contact lenses presented a toric lens (Ultracont oflindildal Bewel Lens) to fit those patients with 3.00 D . or over of comeal

fin above lenses were not almed at comection of resioual astigmatism but to provide a better fitting lens. b. Convex moric surface: snother monateotures ${ }^{6}$ developed in 2959 a torlo tmucated comeal lons (Poncon) vith the tomy qupface on the anterion aide for the correction of woidual astigatism. Phis it the ame type of lens that we have used $\mathrm{m}_{\text {正 our investigetion. }}$

PROCSDURU

Fob selected from patients durrextly receiving are at the Pacific Univerobty Optenteric cifnic those cases tinat revenlea . 75 D. on over of pesidual astigmatiom, any uncior this ampunt we aroitrarily constered tolerable by
5. Kontur Kontact Lens Ca., Hichmond, Onif. 6. The Rlastic Gontact Lens Co., Chlcago, Ill.
the patient. We provided a spectal examination ama itted each of these patients wth one of our truncated lenses. The examation included the following:

1. V. 4 . through spheriakl contacts; compared with v.a. through toric contacts for evaluation of improverest.
2. fria through contats and V.A.; This was a B.F.A. Which tyve the prescriptable cylinder.
3. f7a whthout cortsots and V.A.; gams as 2 above but whthout contacta.
4. "品 peading; miken on romoval of spherioal contacts. (Not applicabie to our skudy but taken to obtain data for other pesearch.)
5. Coiffortable wemplag time of spheriakl contacts.
6. ${ }^{H E}$ Defore contacts; Taken from case records where posiblb or veriflcation of pruvious apectacies.
7. Spectifications of sphemeal contacts; Aetual mandirment of base cume, thickness, size, powor, aro Devel were made with raduscope, lens measure, lensometor and measuring manifier in veriffication of prescription data.
8. Weasurement of total fidsure and lower ild to centex of papil: This measupe was rada with the ayes in the primary posttion with romal izinmination.
Q. Diameter of the comea; weasured as in 9 above in tho l80th mexidian to determine the meximum finished lens size thet felt fould be accoptavle by the patient. However, we orderea lenses larger than this measure to allow
for finishing and polighind reduction in sise. also, if the lens we too large we could peduce the size undil we ootained patient comart.

Toric lenses were then ordered in uncut form. The detemmation of the specitications of the prescribed lerses was as explained below.

1. Type: Triourve leases were initially proscribed due to the large mae wo fitted. However, bicurve lenses were sent from the lat and adustment made by us for three of the cuses studed.
2. Bites Curve: Fitted mon K^{11} (same as buse curve of sphericel contacts.)
3. Intemediate (2nd) Curve: 0.50 man flatter than base ourve.
4. Thi aknesa: 念tamord.
5. Sire: Ordered IErger thm diametor of comea. Hina
 corection of lens rotation. The theory of this will be explatned in the mext soction undur lens modification procedurs.
6. Optical Lone: Aroitmarily 8.00min. wioh we gasuned to be adequate.
7. Fower: Detemmined by addne the power of the spherical contacts to the $\begin{aligned} & \text { ba thmi contects in plus cylinder form. }\end{aligned}$ Power of phasicsl contacts $\#$ \#7a thru contacts in plus
cylinder $=$ power of toric contacts．
a．Modification of Jncut gome Lons：The follo ing steps wert accomplished in modification of the experimental contact lenses．

Step 1，Axis；we used the leng－ oneter to＂spot＂the plus eylinder exis of the experimental lens． The Iocation of that axia in the
 truncated lens having already b⿻弓⿰丿丨贝刂灬 determined by our emination， Flgure 2 we marked＂the 180° Line＂while modane the lens in the lansometer．Markine was completed on the atandtai spectache long layout protractor ws ghown in figure 2.
 lens was soourely mounted concave side put on a steel mandrel held w mastic tape as in figure 3 ．

Stop 3．Cutting Proosdure；The firet cut was made on the flat por－ tion or the 60° stone，figure 4. The 90° meridian wias reduced

3 gure 3 equalis on top and bottom giving

13 to 2 Ind difference between
horitontal and verticmi maridiand. Care was madntained to keop the umper and lower cut parmalel to the 180° Inde on the lepe.

3tep 4, Bevel and Pelish Sequence * the round bevelime stone, $12.25 \mathrm{~mm} .$, Was usea to nales a . 5im . to . 6man periphoral curve. To
 polish this curve a 11.50 mm . poliwhing tool was used follo, ed by a 9.25 m . blonding tool.

Stap 5, bdge rreatment; How frond sides of the lene Were posiched with the "conliah" ingtmuent. the flat ede was polished by holdints the lens perpendiculem to the 180° flat polishing tool, figure 5 . The back edge of each atraitht surface was oolished ith a steoper than base curve tool to get into the frame edge of the flet out. Fxample: thth base curve of 8.00 mm . we used a 7.50 mm tool.

Te polisned the front surface of the flat ecge by varying the ante of the "Forcon" lens on the 180° polishing tool. The lene was then inapectod under the oinocular microscope of the universal slit lan to insure smoothness of all surfaces and oges.
b. Theory of Design: Our "Iorcon" lenses were constructed to be lapge in gize, thicker than nverage edge thickness, fiat on the top and bottom, fim fitting, and wher atupt angles bevweer the roundea and fiat surfaces.

Hhe lens w constructed larice because we believed tint the larger the lens the loss rotation. The thlek edge was defired to provide correction of the novement the lens made when in contact x ith the lower 1fa. Further, we theorized that by keeplne the top ane bottom of the lens straisht, the Lens edige would ride on the lower lid and prevent the lens from rotating off axis. Lfentness was secured by having the lens large and fluting "on $K^{\prime \prime}$.

- Position (non-rotation) of the lens wis presumed to be maintained by two means. First, if the lower ild contected one of the angles, the contact lens was pushed uo allowine the oppostto pide to lower and thereby maintaining the desired axis as shom an figure 6. As the lens droppen, the force would be to allow the high comer to dyop to the 110 once the bther
lower anglu was in contact with the lower lid. Second, potation would be halted when the aumpt angle of the lens

Figure 6
5480n97
"dug into" the sclera due to the steeper curve of the lens. This correction would be most effective on the superior aclefal regton mon the lens was raseed by the upper lia as snown in fleure 7.

The andpt ariele and gtraight edge were assumed to yield faster correction than would a rounced edge.
e. Individual Case Data: Each cuse studied incluaine Itndings, observations, and adjuctnents of lenses as indicated is presented on the following pages.

Haters.

C 4 +dxpert)
088 $50 / 30$
od 20/154

ct $20 / 10$

(01 20/30-9

$\underset{0}{\infty}$	

The firgt pan of lenses ar ived in biourve form and were returned to the lab to have the intemeaiate curve sdded. he sdaition of this curve produced oxtemely thin lenses $\mathrm{w}_{\mathrm{it}} \mathrm{th}$ paper like edges. Due to the thinness the left lans Fan cracked on arrivai. the ment lens was modffed nnd upon fitting we found tre 47 to be $.75-1.25 \times 36$. Werteloutzon of this leng wa $+1.00 * 1.00 \mathrm{X}$ 15. ne bad mistakenly monted the cylsucr off axis. The patient reported little dischasort due to the lena. Hotation of whe lens was not more than 10 to 150. The size of this lens was 12. 1man. X 9. Cmat.

A new pair of lenses were ordered as per the previous gpecificatlons. shey were recelved in otcheve 10 ym . He
 tho Lack of an intarmedate ourve, we blended them well (2-3 mifut atigh speed). Upon insertion the petient come plainec of disconfort. The ratht lens rotated ss much an 25° but usualiy was on axis with less rotation. the left lens Was unstable and sometimes rotatod 90° off axis. V.A. Was sustaned at RO/15 O.D. but varied in the 0.S. Then the left Lens 4 h hata on atit tine acuity wa also 20/15. both lenses towched the imbus on both the nasal and tomporal side. It was tuib lisnoal touch which we attributed as the ceuse of
the discomfort. Segarime of thit the adjughment indicated was to reduce the size of the lenses in the hortzontal raerialan.

The reduced size wes $0 . D .10 .7$ mat $X 9.5 m$, and $0 . S$. 10. gnot. X 9.5 mm . This todifiomtion produced an oval lens. Upon insertion the patient complained of disconfort. be inspected the lenses and notsced sharp edges. the edge troatment was ripoatad and the top and bottom recut to give straight edges insted of oval. This modification produced confortable lense maich were within the limbal area. The right lons was Laselly on ais and would oniy rotate about 10° when the patient gilnket and then it would settle back to poaltion. The lowar eage of the lens was well above the lower lid when the patient looked ptraignt nome The left lens was unatable and off exis about 10° to 25° most of the thme. V.a. vin blurred most of the time. If the patient alc not bilink and let tine lenset eettle or if he aquintoc and forced the lenses on axis usins the lower lid then the aouity would 1mprove to $0 . D .20 / 20$, and $0 . S$. 8 $0 . \mathrm{N}, 20 / 15$, but the letterg wers not sharp and elear. The reason for this was found in the refraction which was 0.D. -.75-1.25
 and settling of che lenses would eliminate this problem so We instructea the patient to wear the lenses 2 or 3 hours each didy.

」'he following exam revealed ihe same finding as did the previous check. The lenses wepe again vexified to be sure they were in the proper eyes. whe fluorescein putterm fndicated that both Lenses were tight. Ihe aetigmatism We found thm the "torcons" was about the same as the spectacle correction the patient was wearing. Because of this We wanted to rocheck the refraction thru the americal contacts to see if adeqtional oylinder was also indicated. rho extim thru the spherieal contacts geve an unaided va of 0.D. \& 0.S. 20/20-2 and 0.U. 20/2042. This was an inorems of aculty from that proviously found. The letters were not dear but were oblique and double. The refraction was 0.D. $+.50-50 \mathrm{X} 60$ and 0.5. $+1.25-3.25 \times 120$. Thin was e recuretion In the astignatism of the left eye only. In this case the astigmatism was not reduced and the problem of rotation was not corrected in the o.s. The only auccess we had was in attaining patient comfort and a atable lens O.D.

Due to the uncorrected eylinder the factors to be considered in adjustment were tightness and proper prescription of the powter of the cylindes.

Theia patiant had previousiy worn contacts but due to the
 tizue due co suppression and monotalarity.

The lenses wore recelved in bicurve form and returned to the lab to have the intermediate curve added.

Due to the wretoel prism these lenges have a top and bottom and must be ingerted that why. The initial size of the 1entog was 0.1. 13 mm . X 10.4nam. and 0.3. 13mm. X 11.2. Upon firnt ingerting, rotation was never more than 15° in either eye. The lenses extended beyond the limous and enarasamed upon the sclera about lum. on ach side. The lenses were unconfortable and couldn't be wom more than two nours. The patifnt reported better aculty than with his other contacta. Ihg indicated adjustment was to reduce the size to provibe patient comfort.

Whe reducea size vas 17. Snt. X 10mm. 0.D. and 0.S. which provided a lens that was equal to the horisomeal diamater of the cornea.

Line firgt weck the patient could not wear the lenses more than 3 nours. V.a. was 20/20 0.D. and 20/150.s. ing lenses maintained the desirea position except on initial insertion the left lens would sometines rotate 90°. Ihis was attriouted to the slight tearing upon flust inserting and also to the hoary base up prism which desired to bopome baso down. "o theorized that thes might happen and were aware
that the base down prism would of for more stability out we wanted to find out the result if* base up were used. Imo patient mampalatod the lens back to base up and by fluttering his licis colim mantain position of the lons if it started to rotate, Htinin a few minutes after insertion the lenses became stable.

Kefraction through these lenses was $0.0 \cdot 4.75-50 \times 90$ with v.a. of $20 / 200 . D$. ant 20/15 0.5.
yy the second week all dey wearine time was scomplished. The potyont his been worinit the lenses for 4 Heeks now 10 - le hours per day. notation of the lenses was not more than 10°. fhe oniy compialnt was of fogeine which gtarea after Waring the lerises 6 hours but decretsed as they were wom langer. Ents incloated a gitgraty ulyt lens and neected to be blended. The pritient had been removing the leases dimeng the dinref hour and reingerting atter to oliminate thit fockinc problom.

In regard to the hyperphoriz, the followine flindinge
 ifper Visugl skill cands showod a Right hyper far and near. stereopsis (3° fusion) was very good. Altemete bover showeat only a slignt vortical jump to the patient.

Whit case show the possibilities of such a lens as we have worked with. patient comort was attained. uosicion of th: lens was stable (non-rotation). V.a. Was improved. Athouta the resicual sarignatism was not eliminated, it was reduced. mans indicates to us that more cyllnder should bo prosoribed than that atount neasured 1 brm, away from the anterior surface a the comea.

7. Ther gentapte : 0

c) 20/15

20/15
(w) 0.15

Fithy co 20/15
(20/25-4
ov 20/15

解 $50 / 20$

-

P4

Hpon initial inseption the lenses were comfortable. The fluorescein pattem showet tightness of the intemediate curve on the nasal gnd temporal sides. The left lens rotated as much as 0° but the richt lens never rotatca over 10°. the pefraction wis 0.D. plano -. 50×20 and $0.5 .+1.25$ sphere with ari undetemmed cylndrien component due to the unstable 1ens. The acuity was 0.1. 20/15, 0.5. 20/80 and 0. $0.20 / 15$. ihe patient continued mearing the leases.

A puchol was taken a week later. Again the left lens roteted 90° and rdet lens was stable. The refraction wes 0.D. plano and 0.3. * 1.25 with an undotem nec cyirdrical component due to the excessive rotation. The V.A. was do/15 O.D. 20/40 0.3. and 20/25 0.U. The patient complained fiter wearing the lenses 12 hours of the right oye fogging and a spectrum effect when looring at lifths. The fiuorescein pattern of the right tye indicuted a tightness of the intermeditte curve. the adjusments made were to open the intermediate curve of the right lens and out the nasal and temporal sides of the left lens so thet the eqges would be within the 11mbslarea, the sige of the lot tons was then 11. Gran. is 9. Cman

The following week the petient complaned of sharp ecigos. the edges were checked snd polished. The refraction was o.D. piang, 0.5. * 1.25 with unmeagureable astignatism. notation had not decreasad in the left eye. he right leng still sustanned the proper position. Upon instructing the patient to wear the lenses for 8 hours instead of 12 , the symptons of fogging in the right eys wore elmanated. Whso the loft long was held on axis the $v+2$. increased rom $20 / 40$ to 20,20 .

In chas case we ineresaed the v.a., ellntnated the astigmatign and attained a stable lons in the right dye only. In regare to the left lens the fallure might have been contributed to whe fact that it fit mone loosely than the reght 1ens. min might have been caused by our usine the 9.25 mm . blendine cool on both lenses and not considering the difference in base curve of each lens. Usually tns intermsalnte
 Using the 8.25 mm . curve in comolnation with tho 8.23 man . Dase curve-of the right lens we had a tight fitting lens.
 that the base curve. be do not believe this offered as tight a fittine lens. Int locser fit of the o:s. lens comparea to the 0.J. lens was also donfirmed by the fluorescesn pittem.

Nape bat. W.

Frit
$08-40378$
$6520 / 15$
$0420 / 25$
 © 20/25
0 8 $0 / 15$
$120 / 15$

 Centagte. 0, $2 / 60$

Centay of Cupil to Lower int t Sata

Tre Pewty S䠗

548e

Upon the irsertion of the first pair of lenses the patient was quite contortable. The iluorescein pattern siguified a sight touching in the intomedzte ares of both oyes. The zeft lens roteted 90° once, but when tho gaze was shifted up the lans posiuioned proporiy. The fitht lens contimualy fotated 90° with blurring when in position jut clear When off this 90°. the reason for the reauced v. a. was that We had mounted the right lens 90° off axis. The W.A. in the right eyb was $20 / 15$ when on the proper axis end was quite reducea when rotated 90°. The V.A. In the left eye wns 20 /15-2 and $0.0 .30 / 20^{2}$. The patient reported that when the "Porcon" lenses wrore properly posithoned ner scuity wes better tian rith the spectacles or spherical contrets she bid been wearing. Tho patient was told to wear the lenses a couple hours each day. ne did thio to deternine if adaption would decroase the amoutt of rotation.

A week Iater the rotatime of the richt Iens wes still excersive while the zext lens never rotated over 20° or 30°. W.A. Was 0.D. $80 / 40$ when of 5 axis and $20 / 45$ when on axis, 0.8 . was $20 / 80$ te $20 / 30$.

A new right lens was prascribed which we recelved in bicurve form, the mocified alze wss 11. Edm! $X 10.0 \mathrm{~mm}$. The lens was blended well due to the lak of ari intemeatate curve. The patient then insertec the lenaes at which tine
she compainec that the left lems felt alightly scratchy. She could not feel the witht lens. Tho right luns demonstrated as much as 90° of counter-clockwise rotation while the left lens rotated up to 45° in a clockwise direction. the refraction was 3.D. phano $=.50$ A 75 and 0.5. -. $25-.25 \times$
 Y th. was 0.D. 20/R0³ when the lons was positioned cormectiy, $0.3 \cdot 20 / 15^{-2}$ and 0.0. 20/20*. The ou. acuity showed alternate clearing and blumper but was clear more times than not.

Due to our inability to elimingte the rotstion we asd not enteve any sustainea improved aculty, kowever, we did proVide latge confortablo lens which geve improved acuity when In the propor position. The unstable lens could have been dua to ah lifpoper fit, a amellar hasn optiman size, on because of the near spherical comet.

Oontapteo $0020 / 85$

- 睹 20/50

Fetal Phemew 700
plawstar of Gormat

* Y A
 blactes vill 12

The symptomatology of the patient was one of dascomiort When fitted. the eluoreaceln patterm bhowed tightness of the Intarnediate area. The vextical section of the lens protriced onto the sclers. shis indicated need for reauction of the vertioki size about $l_{\text {g }}$ 酗, the refraction was pl .50 A 30 0.D. and piano 0.S. phe V.A. was R0/20-1 O.D., 20/18 $0^{-2} 0.3$. anta 20/18-1 0.U. There was slight counterclockise rotation in both eyes. the lenses could not be wom more than 2 noure the first week. We acjuated the two lenses iy oponing the perspheral curve to relieve the tightness with the 12.25 m . stone and cutting the vertical section down so as to get away from the scleral tauch. The reducod
 In the next exam a weol later thene was no lens rotathon of any degree. There was toarlig and discomfort inflicted from wearing the lenses. The fleoresceln patitern showed a dight tigntness in the intemeaiate area of the might eye. the 0.s. pattem indicated a "fimi fit. the acuity had improved in the right ye to $20 / 15^{-1} 0.1$. and the
 pl-.50 A 135 and 0.5. plano. Whe only complant of the pationt ${ }^{\text {asas that when she shifted her geze from the primary }}$ position she was unconfortable and begin tetiring she + roms ried that she became a "head mover" as opposed to an "eye mover".

A Heer I ator the acuity was 20/450.D., U.S. and o. Us Tha refraction was 0.2. plano -.50 A 135 and 0.5 plano. she was sthll unaole to perform confortable eye movements.

Bu list refraction mas O.D. plano $-.50 \times 220$ anc 0.5 . *.25-.25 $\times 120$. The acufty wss 20/15-3 0.D., 0.5. and 0.U. Mere was no lens rotetton in the 0. . and uncer 10° rotation In the o.s. The patient complanea of firstetion of the low-
 11a Impation indieated a share ode and need for polishing of the straight adge. The alsoomfont inflicted upon eve movomerte indicabed a noed for adaption or possibiy sligit reauction or size.

In thas case the acutty wes subatanthily mproved, rougtion was negigible (position sustaned), and astigatism reduced. . 9 feel that the discomfort factor is minom in comm pacison to achioving a nom-rotathre lens wa could bo eliminated 41 th contimus modifycations.

Whe problems of fitting truncated tomic lenses were patient comfort, sustamed b.v.t., elimination of astigmatism and atabiliug of tho lens.

Whe most difficult of tigas to establisin was the nonrotatine lens. , \quad wore successfui in fitting a stable lens in most cases. A stable lens was fictod both in tricurve and blourve fom, however, we found that the bicurve lens was in most cises a tignter lens.

Wenal acuity was hnoroved in all cases when the lens Was in the propur position. this v.a. was sustainea oniy if tig Lens was stable.
rull oylinder of the ri7a thmu spherical contacts was prescribed. The astignatism was not completely corrected in most cases by this prescription. as the tonic lenses were worn longer periods however, these astightisms tended to decreage. Therefore, we feel thet with adeption and the prescription of more cylinder than originally found, the EEBAdal stigmatism could be eliminated, providing the lens was stable.

Patient comfort can be obtainea by proper polishing and selection of size of lens used.

In general the smaller lemses (those that woro further within the limbal area tenaed to rotate more. This indicated that a iafge lens (equal to the comeal dameter or larger) should be fitt and adjustraent made to provide patient comfort.

Becauge we improved acuity and achseved confort in most cases we feel that the prescription of "Torcon" lenses would be practical as a means of correcting residual astig* matism. nowevir, the pr ctitioner should be aware of the problemg involved and not disoourgged oy individual cases which are not inftially succegsfut. There is much that remans to be leamed betore the confidence of aucessful fittine jncreases.

Reconmendations for further study in providing correction of residual astigmatism are:

1. Size of lens: Ne believe that lma variation in size can ine the difference in success or fallure in providing a stible lens.
2. Vanstion of base curves and internediste curves. 3. Lifect of varied bevels.
3. Shape of lens.
4. Combination of conceve toric surfsce and truncatea lens on astigmatic comeas to prevent rotation.

CONCLUSIOMS

1. Residual astigmatism can be reduced or eliminated with toric corneal contact lenses.
2. The acuity of concact patients with residual astigmatism can be improved with a non-rotating toric lens. 3. The dimensions of the toric lens are very important in achieving atability.
3. A tranested lens provides a more stable lens than a round lens.
4. A tight fitting lens is apw to be mone stable than a 100se lens.
5. Laree truncated toric lenses can be worn all day with confort.
6. Success in produeing a non-roteting lens can not be said to depend upon any single factor.
7. In most cases some amount of astigmatism was found thru the toric lenses (residual residual astigmatism). Such cases indicate a need for prestriotng more eylinder than found thru the spherical contacts.
8. A stable lens can be fitted on both spherical and astigmatic comeas.
9. Prism base up can maintain position in contact lenses.

$\mathrm{SU}, \mathrm{MaFY}$

This e periment was an attenpt to correct the residual astigmatism of 5 subjecta who had .75 D . or over of astigmatism, through thenr spherical contact lenses. Convex toric surface lanses were truncated and fit on each subject. The significant findings and results are shown in rable 1.

A detailed discussion of the handing of each patient In the study is frcluded, including the mechanical changes made during the fitting period.

In regard to table i; In those cases where the lens was unstable the wearing time was undetermined due to the lowered V.a.

	K.B.	L. H.	S.		B. ${ }^{\text {Fin }}$
gross comweal	0.D.-1.501180	- . 50×100	$-1.87 \times 180-.1$	$.12 \times 180-$	-. 37×180
	0.5.-1.50×180	$\because 87 \times 280$	-2.0pa175-.2	$.25 \times 180$ -	-. 12.1180
ASTIGMATS㴵	0.D.-1.25A25	-1.50x95	- $283065-2$.	2.50x92 -	-. 75×35
47a ¢in'HOUT	0.3.-1.004105	-1.06895	-1.503180-.7	. 75×90 -	-.75x95
COATACOS					
ASTIOHATISM	0.D.-1.00875	-1.00890	-.75.80 -1.	1.00890 -	-. 75×75
	0.5.-1.00.120	-1.008110	$-.75 \times 80-.7$. 752.90 -	-. 75×105
contar OHS					
V.A. WITH	0.D. $20 / 40$	20/30	20/30 80	80/30	20/20*
SPKMETCAL	0.5.20/40	20/15	20/20* 20	20/40 ${ }^{-2}$	20/ 20^{-}
CONTACDS					
TORCOM	O.D. Unctetermin	ned All Day	Allday	\%	2hnurg
WEARING PI	0.5 .	\% ALL Day	Undetermuned	eat	2
TORGON V.A.	0.D. $20 / 15$	20/20	$20 / 15 \quad 20$	20/15diblurr	- $20 / 15$
	0.3.20/15	20/15	20/20-40 20	20/E0-30	$20 / 15$
TORCOn	O.D. $=1.25437$	-. 50.190	Wegative -	-. 50×75	-.508120
	0.3 .7 .758160	-. 80890	Undeteratned -	-. 25×180	-. 25×110
TORCON LENS	0.D. $0-10^{\circ}$	$0-10^{\circ}$	0-10 0	Unstable	0-5 5°
nowntrom	0.5.25	$0-100$	Unstable	\%	$0-5^{\circ}$

* thdetarmined dua to lowered va.做 Mans cylinder was proscribed in the "Torcons".

